
Speaker recognition
implemented as part of a

video-editing system

Author: Sebastian Rojas Tveita

Supervisors:
Gisle Sælensminde (external)

Harald Soleim
Atle Birger Geitung

Daniel Patel

Master’s thesis in Software Engineering at

Department of Graphics,
Bergen University College

Department of Informatics,
University of Bergen

June 2019

ii

Abstract

With machine learning rising to prominence over the last decades, a lot
of companies are doing research on how it can be applied in their prod-
ucts or production. Some of these companies have used machine learn-
ing with a good deal of success. This thesis proposes a solution for in-
tegrating speaker recognition in a video-editing system. The proposed
solution is a proof-of-concept pipeline that is hooked into a web-based
video-editing system made by a company called Vizrt[1]. This pipeline
takes a video and performs speaker diarization and classification on the
audio from the video. To achieve this, two types of models are applied;
Gaussian Mixture Models to create a Universal Background Model, and
models applying the i-vector approach for use in the clustering. From
the results of the machine learning algorithms, the pipeline will produce
timecodes that are sent to the video-editing system. These timecodes
show where different speakers are talking. This information will be pre-
sented to the user in the system UI, where the user will have the option
of correcting the results from the diarization and classification.

The pipeline also adopts the results from the algorithms to provide fur-
ther functionality. By using the generated timecodes, the pipeline is able
to extract training data that is partitioned according to the speakers. This
training data will be saved and can later be used to generate new models
for the different speakers. These new models can be used in later runs
through the pipeline to recognize known speakers and be improved by
gathering more training data for the known speakers.

The thesis shows how machine learning can be applied in a pipeline
to partition an audio track without any prior trained model. Using this
information could be time-saving in a video-editing process, or in the
process of creating training data. The pipeline also has the potential to
be expanded with further functionality. This would require the pipeline
to be further integrated into the video-editing system.

iii

Acknowledgements

I would like to thank my supervisors at The Western Norway Univer-
sity of Applied Sciences, Harald Soleim, Daniel Patel, and Atle Geitung,
who has throughout the duration of the thesis provided me with excel-
lent feedback, constructive criticism and support.

I would also like to thank my external supervisor Gisle Sælensminde
at Vizrt, who went above and beyond in guiding me in the work of this
thesis. Without his invaluable help and input this thesis would not have
been possible.

iv

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Motivation . 1
1.2 Goal of this thesis . 2
1.3 Related works . 3
1.4 Research questions . 4
1.5 Research method . 4
1.6 Report outline . 5

2 Background 6
2.1 Signal processing . 6

2.1.1 Feature extraction . 7
2.1.2 Mel-frequency cepstrum 8

Pre-emphasis . 8
Framing and Windowing 9
Fourier transform and power spectrum 10
Mel-filter banks . 13
Logarithm of filter banks 14
Discrete Cosine Transformation 15

2.1.3 Delta and delta-delta 15
2.2 Machine Learning . 15

2.2.1 Speaker recognition 16
2.2.2 Speaker models . 17

Gaussian Mixture Models 17
Universal Background Models 18
Identity-vector . 19

2.2.3 Bayesian information criterion 21
T2-Statistics . 21

3 Technologies and problem description 22
3.1 Problem description . 22
3.2 Potential functionality . 24

v

Use the information from the program to search
through all the files 24

Use the information from the program to search
through the file in the editor 24

Display information about the different speakers . 25
Give a feedback about how certain the program is

of its classification 26
Change what kinds of elements uses the information 27

3.3 Technologies and techniques 27
3.3.1 Technologies . 27

Video editing system 29
3.3.2 Techniques . 32

Sampling . 32
Machine Learning Methods 33
Models . 34

4 Design and implementation 37
4.1 Implementation work . 37

4.1.1 High-level description of the pipeline 38
4.1.2 Creating training data 38

MFCC package . 39
Sampling with BIC 39
Implementation of the i-vector package 41
Work done to improve the results of the machine

learning algorithm 42
Implementation of the clustering algorithm 43
Implementation of the connection between the ML

and video-editing system 44
4.1.3 Implementation of a publishing target 45

4.2 Solution design . 45
Julia workflow . 45
Python workflow . 46

4.2.1 Explanation of the user interface 47
How the user interface could be used in combina-

tion with the pipeline 47

5 Results 49
5.1 Presentation of the results 49

5.1.1 Qualitative results 49
5.1.2 Quantitative results 50
5.1.3 Comparing the current pipeline with a production

version . 51

vi

6 Evaluation and conclusion 53
6.1 Evaluation and discussion of the results 53

6.1.1 Utility value of using the pipeline in a video edit-
ing system . 55

6.1.2 How the pipeline could affect the workflow of an
editor . 55

6.2 Evaluation of own work . 56
6.3 Conclusion . 57
6.4 Future Work . 58

6.4.1 Improving the algorithms 58
6.4.2 Expanding functionality 59
6.4.3 Build or adapt a UI 59

Bibliography 60

vii

List of Figures

1.1 A diagram showing a very general idea of how the pipeline
could work . 3

2.1 Block diagram showing the basic steps of digital signal
processing [5] . 7

2.2 MFCC . 9
2.3 A signal (top) is multiplied by a window (middle) result-

ing in windowed signal (bottom) [11] 11
2.4 After applying a window function to the captured signal,

the sharp transients are eliminated [11] 12
2.5 Example of a signal in the time-domain and the frequency-

domain [9] . 13
2.6 Filter bank on a Mel-Scale [6] 14
2.7 Overview of UBM usage [22] 19
2.8 Overview of the steps involved in extracting an i-vector [22] 20

3.1 Visual representation of speaker diarization [26] 23
3.2 Mockup of how the UI could look if it has the functional-

ity to search through the files based on known speakers . . 25
3.3 Mockup of how the UI could look if it has the functional-

ity to display information about known speakers 26
3.4 Benchmarks of different languages for a range of common

code patterns [28] . 28
3.5 An UI of a Non-Linear Editor [30] 29
3.6 The Viz Story UI after completing a run through the pipeline 30
3.7 Visual representation of different machine learning meth-

ods [28] . 34
3.8 Graph showing how the amount of training data affects

the accuracy of deep learning and traditional machine learn-
ing algorithms.[33]. 35

4.1 The result of doing BIC on an audiotrack. Where the x-
axis shows the frame number and the y-axis shows the
score from the BIC in that frame 40

4.2 Visualization of the sliding-window technique, where the
window slides with 1 frame increments[38] 41

viii

4.3 Overview of the flow of the julia and python code 46

ix

List of Abbreviations

UBM Universal Background Model
GMM Gaussian Mixture Model
ML Machine Learning
DCT Discrete Cosine Transform
UI User Interface
NLE Non Linear Editor
EDL Editing Decision List
XML eXtensible Markup Language
UI User Interface
WAV Waveform Audio File
PoC Proof of Concept
PCA Principle Component Analysis
BIC Bayecian Iinformaton Criterion
JFA Joint Factor Analysis
MAP Maximum a Posteriori

x

Glossary

Bayesian information criterion In statistics, the Bayesian information
criterion (BIC) is a criterion for model selection among a finite set
of models.

Classification In machine learning classification is the problem of de-
ciding which category a new observation belongs to.

Discrete Cosine Transform A discrete cosine transform (DCT) expresses
a finite sequence of data points in terms of a sum of cosine func-
tions oscillating at different frequencies..

Edit Decision List An edit decision list (EDL) is used in the post-production
process of film editing and video editing. The list contains an or-
dered list of reel and timecode data representing where each video
clip can be obtained in order to conform the final cut..

Feature A distinctive attribute or aspect of something.

Gaussian Mixture Model A Gaussian Mixture Model (GMM) is a para-
metric probability density function represented as a weighted sum
of Gaussian component densities. It speaker recognition it can be
used a model for a speaker or utterance.

I-vector An i-vector is a modeling approach used in speaker recognition
to model a speaker or utterance. It exist in a low dimensional space
called the total-variability space.

Lower third In the television industry, a lower third is a graphic overlay
placed in the lower area of the screen.

Machine Learning Machine Learning is the science of getting comput-
ers to learn and act like humans do, and improve their learning
over time in autonomous fashion, by feeding them data and infor-
mation in the form of observations and real-world interactions.

xi

Non Linear Editor A non-linear editing system (NLE) is a video or au-
dio editing digital audio workstation system that performs non-
destructive editing on source material. Non-destructive editing is
a form of audio, video, or image editing in which the original con-
tent is not modified in the course of editing; instead the edits are
specified and modified by specialized software..

Principal Component Analysis Principal component analysis (PCA) is
a mathematical procedure that transforms a number of (possibly)
correlated variables into a (smaller) number of uncorrelated vari-
ables called principal components.

Rendering In video-editing, rendering is the process of applying the
editing steps found in the edit decision list to the video.

Speaker diarization In the field of speaker recognition, speaker diariza-
tion is the problem of finding out at what times the different speak-
ers in a audio-track speaks..

Universal Background Model A Universal Background Model (UBM)
is a model used in a biometric verification system to represent gen-
eral, person-independent feature characteristics to be compared
against a model of person-specific feature characteristics when mak-
ing an accept or reject decision.

User Interface The means by which the user and a computer system
interact, in particular the use of input devices and software..

Viz Story In statistics, the Bayesian information criterion (BIC) is a cri-
terion for model selection among a finite set of models.

Vizrt Vizrt is a worldwide market leader in the areas of real-time 3D
graphics, studio automation, sports analysis and asset manage-
ment tools.

WAV Waveform Audio File Format is a Microsoft and IBM audio file
format standard for storing an audio bitstream on PCs..

1

Chapter 1

Introduction

1.1 Motivation

Over the years, the use of machine learning has become increasingly
prominent. Both bigger companies like Google and Amazon and smaller
companies are devoting more time and resources to developing and im-
plementing products that use machine learning. This has also lead to the
development of different frameworks to make machine learning more
accessible to the average developer. An example of such a framework
would be TensorFlow, which simplifies the process of making, for exam-
ple, neural networks. Likewise if you do not want to build a network
for yourself there is a good chance you can find an API that will do the
work for you. Because of this, you see the average developer being able
to utilize machine learning without needing a lot of prior knowledge or
spending a lot of time building their models.

This rise in popularity has also lead to companies looking into automat-
ing or simplifying time-consuming tasks normally has to be done man-
ually, Vizrt being one of them. Vizrt is a worldwide market leader in the
areas of real-time 3D graphics, studio automation, sports analysis, and
asset management tools for the media and entertainment industry[1].

This thesis is a cooperative project between Vizrt and HVL/UiB. The
motivation for Vizrt was to look into a way to use machine learning in
their editing software in general, but more precisely they wanted to use
machine learning to extract some kind of metadata from the content in
their editing software. Over time the problem was adjusted and got nar-
rowed down to looking into extracting metadata related to the audio of
videos. From this, it was decided that the thesis should focus on getting
metadata directly related to tagging the video so that it can be used as
training data in speaker recognition.

Chapter 1. Introduction 2

The problem that often arises when using machine learning is that gath-
ering enough training data can be both hard and time-consuming. Often
you will be able to find enough data to train your models online, but
most of the time you are forced to spend a lot of time tagging that data.

When discussing the thesis, the fact that machine learning algorithms
rarely will give consistently perfect results another fact was brought up,
namely the fact t. Some of the users of machine learning have a tendency
to be too trusting of the results they get from their algorithm. Even if it
is understood in the ML field that the result will be an approximation of
reality. In most cases, this is not a problem, as people do not tend to use
ML to do tasks that have to be 100% correct. Even if this was also the
case with this thesis, the advantage of being able to edit the results given
from an algorithm could not be overlooked.

1.2 Goal of this thesis

The goal of this thesis is to look at the possibility of creating a pipeline
that automates the process of extracting training data, which can then
be used in the training of models through a pipeline, while also having
the possibility of editing the data before using them. After extracting
information from a video, the results will be presented to the user. If
the algorithm classifies a segment as containing a certain speaker, the
user should be able to change the classification to another speaker before
the data is saved or used to edit a video. Also, to answer the research
questions related to this.

Specifically, the thesis will focus on extracting data to use in speaker
recognition and looking into some other uses for the extracted data. The
result from this will hopefully be either complete training data that you
can give to a training algorithm or some sort of metadata that will make
the extraction and tagging of the data simpler and less time-consuming.
The model approaches used will be a combination of Gaussian Mixture
Models and identity-vectors. These models will be used in combination
with Vizrt’s systems and a clustering algorithm, to hopefully be able to
extract data that can be used as training data. When uploading a video
to Vizrt’s systems the goal is to be able to extract the data before publish-
ing it or during the publishing process, so the pipeline will likely end up
looking like figure 1.1. The figure shows a simplified overview of how
the program could be used in a media company’s system. When a video
is uploaded to the system it would at some point be sent to the program

Chapter 1. Introduction 3

FIGURE 1.1: A diagram showing a very general idea of
how the pipeline could work

where the desired information is extracted and then sent back to the sys-
tem. The information can then be used in different ways like annotation
and tagging, depending on the need of the company.

1.3 Related works

There has been done a lot of work within the field of both speaker recog-
nition and speaker diarization. On top of that the field of machine learn-
ing, which include speaker recognition and diarization, has also made
regular advancements. The work done in these fields goes back decades,
and a lot of different techniques have been used through these decades
with varying results [2]. Different models like Gaussian Mixture Mod-
els and modeling approaches like identity-vector has been used and ad-
vanced. At the same time, the field of machine learning has made sig-
nificant advancements, like deep learning and frameworks for machine
learning. These advancements let researchers more intuitively test dif-
ferent models with different techniques, all while improving how these
models work. Today, big companies like Google have done a lot of ad-
vancements in these fields. They have also made a lot of APIs like Ten-
sorFlow that has made machine learning more readily available for peo-
ple. Because of this thesis will focus on the case of using the existing
techniques in the fields to add functionality to Vizrt’s systems[2][3].

There have been made systems with similar functionality to the one that
is being built in this thesis. Browsing and editing video by using the
audio has been tried and patented earlier[4]. The system that has been
looked at does not provide the exact functionality that this system hope-
fully will provide. Further, the disclosed patent does not provide infor-
mation on the technologies used (model, algorithm, etc). Because of this,

Chapter 1. Introduction 4

it is possible that the system built in this thesis could differ greatly from
earlier systems.

1.4 Research questions

Question 1
In this work we aim to try to make a pipeline that will separate the voices
of speakers in an audio-track by applying machine learning, and pipes
this information into a system. By this, answer the question of; can ma-
chine learning be applied to partition an audio-track according to speak-
ers without any prior trained models, and the result be piped into a sys-
tem to train new speaker models?

Question 2
This thesis also aims to look into the possibilities of integrating machine
learning into a video-editing system. Then answer the question of how
a machine learning system be integrated into a video-editing system in
a way that will help the users with time-consuming tasks?

1.5 Research method

In order to answer the research questions, I am going to do exploratory
research where I integrate a speaker recognition system into an existing
video-editing system. Using the UI of this editing system I will evaluate
if integrating the machine learning system will help the users with sim-
ple yet time-consuming tasks, like tagging, or finding the correct time in
a video. The evaluation will, for the most part, be qualitative and subjec-
tive in nature. Since concrete data about the time users spend on those
tasks will not be available, but will also contain some concrete quanti-
tative results since using the UI one can see if the result of the machine
learning corresponds to reality. By looking at the results in the UI, we
can see if the information gets piped correctly into Vizrt’s systems. Also
by checking if those results correspond with reality we can draw a con-
clusion about if the results are good enough to use as training data for
new models. The information gathered will be used to conclude if the
pipeline has the potential to be used in a production system, as well as
what potential benefits one can expect from it.

Chapter 1. Introduction 5

1.6 Report outline

This thesis is divided into the following chapters

Chapter 2 - Background
This chapter is divided into two parts; signal processing and machine
learning, each providing the necessary background information for the
different fields. The signal processing section introduces the features
used, namely MFCC, and the process of extracting them. The machine
learning gives a presentation of the speaker recognition field and the
different models used in this thesis.

Chapter 3 - Technologies and problem description
This chapter is divided into two parts. The first part presents a more
detailed overview of the problem this thesis is aiming to solve. The sec-
ond part presents the different techniques and technologies used and the
motivation behind using them.

Chapter 4 - Design and implementation
This chapter presents the design and use of the proposed solution. As
well as an overview of the work that went that was done in the imple-
mentation process.

Chapter 5 - Result
This chapter presents the result of this thesis. These will be divided into
qualitative and quantitative results, and be presented separately.

Chapter 6 - Evaluation and conclusion
This chapter will discuss and evaluate the results presented in chapter
5. Additionally, the research question will be answered and a conclusion
will be drawn. Finally, some future work for the proposed solution is
given

6

Chapter 2

Background

This chapter will give a description of the underlying methods and the-
ories used in this thesis. The reader will first get an introduction to sig-
nal processing and machine learning. Signal processing is in this con-
text used to transform the data into a domain that the machine learning
algorithm can use. The chapter will begin with giving an explanation
of signal processing and the process used to transform the data. Then
an explanation of machine learning and speaker recognition and how it
uses the data acquired from the signal processing.

2.1 Signal processing

"A signal is a varying quantity whose value can be measured and which
conveys information." This definition is pretty wide and can be used to
describe a multitude of things. The kind of signals that are of interest
to us in this thesis are digital signals, which are signals represented by
numbers on a computer or digital hardware. More specifically, audio
saved as a digital signal, which is called audio signals. These digital
audio signals are usually saved as samples. These samples are taken at
regular intervals. Each of these samples will contain numbers, where
each number represents the relative voltage at that time. In other words,
a sample is a measure of the signal at a certain time. We want to look at
frequencies from different audio files and use that data in our algorithm.
To do this we have to use some form of digital signal processing. The
basic steps of digital signal processing can be seen in figure 2.1, even if
this is not exactly the kind of processing done in this thesis. The transfor-
mation in this thesis involves using simple operations to transform the
numbers representing the signals in one domain, into numbers repre-
senting the signal in another domain. In our case, we want to transform

Chapter 2. Background 7

FIGURE 2.1: Block diagram showing the basic steps of
digital signal processing [5]

the samples we got from our signal from the time domain into the fre-
quency domain. In other words, we start by having an analysis of the
data with respect to time, which we want to transform into an analy-
sis with respect to the frequencies. This transformation is motivated by
the human auditory system, this lets the computer model the way we
humans interpret sound. How this transformation works and the moti-
vation behind it will be explained later in this chapter.

2.1.1 Feature extraction

The reason you have to transform the data is that the raw samples of
the audio will just look like noise to most machine learning algorithms.
This is because, among other things, that data in the frequency domain
is varies more slowly than data in the time domain. Since frequencies
will change a lot over time, it will be observed as noise by the algorithm.
Because of this, having the data in the frequency domain is necessary
when working with audio in ML.

When doing speaker recognition (or any kind of machine learning tasks)
you have to do feature extraction. This means identifying the compo-
nents of the audio signal which are good for identifying the linguistic
content and discard the part of the signal which contains information
like background noise, emotions, etc. The first thing you have to do is
decide on what feature you want your algorithm to base its decision on.
This will naturally wary not only based on your choice of algorithm, but
different kinds of machine learning tasks usually use different kinds of
features. In for example machine learning tasks involving pictures, the

Chapter 2. Background 8

features will often be the pixels of the pictures. This is a straight for-
ward approach as the pixel data is pretty simple to use without chang-
ing it (sometimes you have to use gray-scaling etc, but that is also pretty
straight forward). In speaker recognition, the best kinds of features are
frequency-based features (the data is in the frequency domain). This will
as mentioned keep the algorithm from observing the data as just noise.
A common way to do this is to use a mel-frequency analysis to extract
mel-frequency cepstrum coefficients(MFFC). The reason these features
are common is that they are frequency based. Also, they mimic the hu-
man hearing, which is built to detect frequencies, not just the pressure
changes[6].

2.1.2 Mel-frequency cepstrum

Mel-frequency analysis is based on human perception experiments Through
different experiments, it has been observed that the human ear will con-
centrate more on certain parts of a frequency spectrum. So when doing
a mel-frequency analysis you will end up with a representation of the
spectrum that more closely mimics the way the human auditory system
would perceive the frequency signal[7].

The representation you will end up with is called Mel Frequency Cep-
stral Coefficient, and as mentioned earlier is a feature that is widely used
in speech recognition and speaker recognition. They were introduced in
the 1980s and have been state-of-the-art ever since[8].

Mel-frequency analysis usually includes several steps as shown in figure
2.2. In a nutshell, the signal will get sliced into frames and each frame
will have a window function applied to it. Afterward, we do a discrete
fourier transform on each frame and then calculate the power spectrum.
We then use the power spectrum to compute the mel-filter banks and
take the logarithm of each filter bank. Finally, you use DCT to obtain the
MFCC’s[6]. Each of these steps and their motivations will be explained
below.

Pre-emphasis

The first step in obtaining the MFCC’s is to apply a pre-emphasis filter
that amplifies the high frequencies. It is possible to obtain the MFCC’s
without using a pre-emphasis filter, but using it will have several ben-
efits. It will balance the frequency spectrum since higher frequencies

Chapter 2. Background 9

FIGURE 2.2: Block diagram of the mel-frequency analy-
sis [9]

have a lower magnitude than lower frequencies, it will help you avoid
numerical problems during the Fourier transform, and it will improve
the signal-to-noise ratio.

The pre-emphasis filter can be applied to a signal x using this equation.

y(t) = x(t)− αx(t− 1) (2.1)

Where α = filter coefficients, which are usually 0.95 or 0,95 and t = Time.

As mentioned you are able to obtain the MFCC’s without using a pre-
emphasis filter. The reason for this is that the filter only has a modest ef-
fect in a modern system. The signal-to-noise ratio can be improved with
mean normalization, and the numerical issues with the Fourier trans-
form should not be an issue in modern implementations of the Fourier
transform[10]. It is still explained in this thesis as the package that is
used for obtaining the MFCC’s does use a pre-emphasis filter.

Framing and Windowing

When analyzing a frequency signal you will see that the signal is con-
stantly changing over time. Therefore analyzing the whole signal at once
does not make any sense, since we would lose the frequency contours
over time. Instead, we assume the frequency is stationary over a shorter
interval. Each of those intervals will be represented by a frame. A frame
will consist of a number of continuous samples with the samples having
a length given in time, often in milliseconds. These samples will often
have a size of about 20-40 milliseconds. The frames will also have a set
sampling rate. One can decide the sampling rate as long as it is high

Chapter 2. Background 10

enough to pick up the relevant frequencies. For speech, this is 8000 Hz,
but it is commonly set to 48000 Hz. This will give you 48 samples per
millisecond. That will result in each frame having less change than the
whole of the signal. Obviously, since the signal is constantly changing
it is impossible to eliminate all the change even on shorter time-frames,
but the change in each frame will be significantly reduced when com-
pared to the entire signal. Finally, you use a window function on each
of the frames by multiplying the frames with the window function. The
function will multiply the frames with a factor close to 0 at the ends, and
1 one the middle of the frame. This will result in each frame being turned
into a window where the signal evens out to close to 0 at the ends. In this
routine the Hanning window function is used, where you get the han-
ning window w of length n by using equation 2.2 and N is the collection
of samples[11].

w[n] = 0.54− 0.46 ∗ cos(2πn/N − 1) (2.2)

There are several reasons for doing this, but among them being to coun-
teract the fact that the Fourier transform assumes the data infinite. Also
when you even out the signals at the ends, you eliminate sharp tran-
sients between the windows [6]. A visual representation of applying a
window function can be seen in figure 2.3, the effects this will have on
the transitions can be seen in figure 2.4. The next step are then performed
on each of the windows.

Fourier transform and power spectrum

In this step, the signal is transformed into the desired domain. At this
stage, the signal will be in the time-domain, but we want to have our
signal represented in the frequency domain. An example of this can be
seen in figure 2.5. To achieve this we use a Fourier transformation. In this
case, a variation of the Fourier transformation called a Discrete Fourier
transformation is used. The Fourier transform uses a continuous sig-
nal while the Discrete Fourier transformation uses samples. In general,
when doing a Fourier transformation on a signal you will decompose
this signal into the frequency domain (in other words, take the signal
from the time domain to the frequency domain). The reason we want to
this is again to mimic the way the human auditory system works. The
human ear has an organ called the cochlea that will vibrate depending
on the frequencies of a signal. Depending on which part of the cochlea
that vibrates it will send certain signals to the brain. The Fourier trans-
form will do something similar to the signal and give us a representation

Chapter 2. Background 11

FIGURE 2.3: A signal (top) is multiplied by a window
(middle) resulting in windowed signal (bottom) [11]

Chapter 2. Background 12

FIGURE 2.4: After applying a window function to the
captured signal, the sharp transients are eliminated [11]

Chapter 2. Background 13

of the signal that more closely resembles the way the brain interprets an
auditory signal. The resulting data is called a frequency spectrum [12].

FIGURE 2.5: Example of a signal in the time-domain and
the frequency-domain [9]

The Fourier transform will also give you some information that is not
necessary for doing speech analysis. The values you get will be com-
plex and contain information on both the magnitude and the phase of
the frequencies. For speech analysis, we are only interested in the mag-
nitude of the frequencies. This can be obtained by taking the absolute
values of the complex values and squaring the result. Finally, you dis-
card the second half of the values. The reason for this is that they are
mirror values of the first half of the values. This is done on each of the
frequency spectrum’s and will result in a new spectrum called a power
spectrum[12].

Mel-filter banks

Our power spectrum still has a lot of information that is not needed
in speech analysis. Again this is because of how the human auditory
system works, namely the ability or lack thereof to distinguish differ-
ent frequencies. The cochlea lacks the ability to discern between two
tones which have closely spaced frequencies. This effect will only be-
come more pronounced as the frequencies increases. This means that

Chapter 2. Background 14

FIGURE 2.6: Filter bank on a Mel-Scale [6]

the human ear will not perceive much of the information given by the
higher frequencies, and we can therefore disregard the corresponding
data.

In an attempt to relate the way humans perceive frequencies to the actual
frequency of a tone, the mel-scale was created. The mel-scale is linear up
to about 1000Hz, and will be logarithmic after that[6]. The most common
formula used for finding the mel-scale value for frequency f is:

M(f) = 1125.0 ∗ ln(1.0 + f /700.0) (2.3)

This formula is of course only used after 1000Hz since the mel scale is
linear until that point. To get rid of the unnecessary information we want
to calculate filter-banks, where the size of each bin is decided based on
the mel-scale. These filter-banks will be in the form of vectors and are
calculated based on the frequencies and the corresponding mel-values.

These are filter-banks applied to the power spectrum and summing up
the result to see how much energy there is in each frequency region, re-
sulting in a spectogram where you can see how energy is contained in
each region. The spectrogram will be represented as a number of coeffi-
cients for each frame. As you can see in figure 2.6 the filter-banks will be
narrower at lower frequencies and wider at higher frequencies. This is a
result of using the mel-scale to decide the size of the filters and will result
in the elimination of information at higher frequencies(in other words it
is a dimensionality reduction of the power spectrum).

Logarithm of filter banks

Next, you take the logarithm of each of the filter banks. This is again
motivated by the human auditory system. If you want to double the

Chapter 2. Background 15

volume humans hear, you have to increase the energy of the signal 8
times [12]. Because of this, large variations in energy will not sound that
different to humans if the sound already is loud. By taking the logarithm
of the filter banks it will make our features match more closely to what
humans actually hear[12].

Discrete Cosine Transformation

Finally, you want to convert your mel-filterbank into Mel-Frequency
Cepstral Coefficients(MFCC). This is accomplished by taking the Dis-
crete Cosine Transform(DCT) [13] on your log mel-filterbanks. Taking
the DCT of a power spectrum will turn the spectrum into a cepstrum,
which is an anagram for spectrum. There are two main reasons this is
done. The first is that the filterbanks are overlapping so the energy in
each filter will be heavily correlated. By doing the DCT we will decor-
relate each filter. Secondly, you are able to only store the lower DCT
coefficients. This is beneficial because the lower coefficients will capture
a gradual change in the energies between filterbanks, and the higher
coefficients will capture a faster change. In turn, this will ensure that
the MFCC’s will vary more slowly from frame to frame. It turns out
that faster change in energies will degrade the performance of speaker
recognition. The process of discarding the higher coefficients is called
liftering, which is an anagram for filtering[12].

2.1.3 Delta and delta-delta

The MFCC’s only describes the power spectral envelope of a frame, but
the speech also contains dynamic information i.e in what directions the
MFCC’s are moving over time. Calculating these trajectories and ap-
pending them to your coefficients will improve the performance of the
speaker recognition system[12]. So if you have 13 coefficients, after cal-
culating the delta you will have 26, and after calculating the delta-delta
you will have 39.

2.2 Machine Learning

“Machine Learning is the science of getting computers to learn and act
like humans do, and improve their learning over time in autonomous

Chapter 2. Background 16

fashion, by feeding them data and information in the form of observa-
tions and real-world interactions.”[14]

As you probably can understand from this definition ML is a very wide
field that has a lot of applications. This thesis does not focus on gen-
eral machine learning, but instead, one part of the field called speaker
recognition and the models used in this field.

2.2.1 Speaker recognition

"In automatic speaker recognition, computer programs designed to op-
erate independently with minimum human intervention identify a speaker’s
voice. The system user may adjust the design parameters, but to make
the comparison between speech segments, all the user needs to do is pro-
vide the system with the audio recordings."[2]

This is a general definition of speaker recognition. As with many areas
of ML, there are many different approaches to how one can do speaker
recognition [15]. This project uses a fairly simple approach; train a model
based on some features (in this case it is MFCC’s) and match the trained
models using some way of comparing them and giving a score based on
that. In the context of machine learning, models are used to represent the
subject that are evaluated in the algorithms. For this thesis models are for
the most part used to represent speakers. The modeling approach used is
called the i-vector approach [16]. These models are as the name suggests,
represented by a vector. Because of this simple representation, it is easy
to compare two i-vectors and give a score. In this work, a measure called
cosine distance is used to compare and score the i-vectors. The following
formula is used to calculate the cosine distance for vector A and B, where
A and B are models for different utterances.

Similarity = cos (θ) =
A · B

‖A‖ · ‖B‖ (2.4)

The i-vector approach is built upon different models used in speaker
recognition through the years. These will be explored in the following
section of the thesis.

What is being used in this thesis is not speaker recognition strictly speak-
ing, but rather a subfield of speaker recognition called speaker diariza-
tion. The aim of speaker diarization is to answer the question of "who
spoke when" [3]. In other words, figuring out at what time each differ-
ent speaker has an utterance. By using speaker diarization the hope is

Chapter 2. Background 17

that we can figure out when the different speakers in an audio track are
speaking and use this information to cluster the data so it can be used as
training data for further speaker recognition.

2.2.2 Speaker models

In this section, a detailed explanation of the different approaches to mod-
eling and the motivation for using them will be given. These include
GMM, UBM and i-vectors. A model called supervectors will also briefly
be explained in the context of how it relates to the other models.

Gaussian Mixture Models

"A Gaussian mixture model (GMM) is a parametric probability density
function represented as a weighted sum of Gaussian component densi-
ties."[17]

GMMs are often used as a parametric feature of the probability distribu-
tion of continuous measurement or features in a biometric system. An
example of such a biometric system can be vocal tract related spectral
features in a speaker recognition system, which is the way they are used
in this thesis. When using a GMM as a model you first have to train
it. During training, the different data points will get assigned to the dif-
ferent Gaussian distributions. From this the GMM will be can be com-
pletely represented by the mean, covariance and mixture weights. One
can then use them to do classification by comparing different GMMs
and scoring them according to similarity. Using them in this way has
the drawback that it will be classified as one of the trained voices, even
it does not correspond to any of them or is just noise. In other words,
you will be unable to tell if a speaker is unknown or separate speech
from other kind of audio. To solve this problem you can use a Univer-
sal Background Model(UBM) (see section 2.2.2). To train a GMM you
use training data to estimate the parameters of the GMM, often done by
using an iterative expectation-maximization algorithm. The GMM is de-
fined by a mixture or weighted sum of M component Gaussian densities
given by this equation(where g(x|µi,σi) is a normal distribution with
mean(µi) and covariance matrix(σi), w is weights and x is the vector you
want to model)[17][18].

p (x| λ) =
M

∑
i=1

wig (x| µi, σi) (2.5)

Chapter 2. Background 18

The motivation behind using GMM’s in this thesis was that a UBM was
needed and [19] indicates that GMM’s was a viable option for a UBM.
In general, it does not seem that GMM’s are used much as a speaker-
dependent model anymore. As better options have become state-of-the-
art, like i-vectors and more recently d-vectors[20].

Universal Background Models

"A universal background model (UBM) is a model used in a biomet-
ric verification system to represent general, person-independent feature
characteristics to be compared against a model of person-specific fea-
ture characteristics when making an accept or reject decision."[21]

In other words, a UBM is a model of a general speaker. Instead of mod-
eling a specific speaker, a UBM will be trained with recordings of many
different speakers. In this way, the UBM will recognize speech but is un-
able to determine the identity of the speaker. The UBM in our system is
a GMM that is trained with a large set of speakers to represent a general
speaker. You can then use the UBM as a model for a general speaker and
thereby eliminating the drawback of GMMs where they were unable to
determine if a speaker was unknown. You can do this by comparing
a GMM to a set of other GMM’s which include the UBM. If the UBM
scores the highest in the comparisons you can classify the GMM as an
unknown speaker, or more generally, an unknown sound. UBM’s can
also be used in the training of a speaker-dependent model (see section
2.2.2), by acting as the prior model in a maximum a posteriori estima-
tion[19]. An overview of how a UBM can be used is shown in figure
2.7. It shows how some extracted features are used to create a GMM
from features extracted from a speech sample by adapting the UBM us-
ing maximum a posteriori. At the end of the figure, you can see that the
created GMM is used in some form of scoring to determine if it should
be accepted or rejected.

The motivation for using a UBM started with finding a way of covering
the 0-hypothesis of an unknown speaker when using GMMs. Later on
in this project, after more information was gathered, newer and better
models were discovered. The motivation then changed from using it to
identify a general speaker, to using it as a trained model for maximum a
posteriori estimation when training the matrix for extracting i-vectors.

Chapter 2. Background 19

FIGURE 2.7: Overview of UBM usage [22]

Identity-vector

Identity-vectors (i-vectors) is an approach to model speakers where the
speakers are represented in a low-dimensional space which is defined
using joint factor analysis (JFA). This is in contrast to GMM’s, which are
in a higher-dimensional space. The JFA is used to decompose a speaker
dependent model called supervector[2] into different types of compo-
nents which is represented by a set of low dimensional factors. Super-
vectors is the precursor model to the i-vectors. The supervector model
is derived from a GMM by stacking the mean vectors of the GMM com-
ponents into a single vector. This can be seen in figure 2.8 where the
µ’s(means) are stacked together. By doing a dimensional reduction on
the derived supervector(reducing the supervector into the lower dimen-
sional space), you can derive the i-vector. The i-vector modeling ap-
proach has the advantage over supervectors that it is smaller, and dis-
cards noise etc from doing the dimension reduction. A set of the low
dimensional factors is used to represent a speaker in the form of a vec-
tor. The low-dimensional space is both speaker and channel dependent
and is named the total variability space, since it models both speaker and
channel variability. In the total variability space, a i-vector will represent
a single utterance. By using the posteriori adaptation of a UBM you are
able to extract the necessary statistics to define the total variability space.
Each of these vectors will model a speaker (single utterance) and contain
information derived from both the channel variability and the variabil-
ity from the utterance itself. The total variability space is defined by a
total variability matrix T, UBM m and the i-vectors w. It is defined by
the equation:

M = m + T · w (2.6)

Chapter 2. Background 20

Where M is a supervector derived from the UBM, and w is a random
vector having a standard normal distribution N (0, I).

Classical JFA will define two spaces, one speaker dependent and one
channel dependent. Through a experiment, it was discovered that the
channel factors also contained information of the speakers. This was
the motivation behind creating the new total variability space[16]. An
undetailed overview of the steps involved can be seen in figure 2.8. Here
you can see that the i-vectors follows the same steps as the UBM to make
a MAP adapted GMM. This GMM is then turned into a supervector [2].
This is done by stacking the means for the different GMM components
into a vector. As mentioned earlier, in order to turn this supervector into
an i-vector a form of dimensionality reduction is used to represent the
supervector in the total variability space.

FIGURE 2.8: Overview of the steps involved in extract-
ing an i-vector [22]

The motivation behind using the i-vector approach was that is was very
close to being state-of-the-art[16] while making simple scoring using co-
sine distance possible. It is also an improvement over the UBM-GMM
approach because the classification will be faster, as comparing two i-
vectors is faster than comparing two GMMs. The resulting WAV file
can then be used as training data in the pipeline or be sent through the
pipeline. On top of that, each i-vector only requires a small amount of
data (1-2 seconds) to be able to model a speaker [23]. (Note that this
amount is only to extract a single i-vector.) This is offset by the fact that
the UBM used to train the total variability matrix requires a large amount
of data to train, in this case around 7-8 of data was used. But since there
was a large amount of data available for notation this was not a problem.

Chapter 2. Background 21

2.2.3 Bayesian information criterion

The Bayesian Information Criterion (BIC) is a form of model selection
criterion in statistical literature[24]. In the work of this thesis, the BIC
is used to try to sample the audio stream according to speakers. When
using the BIC to do segmentation, one wants to select between two mod-
els in a given frame. The choice is between a model where a change in
speaker occurs between the given frame and the next, and one where it
does not. This kind of selection is referred to as a model identification
problem.

When selecting models, one wants to select the model that maximizes
the BIC. The BIC is defined by equation 2.7. Where X = {xi : i =

1, . . . , N} be the data set we are modeling; M = {Mi : i = 1, . . . , K} be
the candidates of desired parametric models; λ is a penalty weight and
#(M) is the number of parameters in model M. The likelihood function
is maximized separately for each model M and we obtain L(X, M)[24].

BIC(M) = log L(X, M)− λ
1
2

#(M) · log(N) (2.7)

T2-Statistics

A problem with the BIC is that it is very computationally expensive,
with quadratic complexity. This problem stems from the fact that BIC
has to calculate two full covariance matrices and their determinant for
each frame. Instead of doing this, you can use the T2-statistics to suggest
a change in the speaker. The T2 assumes the covariance matrices of the
two samples are the same, but unknown. Hotelling’s T2-Statistics is a
multivariate analog of the t-distribution[25], and can be used for mul-
tivariate hypothesis testing. If you have two samples [1,b] and [b+1,N],
the T2-Statistics is defined as equation 2.8; where µ1 and µ2 are the means
of the two samples and ∑ is the covariance matrix.

T2 =
b(N − b)

N
(µ1 − µ2)

′∑−1
(µ1 − µ2) (2.8)

When one has found a suggested change in speaker using T2, one can
then use the BIC in that frame to confirm or deny the change in speaker.
By doing this you don’t have to do the heavy computation on all the
frames, but only where the T2 suggests it.

22

Chapter 3

Technologies and problem
description

In this chapter a wider description of the problem this thesis is aiming
to solve will be given. The different techniques and technologies used
and the motivation behind using them will be discussed as well in this
chapter.

3.1 Problem description

When starting the work on this thesis, the general problem that was be-
ing looked at was to be able to separate two voices in the same audio
track if they were not talking at the same time as shown in figure 3.1.
This was of course only the base problem of the thesis. The problem
later evolved into how could a machine learning algorithm be used in
an existing system to add new functionality, and improve workflow. To
achieve this, a pipeline that had the desired functionality had to be built
and integrated with the existing system.

The first part of solving the problem was to figure out how to extract the
necessary information, and what exactly this information should consist
of. It was decided that the information should consist of time-stamps of
when the different speakers in the track talked. This would allow Vizrt
to, for example, use the time-stamps to either extract the audio to use as
training data for a new model, extract the audio and compare them to
existing models for classification or to use it to label the video in their
editing software. Extracting the information would be done with BIC
sampling, i-vectors and clustering, which is explained in more detail in
a later chapter.

Chapter 3. Technologies and problem description 23

FIGURE 3.1: Visual representation of speaker diarization
[26]

The Next part of the problem was piping the information into Vizrt’s
systems. To do this the information had to be in a format that was com-
patible with the pipeline used in their systems. Because of this, the in-
formation either had to be in the correct format after extracting it, or an
extra step had to be added to make sure it was converted into a usable
format. When looking into this part of the problem, the realization that
hooking into their systems would provide some benefits was made. If
this could be done, the UI could be used not only to test the algorithm
and being able to see the results in a clear format. But using the UI would
also give users the option of editing the results from the algorithm. Had
the thesis work stretched over a longer period of time, a UI that is tai-
lored to this pipeline would be the best option. With the lack of time, and
the fact that the Viz Story UI does provide a lot of the necessary function-
ality that would have been in the tailored UI. Using the Viz Story UI to
demonstrate the usage of the program seemed like a good option.

The problem of hooking the algorithm to the system and facilitating the
sending of information back and forward would be solved by using their
REST API. Subsequently, the problem in this part became how exactly to
convert the timestamps from the algorithm into a usable format, and
how to best use the API to send this information. Since the system was
built on using XML-documents, the timestamps had to be converted into
their existing XML-format.

In all, the problem that this thesis aims to solve is to build a pipeline
that has certain functionality and can be used in by a video-editing sys-
tem. Having integrated the pipeline, the users should be able to use the
functionality provided in their video-editing. This pipeline’s core func-
tionality will be speaker diarization. The aim is to use the information
gathered by the diarization to provide more functionality to the system

Chapter 3. Technologies and problem description 24

using the pipeline. By using this information the system can train up
new models to recognize people. These models should also be able to
improve over time by running more videos through the pipeline con-
taining the same people and gathering training data for them using the
functionality in the pipeline. Improving the models will hopefully lead
to the pipeline delivering better results over time to the existing video-
editing system.

3.2 Potential functionality

The pipeline that is being built in the work of this thesis is only a proof
of concept, and there will be potential to expand the functionality which
the program provides. Much of the potential functionality will go untested
in this thesis, but in the section below some speculation on how such a
pipeline could be used together with the video-editing system.

Use the information from the program to search through all the files

After a file has been sent through the pipeline, the information gathered
could be saved as metadata about the corresponding file. By doing this,
the video-editing system could use this information to search through
the files in the system. This could for example, let the users easily get all
the video where Barack Obama speaks, without having to go through
the work of tagging the video beforehand. How this functionality could
look can be seen in figure 3.2.

Use the information from the program to search through the file in the
editor

The metadata than could allow users to search through the files in the
file library could also be used to search through the content of each in-
dividual files when used in the editor. If the editor knows when each
of the speakers are speaking, the editor could use this information to let
the users jump to the part of the file where a certain speaker is speak-
ing. This could speed up the editing process by letting users quickly
find the part of the video that they are interested in. It could also let the
users quickly cut out all the speakers that they are not interested in. This

Chapter 3. Technologies and problem description 25

FIGURE 3.2: Mockup of how the UI could look if it has
the functionality to search through the files based on

known speakers

would require the system to have a certain confidence in the classifica-
tion. Since if the classification was wrong, a user could unintentionally
remove parts of the video that could be of interest.

Display information about the different speakers

How this functionality could look in the UI is shown in figure 3.3. This
could be of assistance for certain types of users, especially journalists.
By having the information displayed in the editor it could save the jour-
nalist time that they otherwise would have to spend looking it up. Of
course this would require that someone manually enters the informa-
tion into the system as metadata for the model for each person in the
database.

Chapter 3. Technologies and problem description 26

FIGURE 3.3: Mockup of how the UI could look if it has
the functionality to display information about known

speakers

Give a feedback about how certain the program is of its classification

Displaying this information would be more of a quality-of-life function-
ality. By displaying the certainty of the classification of known people as
some sort of score, it allows the users to evaluate if they should trust it or
not. So instead of being uncertain of the classification or going through
and checking them, this would allow the users to only go through the
classification that the program is uncertain of. At the same time the edi-
tor could display a list of alternative classification and the confidence it
has in those different classifications.

Chapter 3. Technologies and problem description 27

Change what kinds of elements uses the information

The result of the classification will be displayed as a lower-third graphics
element in the proof-of-concept version of the pipeline. Lower-third is a
term used in the TV-business. It means the graphics displayed at the bot-
tom of the screens, often containing the name of the person talking and
some information about him/her. Having the alternative to chose what
kind of element should be used in concurrence with the classification
could be advantageous. While displaying them as graphics elements
will be acceptable in certain types of videos (news broadcasts etc), this
will not always be the case. By allowing users to chose this lets the clas-
sification be used more widely in the editor. A option to not display the
classification at all should also be an option, since this would probably
be the default option. From there one would let the user chose the types
of elements they want to use, if any.

3.3 Technologies and techniques

When starting work on this thesis, different techniques for machine learn-
ing were discussed. The choices pertaining to technologies was more
limited, as the only choice to be made here was what programming
language to use. The different options and the motivation behind the
choices made will be discussed in this section.

3.3.1 Technologies

When looking at the choices for programming languages, the first step
was to do a little research on what is mostly used in these kinds of works.
What was found was that for the most part one of two programming
languages are used; C++ for the low-level parts of algorithms, which
will often include parallelized linear algebra. Also Python or similar
dynamic languages for high-level descriptions of the algorithm and API.

When evaluating what to use, what each of the languages would pro-
vide was looked at. Broadly speaking the two languages was opposites
when it came two what they provided the thesis work. Python provides
simplicity in its syntax as well as a lot of packages, but in exchange,
python can be very slow when working with a lot of data. C++, on the
other hand, is very effective, but its syntax can be difficult to work with.
Looking at the advantages and disadvantages of the two options. the

Chapter 3. Technologies and problem description 28

FIGURE 3.4: Benchmarks of different languages for a
range of common code patterns [28]

decision to use Python was made, and convert the code to C++ at a later
date if speed became a necessity.

After this decision was discussed with my external advisor at Vizrt he
recommended that some research should be made into a programming
language called Julia. As it turns out this language seemed to fit this
work very well. It is advertised as being fast, as well as having a rela-
tively simple syntax which seemed to be somewhat similar to python[27].
The way Julia does this is by having strong typing, unlike Python that
has to spend time checking what types your variables and data is in. A
comparison of the run time of some computations in different languages
can be seen in figure 3.4. Julia seemed to cover the area of use for both
Python and C++. For the need of this thesis, it seemed like Julia was the
best of both worlds, providing both speed and simplicity. As well as hav-
ing good packages available to do speaker recognition. Based on this, the
recommendation from my external advisor and the fact that there were
packages available in these languages to support the work done in this
thesis. The final decision to use Julia and Python as the programming
languages for this thesis was made.

Chapter 3. Technologies and problem description 29

Video editing system

This section will give an overview of the type of system that the algo-
rithm will be hooked into. It will also talk about the specific system that
is used in this thesis, namely the Viz Story system[29]. Vizrt’s systems
are relatively large, so this section will only focus on the parts that are
relevant for this work.

Viz Story is a web-based video editing system and is what is called
a Non-Linear Editor (NLE). An NLE is editing software that performs
Non-destructive editing. Which means that the original media content
is not edited during the editing process. Instead, you set up an Edit De-
cision List (EDL) which specifies the editing steps that should be taken
each time the video is produced. Applying the different steps in the EDL
to the video is a process called rendering. Many of today’s software pro-
grams are NLE’s. In figure 3.5 you can see the UI of an NLE. The lower
part of the UI shows the editing steps that will be done when rendering
the video. This is how the EDL for this video is represented in the UI.

FIGURE 3.5: An UI of a Non-Linear Editor [30]

Viz Story allows users to access its functionality through its User-Interface.
By taking advantage of this UI, we can give a demonstration of how cus-
tom UI for the program might look. It can graphically show where the
different persons talks by showing the results from ML graphically, and
it lets you edit the output from the algorithm. How this UI looks can

Chapter 3. Technologies and problem description 30

FIGURE 3.6: The Viz Story UI after completing a run
through the pipeline

be seen in 3.6. This figure shows where the different persons talk in the
audio track by the yellow elements in the bottom part of the editor.

When a video is edited using the Viz Story an entity called a story is cre-
ated. Part of this story is the EDL that is created during the editing pro-
cess. This list contains all the editing that is done to the media-content
during rendering (cuts, graphic elements, etc.) without containing the
actual media content. The whole Viz Story system is based on the XML
format. So when editing, the EDL that is generated will also be repre-
sented in XML format.

XML documents used in the system makes use of, among other things,
the Atom format. The Atom format is an XML-based Web content and
metadata format. It is also an application-level protocol for publish-
ing and editing Web resources belonging to periodically updated web-
sites[31]. The XML document that is generated will contain an XML-
element called payload, which again will containing different elements.
Most of these elements are not relevant to us, the element that we are
interested in is called a feed. A feed is a series of related items that a con-
tent provider publishes on the Internet[32]. The feed element contains
a link to the media-content used (again not the actual content) and all
the editing decisions. These editing decisions come in the form of entry
elements in the feed representing cuts, graphics, transitions, etc. An ex-
ample of an entry element used in a story can be seen below(3.1). Only

Chapter 3. Technologies and problem description 31

parts of the entry element are shown here since it would be too large to
include in the thesis text. In the UI the content and the editing will be
displayed in a timeline. This timeline is represented in the document by
the entry elements in the feed. If you want to add say a graphic element
to a video, you can just change the feed by adding a new entry element
that tells Viz Story to add the graphics on the video in the UI.

<entry>

<id>C5621FA4-6C52-404B-99F9-B7DBBB4434B3</id>

<title type=’text’>Subject 0/8</title>

<updated>2017-08-02T10:35:27+02:00</updated>
...

<payload xmlns=’http://www.vizrt.com/types’

model=’http://localhost:8177/templates/10031/mode’>

<field name=’02-text-e’>

<value>Subject 0</value>

</field>
...
</payload>

</content>

<vaext:start>60.9</vaext:start>

<vaext:duration>5.140000000000008</vaext:duration>
...
<vaext:track edittrack=’overlay’ togglelayer=’Lowerthirds’/>
...

</entry>

LISTING 3.1: Parts of a entry element from a XML docu-
ment representing an EDL

The whole Viz Story product is a web application with a front-end and
back-end that is built upon a REST API. With the REST API, one is able
to send requests to the back-end to change the data that is there. As
mentioned earlier the system is based on the XML format. So when one
wants to change the data in the back-end, you have to do it by changing
the XML documents. The REST API lets one send the XML documents
representing stories back forth from the back-end, and by doing this one
can change the stories such that it contains the information that was re-
trieved using the machine learning algorithm.

Viz Story gives different options for what to do with the video once it
is rendered. These options come in the form of different publishing tar-
gets. When publishing the video, the video will first be rendered be-
fore sending it to the publishing target. This differs from normal NLEs

Chapter 3. Technologies and problem description 32

which usually just does the rendering. Each publishing target will have
its own code that determines what is done with the rendered video. This
can be uploading it to a website like YouTube using the REST API. Or it
can be simply downloading the finished rendered video locally to the
computer. By having this functionality, one has the option to write new
publishing targets that runs some code each time a video is published
using that target.

3.3.2 Techniques

Unlike with the choice of technologies, there were a lot of decisions to
be made when deciding what techniques to use. A decision about what
kind of machine learning method was best suited for the work had to
be made. Then how to model the data that these methods used. These
decisions had to be made in parallel to some degree, as what method you
chose would limit the modeling options that were available, and vice-
versa. In this section, the different options for both methods and models
that were considered will be discussed and the motivation behind the
choices that were made.

Sampling

When first starting to write the code for generating samples, the idea
was to simply cut the audio track into 2 seconds samples. This was mo-
tivated by how much data was needed to extract an i-vector[23], and
the simplicity of the implementation. Sampling the audio in this way
worked adequately, while it did leave a lot of room for improvements.
Among them being; even if 2 seconds was enough data to extract the i-
vector it still is a small amount of data that could be larger. Subsequently,
cutting the audio with no regards to the content of the audio, gave a good
chance of a sample containing speech from different speakers.

Later during the work on the thesis, it was decided to go back and im-
prove the way sampling was done. To do this more literature study
around sampling performed. Based on this it was decided to use the
Bayesian Information Criterion to do the sampling[24]. The motivation
behind using the BIC was that it would both produce samples that were
longer than two seconds, and it would sample according to speakers.
This would make it so that each sample would contain only one speaker,
which it seemed to be able to with decent results. The drawback was
that it took a long time to sample an audio-track this way. To counteract

Chapter 3. Technologies and problem description 33

this, the T2-statistics was implemented to find suggestions for decision
boundaries. Then let the BIC check those suggestions to accept or reject
those boundaries.

Machine Learning Methods

The first part of deciding what ML method to use was looking at what
fits our problem The two main areas that were considered were regres-
sion and classification. A long time ago these two were the primary ar-
eas of ML. With the advancements made over the years, ML has become
much more versatile and has opened the possibility to solve problems
by using other methods than just classification and regression. Regres-
sion is mostly used when estimations are involved. One example could
be if one wanted to estimate how fast a car would drive given certain
conditions one could use regression to create a model/formula for this.
Classification is used when one wants to classify something. Say if one
wants to decide what colour a car is one could use classification.

It was pretty obvious from the start that classification was the best op-
tion for this work. However, since this thesis would work mostly with
unknown models classifying them directly by comparison and scoring
would not work. Consequently it was decided to use clustering to do
the classification. The goal of a clustering algorithm is to divide your
data into different groups(clusters) according to some measure. From
here one can classify the different clusters as different speakers.

A visual representation of a number different machine learning methods
can be seen in figure 3.7. None of these methods are used in this thesis,
but the figure should give you an idea of how many different methods
are available in ML.

This decision did limit the available options a little, but not by a lot as
many machine learning methods can be used for both classification and
regression. The next decision that was made was to not to use neural-
network, and by extension deep learning. Over the years, especially re-
cent years a lot of progress has been made in neural networks and espe-
cially deep learning. Because of this, among other things, deep learning
has become more and more popular, and the resources available for us-
ing deep learning are more widely available (Tensorflow, etc). Still, the
decision not to use deep learning neural networks was made based on
two reasons. First and most importantly, deep learning network usually
requires a lot of training data. As it was unknown how much training

Chapter 3. Technologies and problem description 34

FIGURE 3.7: Visual representation of different machine
learning methods [28]

data would be available for this work it did not seem like a good decision
to risk using deep learning. The graph 3.8 shows a visual representation
of why deep learning requires so much data. Traditional machine learn-
ing will spike in accuracy with relatively little data but will stop increas-
ing in accuracy after reaching a certain amount of data. In comparison,
deep learning needs more data before it becomes very accurate, but will
continue to become more accurate the more data you feed it. Secondly,
from what research that had been done at the time it did not seem like
neural networks and deep learning was widely used within the field of
speaker recognition.

At this point, the rest of the decisions revolved more around what mod-
els to use. It was decided to use the approach explained in section 2.2.1
of doing simple classification based on cosine distance(2.4). This simple
approach led to most of the complexity of the machine learning revolved
more around the models rather than the approach to classification. This
decision was motivated both by its simplicity, and the fact that from the
literature study done, it seemed like a common way to do it. It was not
always the case that the classification was based on cosine distance, but
in many cases classification was done by comparing models and scoring
the accordingly[3][15].

Models

Details of the theory behind the different models that were tried out dur-
ing this work were covered in section 2.2.2, so this section will not cover
that again. Instead, this section will talk briefly about how the differ-
ent models were tested and the motivation behind the final choice of
model. The first model that was tested was gaussian mixture models.

Chapter 3. Technologies and problem description 35

FIGURE 3.8: Graph showing how the amount of training
data affects the accuracy of deep learning and traditional

machine learning algorithms.[33].

This was motivated by [17] and that it seems like this is the model most
of the modern research of models for speaker recognition tasks are built
upon. To implement this model, a package for Julia was used [34]. This
package was made by a man named David van Leeuwen. He is also
responsible for creating the package used for the i-vectors. It was still
decided to move on from this model, even if using it gave good results
when used for speaker recognition. The reason for this was simply that
it was an old model and the literature study discovered newer and bet-
ter models had been presented in later years. When testing this model, it
was trained using MFCC and had a density of 512. The density is a mea-
sure of how many components are in the GMM. To classify the models,
a scoring system using the average log likelihood was used.

Next, the work moved towards using i-vectors. During this time a model
called supervectors was tested [2]. Since this model was not used in
the final work the details of it will not be explained, but the motivation
for testing it was that it is the precursor to i-vectors and because of this
it could be interesting to see how it worked compared to i-vectors. It
seemed to deliver good results, but as i-vectors was a newer and there-
fore presumably better model it was not used going forward in the thesis
work. The implementation of supervectors was done with a package for
Julia [34].

Chapter 3. Technologies and problem description 36

Finally the i-vectors was was implemented. To reiterate, the motiva-
tion behind using i-vectors was mostly that at the research done at the
time indicated that i-vectors was state-of-the-art and superior to older
models. Also even though i-vectors work better with a larger amount
of training data, there were cases where i-vectors had been used suc-
cessfully with a relatively small amount of training data (1-2 second ut-
terances)[23]. Which was a good fit for this work as it was unknown
how much training data would be available during actual usage. It was
tested by using MFCC as features for extracting the i-vectors, and cosine
scoring to compare the i-vector against each other.

37

Chapter 4

Design and implementation

In this chapter, the design and use of the pipeline will be explained.
The details on how the different technologies are used will be laid out
and the process through which they were implemented will be talked
about. Also how they are used in cooperation with Vizrt’s system and
API. Much of the details concerning the technology and system has been
covered in earlier chapters so this will not be covered again here.

4.1 Implementation work

When starting the work on the implementations, there was still some
discussion on what the exact end-goal was going to be. So the work
started with implementing a program with GMM’s that was able to do
speaker recognition. When that was done the work moved on to turning
those GMM’s into supervectors. Even though at this point it was de-
cided that i-vector would be used; It was decided to still implement the
supervectors because I wanted to be able to gradually implement the dif-
ferent models to see how they work compared to each other. There also
were some parts that were going to be used regardless of which models
were implemented at the time, like the MFCC.

Before going through the different steps of the implementation in detail,
a high-level description of the resulting pipeline will be given.

Chapter 4. Design and implementation 38

4.1.1 High-level description of the pipeline

The result of the implementation was a proof-of-concept pipeline that
provides new functionality to a video-editing system. The main func-
tionalities that are made available are speaker recognition and diariza-
tion. Using the main functionalities, the pipeline provides other func-
tionalities that can be used in the editing process. These include; present-
ing the result of diarization in the system UI, extracting training data,
and use the data to create new models for people. By using these func-
tionalities the pipeline can take advantage of the new training data and
create new and better models each time new training data is extracted.

The pipeline is hooked into the editing system via a REST API as a pro-
totype for fully integrating it into a system. Doing this we can get an
idea of how the pipeline can work together with an editing system and
create a better editing experience for the users.

4.1.2 Creating training data

Before the work on the pipeline started, a method for getting training
data had to be created. After looking at different sources it was decided
to use the Swedish Riksdagen web-tv as a source for data[35]. There
were several reasons for this decision. Since the data came from political
debates there were few instances where people spoke at the same time.
This was important since the pipeline is unable to process audio where
people talk at the same time. The audio from the source was also high
quality and contained little noise, and there was a great amount of data
available. Taking this into account the videos from Riksdagen seemed
like a very good source to use to collect training data.

To extract the data, videos were downloaded from the website and
FFmpeg[36] was used to extract the audio from the videos. An example
of the FFmpeg extraction command is shown below(4.1).

1 ffmpeg −y −i downloaded_video.mp4 −ss 0.0 −t 822.0 −vn −acodec pcm_s16le −f
wav ./extracted_audio.wav

LISTING 4.1: FFmpeg exmaple command

The resulting WAV file can then be used as training data in the pipeline
or be sent through the pipeline.

Chapter 4. Design and implementation 39

MFCC package

The MFCC’c were also implemented using a package[37]. The way this
package work is that it takes either a WAV file or an array that contains
the data from an audio file. There are different methods that the pack-
age provides for doing the MFCC routine. In this program, the highest
level function is used. This interface provides an easy way of getting the
MFCC with the most standard parameters. On top of that, it also lets you
adjust some of the parameters, as well as set some options. For example,
if you want the results normalized or if you want the MFCC to contain
the derivatives. Both of these options were used in this implementation.
If one wants to have some more fine-grained control over the routine,
the package also gives you access to the methods that the interface calls.
In this case it was not necessary as only a standard MFCC routine was
needed.

Sampling with BIC

As mentioned in section 3.3.1 the first implementation of sampling only
produced 2 seconds samples. This was later improved to use the BIC.
The BIC was coded by referring to the formulas in [24]. When first im-
plementing the BIC, it was quickly discovered that the algorithm was
much to slow to be of any real use. As a result, a fair amount of time was
used to try to improve the algorithm that was used.

The first step that was taken was to stop doing the BIC on the edge of the
track. This was done because it was very unlikely that any changes of
speakers would occur in the first and last couple of frames of the audio.
Since this would mean that the audio track is cut off before the end or
begins in the middle of the original audio track. It also removed some
strange results that was produced when doing the BIC on the the edges
of the track. The results of such a BIC can be seen in figure 4.1. Why
these strange results were produced was never discovered, but since
they did not affect the rest of the results they were ignored. Doing this
did not speed up the algorithm much since the number of frames that
were skipped was relatively small. Next, the algorithm was changed
to incorporate a window of a small number of frames and increase the
number of frames analyzed each run it did not find a boundary to cut at
until a maximum number of frames were reached. When the maximum
number of frames were reached, the window becomes a sliding window
of fixed size, where it will look at a new set of frames each run until it

Chapter 4. Design and implementation 40

FIGURE 4.1: The result of doing BIC on an audiotrack.
Where the x-axis shows the frame number and the y-axis

shows the score from the BIC in that frame

finds a boundary. A visualization of how the sliding window works can
be seen in figure 4.2. If a boundary is found the window will start over at
the minimum size and repeat the process. These changes did noticeable
speed up the algorithm since it did not require you to do the computa-
tions on each frame for each run through the algorithm. Even with these
improvements, the algorithm was to slow to be of much use.

When doing some more research the T2-statistics were discovered. This
was implemented such that the T2-statistic was used the same way that
the BIC was used before (by checking a certain number of frames with a
sliding-window etc). The highest score of the T2-statistic was compared
against a set threshold value to determine if there should be a cut in a
certain frame. This threshold value was determined by testing different
values and picking one that was not too sensitive and not too discrim-
inatory. If the score was higher than the threshold a suggestion to cut
in that frame was made. The BIC was then used in centralized on that
frame. Meaning that only that frame was scored using the BIC and a cer-
tain number of frames from each side of the suggested frame. If the BIC
also determined that there should be a cut in the suggested frame the
time-code for that frame is saved as a cut. On the other hand, if the BIC
rejects the suggested frame it is simply ignored and another run through
the algorithm is started. Implementing the T2-statistic finally sped up

Chapter 4. Design and implementation 41

FIGURE 4.2: Visualization of the sliding-window tech-
nique, where the window slides with 1 frame incre-

ments[38]

the algorithm enough that is could be usable in the pipeline. The prob-
lem was that in none of the research papers that were read gave a good
explanation of how to precisely chose the frame to cut in. As it seems
that always picking the highest scoring one not always gives the best
result.

Implementation of the i-vector package

After implementing the GMM and supervector, some time had passed
and the understanding of the problem had become clearer. Not only did
the program have to be able to separate speakers, but there were also
the problems of being able to recognize speakers, being able to edit the
results and being able to deliver the information about when someone
is speaking to Vizrt’s systems. To solve these problems the first step that
was worked on was implementing the i-vectors since this was the most
central part of the program. From implementing the GMM’s and super-
vectors earlier, some of the parts that needed to be implemented were
already in place, such as the functions for reading a WAV file and doing
the MFCC. So what remained to implement was functions for training
the i-vector extractor and extracting the i-vectors. To train the i-vector
extractor a UBM is needed, but again this was already taken care of when
implementing the GMM. The UBM was trained with around 7-8 hours
of audio from [35], which is where most of the training and test data is
taken from. As mentioned in section 3.3.2 I used packages to implement
the GMM and supervectors, luckily there was a similar package avail-
able for i-vectors [39]. This made the implementation considerably eas-
ier since there was no need to implement the heavy mathematics that is

Chapter 4. Design and implementation 42

behind the i-vector approach.As mentioned the package lets you train an
i-vector extractor by using a previously trained UBM. It takes the statis-
tics from this UBM and scales and centralizes them. These statistics are
used in the function for training an i-vector extractor. This function takes
the statistics, the number of iterations you want the training algorithm
to run, and the number of dimensions the extractor should have. Finally
one can use the extractor in the function for extracting i-vectors. This
function takes the i-vector extractor, and the scaled and centralized data
from the UBM and the MFCC data.

Work done to improve the results of the machine learning algorithm

When both the function to extract i-vectors and train i-vector extractor
was implemented another problem arose, the i-vector did not perform
as well as the GMM’s or the supervectors when doing speaker recogni-
tion. They did not really perform well enough to do any kind of speaker
recognition. How well a machine learning algorithm needs to perform
varies depending on the use case. Normally you would, of course, want
to have the best results possible, preferably as close to perfect as possi-
ble. In some cases, close to perfection could be a necessity, say if you
want to use ML to do diagnose medical patients.

For this thesis getting a perfect result was never the goal, as part of the
problem was to be able to edit the results that were classified wrong.
Even so, some goals had to be set for what was an acceptable perfor-
mance from the classification. After some discussion, it was decided
that the goal should be a classification approach that can at least rec-
ognize around 80-90% of the utterances one is testing (even this could
normally be considered sub-par). This goal was arbitrarily decided on
from discussion with the external supervisor. At this point, the classifi-
cation approach of directly comparing cosine-distance scores only cor-
rectly classified around 40-50% of the utterances.

The first step that was tried to improve this was to change the different
parameters of the models. There were several parameters to regulate
since one can change the parameters in the UBM and the i-vector ex-
tractor. First, the parameters of the UBM were changed. Here one can
adjust the density of the GMM used and the number of iterations the
training algorithm runs. Not much time was spent on this, as David van
Leeuwen, the man responsible for making the packages was contacted.
He gave the most common parameters used for both the extractor and
the UBM. These parameters were a dimension of 400 and 3 iterations

Chapter 4. Design and implementation 43

Iterations i-vector dimension Result in %

10 400 15.8
9 400 7
8 400 0.3
7 400 55.5
6 400 59.2
5 400 55.5
4 400 44.4
3 400 62.9
2 400 44.4

TABLE 4.1: Test result with different number of itera-
tions for training the extractor

for the extractor, and a density of 1024 or 512 for the UBM. The density
was set to 1024 as this seemed to be the most common value for this
parameter according to the different research papers that were looked
at[23]. After setting these parameters the performance went a little up,
but it was still not on a satisfying level. During the implementation, a
test was done to see how the number of training iterations for the extrac-
tor affected the i-vectors. The result of this test can be seen in table 4.1,
where the result shows many percents of the i-vectors were classified
correctly. In this test the cosine-distance was used was used to classify
the i-vectors.

An important part of machine learning is to pre-process the data. Until
this point, it was assumed that the MFCC routine took care of normaliz-
ing and standardizing the data used to extract the i-vectors. Because of
the lack of experience with working with machine learning an important
step in the pre-processing was missed, namely the fact that the data used
to make the MFCC’s should also be pre-processed. When adding stan-
dardization to the data extracted from the WAV file, the classification
results had an immediate improvement and went up to an acceptable
level.

Implementation of the clustering algorithm

Implementing a clustering algorithm to classify the different segment
was the last step of the machine learning part of the system that needed
to be implemented. There was some debate on how the clustering should
be implemented, mainly about how the number of clusters should be de-
cided. The optimal solution for the system would have been if the algo-
rithm could decide the number of clusters itself, but this would require

Chapter 4. Design and implementation 44

the use of a more complex algorithm. It was decided to implement a sim-
ple algorithm, namely an algorithm based on k-means [40] and improve
the algorithm at a later time if the amount of time left allowed it. The de-
cision on what cluster each sample should be part of, and thereby what
speaker they get classified as, was based on the cosine distance of the
i-vectors of each sample and the i-vectors corresponding to the clusters.
At the start of the algorithm a specified number of clusters are created
each with a corresponding vector. Each of the sample i-vectors is then
compared to the i-vectors corresponding to each cluster and is assigned
to the clusters that gave the best cosine score(2.4). The i-vectors corre-
sponding to the clusters is then recalculated by taking the mean of all
the sample i-vectors in that cluster. This loop will continue until either
no change is made between iterations, or a certain number of iterations
has been done.

Unfortunately, this algorithm did not perform the clustering well enough
to use the result. At this point, the time left for the thesis was running
out, so as a solution a package running the k-means algorithm was im-
plemented. This, of course, was not the solution this thesis wanted to
work towards since the goal was to have a clustering algorithm that
was based on cosine distance.By changing the approach to clustering,
the scoring behind the classification of the segments with unknown also
changed. Since the speaker classification for these segments was based
on what cluster they were put in. This change did not affect the classifi-
cation of known speakers since this was still based on directly compar-
ing cosine-distance scores. What the reason behind the low performance
of the first algorithm is uncertain. But a guess is the lack of optimization
and the lack of weights in the implementation. Or it could, of course, be
the result of some fault in the implementation.

Implementation of the connection between the ML and video-editing
system

Until this point, all of the code had been written in Julia, but when the
time came to integrate the machine learning system with Viz Story this
changed to write part of the codebase in Python. The reason behind this
was the packages available for handling XML documents and working
with REST APIs in python. The first step that had to be done was to write
code to transfer the result of the clustering to the python code. This was
done simply by saving the clustered timecodes in a text file. Then the
code for piping this information into Viz Story was written. To make the

Chapter 4. Design and implementation 45

data more manageable, a function that concatenated the data was writ-
ten. For example, if a cluster contained the timecodes "1-3" and "3-5" this
would be concatenated into "1-5". Before this information could be sent
to Viz Story it had to be in the correct format, namely an XML document.
A template document was made by copying an existing EDL from Viz
Story. To prepare the EDL which is sent to Viz Story, the template docu-
ment is read into python using the lxml package[41]. Using this package
a function was written for putting each of the timecodes and the cor-
responding classifications into the EDL. As mentioned earlier Viz Story
uses REST, so to pipe the information into Viz Story requests are made
using the Requests package in python. The finished EDL would then
be sent to Viz Story overwriting the existing EDL or creating a new one
depending on if a PUT or POST call was made.

4.1.3 Implementation of a publishing target

The final thing that was implemented was a new publishing target. This
new publishing target will first download the video locally to the com-
puter. It will then run the downloaded video through the pipeline. To
do this the program first needs to find the correct URL for downloading
the EDL to the corresponding story. It does this by first downloading an
XML document containing a list of all the stories published by Viz Story,
as well as their names and corresponding URL’s. The names of the sto-
ries are then compared to the name of the story that was published to
find the correct one. When the correct URL has been found, it is used
together with the file that was downloaded to run through the pipeline.

4.2 Solution design

Julia workflow

The whole pipeline will start with Julia reading an MP4. This file will be
downloaded by the publishing target. Which will also start the pipeline
after the file is downloaded. The audio from the MP4 file will be ex-
tracted into a WAV file using a similar command as 4.1, then the WAV
file will be read by a package and sampled by running the BIC rou-
tine. These samples will each then go to the clustering method where
the MFCC-routine will be run and the resulting features are used to ex-
tract the i-vectors. The resulting i-vectors will get time-codes attached
to them and be clustered according to the algorithm. For each resulting

Chapter 4. Design and implementation 46

FIGURE 4.3: Overview of the flow of the julia and
python code

cluster, the time-codes will be saved to a text file so the python program
can use them in the making of the EDL. The i-vectors will also be saved
as a data frame so that the python part of the program can compare them
to the known people that are saved in the database.

The program also lets you extract a single i-vector and save it in the
database to be used as a model for a known person. In a production ver-
sion of the pipeline, this would be used to train models for new people,
but in the current pipeline, there is no functionality to do this at run time
of the main routine.

Python workflow

At the end of the Julia part of the pipeline, either a command to run the
Python code will be run, or the Python code will be run from the pub-
lishing target. The Python code will load the saved time-codes into a list
which will be sent to a function for checking for known persons. The

Chapter 4. Design and implementation 47

i-vectors will be loaded in a data frame and will be compared to the i-
vectors in the database for know people. This comparison is done using
cosine-distance. If a i-vector score over a threshold it and its associated
time-code will be removed from the list, and added to a new list con-
taining the time codes for people with known models. Both these lists
will then be sent to the function that will concatenate the time-codes and
returns lists of the new time codes for both lists.

When the time codes are ready its time to start building the EDL. The
program will have access to an XML file that will contain a template
EDL, this will be loaded in and copies of the elements that will be in-
serted into the EDL will be made. In the current pipeline, this will be
lower-third graphic elements. An EDL associated with the video that
was used will also be downloaded. The EDL will be downloaded from
a URL that is either given by the user or found through the code in the
publishing target. This EDL will then be expanded with elements con-
taining the time codes, and also elements containing the name and time-
code for the known person(s) that were found. After the EDL is com-
pleted it will be uploaded to Viz Story where it will replace the old EDL
or add the new elements to the existing EDL.

4.2.1 Explanation of the user interface

As was pointed out earlier in the report, a big part of this thesis is to be
able to edit the results we get from the machine learning before saving it
in a system. This is where using the UI is very helpful. After analyzing
a video with machine learning, the results will be put in the EDL and
sent to the UI. From here one can edit the results. For this version of
the system, the results are shown as graphics elements in the UI, so by
editing these graphics tags you also edit the results from the machine
learning. In a production version of this system, the results would not be
shown as graphics elements, but instead as their own type of elements.

How the user interface could be used in combination with the pipeline

When a user is allowed to edit the results it will allow subsequent users
to have more confidence in the result and the labels created from those
results. Most ML systems will never produce results that are 100 percent
correct, likewise, this is the case with this program. Instead of trusting
the results completely, this system introduces a form of quality control
originating from the ability to edit the results. This again is what will

Chapter 4. Design and implementation 48

give other users more confidence in the resulting labels. The current
Viz Story UI has a lot of functionality that likely would have been in a
production version of the system.

49

Chapter 5

Results

5.1 Presentation of the results

In this chapter the results from the clustering and segmentation algo-
rithms are presented. We will also present the integrated functionality
provided by proposed solution.

5.1.1 Qualitative results

When using the proposed pipeline in a video-editing system (namely
Viz Story) results in the following being provided to the user:

• Information about when each speaker talks gets presented to the
user.

• Possibility to recognize known speakers, and to train models for
new speakers one wants the system to recognize in the future.

• Extracting training data based on the segmentation and the clus-
tering.

The code behind these results works well enough as a proof-of-concept.
By using Viz Story with the pipeline integrated, one can see that the
pipeline delivers adequate results and provides a good start-point for
building a production version of the pipeline. As this was only a proof-
of-concept more work would be required before one could comfortably
use the pipeline in a production system. The clustering and segmenta-
tion does not work as well as it could, and the training of new model
needs to be fully integrated into the pipeline etc. There are also some
specific problems that should be looked at. For example, when com-
paring the highest score from the T2-statistics against a threshold, if one

Chapter 5. Results 50

puts the T2 threshold to low and the BIC accepts the cut, one will end up
with an unnecessary cut. This can lead two segments that should have
been classified as the same speaker, being classified as different speak-
ers. Problems like these could probably be fixed with time through trial
end error. These kinds of problems, even if they are not prominent, are
things that would have to be fixed before using the pipeline in a pro-
duction system. There is also more functionality that potentially could
have been added. Examples of what these functionalities could include
is presented in section 3.2.

5.1.2 Quantitative results

It was never expected that the machine learning algorithm would pro-
duce perfect results. When ML is applied to a problem one has to keep
in mind that the results will be an approximation of the truth. The pro-
posed solution was therefore expected to make mistakes and gives to
users the option to correct these mistakes.

To be able to give a more concrete picture of how well the ML part of the
pipeline works, some qualitative results were extracted. To get the re-
sult a number of different audio-tracks with increasing length was used.
They range from about 1 minute to about 14 minutes in length It was
decided to look at the results from the sampling and clustering sepa-
rately. This was because we were unaware of any measure that could
cover both the sampling and the classification done by the clustering
algorithm. Even so, these results are supposed to reflect a normal run
through the pipeline. Therefore the results from the clustering and sam-
pling will come from the same run, and the results will be extracted from
looking at the video-editing UI. The results displayed in the UI is com-
pared with the ground truth(reality) of when the speaker changes to de-
termine if the sampling and classification is correct. One has to keep
in mind that the result of the sampling will affect the clustering when
looking at the results.

The results from running different audio tracks through the pipeline will
be presented in the tables below. Table 5.2 presents the results of the
classification done by the clustering, and table 5.1 presents the results of
the sampling.

For the sampling the following measures was used

• Total number of cuts.

Chapter 5. Results 51

• Number of excess cuts. This means that if there is a cut without a
change in speaker or moment of silence etc, it will count as a excess
cut.

• Number of missing cut. This means that if there was a change in
speaker without a cut, it will count as a missing cut.

• Number of inaccurate cut. This means that the segmentation did
perform a cut, but the time at which the cut was made is wrong.

• Total inaccuracy of cut in seconds. This means that if there is a cut
in 56s that should have been in 55s, one second will be added to
the total. Keep in mind that this measure can be a little inaccurate,
since it is hard to determine the exact time the cut should be in.

For the classification done by the clustering algorithm the following mea-
sures were used:

• Total number of segments

• Number of incorrectly classified segments.

• Number of correctly classified segments.

For both classification and segmentation the following parameters were
used:

• UBM dimension: 1024

• I-vector dimension: 400

• T2 threshold: 800.

• BIC is centralized around a frame, and uses +-150 frames around
that one.

Both the tests uses the same data, which was gathered in the same way
explained in section 4.1.2

5.1.3 Comparing the current pipeline with a production ver-
sion

As one can understand from reading section 3.2, there are differences be-
tween what an imagined production version of the pipeline could pos-
sibly achieve, and what the proposed proof-of-concept pipeline can do

Chapter 5. Results 52

Track #Cuts #Excess cuts #Missing cuts #Total inaccuracy

1 3 0 0 2s
2 1 0 0 0,5s
3 3 0 0 1s
4 5 2 0 0
5 14 6 1 9s

TABLE 5.1: Result of testing the sampling with different
audiotracks

Track #speakers #incorrect classifications #correct classifications

1 3 1 4
2 2 0 2
3 3 2 2
4 3 2 3
5 5 8 7

TABLE 5.2: Result of testing the classifications provided
by the clustering process with different audiotracks

today. Much of the speculated functionality that could be in a produc-
tion version would require more time and intimate knowledge of the
video-editing system to make and integrate. The production version’s
functionality could build upon the functionality that is already in the
pipeline. It could use the existing functionality to provide the user with
more functionality that a user can use directly. Such a system would
also likely have a UI that is adapted to using the pipeline. Instead of us-
ing the existing elements in the UI in new ways, as the proof-of-concept
pipeline does. This would hopefully lead to a better user experience.

53

Chapter 6

Evaluation and conclusion

In this chapter, the research questions will be answered. The results will
be evaluated and discussed how they affect the answers to the research
questions. At the end, a conclusion to the thesis answering the research
question will be drawn.

6.1 Evaluation and discussion of the results

The evaluation of this thesis will be a self-evaluation of the results from
the work done in the thesis.

The results presented in section 5.1.1 and section 5.1.2 are as a whole
considered acceptable by the expectations set for this thesis, but are not
perfect. As was mentioned when presenting the result, there is still more
work that should be put into the pipeline before one can comfortably use
it in a production system. All the functionality that was implemented
works on a basic level. A user is able to publish their video from the UI
and have the the audio-track partitioned according to speakers. From
section 5.1.2 one can see that this partitioning does not deliver perfect
results. The sampling seems to work better than the clustering. From ta-
ble 5.1 one can see that the sampling works very well on shorter audio-
tracks, but the results does degenerate a little on longer audio-tracks.
The number of missing cuts are kept to a minimum, while the number
of excess cuts is a little higher than it should be. This was done on pur-
pose, the idea being that having the sampling be a little sensitive would
be better than having it be to discriminatory. The idea behind this was
that the clustering would concatenate the samples that should not have
had cuts in them. Unfortunately the clustering did not perform as well
as was expected, with an average accuracy of 0.673% (numbers taken
from table 5.2) in the resulting classification. From the result of running

Chapter 6. Evaluation and conclusion 54

track 5 through the pipeline, which had a generally high number of ex-
cess cuts, one can see that the clustering had trouble correctly classifying
the high number of excess cuts. Which means the segments with ex-
cess cuts will not get concatenated into the correct segments. This led to
having high number of both excess cuts and incorrect classification. To
remedy this, the clustering part of the pipeline should be better. Com-
pared to other solutions that uses the i-vector approach to do speaker
recognition, for example[16], the results presented in table 5.2 are sub-
par. The presented solution does differ in from [16] in its approach to
doing speaker recognition(verification), but comparing them we can see
that the i-vector approach has the potential provide better results when
applied to these kinds of problems. A reason it did not perform so well
could be that the measure used in the k-means algorithm was not the
best way to compare the i-vectors. Based on what was used in other
scientific articles, the original approach of using the cosine distance to
compare the i-vector would have delivered better results. To sum it
up, the results from section 5.1.2 was not as good as I would have ex-
pected, especially the classification. Having a better algorithm for doing
the clustering would have greatly benefited the result.

Of course it was expected that the machine learning algorithm would
make mistakes. From the start, the idea behind the pipeline was to give
the user the ability to edit the mistakes made by the machine learning al-
gorithm. This is done through the UI, and is the backbone for the reason
I can say that the results presented in 5.1.2 was good. Without the hu-
man quality-control of the partitioning and classification the end results
might not be satisfactory. This would lead to much of the functional-
ity being less usable. Extracting training data and building new models
based on them would probably not be possible, as the training data and
by extension the new models, would be far less reliable if the users just
trusted the machine learning algorithm. By having the option to edit the
result, the users can use this functionality with the knowledge that they
will likely have been corrected by a human.
The idea behind using the functionality provided by the pipeline is to
help users with time-consuming tasks. Something that using the func-
tionality would definitely can do. All the end results from using the
pipeline could also be achieved by manually labeling the audio-track for
the use of extracting training data, or by manually creating metadata for
the different stories. Anyone who has done this kind of work will proba-
bly tell you that it can take quite a bit of time. So even if the information
the user gets from the machine learning is not perfect, it will still save
the user time by giving them partially correct information and thereby

Chapter 6. Evaluation and conclusion 55

doing some of the labeling work for them. Or at the very least, it will
give a a general idea of when there is a change in speaker, something
that will help if you want to do manual labeling. One can also see how
the pipeline will save time if one thinks of how it would be used in a pro-
duction system by a reporter. Not only will the information be presented
to the reporter, but it can help him/her with the editing of the video. If
the reporter sees who speaks in certain parts of the video it will be easier
to see what parts of the video would be interesting to them. Instead of
having to sit through the entire video to find interesting parts.
To sum it up, one can definitely see that the pipeline would does deliver
good enough result to help users save time. Even if the result presented
could be better, it will still save time by giving partial information on
the speakers as well as give the option to easily extract training data for
future use.

6.1.1 Utility value of using the pipeline in a video editing sys-
tem

In the current Viz Story UI, the only functionality that is used in concur-
rence with this pipeline is the ability to present and edit the results we
get from the machine learning and the graphics tags. This functionality
is important for the system but leaves a lot of potential functionality un-
used. The work in this thesis around using the results from the machine
learning has focused on displaying the results and making them avail-
able to save as labels or time data in the Vizrt system. This is because
building a UI for this system would have taken up to much time, but as
a result, a lot of potential functionality was left unexplored. When the
results from the machine learning can be edited in the UI, you also intro-
duce the potential to use these results in the editing process. This could
be in the form of skipping to certain speakers or removing instantly un-
wanted speakers from the video.

6.1.2 How the pipeline could affect the workflow of an editor

Much of the functionality the proposed pipeline provides is to benefit
the end user of the editing system. In this thesis, the end user has often
been imagined to be a journalist or someone editing news or debate pro-
grams. When these kinds of users takes advantage of a system that has
a pipeline like the one proposed integrated, it will affect the way they
use that editing system. Firstly it would make it easier for them to find

Chapter 6. Evaluation and conclusion 56

out who is in the different videos they are editing. This will make it eas-
ier for them to find relevant information or clips to use. All the training
data that the pipeline has extracted could also be made available to the
user. By doing this the editor would have access to a big library with
clips they could use when making reports on specific people, instead of
the editor having to search for relevant clips to use of that person. The
editor would also get the information about where the different speakers
are in the video from the diarization, and who these speakers are from
the classification. This could give the editor a quick overview of what
the video contains even before looking through it. As well as providing
them with graphic elements for the different speakers if this is desired.
The combined functionality mentioned would make the workflow for
the editor simpler and quicker, even if the editor has to spend a little
time correcting eventual mistakes made by the machine learning part of
the pipeline.

6.2 Evaluation of own work

Since this was my first time working on this type of project and my first
time working with this kind of technology, there are very likely things
that could have been done to improve the proposed solution. The first
decision that I would have done differently if I could do it over is the
decision not to use d-vectors. In the early phases of the thesis, it was
decided that this thesis would not use neural-networks, or by extension,
deep-learning. As a result, this excluded the use of d-vectors. Looking
back I am unsure if this was a good decision. The decision was based
on an uncertainty of how much data would be available, but with the
amount of data that was available a deep-learning network could very
likely have been trained. Of course it is not certain this would have de-
livered better results, but I assume that the d-vectors would give better
results than the i-vector since it is a newer type of model, and deep-
learning tends to deliver good results.

When it comes to programming languages, when doing this kind of
project again I would take care of keeping most of the code in one lan-
guage. The current program is split between Julia and Python. This
works, but makes the code base really messy and hard to both read and
maintain. The choice to use different languages was mostly done be-
cause of the different packages available, and the fact that maintainabil-
ity was mostly ignored when writing the code. Still, when working with

Chapter 6. Evaluation and conclusion 57

the code it would have made the work easier if the code was better struc-
tured and only in one language. Overall taking care to write better code
should have been a higher priority during the work of this thesis.

During the early to middle stages of the thesis, some new information
that was useful to the thesis came to light. Among them was the term
diarization and the field surrounding it. While it was good that this was
not discovered too late, it would have been better if it was discovered at
the start of the work on the thesis. So looking back, doing more research
before starting work on the implementation would have been a good
idea. The project was not greatly impacted by the lack of research, but
could have benefited from a better literature study in the early stages.

6.3 Conclusion

This thesis presents a pipeline that:

• Separates different speakers

• Classifies the speakers

• Presents the information to the user and lets the user edit it

It also has the functionality to extract training data based on the infor-
mation, as well as the functionality to use this training data to train new
models. Additionally the thesis proposes ways to use this functionality
in a production system. The proposals are built around the idea that the
users are TV-reporters or journalists, and how the pipeline would benefit
those kinds of users. From this one can see how the pipeline can be ben-
eficial not only to those kinds of users, but will also help a general user
with navigating the video during editing. Based on this, I have reached
the following conclusion to the research questions.

Question 1
In this work we aim to try to make a pipeline that will separate the voices of
speakers in an audio-track by applying machine learning, and pipes this infor-
mation into a system. By this, answer the question of; can machine learning
be applied to partition an audio-track according to speakers without any prior
trained models, and the result be piped into a system to train new speaker mod-
els?

Yes, one can clearly build a pipeline that covers the functionality in the
research question. Even if the the results from the proposed solution

Chapter 6. Evaluation and conclusion 58

were not perfect, it has been demonstrated that it is very much possible.
The proposed pipeline is only one of a number of different possible so-
lutions. There are different solutions that can achieve similar results. I
can also conclude that using the proposed pipeline as a proof-of-concept
could be a good starting point for future developers that wish to build a
similar solutions.

Question 2
This thesis also aims to look into the possibilities of integrating machine learn-
ing into a video-editing system. Then answer the question of how a machine
learning system be integrated into a video-editing system in a way that will
help the users with time-consuming tasks?

The pipeline presented is one possible solution to how to integrate ma-
chine learning into a system. From the functionality provided by the
pipeline I can also conclude that the proposed pipeline would help with
time-consuming tasks. There are still functionalities and improvements
than can be made to the pipeline that would improve the help provided
with time-consuming tasks. From what is present in the pipeline I can
conclude that it will at least reduce the time spent on the following tasks:

• Navigating through the video, and thereby help with editing

• Generating training data

• Gather information about who is present in the video

So in conclusion, the thesis proposes a pipeline, subsisting of a ma-
chine learning program, which can help users with a number of time-
consuming tasks. The pipeline has the potential to be build upon to
make it even more effective.

6.4 Future Work

The proposed solution in this thesis is only meant to be used a proof-of-
concept, and there is a lot of work that can be done on it in the future.

6.4.1 Improving the algorithms

The algorithms used in the proposed solution would very likely have
to be improved before being used in a production version. First and

Chapter 6. Evaluation and conclusion 59

foremost steps would have to be taken to improve the results as much
as possible, but there are also other improvements that could be done.
As it stands, you have to tell the clustering algorithm how many clusters
you want it to produce. There are clustering algorithms that can decide
this without input, and it would benefit the pipeline to take advantage
of such an algorithm.

6.4.2 Expanding functionality

The functionality implemented in the solution could potentially be ex-
panded. When comparing what was speculated in section 3.2 and what
the solution offers one can see that there is much that is not yet imple-
mented in the pipeline. The functionality talked about in section 3.2 were
of course only speculations and there has not been any research done on
how to implement them, but in my opinion, the potential to implement
them is there. This would most likely require that the video-editing sys-
tem be adapted to facilitate the new functionality.

6.4.3 Build or adapt a UI

This would also be important if one wants to expand the functional-
ity. Building a custom UI or adapting the UI of the current editing sys-
tem would let you take better advantage of what the pipeline provides.
What such a UI would have to contain would depend on what function-
ality one would want the pipeline to provide. This could, for example,
be buttons to skip to the next speaker or a search bar for searching for
speakers in the media library.

60

Bibliography

[1] Vizrt. About us. URL: http://www.vizrt.com/company/.

[2] John HL Hansen and Taufiq Hasan. “Speaker recognition by ma-
chines and humans: A tutorial review”. In: IEEE Signal processing
magazine 32.6 (2015), pp. 74–99.

[3] Yi Liu et al. “Investigating Various Diarization Algorithms for Speaker
in the Wild (SITW) Speaker Recognition Challenge.” In: Interspeech.
2016, pp. 853–857.

[4] Candemir Toklu and Shih-Ping Liou. Method and system for video
browsing and editing by employing audio. US Patent 6,697,564. 2004.

[5] R. Port. Digital Signal Processing Overview. URL: https://www.cs.
indiana.edu/~port/teach/541/sig.proc.html.

[6] Haytham Fayek. Speech Processing for Machine Learning: Filter banks,
Mel-Frequency Cepstral Coefficients (MFCCs) and What’s In-Between.
URL: https://haythamfayek.com/2016/04/21/speech-processing-
for-machine-learning.html.

[7] Thair Khdour et al. “Arabic Audio News Retrieval System Us-
ing Dependent Speaker Mode, Mel Frequency Cepstral Coefficient
and Dynamic Time Warping Techniques”. In: 7 (June 2014), pp. 5082–
5097.

[8] Steven B Davis and Paul Mermelstein. “Comparison of paramet-
ric representations for monosyllabic word recognition in continu-
ously spoken sentences”. In: Readings in speech recognition. Elsevier,
1990, pp. 65–74.

[9] Suman Saksamudre and Ratnadeep Deshmukh. “Comparative Study
of Isolated Word Recognition System for Hindi Language”. In: In-
ternational Journal of Engineering Research Technology 4 (July 2015),
pp. 536–540. DOI: 10.17577/IJERTV4IS070443.

[10] Nickolay Shmyrev. Why is pre-emphasis (i.e. passing the speech signal
through a first order high pass filter) required in speech processing and
how does it work? URL: https://www.quora.com/Why-is-pre-
emphasis-i-e-passing-the-speech-signal-through-a-first-

order-high-pass-filter-required-in-speech-processing-

http://www.vizrt.com/company/
https://www.cs.indiana.edu/~port/teach/541/sig.proc.html
https://www.cs.indiana.edu/~port/teach/541/sig.proc.html
https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
http://dx.doi.org/10.17577/IJERTV4IS070443
https://www.quora.com/Why-is-pre-emphasis-i-e-passing-the-speech-signal-through-a-first-order-high-pass-filter-required-in-speech-processing-and-how-does-it-work/answer/Nickolay-Shmyrev?srid=e4nz&share=71ca3e28
https://www.quora.com/Why-is-pre-emphasis-i-e-passing-the-speech-signal-through-a-first-order-high-pass-filter-required-in-speech-processing-and-how-does-it-work/answer/Nickolay-Shmyrev?srid=e4nz&share=71ca3e28
https://www.quora.com/Why-is-pre-emphasis-i-e-passing-the-speech-signal-through-a-first-order-high-pass-filter-required-in-speech-processing-and-how-does-it-work/answer/Nickolay-Shmyrev?srid=e4nz&share=71ca3e28
https://www.quora.com/Why-is-pre-emphasis-i-e-passing-the-speech-signal-through-a-first-order-high-pass-filter-required-in-speech-processing-and-how-does-it-work/answer/Nickolay-Shmyrev?srid=e4nz&share=71ca3e28

BIBLIOGRAPHY 61

and-how-does-it-work/answer/Nickolay-Shmyrev?srid=e4nz&

share=71ca3e28.

[11] Siemens Phenom. Windows and Spectral Leakage. URL: https : / /
community.plm.automation.siemens.com/t5/Testing-Knowledge-

Base/Windows-and-Spectral-Leakage/ta-p/432760.

[12] URL: http://www.practicalcryptography.com/miscellaneous/
machine-learning/guide-mel-frequency-cepstral-coefficients-

mfccs/.

[13] T. NATARAJAN N. AHMED and K. R. RAO. Discrete Cosine Trans-
fonn. URL: http://dasan.sejong.ac.kr/~dihan/dip/p5_DCT.
pdf.

[14] Daniel Faggella. What is Machine Learning? URL: https://www.
techemergence.com/what-is-machine-learning/.

[15] Santosh K Gaikwad, Bharti W Gawali, and Pravin Yannawar. “A
review on speech recognition technique”. In: International Journal
of Computer Applications 10.3 (2010), pp. 16–24.

[16] Najim Dehak et al. “Front-end factor analysis for speaker verifica-
tion”. In: IEEE Transactions on Audio, Speech, and Language Process-
ing 19.4 (2011), pp. 788–798.

[17] Douglas Reynolds. “Gaussian Mixture Models”. In: Encyclopedia of
Biometrics. Ed. by Stan Z. Li and Anil K. Jain. Boston, MA: Springer
US, 2015, pp. 827–832. ISBN: 978-1-4899-7488-4. DOI: 10.1007/978-
1-4899-7488-4_196. URL: https://doi.org/10.1007/978-1-
4899-7488-4_196.

[18] Douglas A Reynolds, Thomas F Quatieri, and Robert B Dunn. “Speaker
verification using adapted Gaussian mixture models”. In: Digital
signal processing 10.1-3 (2000), pp. 19–41.

[19] Douglas A Reynolds. “Comparison of background normalization
methods for text-independent speaker verification”. In: Fifth Euro-
pean Conference on Speech Communication and Technology. 1997.

[20] Ehsan Variani et al. “Deep neural networks for small footprint
text-dependent speaker verification”. In: May 2014, pp. 4052–4056.
ISBN: 978-1-4799-2893-4. DOI: 10.1109/ICASSP.2014.6854363.

[21] Douglas Reynolds. “Universal Background Models”. In: Encyclo-
pedia of Biometrics. Ed. by Stan Z. Li and Anil K. Jain. Boston, MA:
Springer US, 2015, pp. 1547–1550. ISBN: 978-1-4899-7488-4. DOI:
10.1007/978- 1- 4899- 7488- 4_197. URL: https://doi.org/
10.1007/978-1-4899-7488-4_197.

https://www.quora.com/Why-is-pre-emphasis-i-e-passing-the-speech-signal-through-a-first-order-high-pass-filter-required-in-speech-processing-and-how-does-it-work/answer/Nickolay-Shmyrev?srid=e4nz&share=71ca3e28
https://www.quora.com/Why-is-pre-emphasis-i-e-passing-the-speech-signal-through-a-first-order-high-pass-filter-required-in-speech-processing-and-how-does-it-work/answer/Nickolay-Shmyrev?srid=e4nz&share=71ca3e28
https://www.quora.com/Why-is-pre-emphasis-i-e-passing-the-speech-signal-through-a-first-order-high-pass-filter-required-in-speech-processing-and-how-does-it-work/answer/Nickolay-Shmyrev?srid=e4nz&share=71ca3e28
https://community.plm.automation.siemens.com/t5/Testing-Knowledge-Base/Windows-and-Spectral-Leakage/ta-p/432760
https://community.plm.automation.siemens.com/t5/Testing-Knowledge-Base/Windows-and-Spectral-Leakage/ta-p/432760
https://community.plm.automation.siemens.com/t5/Testing-Knowledge-Base/Windows-and-Spectral-Leakage/ta-p/432760
http://www.practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://www.practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://www.practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
http://dasan.sejong.ac.kr/~dihan/dip/p5_DCT.pdf
http://dasan.sejong.ac.kr/~dihan/dip/p5_DCT.pdf
https://www.techemergence.com/what-is-machine-learning/
https://www.techemergence.com/what-is-machine-learning/
http://dx.doi.org/10.1007/978-1-4899-7488-4_196
http://dx.doi.org/10.1007/978-1-4899-7488-4_196
https://doi.org/10.1007/978-1-4899-7488-4_196
https://doi.org/10.1007/978-1-4899-7488-4_196
http://dx.doi.org/10.1109/ICASSP.2014.6854363
http://dx.doi.org/10.1007/978-1-4899-7488-4_197
https://doi.org/10.1007/978-1-4899-7488-4_197
https://doi.org/10.1007/978-1-4899-7488-4_197

BIBLIOGRAPHY 62

[22] Universitat Politècnica de Catalunya. Speaker ID I (D3L3 Deep Learn-
ing for Speech and Language UPC 2017). URL: https://www.slideshare.
net/xavigiro/speaker-id-d3l3-deep-learning-for-speech-

and-language-upc-2017.

[23] Gregory Sell and Daniel Garcia-Romero. “Speaker diarization with
plda i-vector scoring and unsupervised calibration”. In: 2014 IEEE
Spoken Language Technology Workshop (SLT) (2014), pp. 413–417.

[24] Scott Chen, Ponani Gopalakrishnan, et al. “Speaker, environment
and channel change detection and clustering via the bayesian in-
formation criterion”. In: Proc. darpa broadcast news transcription and
understanding workshop. Vol. 8. Virginia, USA. 1998, pp. 127–132.

[25] Theodore Wilbur Anderson. An introduction to multivariate statisti-
cal analysis. Tech. rep. Wiley New York, 1962.

[26] Jitendra Keer. Developed a system for identifying which person speaks
at what interval of time in an Audio file, Speaker Diarization. URL:
https://angel.co/projects/302267- developed- a- system-

for-identifying-which-person-speaks-at-what-interval-

of-time-in-an-audio-file-speaker-diarization.

[27] Julia language homepage. URL: https://julialang.org/.

[28] Julia Micro-Benchmarks. URL: https://julialang.org/benchmarks/.

[29] Vizrt. Viz Story. URL: https://www.vizrt.com/products/viz-
story.

[30] EDIUS Pro 8 Non-Linear Video Editing Software (Windows). URL: https:
//www.fullcompass.com/prod/288294-grass-valley-edius-

pro-8-edius-pro-8-non-linear-video-editing-software-

windows.

[31] W3C. INTRODUCTION TO ATOM. URL: https://validator.w3.
org/feed/docs/atom.html.

[32] IBM. Overview of Atom feeds. URL: https://www.ibm.com/support/
knowledgecenter/en/SSGMCP_5.5.0/fundamentals/web/dfhtl_

atom_whatis.html.

[33] Sumit Gupta. Deep learning performance breakthrough. URL: https:
//www.ibm.com/blogs/systems/deep-learning-performance-

breakthrough/.

[34] David van Leeuwen. A Julia package for Gaussian Mixture Models
(GMMs). URL: https://github.com/davidavdav/GaussianMixtures.
jl.

[35] Sveriges Riksdag. Sveriges Riksdag webb-tv. URL: http : / / www .
riksdagen.se/sv/webb-tv/.

https://www.slideshare.net/xavigiro/speaker-id-d3l3-deep-learning-for-speech-and-language-upc-2017
https://www.slideshare.net/xavigiro/speaker-id-d3l3-deep-learning-for-speech-and-language-upc-2017
https://www.slideshare.net/xavigiro/speaker-id-d3l3-deep-learning-for-speech-and-language-upc-2017
https://angel.co/projects/302267-developed-a-system-for-identifying-which-person-speaks-at-what-interval-of-time-in-an-audio-file-speaker-diarization
https://angel.co/projects/302267-developed-a-system-for-identifying-which-person-speaks-at-what-interval-of-time-in-an-audio-file-speaker-diarization
https://angel.co/projects/302267-developed-a-system-for-identifying-which-person-speaks-at-what-interval-of-time-in-an-audio-file-speaker-diarization
https://julialang.org/
https://julialang.org/benchmarks/
https://www.vizrt.com/products/viz-story
https://www.vizrt.com/products/viz-story
https://www.fullcompass.com/prod/288294-grass-valley-edius-pro-8-edius-pro-8-non-linear-video-editing-software-windows
https://www.fullcompass.com/prod/288294-grass-valley-edius-pro-8-edius-pro-8-non-linear-video-editing-software-windows
https://www.fullcompass.com/prod/288294-grass-valley-edius-pro-8-edius-pro-8-non-linear-video-editing-software-windows
https://www.fullcompass.com/prod/288294-grass-valley-edius-pro-8-edius-pro-8-non-linear-video-editing-software-windows
https://validator.w3.org/feed/docs/atom.html
https://validator.w3.org/feed/docs/atom.html
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.5.0/fundamentals/web/dfhtl_atom_whatis.html
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.5.0/fundamentals/web/dfhtl_atom_whatis.html
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.5.0/fundamentals/web/dfhtl_atom_whatis.html
https://www.ibm.com/blogs/systems/deep-learning-performance-breakthrough/
https://www.ibm.com/blogs/systems/deep-learning-performance-breakthrough/
https://www.ibm.com/blogs/systems/deep-learning-performance-breakthrough/
https://github.com/davidavdav/GaussianMixtures.jl
https://github.com/davidavdav/GaussianMixtures.jl
http://www.riksdagen.se/sv/webb-tv/
http://www.riksdagen.se/sv/webb-tv/

BIBLIOGRAPHY 63

[36] FFmpeg homesite. URL: https://ffmpeg.org/.

[37] Julia DSP. Mel Frequency Cepstral Coefficients calculation for Julia.
URL: https://github.com/JuliaDSP/MFCC.jl.

[38] Jair Ferreira et al. “Driver behavior profiling: An investigation with
different smartphone sensors and machine learning”. In: PLOS ONE
12 (Apr. 2017), pp. 1–16. DOI: 10.1371/journal.pone.0174959.

[39] David van Leeuwen. i-vector training, extraction and scoring routines.
URL: https://github.com/davidavdav/IVectors.jl.

[40] Andrea Trevino. Introduction To K-Means Clustering. URL: https:
//www.datascience.com/blog/k-means-clustering.

[41] Andrea Trevino. lxml - XML and HTML with Python. URL: https:
//lxml.de/.

https://ffmpeg.org/
https://github.com/JuliaDSP/MFCC.jl
http://dx.doi.org/10.1371/journal.pone.0174959
https://github.com/davidavdav/IVectors.jl
https://www.datascience.com/blog/k-means-clustering
https://www.datascience.com/blog/k-means-clustering
https://lxml.de/
https://lxml.de/

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Goal of this thesis
	Related works
	Research questions
	Research method
	Report outline

	Background
	Signal processing
	Feature extraction
	Mel-frequency cepstrum
	Pre-emphasis
	Framing and Windowing
	Fourier transform and power spectrum
	Mel-filter banks
	Logarithm of filter banks
	Discrete Cosine Transformation

	Delta and delta-delta

	Machine Learning
	Speaker recognition
	Speaker models
	Gaussian Mixture Models
	Universal Background Models
	Identity-vector

	Bayesian information criterion
	T2-Statistics

	Technologies and problem description
	Problem description
	Potential functionality
	Use the information from the program to search through all the files
	Use the information from the program to search through the file in the editor
	Display information about the different speakers
	Give a feedback about how certain the program is of its classification
	Change what kinds of elements uses the information

	Technologies and techniques
	Technologies
	Video editing system

	Techniques
	Sampling
	Machine Learning Methods
	Models

	Design and implementation
	Implementation work
	High-level description of the pipeline
	Creating training data
	MFCC package
	Sampling with BIC
	Implementation of the i-vector package
	Work done to improve the results of the machine learning algorithm
	Implementation of the clustering algorithm
	Implementation of the connection between the ML and video-editing system

	Implementation of a publishing target

	Solution design
	Julia workflow
	Python workflow

	Explanation of the user interface
	How the user interface could be used in combination with the pipeline

	Results
	Presentation of the results
	Qualitative results
	Quantitative results
	Comparing the current pipeline with a production version

	Evaluation and conclusion
	Evaluation and discussion of the results
	Utility value of using the pipeline in a video editing system
	How the pipeline could affect the workflow of an editor

	Evaluation of own work
	Conclusion
	Future Work
	Improving the algorithms
	Expanding functionality
	Build or adapt a UI

	Bibliography

