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Abstract 
The thesis details the work for creating a web application that allows a user to see a 

visualization for geological data like topography, seismic data and well measurements from 

the subsurface. This application uses the JavaScript web library React, and the X3DOM 

framework. It is built upon a previously built application using the JavaScript framework 

Angular instead of React, which had led to some issues. By creating the application using the 

React library the thesis aims to avoid these issues, and develop a more modular structure. In 

addition, the work in this thesis will try to further develop new and improve existing 

functionalities such as navigation and possibility to toggle visualization of element. 
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Glossary 
API – Application Programming Interface 

BVH – Bounding volume hierarchy 

BVHRefiner – A X3D component that refines and loads hierarchical data dynamically. 

Canvas – HTML5 canvas element 

CMR – Christian Michelsen Research 

Component – A JavaScript class or function that returns a React element containing a section 

of the UI 

ComponentDidMount – A React lifecycle method that will run when a React component has 

been created an inserted to the DOM 

ComponentDidUpdate – A React lifecycle method that will run when a React component 

has been updated 

CSS – Cascading Style Sheet 

CSV – Comma-separated values 

DOM – Document Object Model 

FOV – Field of view 

GDAL - Geospatial Data Abstraction Library 

Geometry – A graphical shape created from a set of triangles 

GUI – Graphical User Interface 

HTML – Hyper Text Markup Language 

ISO – International Organization for Standardization 

JPEG/JPG – Joint Photographic Experts Group 

JSON – JavaScript Object Notation 

JSX – JavaScript XML 

Lifecycle methods – Methods in React that will run depending on if a component is changed, 

created or deleted 

LOD – Level of detail 

MERN Stack – Application stack using Mongo, Express, React and Node. 

Modal – Dialog prompt / dialog window 

OCP – Open-Closed principle  

Open source – The source code is available for free for everyone to use 

OpenGL – Open Graphics Library: An API used for 2D and 3D vector graphics rendering. 

Performance - How quickly a web page loads necessary data 

PNG – Portable Network Graphics 

Props – Short for properties, is defined as a parameter when a component is defined.  

Ref – Short for reference, used in React as a reference to the DOM or an instance of a 

component.  

RGB color model – A color model with three number values representing the colors red, 

green and blue  

RMS File – Textual file containing data for a well log 

Segment/Subwell – The section between two coordinates of a well 

Scene – A defined area within a web browser where 3D object created from the X3DOM 

framework can be placed 

Slice – The visualization of a slice of seismic data 

SOLID – An acronym representing five design principles. These are the single responsibility, 

open-closed, Liskov substitution, interface segregation and dependency inversion principles.  

SRP – Single responsibility principle  

State – A variable in React used for determining how a component is rendered, useful 

concept for making dynamic and interactive components. 

TREE – Dataset structure that can be used with BVHRefiner 
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Transformation – Term in computer graphics for defining the translation, rotation and/or 

scale for a graphical object  

UI – User Interface 

URL – Uniform Resource Locator 

UTM – Universal Transverse Mercator coordinate system 

Viewpoint – A node in X3DOM that specify the position and orientation from where the 

camera is placed within a scene  

VIRCOLA - Virtual CO2 Laboratory project 

VRML – Virtual Reality Modeling Language 

WebGL – Web Graphics Library 

Well – A visual representation of data from well logs 

Well logs – Files containing data gathered from drilling in the subsurface 

WMTS – Web Map Tile Service 

X3D – Extensible 3D Graphics 

X3DOM – An open source framework and runtime for declarative 3D scenes for Web 

Browser 

X3DOM node/element – A predefined element within the X3DOM framework that is used to 

represent a part or aspect within a scene, such as an object, material or light. 

X3DOM tag – A tag that are used to represent and implement a particular X3DOM node 

XML – Extensible Markup Language 
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1 Introduction 
This master thesis is about the work regarding the development of a web application used for 

visualizing 3D geology. In particular the application can show the 3D topography of Svalbard 

and data gathered from the subsurface. In the development of this application two tools have 

primarily been used. These are the JavaScript library React and the X3DOM framework. This 

thesis continues from the work provided by Øystein Malt. His’s work is presented in the 

Master Thesis “Using 3D functionality available in current web-browsers to create and 

visualize geological models” [1]. 

In Malt’s work a solution for a web application that visualize 3D geology is provided. The 

application also used X3DOM framework. However, the application used the JavaScript 

framework Angular [2], instead of React. Using Angular led to some problems, such as an 

error that could occur when handling events [1]. To work around these problems resulted in 

code that was hard to maintain and extend. For these reasons this thesis will investigate if it is 

possible to make a better design by using React instead of Angular. 

This thesis will also explore whether React can provide a more modular solution, by having 

the code divided into different components. By making the application and its component 

modular we aim to make all the components independent from each other, and easily reusable 

within the application, and possibly even in other application. The general idea is to have each 

component focused on visualizing a particular type of 3D object by using X3DOM. An 

example of an object could be a 3D sphere. The thesis will also offer general guidelines for 

how a component should be implemented.  

During the research in Malt’s thesis he investigated whether React could be used to create his 

application. He found an issue where React would ignore code, that were defined by X3DOM. 

This was the main reason why Angular was chosen over React in his thesis. The issue has 

later been fixed in version 16 of React [3], which were not available during Malt’s research. 

The update provides a good reason and opportunity to reinvestigate if React could be used to 

produce a more desirable solution. The issues that occurred when using Angular, and the 

React update are two major reasons for the decision of why this project reexplores the 

possibility of using React. 

There are also several other benefits for finding a solution with React. React is currently a 

very popular JavaScript library for front-end development [4]. This popularity allows for a 

more active community and a more well-defined documentation. An active community and a 

good documentation can make it easier to learn and find answer for common issues.  

In the work for this thesis an application has been built, where some of the features from 

Malt’s project have been rebuilt using React instead of Angular. This included the 3D 

topography of Svalbard, slices of seismic data and well logs. Some of them were created by a 

similar design, while others have been implemented in a more efficient way. In particular, the 

ability to navigate and toggle the visibility of elements have been improved. Finally, the thesis 

has explored whether volume rendering from the X3DOM framework can be used effectively 

to visualize geological data.  
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1.1 Project inception and motivation 

The idea behind the work of the thesis came from Christian Michelsen Research (CMR). In 

addition, CMR contributed supervision for the work. The origin of the work is an earlier 

project that was conducted by CMR called “Virtual CO2 Laboratory project (VIRCOLA). 

The vision for that project is quoted below from CMR home page:  

The vision of the Virtual CO2 Laboratory project (VIRCOLA) was to develop a data 

platform and methodology facilitating improved data utilization and work processes, 

leading to better understanding of storage capacity, injectivity and long-term 

confinement of CO2.  

Christian Michelsen Research (2015) [5]  

The researchers from the VIRCOLA project tried to use existing geological visualization 

solutions. However, they encountered issues with them for several reasons. These included a 

high learning curve and a high cost. Furthermore, the existing solutions required installation 

to be used. In addition, the solutions were in general more suited for detailed interpretation, 

rather than a simple visualization for getting an overview of the data. The researchers wanted 

an easy-to-use visualization tool for quickly navigating through data, rather than one meant 

for detailed analysis. Because of this, CMR created a 2D application that was accessible on a 

web browser. Creating a web solution would result in reduced costs and no longer require an 

installation. This application was able to visualize a 2D map of Svalbard and seismic data and 

well logs in the subsurface. An image of this application can be seen in Figure 1. Sometime 

after the initial solution, Øystein Malt made a 3D web application with Angular, where it was 

possible to visualize a topology of Svalbard, well logs, and slices of seismic data in 3D. 

However, the code needed to produce this was not optimal. Furthermore, there were 

significant issues concerning the ease of navigation and handling events, such as when a user 

clicks on an element within a scene, and an event should trigger. The application from this 

thesis, is based on the findings from Malt’s application. 

 

Figure 1: 2D Application from CMR’s VIRCOLA Project. From: Ø. Malt. Using 3D functionality available in current web-
browsers to create and visualize geological models. 2017. Master’s thesis [1] 
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1.2 Goals 

The thesis consists of a set of goals, these are listed below.  

Goals: 

1. Recreate a web application for visualizing the topography of Svalbard using React 

(instead of Angular) 

2. Follow modular design patterns to make elements in the application independent and 

reusable 

3. Develop a general structure for implementing React components that can visualize 3D 

objects 

4. Explore possibility for volume rendering 

5. Improve the navigation compared to Malt’s solution 

6. Improve ability to toggle elements compared to Malt’s solution 

The first goal consists of recreating functionalities from the web application, created by Malt. 

This recreation will use the React web library, instead of Angular. By following this goal, the 

thesis aims to research whether it is possible to develop such an application with React, and if 

it can provide a better solution, by fixing the issues that occurred when using Angular. 

Recreating the functionalities from Malt’s application, would require the new application to 

have the ability to visualize a terrain of Svalbard, well logs, and slices of seismic data. 

Furthermore, it would require the ability to toggle and upload well logs and slices of seismic 

data.  

As explained by the second goal, the application should provide a modular design. By doing 

this, each element in the application should be independent from each other and easy to reuse. 

In this context an element could reference what is needed to render a specific 3D object. This 

could be a simple shape such as a sphere, or something more complex such as a terrain. By 

making the elements independent, they could easily be extended or changed, without 

worrying about other unexpected changes in the application. In, addition it could make it 

easier to use one element in another application. By making the elements reusable, it will 

make it easier to define multiple instances of them. This can be useful for certain situations, 

for instance if the application contains a list of well logs that should be visualized.  

The third goal consists of making a general guide for how an 3D object within a React 

application can be made. This can be useful to highlight general techniques for how visualize 

and interact with 3D object created from X3DOM framework. It also provides developers 

with an easy way for how they can make their own React components containing 3D objects.  

The three last goals focus on improving and adding functionalities compared to the Malt’s 

solution. First the thesis will explore the possibility for supporting rendering of 3D volume. 

This could be used to showcase a set of slices of seismic data that are closely placed together. 

The reason why this can be interesting is that it can be useful for a researcher to look at the 

information from a set of slices that are closely placed together. These slices would form a 

volume. A user should be able to look at each slice individually by using a slider. The two 

final goals focus on improving the user ability to navigate within the scene in the application, 

and toggle whether an element should be visualized or not. These features make it faster and 

easier for a user to explore all the 3D data in the application. 
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1.3 Research questions 

Based on the thesis’ goals, the thesis has identified certain topics that can provide avenues for 

research. These are mostly related to the second and third goals, which focus on whether the 

React library and X3DOM framework can provide a modular implementation and an easily 

useable structure for designing components containing 3D objects. The first goal delivers the 

opportunity for the second and third goal to be explored. Below is a list of research questions 

this thesis aims to answer: 

• RQ1: “If possible, how can React library provide a modular approach for visualizing 

3D objects and 3D geology on a web browser” 

 

• RQ2: “What are the benefits of using React library to make components containing 

X3DOM elements”  

 

• RQ3: “If any, what are the benefits of using React library together with the X3DOM 

framework, compared to doing it with Angular” 

These questions will be discussed in chapter 6 and will be used to evaluate the results of the 

thesis’s work. RQ1 consist of several parts, as it is used to determine if it is possible to create 

an application using 3D objects in general, as well as 3D geology. By creating an application 

using 3D geology, it would also show it would be possible with 3D objects in general. In 

addition, this question also focuses not only if it is possible, but how it can be achieved. RQ2 

focuses on what are the benefits of achieving the desirable result of RQ1. The thesis will use 

RQ2 to determine whether using React led to a desirable result. RQ3 build further on RQ2 by 

comparing the benefits of React to the solution using Angular implemented by Malt. 

1.4 Applicability beyond the thesis 

This thesis provides a solution for visualization of geological data from the subsurface. 

Visualizations of this kind are useful in many fields including ground-water mapping, oil and 

gas exploration and CO2 storage. Because of this, this project can be of interest for companies 

or other projects involved in the fields mentioned. In particular, the topic of CO2 storage is 

interesting in relation to Svalbard, as research conducted by Longyearbyen CO2 Labs shows 

that CO2 storage is possible on Svalbard [6].  

It is possibly to extracted part of the work of this thesis and used in other applications. The 

application consists of independent component. For example, the implementation of the 

visualization for slices of seismic data and well logs (for details, see 4.4 and 4.5) can easily be 

transferred to another React project if it consists of a scene from the X3DOM framework (see 

2.1). The work from this thesis can be applied and built upon for anyone who wants a simple 

way to add and structure 3D objects in a web browser, without using any external plugins. 

This is true even if the project is unrelated to geology. Subchapter 5.4 goes into detail on a 

general structure for using X3DOM together with React. This subchapter also presents an 

example of a potential additional use. 
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1.5 Related works  

One of the most related works for this thesis is the previous thesis that worked on the same 

topic, which is “Using 3D functionality available in current web-browsers to create and 

visualize geological models” by Malt [1]. Malt also presented his results in a report [7] and a 

presentation [8].  

In subchapter 1.1 it was mentioned that CMR had tested a few applications for geological 

visualization. These are SKUA from Paradigm [9] and Petrel [10]. Both are desktop 

applications specifically made for visualizing subsurface data. According to Malt, CMR 

evaluated these two applications in an article “VIRCOLA – Review of Data And 

Visualization Platform” [1]. In the article CMR had the conclusion that both tools had the 

ability to visualize all the data from their project. However, both SKUA and Petrel had a big 

learning curve, was costly, required installation and were unable to run in a web browser. 

One related work concerned on how to represent 3D structural geological models. This is an 

article “Formal representation of 3D structural geological models Computers & Geosciences” 

by Wang et al [11]. There was also an article by Arbelaiz et al [12]. Here the researchers have 

integrated functionalities for volume rendering to the X3DOM framework. It also provides an 

explanation for how developers can use these functionalities for volume rendering in a 

project. The data used in this research articles are of medical nature, rather than geological. 

This thesis implements some of the contribution to the X3DOM framework from this article, 

and research whether they can be used effectively in relation to geological setting.  

There are other currently developed libraries that are working on the ability to create 3D 

objects within React. One of them are called react-three-renderer and are the using Three.js 

(see 2.5) [13]. This work proves that there is an interest in the ability to create 3D objects 

within React. However, react-three-rendere is not compatible with newer version of React 

and it does not support all the features of three.js. [13] 

Articles or work exploring the possibility of using X3DOM and React together were not 

found, despite efforts while researching relevant literature. 
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1.6 Thesis outline 

1. Introduction 

This chapter briefly introduced the thesis and explained the motivation and goals behind it. 

2. Background 

This chapter goes into the concepts and tools necessary for understanding the solution in this 

thesis. 

3. Application Overview 

This chapter gives a quick overview of the features in the application and how it is presented 

on a web browser. 

4. Solution 

This chapter will go into great detail of the implementation and design for the solution of the 

application. 

5. Results and Discussion 

This chapter will discuss the results of the solution provided in the previous chapter. 

6. Conclusion 

This chapter will present a brief conclusion of the work of the project and provide a summary 

of the thesis. 

7. Further Work 

This chapter offers suggestion for further work that, can improve or be useful for the 

application. 
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2 Background 
In this application, two tools have primarily been used. The first is X3DOM for the ability to 

make 3D objects, and the second one is the JavaScript Library React that are used for creating 

easy user interfaces (UI) on a web browser. React is also used for wrapping the code within 

reusable components. The following subchapters will detail these two primary tools, as well 

as some additional tools used in the implementation of the application. In addition, it will go 

into detail of some alternative tools that could have been used.   

2.1 X3D and X3DOM 

Extensible 3D Graphics (X3D) is a royalty-free, open-standard file format and run-time 

architecture, which are used to represent and communicate 3D scenes and objects [14]. X3D 

can render graphics that are in high quality, real-time and interactive. X3D has its origins 

from Virtual Reality Modeling Language (VRML), but has later been evolved into a ratified 

part of the ISO standard. X3D gives a system the ability to store and retrieve 3D scenes for 

rendering. X3D has support for extensible markup language (XML) integration, which allows 

it to be usable with Web Services and across different platforms. [14] 

 

X3DOM is an open-source JavaScript framework and runtime. It is used for implementing 

declarative 3D scenes on a Web page. The name X3DOM is a mixture of the two abbreviation 

X3D and DOM (Document Object Model). X3DOM allows a specific subset of the X3D 

standard, which can be used as a description language for 3D content in a web page. It 

consists of a set of predefined nodes (also referred as elements). These nodes are referred to as 

an X3DOM node and represent a particular part or aspect within a scene, such as 3D 

geometry, material used on an object and light sources. Each node has a set of fields, that are 

used to define certain properties or behaviors of a node. These could be anything from the 

color, size, rotation, transparency and so on. These nodes are created in a very similar way as 

a regular HTML element, where it is defined between a start and an end tag. The fields are 

defined within the start tag. Just like HTML elements, a X3DOM node can be changed with 

DOM operations.  

 

Within each node (between the start and end tag) other nodes can be defined, which can affect 

the node, that they are placed within. This structure forms a tree or a graph which is often 

referred to as a scene-graph. [15] Code Listing 1 shows an example of an X3DOM node, called 

material which contains a diffuseColor field. 

 

 

 

 

 

 

 

 

 

 

<material diffuseColor='0 0 1'></material> 

                 
 

Code Listing 1: A X3DOM node 
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X3DOM is used to avoid low-level development and can hide details concerning graphics 

rendering in a high-level, declarative syntax. In other words, X3DOM does not require a huge 

amount of knowledge about computer graphics and only requires basic knowledge of HTML 

and DOM. It can be a helpful tool for web developers that need some graphical components in 

their web application [16]. This makes X3DOM more desirable for this project compared to 

something like three.js or OpenGL. Another benefit when using X3DOM, it that it does not 

need any additional plugin for a web browser. X3DOM only uses standard browser 

technologies like HTML5 and WebGL. Most web browser has native support for these 

technologies. This includes web browser such as Mozilla Firefox and Google Chrome [17].  

Below there is a basic example, that displays a blue box in a 3D scene on a web page by using 

X3DOM in a HTML document. Code Listing 2 shows all the X3DOM nodes needed to create 

a box object. In addition, it the HTML documents has two references to the X3DOM 

framework that are required to use it. These are called “x3dom.js” and “x3dom.css” and are 

necessary to get access to the X3DOM framework.  Both the references are found by a 

uniform resource locator (URL), that are placed within a script and a link HTML tag. These 

tags are placed inside the header of the HTML document.  

Within the body of the HTML document, all the X3DOM nodes are placed. First, there is an 

X3DOM context, created by an <x3d> tag. All the other tags from the X3DOM framework 

must be placed inside the <x3d> tag. There also needs to be a scene, where all the X3DOM 

elements are contained. This is done by the <scene> tag. Inside the <scene> tag, there is a 

<shape> tag. This can be used to make a basic 3D object like a box or a sphere. Inside the 

<shape> tag there are two nodes one that handles the appearance of an object, and another 

that specify the geometry type. In this case the geometry is a box (or a cube). The appearance 

consists of a material node with the field diffuseColor consisting of the value ‘0 0 1’. This 

represents the RGB code for the color blue. The Figure 2 on the next page, shows the result of 

this code. It is also possible to put additional fields inside some of the tags in this example to 

specify certain attributes. For example, the <box> tag has a size field or the width and height 

attributes for the scene ratio. Usually a <transform> tag can be used to specify where in the 

coordinate system within the scene an object is placed. Because this tag has not been used in 

the example, the box has been placed in the middle of the scene with default coordinates ‘0 0 

0’. A list of these attributes is easy to find in the X3DOM documentation. 
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<html> 

  <head> 

    <meta http-equiv="X-UA-Compatible" content="IE=edge" /> 

    <title>X3DOM page</title> 

    <script type='text/javascript' src='https://www.x3dom.org/download/x3dom.js'> 

    </script> 

    <link rel='stylesheet' type='text/css'  

        href='https://www.x3dom.org/download/x3dom.css'> 

    </link> 

  </head> 

 

  <body> 

    <h1>X3DOM Example</h1> 

     

    <x3d width='500px' height='400px'> 

        <scene> 

            <shape> 

                <appearance> 

                    <material diffuseColor='0 0 1'></material> 

                </appearance> 

                <box></box> 

            </shape> 

        </scene> 

    </x3d> 

 

  </body> 

</html> 
 

Code Listing 2: X3DOM code needed for creating a box geometry within a scene 

Figure 2: Result of Code Listing 2, showing a box in a web browser 
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2.2 React 

React.js is a JavaScript library developed by Facebook [18]. It is used for making the dynamic 

and interactive UI for web applications. React allows a developer to create components that 

can easily be reused and focus on a particular task. A React component is created by either 

defining it as a function or a class. Making a function is a bit simpler, but a class offers more 

functionality. When making a React class requires to write “extends React.Component” in the 

declaration as shown in the Code Listing 4. Components is a way to divide the UI into 

independent reusable pieces. A React class is required to have a render method which is used 

to display elements on the webpage. The render method has a return that is written in 

JavaScript XML (JSX). 

JSX is a syntax extension for JavaScript. It is often used in React project. It allows a variable 

to contain HTML-tags. In addition, JSX allows a variable, a function that return one, or 

conditional statements to be written within curly brackets [19]. Code Listing 3 shows an 

example of JSX. Here there are two variables called name and greeting. The greeting variable 

takes advantages of JSX by using a <p> HTML-tag and wrapping the name variable within 

curly brackets. If this element is rendered on a web browser, it would say “Hi, nice to see you 

Alice”.  

JSX makes it easier to work with UI elements within a React components and allows React to 

display more helpful error and warning messages. It also works well together with other 

feature of React, such as states and props. 

A React class has a constructor. In the constructor it is possible to declare one or more states 

and bind methods to the component. A state in React is a variable in a React component, that 

can be changed with a setState method. When some change happens to a state the component 

will be re-rendered in the web application automatically. States are useful to make an 

application interactive for a user. Another feature of React is called ref (short for reference). A 

ref is used to access React elements or DOM nodes that were created in a render method [20]. 

And finally, there is props (short for properties), that are used to define data in another 

component from a parent to a child component. Unlike a state, props cannot be changed 

during runtime and are read-only. Props and states can also be used within a curly bracket in 

JSX just like the name variable in the Code Listing 3. If the value of a state changes, so would 

the value within the variable. Figure 3 shows an example of how the data flow can work in 

React. A component does not need to define props or contain states.  

 

let name = “Alice” 

let greeting = <p>Hi, nice to see you {name} </p>  
 

Code Listing 3: JSX example 
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React components have a couple of lifecycle methods. These are methods that will run during 

a specific part of a component’s lifecycle. They can be useful when an application needs to do 

a certain function at a specific moment. Example of these lifecycle methods are 

componentDidMount and componentDidUpdate. The componentDidMount method will run 

after the initialization, and the componentDidUpdate after every update. 

Code Listing 4 and Code Listing 5 below shows the code of a small and simple React example. 

This shows how one can reuse components and define props. Here there are two React 

components HelloMessage and App. In App there are defined multiple HelloMessage 

components and each of them have a given name attribute. The name attribute will then be 

accessible as a prop in the HelloMessage component. The App will be rendered in a HTML 

file by using ReactDOM.render(). The result on the web browser is shown in Figure 4. 

Figure 3: Dataflow in React 
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import React from "react"; 

import ReactDOM from "react-dom"; 

 

class HelloMessage extends React.Component { 

    render() { 

      return ( 

        <div> 

          Hello {this.props.name} 

        </div> 

      ); 

    } 

  } 

 

class App extends React.Component { 

    render() { 

        return ( 

            <div> 

                <HelloMessage name="Alice"></HelloMessage> 

                <HelloMessage name="Bob"></HelloMessage> 

            </div> 

        ); 

    } 

} 

 

ReactDOM.render(<App />, document.getElementById('root')); 
 

<html> 

 

<body> 

  <div id="root"></div> 

</body> 

 

</html> 
 

Code Listing 4: Basic React example with components and props 

Code Listing 5: HTML Document to render Code Listing 4 

Figure 4: Result from Code Listing 4 showing the two 
HelloMessage in Web Browser 
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2.3 Combining React and X3DOM 

With the benefits of React and X3DOM, in theory it should be easy to make interactive web 

pages with easy to use UI with reusable component-based structure, that contains 3D objects. 

The idea is to encapsulate all the X3DOM nodes required to produce an element inside a 

React component. An element can be anything from a simple box to a terrain of a landscape. 

To test this theory a basic example has been created. This example builds upon the code that 

was used to produce a 3D box geometry with X3DOM (see 2.1). The purpose is to separate all 

the X3DOM nodes for creating the box into its own React component and show how it can be 

reused. In addition, it highlights how attributes for a component can easily be defined. 

The code for the example is shown in Code Listing 6 and Code Listing 7. The example consists 

of two React components called App and Box. Code Listing 6 shows the App component 

consist of a render method that is used to visualize the X3DOM scene, and the X3DOM nodes 

or/and React components contained within it. Inside the scene node two Box components are 

defined. Code Listing 7 contains the X3DOM nodes used for creating a box in its render 

method. This code will be returned in the render method where it was defined. In this example 

that would be inside the scene node in the App component. The App components consist of 

two Box components, which proves that the Box component are easily reusable, and can be 

used for making several boxes. In addition, each Box consist of two props called col and pos, 

defined with different values. These props are used to define a box’s color and position 

respectively. Because each box has different values, the two boxes will be placed in different 

positions, and have different colors. The result of the two code listings is shown in Figure 5. 

 

 

 

import React from "react"; 

import ReactDOM from "react-dom"; 

import Box from "box.js"; 

 

class App extends React.Component { 

    render() { 

        return ( 

            <x3d width='600px' height='400px'> 

                <scene> 

                     

                    <Box col="0 0 1" pos="2 0 0"></Box> 

                    <Box col="1 0 0" pos="-2 0 0"></Box> 

 

                </scene> 

            </x3d> 

        ); 

    } 

} 

 

ReactDOM.render(<App />, document.getElementById('root')); 
 

Code Listing 6: App component in X3DOM + React example 
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import React from 'react'; 

 

class Box extends React.Component { 

    render(){ 

        return ( 

            <transform translation={this.props.pos}> 

                <shape> 

                    <appearance> 

                        <material diffusecolor={this.props.col}></material> 

                    </appearance> 

                    <box></box> 

                </shape> 

            </transform> 

        ); 

    } 

} 

 

export default Box; 
 

Code Listing 7: Box component in X3DOM + React example 

Figure 5: Result from X3DOM + React example, showing the two boxes in a web browser 
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The Box React component tags, need to be placed inside an external component containing 

the <x3d>, and <scene> tags to work (in this instance the App component). Additionally, the 

React component is the <Box> tag using an uppercase “B”, and the tag with lowercase “b” is a 

node in the X3DOM framework. This highlights a small annoyance when using React with 

X3DOM, and why it exists. React requires that all X3DOM tags is written with the first letter 

as a lowercase character. If this requirement is not followed React will confuse the intended 

X3DOM tag as a potential React component. If the referenced React component does not 

exist or is not imported, it will result in an error.  

During the research of Malt’s master thesis the code from Code Listing 6 and Code Listing 7 

would not have worked. At that time React would only whitelist attributes React recognized. 

Whitelisting means that React will only accept attributes from external libraries that it is 

familiar with. X3DOM was not includes on this list, which resulted in that previous editions 

of React, would simply ignore unrecognizable attributes. The issue has been fixed in version 

16 of React [3]. This is important because React does not recognize X3DOM nodes. React 

will give a warning of this fact in the web browser console log, but this does not lead to 

problems because the desired and expected result still get rendered by React. This is a major 

factor in the decision to reexplore the possibility of making the application by using React. 

2.4 Node.js 

Node.js is an open-source and cross-platform JavaScript runtime environment [21] [22]. It can 

be used to create scalable network applications. In this application node.js, is used to create a 

web server both for the front-end, and the back-end server. An advantage of using node.js is 

that it makes JavaScript available to be used to write server- and client-side code. Another 

benefit of node.js is that a set of different packages can be used for performing specific 

functionality. These can easily be installed by writing the command “npm install 

{somePackageName}” in the command prompt within the project folder. This project makes 

use of a couple of these packages. Most importantly is React, which is in a package called 

react. The package contains the basic functionality for creating a React component [23]. In 

addition, the front-end application also uses the react-dom, proj4, PapaParse and axios.   

react-dom allows for additional features of the React library, proj4 is used for conversion of 

different geospatial coordinates, PapaParse is used for reading and parsing of a comma-

separated values (CSV) file used for an excel sheet, and axios, a promise-based HTTP client 

[24]. The back-end application uses the mongoose, express and multer packages. Mongoose 

allows node.js to interact with a MongoDB database [25]. Express is a web application 

framework that provides many features for a web application [26]. Multer allows for storing 

uploaded files (such as image files) in a storage folder [27]. 
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2.5 Possible alternative approaches 

In this application it has been decided that the two tools React and X3DOM should be used 

for several reasons. But it might be beneficial to consider other options. First one could 

consider another tool for creating UI. Angular is still a good option, and it might be possible 

to find a solution to some of the issues. However, these issues might be hard to identify, as 

Malt mentioned having trouble with doing this in his thesis [1].  

X3DOM is not the only option one can use when working with 3D objects. One of the most 

popular libraries for creating a scenegraph is Three.js. Three.js uses JavaScript to define a 

scene and create 3D objects. Three.js make use of WebGL. Using three.js turns out to be a bit 

more complicated compared to use together with React, because it does not have HTML-tags. 

The return in a render method in a React component uses JSX, which means that all the 

three.js code needs to be contained within a <script> tag. There are a couple of libraries that 

tries to make tags for different function in three.js. One of these are react-three-renderer. This 

can be installed with node.js and aims to allow a three.js to be rendered with custom HTML 

tags, that can be used inside the react render method. According to the GitHub page for the 

react-three-renderer [13], the development of the project is moving slowly. While there are 

solutions that make it possible to use Three.js together with React, they are not fully 

supported and not compatible with the newer version of React. This along with the fact that 

three.js needs more code for setup, and creating simple shapes were a big factor for why 

three.js was not chosen for this thesis. This is one of the reasons we decided to explore 

X3DOM for this thesis and application, however this effort show that there is currently 

interest in the ability to work with a 3D scene together with React.  
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3 Application Overview 
The application consists of a front-end and a back-end, both of which are using node.js. The 

front-end uses the tools React and X3DOM, to make the elements that will be shown to the 

user on a web browser. The project consists of a set of React components, each one focusing 

on the rendering of a particular element or performing some task. The elements could for 

instance be a 3D object, such as a box or a sphere.  

In the web browser a user can see a 3D scene, and buttons to the right of the scene. The scene 

contains 3D objects, which includes the visualization of 3D topography of Svalbard, slices of 

seismic data and well logs. The slices and well logs also have a sphere that are placed near. 

This sphere is called a toggle and is used to toggle between whether an element should be 

visualized or not. This is useful for turning off geometry that is occluding other features. In, 

addition when a user presses on an element, a modal dialog prompt will open with some 

information concerning the element. The buttons on the side offer additional functionality, 

such as toggling elements, navigation and uploading files. The uploaded files will result in 

adding additional slices, or well logs to the scene. The user also can navigate in the scene, 

with the mouse or the keyboard. The data used in this project such as the 3D the topography 

map of Svalbard, seismic data, and well logs is provided by CMR. Figure 6 shows the 

application running in a Google Chrome web browser. This is the screen a user will see when 

they first load the web page.  

The back-end consists of a server, that is used to handle requests from the front-end project to 

store or present data from the database. It also defines the models of different object that is 

used to define the corresponding table or schema in the database. 

 

 

Figure 6: Application running in web browser 
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4 Solution 
This chapter will go into details on how the application in this thesis has been design and 

implemented. The application consists of three parts: the front-end, back-end and a database. 

The front-end handles what is displayed in the graphical user interface (GUI) in a web 

browser. The front-end consists of a set of React components. All the React component are 

built from the ground up for this project. Most of the components uses X3DOM nodes for 

creating 3D objects. All the nodes used in the project are a part of the X3DOM framework. 

The back-end is used to connection between the front-end and the database. It is used as a 

middle step for transportation of data.   

The purpose for the application is to give a user the ability to easily look at geological data 

gathered from beneath the surface. The data comes in two types, which are called slices of 

seismic data (referred as “slice” from this point) and well logs. A slice consists of an 2D 

image that provides an easy way to look at useful information concerning seismic data. A well 

log is a file containing a set of properties and UTM coordinates. The visualized representation 

of a well log is referred to as a “well” in this thesis.   

UTM coordinates is a way to provide indirect information about latitude and longitude. This 

can be used to determine the real-world location of an object. In this project UTM coordinates 

are used in a process to determine where a well or a slice is placed in relation to the terrain. To 

achieve this the UTM coordinates needs to be converted to a local coordinate system.  

It is important for a user to be able to understand where the data is located. For this reason, a 

terrain will be visualized in the GUI. The terrain will help a user to understand where the 

slices and wells are located in the real world. This project uses data provided from CMR. The 

data has been gathered from the beneath the surface of Svalbard. As a result of this the terrain 

is the topography of Svalbard. An issue when working with visualization of a large set of 

data, is that each element can obstruct each other. To avoid the issue a user should be able to 

toggle which elements they want to be visualized, and which elements they want to be hidden. 

It can also be useful for a user to be able to see additional information concerning slices and 

wells. This information includes the element’s name, a description of the element, and related 

articles or literature. To access this information a user can click on the element to open a 

modal dialog prompt. Finally, the user has the ability to upload slices and well logs. This 

allows a user to look at their own data and share it with others.  
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The React components implemented for this application are: 

• App 

• Terrain 

• Slice 

• Well 

• UploadSlices 

• UploadSlicesDB 

• UploadWells 

• UploadWellsDB 

• Modal 

• Toggle 

• Volume 

• Navigation 

• SlicesDB 

• WellsDB 

Figure 7 shows the structure of some of the React components within the Application. The 

boxes in this figure represent the different components. The arrows signify which components 

are defined by others, e.g. Navigation is defined by the App component. At the highest level 

is the App component which defines all the component directly within itself or indirectly 

through another component. The App component defines, the Navigation, Terrain, 

UploadSlices and UploadWells. The UploadSlices component defines a set of Slice 

components. Likewise, the UploadWells component defines a set of Well components. Each 

of the Slice and Well components define a Modal component and a Toggle component. The 

thesis will go into further details for each of the components in some of the following 

subchapters.  

Figure 7: Application component structure 



30 
 

4.1 Setup and application structure 

The application follows a structure called MERN stack. MERN is short for the four tools that 

are used to build the structure [28]. These are MongoDB, Express, React and Node.js. Figure 8 

shows the MERN Stack architecture. This consist of a front-end application, and a back-end 

server and the database. The back-end server is used to connect data submitted from a user in 

the front-end, to be stored in the database. It is also responsible for showing requested data by 

the front-end from the database.  

 

Figure 8: MERN Stack architecture, image from MongoDB [28]  

Both the front-end and the back-end runs on local servers by using Node.js. The front-end 

application will run on port 8080 (if it is currently available, if not it will go to the port with 

the next number that is available), when typing the command “npm start” in the command 

prompt from the project folder. The front-end uses the npm package webpack. Webpack will 

detect when code in the front-end is changed and rebuilds the application automatically. This 

makes development of the application easier, because one does not need to restart the 

application whenever the code is changed. The application can also be connected to a local 

mongo database. This can be started by typing the command “mongod” in the command 

prompt.  To start the back-end, type the line “nodemon server” in the back-end folder of the 

project in a separate command prompt. The back-end is running on localhost:4000, by default. 

The source code for the application and the backend can be found at a public GitHub 

repository [29]. To use MongoDB one can, download the “MongoDB Community Server” 

from MongoDB’s official web page [30]. 
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4.2 App component 

As mentioned in the beginning of this chapter the App component is the highest leveled 

component in the application. It contains all the other components in the application directly 

or indirectly (a component is defined within a component defined in app). 

 

The App component’s purpose is to render the x3d and scene X3DOM nodes. These two 

nodes are necessary for using the other X3DOM nodes in the X3DOM framework. Because of 

this all the React components that contains X3DOM nodes must be placed within a scene 

node. The App component provide a good location for the declaration of the scene node, as it 

is the component on the highest level. All React components that uses X3DOM nodes must be 

defined within a scene node, otherwise they will not function as expected. Code Listing 8 

shows the scene placed within the render method of the App component. There are four React 

component defined within the scene node. These are Terrain, UploadWells, UploadSlices and 

Navigation. In addition, the scene contains one X3DOM node called background. This node 

determines the background color of the scene, which in this case is light blue.    

 

 

In addition to the scene, the App component will render UI elements that are placed outside 

the scene and x3d nodes. These elements can be seen on the right side in Figure 6 from chapter 

3. The UI elements includes buttons used for toggling the visualization of elements within the 

scene, uploading elements and navigation control. In addition, there is also a drop-down menu 

used for navigation.  

 

 

 

 

 

render() { 

    return ( 

        <div> 

            <x3d width={width} height={height} id="x3d_context"> 

                <scene> 

                    <background skycolor="0.4 0.6 0.8"></background> 

                     

              <Terrain name="Svalbard" render={this.state.terrainVisible}> 

                    </Terrain> 

                     

              <UploadSlices showSlices={this.state.showSlices}> </UploadSlices> 

                    <UploadWells showWells={this.state.showWells}> ></UploadWells> 

                     

                    <Navigation></Navigation> 

                     

                </scene> 

            </x3d> 
 

Code Listing 8: The scene within the App component 
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4.3 Terrain component and BVHRefiner 

This application can visualize the terrain of Svalbard. The terrain provides users of the 

application with a reference point that allows users to see for themselves where certain 

elements are placed in relation to the real world.  

The terrain is built from a X3DOM node called BVHRefiner. According to the X3DOM 

documentation, the BVHRefiner is a node that has the ability to refine and load hierarchical 

data dynamically during runtime [31]. It loads data from a set of folders containing image 

files. BVHRefiner loads different images based on the current level of detail (LOD) of the 

terrain. The LOD determines how much detail the terrain has. The LOD will increase or 

decrease based on the user’s view position in relation to the terrain. If the user view position 

is close to the terrain, the BVHRefiner will use more image data for rendering the terrain, that 

will in turn make it more detailed. However, the part of the terrain which is outside the user 

field of view (FOV), will not be rendered.  

The BVHRefiner supports two dataset folder structures, which are WMTS and TREE. This 

project uses the WMTS dataset structure. Figure 9 below shows a general WMTS folder 

structure. The BVHRefiner support three different datasets, these are displacement data, 

subsurface texture data and normal data. Each of the dataset has its own WMTS. This 

structure consists of a folder for each level of detail, simply named from 0 to n. Each level of 

detail consists of subfolders explaining the columns of the matrix. The number of columns 

needed for level 0 is one. The number given for every other level is 2n, where n is the level. 

Each of these subfolders consist of image files, the number of files in each folder is the same 

as the number of columns for that level. The BVHRefiner node contains many fields 

describing how the terrain should be rendered.  

 

Figure 9: WMTS Folder Structure, image from X3DOM Documentation on BVHRefiner [31] 
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These field include maxDepth, minDepth, interactionDepth, size, subdivision, factor, 

maxElevation, elevationURL, textureURL, normalURL, elevationFormat, textureFormat, 

smoothLoading and mode. The elevationURL and textureURL should have values that define 

the path were the files needed to determine the elevation and texture of a terrain. The 

elevationFormat and textureFormat is used to define which file type the image files are. 

usually PNG or JPEG file. The maxDepth and minDepth fields are used to define the 

maximum and minimum depth of the terrain, i.e. the number of LOD the terrain should use. 

InteractionDepth are the maximum depth during user interaction with the scene. 

smoothLoading is used to determine how much time the application can use to switch 

between the different LOD assets. The size field is simply the size of the terrain, and 

subdivision is the resolution of a rendered tile. The size attribute is defined in the 

componentDidMount method. The reasoning for this is the same as for the event handler 

discussed in subchapter 4.6 below. The ratio of the size chosen for the terrain, matches the 

corresponding location on Svalbard. Mode is used to determine if the terrain should be 

visualized in 2D or 3D.  

Finally, factor field is defined as number used to determine from when the different LOD 

should be rendered. How high this number is, will affects the balance between the quality of 

the terrain and the performance of the application. In Figure 10 and Figure 11 below one can 

see the difference between two LOD. These images are taken from the exact same position in 

the application, but the BVHRefiner’s factor variable has a different value. In this application 

there are only two LOD, and the difference is not that noticeable. If the BVHRefiner had the 

assets to support more LODs, the difference would be more noticeable. The two figures look 

similar, but if one would look closely one can see that Figure 10 on the left appears more 

blurry compared to Figure 11. Because the position of the camera is a short distance from the 

terrain, one should choose a value for the factor variable that gives the same result as seen in 

Figure 11.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10: Low LOD Figure 11: High LOD 
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The user also has the ability to toggle the terrain on and off by pressing a button. This button 

is placed in the App component. The App component has a state called “terrainVisible” that 

will change between true and false for each time the button is pressed. The state is defined as 

a prop in the terrain declaration. This prop will be used to determine if the render parameter 

in BVHRefiner is true or false. If this prop is not defined, the default value will be true. The 

BVHRefiner also has a solid filed set to false, this ensure that the terrain is visible from both 

sides. This is useful, because most of the elements in the application are placed beneath the 

terrain. 

The height-map images used to create the elevation of the terrain with the BVHRefiner node 

was originally extracted from a GeoTIFF file of Svalbard. This file came from the Norwegian 

Polar Institute [32]. As explained by Malt [1] the extraction was performed using the tool 

Geospatial Data Abstraction Library (GDAL). The same tool was also used to generate 

textures for the terrain. Figure 12 shows the entire terrain of Svalbard from above. This should 

be the start orientation, when the web page is visited. Figure 13 shows the terrain from ground 

level. The figure also illustrates more clearly the difference in elevation. 

 

Figure 12: The terrain of Svalbard looked at from above 

 

Figure 13: The terrain of Svalbard looked at ground level 
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4.4 Slice component 

The purpose of a Slice component is to visualize a slice at the correct location. A slice is 

rendered in the scene as a X3DOM box geometry. The box has been made thin and a texture 

is added on the side surfaces of the box. This gives the slice the appearance of a 2D Image 

placed inside the scene. A billboard X3DOM node was considered to be used instead, 

however then the texture on the backside of the slice would have been mirrored. 

A JavaScript class called SliceModel, has been used to contain all attributes concerning a 

slice. This class is shown in Code Listing 9. As seen in the code listing the SliceModel contains 

variables for the slice’s name, description, longitudes, latitudes, depth and related articles. 

 

When a Slice component is defined it has been given a SliceModel as a prop. This prop is 

used to determine certain values in a slice. The imageUrl is used as the texture for the slice. 

To determine the location and shape of the slice the values for longitude, latitude and depth 

needs to be converted. They are first converted into UTM coordinates, and then to the local 

coordinate system. The UTM coordinates give an accurate description of the real location of 

the slice, but the UTM coordinates needs to be converted into local coordinates for the 

application to display the slices in the right position in relation to the terrain. A consequence 

of this is that the image used as a texture on the slice will not have the correct ratio. Figure 14 

shows two slices in the application.  

export default class SliceModel { 

    constructor(name, description, imageUrl, start_e, start_n,  

    end_e, end_n, start_depth, end_depth, articles) { 

        this.name = name; 

        this.description = description; 

        this.imageUrl = imageUrl; 

        this.start_longitude = start_e, 

        this.start_latitude = start_n, 

        this.end_longitude = end_e, 

        this.end_latitude = end_n, 

        this.start_depth = start_depth, 

        this.end_depth = end_depth, 

        this.article = articles; 

    }  

} 
 

Code Listing 9: SliceModel JavaScript class 
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Figure 14: Two slices in the scene 

Finally, the Slice component define a Toggle and Modal component, see subchapters 4.7 and 

4.8 for details concerning these components. In the definition the Slice component will define 

some variables as props that can be used by the Toggle and Modal component. 

4.5 Well component 

The intension of the Well component is to visualize a well based on data from a well log. A 

Well log is a textual file which contain data for a well gathered from drilling in the ground 

beneath the surface. The file contains a set UTM coordinates and information about different 

properties concerning a well. The area between two UTM coordinates forms a line, which will 

be referred to as a segment or subwell in this thesis. All the segments together show the path 

the well log has been drilled. Each segment represents a certain depth of the well.  

The Well component visualizes the wells as a 3D object. Each segment of the well is 

visualized as a parallelepiped (usually a right square prism). The segment is visualized as a 

parallelepiped because it is easy to spot from any view angle. In addition, if two coordinates 

are not placed directly beneath each other, the parallelepiped still allows the different 

segments to look connected. All the segment together forms the 3D visualization of the well. 

Each segment is given a color based on the value of a property. Figure 15 shows two pictures 

of one well. For each of the picture a different property has been selected to be visualized. The 

two properties consist of different values for each segment that results in different colors for 

the visualization of the well. Figure 16 shows an example of a well that are have not been 

drilled directly downwards. 
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The properties in the well log details information about the surrounding geology and the 

drilling operation. Examples of such properties can be the temperature, pressure or P-wave 

velocity. For all of the properties a numerical value is provided for each and every segment in 

the well. 

Although a well can have multiple properties, only one can be visualized at any given time. 

The user can toggle between the different properties of the well. Each subwell is given a color 

based on values for the property currently chosen. The color is based on the what the value is 

in relation to the maximum and minimum values for that property. The subwell with the 

highest value will be colored red, while the one with the lowest value is blue. The other 

subwells’ color will be somewhere on the color line between blue and red, as seen in Figure 

17. A subwell will get the color black if the value for a property is invalid. The color line is a 

gradient made from the createLinearGradient method on the context of the canvas element. 

Two colors are added on the gradient. These are blue and red. The line will interpolate in the 

area between these colors. If the value of the property is larger than the maximum value of the 

gradient, the corresponding subwell will be red.   

 

Figure 17: Color spectrum for a well 

Figure 15: A well visualized with two different properties 
Figure 16: Example of a well, that has segments 
that have not been drilled directly downwards 
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To store the variables concerning a well, two JavaScript classes has been implemented. They 

are called WellModel and SubWellModel. The WellModel contains all the variables a well 

need, while the SubWellModel contains all the variable a segment of the well need. A 

WellModel has an array of SubWellModel objects. Code Listing 10 and Code Listing 11 shows 

the WellModel and SubWellModel classes.  

When a Well component is defined it has been given a WellModel object as a prop. The Well 

component uses the prop for the visualization of a well. The well is created from a list 

containing wells coordinates, with x, y and z position values. The area between two 

coordinates forms a line. In order to convert the line into a parallelepiped (representing a 

subwell). To do this we add eight more coordinates, which are placed from a specified value 

away from the two originals coordinates. Each of the original coordinates has a coordinate 

that has this value on the x-axis, z-axis and both the x- and z-axis. Each of the vertices 

contains a color. All the 8 vertices in the subwell, is given the same color. This is done for 

every subwell in a well. Figure 18 shows a model that highlights where the eight new 

coordinates will be placed based on the two original coordinates. The two original coordinates 

are the two points (0 0 0) and (0 1 0). The “x” value in the figure represent a given width from 

the center of the point.  

export default class WellModel { 

    constructor(name, des, subwells, properties, article, start_e, start_n, depth){ 

        this.name = name; 

        this.description = des; 

        this.subwells = subwells; 

        this.properties = properties; 

        this.article = article; 

        this.longitude = start_e; 

        this.latitude = start_n; 

        this.depth = depth; 

    }  

} 
 

export default class SubWellModel { 

    constructor(x, y, z, x2, y2, z2, propertyValues) { 

        this.x = x; 

        this.y = y; 

        this.z = z; 

        this.x2 = x2; 

        this.y2 = y2; 

        this.z2 = z2; 

        this.propertyValues = propertyValues; 

    }  

} 
 

Code Listing 10: WellModel JavaScript class 

Code Listing 11: SubWellModel JavaScript class 



39 
 

 

Figure 18: Shows the value of the coordinates for a subwell 

To render the well the X3DOM node IndexedFaceSet is used. An IndexedFaceSet is an 3D 

object that contains a list of polygons. The IndexedFaceSet node has a field called 

coordIndex. This field explains how to the faces are used to create a polygon. The application 

uses the coordinates from the well to create the faces. Every subwell should have six faces, 

and every face are made from four of the eight coordinates the subwell consist of. Inside the 

IndexedFaceSet node there are two other X3DOM node. These are Coordinate and Color, 

which have a field containing a list of all the coordinates and colors in the well respectively. 

The field for color is determined by a state called currentColors. This state will change based 

on the currently displayed property of the well. 

Figure 19 shows a mockup of the subwell that would render if the cordIndex field has the 

value: ”0 1 2 3 -1, 4 5 6 7 -1, 0 4 5 1 -1, 1 5 6 2 -1, 2 6 7 3 -1, 4 0 3 7 -1”. The numbers from 0 

to 7 represents the eight vertices, and -1 is used to separate each face. The four numbers 

between “-1” represent a face. The order of the numbers is important to render the subwell 

correctly.  

 

Figure 19: Shows the vertices used to created six faces for a subwell 
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4.6 Handling events on X3DOM tags 

In this application, it is a desired functionality that an event gets triggered when a user clicks 

on a 3D object. This event could be opening a dialog prompt or changing the color of the 3D 

object. To do this an eventListner need to be added to an X3DOM tag. This includes 

interactivity with the 3D objects that are created from X3DOM tags. This subchapter 

describes a technique that allows some functionality to happen when an object created from 

X3DOM tags are clicked on. 

Usually within HTML tags, one can define an onClick method. This method will execute 

when the element created from the tag is pressed on with the mouse pointer. However, 

X3DOM requires that the eventListener is added after the X3DOM tags has rendered in the 

web browser. This is mentioned in the X3DOM documentation “The call of the onclick 

function is handled by x3dom by directly calling the callback function, since the 

addEventListener method needed to be overwritten. No page-wide onclick events are thrown, 

so attaching a listener to this object is only possible after.” and “Alternatively, wait until the 

page is fully loaded and the document.onload event was fired.” [33]. Because of this 

limitation an alternative approach must be applied to perform this action. 

All React components have a set of lifecycle methods, such as ComponentWillMount, 

componentDidMount and componentDidUpdate. These methods run automatically based on 

the what happens to a component. From the documentation of X3DOM it is mentioned that an 

eventListener should be added after the object is rendered. To ensure this, the method 

componentDidMount can be used, as it runs after the initial rendering of a component, which 

includes all the X3DOM tags needed for the element the component should render. 

Alternatively, the componentDidUpdate method, can be used. However, then the application 

needs to control that the eventListner only gets added once or removed before adding a new 

one. 

To add an eventListner to a X3DOM tag used in the components render method, within the 

componentDidMount method, some kind of reference is needed. React provides this with a 

concept called refs. The refs should be created within the constructor of the component and 

should be used within a desired X3DOM-tag as a reference. In Code Listing 12 on the next 

page a generic example shows how this can be done one the X3DOM-tag <shape>. The result 

of this code will be that, when pressing on the object formed by the <shape> tag (which could 

for example be a 3D sphere within the scene) the method “someMethod” will run. 
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4.7 Toggle component 

The Toggle component purpose is to give a user the ability to toggle whether an element 

should be visualized or not. The Toggle component visualize a small red semi-transparent 

sphere which is called a toggle. This is done by using the X3DOM sphere geometry node, 

which is implemented in a similar way as the box in Code Listing 2 (see 2.1). The Toggle 

component is defined by the element that should be toggled. In this application, the 

component could either be a Slice or Well component. The toggle is placed very near the 

element it toggles. Figure 20 shows a toggle.  

 

Figure 20: A toggle 

constructor(){ 

    this.someRef = React.createRef(); 

         

    this.someMethod = this.someMethod.bind(this); 

} 

 

render() { 

    return ( 

 <x3d>  

   ... 

        <shape ref={this.someRef}> 

            ... 

        <shape> 

   ... 

 </x3d> 

    ) 

} 

 

someMethod(){ ... } 

 

componentDidMount(){ 

    this.someRef.current.onclick = () => this.someMethod(); 

} 

 
Code Listing 12: Using a ref to add an eventListner to a X3DOM tag 
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The toggle gets a ref to an element, defined as a prop when it is created within the element’s 

component. This ref is used to create an event handler (described in subchapter 4.6). When 

pressing on the toggle, the element will change between being visible or not in the scene. In 

the code the element’s component has a state called isVisible. This state can either be true or 

false. When pressing on the toggle this value will change between the two values. The value 

determines the render property of the element’s component X3DOM shape node. 

Alternatively, a user can toggle the element to not be visualized, by pressing the right mouse 

button on the element instead. This option is only possible if the element is currently 

visualized. 

4.8 Modal component 

The purpose of the Modal component is to display a modal dialog prompt. This window 

should open when a user clicks on a slice or a well log. The dialog prompt should contain 

additional information for the element that was pressed on. The information can for example 

include the name, description and related articles for an element. To close the dialog prompt a 

user can press on the close button or outside the dialog prompt. 

Figure 21 shows the modal dialog prompt for a slice. The slice has the name “AG-1-depth”, 

some description just below, that details where data has been conducted and how it has been 

calculated. Beneath the description is an image. The image is the same as the texture used for 

the slice. In the dialog prompt the image has a ratio that makes it easier to analyses the image. 

In addition, a user can press on the image. This action will result in opening a new tab in the 

web browser. This tab shows the URL for the image, which makes it larger and shows it in 

the correct ratio. Finally, the dialog window contains a link for related articles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: A dialog promt for a slice 
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Figure 22 show a dialog prompt for a well. Just like a slice it contains a name, description and 

related articles. However, it does not contain an image. Instead it has a drop-down list of 

properties (referenced to as visualization types in the figure). When a user selects a property 

the color of the well will change to reflect the values of that property. The differences between 

the dialog prompts for each element, shows a big opportunity for flexibility. 

 

Figure 22: Dialog prompt for a well 

4.9 Components for uploading slices 

In the application a user has the ability to upload one or more slices. When a user uploads a 

set of slices, they should appear within the scene of the web browser. This feature allows a 

user to see their own data or share their data with other users. There are two React 

components that can be used to upload slices. They are called UploadSlices and 

UploadSlicesDB component. The two components are implemented similarly but has some 

key differences. The UploadSlices component reads all the uploaded data and uses it to define 

a list of Slice components. The UploadSlicesDB only needs to read the data from the excel 

file. Instead of defining a list of Slice components, it sends the data from the excel file 

alongside the uploaded image files to the back-end server by using axios. The back-end server 

will then store the data in the database. Unlike UploadSlices, the UploadSlicesDB component 

dose not define a set of Slice components. This is handled by a separate component called 

SlicesDB. These two options give a user the choice whether they want to share the data, or 

just observe it on their own. 
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The user can upload a set of slices in to the application, by pressing on the “Choose File” 

button beneath “Upload Slices locally” or “Upload Slices to database”, shown in Figure 23. A 

user must upload an excel sheet contained in a CSV file and at least one image file. If they do 

not follow this requirement the application will give the user an error message that explains 

the issue. Figure 24, Figure 25 and Figure 26 shows three different error messages that can 

occurred based on what a user has not uploaded. The image file can either be a PNG or a JPG 

file.  

 

 

 

 

CMR has used Microsoft Excel spreadsheets to store data connected to the slices. This data 

includes information such as a name, description, related articles, longitude and latitude. 

Because of this the application need to be able to read and parse data from the spreadsheet. To 

read and parse the date from the sheets the PapaParse framework is used. A benefit with the 

spreadsheet is that it allows a user to upload multiple slices at the same time. The CSV file 

consist of an excel sheet containing data for a set of slices. The first row in the excel sheet 

contains all the variables a slice can have. Each of the following rows represents a slice, and 

the value for all its variables. One of the columns in the excel sheet is called 

“additional_files”. This contains a reference to an image file. For a specific slice to be 

visualized the image file referenced in this column must be uploaded together with the excel 

file. A user can upload multiple slices at once if the sheet contains multiple rows, and multiple 

image files are uploaded.  

Figure 27 on the next page shows a snippet of the excel sheet. This shows some (but not all) 

the variables for five slices. The depth values are used to determined how deep the slices 

should be visualized. For instance, the two slices shown in Figure 14 are the two first slices in 

this sheet. Both slices have the same “start_depth”, but one of them has twice as large 

“end_depth”. This result in that one of the slices is twice as long compared to the other one.  

Figure 24: Error message for missing excel file 

Figure 25: Error message for missing image file Figure 26: Error message for missing image and excel files 

Figure 23: Buttons for uploading slices 
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Figure 27: Snippet of excel sheet for slices 

To use the image for a slice as a texture on the slice it needs to be referenced as a URL. In the 

UploadSlices component a FileReader is used to get a URL representing the image. The 

FileReader can read the image files and return it as a URL.  

When uploading the files, it is important to consider the order in which the files are read. The 

image files should be read first, because the excel file contains references to the images. If no 

excel files and/or no image files are uploaded, the application will give the user a message of 

what is missing for the uploading process.  

All the variables from the uploaded data, will be used to create a SliceModel object for each 

slice. In the UploadSlicesDB component these objects are sent to the back-end server. In the 

UploadSlices component, each SliceModel is defined as a prop called sliceProp for each 

corresponding Slice component. In Code Listing 13 the render method for the UploadSlices is 

shown. Here a listOfSlices array defines a Slice component for each slice in the array. The 

array is defined in a different part of the component. The UploadSlicesDB component render 

method consist only of a HTML input element.   

 

 

 

 

 

 

render(){ 

    return ( 

        <React.Fragment> 

            {listOfSlices.map((sliceModel,index) => ( 

                <Slice key={index} index={index} sliceProp={sliceModel}></Slice> 

            ))} 

        </React.Fragment> 

    ); 

} 
 

Code Listing 13: Shows how the UploadSlices component creates a list of Slice component 
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4.10 Components for uploading wells 

This application allows a user to upload wells. The process of uploading wells is very similar 

to the process of uploading slices. There are two components that handles uploaded data for 

wells. They are UploadWells and UploadWellsDB component. The differences between these 

two components are largely the same as the differences between UploadSlices and 

UploadSlicesDB described above, except that UploadWellsDB needs to read all the data from 

the uploaded files. 

The user can upload a set of wells into the application, by pressing on the “Choose File” 

button beneath “Upload Wells locally” or “Upload Wells to database”, shown in Figure 28. A 

user must upload an excel sheet contained in CSV file and at least one well log. If they do not 

follow this requirement the application will give the user an error message that explains the 

issue. Figure 29 and Figure 30 shows two different error messages that can occurred based on 

what a user has not uploaded.  

 

 

 

The uploaded data from the excel sheet and well log are stored in a WellModel or 

SubWellModel objects. The UploadWells component creates a list of Well components for all 

the Well that was uploaded. When each Well components is defined it has been given a prop 

that consist of a WellModel object. The UploadWellsDB component send the data to the back-

end server instead. 

 

4.11 Navigation 

An important aspect of an application is how a user can navigate through it. The point of the 

navigation is to make it easy for a user to see what they want. In particular, this subchapter 

will explain how a user can move within the scene. The application has an React component 

called Navigation that handles many of the options for navigating within a scene. X3DOM 

supports default navigation by using the mouse. This allows a user to have full control over 

the scene’s location and orientation. For this application, this option turned out to be a bit 

overwhelming for a user. It was common for a user to reach unhelpful orientations, for 

instance orientations that were off-center. Because of this some of the navigation has been 

limited, to ensure a better user experience. X3DOM has a node called NavigationInfo, that 

contains value for how the navigation works in the scene. An X3DOM can have multiple 

NavigationInfo nodes, but only one can be active at any given time. The node has a field 

Figure 30: Alert message warning for missing rms file 

Figure 29: Alert message waring for missing excel/csv file 

Figure 28: Buttons for uploading wells 
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called explorationmode. If the NavigationInfo node in not defined, the scene will 

automatically create a node of this kind with the explorationmode field set to the value “any”. 

When defining a NavigationInfo node for this application the explorationmode field’s value 

has been set to “pan”. This will restrict the mouse control to only be able to move along the x, 

y and z axis from the current viewpoint. Which means the user cannot change the orientation 

or rotation of the scene with the mouse. The NavigationInfo node also has other fields that can 

be defined. An example of this is speed that determines how fast the movement is. 

Even though the user’s ability to change the orientation with the mouse has been restricted, 

there are still options to change it. In X3DOM a viewpoint node can be used to determine the 

camera’s position and orientation. Similar to the NavigationInfo node, only one of them can 

be active at any given time. In the Navigation component, five viewpoint nodes are defined. 

All of these viewpoints have a fixed value for five different orientation that cannot be change 

during runtime. The first viewpoint has an orientation that will make the camera look down 

towards the terrain. This would be like looking down from a helicopter. X3DOM will 

automatically set the first define viewpoint as the active viewpoint. The four other viewpoints 

define orientation that would resemble a person view standing on the terrain. The four 

viewpoints are facing towards north, south, west and east. A user can change between these 

viewpoints by pressing buttons in the application. These are “Map”, “North”, “South”, 

“West”, and “East”. Figure 31 shows these buttons in the application. In addition, the user can 

press the an “Rotate” button, which will rotate between the four grounded viewpoints.  

 

Figure 31: Navigation Buttons 

The application supports other forms of navigation. One of which is by using the keyboard. 

The keyboard button that are supported is “W”, “A”, “S”, “D”, “Q”, “E”, “R” and Shift keys. 

The Navigation component has a method that will run when there is an input from the 

keyboard. “W”, “A”, “S”, “D”, “E” and “Q” are used to change the position of the view. The 

position of the five viewpoints mentioned above, are determined based on React states for 

each of the three axes. The “R” key can be used to reset the position, back to the original 

state. The Shift key has the same function as the rotate button mentioned above. 

In the application there are a drop-down list, that contains the name of all the elements 

currently in the application. When pressing on the element, the viewpoint will change to the 

position such that the element is placed in the center of the scene. The element’s viewpoint is 

defined in the element’s component. When the application starts, the only element available is 

the terrain, called map. When a user uploads slices or wells, the dropdown menu will update 

to include the newly added element. Figure 32 shows the drop-down list when the application 

has a few elements added.  
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Figure 32: Drop-down list containing viewpoints to elements 

In addition, some features of X3DOM has been disabled to ensure a better user experience. 

The first feature is when a user double clicks on the left mouse button the camera would move 

to the position in the scene where the mouse pointer currently is. This was removed because a 

user could accidentally do this when trying to click on some of the elements in the scene. The 

second feature is that X3DOM has some shortcut keys that are useful for development. These 

buttons have been disabled to avoid interference with the navigation keys used for this 

application, and to avoid a user accidentally activating them. For instance, the “D” key would 

usually open the developer log for X3DOM. This could be confusing for a user. Additionally, 

each element in the application, such as the wells or slices has been given a viewpoint 

X3DOM node.  

A user can also change the viewpoint by pressing the next or previous viewpoint buttons. 

X3DOM stores all the viewpoints defined in the scene in a list and it can be used to find the 

next or previous viewpoint based on the placement of currently active viewpoint in the list.   

To be able to do this the Navigation component needs a reference to the x3d node in the App 

component. The easiest way to do this is to give the x3d node an id value. With this id the 

Navigation component can get access next or previous viewpoint by using the method 

e.runtime.nextView() or e.runtime.prevView(), where e is the X3D context found from the id. 

There is also a button called “Return to element” to go back to the element with the currently 

selected viewpoint. This can be useful if a user has moved around in the scene by using the 

mouse. This is possible because when navigating with the mouse the current viewpoint will 

not be modified. However, this showcases a bit of a problem with the application, as there is 

no way to recognize the current camera position when using the mouse for navigation. By 

comparison, when pressing on one of the keyboards buttons the active viewpoint will change 

to the previously used viewpoint from the Navigation component. Each button press will alter 

the position value of the active viewpoint. The consequence of this is that if a user press on 

the keyboard button right after they have used the mouse for navigation, the camera will be 

moved from the position of the viewpoint rather than the current position of the camera. 

Figure 33 shows the buttons for these three functionalities, as well as the rotate button 

mentioned earlier. 
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Figure 33: Buttons for changing viewpoints 

Finding existing viewpoints like by using the navigation UI buttons work fine for the most 

part. However, since the viewpoint is related to a specific element, one need to be careful to 

not alter the viewpoint because then the application will lose the original data for that 

viewpoint. This can happen because of a bug within the X3DOM framework itself. If a user 

changes the viewpoint too quickly during the transition animation that occurs when the 

camera moves between viewpoints, the bug can happen. The bug can result in that one of the 

viewpoint’s values are changed. To avoid this the application disables all the UI navigation 

buttons for a short time during the transition animation.  

 

4.12 Volume data and rendering of multiple slices 

The application explores the possibility to visualize volume data from existing nodes within 

the X3DOM framework for geological data. In X3DOM volumetric data is a set of 2D texture 

images that are aligned in a row [34]. All the texture will together create a 3D space in the 

shape of a box. The height and width of a texture details the xy-plane, while the number of 

textures is used to define a z-axis. Within X3DOM this process is referred to as volume 

rendering. An example of what volume rendering can be used for are a representation of a 

human torso as shown in one of the example in the X3DOM documentation [35]. This is seen 

in Figure 34. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34: Shows a representation of a human torso 
visualized by using X3DOM volume rendering 
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For this application, the idea is to show multiple slices of seismic data that are closely placed 

next to each other. Each slice should be shown as an image texture. Rather than using the 

texture to create a 3D shape, a user should be able to toggle which texture image they want to 

look at. A user should be able to use a slider to decide which slice they want to look at. The 

slider will correspond to the order in which the slices are aligned in the volumetric area. For 

instance, if the slider is located in its leftmost position the slice at the lowest z-position should 

be shown. This slider can be seen in Figure 35.  

 

 

 

 

CMR has not given any data for this kind of data. Because of this the examples in this 

subchapter only shows a concept of how this could be used. Volume rendering is explored 

because it can often be useful to compare data from slices that are near each other. This 

subchapter details two different approached to visualize multiple slices, each having their own 

pros and cons. The first approach uses existing X3DOM nodes that have the purpose of 

creating volume data. The second approach extends the Slice component so it consists of 

several images, representing different slices of seismic data. The images used for visualizing 

these two approached comes from an example on the home page for the X3DOM framework. 

The first approach uses the VolumeData, MPRVolumeStyle and ImageTextureAtlas X3DOM 

nodes. Code Listing 14 shows a how the three nodes can be used to create volume. The 

VolumeData consist of a field called dimensions. The field is used to define the height, width 

and depth of a 3D area where the volumetric data can exist. Within the VolumeData node 

there needs to be a X3DOM node that is used for specifying the visual rendering style of the 

VolumeData. This approach uses the MPRVolumeStyle for the rendering operation. The 

reason for this is that MPRVolumeStyle was the only style, that had support to only look at 

one image used for the VolumeData. The MPRVolumeStyle node contains a field called 

positionLine that can be used to determine which image should be shown.  

 

 

<volumedata dimensions='2.0 2.0 2.0'> 

    <imagetextureatlas url="resources/Volume/kansai_pawr_20120726175907.png"  

        numberOfSlices="64" slicesOverX="8" slicesOverY="8"> 

    </imagetextureatlas> 

    <mprvolumestyle positionLine={this.props.pos}> 

                   

    </mprvolumestyle> 

</volumedata> 
 

Code Listing 14: Volume Data 

Figure 35: Shows the slider used to select a slice 
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In addition to the MPRVolumeStyle node, the VolumeData contains the ImageTextureAtlas 

node. An image texture atlas is an image that contains collection of smaller images. The 

smaller images are placed uniformly in rows and column of the same height and width. Each 

image has its own unique index value. The ImageTextureAtlas node contains four fields called 

url, numberOfSlices, slicesOverX and slicesOverY. The url field specify the location of the 

image texture atlas. The numberOfSlices field specify how many smaller images the image 

texture atlas contains. Finally, the slicesOverX and slicesOverY fields are used to define how 

many rows and columns are used to contain all the images. These fields are important to 

define because the texture atlas need this information to know where the images should be 

separated. Figure 36 show the ImageTextureAtlas that is used in Code Listing 14 and also 

provides an example of how an ImageTextureAtlas can look like. The ImageTextureAtlas 

consist of 64 smaller images. Each of these images represents a slice, and has a given index 

based on its position in the ImageTextureAtlas. The slice that will be shown in the scene, will 

be the slice that has the same index number as the value used in the positionLine field in the 

MPRVolumeStyle node. Because of this the positionLine field should have a value between 0 

and 63.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A user should be able to determine the value of the positionLine, by using a slider. The slider 

should have the range between lowest and largest number index in the ImageTextureAtlas 

(which in this case is 0 and 63). Figure 37 and Figure 38 shows two different slices and the 

corresponding slider position.  

Figure 36: Example of a texture atlas containing 64 smaller images. Some of the images has a 
number showing their index 
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A problem that was noticed by using this approach is that some 3D objects like the slices, will 

be hidden behind the invisible volume area. Figure 39 shows an example of this issue. Here 

some parts of the slices are obstructed by the invisible volume area that is placed in front of 

them. Attempting to find a solution for this problem was the reason for exploring the 

alternative approach for this task.  

 

 

 

 

 

 

 

 

 

The second approach is to extend the Slice Component mentioned in subchapter 4.4. In this 

approach all the images from the volume dataset are stored as separate image files instead of 

an ImageTextureAtlas. The images are placed in a folder and has the indexed number as its 

name. The Slice component uses a new prop called currentSlice to determine which images 

should be used as a texture for a slice. Additionally, the SliceModel object that a slice uses 

contains a list of image URLs instead of just one. The value of the currentSlice prop is 

determine from the value of a slider with the range between 0 and the number of images for 

the Slice component. A user should be able to use the slider. This approach archives the same 

result but requires a large collection of files. This approach does not have the problem with 

some elements being hidden. 

Figure 37: Shows the slice corresponding to an id 
from a slider 

Figure 38: Shows another slice with a different id 
corresponding to a different slider position 

Figure 39: Volume Area hides two slices behind it 
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4.13 Database and handling of data 

This application uses a MongoDB database to store data [36]. The database can store three 

types of data. These are well logs, slices and reference to the location of image files. For each 

of them the back-end consists of a model, that is used to create a schema/table that can be 

stored in the database. These schemas are made in simple JavaScript Object Notation (JSON) 

format, which is supported by MongoDB. JSON is text syntax that can easily be used to 

exchange data between a browser and a server [37]. The back-end consists of a local server, 

that is used to connect to the MongoDB database. 

Figure 40 show the route for when a user uploads data to the application, to when the user can 

look at the uploaded data. The arrows represent the direction the data is sent to. First a user 

can upload the data from the UI in the web browser. After the data has been uploaded by the 

user, it will be handled by the UploadSlicesDB and UploadWellsDB component (see 

subchapters 4.9 and 4.10 for more information). These components will post the data to a 

back-end server.  

 

Figure 40: Shows the route from when data is uploaded by a user, to when a user can look at it 

The back-end server retrieves the posted data that a user has uploaded. Then it creates a 

schema with the data, that can be stored in a database. There is a schema for each of the three 

type of data. They are called wellSchema, sliceSchema and imageSchema. The back-end 

server can also retrieve the data back from a database, to the front-end. For this to happen it 

needs a get request from the front-end. These operations are done by the express framework 

in the back-end, and axios in the front-end.  
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If the data is stored in the database, the slices and wells will be placed in the scene when the 

application has been loaded in the web browser. The application consists of two React 

Components that gathers data form the database. They are called SlicesDB and WellDB and 

are used for defining Slice and Well components based on the data gathered. They have an 

axios get request in both the componentDidMount and componentDidUpdate methods. The 

componentDidMount method will make sure that the data from the database gets shown, when 

the web browser after the initial loading or reloading of the web page. While the 

componentDidUpdate method will make sure that when some update happens within the 

component it will get the most recent data from the database. This means that when a user 

uploads element, the newly created element would appear right away, and there is no need for 

a page reload. While there currently is no function within the application that allows for 

deletion of elements, the elements will disappear from the web browser during runtime if they 

are deleted manually from the database. This is possible because the get axios request is 

placed within the componentDidUpdate React lifecycle method. This shows that the 

application can delete elements without the axios request having any knowledge on how the 

element was removed from the database. For this reason, functionality for deletion could 

successfully be placed anywhere within the application. 

 

4.14 Structures for React components 

This subchapter goes into detail of how the components in the application works together, if 

one would want to check each component in more detail see the subchapter for that specific 

component. Figure 7, from earlier in the chapter, presented an overview for how some of the 

components are structured. This structure only showed one of the uploading approaches for 

each type of element. This subchapter will show the structure for the other approach used 

when uploading components. It will also provide examples of how some components can be 

used in a different structure from the one used in this application. The different approaches 

highlight how the components can be reused for different situations.  

Figure 41 shows the structure of the component used when a set of slices or wells are uploaded 

to a database. Because the UploadSlicesDB and UploadWellsDB does not need to render 

X3DOM nodes, they do not need to be placed within the scene. In this case approach the 

SlicesDB and WellDB has the responsibility to define the Slice and Well components that 

should be rendered. Code Listing 15 shows the scene inside the render method of the App 

component.  
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Figure 41: Component structure for Slices and Wells upload to a database 

 

 

Figure 42 shows an alternative way to use the Well and Slice components. This example 

consists of two Slice components and two Well components. These components are defined 

directly within the scene in the App component. In this example the application consists of 

four predetermined elements, rather than let a user be able to upload their own elements. This 

shows that the Slice and Well components can be used in many different scenarios and be 

defined within different components. The only thing that is required is that the Slice 

component has a SliceModel object as a prop, that consist of the required values for rendering 

a slice. Likewise, the Well component needs a WellModel object. Code Listing 16 shows the 

render method placed inside an alternative App component.  

render() { 

    return ( 

        <div> 

            <x3d width={width} height={height} id="x3d_context"> 

                <scene> 

                    <background skycolor="0.4 0.6 0.8"></background> 

                    <viewpoint id="over" position='0 0 1000' description="Map"/> 

                     

              <Terrain name="Svalbard" render={this.state.terrainVisible}> 

                    </Terrain> 

                     

                    <SlicesDB></SlicesDB> 

                    <WellsDB></WellsDB> 

                     

                    <Navigation></Navigation> 

                     

                </scene> 

            </x3d> 
 

Code Listing 15: Shows the rendering of the scene from the render method in the App component for uploading 
elements to a database 
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render() { 

    return ( 

        <div> 

            <x3d width={width} height={height} id="x3d_context"> 

                <scene> 

                    <background skycolor="0.4 0.6 0.8"></background> 

                    <viewpoint id="over" position='0 0 1000' description="Map"/> 

                     

                    <Terrain name="Svalbard" render={this.state.terrainVisible}> 

                    </Terrain> 

                     

                    <Slice slice={someSliceModel1}></Slice> 

                    <Slice slice={someSliceModel2}></Slice> 

                    <Well well={someWellModel2}></Well> 

                    <Well well={someWellModel2}></Well> 

                     

                    <Navigation></Navigation> 

                     

                </scene> 

            </x3d> 
 

Figure 42: Alternative possible way to use components 

Code Listing 16: Shows the rendering of the scene from the render method in the App component for alternative structure 
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5. Result and Discussion 
This chapter will detail the results achieved during the work on the thesis. The chapter will 

also discuss the decisions behind the implementation for the application created in this thesis. 

It will discuss the principles used to make the application more modular, as well as compare it 

to the implementation to the previously made application by using Angular. Finally, the 

chapter will provide a technique for how a developer can implement a React component that 

can be used to visualize a 3D object created from X3DOM nodes.  

5.1 Result 

In the work of this thesis an application has been created, by using the React and X3DOM 

tools. This application contains a scene that is able to visualize the 3D topography of 

Svalbard, and various data gathered from drilling beneath the surface. A user can upload their 

own data to the application. This data can either be shown only during the duration of a web 

page being open or be stored in a database. The application also allows a user to navigate with 

the mouse, keyboard and UI buttons. In addition, a user can toggle whether elements within 

the scene should be visualized or not, and get additional information concerning an element 

by clicking on it. Furthermore, the possibility of volume rendering has been explored, and two 

approaches has been assessed, with different pros and cons. This project did not have access 

to any resources concerning volumetric data for geology, so these approaches only show a 

concept of how it may be done.  

The first approach is using the X3DOM nodes for volume rendering got all the information it 

needs from one image file, using by dividing them using an ImageTextureAtlas. This could be 

a benefit, if the application would give the user an opportunity to upload their own file, as 

they do not need to worry about missing certain files during the upload. On the other hand, an 

issue using this method was spotted. The area of the volume box defined by X3DOM could 

sometimes hide certain other elements placed behind it (in relation to the user’s viewpoint) in 

the scene, even though the defined area is invisible. This is not an issue with the other 

approach, because it does not define an area of volume, but rather only renders the current 

selected slice. However, this approach uses, a set of image files, that needs to have a name 

that can be identified based on user interaction. If a user should have the ability to upload this, 

it would require a more complicated system to store them correctly. Volume data could also 

be created from a set of data values instead of given by images, especially the dataset is large. 

Neither of these approaches support this feature. 
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5.2 Modular approach 

One of the goals for this thesis is to explore the possibility to implement the application in a 

modular fashion. The advantages of this is the main focus of this subchapter. To achieve these 

benefits, the application needs to follow design patterns that are known to increase the 

modularity of the design.  

The concept of modularity in software design is to separate the different responsibilities of an 

application into a set of smaller part [38] [39]. Each of these parts is referred to as a module 

and ideally should handle just one responsibility.  

The advantages of designing an application using modularization can lead to: [38] [39]  

• Less code  

• Reusable code  

• Easier to manage within a team 

• More understandable code 

• Errors should be easier to identify 

• Code can be used across different applications 

 

In this application the code has been divided into several different React Components, which 

serves the same idea as a module. Each of these components focuses on one particular task, 

such as the code needed to render one type of 3D object. The application follows the Single 

responsibility principle [40], which is the first principle of SOLID which was first introduces 

in “Design Principles and Design Patterns” by Robert C. Martin [41] 

The single responsibility principle (SRP) are mostly followed within the components in the 

application. First and foremost, the application consists of components focusing on 

visualizing a corresponding element such as the slice or well. The Slice component could 

easily have worked with additional responsibility, such as toggling the slice, calculating their 

positions, opening and closing their dialog prompt. However, these responsibilities have been 

separated to their own components or classes to ensure the SRP, which leads to more 

modularity within the application. There is however always room for improvements, for 

instance currently the coloring calculation for the wells is handled by the Well component. 

This could, and probably should, be separated to ensure more modularity within the 

application. As shown by the application’s ability to calculate positions separately this should 

probably be possible to do, without any major design changes.  

By dividing the code into components, they can easily be reused in other part of the 

application, which is desirable. For instance, if the application did not have the well 

component, the code would need to consist of multiple instances of the same code to create 

them within the App component. This leads to another benefits which is that the application 

contains less code. During the development of this application, it has been easy to identify 

errors. For example, if the project failed to run, it would specify in the console on the web 

browser in which component an error did occurred. If the application runs, but one of the 

elements did not render as expected, the fault usually was in the component related to that 

element. 
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Another principle of the SOLID used during development was the open-closed principle [42] 

(OCP). The idea behind this principle is that “Software entities (classes, modules, functions, 

etc.) should be open for extension but closed for modification” [42]. In this project the entities 

would be the React components. A component is considered open when you can add 

functionality, but at the same time, the changes should not lead to a change in other part of the 

application that uses them. The components in this application follow this principle because 

during development the storing and creation of certain component changed during 

development. An example of this is the development of the Slice component.  

Two important concepts to consider when designing a modular application are the cohesion 

and coupling [38] [39]. Coupling is a term used to determined how dependent on the different 

modules in application are on each other [43]. To ensure that the that the modules are 

independent from each other, the coupling between them should be low. This can also be 

referred to as loose coupling. The different modules in this application still needs some 

coupling to send or define parameter to each other. This is called data coupling and is 

considered as a loose form of coupling [43]. Cohesion is a term used to determined how well 

the different modules focuses on their particular task or responsibility [44]. An application has 

high or strong cohesion if each of its modules focused only on a particular task. Two types of 

cohesion that are considered strong are object cohesion and functionality cohesion [44]. The 

application follows the object cohesion pattern as each React component is focused on 

creating one particular type of 3D object. The application has some instances of functionality 

cohesion as certain functionalities, such as the UTM coordinates converter that are separated 

from the components. However, the usage of functionality cohesion could be improved, such 

as with the coloring calculation mentioned before.   

The application created for this thesis follow these two principles for the most part. The 

application has high cohesion because each React component works as its own module. An 

example of this is the Slice component, that focuses on visualizing a slice. The application 

follows the low coupling principle by not being restricted by the other components in the 

application. This is shown in subchapter 4.14, where an alternative approach for how the 

components can be structured are presented. In particular, it shows that one does not need the 

components for uploading files to create a Slice or Well component. In addition, the 

application can reuse certain components that are useful for different scenarios. An example 

of this is the Toggle component, that can be used to create a toggle for both the Slice and Well 

components. There is however one restriction concerning the coupling in this application, 

which are that the component using the X3DOM framework needs to be located within a 

scene node. If X3DOM tags are placed outside a scene, it will not render and could potentially 

lead to an error. To reduce this problem, the scene should be easily accessible for all 

components that renders X3DOM code. Because of this the scene node is located in the App 

component, which also serves as the highest level for the application. Alternatively, the scene 

node could be placed within the HTML document itself. All the components should be able to 

work on any scene from any React application, if the file has access to the component either 

by having the component in the same file or by importing it from another one.  
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5.3 Comparison between Angular and React solutions 

This subchapter goes into detail how the React application differs compared to the application 

made by Malt, using Angular. Firstly, this subchapter will go into details on decisions 

concerning the design of the application. These changes do not necessarily benefit from using 

React, rather they are different approaches to solve already existing working task. Secondly, 

the chapter will go into detail of issues that occurred during development of the Angular 

project, and how React can be used to avoid them. Finally, the chapter will go into detail on 

additional created functionalities that were not present in the previous application. 

5.3.1 Design decisions 

In this thesis some of the features of the solution from the Angular project has been rebuilt. 

When doing this, the design decisions for the application has been reevaluated to determine 

whether they should change or not. First up are the terrain and slices, which has been 

visualized by using the same set of X3DOM nodes as in the Angular project. With terrain this 

process is done by the BVHRefiner. A slice is visualized by using the shape node and box 

geometry node and has an image used as a texture.  

However, when it comes to visualizing a well the two applications have very different 

approaches. In the Angular application a well was visualized by a set of cylinders. Each of the 

cylinders was a 3D object. The cylinders were created by using the X3DOM cylinder 

geometry node. The cylinders serve a similar role as what was called a subwell or a segment 

in the React application. In the React application a well consist of one 3D element formed by 

the IndexedFaceSet node. This might be a little more complicated to implement, as the values 

must be placed in a very specific order to be visualized correctly. The benefit of this approach 

is that it allows for more options when visualizing a well. 

One example of this is the possibility to visualize a well from a well log that contains UTM 

coordinates that are placed diagonally from each other. To do this with a cylinder, it would 

require a way to calculate the rotation of a cylinder and ensured that the top and bottom face 

of a cylinder is in parallel, with the other cylinders in different rotations. It is possible to 

define a rotation of a cylinder by using the orientation filed in a transform X3DOM node 

wrapped around a cylinder X3DOM node. However, it does not provide a way to ensure that 

the base of one cylinder is aligned with the top of another cylinder with a different rotation. A 

mock-up of this problem can be seen in Figure 43. The issue here is that some parts of the 

cylinders will merge into each other, while other parts will leave a hole. Figure 44 displays the 

well when using the IndexedFaceSet. With this approach the two segments do not have the 

same issues, and the well looks smoothly connected. 
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Figure 43: Mock-up of cylinders 

 

The approach for toggling elements is also a bit different. In the Angular application, the user 

had the ability to toggle between whether an element should be rendered or if a substitute 

sphere should be rendered. In the React application this has been changed to each element 

having a relatively small toggle in the form of a sphere close to the given element. 

Additionally, a user can toggle off the visualization of a slice or well, by pressing on it with 

the left mouse button. Naturally, this is only possible when the element is currently visible.  

5.3.2 Using React to resolve issues encountered with Angular 

During the development of Malt’s solution, several issues occurred. The reasons for these 

issues could be traced to problem with trying to make the Angular and X3DOM frameworks 

work together.  

One of the biggest inconveniences when using these two frameworks together, is that it is not 

possible for non-X3DOM elements to be used within the X3DOM nodes. For instance, one 

cannot wrap X3DOM nodes within a div-tag, and then place it within a X3DOM scene node.  

Malt commented on this in his thesis:  

The main issue when using X3DOM inside a web framework that creates 

custom HTML elements in the form of components, is that non-X3DOM 

elements can’t be used inside the X3DOM scene. This causes X3DOM to fail 

at reading the scene and produce an error, since X3DOM only understands 

its own syntax. Because of this, components created with a web framework, 

that do not have a name which match the name of an X3DOM node, cannot 

be used to wrap X3DOM elements inside the scene. 

Using 3D functionality available in current web-browsers to create and 

visualize geological models, Ø. Malt (2017) [1], p. 27 

 

 

Figure 44: A well with a diagonal segment 
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However, with newer versions of React this is no longer an issue. React gives the opportunity 

to contain X3DOM nodes wrapped within a React fragment tag, which can be placed within a 

scene node. A fragment in React is a pattern that can be used to wrap several groups of 

children nodes, without adding the fragment itself as an node to the DOM [45]. In particular 

the React fragment is used to wrap all the X3DOM tags used within the render method of a 

React component. To work around this problem Malt created an attribute selector to be able to 

change values of the fields in the X3DOM nodes. This resulted to a more complex 

implementation. It also reduced the application’s ability to be modular because the Angular 

component is depending on the attribute selector. Specifically, it becomes less modular 

because the components need to handle both the attribute selectors and the visualization of the 

element itself. Furthermore, the attribute selector had to be wrapped around in an X3DOM 

<transform> tag, rather than simply referring to a custom-made React component with any 

name. This also leads to an increase readability with the React solution compared to the 

Angular project. According to the React documentation, there are plans to allow for onClick 

attribute for the React fragment tags in future version of React [45]. This could potentially 

make it easier to add event handlers that can affect X3DOM elements in the future. 

Another problem that was noticed during the development of the Angular project, was that the 

eventListner could lead to errors in the application. This was suspected by Malt to be because 

the eventListner was added before the component was loaded. [1] In the beginning of the 

development of the React application, a similar issue was encountered. An event would not be 

triggered by an onClick method that was added directly inside a X3DOM tag. The reason for 

this can be explained by looking at the documentation for X3DOM as mentioned in 4.6. 

However, React supports a feature called refs, where one could reference an rendered node. 

This allowed for the possibility to add an event handler after the initialization of the X3DOM 

scene and objects. This is done by using the React lifecycle method componentDidMount (see 

4.6 for a general implementation of this). When using this approach, there were no longer 

problems with events not happening when expected. Both problems listed above answer RQ2, 

as they exemplify two good benefits of using React, that can be used to avoid the issues 

mentioned above.  

5.3.3 Additional functionalities 

In addition to remaking and improving the features discussed above, some new ones have 

been explored. Firstly, the image used for a slice has been added to the slice’s dialog prompt. 

This allows the user to get a better look at the details of the image. Additionally, a user can 

press on the image, which would result opening an additional tab in the web browser. This tab 

consists of the URL to the image clicked on and presents the user to the image in its original 

resolution. In addition, the React application allows a user to toggle the terrain. Furthermore, 

a user can press on a button called “Toggle Slices” and “Toggle Wells”. Unlike the dedicated 

toggles for each element, these buttons allow the user a straightforward way to hide all 

elements of the chosen type, including the toggles for the individual elements. This 

strengthens the user’s ability to decide what they want to see. The benefit of this option is 

particularly noticeable whenever there is a high density of elements. To many active elements 

on the screen can make it harder to see and interact with the desired element.  
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Compared to the earlier solution, the navigation has been greatly improved to ensure a better 

user experience. This includes the ability to use navigation buttons in the web application, as 

well as a keyboard. Finally, two approaches for simulating volume rendering has been 

implemented. These allow a user to slide through a set of images that forms a volume. 

5.4 General structure for a React component containing X3DOM nodes 

This subchapter goes into detail of general guidelines when creating a React component 

containing X3DOM code. These guidelines are followed when creating the basic example 

shown in subchapter 2.3, as well as more complex component such as slice and well 

mentioned in subchapters 4.4 and 4.5 respectively. In Code Listing 17 on the next page, a 

general and generic structure of a React component is shown. Firstly, the component should 

import React, which will be used when defining the class as an extension. The component 

contains a constructor, render method, React lifecycle methods (such as componentDidMount) 

and a set of method made for this component specifically. In this example these methods are 

listed as “someMethod”.  

The constructor can be used to initial the components states and binds the methods. In 

addition, the ref should also be initialized in the constructor. It is possible to not do this, but 

the documentation of React strongly encourages it. For example, one could define the ref as 

string value, but the React documentation considers this as a legacy approach and it will likely 

be removed in future updates of React [20]. Binding methods in React allows one to reference 

them with “this” within the component, which make them easier to access.  

The methods should be used to change or initialize the visualization of the component. They 

will often result in changing the state of the component. This is done by using this.setState() 

method. The React lifecycle should be used to set a property of the component at an 

appreciate time. For instance, the eventListner should be added in the componentDidMount 

method as explained in subchapter 4.6. If the components need to perform some calculations 

before the rendering of the component, this can be done in the componetWillMount. This is 

done in the well component because the component needs to determine the color of each 

subwell based on its properties. 

The additional methods can be whatever is necessary for a given component. They can be run 

from anywhere within the components, such as when a keyboard or UI button is pressed, or if 

a certain value is true. The methods can be placed within the React Lifecycle methods or other 

methods in the application.  

The render method consists of a return. The definition of a component will be replaced by the 

tags defined within the return. These tags should eventually be returned to a HTML 

document, where they are used for the creation of the web page. The render method’s return 

supports JSX. This is a good fit for writing the X3DOM code, because the JSX syntax is 

supported in HTML after it has been returned. In addition, it allows for altering the properties 

in the X3DOM-tags. This can be done by encapsulating props and states in brackets. Finally, 

the component is exported, so that is can be used in other places in the application. 
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Code Listing 17: General structure for a React component with X3DOM code 

This structure can be used to create more than just elements within the field of geology. For 

example, this structure could be used to create a 3D humanoid robot. The robot could contain 

one high-level component for its entire body and component for each different kind of limb. 

The body should contain all the components for different limbs (directly, or indirectly through 

another component). A component could consist of several of the same component. For 

instance, the body could contain two arms components, each of which could contain five 

finger components. One could also make some function happen when pressing the different 

part of the body. For instance, pressing on the arm could move it 45° upwards or downwards. 

 

 

import React from 'react'; 

 

class SomeComponent extends React.Component { 

    constructor(props) { 

    super(props); 

 

    this.state = {   

      someState1 = {insertInitialState}, 

      someState2 = {insertInitialState} 

        }; 

 

    this.elementRef = React.createRef(); 

 

    this.someMethod = this.someMethod.bind(this); 

    this.someMethod2 = this.someMethod2.bind(this); 

    } 

 

    render() { 

        return ( 

            <React.Fragment> 

                {Write X3DOM Code here} 

                {Create another react component} 

            </React.Fragment> 

        ); 

    } 

 

 

    componentDidMount(){ 

        this.elementRef.current.onclick = () => this.someMethod(); 

    } 

 

    someMethod() { 

        ... 

    } 

 

    someMethod2() { 

        ... 

    } 

     

} 

export default SomeComponent; 
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6 Conclusion 
In chapter 5 the result and the procedures of the implementation in the application was 

discussed. This chapter will use this discussion to conclude and evaluate whether the result is 

satisfactory. The conclusion will be determined based on if the goals for the thesis has been 

achieved and whether it can provide answers for the research questions. These goals and 

research questions were introduced in the subchapter 1.2 and 1.3 in the introduction. 

The first goal of this project was to create a web application that could visualize the 

topography of Svalbard and data gathered from drilling beneath the surface of Svalbard, by 

using the React library and X3DOM framework. This goal has been achieved as shown in the 

solution detailed in chapter 4. In addition, the project was conducted to see whether it could 

fix some of the issues present in the previous solution that used the Angular framework. As 

discussed in chapter 5, several of issues were avoidable when using React. These issues 

include errors concerning event handlers and not being able to wrap the X3DOM nodes.   

The React application is working without any major or noticeable problems on both the 

Google Chrome and Mozilla Firefox web browsers. Furthermore, most of the functionalities 

from the earlier application are still present, as well as some new ones. Among these new 

additions are an improved ability to navigate within a scene and toggle elements, which 

fulfills the fifth and sixth goals of the thesis. 

The second goal in the thesis aims to design the application in a more modular way compared 

to Malt’s solution. The discussion in chapter 5 details how the components are modular, by 

being reusable and independent. This has been possible by following design principles such as 

the SRP in SOLID. This is shown by being able to use the components in different part of the 

application without doing any changes to a component. In addition to achieving the second 

goal, this gives an answer for the first part of RQ1. This part concerns whether if it is possible 

to create 3D object and 3D geology in a modular way. The answer to this is “yes”, as shown 

by the implementation of the solution. Furthermore, chapter 5 provides an example of how a 

React component containing X3DOM nodes can be build. This structure can be used to create 

component for any 3D object created from X3DOM, which includes elements used in 3D 

geology. This is supported by the fact that the implementation of the React application, 

follows the same structure for all its components. This answer the second part of RQ1, that 

consist of questioning how 3D objects and 3D geometry could be implemented in a modular 

way by using React. 

The possibility of this leads to a couple of benefits, including the ability to easily divide 3D 

objects into different reusable React components. This goes back to RQ2, where the benefits 

of these components are put into question. The benefits of React components are that they are 

easy to manage, reuse and provide a general structure for how it can be used, as shown in 

chapter 5. As well as being a benefit for RQ2, the general structure provided here also give a 

solution for the third goal. As detailed earlier, the structure works for all the elements and 

examples discussed in this thesis. Moreover, an example for a use case outside the scope of 

this thesis is provided. Having a general structure is a huge benefit, as it leads to a simple-to-

use approach that can be used in many scenarios. The React components are easy to manage 

because their function is to do one specific task and nothing more. When looking at the React 

components within a scene node in the App component, it is easy to understand what parts the 

application consists of, and where the corresponding code is handled.  
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The fourth goal of the thesis was to explore the possibility of volume rendering within the 

field of 3D geology. Two approaches were proposed, but as this project lacked access to real 

data of this type further work is needed to determine whether these approaches would be fully 

functional. While X3DOM offered a lot of options for visualizing volume data, most of them 

were dedicated to medical data. A feature wanted for visualizing seismic data is a slider to 

look at specific slices forming a volume. Only one of the volume styles offered by the 

X3DOM framework consisted of functionalities that could support showing individual part of 

the volumetric dataset with a slider. This approach had an issue where it could obstruct the 

visibility of other elements in the application. The goal was to determine the possibility, 

which seems probable. The idea certainly seems to merit further investigation, but certain 

restrictions have been identified that could make it challenging. 

The third and final research question, asked if there were any benefits to using React 

compared to Angular. In this thesis several solutions have been presented for problems that 

were experienced when using Angular. In that sense, the solutions provided in this thesis 

show a benefit for using React, as it uses techniques not available in Angular. It is, however, 

not possible to conclude that these issues are necessarily unsolvable when using Angular. For 

now, React is the only web library that can guarantee the ability to create event handlers on 

X3DOM nodes without risk of errors, and the ability to use React fragments that allows the 

X3DOM code to be divided into different modules. 
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7 Further Works 
This thesis has achieved it goals, however a project can always be improved further. This 

chapter will present some suggestion in how the application could be further developed. The 

application can be extended by adding support for more ways to visualize elements. 

Currently the files used to create the 3D topography of Svalbard is stored locally in the 

application. The reason for this, is because the process requires a large set of files used and 

the files need to be placed in a very particular structure. The application could easily use a 

different set of files to create another terrain. During development another terrain was used for 

testing which worked as expected. However, this might not align with the conversion of 

coordinates. This is important for placing other elements correctly in relation to the terrain. 

Ideally a user could be able to upload their own terrain, however this might be challenging to 

implement because of the conversion of coordinates would be different between different 

terrains. To achieve this the implementation of the conversion would need to be improved, 

and some way to store and gather the files needs to be implemented. Alternatively, the 

application could contain a set of predefined terrains, and the user can choose between them 

before rendering a scene. If this were to be implemented, one might need to consider which of 

the other elements is related to the different terrains, to make sure that only relevant elements 

get shown.  

Another improvement could be to add access control to the application. For example, one 

might not want all users of the application to have the ability to upload data to the database. 

To achieve this a login functionality for admin users could be implemented. The application 

already features two approaches for uploading data. One way to implement this could be by 

splitting the two approaches for uploading between different kind of users. For example, the 

admin user could be able to upload files to the database, while a regular user could only 

upload to the currently open web page. In addition, functionality for a user to delete or edit 

elements could also be added. This should be fairly straightforward to implement because 

elements already can be deleted during runtime manually from a database. 

It might also be beneficial to keep an eye on updates to the X3DOM and React libraries to see 

if new opportunities for improving the application arise. Finally, the application is currently 

only available on a local server. To make the application easily accessible to the users it needs 

to be put on an online server.  
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