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Summary 

The numerical study presented in this thesis is a part of an ongoing CO2-foam project led by the 

Reservoir Physics group at the Department of Physics and Technology, University of Bergen. The thesis 

objective was to investigate foam behavior during co-injection of CO2-brine (baseline) and CO2-

nanofluid using a compositional simulator validated by history matching the experimental results. The 

compositional simulator GEM provided by The Computer Modelling Group (CMG) was used to perform 

history matching and sensitivity analysis to investigate how different foam model parameters, 

including the reference mobility reduction factor (FMMOB), the maximum dry-out parameter (Sfdry), 

the dry-out slope (Sfbet), absolute permeability, and injection velocity influence foam strength during 

CO2 coinjection with and without nanoparticle present. 

This thesis focuses on the numerical simulation of CO2-foam, that involves the foam quality scan of 

nanoparticles and CO2 to generate foam for mobility control, and to investigate the foam strength of 

the nanoparticle-based foam. The numerical simulations were compared with available experimental 

data from core floods on outcrop Bentheimer sandstone core. The core was fully saturated with brine 

(no oil) and gas was coinjected with brine and/or nanofluid at different injection rates and gas fractions 

to generate foam in-situ. 

An empirical foam model incorporated in the compositional equation-of-state CMG-GEM simulator 

was utilized. The model included relative permeability and foam model parameters, such as the 

reference mobility reduction factor (FMMOB), the maximum dry-out parameter (Sfdry) and the dry-

out slope (Sfbet). In the experimental work, the maximum apparent viscosity of 7.8 cP was achieved 

at the optimal gas fraction (fg = 0.7), whereas, for baseline foam quality scans (without nanoparticles), 

the apparent viscosity was almost 3 times lower at the same gas fraction for all injection velocities. 

This indicated foam generation and that nanoparticles were able to stabilize CO2 foam. The model was 

capable of reproducing the experimental data with emphasis on the optimal gas fraction, and the 

apparent viscosity increased to a maximum value (7.7 cP) at the optimal gas fraction for all injection 

velocities. A near-Newtonian behavior of CO2-foam was observed both in the experimental data and 

in the numerical simulations; no shear-thickening behavior (fluid viscosity increases with increasing 

injection rate) or shear-thinning behavior (fluid viscosity decreases with increasing injection rate) was 

observed during the foam scanning. The model saturation profiles indicated the foam was generated 

from CO2-NP was displacing more water compared to the baseline. 

In conclusion, this work provides a methodology for estimating relative permeability and foam model 

parameters for nanoparticle-stabilized CO2-foam simulation. The findings will be useful for 

understanding nanoparticle-stabilized CO2-foam behavior during foam scanning with and without 

nanoparticles present. Simulation results showed that the foam apparent viscosity increased during 

the foam quality scans with nanoparticles present compared to foam quality scans with brine. It was 

observed that foam model parameters affect water saturation, differential pressure, and apparent 

viscosity. Finally, simulations revealed that simulation results were in good agreement with 

experimental data and that nanoparticle-stabilized CO2-foam has the potential to become a promising 

method for CO2 mobility control.  
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ppm            parts per million 
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SAG           Surfactant-Alternating-Gas 

STARS           Steam, Thermal and Advanced Process Reservoir Simulator 

Surfactant           Surface active agents 

Surf 
U.S. 

          Surfactant 
          United States 

USA           United States of America 

WAG            Water-Alternating-Gas 

WINPROP           Phase Behavior Analysis tool 
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Nomenclature 

𝐴 
 
Cross-sectional area 

CO2 Carbon Dioxide 
D Core diameter 
DJ Grid block length in the J direction 
DK Grid block thickness in the K direction 
F1 Foam function accounts for the effect of surfactant concentration 
F2 Foam function accounts for the detrimental effect of oil 
F3 Foam function accounts for the effect of flow velocity for shear thinning 
F4 Foam function accounts for the effect of flow velocity for the generation effect 
F5 Foam function accounts for the effect of oil composition 
F6 Foam function accounts for the effect of salt 
F7 Foam function accounts for the effect of permeability dependence parameters 
FDRY Foam dry-out function 
𝑓𝑔 Gas fraction 
𝑓𝑄 Foam quality 
FM Mobility Reduction Factor 
FMMOB Reference mobility factor 
𝐾 Absolute permeability 
𝑘𝑟𝑔 Relative permeability of gas 

𝑘𝑟𝑔
0  Maximum relative permeability of gas  

𝑘𝑟𝑤 Relative permeability of water 

𝑘𝑟𝑤
0  Maximum relative permeability of water 

𝑘𝑟𝑤𝑠𝑔𝑖
0  Water relative permeability at initial gas saturation 

𝑘𝑟𝑜 Relative permeability of oil 
𝑘𝑟𝑜

0  Maximum relative permeability of oil 
𝐿 Length 
N2 Nitrogen 
𝑛𝑔 Corey exponent for gas 
𝑛𝑜  Corey exponent for oil 
𝑛𝑤 Corey exponent for water 
Pcrit Critical pressure 

∇𝑃      Pressure gradient 
Δ𝑃 Differential pressure 
𝑞𝑓 Volumetric foam rate 

𝑞𝑔 Gas flow rate 

𝑞𝑙     Flow rate of liquid 
QT Total injection rate 
Sfbet Dry-out slope 
Sfdry Maximum dry-out value 
𝑆𝑔         Gas saturation 
𝑆𝑔

∗ Normalized gas saturation 
𝑆𝑔𝑖   Initial gas saturation 

𝑆𝑜𝑟 Residual oil saturation 
𝑆𝑤   Water saturation 
𝑆𝑤

∗  Normalized water saturation 
𝑆𝑤𝑖   Initial water saturation 
𝑆𝑤𝑟   Irreducible water saturation 
Tcrit Critical temperature  
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𝑢𝑔 The superficial velocity of the gas 

𝑢𝑙  The superficial velocity of the liquid 
Vp Pore volume 
% Percent 
Wt.% Weight percent 

 

∅   Porosity 
𝜇  Viscosity 
𝜇𝑏𝑟𝑖𝑛𝑒   Brine viscosity 
𝜇𝑓      Apparent viscosity of foam 

𝜇𝑛𝑓    Apparent viscosity of no-foam 

𝜇𝑎𝑝𝑝    Apparent foam viscosity 
𝜌𝑏𝑟𝑖𝑛𝑒 Brine density 
𝜌𝐶𝑂2 CO2 density 
𝜌𝑁𝑃 Nanofluid density 
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Chapter 1: Introduction 

In order to meet the rising global energy demand in the coming years, several attempts have been 

made by the governments to find more reliable sources of energy which can be applied for the industry 

demand i.e. renewable energies, wind and solar energies, hydroelectricity and biomass (EPA, 2018). 

Using proven resources (i.e., hydrocarbon reserves) more efficiently and economically can meet the 

growing energy demand. Recently, the production from hydrocarbon reserves has led to a steady 

decline of the estimated oil in place. Thus, the importance of improving oil recovery is more crucial 

than ever, and better means of how to recover the remaining oil resources from the known reservoirs 

are needed. 

The use of energy by humans and the dependence on fossil fuels are the main challenges of making a 

large reduction in greenhouse gas (GHG) emissions. Reduction of GHG has been in focus due to global 

warming and pollution. The announcement of the Paris agreement sets out a global action plan aimed 

to limit the global average temperature rise to 2 °𝐶 above pre-industrial levels, and limit the CO2 

concentration to 450 ppm by the end of the 21st century (UNFCC, 2015). The concentration of CO2 in 

the atmosphere is increasing by approximately 2 ppm per year. In 2016, CO2 concentration was greater 

than 400 ppm (Munro et al., 2016). Global energy-related CO2 emissions reached a historic high in 

2018 and point to the challenge of satisfying growing energy demand and other important policy goals 

while reducing emissions (Equinor, 2019).  

An increased focus on the environmental effects of anthropogenic greenhouse gas emissions implies 

CO2 utilization and long-term safe storage in hydrocarbon bearing geological formations (Doyle et al., 

2018). Carbon (dioxide) capture and storage (CCS) involves the capture of anthropogenic CO2 at point 

sources (i.e., fossil fuel based power plant) and its transportation, injection, and storage into 

subsurface formations (IPCC, 2016). Carbon Capture, Utilization and Storage (CCUS) involves capture, 

transport, and utilization of anthropogenic CO2, and ultimately long-term storage of CO2 for 

sequestration. CCUS plays a significant role to mitigate CO2 emissions, especially from the oil and gas 

industry. CO2 emissions can be reduced by implementation of CCUS (Hassan et al., 2018). The 

environmental and economic benefits of CUUS as results of capturing and storing carbon to reduce 

CO2 emissions and simultaneously increase oil recovery (Hasan et al., 2015). However, the future 

deployment of large-scale CCUS will depend mainly on cost reductions for CO2 separations, and the 

financial complexity of CCUS projects (Doyle et al., 2018). 

On the Norwegian Continental Shelf (NCS), the Equinor Sleipner project is considered to be one of the 

global pioneers of CCS. The project was the first in the world to use pure CCS technology in a deep 

saline reservoir (Hardisty et al., 2011). Since 1996 approximately 1 million tonnes per year of CO2 have 

been separated from the natural gas and stored into a saline aquifer (the Utsira formation) above the 

hydrocarbon reservoir zones (Steeneveldt et al., 2006). 

CCUS has great potential in the oil and gas industry. CO2 can be part of multiple enhanced oil recovery 

techniques. The ongoing projects on CO2-foam for mobility control (i.e., nanoparticle-stabilized CO2-

foam) as a part of CO2-EOR aiming to advance the technology of CO2 foam for anthropogenic CO2 

storage as a part of CCUS. The main problem in CO2 injection is unfavorable mobility, which leads to 

poor mobility control of CO2 in the reservoir. In order to mitigate the poor mobility control of CO2, 

foaming agents (i.e., surfactant or nanoparticles) can be added to the co-injected brine to generate 

foam.  Adding nanoparticles to brine solution to control CO2 mobility and can also potentially stabilize 

the foam viscosity. The main focus of this thesis is to investigate how to improve CO2 foam viscosity 

using nanoparticles as a foaming agent in order to control the mobility of CO2, which is a challenge in 

CO2 injections.  



12 
 

This work presents a simulation investigation on nanoparticle-stabilized CO2-foam. CO2 Foam model 

with an emphasis on physical mechanisms and optimizing parameters using history matching of core 

data from an earlier experimental study done by the Reservoir Physics Group. The objectives of this 

thesis were to find end-point gas relative permeability and estimate the different foam model 

parameters, including the reference mobility reduction factor (FMMOB), the maximum dry-out 

parameter (Sfdry), and the dry-out slope (Sfbet). Matching of the foam quality scans, which were 

performed after the co-injections, was undertaken in order to get an estimation for the relative 

permeability curves and  the foam model parameters. A sensitivity study was performed to examine 

the significance of the parameters on the foam apparent viscosity across the core. Finally, 

recommendations on possible investigations that will help the modeling of CO2 foam process were also 

provided. 

This thesis is organized into 5 chapters. Chapter 2 provides a summary of the theory and background 

that are relevant to this work. Chapter 3 aims to explain the experimental setup behind this work, 

modeling of relative permeability, modeling of foam parameters, construction of the model, and the 

strategy of history matching and the sensitivity analysis. Chapter 4 presents the results obtained from 

the history matching study on CMG-GEM for the baseline foam quality scan (CO2 and brine) and the 

foam quality scans of CO2 and nanoparticles present as a foaming agent. The experimental work was 

conducted by Rognmo et al. (Rognmo et al., 2017) on Benthiemer sandstone outcrop core and was 

simulated using CMG-GEM, and the results were compared. The effect of foam on the apparent 

viscosity was observed in the simulation program. Chapter 5 presents the conclusions of this work 

based on the simulation study and provides recommendations for future work. 
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Chapter 2: Theory and Background 
 

2.1 Enhanced Oil Recovery (EOR) 

The world’s need for oil is increasing due to the growth in energy demand. In other words, industrial 

societies are dependent on oil and the demand for more energy is increasing every year. All economic 

measures intended to improve the oil recovery factor are usually defined as Improved Oil Recovery 

(IOR) methods. IOR measures can be, for example, stimulation of wells, integrated operations, infill 

drilling, or enhanced oil recovery (EOR) (Lake et al., 2014). Generally, oil recovery can be divided into 

three stages; primary, secondary and tertiary recovery, where the former two are referred to as 

conventional recovery methods (Lake et al., 2014) as shown in Figure 1. 

 

Figure 1: Classifications of oil recovery methods (Lake et al., 2014). 

In primary recovery, naturally occurring energies (e.g., pressure) with the reservoir are used to drive 

oil to the surface (Lake et al., 2014). Primary oil recovery results in low ultimate oil recovery due to a 

rapid decrease in reservoir pressure, which leads to the development of a solution gas drive 

(Zolotukhin and Ursin, 2000). It is well documented that only a fraction (approximately 10% - 15%) of 

the oil in place can be recovered with primary recovery (Lake et al., 2014). In secondary recovery, water 

or gas are injected to improve the sweep efficiency and maintain reservoir pressure (Lake et al., 2014). 

On the Norwegian Continental Shelf (NCS), the most frequently applied secondary recovery method is 

water flooding, which has been successful for light oil reservoirs (Zolotukhin and Ursin, 2000). Because 

of reservoir heterogeneity and unfavorable mobility ratio between the displacing water and oil, the 

volumetric (macroscopic) sweep efficiency is low. Therefore, waterflooding does not often yield 

sufficient recovery (Zolotukhin and Ursin, 2000). Primary and secondary recovery together could not 

recover more than 50% of the original oil in place (OOIP) (Kokal and Al-Kaabi, 2010).  

Enhanced oil recovery (EOR)  or tertiary recovery incorporates advanced processes of hydrocarbon 

production (Lake et al., 2014), where additional hydrocarbons are produced by injecting fluids and 
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energy not initially present in the reservoir. The focus has been mainly on EOR as a tertiary recovery 

process. However, EOR is not restricted to a specific phase of production. Gas injection, Water-

Alternating-Gas (WAG), Surfactant-Alternating-Gas (SAG), chemical flooding (polymers, surfactants), 

and thermal methods (steam injection, in-situ combustion, hot waterflooding) are the main EOR 

techniques (Lake et al., 2014). EOR targets the residual trapped oil in both swept and un-swept regions 

of the reservoir. The total oil displacement efficiency is dependent on microscopic and macroscopic 

displacement efficiencies. An EOR process can increase the microscopic efficiency, by achieving a low 

and more favorable interfacial tension between displacing and displaced fluid, yielding mobilization of 

capillary trapped oil (Lake et al., 2014). The macroscopic efficiency can be improved by reducing oil 

viscosity and by achieving a favorable mobility ratio between the displacing and displaced fluids. This 

thesis will focus on pure CO2 injection and CO2 foam with and without nanoparticles as an EOR method. 
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Carbon Dioxide Enhanced Oil Recovery  

CO2 injection is one of the most effective methods to enhance oil recovery from petroleum reservoirs, 

especially from depleted reservoirs, where the liberation and expansion of gas as a consequence of oil 

production and pressure decline is the primary source of energy in the reservoir (Lake et al., 2014).  

CO2 injection can be employed as a secondary and tertiary EOR method (Zhang et al., 2015; Ahmadi et 

al., 2016). CO2 is one of the best hydrocarbon extraction solvent, which makes it an attractive option 

to enhance oil recovery (Enick et al., 2012). For more than 40 years in conventional reservoirs, CO2 has 

been successfully employed, mainly in regions with abundant CO2 sources (e.g., the Permian Basin and 

Williston Basin in the USA) (Alvarado and Manrique, 2010). In 2012, CO2 floodings into sandstone and 

carbonate formations were able to produce around 280,000 barrels of oil per day, just over 5% of total 

U.S. crude oil production (Enick et al., 2012; Zhang et al., 2019). Associated CO2 capture can also help 

reduce carbon emissions from power plants and other industrial processes that generate large 

quantities of CO2. 

CO2 consists of two oxygen atoms and one carbon atom. It can form a liquid or supercritical phase at 

typical reservoir temperature and pressure conditions, and its critical pressure (Pcrit) is 73.8 bar, and 

critical temperature (Tcrit) is 31.1⁰C. When reservoir temperature and pressure are above critical 

thresholds, CO2 is called ‘’supercritical’’. In comparison with other gases, CO2 has significant variations 

in viscosity and density close to the critical point. This can make the displacement front more stable 

during CO2-EOR injection. Moreover, supercritical CO2 gas viscosity and density close to that of a liquid 

reduce the gravity drainage effect in comparison with other gas injections (Rossen et al., 2007; 

Fredriksen, 2018). By achieving miscibility of CO2 with the reservoir fluids, the interfacial tension (IFT) 

becomes negligible resulting no oil trapped by capillary forces and implies that the residual oil 

saturation can be reduced to almost zero during CO2 miscible flood. The volume of the oleic phase can 

also be increased if the injected gas mixes with and/or dissolved into reservoir oils. This yields more oil 

production due to the swelling effect combined with pressure surge (Holm and Josendal, 1974; Yellig 

and Metcalfe, 1980).  

 

CO2 Emissions 

Increasing greenhouse gas emissions in the atmosphere is becoming a significant concern worldwide. 

A global effort has been undertaken in the announcement of Paris agreement to limit the average 

temperature rise to 2 °𝐶 and limit the CO2 concentration to 450 ppm by the end of the 21st century 

(UNFCC, 2015).  Billions of tons of carbon in the form of CO2 are absorbed by oceans and living biomass 

(e.g., sinks) and are emitted to the atmosphere annually through natural processes (e.g., sources) (EPA, 

2018). In equilibrium, global carbon fluxes among these various reservoirs are roughly balanced. The 

global atmospheric concentrations of CO2 have risen approximately 45 percent since the Industrial 

Revolution in the late 1700s. This is due to the combustion of fossil fuels for energy. In 2017, fossil fuel 

combustion in the U.S. accounted for 93.2 percent of CO2 domestic emissions (EPA, 2018). 
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Figure 2: Sources of CO2 emissions, where CO2 from fossil fuel combustion is the largest source of U.S. greenhouse gas 
emissions, which has increased from 4738.8 MMT CO2 Eq. to 4912.0 MMT CO2 Eq., a 3.7 percent total increase between 1990 
and 2017. Conversely, these emissions decreased by 49.9 MMT CO2 Eq. (1.0 percent) from 2016 to 2017. There are 25 
additional sources of CO2 emissions included in this inventory. CO2 in blue, representing approximately 81.6 percent of total 
greenhouse gas emissions, which was primary greenhouse gas emitted by human activities in the U.S. (EPA, 2018). 

In 2016, approximately 32,310 million metric tons (MMT) of CO2 equivalents were added to the 

atmosphere through fossil fuels combustion worldwide, of which the U.S. accounted for approximately 

15 percent. Figure 2 illustrates the sources of CO2 emissions as the following (EPA, 2018); 

• CO2 emissions from fossil fuel combustion, which increased from 4739 MMT CO2 Eq. to 4.912 

MMT CO2 Eq. (3.7 %) between 1990 and 2017. From 2016 to 2017, these emissions decreased 

by 49.9 MMT CO2 Eq. (1.0 %) and they are the largest source of U.S. greenhouse emissions. 

• CO2 emissions from non-energy use of fossil fuels, which increased by 3.7 MMT CO2 Eq. (3.1 

%) from 1990 through 2017. 

• CO2 emissions from iron and steel production and metallurgical coke production, which have 

decreased by 59.8 MMT CO2 Eq. (58.9 %) from 1990 through 2017, due to the restructuring of 

the industry and increased scrap steel utilization. 

There are 23 additional sources of CO2 emissions included in the study (see Figure 2). Although not 

illustrated in Figure 2, forestry practices and changes in land use can also lead to net CO2 emissions or 

to a net sink of CO2 (e.g., through net additions to forest biomass) (EPA, 2018). Different approaches 

are considered and adopted by various countries to mitigate their CO2 emissions, including (Leung et 

al., 2014); 

- Switch to less carbon-intensive fuels (coal to natural gas). 

- Increase the energy efficiency of industrial processes. 

- Increase the capacity of biological sinks (e.g., afforestation and agriculture). 

- Increase energy production from renewable (e.g., solar, wind and hydro) and nuclear sources. 

- Addition of carbon capture and storage (CCS) capability to fossil-fuel-based power sources and 

energy-intensive industries. 
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CO2 Miscibility 

For petroleum reservoirs, miscibility can be defined as the physical condition between two or more 

fluids that will permit them to mix in all proportions (Holm, 1986). Miscible CO2 injection is a vital EOR 

process, and it is a proven technology targeting light to medium oils. Since 2012, CO2 miscible flooding 

has become the most productive EOR method in the United States (Zhang et al., 2019). Depending on 

the reservoir pressure and temperature, two types of miscible flooding can occur; first-contact 

miscibility (FCM) where oil and gas miscible when mixed in all portions, or miscibility can also be 

developed by a multiple-contact (MCM) process (Bahadori, 2018). 

The pressure at which miscibility occurs is defined as minimum miscibility pressure (MMP) (Bahadori, 

2018). CO2 MMP is determined by pressure, temperature, solvent purity, and molecular weight of the 

heavy fractions of the reservoir oil (Lake et al., 2014). In order to achieve optimal recovery of the 

residual oil in the reservoir, CO2 pressure has to be equal or higher than MMP. In an oil reservoir, the 

composition of the crude oil may influence CO2 miscibility (Zhang et al., 2015; Wei et al., 2017). 

Another critical parameter for oil recovery is the CO2 solubility. Solubility is the ability of a limited 

amount of one substance to mix with another substance to form a single homogeneous phase (Holm, 

1986). CO2 solubility in the brine or oil phase is an important parameter that can affect EOR processes. 

CO2 solubility in crude oil is mainly controlled by saturation pressure, temperature, and API gravity. 

CO2 solubility increases with pressure and API gravity and decreases with a rise in temperature. At 

supercritical CO2 condition, CO2 dissolves in oil as a gas rather than as a liquid. This consequently affects 

oil viscosity, density, and interfacial tension (IFT) (Bahadori, 2018). CO2 solubility in the oil phase results 

in oil viscosity reduction and swelling, which consequently, enhances the oil recovery (Blunt et al., 

1993). A better understanding of solubility and its effects on oil recovery and CO2 storage mechanisms 

plays an essential role in the success of CO2-based EOR and CO2 storage projects (Mosavat et al., 2014). 

 

Benefits of CO2 injection 

The most prominent advantage of CO2 injection is reducing greenhouse gases in the atmosphere and 

consequently reducing environmental problems such as global warming. The purpose of CO2 injection 

is mainly to improve microscopic sweep (Ahmadi et al., 2016). When CO2 and reservoir oil are mixed, 

two physical changes occur, leading to enhanced oil recovery. First, the CO2-oil mixture has a lower 

viscosity than the original oil, which makes it easier for the contacted oil to flow in the porous medium. 

Second, the high CO2 solubility in oil causes the oil to swell (Holm and Josendal, 1974; Do and 

Pinczewski, 1993). Oil swelling has a positive impact on oil recovery, as it mobilizes the remaining oil 

by increasing the oil saturation, and hence, the oil relative permeability also increases (Do and 

Pinczewski, 1993). The vertical sweep efficiency can also be improved because CO2 density is lower 

than oil so it will move towards the top of the reservoir and it can sweep areas that the water did not 

sweep (Wang et al., 2018). During miscible flooding, CO2 can extract heavier crude oil components up 

to C30 compared to hydrocarbon gases, such as lean gas, which can only extract intermediate 

components, C2-C6 (Skjæveland, SM and Kleppe, J., 1992). It can also achieve pressure maintenance, 

but it is not considered as an EOR method. 
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Challenges of CO2 injection 

There are a number of challenges with gas injection. First and foremost is that the overall sweep 

efficiency is reduced due to early gas breakthrough during immiscible CO2 flooding. Typically it takes 

about 10 MCF of CO2 to recover an incremental barrel of oil, causing large quantities of effluent CO2 

that that must be separated from the hydrocarbons, re-pressurized and re-injected (Pope, 2011). In 

reservoirs with good vertical communication between layers, gravity override (Figure 3c) occurs due 

to the low density of CO2, where CO2 can segregate to the top of pay zones (Fredriksen, 2018). The low 

CO2 viscosity compared to water and oil results in viscous fingering (Figure 3a) (Lake et al., 2014). Gas 

channeling (Figure 3b) can lead to early CO2 breakthrough at the producer and low incremental oil 

recoveries (Fredriksen, 2018). Moreover, flow assurance issues where gas and water under specific 

temperature and pressure conditions form hydrates, or asphaltene precipitation from the oils during 

gas injection (Panuganti et al., 2012). The reservoir heterogeneities can also lead to poor sweep 

efficiency and bypass of uncontacted oil (J. S. Kim et al., 2005). However, in many shallow reservoirs, 

the pressure is below the minimum miscibility pressure (MMP) for efficient CO2 displacement. This 

remaining crude oil usually is not a target of CO2 floods (Hirasaki et al., 2015). 

 

Figure 3: Problems caused by high CO2 mobility in a reservoir. In gas injection; a) viscous fingering, which occurs due to low 
gas viscosity compared to the viscosity of the oil and as a result an unstable displacement front will be created (Fredriksen, 
2018), b) gas channeling due to high-permeability regions which lead to rapid gas breakthrough and poor vertical 
displacement efficiency , and c) gravity override, which occurs as a result of gravity forces and density contrasts between 
injected and displaced fluid (Zolotukhin and Ursin, 2000). CO2 injected in red and reservoir matrix in white (Alcorn, 2018). 
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2.2 CO2 Foam Enhanced Oil Recovery 

CO2 foam EOR shows improvement in both vertical and aerial sweep efficiencies by reducing CO2 

mobility and reducing the effect of reservoir heterogeneity (Lee and Kam, 2013). CO2 foam has great 

potential to improve oil production. Foams block the high-permeable zones to divert injected gas to 

lower permeability zones, thereby improving sweep efficiency, and stabilizing the displacement 

process. The major challenge associated with the gas injection is its poor volumetric sweep efficiency, 

as a result of which gas does not contact a significant fraction of the reservoir, therefore, the overall 

recovery remains low (see Figure 4) (Farajzadeh et al., 2012). Foam affects oil recovery in two ways; 

(1) stabilize the displacement process by increasing gas viscosity and (2) diverting gas toward upswept 

zones to reach remaining and trapped oil left behind the water-flood. Increasing oil recovery by 

increasing the capillary number is the primary goal of any recovery method. Increasing the capillary 

number can be done in two ways; increasing gas viscosity and reducing interfacial tension (IFT) 

(Farajzadeh et al., 2010). 

 

Figure 4: Schematic showing gas flooding vs. foamed gas flooding (Farajzadeh et al., 2012). 

 

In a porous media, foam can be defined as a gas-liquid dispersion, where the liquid is the continuous 

phase, and gas is the discontinuous phase (David and Marsden Jr, 1969). The liquid phase consists of 

water or a water/hydrocarbon mixture (Gauteplass et al., 2015), while the most common gas phases 

used in petroleum engineering are N2, CO2 and hydrocarbon gas (HC). The gas phase is contained inside 

the liquid phase in multiple bubbles that are separated by thin liquid film defined as lamellae, 

illustrated in Figure 5. The connection of three lamellas at an angle of 120⁰ is referred to as the plateau 

border (Lake et al., 2014). Lamellae stabilized by adding surface-active agents (surfactants) or 

nanoparticles (nanoparticles applied in this thesis) to the aqueous phase or to the CO2 (Laurier L 

Schramm, 1994; Enick et al., 2012). There are two types of foam: wet foam and dry foam. A foam 

comprising spherical bubbles separated by thick layers of liquid is referred to a wet foam, whereas 

foam bubble with the polyhedral shape is referred to dry or strong foam, where lamellae separated 

the discontinuous gas phase (Chang and Grigg, 1999; Sheng, 2013a).  
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Figure 5: Bulk foam structure comprising thin liquid lamellae connected in Plateau borders (Laurier Lincoln Schramm, 1994). 

 

2.2.1 CO2  Foam Generation 

Foam in porous media is generated during the co-injection of gas and foaming agent (surfactant or 

nanoparticle) solution. Foam can also be generated during the injection of CO2 and surfactant as 

alternating (e.g., SAG). There are three methods of lamellae creation, illustrated in Figure 6; (a) leave-

behind, (b) capillary snap-off, and (c) lamellae division (Ransohoff and Radke, 1988).  

 

Figure 6: Illustration of Lamella creation mechanisms. a) Leave-behind mechanism occurs when CO2 enters a pore-throat 
opposite direction, b) Snap-off mechanism is the swelling of wetting-films at pore-throats, and c) Lamella division when the 
CO2 bubble passes through pore-throats to create new bubbles(Ransohoff and Radke, 1988). 

Leave-behind lamellae (Figure 6a) begin as two gas fronts from different directions approach the same 

pore space filled with liquid. The liquid in the pore space will then be squeezed into a lamella by the 

two gas fronts. Gas pathways are blocked, as this mechanism creates a large number of lamellas, 

resulting in a reduction in gas relative permeability and increased resistance to gas flow. The amount 

of leave-behind lamellas depends on the coordination number of a pore. This form of lamella creation 

occurs only during the drainage-like process (CO2 saturation increases across the pore-network). 

Hence, the foam generated by leave-behind mechanism is weak due to not forming separate gas 
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bubbles, where gas remains as a continuous phase (Ransohoff and Radke, 1988; Ettinger and Radke, 

1992; Rossen, 1999). 

Snap-off mechanism (Figure 6b) occurs when gas (non-wetting phase) displaces liquid in pore space 

and flows through a narrow pore throat. The snap-off of a gas bubble occurs when the capillary 

pressure decreases as the gas bubble expands, and the differential pressure across the gas-liquid 

interface at the pore throat is more significant than at the leading interface (Ransohoff and Radke, 

1988). Discontinuity in the flowing gas phase is increased, and lamellae are generated (Dicksen et al., 

2002). The foam bubbles block the pathway of the flowing gas and result in a decrease in gas 

permeability. This mechanism is considered the main mechanism for foam generation in porous media 

and leads to generate a strong foam in the presence of a foaming agent (i.e., surfactants) (Ransohoff 

and Radke, 1988; Chen et al., 2010; Liontas et al., 2013; Gauteplass et al., 2015). 

Lamella-division mechanism (Figure 6c) is denoted as a secondary foam generation as it only occurs 

when the foam is already present and flow in the porous media (Ransohoff and Radke, 1988). When a 

moving lamella approaches a branch point in the field of flow, the leading front (lamella and gas) can 

flow either into two or more channels, generating new lamellae (Dicksen et al., 2002). Lamella division 

is repeated several times at the same point, where bubbles may either flow through the media or block 

the gas pathway (Sheng, 2013a). Sufficient lamella division may render the CO2 phase discontinuous, 

resulting in a significant reduction in CO2 mobility at constant flow conditions (Fredriksen, 2018).   

 

2.2.2 CO2  Foam Stability 

CO2 foam stability is dependent on the stability of the lamellae. Foam is thermodynamically unstable, 

and eventually, it collapses, so it is essential to predict the foam stability (Gauglitz et al., 2002). An 

effective foaming agent is needed in order to make sure that foam remains stable in the reservoir over 

distance and time (Farajzadeh et al., 2012). Film thinning and coalescence (film rupturing) are two 

processes that can be related to foam stability (Schramm, 1994). There are several factors that 

influence the stability of the foam, including properties of the foam film and the petrophysical 

properties of the porous media (Sheng, 2013a). Some of these factors are bubble size diffusion, 

pressure, temperature, capillary pressure, liquid viscosity, the presence of oil, and foaming agent 

(surfactant and/or nanoparticle) (Schramm, 1994; Sheng, 2013b; Lake et al., 2014).  

 

Effect of oil saturation on foam stability 

Foam stability depends on the oil saturation in the formation. Oil can destroy aqueous foams, 

depending on the foaming agent formulation, compositions of the oil and gas, pressure, and 

temperature (Schramm, 1994; Rossen, 1996). Oil spreading on the water/gas interface is believed to 

be a significant mechanism of foam destruction by oil (Lee and Kam, 2013). The previous laboratory 

studies focused on a limiting oil saturation for foam stability, above which no foam could form (Lake 

et al., 2014). Oil can reduce foam stability by changing the surface tension at the film surfaces 

(Farajzadeh et al., 2012). When oil droplets enter into the foam lamella and spread on the gas-liquid 

interface, the gas-water interface becomes a gas-oil interface, which changes interfacial forces and 

makes lamella unstable (Farajzadeh et al., 2012; Sheng, 2013a). Foam stability in the presence of oil 

has been found to be related to the molecular weight of the oil molecule (Schramm, 1994). Foam 

generation and stability can possibly be connected to the foaming agent’s ability to solubilize oil 

molecules (Farajzadeh et al., 2012). Oil destabilizes foam when it creates emulsions. The foam seems 
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to be destabilized most by oil consists of light components (Schramm, 1994). Foam injection with 

intermediate to low tolerance for oil may be sufficient for mobility control in swept regions where the 

oil saturation is low (Sheng, 2013a). If the foam is destroyed, apparent foam viscosity decreases due 

to that capillary forces dominated over the viscous forces, and oil remains trapped (Farajzadeh et al., 

2010). 

 

2.2.3 CO2  Foam Flow Behavior 

In porous medium, foam does not alter water relative permeability or liquid viscosity. However, foam 

reduces gas mobility significantly (Liu et al., 2011). There are several methods to describe the foam 

flow behavior in porous media, such as foam quality, apparent foam viscosity, and the foam mobility 

reduction factor (Sheng, 2013a). 

 

CO2 Foam Quality 

Foam is generally characterized by foam quality and bubble size. Both are essential factors that affect 

the behavior of the foam flow (Sheng, 2013a). In Eq. (2.1), foam quality  (𝑓𝑄) is defined as the ratio of 

gas volumetric flow rate (𝑞𝑔)  and the sum of the total volumetric flow rate of liquid and gas 𝑞𝑙 + 𝑞𝑔 

multiplied by 100 percent (Farajzadeh et al., 2012). The unit for foam quality is the percentage (%). 

 

 
 𝑓𝑄 =

𝑞𝑔

𝑞𝑙 +  𝑞𝑔
× 100% 

(2.1) 

 

 

CO2 Foam Apparent Viscosity 

The foam viscosity is much higher compared to both water and gas (Bertin et al., 1998). The apparent 

foam viscosity ( 𝜇𝑎𝑝𝑝) is defined as the relationship between flow rate and pressure drop for foam 

flow through a capillary (Friedmann and Jensen, 1986; Chang and Grigg, 1999). Apparent viscosity can 

be calculated using Darcy’s law, considering foam as a single fluid: 

 
𝜇𝑎𝑝𝑝 =  

𝑘𝐴∆𝑝

𝑞𝑓𝐿
 

(2.2) 

 

Where 𝜇𝑎𝑝𝑝 is the apparent viscosity, 𝑘 is the absolute permeability, 𝐴 is the cross-section to the flow 

rate, ∆𝑝 is the differential pressure across the capillary, 𝑞𝑓 is the volumetric foam rate, and  𝐿 is the 

length of the capillary (Svorstol et al., 1996). Equation (2.2) can be modified in terms of pressure 

gradient and superficial velocities of gas and liquid and can be rewritten as equation (2.3):  

 
𝜇𝑎𝑝𝑝 =  

𝑘∇𝑃

𝑢𝑔 +  𝑢𝑙
 

  
(2.3) 

 

where 𝑘 is the absolute permeability, ∇𝑃 is the pressure gradient over the core plug and 𝑢𝑔 and 𝑢𝑙 are 

the superficial velocities of gas and liquid, respectively (Rognmo et al., 2017). 
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Foam texture (bubble size) is an important variable affecting the foam viscosity, whereas the finer 

foam texture has more lamellae per unit length and results in higher resistance to flow. The principal 

factors affecting foam apparent viscosity in uniform capillaries are dynamic changes at gas/liquid 

interfaces. These mechanisms are; (1) slugs of liquid between gas bubbles, (2) viscous and capillary 

forces result in interfaces that are deformed against the restoring force of surface tension, and (3) the 

surface tension gradient, which is a result of surface-active material being swept from the front of the 

bubble and accumulated at the back of the bubble (Hirasaki and Lawson, 1985; Friedmann and Jensen, 

1986; J. Kim et al., 2005). 

 

CO2 Foam Mobility Reduction Factor (MRF) 

The mobility reduction factor (MRF) characterizes the foam strength. MRF (eq. 2.4) is a dimensionless 

parameter defined as the ratio of apparent viscosities of foam and no-foam floods at given constant 𝑘  

(Schramm, 1994). Commercial simulators like CMG (STARS and GEM) and ECLIPSE, use the MRF in 

modeling foam behavior because the foam flooding mechanism is mainly due to increased foam 

viscosity and reduced gas permeability (Sheng, 2013a).  

 

 
 𝑀𝑅𝐹 =  

𝜇𝑓

𝜇𝑛𝑓
 

(2.4) 

 

where 𝜇𝑓 and 𝜇𝑛𝑓 are apparent viscosities of foam and no-foam, respectively.  
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2.3 Silica Nanoparticle-Stabilized CO2 Foam Flooding 

In recent years, with the development of nano-science, new technologies have provided the 

alternative of nanoparticle-stabilized CO2 foam (Yu et al., 2012). Due to their specific characteristics 

and advantages, the nanoparticles-stabilized emulsion has gained attention compared to foam 

generated by surfactants (Mo et al., 2012; Sun et al., 2019). Silica nanoparticles are also found to be 

environmentally friendly due to their natural occurrence in the reservoir. This makes them particularly 

interesting as EOR agents (Skauge et al., 2010). 

The size of nanoparticles (in the range of 1-100 nm) allows unrestricted flow through the small pore 

throats in most sedimentary rock (Rognmo et al., 2017). Nanoparticles consist of core and surface 

molecules that are covalently linked or grafted. Electrical and magnetic properties of nanoparticle are 

mainly controlled by the core, whereas the surface layer of molecules determines the binding affinity 

for a specific target (Bennetzen and Mogensen, 2014). Nanoparticles are classified into three 

categories, such as metal oxides, organic, and inorganic (Negin et al., 2016). In EOR applications, 

spherical silica particles are most commonly used due to their effectivity and low cost (Ogolo et al., 

2012). Silica nanoparticles consist of a diameter in the range of several tens of nanometers and the 

coating extent of silanol groups on their surface control the wettability of the particles (Zhang et al., 

2010). The nanoparticle is hydrophilic if over 90% of the surface is covered by silanol groups. They are 

hydrophobic if only 10% of the particle surface is covered by the silanol groups. Hydrophilic will form 

a stable oil-in-water emulsion, and hydrophobic will generate emulsions of water-in-oil (Zhang et al., 

2010; Ogolo et al., 2012; Negin et al., 2016) 

Emulsion is referred to as liquid dispersion in another liquid phase (Berg, 2010). Highly stable emulsions 

can be generated by using solid nanoparticles. As a foaming agent, silica nanoparticles may stabilize 

CO2 foam in the co-injection of CO2 and nanoparticle solution by creating CO2-in-water of water-in-

CO2. Nanoparticle emulsions may withstand in the reservoir with high-temperature for an extended 

period of time (Dicksen et al., 2002; Zhang et al., 2009). Nanoparticles are mechanically and thermally 

stable, and they are preferred foaming agents in reservoir conditions due to their resistance in high 

pressure, temperature, shear, and salinity (Bennetzen and Mogensen, 2014). Foam stability is 

dependent on nanoparticles concentration (Mo et al., 2014). CO2 foam can be generated with a 

concentration as low as 100 PPM (Mo et al., 2014). 

Retention may cause damage to rock properties like porosity, permeability, and wettability when 

injecting nanoparticles solution in permeable sedimentary rock. Nanoparticles can be trapped or 

captured when they move in a formation. This may be caused by three main mechanisms; (i) 

adsorption of the nanoparticles on the rock surface caused by the Brownian motion, and the 

electrostatic interaction between the moving particle and the pore wall; (ii) size exclusion, which 

obtains when the injected particles are more significant than the pore throats; (iii) sedimentation or 

gravity settling of particles which occurs when there are significant differences between nanoparticles 

and the dispersed fluid (Gao, 2007). Nanoparticles have lower retention compared to surfactants 

(Zhang et al., 2009). In sandstone cores, silica nanoparticles show propagation without difficulties 

(Skauge et al., 2010). 
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2.4 Surfactant-Stabilized CO2 Foam Flooding 

The main aim of using surfactant (surface-active-agent) flooding is to reduce the interfacial tension 

(IFT) between oil and water for mobilizing the capillary-trapped residual oil after water flooding (Lake 

et al., 2014). Surfactants are chemical substances and have an essential role in enhanced and tertiary 

oil recovery.  They adsorb to gas-liquid interface and lowering IFT due to their amphiphilic (hydrophilic 

and hydrophobic part) molecules. Surfactants can also be used to change wettability, promote 

emulsification, lower bulk-phase viscosity, and stabilize dispersions (Lake et al., 2014). Co-injection of 

CO2 and surfactant solution is able to generate a more stable foam for foam mobility control compared 

to co-injection of CO2 and brine solution (Chang and Grigg, 1999).  

Surfactants are classified into four major types that are distinguished by the electric charge of the 

surfactant molecules polar group (Green and Willhite, 1998). These types are; anionic, cationic, 

nonionic, zwitterionic. Anionic surfactants have been the most widely used in oil recovery due to their 

ability to reduce the IFT, their stability, their relatively low adsorption on sandstone reservoir rock, and 

their economic manufacturing process (Zolotukhin and Ursin, 2000). Anionic alpha-olefin sulfonate 

(AOS) surfactants are used as a foaming agent in many  CO2 foam projects due to their low adsorptions 

in sandstones (Enick et al., 2012). 

In porous media, surfactants are often used to improve foam generation and to stabilize the foam 

(Enick et al., 2012).  Surfactant-stabilized foam relies on continuous regeneration of lamellae in the 

small pores of the rock for maintaining mobility control. Surfactant types and concentrations have an 

essential impact on foam texture (bubble size) and viscosity. Increased surfactant concentration leads 

to smaller bubble size and therefore increase in foam viscosity. Surfactants must satisfy rock surface 

adsorption, and surfactant solution must fill in the liquid-saturated pore space (Rossen, 1996). In harsh 

reservoir condition where high temperature, high salinity, surfactants will leave the liquid-gas interface 

providing short-term stability and more reduced performance (Metin et al., 2011; Mo et al., 2014).  
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2.5 CO2  EOR and CO2 Storage as part of CCUS 

Reduction of greenhouse gas (GHG) emissions has been in focus due to global warming and pollution. 

Therefore, activity on the use of CO2-driven EOR as well as activity of Carbon Capture Utilization and 

Sequestration (CCUS) have been increased (Lee and Kam, 2013). Utilization and safe long-term 

sequestration of CO2 can be obtained in mature oil fields, which have provided significant interests 

globally. CO2 injection for carbon sequestration in deep geological formations is an essential operation 

for mitigating CO2 emissions in the atmosphere. CO2 has to be sequestered in underground formations 

to limit CO2 emissions. CO2 can be stored in the subsurface as (i) mineral precipitates produced by 

chemical reactions, (ii) dissolved constituent in naturally occurring groundwater, and (iii) free CO2 in 

pore spaces of reservoir rock (Pruess et al., 2001; Bachu and Adams, 2003; Leung et al., 2014). Figure 

7 illustrates the three main steps for carbon capture and storage (CCS), where firstly CO2 has to be 

captured from the fuel source used at power plants and/or industrial facilities, secondly transportation 

of CO2 to the storage sites such as depleted oil or gas reservoirs, then thirdly and final step is to inject 

CO2 into underground reservoirs for storage. 

On the Norwegian Continental Shelf (NCS), the Equinor Sleipner project is considered to be one of the 

global pioneers of CCS. The project was the first in the world to use pure CCS technology in a deep 

saline reservoir (Hardisty et al., 2011). CO2 produced from the Sleipner West Gas Field is separated and 

injected into the Utsira formation. Since 1996 approximately 1 MMT per year of CO2 have been 

separated from the natural gas and stored into a saline aquifer (the Utsira formation) above the 

hydrocarbon reservoir zones (Steeneveldt et al., 2006). 

 

Figure 7: Carbon capture and sequestration, (1) capturing CO2 from the fuel source used at power plants or industrial facilities 
is the first step in the CCS process, (2) transporting the captured CO2 to the storage sites such as saline aquifers and depleted 
oil or gas reservoirs, and (3) injecting CO2 into underground reservoirs for storage. Adapted from (Exxon Mobil, 2019). 
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2.6 Reservoir Simulation 

In the oil industry, reservoir simulation is considered the standard for solving reservoir engineering 

problems. Reservoir simulation refers to the construction and operation of a model whose behavior 

assumes that of actual reservoir behavior (Abou-Kassem et al., 2013). In oil recovery, reservoir 

simulation estimates the field performance under one or several producing schemes. In simulators, 

the reservoir is divided into three dimensions in discrete units. In a series of discrete steps, fluid 

properties and reservoir’s development are modeled through space and time. It is essential to define 

model geometry, rock, and fluid properties, and initial fluid distribution for each cell in order to make 

the simulation model as realistic as possible. These can be obtained from well-logs, geological and 

geophysical analysis, and experimental studies on core plugs (Computer Modelling Group Ltd, 2016). 

2.6.1 Numerical Modelling in CMGTM  

Computer Modelling Group (CMGTM) provides three modeling simulator tools (Computer Modelling 

Group Ltd, 2017). These tools are IMEX (IMplicit-EXplicit Black Oil Simulator), GEM (Generalized 

Equation of State Model Reservoir Simulator) and STARS (Steam, Thermal, and Advanced Process 

Reservoir Simulator). In this thesis, the numerical models created and investigated are simulated with 

GEM simulator. According to Computer Modelling Group LTD (2017), CMG-GEM can be described as 

the following; CMG-GEM is advanced Equation-of-State (EOS) compositional reservoir simulator 

(Computer Modelling Group Ltd, 2016). The unconventional simulator is used to study the complex 

compositional and inter-phase interactions of multiphase reservoir fluids during primary and enhanced 

recovery operations. It is used extensively for CO2-processes. Phenomena such as viscosity and IFT 

variation, vaporizing and swelling of oil, liquid drop out from gas, in addition to miscibility between 

two fluids can be investigated through GEM. GEM allows cartesian, cylindrical, and variable thickness 

grids, as well as explicit, thoroughly, and adaptive implicit solution models (Computer Modelling Group 

Ltd, 2017). 

In GEM, the Peng-Robinson equation of state is used to perform the phase change calculations. The 

Equation-of-state (EOS) establishes a relationship between pressure, molar volume, and temperature 

data to calculate the phase behavior (Computer Modelling Group Ltd, 2016). CMG’s WinProp program 

is an Equation-of-State (EOS)-based fluid behavior and PVT (pressure-volume-temperature) modeling. 

In WinProp laboratory data for fluids can be imported, and an EOS can be tuned to match its physical 

behavior (Computer Modelling Group Ltd, 2017). Fluid interactions can then be predicted, and a fluid 

model may be created for use in CMG-GEM.  GEM has seven different keywords groups. These sections 

need to be followed in every simulation deck file (Computer Modelling Group Ltd, 2017): 

• Input-Output control 

• Reservoir description 

• Component properties 

• Rock Fluid data 

• Initial conditions 

• Numerical method control 

• Geo-mechanics Data  

• Well and recurrent data 

In a compositional model, the equilibrium flash calculations by EOS has to be used to determine 

hydrocarbon phase compositions where the mass balance are made for each hydrocarbon component 

(Computer Modelling Group Ltd, 2016). CMG-GEM is used to model core flooding experiments in this 

thesis, injecting CO2-brine, together with and without nanoparticles as the foaming agent. 
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2.6.2 History matching  

History matching is a forward modeling technique that involves adjusting a reservoir/core model in a 

numerical reservoir simulator until it reasonably models the historical behavior of an existing reservoir 

and wells. History matching is a classical mathematical problem where the closer the initial guess is to 

the correct answer, the faster the convergence is to the correct answer (Baker et al., 2006). It is 

necessary to history match measured performance, such as pressure distribution and fluid productions 

in order to validate a reservoir model (Mattax and Dalton, 1990; Archer and Wall, 2012). The intention 

of history matching is to find the reservoir parameters that can minimize the difference between the 

model performance and the historical performance of the field. History matching reduces the reservoir 

model uncertainties (Fanchi, 2005).  

There are three general components of a history match; (1) historical match of rates and cumulative 

volumes, (2) history match recent data, and (3) history matching infill well results (Baker et al., 2006). 

After a successful history match, the model can be used for further predictions of future reservoir 

behavior and production. It is essential to have a better understanding of how reservoir properties 

vary in the reservoir to achieve correct predictions of reservoir performance in the future. History 

match parameters are controlled by physical parameters, such as relative permeability, permeability 

distribution, and porosity (Baker et al., 2006).  

In this study, CO2 relative permeability was investigated for different injection rates in order to obtain 

a history match of experimental observations, including differential pressure and foam apparent 

viscosity. Upon achieving the history match, a sensitivity analysis was conducted by changing some of 

the foam model parameters during CO2 foam flooding.  
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2.7 Overview of Two-Phase Relative Permeability  

The two-phase relative permeability is one of the most important parameters to consider when 

simulating the flow of water/gas and water/oil systems. Relative permeability is the ratio of the 

effective permeability and absolute permeability, and it is a key parameter in modeling multiphase 

flow scenarios. Relative permeability depends strongly upon wettability, as wettability is a property 

with a significant impact on fluid saturation and distribution. Lately, the growing research interests in 

CO2 geological storage have motivated both experimental measurements of CO2-brine relative 

permeabilities (Bennion and Bachu, 2010; Mosavat et al., 2014) and modeling studies on CO2 geological 

storage that use CO2 relative permeability as a key input (Doughty, 2005; Kamali et al., 2015). 

Corey developed the power-law model to describe the relative permeability as a function of 

normalized gas saturation (Corey, 1954). The Corey-type relative permeability functions to be applied 

in the CO2/water have the following forms (see Eq. 2.5 – Eq. 2.7). 

 

 𝑘𝑟𝑔 = 𝑘𝑟𝑔
0  (𝑆𝑔

∗)𝑛𝑔 

 

(2.5) 

 𝑘𝑟𝑤 = 𝑘𝑟𝑤
0  (1 − 𝑆𝑔

∗)𝑛𝑤 

 

(2.6) 

 
  𝑆𝑔

∗ =
𝑆𝑔 − 𝑆𝑔𝑖

1 − 𝑆𝑔𝑖 − 𝑆𝑤𝑟
 

 

(2.7) 

   

where 𝑘𝑟𝑔 and 𝑘𝑟𝑤  are relative permeability to gas and water respectively , 𝑘𝑟𝑔
0  and 𝑘𝑟𝑤

0  are maximum 

relative permeability of gas and water respectively,  𝑆𝑔
∗ is the normalized gas saturation which is a 

function of gas and residual water saturation,  𝑛𝑔 and 𝑛𝑤 are Corey exponents for gas and water 

respectively, 𝑆𝑔 and 𝑆𝑔𝑖 are gas and initial gas saturation respectively and 𝑆𝑤𝑟 is the irreducible water 

saturation. In this study, the exponents  𝑛𝑔 and 𝑛𝑤 range from 1 to 3. The maximum relative 

permeability values, 𝑘𝑟𝑔
0  and 𝑘𝑟𝑤

0  are between 0 and 1. 

Corey functions also calculate the relative permeability in water/oil as a function of normalized water 

saturation. The following equations (Eq. 2.8 – Eq. 2.10) are used based on the work presented by 

(Corey, 1954):  

 

 𝑘𝑟𝑤 = 𝑘𝑟𝑤
0  (𝑆𝑤

∗ )𝑛𝑤 
 

(2.8) 

 𝑘𝑟𝑜 = 𝑘𝑟0
0  (1 − 𝑆𝑤

∗ )𝑛𝑜 

 

(2.9) 

 
𝑆𝑤

∗ =
𝑆𝑤 − 𝑆𝑤𝑖

1 − 𝑆𝑤𝑖 − 𝑆𝑜𝑟
 

 

(2.10) 

   
where 𝑘𝑟𝑤 and 𝑘𝑟𝑜  are relative permeability of water and oil respectively , 𝑘𝑟𝑜

0  and 𝑘𝑟𝑤
0  are maximum 

relative permeability of oil and water respectively,  𝑆𝑤
∗  is the normalized water saturation which is a 

function of water and residual oil saturation,  𝑛𝑜 and 𝑛𝑤 are Corey exponent for oil and water 

respectively, 𝑆𝑤 and 𝑆𝑤𝑖 are gas and initial water saturation respectively and 𝑆𝑜𝑟 is the residual oil 
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saturation. In this study, the exponents  𝑛𝑜 and 𝑛𝑤 range from 2 to 4. The maximum relative 

permeability values, 𝑘𝑟𝑜
0  and 𝑘𝑟𝑤

0  are between 0 and 1. The relative permeability curves used in this 

work were established by using the empirical relative permeability correlations of the above modified 

Corey. 
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Chapter 3: Methods 

This chapter describes the data acquisition procedure for obtaining experimental data and deriving the 

model input data. A brief description of the experimental procedure, performed by Rognmo and other 

members of the Reservoir Physics Group, is outlined. Please refer to Rognmo et al. (Rognmo et al., 

2017) for further details about the performed experiment. This chapter also describes the simulation 

set up and outlines the proposed methodology for the determination of model input parameters, 

including residual water saturation, water-gas end-point relative permeability, and Corey exponents. 

Additionally, the selection and tuning of parameters to history match the quality scan are discussed.  

 

3.1 Review of Foam Quality Scan Experiment 

Experimental work at the Reservoir Physics Group is used as the basis for the simulation work in this 

thesis. Core flooding was performed on a homogeneous Bentheimer sandstone outcrop core, denoted 

ST3. Bentheimer consists of quartz (95%), feldspar (< 2%) and clays (3%) (Rognmo et al., 2017). The 

summary of rock and fluid properties is shown in Table 3.1.  

 

Table 3. 1: Summary of Rock and Fluid properties for core ST3 (Rognmo et al., 2017). 

Core diameter, D [cm] 3.77 

Core length, L [cm] 28.8 

Porosity ∅, [%] 23.8 

Permeability,  𝜅 [mD] 2252 

Pore volume, Vp [𝑐𝑚3] 76.5 

Brine viscosity, 𝜇𝑏𝑟𝑖𝑛𝑒  [cP] 1.03 

CO2 viscosity, 𝜇𝐶𝑂2  [cP] 0.079𝑎 

Initial brine saturation, 𝑆𝑤𝑖 1 

Initial CO2 saturation, 𝑆𝑔𝑖 0 

Experimental conditions 20 °𝐶 / 9000 kPa 

Nanoparticle concentration [ppm] 1500𝑏 

Brine density 𝜌𝑏𝑟𝑖𝑛𝑒 [g/𝑐𝑚3] 1.01 

Nanofluid density 𝜌𝑁𝑃 [g/𝑐𝑚3] 1.01 

CO2 density 𝜌𝐶𝑂2 [g/𝑐𝑚3] 0.843𝑎 

 

𝑎  Value obtained from National Institute of Standards and Technology Database NIST (2017). 

𝑏  The nanoparticle (Colloidal silica) concentration in the aqueous solution at 0.15 wt% (equivalent to 1500 ppm by mass) 

(Rognmo et al., 2017). 
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Nanoparticle-stabilized CO2-foam was investigated during co-injections of nanofluid and liquid CO2 at 

different gas fractions and total volumetric flow rates. The following injection strategy was used to 

evaluate foam strength and stability: co-injection with a monotonically increasing gas fraction from 0.1 

to 1.0, referred to as drainage-like flow sequence. The total volumetric injection rates were 120, 180, 

and 240 mL/h. Only surface-modified nanoparticles were used as a foaming agent to generate foam in 

situ (i.e., no surfactant). For the drainage-like flow sequence, the following procedure was followed: 

(i) start with the lowest injection rate at the lowest gas fraction (fg = 0.1) and co-inject nanofluid (NP) 

and CO2 until the pressure stabilizes, (ii) increase injection rate monotonically, at the same fg, and 

establish stable differential pressure, (iii) change the injected gas fraction to the next gas fraction (fg = 

0.2) and repeat step (i) and (ii). Near-Newtonian CO2 foam defined as constant apparent viscosity was 

observed with changes in injection rates at each gas fraction during the co-injection of nanofluid and 

CO2 (Rognmo et al., 2017). Co-injection with liquid CO2 and nanofluid were benchmarked against 

baseline co-injections performed without a foaming agent (see Figure 8) in similar rock samples with 

identical experimental conditions. This was to evaluate foam strength and degree of CO2 mobility 

reduction.  

 

Figure 8: Apparent viscosity versus gas fraction for both baseline and foam co-injections. Co-injection of CO2 and nanofluid 
(solid lines). Three constant total injection rates were used (rates are indicated with similar colors: 120 mL/h blue; 180 mL/h 
red; 240 mL/h green) with gas fraction varied between fg = 0.1 and 1.0. Co-injections with nanoparticles were benchmarked 
against baseline co-injections with brine and CO2 (dashed lines). The lines between points are only to guide the reader and not 
measured (Rognmo et al., 2017). The  red arrow and circle represent the maximum apparent viscosity achieved by CO2-NP co-
injections. The black arrow points the way the injections were performed with regard to the injected gas fractions. 

In co-injection of CO2 and NP, it was observed that the apparent viscosity increased to a maximum 

value (7.8 cP) at fg = 0.7, indicates the optimal gas fraction and transition for the low-quality 

regime(fg <0.7) to the high-quality regime (fg >0.7). For the baseline co-injections (without 

nanoparticles), the apparent viscosity was almost 3 times lower compared with NP co-injections at the 

same gas fraction (fg = 0.7). Figure 8 showed these experimental results.  
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3.2 Core Flood Simulation in CMG/GEM 
 

3.2.1 Static Model Set-up 

The simulation set-up consists of a one-dimensional linear model with the direction of flow in the I-

direction (Figure 9). The cross-sectional area (A) of the simulation model, A = DJ * DK, is equal to the 

core used in the experiment discussed above. The linear simulation model is divided into 50 individual 

grid cells in the flow direction (I-direction) (Computer Modelling Group Ltd, 2017). 

                                                                     L = 28.8 cm. 

 D = 3.37 cm. 

Figure 9: Diagram of the laboratory core sample, modified from (Computer Modelling Group Ltd, 2016). 

A Cartesian grid was built of the static core system using the above-described dimensions using the 

commercial CMGTM builder (Figure 10). The dimension of the core model was 50 x 1 x 1, in i-, j- and k- 

directions, respectively, as seen in Figure 10. A sensitivity study on 50, 100, and 1000 grid cells was 

first conducted in order to choose the optimal number of grid blocks to accurately capture foam 

behavior without hindering simulator performance. It was found that the most appropriate number of 

grid blocks was 50, in order to avoid numerical dispersion. This number was found by constructing a 

black oil model with a core of the exact dimensions and comparing oil recovery with different grid 

block sizes. The model has individual grid cell dimensions of 0.576 cm in length, 3.34 cm in width and 

3.34 cm in thickness. The simulation model is oriented horizontally, just like the experiment was 

performed. Table 3.2 shows the core model properties. 

Table 3. 2: Core model properties. 

Number of grid blocks (i, j, k) 50 × 1 × 1 

Grid block size 0.576 × 3.34 × 3.34 [𝑐𝑚3] 

Porosity ∅ 0.238 

Permeability  𝑘𝑥 = 𝑘𝑦 = 𝑘𝑧 2252 [mD] 

Initial temperature 20 [°𝐶] 

Initial pressure 9000 [kPa] 

Initial water saturation 1 

 

I-direction 

 K 

J 
I 
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Figure 10: 3-D view of the constructed model. 

 

3.2.2 Dynamic Model Set-up 

Core dimensions and initial conditions of the experiment, such as temperature, pressure, and water 

and gas saturation, were used as inputs in the simulation. Additionally, rock properties, permeability, 

porosity, gas, and water viscosity were also used as inputs. Total volumetric injection rates for both 

liquid and gas and foaming agent concentrations were also used as inputs for the simulation work. 

Some of these properties, including parameters used to estimate water-oil relative permeability 

curves, were constant for all of the performed simulations, as shown in Table 3.1. Core and fluid 

properties were kept identical to the experimental system (Table 3.1).  No data was available for the 

relative permeability curves for core ST3. The initial relative permeability curves were, therefore 

derived from estimated data, using the residual water saturation, end-point CO2 relative permeability 

and Corey exponents for water and gas. The connate water saturation was determined from the 

literature.  The estimated data of the water-oil and gas-water relative permeability curves in the base 

model (the base CO2-brine model) were obtained from history matching of the baseline flood (co-

injection of CO2 and brine). The relative permeability curves were obtained from the modified Brooks-

Corey equations discussed in Chapter 2.7. Two sets of relative permeability curves were used, which 

are referred to as water-oil (Set-1) and CO2-water (Set-2). Relative permeability Set-1 and Set-2 

properties are discussed in Chapter 4.1. Because the relative permeability curves were unknown, this 

approach was used for the initial set of water-oil and gas-water relative permeability curves; they were 

considered the most uncertain parameters to be tuned in the first phase of history matching. 

 

 

 Injector 

Producer 
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3.2.3 Modeling Foam 

A commercial foam model was used to represent nanoparticle-stabilized CO2 foam. CMG/GEM 

empirical foam model is typically used for the modeling of the CO2 foam process using surfactant as a 

foaming agent, but for this work, nanoparticle was used. The simulator is based on local steady-state 

(or local equilibrium) modeling where a predetermined value for the gas-phase mobility reduction 

factor (FMMOB) must be used as an input. The presence of foam affects the viscosity and relative 

permeability of the gas phase significantly, but not those of the liquid phase (Friedmann et al., 1991). 

CO2 mobility is scaled down by inverse mobility reduction factor FM, which is equivalent to modeling 

the apparent viscosity of the foam, as shown in equation 3.1. The subscript f refers to foam. 

 

 𝑘𝑟𝑔
𝑓

=  𝑘𝑟𝑔 × 𝐹𝑀 (3.1) 

 

where 𝑘𝑟𝑔
𝑓

 is the foam relative permeability, 𝑘𝑟𝑔 is the gas relative permeability and FM is the mobility 

reduction factor. 

The FM factor involves seven functions that describe the factors that influence CO2 mobility reduction, 

including water saturation, oil saturation, surfactant concentration, and capillary effects, as shown in 

equation 3.2. The range of FM is between 0 and 1. FM = 0 is related to the strongest foam allowing no 

gas to flow, and FM = 1 means no foam (Computer Modelling Group Ltd, 2017). 

 

 
𝐹𝑀 =

1

1 + 𝐹𝑀𝑀𝑂𝐵(𝐹1 × 𝐹2 × 𝐹3 × 𝐹4 × 𝐹5 × 𝐹6 × 𝐹7 × 𝐹𝐷𝑅𝑌)
 

(3.2) 

 

The FMMOB parameter represents the maximum mobility reduction factor or the reference mobility 

factor, capillary number (flow rate), zero oil saturation, 𝑆𝑜 = 0, and oil mole fraction of component 

(Computer Modelling Group Ltd, 2017). The remaining parameters represent the effect of foaming 

agent concentration (𝐹1), the detrimental effect of oil (𝐹2), the flow velocity for both shear thinning 

(𝐹3) and generation effects (𝐹4), the oil composition(𝐹5), the effect of salinity (𝐹6), the permeability 

dependence parameters (𝐹7) and the foam dry-out effect (FDRY) (Computer Modelling Group Ltd, 

2017). The F functions (𝐹1, … . 𝐹7 ) are ranging from 0 to 1. FDRY is defined in the CMG/GEM model 

as:  

 

 
𝐹𝐷𝑅𝑌 = 0.5 +

arctan(𝑆𝑓𝑏𝑒𝑡(𝑆𝑤 − 𝑆𝑓𝑑𝑟𝑦))

𝜋
 

 

(3.3) 

In the dry-out function in equation 3.3, the parameter Sfbet controls the sharpness of the transition 

foam from a high-quality regime to a low-quality regime (dry-out slope). Sfbet with a very high value 

represents a sharp transition and foam collapse within a narrow range of saturation whereas a low 

value of Sfbet represents a foam collapse that is not abrupt (Farajzadeh et al., 2015). The parameter 

Sfdry is the water saturation at which foam experiences significant coalescence (maximum dry-out 

value) (Computer Modelling Group Ltd, 2017). During history matching, the main focus is on the effect 

of FMMOB and the dry-out (FDRY) function due to the availability of the experimental data. Choosing 

the value of the foam parameter FMMOB was a challenge since CO2/nanoparticles foams may generate 



36 
 

weak foams compared to CO2/surfactant foams, therefore lower values of FMMOB should be used. 

The range of FMMOB and the dry-out function (Sfdry+Sfbet) that were estimated is presented in 

Chapter 4.2.2 , while F functions have been defaulted to 1. A full description of the dependent 

𝐹 functions can be found in Table A.1 in Appendix A.1. 

 

3.2.4 History Matching Workflow 

In this work, a history matching strategy is used for tuning model parameters using experimental 

observations and results collected through a series of simulations. The aim was to validate the model 

and reduce uncertainty by reproducing experimental observations. The experimental metrics matched 

were differential pressure and apparent viscosity. Differential pressure and apparent viscosity were 

chosen to be matched because they were the only available results from the experimental data done 

by Rognmo et al. (Rognmo et al., 2017). The first phase of the history match focused on tuning the 

initial relative permeability curves to reproduce experimental observations from a baseline (without 

nanoparticles) foam quality scan. The second phase of the history match used relative permeability 

curves from Phase 1 and emphasized tuning the foam model parameters and their impacts on injection 

and production pressure. Foam generation during co-injections of CO2 and nanofluid (NP) was 

observed at variable gas fractional flow.  

 

Phase 1 History Matching 

Phase 1 includes history matching the baseline CO2-brine foam quality scan (without nanoparticles) by 

tuning relative permeability curves. The set of parameters used to establish relative permeability 

curves, shown in Table 3.3, are categorized into groups according to the part of the model in which 

they contribute. These include; water-oil relative permeability, CO2 relative permeability, and foam 

model parameters. Parameters that are known through the experiments are the initial gas saturation 

(Sgi) and the relative permeability of water at the initial gas saturation (Swr). The end-point CO2 relative 

permeability (𝑘𝑟𝑔
0 )  was evaluated through a series of history match runs using the Corey model. The 

rest were determined through a series of simulations, by matching the baseline (CO2-brine co-injection 

at residual water saturation), where Corey curvature of the gas (ng) and end-point gas relative 

permeability (Table 3.3).  

The objective of performing a baseline match is to tune the parameters of CO2 relative permeability, 

by determining the Corey curvature of the gas and the gas relative permeability curves. The relative 

permeability properties for water-oil (Set-1) and gas-water (Set-2) are presented in Chapter 4.1, where 

water-oil relative permeability curves were not changed because the oil was not included in the 

experiment work. The water-oil relative permeability table must be included in order to run the model 

in CMG. By tuning the gas-water relative permeability curves in the simulation model, the best match 

of differential pressure and apparent viscosity was achieved. Firstly, an initial estimation of Corey 

parameters was made based on experimental values. In order to make an initial estimation, end-point 

relative permeabilities of water, oil and gas had to be calculated from the available experimental data.  

The baseline co-injections were then fitted to obtain the gas relative permeability parameters (ng, 𝑘𝑟𝑔
0 , 

Sgi).  
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Table 3. 3: The set of all the parameters used for the simulation of the CO2 foam process. 

Water-oil Relative Permeability CO2 Relative Permeability Foam Model Parameters 

nw nw FMMOB 

no ng Sfdry 

𝑘𝑟𝑤
0  𝑘𝑟𝑤𝑠𝑔𝑖

0  Sfbet 

𝑘𝑟𝑜
0  𝑘𝑟𝑔

0   

Sor Swr  

Swr Sgi  

 

Phase 2 History Matching Foam Model Parameters 

After tuning the relative permeability curves in Phase 1, foam model parameters (Table 3.3) are tuned 

in order to give the best match to the experimental data during the foam quality scan with 

nanoparticles. Initial foam model parameters were derived from the default values in CMG. Foam 

quality tests (CO2-NP co-injection at residual water saturation), were then fitted to obtain the 

reference foam mobility reduction factor, FMMOB, the foam dry-out function, which is modeled by 

Sfbet and Sfdry. A history match is performed, where these parameters (FMMOB, Sfbet, and Sfdry) are 

determined, and the limitations of the model to simulate the experimental performance of CO2 co-

injections processes are discussed. For the rest of the parameters, a sensitivity study is performed, to 

examine the significance of the parameters on the apparent viscosity and the differential pressure.  

 

3.2.5 Sensitivity Analysis 

Several sensitivity studies were performed to understand how uncertain model parameters impact the 

simulation results, including differential pressure and foam apparent viscosity. This was to 

demonstrate the model’s ability to represent the complex foam processes, and it was also the 

necessary background to give a better understanding of how to match the laboratory-measured results 

from the core floods described in Chapter 3.1. This sensitivity study used the co-injection of nanofluid 

and CO2 as a foam reference case, where the total injection rate is 240 mL/h with increasing gas 

fractions (fg = 0.1 to 1.0). By changing one parameter at a time, each parameter was analyzed 

independently. Benefits of this systematic change are; simple to use, easy to understand the results, 

and the results are not complicated by the effects of other parameters. The following parameters were 

investigated through a series of simulations presented in Chapter 4.3. 

• Nanoparticle concentration: Model sensitivity to nanoparticle concentration in the aqueous 

solution was varied between 0.02 and 1.0 wt%, where a concentration of 0.15 wt% was used 

as a reference in the foam reference case. The purpose of this investigation is to see how 

different concentrations impact the differential pressure. According to Khajehpour et al. 

(2016), different concentrations showed significant increases in the amount of foam 

generation and stabilization (Khajehpour et al., 2016). 

 

• FMMOB: Model sensitivity to the reference foam mobility reduction factor was conducted, 

which is used in the dimensionless foam interpolation calculation. FMMOB allowed range is 0 

to 105 in CMG. However, in this work, low values were chosen since the foaming agent is 

nanoparticle, rather than surfactant. In the case of surfactants, higher values of FMMOB must 

be used since surfactants generally generate stronger foam (higher apparent viscosity). By 
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using different values of FMMOB, it can be seen that the apparent viscosity changes with 

changing the mobility reduction factor. FMMOB values of 3, 6.7, 10 and 20 were used in this 

sensitivity study. 

 

• Sfdry: Model sensitivity to the maximum dry-out value was conducted, which used in the 

dimensionless foam dry-out calculation. Sfdry is the water saturation at which foam 

experiences significant coalescence. The allowed range of Sfdry is 0 to 1.0. For the sensitivity 

study values of  0.3, 0.5, and 0.6 were used. 

 

• Sfbet: Model sensitivity to the reference dry-out slope was conducted, which used in 

dimensionless foam dry-out calculation. Sfbet controls the sharpness of the transition of foam 

from a high-quality regime to a low-quality regime. Sfbet allowed range is 0 to  105 in CMG. 

Three different values of Sfbet were used in the sensitivity, 10, 100 and 1000.   

 

• Absolute permeability (K): Model sensitivity to absolute permeability was conducted to 

analyze its impacts of foam apparent viscosity. Absolute permeability is defined as the 

capability of the porous media to transmit a single fluid through its network of interconnected 

pores (Zolotukhin and Ursin, 2000). For the foam reference case, the absolute permeability 

value was 2252 mD. This value considered as a high value according to literature. Two more 

values (i.e., 1000 and 500 mD) were investigated in order to see their impact on the apparent 

foam viscosity. 

 

• Total injection rate (QT): Model sensitivity to total injection rate (injection velocity) was 

conducted, which used in mL/h or  𝑚3/𝑑𝑎𝑦 (simulation input unit). The injection rates from 

120 mL/h to 500 mL/h were used in the sensitivity analysis. The foam apparent viscosity was 

investigated for the different injection rates. The foam rate scan was conducted to study the 

rheology of foam at different injection rates where the CO2 and nanofluid co-injections were 

performed at constant gas fractions of 0.7 and 0.8. 
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Chapter 4: Results and Discussion 
 

4.1 Phase 1 – Relative Permeability 

Tables 4.1 and 4.2 show an overview of the values used in constructing the relative permeability curves  

for oil-water (Set-1) and water-gas (Set-2), respectively. Parameters in Table 4.1 and 4.2 were 

calculated using equations listed in Chapter 2.7. The capillary end effect was assumed to be zero for 

both tables. Water end-point relative permeability is assumed to be 1 since the outcrop core (ST3) was 

initially 100 % saturated with brine, while the rest of the parameters were estimated, as shown in Table 

4.1 and 4.2. Figure 11 shows the water-oil relative permeability curves. As mentioned earlier, the 

water-oil relative permeability table must be included in order to run the model. 

Table 4. 1: Experimental and estimated values of relative permeability parameters of Set-1. 

Parameter Experimental Value  Estimated Value 

Residual water saturation, 𝑆𝑤𝑟 - 0.2 

Residual oil saturation, 𝑆𝑜𝑟 - 0 

Water end-point relative permeability, 𝐾𝑟𝑤
°  1 1 

Oil relative permeability @ 𝑆𝑤𝑟 , 𝐾𝑟𝑜
°  - 1 

nw - 4 
no - 2 

 

 

Figure 11: Relative permeability curves of brine and oil as a function of brine saturation, calculated from Set-1 parameters 
listed in Table 4.1. The blue line is the water relative permeability curve (Kr, brine), while the orange line is the relative 
permeability curve for oil (Kr, oil). 
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Relative permeability curve estimation was performed in order to determine the gas end-point relative 

permeability. Different sets of gas relative permeability were defined up to a gas saturation of 0.8, as 

shown in Figure 12, and their effect on pressure drop was examined. Figure 12 shows the variation of 

CO2 end-point, where the best match to the CO2-brine baseline foam quality scan is 0.13 (red curve). 

A total of seven simulation runs were performed to fit the experimental differential pressure of the 

baseline (CO2-brine), where six of them were not able to match the experimental differential pressure 

data. Figure 13 shows the differential pressure percentage difference from the history match, which 

was obtained through a series of simulations on different gas relative permeability end-points. The 

injection rate of 120 mL/h was used. It was observed that the minimum percentage difference (black 

columns) obtained was with gas relative permeability end-point of 0.13. At this end-point value, the 

differential pressure from the simulation was in good agreement with the experimental data. 

Therefore, a gas relative permeability end-point of 0.13 was used in further investigations to find the 

slope of the gas relative permeability curves, which can be used as input for the model. 

 

Figure 12: Comparison of CO2-brine relative permeability curves for different CO2 end-point relative permeability for the 
injection rate of 120 mL/h. The solid red line is the best match gas relative permeability curve, while the solid blue line is the 
water relative permeability curve. 
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Figure 13: Comparison of differential pressure percentage difference from the baseline CO2-brine experiment for CO2 end-
point relative permeability. The injection rate was 120 mL/h. The black columns presented the differential pressure percentage 
difference when the gas end-point is 0.13, which gives the best match for the experimental data. 

 

The parameter values for Set-2 are shown in Table 4.2 below: 

Table 4. 2: Experimental, initial estimated, and best match values for relative permeability parameters of Set-2. 

Parameter Experimental Value Initial Estimated Value Best Match Value 

Residual water saturation, 𝑆𝑤𝑟 - 0.2 0.2 

Initial gas saturation, 𝑆𝑔𝑖 0 0 0 

CO2 end-point relative 

permeability, 𝐾𝑟𝑔
°  

- 0.7 – 0.1  0.13 

Water relative permeability @ 

𝑆𝑔𝑖 , 𝐾𝑟𝑤𝑠𝑔𝑖
°  

1 1 1 

nw - 3 3 

ng - 4 1.8 - 2.4 
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In order to create an estimation of gas relative permeability curves, Corey curvature for the gas was 

varied between 1.8 and 2.4 for each injection rate, as shown in Table 4.2. Figure 14 shows gas-brine 

relative permeability curves, where increasing ng from 1.8 to 2.4 implies a general reduction in gas 

relative permeability away from end-point value. The decrease in gas relative permeability ( krg ) results 

in higher differential pressure. Relative permeability curves are shown in Figure 11 and Figure 14 were 

used for the simulation runs in both baseline foam quality scans and foam quality scans with 

nanoparticles present.  

 

Figure 14: Relative permeability curves of CO2 and brine (without nanoparticles) as a function of gas saturation, calculated 
with parameters Set-2 listed in Table 4.2. The blue line is the water relative permeability curve, the solid red line is the gas 
relative permeability curve for the injection rate of 120 mL/h, while the red square dotted line and red round dotted line are 
the gas relative permeability curves for the injection rates 180 mL/h and 240 mL/h, respectively. The Corey curvatures for the 
gas were 1.8, 2 and 2.4 for the injection rates of 240, 180 and 120 mL/h, respectively. 
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4.2 History Matching 

This section presents the history matching study to model the experimental core floods performed on 

the Bentheimer outcrop core (ST3). It focuses on the model input/output and interpretation of the 

results. Relative permeability parameters obtained for history matching are listed in Table 4.1 and 4.2 

in Chapter 4.1. Manual history matching was performed to tune the most uncertain model parameters 

to get the best match between simulation results and experimental data. The variables which have 

been changed for manual history matching were end-point gas relative permeability (𝐾𝑟𝑔
° ), Corey 

curvature for gas (ng), reference foam mobility reduction factor (FMMOB), and maximum dry-out 

parameter (Sfdry).  

 

4.2.1 History Matching the Baseline CO2-brine Foam Quality Scan 
 

Baseline Differential Pressure – History Match 

Figure 15 shows the differential pressure history matching results of the foam quality baseline (CO2-

brine coinjection) for the total injection rates of 120, 180, and 240 mL/h. In Figure 15, solid lines are 

the history match differential pressure curves, and the points are the experimental differential 

pressure data. A total of 2 PV were injected for each gas fraction in order to achieve a steady-state 

with the injection rate of 120 mL/h, while 1.5 pore volume (PV) was injected at rates of 180 mL/h and 

240 mL/h. Injection rates are indicated with similar colors (120 mL/h red; 180 mL/h orange; 240 mL/h 

blue). The baseline co-injection started from fg = 0.1 and increased to fg = 1.0 for the injection rates of 

120 mL/h and 240 mL/h, and from fg = 0.2 to fg = 1.0 for the injection rate of 180 mL/h. An increase of 

10 % in differential pressure for all rates was observed with increasing gas fraction until it reached fg 

= 0.5. At this gas fraction, the highest differential pressures dP = 11.72, 14.23, and 16.97 kPa were 

achieved for total  injection rates of 120, 180, and 240 mL/h, respectively. For fg >0.5, brine injected 

volume was lower than CO2 injected volume. CO2 flows easily in the larger pores, resulting in the more 

continuous gas phase and higher gas relative permeability, while brine flows in the small pores and 

along pore-walls, and hence, differential pressure decreases slightly. In a water-wet system, water 

occupies the smallest pores, while in the larger pores, gas trapping occurs (Ettinger and Radke, 1992; 

Dicksen et al., 2002). The history match results and the experimental differential pressure data were 

in good agreement, as shown in Figure 15. Table A.2.1 in Appendix A.2 also shows the experimental 

and simulation results for differential pressure. 
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Figure 15: History match of the baseline steady-state average differential pressure versus gas fraction during the coinjection 
of CO2 and brine. Experimental data (points) and history match data (solid lines). Three constant total injection rates are used 
(rates are indicated with similar colors: 120 mL/h red; 180 mL/h orange; 240 mL/h blue) with the gas fraction varied between 
𝑓𝑔 = 0.1 and 1.0. The  maximum differential pressure is observed at 𝑓𝑔 = 0.5 in all the three injection rates. 

 

Baseline Apparent Viscosity - History Match 

Figure 16 shows the apparent viscosity of the experimental baseline data and simulation results. The 

apparent viscosity was calculated for each injection rate and gas fraction using equation 2.2. 

Experimental data (points) and history match data (solid lines). Three constant total injection rates 

were used (rates are indicated with similar colors: 120 mL/h red; 180 mL/h orange; 240 mL/h blue) 

with the gas fraction varied from fg = 0.1 to 1.0. In Figure 16, all injection rates reached the maximum 

apparent viscosity 𝜇𝑎𝑝𝑝 = 3.0, 2.3 and 2.2 cP for the injection rates of 120, 180 and 240 mL/h, 

respectively, at the same gas fraction, fg = 0.5. According to equation 2.2, the apparent viscosity is 

directly proportional to the differential pressure and inversely proportional to the flowrate. However, 

the change in the flow rate (120 ml/h to 240 ml/h) is greater than the resulting change in the 

differential pressure, and thus the overall effect of the two parameters is a reduction in viscosity. Table 

A.2.2 in Appendix A.2 shows apparent viscosity results obtained from experimental and simulation 

data. Simulation results showed good agreement with the experimental data, which indicates a good 

match, as shown in Figure 16. 
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Figure 16: History match of the baseline apparent viscosity versus gas fraction during the coinjection of CO2 and brine. 
Experimental data (points) and the history match (solid lines). Three constant total injection rates used are indicated with 
similar colors (120 mL/h red; 180 mL/h orange; 240 mL/h blue) with gas fraction varied between 𝑓𝑔 = 0.1 and 1.0. The  

maximum apparent viscosity is observed at 𝑓𝑔 = 0.5 in all the three injection rates. 

 

4.2.2 History Matching the CO2-NP Foam Quality Scans 
 

This section presents the history match of nanoparticle-stabilized CO2 foam quality scans. In order to 

achieve a steady-state during the foam quality scans, a total of 2 PV were injected for each gas fraction 

with the injection rates of 180 mL/h and 240 mL/h, whereas 6 PV were injected with the rate of 120 

mL/h. For history matching, the tuned foam model parameters were FMMOB and the dry-out function, 

FDRY (Sfdry + Sfbet). Functions including F1, F2, F3, F4, F5, F6, and F7 were not changed in the history 

matching. As mentioned earlier, the optimal gas fraction was fg = 0.7, and thus obtaining a match for 

this point was crucial.  

 

Foam Differential Pressure - History Match 

For the history matching, the reference foam mobility reduction factor (FMMOB)  was allowed to vary 

between 5 and 100, which is the normal range for FMMOB depending on the strength of the created 

foam (Computer Modelling Group Ltd, 2017).  It was found that FMMOB values between 4.4 and 6.7 

gave the best match to the experimental data. In the absence of oil, surfactant-stabilized CO2-foams 

have been found to be stronger compared to nanoparticle-stabilized foams (Rognmo, 2019). Thus, 

lower values of FMMOB were selected to represent the nanoparticle-stabilized foam in this work. The 

allowed range of the maximum foam dry-out (Sfdry) was between 0 and 1, and between 0 and 105 for 

Sfbet (Computer Modelling Group Ltd, 2017). Sfdry values used for the history matching were 0.46 and 

0.50. The reference foam dry-out slope (Sfbet) value of 100 was used. As discussed in Chapter 3.2.3, 

Sfbet controls the sharpness of the transition of foam from a high-quality regime to a low-quality 

regime; when Sfbet is very large, the transition is sharp and foam collapses within a very narrow range 
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of water saturation. On the other hand, a low value of Sfbet represents a foam collapse that is not 

abrupt, where foam coarsens in texture over a range of water saturation (Farajzadeh et al., 2015). 

According to the same study (Farajzadeh et al., 2015), the value of Sfbet does not influence the results, 

unless its value is very low. The best match was achieved with the tuned foam model parameters 

illustrated in Table 4.3.  

Table 4. 3: Estimated Foam model parameters used for history matching. 

Injection Rates [mL/h] FMMOB Sfdry Sfbet 

120 4.4 0.46 100 

180 5.8 0.5 100 

240 6.7 0.5 100 

 

Figure 17 shows results from the experimental work (points) and the history match (solid lines) for 

different injection rates including 120 mL/h (red), 180 mL/h (orange), and 240 mL/h (blue). By 

increasing the gas fraction, differential pressure increased by approximately 25 % for all injection rates 

until fg = 0.7. The maximum differential pressure at fg = 0.7 was 30.36, 44.77, and 59.94 kPa for total 

injection rates of 120, 180, and 240 mL/h, respectively. The differential pressure decreased when gas 

fraction was above fg = 0.7, which indicated the transition from the low-quality to the high-quality 

foam regime. Instability of foam in the high-quality regime (fg >0.7) is because of the higher gas 

fraction. Gas fractions in the high-quality regime are a result of foam coalescence and foam dry out. 

At the highest gas fraction (fg = 1.0), the model could not capture the experimental points due to 

trapped gas saturations in the core. Trapped gas occurs in the intermediate-sized pores since the 

wetting phase (water) occupies the smallest pores (Kovscek and Radke, 1994). By tuning the foam 

model parameters (FMMOB, Sfdry, and Sfbet), the best match for the differential pressure was 

achieved. The simulation model was able to match most of the experimental data, as shown in Figure 

17. Table A.2.3 in Appendix A.2 also illustrates the above results.  
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Figure 17: History match of the steady-state average differential pressure versus gas fraction during the coinjection of NP and 
CO2. Experimental data (points) and the history match (solid lines). Three constant total injection rates used are indicated with 
similar colors (120 mL/h red; 180 mL/h orange; 240 mL/h blue) with gas fraction varied between 𝑓𝑔 = 0.1 and 1.0. The  

maximum differential pressure is observed at 𝑓𝑔 = 0.7 in all the three injection rates. 

 

Apparent CO2 Foam Viscosity - History Match 

Figure 18 shows a comparison of results between the baseline foam quality scans (squared-points and 

dashed lines) and foam quality scans with nanoparticles present (points and solid lines). Three constant 

total injection rates are used (rates are indicated with similar colors: 120 mL/h red; 180 mL/h orange; 

240 mL/h blue) and the gas fraction varied between fg = 0.1 and 1.0. The apparent viscosity was 

calculated from the pressure drop at gas fractions 0.1, 0.2, 0.35, 0.5, 0.7, 0.85, 0.90 and 1.0, with 

equation 2.2. In the baseline, as discussed in the previous section, the apparent viscosity reached the 

highest values 𝜇app = 3.0, 2.3, 2.2 cP for the injection rates of 120, 180 and 240 mL/h, respectively, at 

the gas fraction of 0.5. In CO2-NP, an increase in apparent viscosity was observed for all three injection 

rates until fg = 0.7 was reached, giving the highest value of 𝜇app = 7.8, 7.7 and 7.7 cP for the rates of 

120, 180 and 240 mL/h, respectively. The apparent foam viscosity shows an increase of almost 3 times 

compared to the baseline at the gas fraction of 0.7. The differences in the apparent viscosity between 

the baseline and the CO2-NP indicate greater flow resistance (higher apparent viscosity) and foam 

generation (Ettinger and Radke, 1992).  

All foam quality scans used a monotonically increasing gas fraction sequence (drainage-like process) 

to measure apparent viscosity at each gas fraction. The results from CO2-NP showed two regions in all 

the three injection rates. In the low-quality regime (fg <0.7) , the foam apparent viscosity was 

monotonically increasing with the foam quality. Once the foam quality passed the low-quality regime 

and reached the transition point at fg = 0.7, the foam apparent viscosity started to decrease as the 

foam quality increased in the high-quality regime (fg >0.7). This was due to the insight that, in the low-

quality regime, the bubble density (or foam texture) increases as a function of foam quality, and thus 

the apparent viscosity increases. In the high-quality regime, gas mobility rises abruptly over a narrow 
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range of water saturation because the foam collapses abruptly (Farajzadeh et al., 2015) . This is why, 

in the high-quality regime, the apparent viscosity decreases as a function of foam quality.  

The curved behavior of foam in the high-quality regime due to the high value of the foam parameter 

Sfbet (dry-out slope) was adjusted by the foam parameter Sfdy (maximum dry-out) for each injection 

rate in order to match the experimental data. During the foam quality scan, the apparent foam 

viscosity showed minor differences between flow rates, indicating no shear-thickening behavior (fluid 

viscosity increases with increasing injection rate) or shear-thinning behavior (fluid viscosity decreases 

with increasing injection rate). Table A.2.4 in Appendix A.2 lists the foam apparent viscosity values of 

the experimental and simulation. History matching the apparent foam viscosity during CO2-NP foam 

quality scans showed that the model was able to capture the experimental data at the optimal gas 

fraction (i.e., fg = 0.7) for all the injection rates. However, experimental foam apparent viscosies at  fg = 

1 were unable to be mached. This can be attributed to the presence of trapped gas during the 

experiment at  fg = 1 and model inability to capture this since no hysteresis relative permeability curves 

were available. 

 

Figure 18: History match of the apparent CO2 viscosity versus gas fraction during the co-injections of the baseline and CO2-
NP. The constant total injection rates are indicated with similar colors (120 mL/h red; 180 mL/h orange; 240 mL/h blue). CO2-
NP co-injection (solid line for the history match and points for the experimental data) and baseline (dashed lines for the history 
match and rectangle-points for the experimental data).The gas fraction varied between 𝑓𝑔 = 0.1 and 1.0. A maximum foam 

apparent viscosity (7.8 cP) was observed at 𝑓𝑔 = 0.7, corresponding to almost 3 times higher apparent viscosity compared to 

the baseline (without nanoparticles). The black arrow points the way the injections were performed with regard to the injected 
gas fractions. 
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Saturation Profiles 

Figure 19 shows the model CO2 and water saturation profiles for CO2-brine (dashed lines) and CO2-NP 

(solid lines) co-injections using the injection rate of 240 mL/h. In the baseline (CO2-brine), the water 

saturation (blue dashed line) decreases, and the gas saturation (red dashed line) increases with an 

increasing gas fraction. In CO2-NP co-injection, water saturation decreases rapidly. By comparing the 

baseline with the CO2-NP co-injection, at the gas fraction (fg = 0.1 to 0.5), a monotonic linear increase 

in gas saturation and linear decrease in water saturation was observed for both co-injections. The 

average gas saturation was sg = 0.30 and became sg = 0.44 with CO2-NP, which indicates an increase 

of 46.6 % in gas saturation at the same gas fraction of fg = 0.7. At the same gas fraction, the average 

water saturation was sw = 0.70 and decreased to sw  = 0.56, which indicates a decrease of 25 % 

compared to the baseline. At high gas fractions (fg = 0.9 to 1.0), the average gas saturation increased 

significantly and reached final gas saturation sg = 0.61 compared to sg = 0.59 in the baseline. The final 

water saturation with CO2-NP co-injection was sw = 0.39 compared to sw = 0.41 in the baseline. These 

results indicated that foam is displacing more water from the core, and since baseline viscosity was 

lower than the viscosity of CO2-NP, resulted in higher water displacement with CO2-NP, as shown in 

Figure 19. Table A.2.5 in Appendix A.2 shows the saturation profiles during the foam quality scans. 

 

Figure 19: Saturation profiles versus gas fraction during the co-injections of CO2-brine (baseline) and CO2-NP. The total 
injection rate is 240 mL/h. The baseline (dashed lines) and the CO2-NP (solid lines). For the baseline (Sw, blue dashed line; Sg, 
red dashed line) and for the CO2-NP (Sw, solid blue line; Sg, solid red line). The gas fraction varied between 𝑓𝑔 = 0 and 1.0. the 

arrow points in the direction the injections were performed (increasing gas fraction). 
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4.3 Sensitivity Analysis 

The sensitivity study was performed to investigate the effect of nanoparticle concentration, FMMOB, 

Sfdry, Sfbet,  the absolute permeability (K), and the total injection rate (QT) . The differential pressure 

and  apparent viscosity were investigated versus gas fraction (fg). The constant total injection rate of 

240 mL/h was used in model sensitivity to nanoparticle concentration in the aqueous solution, model 

sensitivity to the reference foam mobility reduction factor, model sensitivity to the maximum dry-out 

value, model sensitivity to the reference dry-out slope, and model sensitivity to absolute permeability. 

The rate of 240 mL/h was used in combination with other injection rates to investigate the effect of 

velocity on the apparent viscosity and differential pressure during the foam rate scans. 

4.3.1 Effect of varying nanoparticle concentration 

Figure 20 shows the percentage difference in differential pressure during the foam quality scan with 

nanoparticles present. The effect of varying nanoparticle concentration at each gas fraction was 

investigated. Nanoparticle concentrations (i.e., 0.02, 0.15, 0.5, and 1.0 wt%) were investigated for the 

sensitivity study, where the foam reference case concentration from the experiment was 0.15 wt%. 

The differential pressure values for different nanoparticle concentrations are listed in Table A.3 in 

Appendix A.3. A concentration of 0.02 wt% (blue columns) showed the same values as the baseline at 

gas fractions (0.1 and 0.7). While a percentage decrease of  0.026, 0.021, 0.018, 0.039, 0.026 and 0.123 

% was observed at gas fractions 0.2, 0.35, 0.5, 0.85, 0.9 and 1.0, respectively. Increasing nanoparticle 

concentration to 0.5 wt% (orange columns) resulted in an average increase of 0.059 %  for all gas 

fractions compared to the foam reference case. A concentration of 1.0 wt% (grey columns) gave an 

average increase of 0.136 % for all gas fractions compared to the reference case. By comparing the 

results at the transition gas fraction (i.e., 0.7), the percentage differences were 0, 0.033 and 0.083 % 

for concentrations  0.02, 0.5 and 1.0 wt%, respectively compared to the reference case. In the low-

quality regime (fg <0.7), high nanoparticle concentrations (0.5 and 1.0 wt%) improved their match with 

reference case results with increasing gas fraction. In contrast, a notable increase in percentage  

difference was observed in the high-quality regime (fg >0.7) with increasing the gas fraction. A possible 

explanation for the nanoparticle behavior in the low-quality regime is that differential pressure 

increased due to foam generation and propagation. In the high-quality regime, the decrease in 

differential pressure may be due to rupture of gas bubbles resulting in foam dry-out and bubble 

coalescence. At the optimal gas fraction (i.e., 0.7), the lowest concentration (0.02 wt%) had a zero 

percentage difference value, which means the same differential pressure value as the reference case. 

However,  the other concentrations showed gradually increased at the same gas fraction.  

The results presented in Figure 20 showed that nanoparticles concentration of 0.02 wt% performed 

well or equally well, in terms of limited changes in differential pressure, as the reference case 

concentration of 0.15 wt%. From this investigation, one can conclude that increasing nanoparticles 

concentration may not result in notably higher values of differential pressure. For further EOR uses, a 

lower concentration can generate foam, and this is important in terms of economic evaluations and 

cost-benefit analysis. Table 4.4 lists the percentage difference in the differential pressure for different 

nanoparticle concentrations. The sensitivity study showed that the model was sensitive to different 

nanoparticle concentrations. 
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Table 4. 4: Percentage difference (Perc.diff) in differential pressure with varying nanoparticles concentration during the foam 
quality scans. 

                      Nanoparticle concentrations 

  0.02 [wt%] 0.5 [wt%] 1.0 [wt%]  

QT[mL/h] 
 

fg[-] Perc.diff[%] Perc.diff[%] Perc.diff[%]  

240 0.1 0 0.071 0.142  

  0.2 -0.026 0.052 0.105  

  0.35 -0.021 0.041 0.103  

  0.5 -0.018 0.018 0.072  

  0.7 0 0.033 0.083  

  0.85 -0.039 0.058 0.136  

  0.9 -0.026 0.077 0.204  

  1 -0.123 0.123 0.246  

 

 

Figure 20: Foam differential pressure percentage difference versus gas fraction for different nanoparticle concentrations. The 
total injection rate is 240 mL/h. The columns in blue, orange and grey represent the pressure difference percentage for 
nanoparticles concentration of 0.02, 0.5 and 1 wt%, respectively. 
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4.3.2 Effect of varying reference foam mobility reduction factor, FMMOB 

FMMOB is the reference foam mobility reduction factor used in the foam model, and it refers to the 

maximum gas mobility reduction that can be achieved. As discussed earlier, the value for FMMOB was 

reduced to 6.7 in order to history match the experimental data since the foaming agent was 

nanoparticle. Generally, a surfactant-based foam has a higher apparent foam viscosity and requires a 

larger FMMOB value, whereas a nanoparticle-based foam requires a smaller FMMOB due to lower 

apparent viscosities. The parameter FMMOB must be used as an input in order to run the foam model. 

Figure 21 shows the foam apparent viscosity during the foam quality scans with varying  FMMOB. Four 

different values of FMMOB (i.e., 3, 6.7, 10 and 20) were used to investigate the effect of reference 

foam mobility reduction factor on the foam apparent viscosity. In the foam reference case, FMMOB  

was equal to 6.7 (blue curve). It can be seen in Figure 21, that an increase in FMMOB increased the 

foam apparent viscosity at foam qualities (10 to 70 %). At 100 % foam quality (i.e., 100 % gas), the foam 

apparent viscosity reached the same value for all FMMOB values. When FMMOB was 20, the slope 

sharply decreased and showed a notable decrease in the apparent viscosity for the foam qualities (70 

to 100 %). This decrease in the foam apparent viscosity was due to the fixed dry-out parameters 

(Sfdry+Sfbet), which were used for all simulation runs. However, the reference foam mobility factor 

does not impact the transition from low to high-quality regime. The maximum foam apparent viscosity 

values were achieved at the transition foam quality of 70 % (i.e., 70 % gas and 30 % nanofluid),  μapp =

  4.9, 7.7, 9.9 and 14.8 cP for values of FMMOB = 3, 6.7, 10 and 20, respectively, as shown in Figure 21. 

The results showed that the reference foam mobility reduction factor had a significant impact on the 

foam apparent viscosity, where foam apparent viscosities increased with increased FMMOB values and 

decreased with decreased FMMOB values. This gave an indication that the model was highly sensitive 

to different reference foam mobility reduction values. 

 

Figure 21: Foam apparent viscosity profiles versus foam quality with varying FMMOB. The total injection rate is 240 mL/h. 
The blue curve for the foam reference case (i.e., FMMOB = 6.7), while green, orange and grey colors represent values of 
FMMOB (i.e., 3, 10 and 20), respectively. 
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4.3.3 Effect of varying the maximum dry-out parameter, Sfdry 

Figure 22 shows the apparent foam viscosity during the foam quality scans with varying Sfdry. Sfdry is 

the maximum dry-out value at which foam collapses. The parameter Sfdry corresponds to the limiting 

water saturation, at which foam begins experiencing significant coarsening (Ma et al., 2013). Two 

different values of Sfdry = 0.3 and 0.6 were compared to the foam reference case value of 0.5 to 

investigate the effect of the Sfdry on the apparent viscosity. When Sfdry was 0.6, the apparent viscosity 

increased with increasing foam quality (gas fractional flow) in the low-quality regime until it reached 

fQ = 50 %, where fQ is the foam quality defined earlier in equation 2.1. At this foam quality, the 

maximum apparent viscosity value was achieved μapp = 6.7 cP. For fQ >50 %, the apparent viscosity 

decreased with increasing foam quality, indicating the beginning of the high-quality regime (foam 

collapses). When Sfdry was 0.3, the apparent viscosity increased in the low-quality regime until it 

reached fQ = 70 %. At this foam quality, the maximum apparent viscosity value μapp = 8.0 cP was 

achieved.  When fQ became greater than 70 %, the apparent viscosity decreased, indicating the start 

of the high-quality regime. At the transition point (fQ = 70 %), the apparent viscosity values became 

8.0, 7.7 and 5.0 cP for Sfdry of 0.3, 0.5 and 0.6, respectively. The above results suggested that the dry-

out parameter Sfdry influenced only the high-quality regime. The results showed that the maximum 

dry-out parameter Sfdy had a significant impact on the foam apparent viscosity in the high-quality 

regime, where foam apparent viscosities decreased with increased Sfdry values and increased with 

decreased Sfdry values. 

A higher value of Sfdry starts the high-quality regime earlier compared to lower. The transition water 

saturation was 0.56, and this value was found from the saturation profiles discussed earlier in Chapter 

4.2.2. According to the previous study, the value of Sfdry should be lower than the transition water 

saturation (Ma et al., 2013).  The sensitivity analysis showed that the model was highly sensitive to 

different Sfdry values in the high-quality regime. 

 

Figure 22: Foam apparent viscosity versus foam quality with varying Sfdry. The total injection rate is 240 mL/h. Foam reference 
case (Sfdry = 0.5, blue curve), Sfdry = 0.3 (green curve) and Sfdry = 0.6 (orange curve). 
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4.3.4 Effect of varying the reference dry-out slope, Sfbet 

Figure 23 shows the apparent foam viscosity during the foam quality scans with varying Sfbet. Sfbet is 

foam collapse abruptness parameter in the foam model. The parameter Sfbet regulates the slope of 

FDRY curve near Sfdry in order to control the collapse rate of foam. A large Sfbet value indicates that 

foam dries out sharply, whereas small Sfbet value indicates that foam dries out more gradually (Ma et 

al., 2013), Sfbet = 100 was used in the foam reference case (green curve). Two other values of Sfbet 

were used, namely Sfbet = 10 and 1000. Sfbet = 10 showed decreasing in the slope in both low-quality 

and high-quality regimes, resulting in decreased apparent foam viscosity (blue curve) in both regimes. 

The maximum apparent viscosity value achieved by Sfbet = 10  is μapp = 6.4 cP which was lower than 

the foam reference case apparent viscosity (μapp = 7.7 cP) at the same foam quality (fQ = 70 %). At 

foam qualities from fQ= 90 to 100 %, the apparent viscosity showed a higher value compared to the 

foam reference case. When Sfbet was 1000, the apparent viscosity (orange curve) showed similar 

values in the low-quality regime for foam qualities (10 to 35 %) compared to the foam reference case. 

At the foam quality of 70 %, the maximum apparent viscosity value μapp = 8.0 cP was achieved, which 

was higher than the foam reference case. In the high-quality regime, the foam viscosity also showed 

higher values for foam quality between 70 and 90 %. At foam qualities between 90 and 100 %, the 

apparent viscosity showed similar values of the foam reference case. This gives an indication that a 

higher value of Sfbet results in better matching compared to the lower value (Sfbet = 10). The results 

showed that the maximum dry-out slope Sfbet had a significant impact on the foam apparent viscosity 

in both the high-quality and the low-quality regime, where foam apparent viscosities increased with 

increased Sfbet values and decreased with decreased Sfbet values. It was observed that reducing the 

value of Sfbet may influence the results. One can conclude that the model was moderately sensitive 

to the changes in Sfbet values. 

 

Figure 23: Foam apparent viscosity versus foam quality with varying Sfbet. The total injection rate is 240 mL/h. Foam reference 
case (Sfbet = 100, green curve), Sfbet = 10 (blue curve) and Sfbet = 1000 (orange curve). 
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4.3.5 Effect of varying the absolute permeability, K 

Figure 24 shows the average differential pressure during foam quality scans for two different absolute 

permeability values. Note that only absolute permeability changed in each simulation run, while the 

relative permeability curves remain the same. The total injection rate was 240 mL/h. Absolute 

permeability values (i.e., 1000 and 500 mD) were investigated.  The foam reference pressure (solid 

green line) is shown for absolute permeability K = 2252 mD, which was the experimental value. When 

the absolute permeability was reduced to K = 1000 mD (solid orange line), a higher pressure value Δ𝑃 = 

107 kPa was achieved compared to the foam reference case Δ𝑃 = 47.4 kPa with an increase of 59.9 

kPa at the same gas fraction fg = 0.7. When the absolute permeability was further reduced to 500 mD 

(solid blue line), the pressure became 215 kPa, which indicated an increase of 167.6 kPa compared to 

the foam reference case at fg = 0.7. The increase in the differential pressure can be explained by the 

permeability differences in the three cases. The lowest permeability resulted in the highest differential 

pressure.The baseline foam quality scans (dashed lines) also showed increased differential pressure 

with decreased absolute permeability, as shown in Figure 24. 

In general, the absolute permeability has an influence on the apparent viscosity since the calculation 

of apparent viscosity accounts for the permeability of the rock. Relative permeability is the tuning 

parameter in all history matching and its an input in the simulator as a table (fixed values). However, 

since the relative permeability is the ratio of effective permeability and absolute permeability, then 

changing only the absolute permeability will affect the differential pressure behavior, while the 

viscosity will remain unchanged. The differential pressure increased with decreased permeability as 

expected, and the model was highly sensitive to different absolute permeability values. 

 

Figure 24: Average differential pressure versus gas fraction during the CO2-NP foam quality scans (solid lines), and the baseline 
foam quality scans(dashed lines). Three different absolute permeability values (2252 mD; green, 1000 mD; orange and 500 
mD; blue). 
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4.3.6 Effect of varying the total injection rate, QT 

Figure 25 shows the apparent foam viscosity with varying injection velocity during the foam rate scans. 

The foam rate scan was conducted separately at gas fractions (0.7 and 0.85). The gas fraction 0.7 was 

the optimal gas fraction estimated from the foam quality scans in which the apparent foam viscosity 

achieved the highest values for all injection rates. The total injection rate was increased from 120 mL/h 

to 500 mL/h. Each injection rate achieved stable differential pressure at the gas fraction. At gas fraction 

of 0.7, the differential pressure had a total average increase of 23.8 kPa for all the injection rates. When 

the gas fraction was increased to 0.85, the differential pressure had a total average increase of 20.4 

kPa for all the injection rates. This indicates that differential pressure decreasing with increasing the 

gas fraction, as shown in Table 4.5. The results also showed limited changes in foam apparent viscosity 

with changes in superficial velocities, as shown in Table 4.5. As seen in Figure 25, no shear-thinning 

behavior (decreasing apparent viscosity with increasing injection rate) or shear-thickening (increasing 

apparent viscosity with increasing injection rate) was observed. The nanoparticle-stabilized CO2-foam 

showed a near-Newtonian behavior since the apparent viscosities were almost constants for all the 

injection velocities, as shown in Figure 25. The experimental work was conducted by Rognmo et al. 

(2017) on CO2-NP foam apparent viscosity also showed a near-Newtonian behavior, and this is an 

indication that the model was agreed with the experimental work. In the case of surfactant-based 

foam, a decrease in foam apparent viscosity with increasing the injection velocities is expected 

behavior due to shear-thinning flow (Lee et al., 1991; Sheng, 2013a). The sensitivity analysis during the 

foam rate scans confirmed the accuracy of the  results conducted in the experimental work. 

Table 4. 5: Foam apparent viscosity and differential pressure during the foam rate scans. 

𝒇𝒈 [-] QT [mL/h] 𝝁𝒂𝒑𝒑,𝑺𝒊𝒎𝒖. [cP] 𝚫𝐏  [kPa] 

0.7 

120 7.74 29.94 

180 7.74 44.94 

240 7.74 59.94 

300 7.75 74.96 

500 7.76 125.13 

0.85 

120 6.64 25.71 

180 6.65 38.63 

240 6.59 51.42 

300 6.64 64.33 

500 6.65 107.31 
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Figure 25 : Foam apparent viscosity versus injection rate during the foam rate scans with nanoparticles present. The total 
injection rate was increased from 120 mL/h to 500 mL/h. A constant apparent viscosity for increased injection rates indicates 
no shear-thinning or shear-thickening behaviors. Apparent viscosity at gas fraction 0.7 (orange) and at gas fraction 0.85 (blue). 

 

Sensitivity Analysis Main Findings 

The sensitivity analysis investigated the effect of foam model parameters and their impact on apparent 

viscosity. The sensitivity analysis showed that the reference foam mobility reduction factor (FMMOB) 

had a significant impact on the foam apparent viscosity, where foam apparent viscosities were closely 

linked and proportional with changes in FMMOB. However, the reference foam mobility reduction 

factor did not impact the transition from low to high-quality regime. It was observed that the maximum 

dry-out parameter, Sfdy, had a significant impact on the foam apparent viscosity in the high-quality 

regime, where foam apparent viscosities decreased with increased Sfdry values and increased with 

decreased Sfdry values. This was due to the dry out effect where foam dried (foam coalescence). It 

was also observed that the maximum dry-out slope, Sfbet, had a significant impact on the foam 

apparent viscosity in both the high-quality and the low-quality regime, where foam apparent viscosity 

increased with increased Sfbet values and decreased with decreased Sfbet values. One can conclude 

that the model was highly sensitive to the changes in both FMMOB and Sfdry values and moderately 

sensitive to the changes in Sfbet values. 
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Chapter 5: Conclusions and Future Work 
 

5.1  Conclusions 

A local-equilibrium foam model, precisely the default model of the  compositional EOS simulator CMG-

GEM, was utilized in this study. However, some modifications were necessary in order to match the 

experimental data. The model represented the effect of reference foam reduction factor (FMMOB) 

and the dry-out function FDRY (Sfdry + Sfbet) on steady-state foam flow. The relative permeability 

curves were obtained in the form of Modified Brooks Corey parameters and used as inputs in the 

model. The results obtained in this simulation study were consistent with the theory discussed earlier 

in the thesis. 

History matching of the experimental data followed by sensitivity study were conducted and confirmed 

that GEM is adequate for modeling nanoparticle-based foam. The co-injection of CO2 and nanofluid 

showed a constant apparent foam viscosity with increasing the total injection rate, as Rognmo et al. 

(2017) stated in their research, and as discussed in Chapter 3.1. From the experimental work, the 

maximum apparent viscosity of 7.8 cP was observed at a foam quality of 70 % (i.e., 70 % CO2 and 30 % 

nanofluid) for all injection velocities. In addition, it was observed that nanoparticles in brine solution 

were able to generate and stabilize CO2-foam.  

The model was capable of reproducing the experimental observations in the baseline foam quality 

scans (CO2 + brine), whereas history matching the foam quality scans with nanoparticles present was 

with an emphasis on the optimal gas fraction fg = 0.7. For the baseline foam quality scans, the model 

was able to match all the experimental data where the maximum apparent viscosity was achieved at 

gas fraction of 0.5 for all injection velocities. From CO2-NP foam quality scans, it was observed that the 

apparent viscosity increased to a maximum value (7.7 cP) at fg = 0.7, which is the transition for the low-

quality regime (fg <0.7) to the high-quality regime (fg >0.7), whereas, for baseline foam quality scans 

(without nanoparticles), the apparent viscosity was almost 3 times lower compared with the foam 

quality scans of CO2-NP at the same gas fraction. This indicated foam generation and that nanoparticles 

stabilized CO2 foam. No shear-thickening behavior (fluid viscosity increases with increasing injection 

rate) or shear-thinning behavior (fluid viscosity decreases with increasing injection rate) was observed 

during the foam scanning. The model saturation profiles indicated that foam was displacing more 

water from the core, and since baseline viscosity was lower than the viscosity of CO2-NP, resulted in 

higher water displacement with CO2-NP compared to the baseline. 

The sensitivity study was performed on the foam model parameters, including the reference foam 

mobility reduction factor, the maximum dry-out foam parameter, and the dry-out slope. History-

matched data with the injection rate of 240 mL/h were the foam reference case in the sensitivity 

analysis. Nanoparticle concentration and the injection velocity were also investigated in order to 

understand how uncertain model parameters impact the simulation results, including differential 

pressure and apparent viscosity. Nanoparticle concentration of 0.02 wt% was able to generate CO2-

foam with differential pressure behavior closely matching  the behavior from the reference case at all 

gas fractions. The highest percentage difference was at gas fraction fg = 1 and it didn’t exceed 0.15 %. 

However, the apparent viscosity was sensitive to the variation of the gas fraction. The reference foam 

mobility reduction factor, FMMOB, had a significant impact on the foam apparent viscosity, where 

foam apparent viscosities increased with increased FMMOB values and decreased with decreased 

FMMOB values. The maximum dry-out parameter, Sfdy, had a significant impact on the foam apparent 

viscosity in the high-quality regime, where foam apparent viscosities decreased with increased Sfdry 
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values and increased with decreased Sfdry values. The maximum dry-out slope, Sfbet, had an impact 

on the foam apparent viscosity in both the high-quality and the low-quality regime, where foam 

apparent viscosities increased with increased Sfbet values and decreased with decreased Sfbet values. 

Foam rate scans showed that the foam apparent viscosity was nearly constant with changes in the 

injection velocities at gas fractions of 0.7 and 0.85. The nanoparticle-stabilized CO2-foam showed a 

near-Newtonian behavior with limited changes in foam apparent viscosity with changes in the total 

injection rates (superficial velocities). Comparing the parameters obtained through matching of the 

experimental data, it was observed that for this given system, foam stability was highly sensitive to 

different foam model parameters, including the reference foam mobility reduction factor and the dry 

out function. Considering the unavoidable uncertainty, this study demonstrated that the model 

provided a reasonable and reliable history match. Moreover, the applied history matching 

methodology was appropriate to tune uncertain model parameters to reproduce experimental 

observations. 
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5.2  Future Work 

The work confirmed that CMG-GEM was an adequate simulator for modeling of core flood experiments 

with co-injections of CO2-brine and CO2-NP. In this thesis, an investigation into local-equilibrium foam 

modeling based on foam scanning was performed. However, there are several non-tested options 

should be further investigated. This gave rise to several ideas for future work: 

• The model should be expanded to allow for investigating the effect of the trapped-gas fraction 
on foam generation. 

• An updated model should allow for investigating the effect of oil on foam generation where 
the defoaming action of the oil still not fully understood. 

• Investigating the dependence of foam stability on parameters including temperature, salinity, 
wettability, and oil composition. 

• It would also be interesting to investigate the effect of grid resolution by creating 2D and 3D 
model to replicate the core-flooding experiment in order to investigate the accuracy and 
reproducibility of the 1D model. 

• Upscaling this core flood model to field-scale model with deriving the foam parameters would 
be an exciting subject. 
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Appendix A: Foam Mathematical Model, History Match Data and The Effect of 
Nanoparticle Concentration 
 

A.1: Foam Mathematical model 

Foam Mathematical model discussed in Chapter 3.2.3. 

Table A. 1: Foam Mathematical Model. 

Model Description 

𝑘𝑟𝑔
𝑓

=  𝑘𝑟𝑔 × 𝐹𝑀 𝑘𝑟𝑔
𝑓

: foam relative 

permeability  
𝑘𝑟𝑔: gas relative 

permeability 
FM: mobility reduction 
factor 

𝐹𝑀 =
1

1 + 𝐹𝑀𝑀𝑂𝐵(𝐹1 × 𝐹2 × 𝐹3 × 𝐹4 × 𝐹5 × 𝐹6 × 𝐹7 × 𝐹𝐷𝑅𝑌)
 

 

fmmob: Reference foam 
mobility reduction factor 

 𝐹1 = (
𝑀𝑂𝐿𝐸 𝐹𝑅𝐴𝐶𝑇𝐼𝑂𝑁(𝐼𝐶𝑃𝑅𝐸𝐿)

𝐹𝑀𝑆𝑈𝑅𝐹
)

𝐸𝑃𝑆𝑈𝑅𝐹

 
fmsurf: Critical component 
mole fraction value 

𝐹2 = (
(𝐹𝑀𝑂𝐼𝐿 − 𝑂𝐼𝐿 𝑆𝐴𝑇𝑈𝑅𝐴𝑇𝐼𝑂𝑁)

(𝐹𝑀𝑂𝐼𝐿 − 𝐹𝐿𝑂𝐼𝐿)
)

𝐸𝑃𝑂𝐼𝐿

 
fmoil: Critical oil saturation 
value 

𝐹3 = (
𝐹𝑀𝐶𝐴𝑃

𝐶𝐴𝑃𝐼𝐿𝐿𝐴𝑅𝑌 𝑁𝑈𝑀𝐵𝐸𝑅
)

𝐸𝑃𝐶𝐴𝑃

 
fmcap: Reference rheology 
capillary number value 

𝐹4 = (
(𝐶𝐴𝑃𝐼𝐿𝐿𝐴𝑅𝑌 𝑁𝑈𝑀𝐵𝐸𝑅 − 𝐹𝑀𝐺𝐶𝑃)

𝐹𝑀𝐺𝐶𝑃
)

𝐸𝑃𝐶𝑃𝐺

 
fmgcp: Critical generation 
capillary number value 

𝐹5 = (
(𝐹𝑀𝑂𝑀𝐹 − 𝑋𝐶𝑂𝑀𝑃_𝑁𝐴𝑀𝐸)

𝐹𝑀𝑂𝑀𝐹
)

𝐸𝑃𝑂𝑀𝐹

 
fmomf: Critical oil mole 
fraction for component 
‘comp_name’ 

𝐹6 = (
(𝑋𝑆𝐴𝐿𝑇 − 𝐹𝑆𝐴𝐿𝑇)

(𝐹𝑀𝑆𝐴𝐿𝑇 − 𝐹𝐿𝑆𝐴𝐿𝑇)
)

𝐸𝑃𝑆𝐴𝐿𝑇

 
fmsalt: Critical salt mole 
fraction value 

𝐹7 = (
1

𝐹𝑀𝑃𝐸𝑅𝑀1
) × ln ((

𝑃𝐸𝑅𝑀𝐴𝑉

𝐹𝑀𝑃𝐸𝑅𝑀2
) + 1) 

fmperm1: permeability 
dependence parameter 1. 
Fmperm2: permeability 
dependence parameter 2. 

𝐹𝐷𝑅𝑌 = 0.5 +
arctan(𝑠𝑓𝑏𝑒𝑡(𝑆𝑤 − 𝑠𝑓𝑑𝑟𝑦))

𝜋
 

Where, 
 𝑠𝑓𝑑𝑟𝑦 = max (𝑄1, 𝑄2, 𝑄3, 𝑄4) , with,  
 𝑄𝑛 = 𝐺𝑛 × (1 − 𝑠𝑓𝑑𝑟𝑦) + 𝑠𝑓𝑑𝑟𝑦, 𝑛 = 1,2,3,4 , and  
 

              𝐺1 = (
𝑠𝑓𝑠𝑢𝑟𝑓−𝑀𝑜𝑙𝑒 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (𝑖𝑐𝑝𝑟𝑒𝑙)

𝑠𝑓𝑠𝑢𝑟𝑓
)

𝑒𝑓𝑠𝑢𝑟𝑓
 

 

fdry: foam dry-out 
parameter. 
sfbet: Reference dry-out 
slope. 
sfdry: Max. dry-out value. 
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               𝐺2 = (
𝑆𝑜−𝑠𝑓𝑜𝑖𝑙

𝑎𝑏𝑠(𝑠𝑓𝑜𝑖𝑙−𝑠𝑙𝑜𝑖𝑙)
)

𝑒𝑓𝑜𝑖𝑙
 

 

               𝐺3 = (
𝑠𝑓𝑐𝑎𝑝 

(𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟)
)

𝑒𝑓𝑐𝑎𝑝
 

 

               𝐺4 = (
(𝑠𝑓𝑠𝑎𝑙𝑡−𝑆𝑎𝑙𝑡 𝑀𝑜𝑙𝑒 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛) 

(𝑠𝑓𝑠𝑎𝑙𝑡−𝑠𝑙𝑠𝑎𝑙𝑡)
)

𝑒𝑓𝑠𝑎𝑙𝑡
 

 
                𝑆𝑤 = 𝑊𝑎𝑡𝑒𝑟 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑 𝑏𝑙𝑜𝑐𝑘 
                𝑆𝑜 = 𝑂𝑖𝑙 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑 𝑏𝑙𝑜𝑐𝑘 
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A.2: Differential pressure, apparent viscosity and saturation profiles data during the 
foam quality scans 

 

Table A. 2.1: Average differential pressure data for experiment and simulation during the baseline foam quality scans. 

 

 

Injection Rate [mL/h] fg [-]

120 0.1 8.96 8.89

0.2 10.34 10.39

0.35 11.03 11.47

0.5 11.72 11.72

0.7 11.03 10.91

0.85 8.96 9.19

0.9 8.27 8.23

1 6.21 5.21

180 0.2 13.10 12.61

0.35 13.79 13.89

0.5 14.48 14.23

0.7 13.79 13.42

0.85 11.72 11.47

0.9 11.03 10.38

1 6.21 6

240 0.1 13.79 13.16

0.2 15.17 15.08

0.35 16.55 16.56

0.5 17.24 16.97

0.7 16.55 16.03

0.85 13.79 13.87

0.9 13.10 12.63

1 6.21 7.07

SimulationExperimnetal

dp [kPa] dp [kPa]
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Table A. 2.2: Apparent viscosity data for experiment and simulation during the baseline foam quality scans. 

 

 

Injection Rate [mL/h] fg [-]

120 0.1 2.3 2.3

0.2 2.7 2.7

0.35 2.9 3.0

0.5 3.0 3.0

0.7 2.9 2.8

0.85 2.3 2.4

0.9 2.1 2.1

1 1.6 1.3

180 0.2 2.3 2.2

0.35 2.4 2.4

0.5 2.5 2.5

0.7 2.4 2.3

0.85 2.0 2.0

0.9 1.9 1.8

1 1.1 1.0

240 0.1 1.8 1.7

0.2 2.0 1.9

0.35 2.1 2.1

0.5 2.2 2.2

0.7 2.1 2.1

0.85 1.8 1.8

0.9 1.7 1.6

1 0.8 0.9

Experimental Simulation

μ app [cP] μ app [cP]
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Table A. 2.3: Average differential pressure data for experiment and simulation during the foam quality scans with 
nanoparticles present. 

 

 

 

 

 

 

 

 

 

 

Injection Rate [mL/h] fg [-]

120 0.1 16.55 16.53

0.2 15.86 21.58

0.35 23.44 26.53

0.5 28.27 29.41

0.7 30.34 30.36

0.85 28.27 27.71

0.9 22.75 25.04

1 17.24 6.11

180 0.1 19.99 22.36

0.2 23.44 29.76

0.35 34.47 37.47

0.5 41.37 42.43

0.7 44.82 44.77

0.85 37.23 38.22

0.9 35.16 29.25

1 22.06 7

240 0.1 26.89 28.17

0.2 30.34 38.1

0.35 47.57 48.67

0.5 53.78 55.85

0.7 60.67 59.94

0.85 51.02 51.43

0.9 48.95 39.16

1 26.89 8.14

Experimental Simulation

dp [kPa] dp [kPa]
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Table A. 2.4: Foam apparent viscosity data for experiment and simulation during the foam quality scans with nanoparticles 
present. 

 

 

 

Table A. 2.5: History matching saturation profiles data with a total injection rate of 240 mL/h. 

                             Baseline Foam quality scan       CO2-NP foam quality scan 

Fg Sw Sg Sw Sg 
0 1 0 1 0 

0.1 0.89 0.11 0.77 0.23 
0.2 0.84 0.16 0.71 0.29 

0.35 0.80 0.20 0.66 0.34 
0.5 0.76 0.24 0.61 0.39 
0.7 0.70 0.30 0.56 0.44 

0.85 0.63 0.37 0.51 0.49 
0.9 0.60 0.40 0.50 0.50 
1 0.41 0.59 0.39 0.61 

 

Injection Rate [mL/h] fg [-]

120 0.1 4.3 4.3

0.2 4.1 5.6

0.35 6.1 6.9

0.5 7.3 7.6

0.7 7.8 7.8

0.85 7.3 7.2

0.9 5.9 6.5

1 4.5 1.6

180 0.1 3.4 3.9

0.2 4.0 5.1

0.35 5.9 6.5

0.5 7.1 7.3

0.7 7.7 7.7

0.85 6.4 6.6

0.9 6.1 5.0

1 3.8 1.2

240 0.1 3.5 3.6

0.2 3.9 4.9

0.35 6.1 6.3

0.5 6.9 7.2

0.7 7.8 7.7

0.85 6.6 6.6

0.9 6.3 5.1

1 3.5 1.1

Experimental Simulation

μ app [cP] μ app [cP]
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A.3: The effect of nanoparticle concentration 

Table A.3 shows the effect of nanoparticle concentration on foam differential pressure discussed in 

Chapter 4.3.1, where the foam reference case was at 1500 ppm (equivalent to 0.15wt.%) and three 

other concentrations (0.02, 0.5 and 1.0 wt%) to see the behavior of nanoparticle concentration on the 

average differential pressure.  

Table A. 3: Average differential pressure data with varying nanoparticle concentrations during the foam quality scans with 
nanoparticles present. 

  Nanoparticle concentrations [wt%] 

    0.02 0.15 0.5 1 

Q [mL/h] 

 
Fg[-] dP[kPa] dP[kPa] dP[kPa] dP[kPa] 

240 0.1 28.17 28.17 28.19 28.21 

  0.2 38.09 38.1 38.12 38.14 

  0.35 48.66 48.67 48.69 48.72 

  0.5 55.84 55.85 55.86 55.89 

  0.7 59.94 59.94 59.96 59.99 

  0.85 51.41 51.43 51.46 51.5 

  0.9 39.15 39.16 39.19 39.24 

  1 8.13 8.14 8.15 8.16 
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Appendix B: Sample Input Data 
 

B.1  An example of GEM Input File - CO2-NP co-injection of core ST3 

The following is an input data file for CMG GEM simulator. These data were used for history matching 

of CO2 and nanofluid co-injection in Chapter 4. 

 

** 2019-07-15, 13:59:16, sah005 

** 2019-07-15, 19:05:23, sah005 

RESULTS SIMULATOR GEM 201710 

 

*TITLE1 'Foam Modeling' 

*TITLE2 'Fmmob' 

*CASEID 'FOAM-MOD' 

 

INUNIT SI 

*WRST 0 

*WSRF *GRID *TIME 

WSRF WELL 1 

 

** OUTSRF *SPECIAL *DROP 1 1 1  50 1 1 

*OUTPRN *GRID *IMPL *PRES *SO *SG *SW *FMC7PERM *KRINTER 

*OUTPRN *RES *ALL 

*OUTSRF *WELL *PAVG 

*OUTSRF *WELL *LAYER *ALL 

*OUTSRF *GRID *PRES *SO *SG *SW *KRO *KRG *KRW *MOLALITY 'Surf' 

         *VISO *VISG *VISW *CAPNGW *KRINTER W 'Surf' *ADS 'Surf' 

         *FMC1SURF *FMC2COIL *FMC3CAPN *FMC4GCAPN *FMC5OMF *FMC6SALT *FMC7PERM 

         *FMCDRYOUT *CAPNGW *SIGMAGW 

*DIARY *WELL-INFO 

 

** -------------------------------- GRID AND RESERVOIR DEFINITION -------------------------------- 

GRID VARI 50 1 1 
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KDIR DOWN 

DI IVAR  

 50*0.00576 

DJ JVAR  

 0.03341075509 

DK ALL  

 50*0.03341075509 

DTOP   

 50*1 

**  0 = pinched block, 1 = active block 

PINCHOUTARRAY CON            1 

**  0 = null block, 1 = active block 

NULL CON            1 

POR CON         0.2381 

PERMI CON          2252 

PERMJ  EQUALSI 

PERMK  EQUALSI 

CPOR 2.5e-20 

 

** ---------------------------------FLUID COMPONENT DATA--------------------------- 

 

MODEL PR 

NC 2 2 

COMPNAME 'CO2' 'NC10'  

       

HCFLAG 

0 1  

TRES 20.00000  

*PHASEID *GAS          

PVC3 1.20000000E+00 

VISCOR HZYT 
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MIXVC 1.0000000E+00 

VISCOEFF 

1.0230000E-01 2.3364000E-02 5.8533000E-02 -4.0758000E-02 9.3324000E-03  

MW 

4.4010000E+01 1.3400000E+02  

AC 

2.2500000E-01 4.4377400E-01  

PCRIT 

7.2800000E+01 2.5010000E+01  

VCRIT 

9.4000000E-02 5.2100000E-01  

TCRIT 

3.0420000E+02 6.2210000E+02  

      

** VISCOR MODPEDERSEN 

        

** VISCOEFF 

** 1.3040000E-04 2.3030000E+00 7.3780000E-03 1.8470000E+00 5.1730000E-01  

 

PCHOR 

7.8000000E+01 3.8191680E+02  

SG 

8.1800000E-01 7.8200000E-01  

TB 

-7.8450000E+01 1.6585000E+02  

OMEGA 

4.5723553E-01 4.5723553E-01  

OMEGB 

7.7796074E-02 7.7796074E-02  

VSHIFT 

0.0000000E+00 0.0000000E+00  
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VISVC 

9.4000000E-02 5.2100000E-01  

BIN 

1.1500000E-01  

 

ENTHCOEF 

9.6880000E-02 1.5884300E-01 -3.3712000E-05 1.4810500E-07 -9.6620300E-11 2.0738320E-14  

0.0000000E+00 -4.4918993E-02 4.2590035E-04 -6.4079614E-08 0.0000000E+00 0.0000000E+00 

  

        

*DENWS    1010   ** kg/m3         ** Suface water density 

                              

*CW      4.35E-013 ** 1/kpa       ** water compressibility 

*REFPW   101.325    ** kpa     ** ref. pressure       

*VISW    1.03    ** cp             ** water visicosity 

 

*NC-AQUEOUS 1 

*COMPNAME-AQUEOUS 'Surf' 

*MW-AQUEOUS 60.8 

 

*AQUEOUS-DENSITY  *ROWE-CHOU 

 

*COMPNAME-SURFACTANT 'Surf' 

      

 

** ---------------------------------------- ROCK-FLUID DATA ------------------------------------ 

 

*ROCKFLUID 

RPT 1 

 

*FOAM-MODEL *MULTREL    
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*FMCOMP 'Surf' 

*FMMOB 6.7 

*SFDRY 0.5 

*SFBET 100 

 

SGT 

** Sg          krg      krog 

0 0 1 

0.04 0.000591683 0.857375 

0.08 0.002060361 0.729 

0.12 0.004274719 0.614125 

0.16 0.007174594 0.512 

0.2 0.010721002 0.421875 

0.24 0.014885438 0.343 

0.28 0.019645624 0.274625 

0.32 0.024983388 0.216 

0.36 0.030883455 0.166375 

0.4 0.037332697 0.125 

0.44 0.044319637 0.091125 

0.48 0.051834105 0.064 

0.52 0.059866986 0.042875 

0.56 0.068410037 0.027 

0.8 0.13 0 

 

 

SWT 

**        Sw          krw        krow 

          0.2            0           1 

         0.21  2.44141E-08  0.97515625 

         0.22  3.90625E-07    0.950625 
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         0.23  1.97754E-06  0.92640625 

         0.24     6.25E-06      0.9025 

         0.25  1.52588E-05  0.87890625 

         0.26  3.16406E-05    0.855625 

         0.27  5.86182E-05  0.83265625 

         0.28       0.0001        0.81 

         0.29  0.000160181  0.78765625 

          0.3  0.000244141    0.765625 

         0.31  0.000357446  0.74390625 

         0.32   0.00050625      0.7225 

         0.33   0.00069729  0.70140625 

         0.34  0.000937891    0.680625 

         0.35  0.001235962  0.66015625 

         0.36       0.0016        0.64 

         0.37  0.002039087  0.62015625 

         0.38  0.002562891    0.600625 

         0.39  0.003181665  0.58140625 

          0.4   0.00390625      0.5625 

         0.41  0.004748071  0.54390625 

         0.42  0.005719141    0.525625 

         0.43  0.006832056  0.50765625 

         0.44       0.0081        0.49 

         0.45  0.009536743  0.47265625 

         0.46  0.011156641    0.455625 

         0.47  0.012974634  0.43890625 

         0.48   0.01500625      0.4225 

         0.49  0.017267603  0.40640625 

          0.5  0.019775391    0.390625 

         0.51  0.022546899  0.37515625 

         0.52       0.0256        0.36 

         0.53  0.028953149  0.34515625 
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         0.54  0.032625391    0.330625 

         0.55  0.036636353  0.31640625 

         0.56   0.04100625      0.3025 

         0.57  0.045755884  0.28890625 

         0.58  0.050906641    0.275625 

         0.59  0.056480493  0.26265625 

          0.6       0.0625        0.25 

         0.61  0.068988306  0.23765625 

         0.62  0.075969141    0.225625 

         0.63  0.083466821  0.21390625 

         0.64   0.09150625      0.2025 

         0.65  0.100112915  0.19140625 

         0.66  0.109312891    0.180625 

         0.67  0.119132837  0.17015625 

         0.68       0.1296        0.16 

         0.69  0.140742212  0.15015625 

          0.7  0.152587891    0.140625 

         0.71   0.16516604  0.13140625 

         0.72   0.17850625      0.1225 

         0.73  0.192638696  0.11390625 

         0.74  0.207594141    0.105625 

         0.75  0.223403931  0.09765625 

         0.76       0.2401        0.09 

         0.77  0.257714868  0.08265625 

         0.78  0.276281641    0.075625 

         0.79  0.295834009  0.06890625 

          0.8   0.31640625      0.0625 

         0.81  0.338033228  0.05640625 

         0.82  0.360750391    0.050625 

         0.83  0.384593774  0.04515625 

         0.84       0.4096        0.04 
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         0.85  0.435806274  0.03515625 

         0.86  0.463250391    0.030625 

         0.87  0.491970728  0.02640625 

         0.88   0.52200625      0.0225 

         0.89  0.553396509  0.01890625 

          0.9  0.586181641    0.015625 

         0.91  0.620402368  0.01265625 

         0.92       0.6561        0.01 

         0.93  0.693316431  0.00765625 

         0.94  0.732094141    0.005625 

         0.95  0.772476196  0.00390625 

         0.96   0.81450625      0.0025 

         0.97   0.85822854  0.00140625 

         0.98  0.903687891    0.000625 

         0.99  0.950929712  0.00015625 

            1            1           0 

 

 

** ---------------------------------------- INITIAL CONDITIONS ------------------------------------------ 

INITIAL 

 

USER_INPUT 

PRES CON         9000 

SW CON            1 

ZGLOBALC 'CO2' CON            0 

ZGLOBALC 'NC10' CON            1 

 

 

*MOLALITY-AQUEOUS 0.0 

 

** -------------------------------------- NUMERICAL CONTROL ---------------------------------------- 
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NUMERICAL 

DTMAX 0.0001 

CONVERGE MAXRES TIGHT 

       

 

 

** ------------------------------------- RECURRENT DATA --------------------------------------------- 

 

 

RUN 

Time 0 

DTWELL 0.01 

DTMIN 0.00001 

AIMWELL WELLN 

 

 

WELL  'CO2-INJ' 

**     Solvent Injection (mole fraction)         ** All rates 120  180  240 mL/h 

       **<-------- 1 to Nc ------------>  

INJECTOR 'CO2-INJ' 

INCOMP  SOLVENT  1.0  0.0 

OPERATE  MAX  BHG  0.000288  CONT 

**          rad  geofac  wfrac  skin 

GEOMETRY  I  0.001  0.37  1.0  0.0 

      PERF      GEOA  'CO2-INJ' 

** UBA              ff          Status  Connection   

    50 1 1         1.0  OPEN    FLOW-FROM  'SURFACE' 

 

** 

WELL  'SURF-INJ' 

**    Inject water along with surfactant (0.0 molality) 
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        **<-- 1 to Nc --> <--Surf--> 

INJECTOR 'SURF-INJ' 

INCOMP  AQUEOUS  0.0  0.0  0.0247 

 

OPERATE  MAX  STW  0.002592  CONT 

**          rad  geofac  wfrac  skin 

GEOMETRY  I  0.001  0.37  1.0  0.0 

      PERF      GEOA  'SURF-INJ' 

** UBA              ff          Status  Connection   

    50 1 1         1.0  OPEN    FLOW-FROM  'SURFACE' 

 

**                                              

WELL 'PROD' 

** 

PRODUCER 'PROD' 

OPERATE  MIN  BHP  9000.0  CONT 

**          rad  geofac  wfrac  skin 

GEOMETRY  I  0.001  0.37  1.0  0.0 

      PERF      GEOA  'PROD' 

** UBA             ff          Status  Connection   

    1 1 1         1.0  OPEN    FLOW-TO  'SURFACE' 

 

TIME 0.01 

TIME 0.026579 

TIME    0.15947 

** 180 mL/h ************************************ 

INJECTOR 'CO2-INJ' 

INCOMP  SOLVENT  1.0  0.0 

OPERATE  MAX  BHG  0.000432  CONT 

INJECTOR 'SURF-INJ' 

INCOMP  AQUEOUS  0.0  0.0  0.0247 
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OPERATE  MAX  STW  0.003888  CONT 

 

TIME 0.19491 

** 240 mL/h  *********************************** 

INJECTOR 'CO2-INJ' 

INCOMP  SOLVENT  1.0  0.0 

OPERATE  MAX  BHG  0.000576  CONT 

INJECTOR 'SURF-INJ' 

INCOMP  AQUEOUS  0.0  0.0  0.0247 

 

OPERATE  MAX  STW  0.005184  CONT 

 

TIME 0.22149 

 

STOP 
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