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SYNOPSIS 
Background: Kenya is a country in sub-Saharan Africa (SSA) with an HIV prevalence 

in the adult population is around 5%, which is considered to be a generalized HIV 

epidemic. The generalized nature of the epidemic makes it difficult to target HIV 

services and interventions due to misalignment of geographic planning units and finer 

locations that may need extra resources. This thesis explored geospatial features and 

their associations with the HIV epidemic with a view of identifying gaps in prevention, 

care, and treatment. Using a variety of spatial statistics and analytics and mapping, we 

point out geographic areas that need focussed and intensified HIV interventions.  

Methods: In Paper I, we conducted a spatial scan statistical analysis to identify hotspots 

with disproportionate HIV infections using cross-sectional household survey data. In 

Paper II, we identified disparate geographic regions with high numbers of newly 

diagnosed HIV infections using routine program data. In Paper III, we conducted 

spatial-temporal analyses to show impact of prevention of mother to child transmission 

of HIV (PMTCT) through reduced rates of HIV infections among infants. In Paper IV, 

we used spatial-temporal analyses and structural equation models to show the 

covariance relationship of antiretroviral therapy (ART) and viral load suppression 

(VLS) in reduced HIV positivity over time in Kenya.  

Results: In Paper I, we have shown that HIV infection in Kenya exhibits localized 

geographic clustering associated with socio-demographic and behavioural factors, 

suggesting disproportionate exposure to higher HIV-risk. Identification of these clusters 

reveals the right places for targeting priority-tailored HIV interventions. The newly 

diagnosed HIV positives in Kenya are not necessarily, where the HIV burden is high. 

In Paper II, we identified wide-ranging spatial variation of new HIV diagnoses through 

cluster and hotspot identification analyses. High HIV-burden sub-National units 

(SNUs)/counties contain most high yielding sites but some sites are also in low-burden 

SNUs. Targeting HIV testing services for sites in low-burden regions needs a Geospatial 

approach. An outcome measure of the success of the PMTCT program through 

reduction of transmission is highlighted in Paper III. During this period – before 

universal treatment – the PMTCT program in this region had not reached the target rate 
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of ≤50 cases per 100,000 live births. Using spatial-temporal models with covariates 

provided better estimates of prevalence and explained the geographically distributed 

disease burden. In Paper IV we show that over a 3-years period, (2015-2017), improved 

viral load suppression rates had a direct effect on reduced HIV positivity rates during 

an era of scaled up ART coverage in Kenya. To assess the trends and impact of 

implementation of scaled-up care and treatment, spatial-temporal analyses help in 

identification of geographic areas that need focused interventions. 

Conclusions: HIV prevalence in Kenya, though generalized, ought to be looked at more 

critically. Some efforts at epidemic control including ending mother to child 

transmission (e-MTCT) have born fruits though with geographical disparities. Given 

the present density of low-yield HTS sites in Kenya, geographic coverage and access to 

HTS may need better targeting at the spatial level to achieve knowledge of status for at 

least 90% of the population. Access to HTS is needed everywhere in Kenya, yet, 

targeting is difficult in low prevalence areas. Gains in reduced number of new HIV 

diagnoses have been demonstrated where viral load suppression rates are good. This 

study has demonstrated that geospatial analyses and mapping makes it easier to define 

refined geographic areas and hotspots in need of enhanced HIV prevention and 

treatment interventions. We have provided evidence that there are geographic 

disparities in HIV program impact in Kenya. Micro location-based planning is 

necessary for improved resource allocation. We recommend clustering analyses to 

identify areas with disproportionately high number of HIV-infected persons for re-

allocation of resources within SNUs and continued use of geospatial analyses for 

advocacy and planning to help in achieving HIV epidemic control in Kenya.  
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GLOSSARY 
 

Access The physical presence of a facility offering that service 

within a given distance or catchment area of its potential 

clients [1]. 

Accessibility The distance of travel time between the clients’ location and 

the facility. This may also prevent an eligible individual 

from utilizing a service [1].  

Catchment area Geographic area from which a health facility attracts clients 

[1]. 

Catchment population The population of a health facility’s catchment area. 

Centroid The geographic centre point of a polygon (shape of a 

geographic region) [1]. 

Choropleth map A thematic map in which administrative areas are coloured 

or shaded according to the range in which the aggregated 

statistic falls [1].  

Clustering A closely grouped series of events or cases of a disease or 

other health related phenomena with well-defined 

distribution patterns in relation to time or place or both [2]. 

It is an excess of cases above some background rate 

bounded in time and space [3].  

Coverage The proportion of persons that are eligible to receive an 

intervention or utilize a service that actually receive or 

utilize it [1]. 

Coverage gap The proportion of people that are eligible to receive an 

intervention or utilize a service that do not receive or utilize 

it [1]. 

Disease mapping Visual representations of disease distribution. The purpose 

of mapping in epidemiology is to describe the spatial 

variation in disease incidence for the formulation of 

etiological hypotheses; to identify areas of unusually high 
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risk in order to take; preventive action; and to provide a 

reliable map of disease risk in a region to allow better 

resource allocation and risk assessment [4]. 

Eligible The population that have the capacity or likely to benefit 

from an intervention or service [1].  

Hotspot(s) A place or collection of places within defined geographic 

boundaries that have a higher than average prevalence of a 

disease or phenomenon (such as more than usual number of 

female sex workers). In this proposal, hotspots refer to both.  

Impact The net improvement in population health status that can be 

attributed to an intervention or service. 

Mapping Visual representation of spatial data using cartographic 

methods 

Spatial clustering  The process of grouping a set of objects into classes or 

clusters so that objects within a cluster have a high 

similarity in comparison to one another but are dissimilar to 

objects in other clusters 

Spatial epidemiology The description and analysis of geographically indexed 

health data with respect to demographic, environmental, 

behavioral, socioeconomic, genetic, and infectious risk 

factors [3]. It is a subfield of health geography focused on 

the study of the spatial distribution of health outcomes. 

Spatial Related to geographic space. This may be a visualized as a 

point on a map that has geo-reference of longitude and 

latitude or space that may have actual boarders such as 

administrative units.  

Temporal clustering An occurrence of a disease or disorder that has unusually 

high incidence occurring in close proximity in terms of time 

and geography. 

Utilization Actual use of a service by a person, client, eligible to use 

that service [1]. 
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ACRONYMS AND ABBREVIATIONS  
AIDS: Acquired immunodeficiency syndrome 
AIS: AIDS indicator survey 
ANC: Antenatal clinic 
ANN: Average nearest neighbour 
aOR: Adjusted odds ratios 
APR: Annual progress report  
ART: Antiretroviral therapy 
ARV: Antiretroviral 
CDC: Centres for disease control and prevention 
CI: Confidence interval 
DHIS2: District health information system 2 
DHS: Demographic and health survey 
DOD: Department of defence 
EID: Early infant diagnosis (of HIV) 
eMTCT: (include definitions)elimination of mother to child transmission of HIV 

(eMTCT is achieved when <50 infections occur per 100,000 births) 
EPP: Estimation and projection package 
ERC: Ethical review committee  
EWI: Early warning indicators for HIV drug resistance 
FSW: Female sex workers 
GIS: Geographic information systems 
HDI: Human development index 
HH: High-rate clusters neighbouring other high-rate clusters 
HIV: Human immunodeficiency syndrome 
HIVDR: HIV drug resistance 
HL: High prevalence clusters neighbouring low prevalence clusters 
HP: High prevalence clusters 
HTC: HIV testing and counselling 
HTS: HIV testing services 
HIVST  HIV self-testing 
IDU: Injecting drug users 
ILRI: International livestock research institute  
INLA: Integrated nested Laplace approximation 
iPSL: Integrated PEPFAR site list 
IRB: International review board 
KAIS: Kenya AIDS indicator survey 
KDHS: Kenya demographic health survey 
KEMRI: Kenya medical research institute 
KEPH: Kenya essential package for health 
KII: Key informant interviews  
KNBS: Kenya national bureau of statistics 
KP: Key populations including; female sex workers (FSW), men who have 

sex with men (MSM), injecting drug users (IDUs), and fisher folk 
LFTU: Lost to follow-up 
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LH: Low rate areas neighbouring high rate areas 
LISA: Local indicators for spatial autocorrelation 
LL: Low rate neighbouring low rate areas 
LP: Low prevalence 
MER: Monitoring evaluation and reporting  
MFL: Master facilities list 
MSM: Men who have sex with men 
MTCT: Mother to child transmission (of HIV) 
NACC: National AIDS control council 
NASCOP: National AIDS and STI control programme 
NNHC: Nearest neighbour hierarchical clustering  
NPS: National population surveys 
OR: Odds ratio 
OSM: Open street map 
PEPFAR: U.S. President’s Emergency Plan for AIDS Relief 
PII: Personally identifiable information 
PLHIV: People living with HIV 
PMTCT: Prevention of mother to child transmission of HIV 
PNS: Partner notification service 
QGIS: Quantum GIS  
SAS: Statistical analysis system  
SDG: Sustainable development goals 
sdNVP Single dose nevirapine 
SIMS: Site improvement through monitoring systems 
SNU: Sub-national unit 
UHC: Universal health coverage 
UNDP: United Nations Development Program 
USAID: United states agency for international development 
VCT: Voluntary counselling and testing 
VL: Viral load 
VLS: Viral load suppression 
VMMC: Voluntary medical male circumcision 
WHO: World Health Organization 
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1.0 INTRODUCTION 
Kenya  

Location, population and culture  

Kenya (figure 1) is located in the East Africa south of Sahara and is contiguous to 5 

countries within the East Africa region and among about 50 sub-Saharan countries [5]. 

The country covers an area of 583,000 square kilometres, making it the 23rd largest state 

in Africa. The population per 2009 census was 40.6 million [6], and was estimated to 

be 51 million in 2018, ranking 29th in the world. The country borders the republic of 

Somali to the East, Ethiopia to the North East and South Sudan to the North West, 

Uganda to the West and Tanzania to the South West. The country is geographically and 

culturally diverse with 42 ethnographic communities. Kenya has a number of climatic 

regions; the counties to the East, North East and North are mostly arid or semi-arid with 

most of these having a low population density. Geographical and cultural diversity 

determine the kind of socio-economic activities in the country.  

Infrastructure 

Administratively, Kenya is subdivided into 47 counties also called constituencies or 

sub-national units (SNU). The main transport network starts from the port of Mombasa, 

through to Nairobi (the capital city) and forks towards Central, Eastern and Northern 

Kenya at Nairobi with the other main fork towards Western Kenya and to the border of 

Kenya and Uganda and Northern Tanzania.  

Infrastructure can be described thus: a) spatially universal infrastructure includes 

services such as housing, water, sanitation, and other social services such as education 

and health; b) economically productive infrastructure includes energy, information 

communication technologies (ICT), irrigation, ports, and road and railway transport. 

Economically productive infrastructure complements the workforce in manufacturing 

and service industry and facilitates employment growth and rural-urban migration; c) 

spatially connective infrastructure includes transport modes that connect regions 

within a country, or that facilitate international trade across borders within a region or 

with global markets [7]. The impact of such connective infrastructure coupled with 

insecurity in the neighbouring Somalia (to the East) and South Sudan (to the North) has 
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resulted in an influx of refugees into Kenya over the past two decades (54.5% and 24.4% 

from Somalia and South Sudan, respectively) [8].  

Kenya has three large cities (Nairobi, Mombasa, and Kisumu) each with a huge 

population of 2.75 million, 800,000, and 220,000, respectively. However, there are 

other towns with large populations including Nakuru, Eldoret, and Thika (each with 

over 200,000 residents) [9]. In 2017, it was estimated that over a quarter (26.6%) of 

Kenya’s population live in urban areas and cities [10], meaning that a majority of 

Kenyans live in rural areas.  

 

Figure 1: Map of Kenya, macro geospatial features, and neighbouring countries 
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Key demographic, geographical and health indicators 

Key demographic and health indicators are presented in table 1. Kenya is ranked 143rd 

in terms of human development index (HDI) by United Nations Development Program 

(UNDP) [11]. With a HDI of 0.59, improved life expectancy of 67.3 years, at least 12  

Table 1: Major population, geographical and health indicators in Kenya 
Parameters Estimate 
Population and global health metrics   

Population (2017)a 45,800,000 
  Population under 15 years (proportion of total) 40.9 
  Population growth rate 0.029 
  Population density (by 2050) 831/square kilometer 
Life expectancy at birth f/m (2017) a   61.1 males, 65.8 females 
Neonatal mortality rate (per 1000 live births) b 39 (CI: 35 – 43) 20.9 
Under five mortality rate  (per 1000 live births) b 52 [48 – 57] 
Maternal mortality ratio per 100,000 live births 510 [344-754] 
Median duration of exclusive breastfeeding b 3.3 months 

Geography, infrastructure and health systems   
Geography  
  Total area (square kilometers) 582,646 
  Latitude 4.9 North, -4.9 South 
  Longitude 32.2 West, 42.0 East 
  Counties 47 
  Constituencies 290 
Land use c 

 

  Suitable land for rain-fed agriculture 17.0% 
  Forest reserves 2.4% 
  National parks, game reserves 7.5% 
Transport and spatial infrastructure 

 

  Classified roads d 63,575 km 
  Urban areas, cities and municipalities  3 cities, 66 urban centers  
Health systems 

 

  a. Number of health facilities (2018) 4868 
  b. Number of national referral hospitals (2018) 3 
  c. Physicians per 1000 population (2014) 0.204 
  d. Nursing/midwifery per 1000 population (2014) 1.582 
  e. Facility deliveries 61.2% 

Sources: 
a National council for population and development  

b Stat compiler https://www.statcompiler.com/en/ 
c Land use in Kenya 
d Kenya national highway authority http://www.kenha.co.ke/index.php/road-network 
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years of schooling, and gross national income per capita of over 2000 makes the country 

closer to attaining sustainable development goals (SDGs) 3, 4, and 8 placing the country 

among the countries with medium HDI. 

Only under a fifth of Kenya’s land is arable [12]. With population growth, this has led 

to high rates of rural-urban migration and possibly contributed to spread of HIV from 

urban to rural areas. 

HIV epidemic in Kenya 

Historical perspective  

A historical perspective of the HIV epidemic and response in Kenya is presented in 

figure 2. 

The 1980’s 

The first case of HIV/AIDS in Kenya was detected in 1984. In the early 80’s very few 

cases of HIV/AIDS were reported in Kenya with some literature quoting as low as 26 

cases between 1983 and 1985, [13]. The highest prevalence has consistently been 

among key populations (KP). Female sex workers have historically had the highest 

prevalence in Kenya and are described in literature as having been a major cause of 

infections in Nairobi city [14]. In 1985 HIV prevalence among female sex workers in 

Nairobi rose from 4% in 1981 to as high as 61% [15]. The rest of the details of the HIV 

epidemic in the mid to late ‘80s are scanty mostly due to lack of reliable data.  

The 1990’s 

By the mid to late 1990’s, over 10% of the adult general population was living with 

HIV, translating to about 2.1 million people. Among pregnant women, prevalence was 

between 15.3% in urban areas and 14% in other places. In some regions such as Kisumu, 

the prevalence among women age 15-19 was 23%, compared to 3.5% among men of 

the same age [15]. Around the same period, bed occupancy for patients admitted with 

AIDS-related conditions hit a high leading to detrimental health outcomes and reduced 

chances of recovery for patients with advanced disease [15]. One of the reasons why 

the disease spread so rapidly were low rates of condom use. For example, slightly over 

half of the young people believed that condoms protected them against infection. 

Reported condom use at last high-risk sex was only 42% among men and 16% among 
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women [15]. Reactions to the rise of the epidemic were first seen in the media and other 

informational and educative communication materials such as billboards. This. This led 

to accelerated HIV testing in the voluntary counselling and testing (VCT) strategy [16]. 

By the end of the 1990’s, HIV was a serious epidemic having reached 14.1% by the end 

of 1999 [17]. Reacting to the rising epidemic, the Kenya government started publishing 

informative articles in the local dailies and initiated billboard campaigns. Most of the 

messages were on use of condoms and abstinence.  

The 2000’s 

The prevalence rates declined from 13.9% in 2001 to 10.2% in 2002 [18]. In 2001, an 

estimated 2.5 million adults and children were living within with HIV and prevalence 

was estimated at 15% among adults 15-49 years old. HIV prevalence began to decline 

from its peak of 13.4 %in 2000 and continued to decrease steadily to 6.9 percent in 

2006. The decrease in prevalence coincided with the rapid expansion of preventative 

interventions since the year 2000, which resulted in a change in sexual behaviour and 

the increased use of condoms. The decline has also been attributed to the large number 

of people dying from AIDS in Kenya, which totalled 150,000 in 2003 alone [19]. The 

death toll affected all the sectors of the economy and had a detrimental effect on the 

workforce including the police force – with an estimated three quarters of all deaths 

attributed to AIDS [15]. Nearly 900,000 children were estimated to be orphaned by 

2001. In the mid-2000, the AIDS response took a turn with the availability and provision 

of free ARVs in the public sector, which started in 2004. This may have led to improved 

survival and a stabilized prevalence to below 10% in subsequent years. In 2007, HIV 

prevalence among adults (15-49 years old) was 7.4% [20], and in a repeat population 

based survey in 2012, the prevalence was 5.6% among the same age group [21]. A 

repeat Kenya HIV Population HIV Impact Assessment is underway and results are 

expected mid-2019. 

HIV/AIDS response 

In 1999, the then Kenyan President Daniel Arap Moi declared the AIDS epidemic a 

national disaster. In the same year, he announced the formation of the National AIDS 

Control Council (NACC) as a state corporation [22]. This announcement was seen as 
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the first commitment to fighting HIV in the country. In 2005, the then president HE 

Mwai Kibaki declared total war against HIV/AIDS and established a cabinet committee 

on HIV/AIDS. This coincided with the launch of the second AIDS strategic plan whose 

goal was to “reduce the spread of HIV, improve the quality of life of those infected and 

affected and mitigate the socio-economic impact of the epidemic in Kenya” [23]. In 

subsequent years, other commitments have been made towards preventing new HIV 

infections among children through ending of mother to child transmission of HIV - 

“Beyond Zero” campaign, initiated in 2013 by H.E the first lady of Kenya, Margaret 

Kenyatta [24]. 

 

In Kenya and other countries, it has been over 10 years since the inception of the most 

resource-intense public health response to HIV pandemic – U.S. President’s Emergency 

Plan for AIDS Relief (PEPFAR). Other initiatives such as the Global Fund to Fight 

AIDS, Tuberculosis, and Malaria, foundations such as the Clinton Foundation, Bill & 

Melinda Gates Foundation among others have also contributed to this fight.  

 

Governance being a key pillar to epidemic control has been critical in the response. The 

national AIDS control council (NACC) takes the lead on coordination and evaluation 

of all activities against AIDS, while the Ministry of Health manages the mainly health-

related interventions, implementation of guidelines and monitoring. To monitor the 

HIV/AIDS response in Kenya, various frameworks have been developed including the 

first ever Kenya National AIDS Strategic Plan (KNASP I), 1999/2000 – 2004. The 

second and third KNASPs were implemented during the years 2005/6 – 2009/10 and 

2009/10 – 2012/13, [23,25]. After the third KASP, the Kenya AIDS Strategic 

Framework (KASF), [25] was launched. Covering the years 2014/15 – 18/19, the 

framework is different from the KASP approaches since it set precedence for 

implementation of HIV programs that focus on institutional capacity strengthening 

under a decentralised government including modalities for stakeholder engagement for 

a sustained HIV epidemic control. Under this plan, key proposals are to increase 

domestic financing of HIV to 50%, achieve integration of HIV activities in development 

plans by 80% of the counties and strengthening NACC’s institutional capacity to 
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perform core mandates in a sustainable manner. The formation of Kenya National AIDS 

Authority in 2014 [26], overlapped with the establishment of the framework.  

 

Figure 2: Historical perspective of the HIV epidemic and response in Kenya 
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Current status of the HIV epidemic  

In the 30 years of HIV epidemic, there has been increased coverage and new modalities 

of HIV program implementation from HIV prevention, testing and counselling, linkage 

to care and treatment of HIV infected individuals including improved clinical and 

laboratory monitoring. However, HIV continues to be a major disease burden in Kenya. 

Jointly with Mozambique and Uganda, Kenya has the fourth largest HIV epidemic in 

the world [27]. This is not surprising since Eastern and Southern Africa region is the 

most affected by the HIV epidemic. It accounts for 45% of the world’s HIV infections 

and over half (53%) of PLHIV globally [27]. A summary of key indicators is presented 

in table 2. In 2017, there were an estimated 1,493,000 people living with HIV in Kenya, 

including 105,200 children <15 years old. The adult (ages 15-49 years) prevalence was 

4.9% and an estimated 52,800 new infections across all ages and 28,200 AIDS related 

deaths [28]. Over a tenth (12%) of the infections occurs among 15-24 year olds. The 

HIV program has had an improved coverage of ART, currently estimated at 75% among 

adults and 84% among children. Though heterosexual transmission is the most common 

mode of HIV transmission in Kenya, homosexual transmission among men who have 

sex with men also occurs. Heterosexual transmission mostly occurs between married or 

cohabiting couples, steady sexual and concurrent partnerships and transaction-based 

sexual encounters. Other sources of incident infections include injecting drug user and 

health facility related [29]. The drivers of the epidemic in Kenya are intergenerational 

sex, concurrent/multiple partnerships, and low prevalence of male circumcision in some 

communities [21,30]. According to the last population-based survey (Kenya AIDS 

Indicator Survey, 2012), the infection rates are highest among young women aged 15-

19 years who are 3 times more likely to become infected with HIV than young men; 

women of 20-24 years are over 5.5 times more than their male peers [21].  
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Table 2: Key HIV indicators  
Parameters Estimate [lower, upper] 
HIV and AIDS estimates   

Annual new HIV infections (all ages) 53,000 [31,000–86,000] 
Annual new HIV infections (0–14) 8,000 [4,600–13,000] 
Annual new HIV infections (women, 15+) 27,000 [16000–46,000] 
Annual new HIV infections (men, 15+) 18,000 [9,800–31,000] 
Adults and children living with HIV 1,500,000 [1,300,000 – 1,800,000] 
People living with HIV (0–14) 110,000 [76,000–130,000] 
People living with HIV (women, 15+) 860,000 [730,000–1,000,000] 
People living with HIV (men, 15+) 520,000 [430,000–630,000] 
AIDS-related deaths (all ages) 28000 [19,000–43,000] 

Source: Kenya HIV estimates report 2018 

 

Temporal variation in risk across geographic locations is a contributing factor for both 

the burden and the new HIV infections in Kenya. The five highest burden counties out 

of the country’s 47 counties are Nairobi, Homabay, Siaya, Kisumu, and Migori – 

contributing over 40% of the burden in Kenya. Four out of these counties are in western 

Kenya. Using estimates and projections applied to county level population size, 

estimated HIV prevalence ranges from 0.1% in Wajir to 21.0% in Siaya. In absolute 

numbers, over half of all new HIV infections (52%) occur in eight (Nairobi, Homabay, 

Siaya, Kisumu, Migori, Kiambu and Kakamega) out of the 47 counties with nine 

counties contributing an incidence of ≥2.0 per 1000 population [28].  

 

The impact of ART scale up has resulted in averting over half a million deaths and 

contributed to the reduction in incidence. Although over 2 million deaths have occurred 

cumulatively, ART coverage has had an impact: it is estimated that about 635,500 AIDS 

deaths have been averted between 2004 – 2017 and the incidence has reduced from 

0.35% in 2010 to 0.19% in 2017. In the Kenyan PMTCT program, ART coverage is 

about 77% and over 130,000 child HIV infections have been averted since the scale up 

of ART in 2004 [28].  

 

  



Anthony Waruru | Mapping HIV in Kenya 

P a g e  | 23  

 

Health policy and guidelines in Kenya 

Overall health governance 

Kenya health sector strategic plans 

Implementation of health services in Kenya has been guided by health sector strategic 

and investment plans. The first health sector strategic plan was developed for the years 

1999-2004 in response to the need for health sector wide approach and engagement with 

stakeholders. At this time, HIV was becoming a major killer in Kenya and contributing 

substantively to the health burden in the country. In the second strategic plan (2005-

2010), the main objective was to reduce health inequalities and to reverse the downward 

trends in health related outcome and impact indicators. Mid-term health sector plans 

have since been developed to conform with Kenya’s “Vision 2030” of transforming 

Kenya into a globally competitive and prosperous country with a high quality of life by 

2030. Subsequent plan was implemented in 2008-2012 with the most current plan 

covering the period 2013-2017. This third medium-term plan aims to achieve a level 

and distribution of health appropriate to a middle-income country. The underpinning of 

the plan is universal health coverage.  

 

The universal health coverage 

The universal health coverage (UHC) was launched in December 2018. This is the latest 

transformative policy that aims at bridging the poverty gap and improves access to 

healthcare. Although the programme is currently under pilot in four counties; Nyeri, 

Kisumu, Isiolo and Machakos, the aim is to expand UHC to all the 47 counties by 2022. 

HIV being a priority disease in Kenya is equally a priority in the UHC approach.   

 

HIV guidelines and policy landscape 

HIV testing 

According to the last population-based AIDS indicator survey, about 70% of Kenyans 

aged 15 to 64 years old have ever been tested and among those, 56% had been tested in 

the previous year [21]. Among persons older than 18 months, HIV testing is mostly 

done using rapid antibody testing. The two approaches for HTS in Kenya are Client 
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Initiated Testing and Counseling (CITC) and Provider Initiated Testing and Counseling 

(PITC) [31]. The first guidelines for HIV testing in Kenya were published in 2001. 

Largely the focus was voluntary counselling and testing (VCT). Since then, these 

guidelines have been replaced by Guidelines for HIV Testing in Clinical Setting in 2004 

and subsequently in 2008, 2010 and 2015 [31–33]. In the current 2015 guidelines, there 

is a shift from HIV testing and counseling (HTC) to HIV Testing Services (HTS) with 

an emphasis on the 5Cs of consent, confidentiality, counseling, correct results and 

connection (linkage to care). In the current algorithm, the screening test is Determine™ 

HIV-1/HIV-2 rapid test (Abbott Diagnostic Division, Hoofddorp, Netherlands) 

followed by First response™ (Premier Medical Corp. Lt, Daman, India), as the 

confirmatory test when the screening test produces reactive results. In the 2015 

guidelines, the use of a tie-breaker in the HIV test algorithm sequence is no longer 

recommended. In early infant diagnosis (EID) settings, polymerase chain reaction 

(PCR) test is conducted at 6 weeks (corresponding to infant’s first immunization) or at 

first contact after 6 weeks. To establish possible exposure status to maternal antibodies, 

infants aged 9- 18 months old can be tested using rapid HIV testing.  

 

The general recommendation for HIV testing is annual for persons who have ongoing 

risk and more frequent after incidents of HIV exposure [32]. The HIV testing arena has 

evolved over the years with the 2015 guidelines including HIV self-testing (HIVST) 

using OraQuick® (OraSure Technologies Bethlehem, USA) to encourage testing. These 

developments set a stage for optimizing HIV testing and prompt start of ART in the 

current environment of test and start. Most of the persons tested in Kenya seek testing 

in health facilities and especially in the “opt-out” testing approach that is largely 

provider initiated. From only three sites offering client initiated counselling and testing 

services in Kenya in 1999, the services have increased to the current 6000 standalone 

(sites offering HTS services only) and integrated (sites within a health facility) sites. 

However, even with this rapid expansion, finding HIV infected persons has become a 

major focus due to diminishing yield even with increased testing. Recently, the 

introduction of index testing and partner notification services (PNS) has led to a major 

shift in the way clients seek HTS. HIV testing is free of charge in public facilities. The 
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development of HIV testing kits that are capable of detecting recent infections will 

additionally contribute to the number of approved HIV tests. Recency surveillance has 

been recently recommended in the country operational guidance as a routine activity to 

aid in monitoring HIV epidemic. This is particularly because finding the recently 

infected persons provides an opportunity to identify where the new infections are and 

target prevention.  

 

HIV treatment 

Kenya has had six guidelines for ARV treatment. The ART guidelines were first 

published 2001 and subsequently revised and updated in 2002, 2006, 2011, 2014, and 

2016. These guidelines have largely been developed from adaptations of the WHO 

guidelines and take into account the local context including available treatment options. 

Due to a robust treatment program, Kenya has been at the forefront in adopting new 

technologies that translate research into program. For example, in 2016, Kenya became 

the second country in sub-Saharan Africa to issue full regulatory approval of PrEP after 

South Africa [34]. Whereas all these guidelines have led to earlier and more accurate 

diagnosis of HIV, better immunological classification, and patient management, their 

use has not always followed immediate release. The key component for these guidelines 

is the issue of when to initiate ART with the most current ART guidelines supporting 

HIV test and start. 

 

Prevention of mother to child transmission 

The goal for elimination of mother to child transmission e-MTCT for Kenya is matches 

that of the world health organization: 50 infections per 100,000 live births. For mothers 

in the PMTCT program, the guidelines are also included in the overall ART guidelines. 

However, there are specifics that relate to option B+ and its use in the country. Before 

2013, use of long-life treatment for HIV-infected pregnant women instead of single 

dose Nevirapine was the norm. Kenya introduced life-long treatment for HIV-infected 

pregnant women (option B+) in 2013 this was only in the national referral hospitals 

which had facilities for monitoring the progress of the women. Option B+ was provided 

regardless of CD4 cell count (figure 3). Option B+ was rolled out to the rest of the 
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country in 2014 July and by October 2015 more than 90% of the sites were offering 

lifelong highly active antiretroviral therapy (HAART) to all the pregnant and 

breastfeeding women. In 2017, NASCOP launched the efficacious Dolutegravir as part 

of the first line regimen to be used with Tenofovir and Lopinavir as (TLD). However, 

due to the reports indicating the risk for neural tube defects in the unborn infants with 

use of Dolutegravir by pregnant women [35], the ministry of health issued a rapid 

communication to guide health care providers Kenya’s regimen is combination of 

Tenofovir, Lopinavir and Efavirenz - (TLE) combination. The country is (in 2019) 

undertaking its own assessment of Dolutegravir use before making a firm statement on 

use during pregnancy.  

 

 

HIV test and start 

The precursor to HIV test and start was the 2014 guidelines launched in June 2014  

when the Ministry of Health launched revised guidelines for ART that recommend early 

initiation start of ART in children, adolescents and adults including all HIV positive 

pregnant women [36]. In July 2016, Kenya launched the HIV test and start campaign 

dubbed “anza sasa” in Kiswahili meaning “start now” [37]. The aim of the campaign 

was to encourage PLHIV in care to start on ARV treatment regardless of their CD4 cell 

count. The 2016 guidelines provide the current standards for ARV treatment including 

Figure 3: Progression of treatment options in PMTCT program 
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initiation [38]. The test and start strategy is unlike the previous year’s guidance where 

PLHIV with CD4 count of >500 cells/ml were not eligible for ARV treatment.  

 

HIV clinical monitoring 

Guidelines relating to other HIV program supportive services include the monitoring 

and evaluation guidelines, guidelines for implementing electronic medical records 

systems, guidelines for differentiated service delivery models and others. Out of the six 

WHO strategies for monitoring HIV drug resistance (HIVDR). Kenya implements four: 

early warning indicators (EWI); surveillance of HIV drug resistance in populations 

prior to treatment initiation; cross-sectional surveys of HIV drug resistance in adults 

prior to ART initiation at representative ART clinics, and cross-sectional surveys of 

acquired HIV drug resistance in adults and children.  

 
Monitoring HIV epidemic in Kenya 

ANC sentinel surveillance 

From 1990, Kenya conducted antenatal clinic sentinel-surveillance surveys in selected 

sentinel sites. These sites were selected to represent the urban and rural populations. 

These surveys led to high HIV estimates due to biases such as lack of representativeness 

and the assumption that the HIV prevalence among pregnant women was similar for 

both men and women.  

Population-based surveys  

In 2003, Kenya included HIV testing in a population-based national survey - Kenya 

Demographic Health Survey (KDHS) [39]. This was the first population-based survey 

to include HIV testing. Subsequently, HIV-specific surveys (Kenya AIDS Indicator 

Survey (KAIS) were conducted in 2007 and 2012. Introduction of population-based 

surveys provided data on additional behavioural and risk factors that could not 

otherwise be collected using regular health facility data. Sampling strategies in these 

surveys ensure that the results are robust enough to be generalized at the national and 

sub-national level(s). Such measurements allow for spatial scaling of the data in 

secondary analyses (e.g. in figure 4).  
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Figure 4: Regional HIV prevalence in Kenya, KAIS 2012 
 

Due to limited resources, estimating HIV prevalence and other related indicators at 

granular health-planning units is not easy since the scales at which the epidemic is 

measured are often too broad and if more granular, expensive. Even with large 

population HIV impact assessments, it is not possible to analyse data to units that are 

granular to make programmatic planning sense and assist in more geographically 

focussed interventions. Recent translation of PHIA data to smaller geographic units is 

suggested where data are insufficient to answer questions [40].  

 

The spatial epidemiology approach 

Spatial heterogeneity and similarity 

The HIV burden in Kenya is heterogeneous when measured at regional and planning 

unit levels, e.g. counties. Often, the geographic sub-national units are treated in isolation 

yet units that are contiguous are similar. Additionally, there may be pockets of disease 

within larger geographic confines. The spread of HIV is shaped by variations in 

individuals’ behaviour within a specific population and public health response, which 

are themselves shaped by differences in social, cultural, economic, and political 

conditions. Regional differences in HIV incidence and burden in Kenya have been 

articulated in the Kenya HIV prevention roadmap [41]. The roadmap identifies high 
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burden counties using modelling and classifies the counties into high, medium and low 

incidence clusters. The Impact Action Agenda in the PEPFAR 3.0 strategy guidance 

outlines the three “rights”: implementing HIV programs in the right way, in the right 

places at the right time [42].  

HIV measurement in a spatial context 

There is a need to measure efforts in HIV prevention and assess the coverage and impact 

of response to the HIV pandemic and equally important, answer the question whether 

these efforts are focussed in the right places (as illustrated in figure 5). Outputs from 

such spatial analyses can help in public health response and HIV program planning.  

 
Figure 5: Geospatial public health approach for HIV epidemic control in Kenya 
 

Person, place, time and HIV 

The traditional focus of epidemiology three-way relationship “Person”, “Place” and 

“Time” has been monumental in describing disease patterns such as HIV and their 

distribution. The historic example is from 1850’s and John Snow's famous mapping of 
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a cholera outbreak in London [43]. Whereas this application to epidemiology continues 

to have its place, a fundamental question of disease patterns in the wider public health 

context is necessary. A consideration for public health approach includes detection of 

local disease patterns and their occurrence in global and local contexts including 

relationships with person-level risk factors.  

 

In large population based surveys, it might be difficult to describe and map out HIV-

infected persons. HIV-infected persons are therefore aggregated and efficiently 

described in the context of their demographic population profile, behavioural, and 

outcome characteristics of interest for example access to care  [1]. Population size 

estimates derived from population census data adds weight to describe the magnitude 

of the health problem at hand.  

 

The presentation of place and time provides an ecological setting for a population. In 

the recent past, evidence has been cited describing the relationship between HIV spread, 

small trading centres and roads that act as channels of communication [44]. Therefore, 

the description of social and physical environmental features of the population is 

important in understanding the dimensions of place and spread of HIV. In recent years, 

the analysis of “place” has focussed on detecting clusters with high (hotspots), or low 

prevalence (cold spots) by evaluating significant clusters. Use of Kulldorff’s spatial 

scan statistic utilizes a Poisson model and is implemented in SaTScan™ software [45], 

and mapped using tool such as ArcGIS™, or Quantum GIS (QGIS). Spatial-temporal 

analysis provides insights into how the population related parameters change in both 

space and time.  

 

Geographic scale 

Spatial analyses of HIV prevalence by use of smaller regions and identification of 

hotspots can demonstrate intricate patterns and pinpoint gaps within the continuum of 

care. We utilized available programmatic (facility level data) and population-based data 

to explain variations in space and time and describe the elements within the continuum 

of HIV care. Aspects of analyses include trends of HIV treatment outcomes within 
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defined geographic confines such as sub-counties (formerly districts) and counties. We 

have also explored HIV clustering and areas with higher than overall prevalence of HIV 

(hotspots) and spatial patterns at national level.  

 

It may be difficult to measure and understand disease at population level in the context 

of place and persons without conducting large population based surveys, intensive 

clinical trials, or analysis of large patient cohorts in HIV treatment cascade including 

HIV testing services (HTS), linkage to HIV care including impact of treatment. Other 

routine surveillance such as antenatal clinic (ANC) sentinel surveillance give additional 

data pillars which can be utilized to perform estimates and projections for treatment 

coverage and needs using modelling. The estimation and projection package (EPP) has 

been used for example to determine HIV incidence and triangulated with various 

methods [46]. However, survey and clinical data and estimates often need geographic 

context to add explanatory rigor. There is evidence of a relation between HIV disease 

clustering and its transmission [47]. For example, closeness to transmission routes 

including transport corridors has been found to impact on HIV prevalence in clusters 

close to roads [48]. 

 

The links between financial and human resource investments, HIV prevention and 

treatment outcomes are poorly described if not totally ignored. Geospatial mapping of 

HIV prevalence is commonly done at wider geographic region than smaller regions. To 

understand local epidemics, there is need to map HIV disease in smaller geographic 

regions, identify temporal trends and associate the disease with possible predisposing 

risk factors. For example, when HIV prevalence estimates are mapped at provincial 

level versus mapped at county level, localized patterns start emerging (Figure 2). 

Recently, there has been various studies mapping HIV prevalence clustering and 

incidence [48–51]. Additionally, there is recognition that identifying geographic areas 

with localized epidemics and populations most affected offers the opportunity to 

strengthen effectiveness of national HIV response after identifying pockets where 

services are inadequate [52].  
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HIV cascade and constructs for spatial epidemiology  

Test, treat, and retain 

Spatial factors associated with the cascade of care described by testing, treating and 

retention in care and treatment can be explored to demonstrate high yielding areas, 

linkages to care and retention in care. Retention in care in HIV treatment cohorts in sub-

Saharan Africa is substantially higher than for patients in HIV care alone [53,54] and 

retention in care for patients not yet on ART is lower [55]. While understanding and 

spatially presenting where HIV testing happens can easily be done, it is important to 

present whether patients testing HIV-infected are successfully linked to HIV treatment 

programs and are accessing treatment. Among paediatric patients, early infant diagnosis 

(EID) can be used and as a means to improve retention [56]. Both adult and paediatric 

retention in care and treatment can be determined using proxy data that compares yield, 

prophylaxis and newly enrolled in ART within a given period and place. Geographical 

variations can be unravelled when such data are mapped to reveal where most gaps 

exist.  

 

Viral load suppression (VLS) 

Viral load suppression is an important biomarker when grouped geographically since it 

is a representation of the transmissibility of the virus within the groups [57]. Community 

viral load data can be used to predict reduction in HIV incidence [58], geographically 

map the burden of HIV infections [57], and hence demonstrate impact of HIV treatment 

as prevention and impact of treatment services. Community viral load has been 

described as ‘an aggregate biological measure of viral load for a particular geographic 

location and for a particular group of people who share socio-demographic 

characteristics [58].  

 

Treatment scale-up leads to reduced community viral load hence resulting in reduced 

HIV transmission. To demonstrate treatment impact, viral load data can be related to 

reduction on HIV incidence. ART data when mapped-out can be used to attribute impact 
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by associating lowered incidence with maturity of HIV programs in those areas since 

increased ART coverage may lead to decline in HTC positivity rates. 

 

Other impact outcomes 

An important milestone in the control of the HIV epidemic is when the number of 

annual new HIV infections is lower than the number of annual all-cause deaths among 

all PLHIV. This equilibrium is also referred to as the “tipping point”. This measure has 

a strong epidemiological value and is relevant when treatment coverage is high [59]. 

Thus, HIV-related mortality has gained importance to help programs determine the 

tipping point and hence the progress towards epidemic control. However, mortality is 

not routinely analysed and can be misclassified as loss to follow-up in treatment 

programs [60]. Mapping out areas with highest reported mortality among HIV infected 

persons whether on treatment or not can provide insight into the impact of the HIV 

programmes. Using the tipping point outcome measure, Kenya’s progress towards 

achieving epidemic control is presented in figure 6. In 2007, the number of new 

infections surpassed the deaths among PLHIV demonstrating the impact of ARV 

treatment, the rate of new infections notwithstanding.  

 

Source: Adapted using data sourced from AIDSInfo (http://aidsinfo.unaids.org/) 
Figure 6: Kenya's progress towards HIV epidemic control  
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Mapping access and geographic coverage of HIV services 

The existing use of HIV prevention, care, and treatment services to the target population 

can be described by access and yield. In Kenya, access to care has been found to be 

associated with ART status and low access attributed to shortage in supplies and 

prioritization of those in need [61]. There could be other reasons that have not been 

fully explored including distance to facilities where care is offered. These distance- 

based measures could be more useful in providing insight into coverage as measured by 

provider-patient ratios hence avoid some of the problems associated with provider-to-

population ratios including overgeneralization of parameters [62]. Though distance to 

facility measures may suffer from attributing access to other attributes of health care 

providers and quality of service [63]. Though access can be described more broadly as 

availability, accessibility, accommodation, affordability and acceptability [62], the most 

spatially relevant aspect of access is accessibility as relates to geographical barriers that 

may include distance, transportation, travel time and cost. In our study, we explored 

Euclidean distances to geographic features of interest such as roads and closeness to 

towns and urban areas by overlying the analyses results on spatial features (Papers I and 

II).  

 

The use of these parameters and associations across the continuum of care, applied to 

the specific population of interest, provides an important view of the resources 

allocated. This information can be triangulated with HIV acquisition determinants, risks 

and impact of HIV treatment as well as where i.e. “place”. The utility of this is to map 

HIV prevention and treatment services to the community most at risk and in need hence 

optimizing resources. A 7-stepwise process has been proposed for consideration when 

using HIV program data [64], these steps though do not suggest outputs such as maps. 

Due to the nature of available program data in SSA, various purposes for its use have 

been suggested. These include use of maps to inform targeted HIV prevention and 

treatment services programming at appropriate geographical scale [65].  
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Rationale for this thesis 
The purpose of this study is to explore spatial features as they relate to HIV behavioural 

risk factors, HIV testing, prevention, and describe HIV care access patterns, utilization, 

and treatment impact. Overall, the study seeks to answer the question whether HIV 

testing, prevention and treatment efforts have gone to the right places and measure their 

spatial temporal impact. 

In our analyses, we explore factors associated with the spread of HIV, access and 

utilization of care and treatment services, and impact of treatment in relation to space, 

time, and persons. The purpose is to stimulate ways of looking at HIV prevention and 

treatment programming and sustainable resource allocation.  

Findings from this study will add to the knowledge of health systems in Kenya and 

application of data and information for decision-making processes. This research will 

have implications on improved prevention efforts, targeting, patient care and 

management and overall health care programming. 

 

Conceptual framework 

HIV surveillance in the continuum of care  

Surveillance can be described in relation to HIV disease stage (figure 7). At infection, 

surveillance system detects the cases and derives HIV incidence and associated 

behavioural and other risk factors. Over time, more persons are infected and those still 

alive and in treatment contribute to prevalence. Factors associated with retention in care 

and treatment including adherence and other behavioural factors can be related to this 

stage. Use of ART contributes to viral load suppression at the advanced HIV disease 

stage. Death is ultimately the end stage for an HIV-infected person. 
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Figure 7: HIV disease stage, surveillance, and data points 

 

The cascade of care and treatment  

The cascade of HIV care and treatment [66] (figure 8), provides an analytical 

framework for this study. As is with epidemics, the population serves as the first 

reservoir for the disease of interest which when diagnosed in individuals, provides cases 

for eventual follow-up until cure or death. 

 

Figure 8: The cascade of HIV care and treatment (an example)  
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Spatial epidemiology in relation to the cascade of HIV care and treatment 

Each of the surveillance stage can be described using spatial epidemiology. National 

population surveys (NPS) such as AIDS indicator surveys (AIS) and ANC sentinel 

surveillance will be useful in describing behavioural factors associated with prevalence, 

which can be in turn mapped out in relation to high-risk behaviour prevalence. In well-

established and generalized epidemics and in absence of 4th generation test kits and 

incidence assays, early infant diagnosis (EID) can be used to describe transmission of 

HIV to infants and characterize incidence and prevalence in that population [67]. In 

advanced disease stage, ANC sentinel surveillance, population-based surveys with HIV 

testing, HIV drug resistance monitoring and ART cohort outcomes can used to describe 

the HIV disease. Mapping of routine viral load suppression rates can Geospatially 

demonstrate impact in the context of ART coverage. The last stage of HIV disease is 

more complex to spatially describe due to lack of available disease-specific related 

mortality data. However, trace-back methods have been used to characterise loss-to-

follow-up (LTFU) data and determination of proportions dead of those truly LTFU [68].  
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2.0 AIM AND OBJECTIVES 
Aim 
The purpose of this study is to explore spatial variability of HIV and explain HIV 

behavioural risk factors, prevention, HIV diagnoses, treatment, and impact in a spatial 

context. Overall, the study seeks to answer the question whether HIV diagnoses and 

treatment efforts have gone to the right places and measure their spatial and spatial-

temporal impact.  

 

The overarching research question is: 

“Is there spatial variability of HIV in Kenya and do geospatial features, spatial, and 

spatial-temporal factors explain variability in relation to investments in HIV burden, 

programming, coverage, and impact in Kenya?” 

 
Specific objectives 
The specific objectives were to:  

1. Describe spatial-epidemic clustering of HIV prevalence in Kenya other than the 

well-known subnational pattern [Paper I]  

2. Explore relationships between HIV clustering, sociodemographic and 

behavioural risk indicators to geospatial features that facilitate risk for HIV 

infection [Papers I and II] 

3. Explore geospatial factors associated with efficient HIV testing services that 

facilitate more new diagnoses in Kenya [Paper II] 

4. Examine programmatic geographic coverage and associations with impact of 

HIV prevention and treatment in Kenya [Papers III & IV] 
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3.0 METHODS 

Study settings 

For Papers II and IV, the study was undertaken utilizing clinic-level data from HIV 

prevention care and treatment programs in the whole of Kenya. In Paper I, we used data 

from clusters selected from 44 counties leaving out three counties. These 44 counties 

cover most of the country. In Paper III, we used data from 12 districts (now referred to 

as sub-Counties) in the larger Nyanza region of western Kenya (figure 9).  

For Paper III, the study location was the 12 districts in the Western part of Kenya -

formerly known as Nyanza province, (figure 9).  

 

Figure 9: Study location (Paper III) 

Health sector 

Majority of Kenya’s population receives healthcare services from the public sector and 

facilities operated by the ministry of health. After the 2010, constitution was 

promulgated leading to a decentralised system of government, health services were as 

well decentralised to the 47 constituencies. Kenya health facilities are classified 
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according the type of disease and conditions that they can handle as well as staffing and 

capacity under the Kenya Essential Package for Health (KEPH) [69]. The lowest level 

of health care provision in Kenya is the community health facilities. The health clinics 

are classified into dispensaries, health centres, sub-county hospitals, county referral 

hospitals, and three national referral hospitals (table 3). Kenya has both public and 

private sector hospitals estimated to be about 5000 in 2018. All the hospitals in Kenya 

are registered in the Master Facility List (MFL) maintained by the ministry of health. 

Most of the hospitals and health facilities are geocoded.  

 
Table 3: Kenya Essential Package for Health (KEPH) facilities classification 

Level Type Location 

1 Community unit Community 

2 Dispensary Village level 

3 Health center Locational level 

4 Sub-county hospital Sub-county headquarters 

5 County referral hospital County headquarters 

6 National referral hospital Nairobi (2) and Eldoret (1) 
 

Study design, population, sample size and sampling 
Summaries of study designs and sample sizes are presented for each Paper in table 4. 

The study design for Paper I is described in the full report and manuscript [70,71]. The 

population covered is derived from the population included in the original sample for 

large population based surveys such as the Kenya AIDS indicator survey (Paper I). 

Sample size determination are as per the original protocol for Paper I and not relevant 

in the other Papers since we have utilized routine program data.  
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Data sources 

Overall nature of the data 

This thesis utilizes secondary data (Papers I and III) and routine aggregated data from 

clinics offering HIV services (Papers II and IV). In Paper I, we used data from a national 

two-stage cluster household-level survey (the Kenya AIDS Indicator Survey 2012). 

Population data were sourced from the Kenya National Bureau of Statistics (KNBS) 

projections based on Kenya population and housing census 1999. The census is 

conducted every 10 years but population projections can be made for the years between 

the censuses.  

 

In all manuscripts, we have used secondary data that had not primarily been collected 

to address the specific objectives for each of the papers, nor were the data collected with 

Geospatial analyses as the objective. None of the manuscripts used data that had 

personally identifiable information (PIIs). Although at individual level, data for Papers 

I and III were is anonymized. The rest of the data (Papers II and IV) were aggregated at 

clinic level. During analyses, data were aggregated into units such as clusters, health 

facilities, and analytical categories. Where shape files are used, we have quoted 

appropriate referencing according to the creative commons licence agreements.  

Copyright and permissions for shape files 

Base shape files were obtained from International Livestock Research Institute (ILRI) 

website under the CC BY 4.0 license. For use of other open street maps (OSM), creative 

commons licenses apply. Regarding use of data for publication beyond the study dates, 

data used are for the period of the study covered by the protocol. Use of data for 

publishing beyond the expiry date is allowed under the local IRB standard operating 

procedures. The local IRB review procedures are articulated in the website and details 

are found here: https://www.kemri.org/index.php/seru-review-process. Descriptions 

relating to data use, approvals, and data access for each manuscript are provided as 

follows:  
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Details of data sources 

Paper I 

The data used came from the Kenya AIDS indicator survey (KAIS) that was conducted 

in 2012. A two-stage cluster randomized design was utilized during KAIS. Firstly, the 

clusters within a region were randomly selected. Then, 25 households within each 

cluster were randomly selected. Participants were interviewed using a standardized 

questionnaire regarding household and demographic characteristics, bio-behavioural 

factors, and use of HIV-related services such as HTS and VMMC. Data were collected 

using tablet computers and securely transmitted electronically to a central database in 

Nairobi. No personal identifiers were included and serial barcodes were used to link 

laboratory data to individual interview questionnaire data.  

Paper II  

The data used are aggregated at facilities reporting to the national level. These data are 

used with permission from the National AIDS and STI Control Program (NASCOP) 

who are the custodians. A protocol for HIV program aggregate data use was applied. 

The master facility list (MFL) that bears the geo-coordinates was obtained from the 

ministry of health. Data are available from https://www.datim.org/dhis-web-

commons/security/login.action for authorized users. These data are also available from 

the district health information system 2 (DHIS 2) in the link https://hiskenya.org/dhis-

web-commons/security/login.action. The data are also available at the following link: 

http://kmhfl.health.go.ke/.  

Paper III  

The data used comes from the pilot that was the precursor of the widespread 

implementation of early infant diagnosis (EID) in Kenya. The study was conducted in 

Western Kenya during the pre-option B+ period in Kenya. These minimal demographic 

and clinical data were abstracted from the patient charts using a standard tool. Serial 

numbers are used for purposes of linking the data to the laboratory data. No patient 

identifiers were collected. Other population counts data used in the Paper to supplement 

are based on the 2009 housing census available from the KNBS and projections 

calculated to match the study period.  
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Paper IV 

The data used are aggregated at facilities reporting to the national level. These data are 

used with permission from the National AIDS and STI Control Program (NASCOP), 

United States Agency for International Development (USAID), and Department of 

Defence (DOD). A protocol for use of HIV program indicators [Monitoring, Evaluation, 

and Reporting (MER)] was applied. HIV testing data were obtained from 

https://www.datim.org/dhis-web-commons/security/login.action. These data are also 

available from the district health information system 2 (DHIS 2) in the link 

https://hiskenya.org/dhis-web-commons/security/login.action. Viral load data were 

obtained from the national viral load database <https://viralload.nascop.org/>. Shape 

polygons used in the manuscript are available from public repository hosted at 

<https://www.ilri.org/GIS> and are covered under the creative commons license CC 

BY 4.0 license. 

 

Underlying analytical concepts 
We have used both descriptive and explanatory research designs. We have used 

descriptive epidemiology approaches to explain the distribution of HIV and factors 

related to this distribution while the explanatory design will be used test of relationships 

and answer the question of place and time. The combination of the two designs enabled 

a description of relationships between variables. To detect global patterns, these 

methods are applied: i) Nearest neighbour analysis, ii) Global Moran’s I [Paper II], iii) 

Getis-Ord and iv) Geary’s C. To perform locational analyses, the methods applied are: 

i) Location, ii) Getis-Ord, iii) Anselin’s LISA and iv) Kulldorff’s scan-statistics [Papers 

I and II]. To check for predictive patterns, these methods are applied: i) Voronoi 

polygons, ii) Kriging, iii) Kernel density estimation and iv) Hierarchical spatial 

regression models [Papers III and IV]. Summaries of these concepts are presented in 

table 5. 
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Table 5: Spatial questions, nature of analyses and mapping 
Spatial question Spatial analysis 

approach 

Mapping methods and interpretation 

Show coverage over 

a geographical area 

Spatial Choropleths of contiguous geographic 

regions. Additional layers may be added 

such as highways, towns, and other 

geographical feature that impact on access 

to HIV services. At a more advanced level, 

topographical information may be useful.  

To show trends over 

time and place 

Spatial temporal Map series by analysis periods 

(month/year). 

Show clustering of 

small “hotspots” 

over a larger 

geographical area 

Clustering Clustering is best shown when 

representative data (e.g. from all facilities 

in a region) has been collected. Data are 

analyzed using specialized software e.g. 

SaTScan™ or ArcGIS or even QGIS and 

clusters highlighted. 

 

Estimating rates, spatial autocorrelation and clustering  

In identification of populations at higher risk, we used person data from national general 

population based surveys such as Kenya AIDS indicator survey available from National 

AIDS and STI Control program (NASCOP). To place these data in a spatial context, 

we used available spatial information, such as population statistics from the KNBS, 

Master facility codes with geo-locating information from the Kenya Ministry of Health, 

shape files with boundaries at various levels including county level other commercial 

spatial data including street network files. These geographies are appropriately and 

spatially associated with each other and additional statistics such as population 

estimates and prevalence using SaTScan™ software and mapped using ArcGIS™.  
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Mapping 

Mapping has been done in ArcGIS™ as well as Quantum GIS (QGIS). Clusters were 

first identified using SaTScan™ and then mapped using either of the two softwares. We 

have included spatial layers to point out geographic features of interest such road 

networks, towns and economic activities. Other utilities of HIV mapping are used to 

describe HIV in terms of prevalence, burden, access, and utilization of services, and 

impact of prevention and treatment. Overall, spatial epidemiologic enquiry in this study 

relates to the HIV cascade and we have used mapping as point-patterns geographic 

autocorrelation, hotspots/clustering identification techniques and choropleths (table 6). 

Table 6: HIV 90-90-90 cascade, geographic scale, and mapping techniques 
Cascade 

element* 

Spatial questions Mapping scale and 

technique  

Paper 

First 90:  Where are the HIV infected? National, point 

patterns and cluster 

maps 

I, II 

Second 90: Where are the HIV newly diagnosed? National and within 

SNU; point patterns 

and cluster maps 

II 

Third 90: How is the impact of HIV treatment 

on: a) reduced HIV transmission to 

infants and b) viral load suppression 

distributed in space and time? 

Sub-county in a high 

burden region and 

national; choropleths 

III, IV 

*According to the UNAIDS fast-track targets to end HIV [72] 

 

Outcomes 
In table 7, we define the variables used in the thesis. The main outcomes for this thesis 

were HIV prevalence, clusters of HIV-infected persons who were newly diagnosed, 

HIV mother to child transmission rates and viral load suppression rates. We calculated 

other outcome variables such as coverage, and positivity yield. Others were conceptual 

and derived from spatial analyses.  
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Table 7: Definition of outcome variables used in the thesis and their spatial scope  
Outcome 

variables and 

concepts 

Spatial scope  Definition/measurement  Papers 

HIV prevalence 

rate 

National The proportion of a population that 

has a particular disease, injury, 

other health condition, or attribute 

at a specified point in time or 

during a specified period 

I 

Coverage Sub-national Coverage of ART: number of 

PLHIV on ART out of the 

estimated PLHIV  

III and 

IV 

Positivity Facility level, 

Sub-national 

unit levels 

(county and 

constituency) 

The proportion of HIV infected out 

of the population tested for HIV  

II and 

III 

Spatial 

autocorrelation 

and clusters 

Facility level, 

national and 

sub-national 

unit levels 

(county and 

constituency)  

Global: this is a measure of the 

overall clustering of the data at the 

aggregate spatial scope - measured 

using global Moran’s I. 

Local: measured as local indicators 

of spatial association (LISA) to 

measure if one or more confined 

areas exhibit substantial deviation 

from spatial randomness compared 

to neighbouring areas [73] - 

measured using local Moran’s I 

I and II 

HIV yield Facility level, 

Sub-national 

Number of newly diagnosed with 

HIV. A reduced number of HIV 

II, III 

and IV 
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Outcome 

variables and 

concepts 

Spatial scope  Definition/measurement  Papers 

unit levels 

(county and 

constituency) 

infected over time was defined as 

an impact measure  

Spatially scanned 

rates of HIV 

infected 

Defined 

windows of 100 

km radius  

Measured using Kulldorff spatial 

scan statistics within defined 

windows of 100 km radius  

I and II 

Hotspots  Occurrence 

within defined 

windows of 100 

km radius 

Local pockets of observed rates or 

numbers given the underlying 

population denominators  

I and II 

Elimination of 

Mother to Child 

Transmission of 

HIV (e-MTCT) 

impact target  

Sub-counties 

within a high 

HIV burden 

geographical 

region  

≤50 new paediatric HIV infections 

per 100,000 live births and a 

transmission rate of <5% in 

breastfeeding populations  

III 

Standardized 

MTCT rates  

Within a high 

HIV-burden 

geographical 

region in 

western Kenya 

[Absolute transmission (number 

infected) /women tested for HIV in 

2013] x 100,000 

III 
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Statistical analyses 
Statistical methods used for each of the Paper are listed in table 8. 

Spatial analyses 

We fitted spatial-temporal semi-parametric Poisson regression models to estimate rates 

for MTCT and HIV positivity at district and county areal level (Papers III and IV, 

respectively) using R - Integrated Nested Laplace Approximation (INLA), appendix I. 

To detect clusters, we used Kulldorff spatial-scan Poisson models to scan for clusters 

with high rates (Papers I and IV, appendix II) implemented in SaTScan™ version 9.4. 

To assess for spatial autocorrelation, we used global and local Moran’s I while 

measuring influential values using Moran’s scatter plot and Cook’s Di (Paper IV, 

appendix III and IV). We implemented Moran’s I in R statistical program and ArcGIS™ 

version 10.5.1. 

Non-spatial analyses  

We used Chi-square test for comparing proportions and Logistic regression to test for 

associations (Paper I) implemented in Statistical analysis system (SAS) version 9.3 

(SAS Institute Inc., Cary, North Carolina, USA.). To test for association across 

categories we used Cochran-Mantel-Haenszel stratified test of association implanted in 

Stata version 14.1, (Stata Corp., College Station, TX, USA.) for (Paper III and IV). We 

used Kruskal-Wallis equality-of-populations nonparametric rank test to test for equality 

of medians for continuous variables implemented using Stata version 14.1, (Stata Corp, 

College Station, TX, USA.), (Paper IV). To detect direct effects between exogenous 

and endogenous variables, we used structural equation model (SEM) using Stata version 

14.1, (Stata Corp, College Station, TX, USA.) (Paper IV).  
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Table 8: Statistical analyses methods used in the thesis 
Statistical methods Papers Statistical software  

Spatial-temporal semi-

parametric Poisson 

regression models  

Paper III, 

IV 

R - Integrated Nested Laplace 

Approximation (INLA) 

Cochran-Mantel-Haenszel 

stratified test of association 

Paper III, 

IV 

Stata version 14.1, (Stata Corp, College 

Station, TX, USA.) 

Kruskal-Wallis equality-of-

populations nonparametric 

rank test 

Paper IV Stata version 14.1, (Stata Corp, College 

Station, TX, USA.) 

Chi-square test for 

comparing proportions 

Paper I Statistical analysis system (SAS) 

version 9.3 (SAS Institute Inc., Cary, 

North Carolina, USA.) 

Logistic regression  Paper I Statistical analysis system (SAS) 

version 9.3 (SAS Institute Inc., Cary, 

North Carolina, USA.) 

Kulldorff spatial-scan 

Poisson model 

Paper I, 

IV 

SaTScan™ version 9.4 

Mapping and data 

visualization 

Paper I, 

II, III, IV 

Quantum GIS (QGIS) version 2.16 and 

3.2.2 

 

Structural equation model 

(SEM) 

Paper IV Stata version 14.1, (Stata Corp, College 

Station, TX, USA.) 

 



Anthony Waruru | Mapping HIV in Kenya 

P a g e  | 51  

 

Ethical considerations 
The thesis work was assessed by REK Vest, the Regional Committee for Medical and 

Health Research Ethics and it was considered to fall outside their mandate (REK Vest 

2018/59). In Paper I, we used anonymized and de-identified data from the Kenya AIDS 

indicator survey (KAIS) conducted in 2012. Secondary and routinely collected HIV 

program data are used for Papers II and IV. In Paper III, we used de-identified patients 

data from the first pilot of early infant diagnosis in Western Kenya. Specific ethical 

considerations are listed for each Paper below: 

 

Paper I: The Kenya Medical Research Institute’s (KEMRI) Ethical Review Committee 

(ERC), the US Centres for Disease Control and Prevention’s (CDC) Institutional 

Review Board (IRB), and the Committee on Human Research of the University of 

California, San Francisco (UCSF), approved this study. During data collection, at 

household level, the head of household consented to the household questionnaire; the 

heads of households were adults aged 18–64 years or emancipated individuals with no 

parent or guardian or not living with their parent/guardian. The field interviewer sought 

individual consent or assent for all eligible household members to participate in the 

individual questionnaires. In the case of participants aged 10–17 years, consent was 

obtained from a parent/guardian or other adult responsible for the child/youth health 

and welfare before the child/youth was asked for his/her assent. Oral informed consent 

for HIV testing was required for adults and emancipated minors. Verbal informed 

consent with a signature of the interviewer on the consent form served as documentation 

of the consenting. PII was not collected in the first place.  

 

Paper II: Ethical approval for the study was obtained from the United States Centres for 

Disease Control and Prevention (CDC). Further consent was not necessary since these 

data were routinely collected de-identified and aggregated from routine HIV clinic 

services. Non-HIV spatial related data are approved for use under the creative commons 

license (CC BY-SA 3.0) with attribution. 
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Paper III: Ethical approval for the study was obtained from the KEMRI and the United 

States Centres for Disease Control and Prevention. Further consent was not necessary 

since these data were routinely collected deidentified data from routine clinic services. 

 

Paper IV: The Ministry of health, National AIDS and STI Control Programme, and 

President’s Emergency Plan for AIDS Relief (PEPFAR) funding agencies provided 

concurrencies. Analyses are from aggregate data whose use for dissemination is covered 

under the monitoring evaluation and reporting (MER) protocol of the US Centres for 

Disease Control and Prevention. 
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4.0 SUMMARY OF RESULTS 
Paper I 

Finding hidden HIV clusters to support geographic-oriented HIV interventions in 

Kenya 

In a spatially well-known and dispersed HIV epidemic, identifying geographic clusters 

with significantly higher HIV-prevalence is important for focusing interventions for 

people living with HIV (PLHIV).  

 

We used Kulldorff spatial-scan Poisson model to identify clusters with high numbers 

of HIV-infected persons 15-64 years old. We classified PLHIV as belonging to either 

higher or lower prevalence (HP/LP) clusters, and then assessed distributions of socio-

demographic and bio-behavioural HIV risk factors and associations with clustering.  

 

About half of survey locations, 112/238 (47%) had high prevalences of HIV (HP 

clusters), with 1.1-4.6 times greater PLHIV adults observed than expected. Persons in 

the highest wealth index compared to respondents in lowest wealth index had higher 

odds of belonging to a HP cluster, adjusted odds ratio (aOR), 1.61 (95% CI: 1.13-2.3), 

aOR 1.66 (95% CI: 1.09-2.53), aOR 3.2 (95% CI: 1.82-5.65), aOR 2.28 (95% CI: 1.09-

4.78) in second, middle, fourth and highest quintiles respectively. Respondents who 

perceived themselves to have greater HIV risk or were already HIV-infected had higher 

odds of belonging to a HP cluster, aOR 1.96 (95% CI: 1.13-3.4) and aOR 5.51 (95% 

CI: 2.42-12.55) respectively; compared to perceived low risk. Men who had ever been 

clients of FSW had higher odds of belonging to a HP cluster than those who had never 

been, aOR 1.47 (95% CI: 1.04-2.08); and uncircumcised men vs circumcised, aOR 3.2, 

(95% CI: 1.74-5.8). 

 

HIV infection in Kenya exhibits localized geographic clustering associated with socio-

demographic and behavioural factors, suggesting disproportionate exposure to higher 

HIV-risk. Identification of these clusters reveals the right places for targeting priority-

tailored HIV interventions. 
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Paper II 

Where are the newly diagnosed HIV-infected persons in Kenya? Time to consider finer 

scale geo-spatially guided targeting to reach the “first 90” 

The bulk of HTS targeting in Kenya is in five high HIV-burden counties: Nairobi, 

Homabay, Kisumu, Siaya, and Migori, which account for over 40% of the estimated 

people living with HIV (PLHIV). Geographic analyses help us to unmask local patterns 

that go beyond the traditional data aggregation methods, and are useful in helping to 

focus and prioritize HTS strategies to reach the “first 90”. We analyzed the year 2016 

site-level HTS data in Kenya to assess the spatial distribution of HIV-infected and 

compared their distribution within counties [sub-national units (SNUs)]. We classified 

clustering of newly diagnosed HIV-infected persons using spatial autocorrelation: 

neighbours as hotspots neighbouring other hotspots (HH), hotspots neighbouring low-

spots (HL), low-spots neighbouring hotspots (LH), and low-spots neighbouring low-

spots (LL). 

 

Out of 4,021 HTS sites, 3,969 (98.7%) had geo-coded data. Global Moran’s I was 0.023, 

expected I was -0.00025, Z-score 33.9 and p<0.001. Most sites showed no clustering 

(3034, 76.4%); others were grouped as HH (438, 11.0%), HL (66, 1.7%), LH (275, 

6.9%), and LL (156, 3.9%). Of the HH sites, 301 (68.7%) were in high HIV-burden 

SNUs distributed within each: Homabay with 78/184 (42.4%), Kisumu 57/137 (41.6%), 

Siaya 50/145 (34.5%), Migori 43/139 (30.9%), and Nairobi 73/239 (30.5%). HH sites 

in high burden counties were near water bodies (Homabay, Kisumu, Siaya, and Migori) 

or a large city (Nairobi) and in low HIV-burden areas near major roads. Out of 290 

constituencies, 23(12%) had high HTS-yield values. We identified 123 clusters with 

high counts of newly diagnosed HIV-infected persons. Some of these clusters 73 

(59.3%) were not in the five high HIV burden counties and would not be considered 

high priority for HTS services. We found that there is need to corroborate findings from 

different spatial statistical methods. 
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Paper III 

Spatial-temporal trend for mother to child transmission of HIV up to infancy and during 

Pre-Option B+ in western Kenya, 2007-13 

We aimed at understanding coverage and trends in elimination of mother-to-child 

transmission of HIV (eMTCT). This is one of the desirable outcomes of the prevention 

of mother to child transmission of HIV programming. In this paper, we present spatial-

temporal analysis of 7-years of HIV early infant diagnosis data collected from 12 

districts in western Kenya from January 2007 to November 2013, during pre-Option B+ 

use.  

 

We included in the analysis infants up to one year old. We performed trend analysis and 

examined trends and associations of infant HIV status at first diagnosis with early 

diagnosis (<8 weeks after birth), age at breastfeeding, use of single dose nevirapine 

(sdNVP), and maternal antiretroviral therapy (ART) status. We also fitted spatial and 

spatial-temporal semi-parametric Poisson regression models to explain HIV-infection 

rates, calculated new infections per 100,000 live births, and mapped fitted MTCT 

estimates for each district in Nyanza region. 

 

We found that unadjusted pooled positive rate was 11.8% in the 7-years period and 

declined from 19.7% in 2007 to 7.0% in 2013, p<0.01. Uptake of testing ≤8 weeks after 

birth was under 50% in 2007 and increased to 64.1% by 2013, p<0.01. By 2013, the 

overall standardized MTCT rate was 447 infections per 100,000 live births. The spatial-

temporal model with maternal and infant covariates was best in explaining geographical 

variation in MTCT.  

 

During this pre-Option B+ period, the PMTCT program in this region has not achieved 

e-MTCT target of ≤50 case rates per 100,000 live births. Co-joined analysis of time and 

covariates in a spatial context provides a robust approach for explaining differences in 

programmatic impact over time. Geographical disparities in program achievements may 

signify gaps in spatial distribution of e-MTCT efforts and could indicate areas needing 

further resources and interventions.  
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Paper IV: ART coverage and viral load suppression rates as correlates to new HIV 

diagnoses, in Kenya; Spatial-temporal analyses 2015-17 

We hypothesized that good antiretroviral therapy (ART) coverage and high rates of viral 

load suppression (VLS) should reduce transmission of HIV, and ultimately, HIV 

incidence reflected as the number of new HIV diagnoses. We used 3 years (2015-2017) 

of HIV program data in Kenya to assess whether trends in HIV positivity were 

associated to ART coverage and VLS rates and spatial-temporally auto correlated at 

county-level [sub-National unit (SNU)].  

 

ART coverage was defined as the proportion of persons on ART out of the estimated 

PLHIV and VLS (proportion of persons on ART with VL<1000 copies/mL) and HIV 

positivity rates were analysed as proportion of reported HIV infected out of the number 

tested for HIV in the reporting period within an SNU.  

 

We found that a spatial-temporal model with covariates was better in explaining 

geographical variation in HIV positivity [deviance information criterion (DIC) 381.3], 

compared to either a non-temporal spatial model (DIC 444.3), or temporal model 

without covariates (DIC 449.2). Overall, the fitted HIV positivity decreased over 3 years 

from median of 2.9% in 2015, [interquartile range (IQR): 1.9-3.4] to 1.5% in 2017, 

IQR(1.3-2.0), p=0.037. VLS had a direct effect on HIV positivity rates p=0.004, but 

ART coverage did not, p=0.843.  

 

From 2015-2017, there has been improved ART coverage and sustained VL coverage 

and suppression rates. We have observed a general decline of rates of new HIV 

diagnoses associated with VLS rates. To assess the trends and impact of implementation 

of scaled-up care and treatment, spatial-temporal analyses help to identify geographic 

areas that need focused interventions.  
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5.0 DISCUSSION 
What do our findings show? 

HIV new diagnoses hotspots in Kenya 

HIV infection in Kenya exhibits localized geographic clustering that is associated with 

certain socio-demographic and behavioural factors revealing disproportionate exposure 

to higher HIV-risk. By using mapping techniques, we were able to identify clusters with 

higher numbers of HIV-infected persons (Papers II and I). We identified clusters with 

high numbers of infected persons that were either close to large agricultural commercial 

enterprises such as tea farms and others that were in informal urban settlements (Paper 

I). Higher numbers of new HIV diagnoses are still occurring in high burden regions but 

granular clustering analyses show that there are low burden areas that also exhibit 

disproportionate high numbers of newly diagnosed HIV-infected persons (Paper II). 

Others have recently demonstrated changing trends of increasing rurality (most of the 

PHIV living in areas considered to be rural) of HIV [74]. We concluded that HIV 

clustering analyses reveal unexpected locations in a generalized epidemic. 

Identification of these clusters spots the right places for targeting priority-tailored HIV 

interventions. 

Geographical features and individual level risk factors associated to hotspots 

Geographic factors associated with HIV explore and risk include closeness to transport 

corridors [75,76]. Using clustering analyses, we assessed distributions of hotspots in 

relation to geographic features and associations with socio-demographic and bio-

behavioural HIV risk factors. Our findings show spatially aligned higher new HIV 

diagnoses occurring along the major transport corridors (Paper II). At individual level, 

risk factors that may explain spatial clustering shows that wealthier respondents, adults 

who reported that they had a higher perception of HIV risk, men who had ever been 

clients of female sex workers, and uncircumcised men were associated with HIV 

clustering (Paper I). 

HIV program reach and impact 

In Paper III and IV, we explored place and time factors and considered geographical 

coverage of HIV programming to end mother to child transmission in a high burden 
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region (Paper III). We also analysed national-level data within the 47 sub-national units 

in Kenya to assess the impact of ART coverage and improved viral load suppression 

rates on reduced HIV positivity (Paper IV). These papers are about programmatic 

geographic coverage and associations with impact of HIV prevention and treatment in 

Kenya. In Paper III, we show that significant progress had been made before 2013 in 

reducing MTCT of HIV-infection rates, which was commensurate with an increased 

uptake of testing of infants at ≤8 weeks of age. The PMTCT program had however not 

achieved e-MTCT target of ≤50 case rates per 100,000 live births. We also demonstrate 

that spatial-temporal models with covariates was the best in explaining MTCT trends 

in time and space and that identification of geographical areas that are lagging behind 

are achieved using spatial-temporal analyses bearing in mind inclusion of useful 

covariates in the model. In Paper IV, we demonstrate the spatial-temporal impact of 

viral load suppression rates and ART coverage as co-variates to explain reduced new 

HIV infections. The impact of scaled up treatment becomes apparent for demonstrating 

continued HIV program reach. Geographic areas that need continued programming are 

exposed.  

Methodological considerations 
The modifiable areal unit problem has been well-described [77,78]. Most of our data 

were at a fine geographical or individual level that allowed us to choose the level of 

areal aggregation that made most sense. For example, utilizing methods that have an 

underlying base of the population at risk is an important consideration allowing us to 

develop our spatial models in several dimensions.  

Assumptions and limitations 

Secondary data 

Secondary data are collected beforehand for a purpose that may not have factored spatial 

analyses. When using secondary data, the researcher can no longer influence collection 

methodologies and the selection of variables. This may limit what is possible to study 

or what to control for and is an inherent limitation in secondary data use. However, the 

great advantage is that such data are readily available for use and may hence be a very 

economical way of advancing knowledge.  
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Use of routine program data 

Little or lack of data on quality of services offered to HIV infected patients may mask 

the real relationship between access to HIV case and other geographical features. 

However, due to continued site improvement through monitoring systems (SIMS), HIV 

services are expected to be fairly standardized hence choice of facility may not be due 

to differences in actual services but personal preference. Overall, routine clinic data has 

been shown to have utility in accurately mapping HIV prevalence and in identifying 

areas where HIV burden is concentrated [79,80]. We similarly postulated that these data 

are a reflection of the status of the HIV epidemic in Kenya and/or nature of HIV 

programs implemented and services offered.  

Sample size and sampling  

Using secondary data had limitations of sample size to answer a secondary objective 

that was not accounted for when calculating the original sample size. In Paper I, we 

used data collected at household-level though our aggregation after identifying clusters 

were for the entire population. For Papers II to IV, we used the entire datasets available 

and hence sampling approaches including sample size determinations were not 

necessary.  

Heterogeneity 

Heterogeneity is assumed at the areal micro-geographical scale yet persons might vary 

in demographic and behavioural characteristics. Interpreting data at individual level 

based on areal aggregates should be avoided [81]. We avoided ecological fallacy by not 

making assumptions that aggregate areal data (Paper II, and IV) would apply to 

individuals. However, in papers III, and I we did additional non-spatial analyses that 

included individual level characteristics and covariates. 

Timing of events 

In temporal analysis, it is not always easy to describe when events of particular interest 

happened. For example, describing infection incidence may not be practical without 

determination of how recent HIV infections had occurred.  
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Mobility of persons 

Persons are not confined in a geographical space and could acquire and or transmit 

infections elsewhere than in the geographical space where they are ascribed to belong. 

Without individual level data, it is difficult to analyse the impact that mobility has over 

risk for HIV acquisition or transmission. However, in a recent publication, risk was not 

influenced by mobility [82]. However, these data were from a confined demographic 

surveillance system setting. In our study, we were able to characterize patterns that may 

be impacted by spatially connective infrastructure including the impact of cross-

geographic regions within Kenya e.g. counties, or that facilitate international trade 

across borders within East, Central and Southern regions and other global markets. 

Distance measures 

Distance measures may be unavailable, as one may not have access to full road network 

or transportation options for analysis. Geographic distance is a rough proxy for social 

distance/social network via which HIV is transmitted and also can influence access to 

HIV related services [83–86]. Therefore, distance and social networks is important for 

interpretation. Distance measures are hard to take into account in aggregated data so we 

assumed uniformity within areal units such as counties. In paper II, we have added a 

roads network layer to improve interpretation of our findings. However, we did not 

include distance measure due to the limitations above.  

Information bias 

In our setting, it had been demonstrated that data collected in face-to-face interviews 

are limited by socially desirable responses; for example in a PMTCT setting [87]. We 

did not have a way to control for such biases (Paper I) since reported HIV risk factors 

were collected in face-to-face household interviews. The programmatic data that we 

have used in Paper II, III and IV are reported through ministry of health channels and 

eventually to donors. We expect that these data are of high quality since rigorous data 

cleaning is done after submission and many data quality audits done at least annually.  
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Lack of contiguity among geographical units 

In Paper II, we aggregated data at constituency level for some of the analyses. In four 

constituencies out of 290, there were no numbers reported. Autocorrelation for the 

neighbours of those constituencies may be affected by this lack of contiguity. We 

adjusted for this by choosing multiple corroborative analyses to strengthen our findings. 

Cluster size definition 

Poor definition of the scan window size while detecting clusters can affect sensitivity 

and specificity of the detection. This may lead to detection of small clusters that do not 

have programmatic and epidemiological impact if the scan window is too small and the 

proportion of the population at risk is too large (>50%) affecting sensitivity and 

specificity respectively. A balance of the two must be maintained and appropriate 

number of cases defined. A threshold of 5 cases or more has been suggested by Neutra 

[88]. In our study, we considered a minimum of 10 HIV-infected persons and 

corroborated scanned clusters with spatially auto-correlated values detected using local 

Moran’s I. 

Time and aetiology 

Overlapping time scale to the observed phenomenon may be a problem where disease 

aetiology needs to be explained in the context of time. In the HIV program, the change 

of policies or clinical guidelines may affect outcomes and it is not always possible to 

measure the time lag between introduction and actual implementation and benefits to 

patients.  

Denominator adjustments and standardization  

Epidemiology is the science of denominators. Under- or over-estimation of the 

denominator may lead to under- or over-estimation of the actual rate. Whenever 

possible, adjustments and standardization gives a better comparative measure. We used 

weighted data whenever feasible (Paper I), standardized estimates such as for rates 

(Paper III) and fitted rates to account for population denominators. 
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6.0 IMPLICATIONS FOR HIV EPIDEMIC CONTROL 
Approaches for HIV program interventions 
Based on the papers in this thesis, we conclude along the following themes. 

HIV in person, place and time 

Characterising the infected, where they are at and putting this in the context of time is 

useful for HIV program interventions. We recommend Bayesian approaches to such 

analyses due to the limitations of routine HIV clinic-level data. Adding spatial 

components as well as temporal aspects strengthen the estimates of HIV program 

outcomes.  

HIV program investments 

We have demonstrated that HIV program investments in Kenya have largely born fruits 

and match a geographically diverse HIV burden. However, precision planning may be 

even more impactful with geospatial analyses. Since micro facility level, planning is 

not ideal, as the PEPFAR program in Kenya transitions to the government of Kenya, 

sustained resource allocation will become increasingly important at microscale.  

Stemming new HIV infections 

The recent developments of laboratory and rapid assays to test for recent HIV infections  

provides an opportunity for integrated data sources that can inform rapid response when 

mapped. Recent infections are those that have occurred up to a period of one year after 

HIV infection has been acquired [89]. Triangulating recent infection data with viral load 

suppression rates will demonstrates the role of expanded ART coverage in mobile 

populations and give an impetus to expand viral load monitoring in an HIV test and 

treat environment. Hotspot analyses and mapping are useful techniques to facilitate 

epidemic control decisions. 

Sustainable HIV programming 

Routine HIV program clinic-level data can efficiently provide timely information at a 

small geographical scale to inform targeted action. These data when embedded in a 

case-based surveillance system will provide finer disaggregation of other risk factors to 
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guide interventions. Developing and using spatial maps from routing HIV clinic-level 

data can inform the provision of targeted and to-scale prevention and treatment services.  

 

Practical applications in Kenya 

The 90-90-90 context 

According to the 2017 estimates for the HIV epidemic in Kenya, 88.7% of Kenyans 

living with HIV are virally suppressed hence meeting the UNAIDS target for the “third 

90” (figure 10). The “first 90” is the poorest performing at 71.9%. Our findings 

demonstrate an approach that could help in meeting the first 90 through better targeting 

(Paper I and II). This approach is already being used in the HIV program planning for 

the country operational plan 2019 (personal communication). Once PLHIV are initiated 

on ARV treatment, regular monitoring of those in treatment is equally important. In 

Paper IV, we showed that improved viral load suppression results in reduced HIV 

positivity.  

 

Source: Kenya HIV program data 2018 

Figure 10: Kenya’s progress towards UNAIDS 90-90-90 targets in 2017  
 

Implications for resource allocation 

The Kenya HIV program funding has levelled in the recent past (figure 11). This means 

that the HIV program in Kenya needs to be more efficient and take up domestic 

financing. With an aging population, thanks to lifelong ARV treatment, the prevalence 
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has stabilized to about 5% among adults aged 15 years and above. Furthermore, the 

country is facing an increasing burden of other non-communicable diseases. Our spatial 

and spatial temporal analyses presented in this thesis if interpreted in the context of HIV 

epidemic control and efficient resource allocation have potential. Example, analytics 

for the country operational plans have included mapping as a key component. Cluster 

identification was a key part of the country operational planning process in 2019.  

 

Source: Kenya HIV program budgeting data 2018 

Figure 11: HIV investments in Kenya (2004 - 2018) 
 

The current cost of HIV testing algorithms is $0.89 for Determine™ and $0.77 for First 

Response™ rapid test kits [90]. This could lead to an expenditure of about 

$10,680,000.00 per year spent on one type of test assay alone without taking into 

account personnel and logistics related costs. In an inefficient HTS program, most of 

the testing is not targeted to identify HIV infected persons. The harder work of finding 

the newly infected can be translated to cost savings through use of efficient methods 

that are geographically guided. For example, it is not necessary to equitably budget for 

high targets in locations that have lower yield regardless of number of HIV tests done. 

With accelerated case-finding and optimal linkage to treatment followed by increased 

rates of viral load suppression, the chain of HIV transmission can be broken. The 

economic benefit would be through efficient case identification instead of a wide, non-
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specific case identification approach. By putting the newly diagnosed HIV infected 

persons on ARV treatment and enhancing viral load suppression, future cost savings 

can be achieved through averted new infections. In hotspot and cluster detection and 

hotspot-targeted approach for HIV, savings may be achieved by reducing the number 

of test kits needed to attain high number of HIV infected persons identified and linked 

to ARV treatment and other interventions. To make economic sense, the cost for 

program implementation should outweigh the costs of hotspot-detection. We propose a 

cluster detection process to improve efficiencies in HTS. There is still a gap of reaching 

the undiagnosed HIV infected persons. It is difficult to quantify the contribution of 

Geospatial analyses in identifying the remaining undiagnosed cases. However, 

geospatial analyses can contribute to better resource planning through focusing in 

identified high yielding clusters leading to better case detection. The impact of scaled 

up ARV treatment in Kenya can be best understood in the context of space and time. 

Our findings are applicable in monitoring the micro geographic areas that may need 

intensified efforts.  

What is the value added from our analyses? 

Cluster detection translated to efficient HIV testing  

From cluster detection analyses (Paper II), we anticipate that the gap in diagnosis of 

newly infected persons can be closed faster if there is focus on clusters with statistically 

significant number of HIV-infected persons. Our analyses show that up to 57% or more 

HIV-infected persons are detected in clusters with high counts of infected persons. 

Identifying newly HIV infected persons is a critical gap in HIV epidemic control. From 

recent estimates, there has been a 32% decline in the number of new annual HIV 

infections from 2010 to 2017 [28]. We estimate that about 300,000 (1,500,000 PLHIV 

[28] minus 1,200,000 currently in HIV care – HIV program data) persons remain 

undiagnosed and initiated on treatment. If the Kenya program focusses on clusters with 

high numbers of HIV-infected persons yet to be diagnosed and put on treatment, the 

financial burden will be much less and efforts will be much more efficient in identifying 

these persons.  
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Spatial and spatial-temporal analyses  

Spatial-temporal analyses add value through combination of the two aspects of time and 

space. We have presented HIV program impact in prevention of mother to child 

transmission of HIV (Paper III) and in reduced HIV positivity due to improved HIV 

treatment coverage (Paper IV). These analyses provide powerful advocacy tools to 

demonstrate impact over time but also point out geographic areas that still need focussed 

interventions. 

 

Mixed methods to collaborate findings 

Other than spatial analyses, in papers I, III and IV, we have additional methods to 

further help to explain spatial and spatial-temporal analyses results. We recommend use 

of mixed methods to provide robust evidence of HIV program impact. 
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7.0 FUTURE PERSPECTIVES 

Geospatial data availability and use 

There are more opportunities in geospatial analyses utilizing HIV program data and data 

from other diseases. Regardless of imperfections of such data, there are opportunities 

to consider ways to improve data quality and routinizing spatial analyses for program 

planning.  

 

Program managers need skills in spatial epidemiology for improved HIV programming 

and resource allocation.  

 

We recommend the following: 

a. Data availability needs to be a priority of the Kenya Ministry of Health as well 

as for the donor agencies  

b. There is need to build dynamic national and regional dashboards that incorporate 

geospatial analyses.  

c. There is need to build spatial data analyses, interpretation and use capacity below 

the national level to allow for easy program planning. 

d. The country has developed some individual data level repositories for the HIV 

program primarily for cohort analyses but with potential for HIV case-based 

surveillance. There is an opportunity to build in automated spatial analyses 

dashboards as extra modules. 

e. Improving the master list of health facilities to have complete geocodes is critical 

for appropriate point-pattern analyses and mapping use cases. 

f. People participation in mapping exercises for communicable disease detection 

and reporting additionally contributes to quality geospatial data. 

HIV program planning considerations  

It is clear from our findings that geospatial analyses are needed, now more than ever. 

Kenya has made good progress in the second and third “90”. Future work lies in regular 

monitoring of HIV drug resistance. This arena could also benefit from geospatial 

analyses to identify pockets that may be experiencing higher community viral load and 
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or HIV drug resistance patterns. The next frontier in surveillance of HIV drug resistance 

patterns is inclusion of geospatial analyses and mapping techniques to trigger action for 

individual patient level monitoring of factors associated with HIV drug resistance. 

Monitoring of migration and movement of persons across borders as a geospatial 

analysis will help in aiding better estimates of persons in need of HIV services within a 

geographical confined and spatial planning unit.  

Methodological perspectives 

We have used mixed methods of analyses for all the papers. Currently, there are no 

convenient methods to combine spatial and spatial temporal models to include other 

interpretive post-analytics such as SEM and logistic regression. Expanding spatial and 

spatial temporal models to include other post-analytics currently carried out outside the 

spatial and spatial temporal models may add value. The scope of our thesis did not allow 

for exploration of how to integrate these analyses in one package.    
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ERRATA 
In the thesis version submitted on 11th April 2019, we noted a few errors and omissions 

that are listed below. 

Acknowledgements 

We have added three names erroneously omitted - Frank Basiye, Mary Mwangi, 

Maureen Kimani and Peter Juma. 

The synopsis of the thesis 

ART has been consistently defined as “antiretroviral therapy” only. 

In the study setting section, we have corrected an erroneous reference to figure 10 to 

figure 9  

 

Paper II 

We have reorganized the order of co-authors as well as added one co-author erroneously 

omitted. 

Paper IV 

We have added Maureen Kimani as co-author erroneously omitted. 
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APPENDICES 
Appendix I: Specifications for spatial-temporal models 
Let  denote the number of cases with outcome of interest in areal location  and time 

 out of  persons at risk,	 1, … ,12 and 1,… ,7. We assumed that   has a 

Poisson distribution with a risk of experiencing outcome of interest  . That is, 

~ 	exp	 	 , where  denotes the expected number of cases in areal 

location  and time . We model the risk experiencing outcome of interest using 

Hierarchical spatial Poisson regression models that accounts for excess heterogeneity 

and similarity over space and time. A class models were fitted to the data to assess the 

effects of selected covariates on the outcome of interest. These were based on a variant 

of the Knorr-Held1 formulation expressed as: 

 

where . ’s are unknown functions of the covariates , the ’s represent the 

linear effect of covariates  ,  ′s are spatial unstructured components, which are 

independent and identically distributed with zero mean and unknown precision, ; and  

′s is spatially structured component which is assumed to vary smoothly from region 

to region. To account for such smoothness ′s are modelled as an intrinsic Gaussian 

Markov random field with unknown precision	 . In this formulation,   represents 

temporally unstructured components which are independent and identically distributed 

with zero mean and unknown precision, ; and  is the temporally structured effect, 

modelled dynamically using a random walk through the following structure: 

| ~ , 	for	 1 

| ~
2

,
2

	for	 1 

| ~ , 	for	 12	 	 	 	 3	 	  

                                              
1 Knorr-Held, L., Bayesian modelling of inseparable space-time variation in disease risk. Statistics in 

medicine, 2000. 19(17-18): p. 2555-2567 
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Estimation of parameters was carried out using the Integrated Nested Laplace 

approximation approach. The latent Gaussian field for the model was 

. , , , , ,  with hyperparameter vector , , , , , . Vague 

independent Gamma priors are assigned to each of the elements in ϑ. 

The model was also expanded to include an interaction between space and time as 

follows: 

, 

Where ~ 0, . 
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Appendix II: Log-likelihood ratios, Kulldorff spatial-scan statistics 
The likelihood-ratio test (LR statistical test) is used to compare the goodness of fit of 

two models. The Kulldorff spatial scan statistics utilize this approach to determine 

clusters. 

We define a parameter space  and a null hypothesis H0, with the parameter in a 

specified subset  of . The alternative hypothesis H1, is thus that  is the complement 

of . That is, in \  denoted by . Thus 

H0:  cases occur purely at random within a defined geographical area, i.e. 

 ∈ , 

H1:  cases are clustered in a detectable pattern within a defined geographical 

area, i.e. 

 ∈ . 

The likelihood function is |  = |   (where f is the probability density function 

of a parameter , with  held fixed at the value observed (HIV diagnosed cases). The 

likelihood-ratio test is denoted by    such that: 

sup | :	 ∈
sup | :	 ∈

 

The likelihood-ratio test has a critical region of the form |  where  is any 

number satisfying the condition 0 1. The model was phrased as log-likelihood 

ratio that a specific geo-coded location (site) has more HIV-infected persons than 

expected. The numerator of this ratio is less than the denominator; so, the likelihood 

ratio is between 0 and 1. Low values of the likelihood ratio mean that the observed 

result was much less likely to occur under the null hypothesis as compared to the 

alternative. Hence, a cluster was considered statistically significant when its log 

likelihood ratio was greater than the critical value. 

These tests were purely spatial and data were considered to be cross-sectional (non-

temporal). We reported significant standard Monte Carlo p-values for all identified 

clusters after looping through a maximum of 999 iterations. 
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Appendix III: Moran’s Index 
Moran’s Index (Moran’s I) is a generalization of Pearson’s correlation coefficient that 

measures the overall spatial autocorrelation of the data. The index has values ranging 

from -1 to +1; where -1 is perfect clustering of dissimilar values, 0 is no autocorrelation 

and +1 indicates perfect clustering of similar values.   

Calculations for Moran’s I are based on a weighted matrix, with units  and . 

Similarities between units is calculated as the product of the differences between  and 

 with the overall mean. 

The Moran’s statistic is calculated as:  

∑ ∑ ̅ ̅

∑ ∑
, 

where  is the number of spatial units (sites, constituencies) indexed by  and ,  is the 

variable of interest (HIV positive cases); ̅  is the mean of ; is a matrix of spatial 

weights with zeroes on the diagonal (i.e.,	 0); and  is the sum of all . 

The test allowed us to assess how similar or different HIV infected cases were spatially 

distributed in neighbouring constituencies instead of randomly distributed in the 

country (spatial autocorrelation). 
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Appendix IV: Cook’s Di 

For our analyses, we used Cook’s distance, (Cook's Di) [91], to find influential outliers 

such that observations with a Cook's Di of more than 3 times the mean, μ, is a possible 

outlier and reported these using the Moran’s scatter plot. 

Di was defined according to Faraway [92]. The change in the linear fit 

, where  indicates the fit without a case. 

For each case, the value is reduced to: 

, 

1
1

. 

Thus, the residual term is  compared to the second term. Combining the two leads to 

detection of influence. A plot of Di can be used to identify influential observations. For 

the Moran scatter plot, the x-axis contains the observations of interest (in our case the 

HIV positive cases) and the y-axis the spatially lagged values. The scatter plot is divided 

into 4 partitions (figure 12). Statistically influential values in each of the partitions are 

marked and observations outputted for further investigation and description. 

 
Figure 12: Four partitions and relationships between raw and spatially lagged values 
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ABSTRACT
Introduction: Using spatial–temporal analyses to understand coverage and trends

in elimination of mother-to-child transmission of HIV (e-MTCT) efforts may be

helpful in ensuring timely services are delivered to the right place. We present

spatial–temporal analysis of seven years of HIV early infant diagnosis (EID) data

collected from 12 districts in western Kenya from January 2007 to November 2013,

during pre-Option B+ use.

Methods: We included in the analysis infants up to one year old. We performed

trend analysis using extended Cochran–Mantel–Haenszel stratified test and logistic

regression models to examine trends and associations of infant HIV status at first

diagnosis with: early diagnosis (<8 weeks after birth), age at specimen collection,

infant ever having breastfed, use of single dose nevirapine, and maternal

antiretroviral therapy status. We examined these covariates and fitted spatial and

spatial–temporal semiparametric Poisson regression models to explain HIV-

infection rates using R-integrated nested Laplace approximation package. We

calculated new infections per 100,000 live births and used Quantum GIS to map

fitted MTCT estimates for each district in Nyanza region.

Results: Median age was two months, interquartile range 1.5–5.8 months.

Unadjusted pooled positive rate was 11.8% in the seven-years period and declined

from 19.7% in 2007 to 7.0% in 2013, p < 0.01. Uptake of testing�8 weeks after birth

was under 50% in 2007 and increased to 64.1% by 2013, p < 0.01. By 2013, the

overall standardized MTCT rate was 447 infections per 100,000 live births. Based on

Bayesian deviance information criterion comparisons, the spatial–temporal model

with maternal and infant covariates was best in explaining geographical variation

in MTCT.

Discussion: Improved EID uptake and reduced MTCT rates are indicators of

progress towards e-MTCT. Cojoined analysis of time and covariates in a spatial
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context provides a robust approach for explaining differences in programmatic

impact over time.

Conclusion: During this pre-Option B+ period, the prevention of mother to child

transmission program in this region has not achieved e-MTCT target of �50

infections per 100,000 live births. Geographical disparities in program achievements

may signify gaps in spatial distribution of e-MTCT efforts and could indicate areas

needing further resources and interventions.

Subjects Epidemiology, HIV, Pediatrics, Public Health

Keywords Mother-to-child transmission, Pediatrics, Early infant diagnosis, Option B+,

Spatial–temporal analysis, Geographical disparities

INTRODUCTION
An estimated 2.6 million children were living with HIV in 2014, making mother to child

transmission of HIV (MTCT) an important contributor to the overall global burden of

HIV (Joint United Nations Programme on HIV/AIDS (UNAIDS), 2015b). Between 2000

and 2014, new pediatric infections declined by up to 50% amidst some geographical

variations (Joint United Nations Programme on HIV/AIDS (UNAIDS), 2016b). Worldwide,

220,000 children became newly infected with HIV in 2014, the vast majority (190,000) of

whom were living in sub-Saharan Africa (SSA) (Joint United Nations Programme on

HIV/AIDS (UNAIDS), 2015a). Kenya was estimated to have 101,000 children living within

HIV in 2012 (Joint United Nations Programme on HIV/AIDS (UNAIDS), 2012), with 13,000

new infections annually (National AIDS and STI Control Programme (NASCOP), 2014), and

has the fifth highest HIV-incidence among children in SSA (Joint United Nations Programme

on HIV/AIDS (UNAIDS), 2014a). Effective implementation of prevention of mother to

child transmission of HIV (PMTCT) programs are therefore critical to reduced HIV

transmission and elimination of mother-to-child transmission of HIV (e-MTCT).

Great strides have been made in e-MTCT, for example, new HIV infections have been

reduced by nearly half among children in the 21 priority countries with the highest

HIV-burden in SSA (Joint United Nations Programme on HIV/AIDS (UNAIDS), 2015c).

This has been realized by implementing the United Nations four-pronged strategy for

PMTCT: preventing new HIV infections among women of childbearing age; preventing

unintended pregnancies among women living with HIV; preventing HIV transmission

from a woman living with HIV to her baby; and providing appropriate treatment, care

and support to mothers living with HIV, their children and families (Joint United Nations

Programme on HIV/AIDS (UNAIDS), 2015b). The same four-pronged strategy is adopted

in the Kenya PMTCT guidelines (National AIDS and STI Control Programme (NASCOP),

2012). In Kenya, the burden of HIVamong pregnant women is high. In 2013 alone, Kenya

was ranked sixth among 21 countries in terms of HIV-positive women delivering in health

facilities with an estimated 79,000 HIV-positive women giving birth (or pregnant)

(Joint United Nations Programme on HIV/AIDS (UNAIDS), 2015d). More recent estimate

indicates that 79,500 (95% CI [70,100–91,200]) women are in need of PMTCTand overall

MTCT rate as 8.3% (National AIDS and STI Control Programme Ministry of Health,

Waruru et al. (2018), PeerJ, DOI 10.7717/peerj.4427 2/20



National AIDS Control Council (NACC), 2015). It is therefore critical to prevent HIV

transmission from women to infants and children.

In the period 2010–2016, Kenya has been ranked 10th in Eastern and southern Africa in

progress towards reduction of HIV incidence among 0–14 year olds (Joint United Nations

Programme on HIV/AIDS (UNAIDS), 2017). Between 2010 and 2015, final MTCT rate

reduced by half from 17% in 2010 to 8% in National AIDS and STI Control Programme

Ministry of Health, National AIDS Control Council (NACC) (2015). The UNAIDS 2016–

2021 second e-MTCT strategy outlines the objectives to work towards zero new HIV

infections among children, and improved mother survival by 2020 (Joint United Nations

Programme on HIV/AIDS (UNAIDS), 2015e). The impact target for e-MTCT has been set

as �50 new pediatric HIV infections per 100,000 live births and a transmission rate of

<5% in breastfeeding populations and <2% in nonbreastfeeding populations (World

Health Organization, 2014). However, this transmission rate should be calculated as

“final” infection status in breastfeeding populations. Measuring MTCT rates is therefore

an essential indicator of PMTCT program success.

The UNAIDS fast-track 90–90–90 strategy (Joint United Nations Programme on

HIV/AIDS (UNAIDS), 2014b) requires a location–population approach so as to refocus

efforts in containing the HIV epidemic (Joint United Nations Programme on HIV/AIDS

(UNAIDS), 2015a), hence the emphasis on “where,” to identify pockets needing focused

interventions. Program data are often reported at country-level and rarely in more refined

subnational geographical areas. Ignoring the influence of interactions across neighboring

subnational units such as districts and excluding temporal variables and covariates in

analyses may not sufficiently explain access and coverage. Taking these considerations into

account is important to improve assessment of gains towards e-MTCT through measuring

MTCT and early infant diagnosis (EID) coverage over space, time and at a more

granular level.

In Kenya, the EID program has expanded since initiation in 2004 and has been

accompanied by accreditation of seven laboratories nationally with capacity to conduct

polymerase chain reaction (PCR) testing of HIV. The expansion of EID was also

commensurate with the recommendation for use of lifelong ART (Option B+) for all

pregnant and breastfeeding women in Kenya (National AIDS and STI Control Programme

(NASCOP), 2012), which fully came into effect in 2014. Although dried-blood-spot (DBS)

PCR testing was available since 2005, there are minimal data available about the program

scale-up, and the characteristics of children tested and identified as HIV-infected prior to

2007. The national EID database is useful for decision making at the national level but

documenting regional variations has not been feasible with limited availability of

programmatic, spatial, and spatial–temporal data. Various tools have been developed and

applied in spatial–temporal analysis of diseases (Rushton, 2003; Auchincloss et al., 2012).

In this analysis, we have used spatial–temporal analysis methods to present seven years

of EID data collected from pre-Option B+ period of January 2007–November 2013 and

to demonstrate usefulness of spatial–temporal trend analysis in identifying areas that

may need further programmatic efforts.
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METHODS
Study area
Nyanza region in western Kenya is approximately 2,549 km2 with a population density of

440/km2 (Kenya National Bureau of Statistics (KNBS), 2010b), and the highest adult HIV

prevalence in Kenya (National AIDS and STI Control Programme (NASCOP), 2014).

In 2004, when the President’s Emergency Plan for AIDS Relief started in Kenya, and

prior to 2007, the region was divided into 12 districts to facilitate geographical PMTCT

programmatic planning. The 12 districts were: Bondo, Kisii, Gucha, Homa Bay, Kisumu,

Kuria, Migori, Nyamira, Nyando, Rachuonyo, Siaya, and Suba. We have aggregated data at

district level from 924 facilities from where EID samples were collected. These data

represented nearly 90% (924/1,072) of the health facilities implementing the PMTCT

program in Nyanza region by 2013.

Population and live births estimates
Parents or guardians of infants known or suspected of being perinatally HIV-exposed

infants were asked for consent to diagnostic virologic testing of their children as part of

routine HIV care. The population of infants and children tested included those whose

mothers were diagnosed with HIV infection before or during pregnancy, at delivery, and

up to the time the mothers brought their children for the first HIV test (usually at six

weeks for first routine vaccinations). We estimated the number of live births based on the

2009 census (Kenya National Bureau of Statistics (KNBS), 2010a), using an estimated

annual growth rate of 4.1%, 2012–2030 (United Nations Children’s Fund (UNICEF),

2016), which gives a crude birth rate of 41 births per 1,000 population. We used this

projection to validate the number of women tested as proxy for pregnant women

presenting in the clinics in 2013 as basis for the calculation of standardized MTCT rates

per 100,000 live births.

EID pilot program procedures in Nyanza
Use of the EID patient data collection tool was first implemented in health facilities

requesting the Kenya Medical Research Institute (KEMRI) Kisumu laboratory to perform

EID testing in 2006. As part of routine service delivery, this form was completed by

clinicians at facilities requesting DBS PCRHIV testing and accompanied each specimen to

the laboratory. Subsequently, the national EID form was developed by the National AIDS

and STI Control Program and these forms were used by clinicians and accompanied

specimens for HIV testing. EID results were added to the form once laboratory testing was

completed. One copy of the form was sent back to the health facility for patient

management and the second copy scanned into an electronic, password-protected

database. The data presented in this analysis are for infants undergoing first EID PCR test.

Laboratory procedures
Between January 2007 and November 2013, blood samples were collected from infants

presenting at health facilities in Nyanza region as part of a study: “Evaluation of HIV EID

testing in Kenya,” and transported to the Kisumu HIV laboratory for HIV diagnosis.
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Testing was done using PCR on either COBAS Ampliprep/COBAS TaqMan HIV-1 assay

(TaqMan; Roche Diagnostics, Mannheim, Germany) or Abbot (Abbott RT; Abbott

Diagnostics, Wiesbaden, Germany) platforms. These results were returned to the

submitting facility for clinical action and notification of the parent/guardian.

Measures
Mother to child transmission rates
The transmission rates calculated reflect MTCT up to infancy since we used the first

PCR testing and included infants who were up to 12 months old at HIV diagnosis. To

calculate MTCTrate, the main outcome variable, the number of infants with PCR-positive

HIV-test results was taken as the numerator and divided by the total number of HEI tested

during the study period to determine rates applicable within the geographic regions.

Adjusted rates were further calculated using R version 3.2.3 (R Core Team, 2015)

implemented in RStudio version 0.99.903 (RStudio, 2016). Standardized MTCT rates

per 100,000 live births were calculated as: (absolute transmission (number infected)/

women tested for HIV in 2013) � 100,000.

Covariates selection
The following infant and maternal factors were included in the spatial–temporal model as

covariates: early diagnosis (<8 weeks after birth), age of the child at specimen collection,

infant ever having breastfed, use of single dose nevirapine (sdNVP), and maternal

antiretroviral treatment (ART) status. In the descriptive outputs and logistic models,

maternal regimen was categorized as: (a) sdNVP, (b) ART for prophylaxis = AZT that

started at 14 weeks, intrapartum sdNVP and first dose of AZT+3TC and during

postpartum period, daily AZT+3TC for seven days. This is also referred to as short course

when ARVs starting at 14 weeks gestation and continued through the intrapartum and

childbirth if not breast feeding or until one week after cessation of all breastfeeding,

and (c) ART for treatment = Triple ARVs for women who had CD4 cell counts of

�350 cells/mm3 starting as soon as diagnosed and continued for life (National AIDS and

STI Control Programme (NASCOP), 2012; World Health Organization (WHO), 2012).

This was the precursor of Option B+ which did not start in Kenya until June 2014.

Analytical approaches
Statistical analyses
To explore associations of maternal and infant related factors to HIV acquisition, we

conducted bivariate and multivariable logistic regression analyses using Stata 14.2 (Stata

Corporation, College Station, TX, USA). Variables that were significant in the bivariate

model were included in themultivariable model. Extended Cochran–Mantel–Haenszel test of

trend for proportions was used to assess trend for both outcome and explanatory variables.

These analyses informed variables to include in the spatial and spatial–temporal analyses.

Spatial and spatial–temporal model fitting in R-INLA
We performed spatial and spatial–temporal analyses in R version 3.2.3 (R Core Team,

2015) implemented in RStudio© version 0.99.903 (RStudio, 2016) using integrated nested
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Laplace approximation (R-INLA) package (Blangiardo et al., 2013), to explore covariates

to explain observed spatial–temporal trends using semiparametric Poisson regression.

We fitted five Poisson regression models as follows:

(1) To assess general associations of covariates with the outcome variable, we fitted a

nonspatial generalized linear model.

To assess spatial relationships, we fitted semiparametric Poisson regression models

as follows:

(2) a spatial model without covariates,

(3) a spatial–temporal model without covariates,

(4) a spatial–nontemporal model with covariates,

(5) and finally, a spatial–temporal model with covariates according to Blangiardo,

Cameletti, and Rue (Blangiardo et al., 2013). This final model allows for an interaction

of space, time, and covariates, which would explain differences in the time trend of

MTCT rates for districts in Nyanza region.

For each of these spatial models (2–5), we used Bayesian deviance information criterion

(DIC) according to Spiegelhalter et al. (2002) and Spiegelhalter, Best & Carlin (1998) to

evaluate the strength of the fits combined with examination of posteriors generated

through plotting. Bayesian analytic approach is conditional on the appropriateness of an

assumed probability model. Hence, DIC is a useful tool to satisfy that our assumptions are

reasonable approximation to reality. For the best fitting model, we conducted sensitivity

analyses to assess the robustness of the priors (assumed probability distribution) selected.

Full derived models are presented in Appendix 1.

Mapping
Each of the samples had at a minimum locator information which contained the name of

the facility and district. Using spatial join technique, both the outcome and covariates data

were aggregated at district (currently called subcounty) level to provide rates for spatial, and

spatial–temporal analysis and mapping. For the final maps, we selected the best fitting

model and extracted fitted estimates from R-INLA and mapped these rates as shaded

choropleth maps to show the 12 districts by year of HIV-diagnosis (with color intensity

depicting higher rates) using QuantumGIS version 2.14.1 (QGIS Development Team, 2016).

Ethical clearance and informed consent
Ethical approval for the study was obtained from the KEMRI and the United States

Centers for Disease Control and Prevention. Further consent was not necessary since these

data were routinely collected deidentified data from routine clinic services.

RESULTS
Trends in programmatic uptake and MTCT rates
These results represent data from 95,215 infants and equally distributed by sex. These

were ∼93.2% of all infants and children at HIV diagnosis (Fig. 1).
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Most of the infants were tested in 2011 and 2012. Median age at HIV testing was

two months, interquartile range 1.5–5.8 months (Table 1). About three quarters

(75.1%) of the infants were under six months old at the point of testing and the

majority (60.0%) were tested at the maternity/postnatal ward. Median age at HIV

testing decreased from approximately three months in 2007–2009 to under two months

by 2013, p < 0.01.

The proportion of infants tested at maternity or postnatal ward increased from

44.9% to 74.1% by year 2013, p < 0.01. The proportion of infants reported to have

been breastfed increased over the years from 65.3% in 2007 to 88.0% in 2012, p < 0.01.

The proportion of mothers receiving ART for treatment (during pregnancy or

breastfeeding period) increased from 52.8% in 2007 to 100% in 2013, p < 0.001; the

proportion of mothers alive at the time of infant testing over the same period increased

from 85.7% in 2007 to 98.9% by 2013, p < 0.001. Use of ART for treatment increased over

the seven-year period from to 61.1% by 2013, p < 0.001. Overall, early testing (at <8 weeks

after birth) was 55.5% and increased from 44.8% in 2007 to 64.1% in 2013, p < 0.01

(Fig. 2).

The unadjusted HIV-infection rates decreased from 17.0% in 2007 to 7.2% in 2013,

p < 0.01.

Association of infants and maternal factors with HIV infection
In multivariable analysis; infants tested in 2009–2012 compared to those tested in 2013,

late diagnosis (beyond eight weeks after birth), and use of sdNVP, ART for prophylaxis

compared to ART for treatment were associated with MTCT (Table 2).

Figure 1 Infants included in the analyses. A total of 95,215 infants ∼93.2% of all infants and children

at HIV diagnosis were included in the analyses. Full-size DOI: 10.7717/peerj.4427/fig-1
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Spatial and spatial–temporal models
The spatial–temporal model that included time element (year of HIV diagnosis), spatial

layer with contiguous districts and covariates produced the lowest DIC (305) compared to

a spatial model without covariates (DIC 1319), a generalized linear model that had only

the outcome with covariates (DIC 1153), spatial–nontemporal model with covariates

(DIC 325), and spatial–temporal model (DIC 306) (Table 3).

Figure 3 contains choropleth maps for fitted MTCT rates for the seven-year period.

Darker shades indicate higher HIV-infection rates. Infection rates gradually decreased

from 2007 and by 2013, only two districts (Siaya and Suba) had rates higher than 8.0%.

Comparison of raw and fitted MTCT rates
Spatial–temporal and covariate-adjusted MTCT rates showed a gradual reduction from

19.8% in 2007 to 7.2% in 2013 compared to nonadjusted rates which reduced from 19.7%

in 2007 to 7.0% in the seven-year period (Table 4). The overall reduction in MTCT rates

over time was by 63.6%. However, this average trend compares at aggregate level but not

over space and time. Both unadjusted and adjusted revealed that the reduction was more

evident in some districts than others. We demonstrated similar reduction in standardized

MTCTrates by using the number of infected infants for each district out of estimated live

births (Table 5).

Standardized HIV MTCT rates per 100,000 live births
By 2013, the program had achieved an estimated 447 HIV standardized MTCT rates

per 100,000 live births (Table 5). Nyamira, Gucha, and Kisii districts had the lowest HIV

MTCT rates in 2013 while the highest MTCT rates were in Suba, Bondo, and Rachuonyo

districts.

Figure 2 Trends in HIV diagnosis and raw MTCT among infants in Western Kenya, 2007–2013.

Primary y-axis shows proportion of infants tested at <8 weeks after birth while secondary y-axis

shows proportion of HIV-infected infants out the tested. Full-size DOI: 10.7717/peerj.4427/fig-2

Waruru et al. (2018), PeerJ, DOI 10.7717/peerj.4427 10/20



DISCUSSION
We identified geographical variations and a significant decline in MTCT rates in the

seven-year period. The fastest progress occurred in more recent years from 2011 to 2013.

We estimated a reduction by 51.0% in overall fitted MTCT rates between the years 2009

and 2013. This reduced transmission at the later period for our analysis is comparable to

Table 2 Factors associated with mother to child transmission of HIV (MTCT) among infants in

western Kenya, 2007–2013.

Characteristic Total (n) Positive, n (%) Unadjusted Adjusted

OR* [95% CI] aOR† [95% CI]

Total 95,215 10,095

Year

2007 5,090 867 (17%) 2.7 (2.4, 2.9) (Omitted) (Omitted)

2008 6,628 923 (13.9%) 2.1 (1.9, 2.3) 1.8 (1.3, 2.4)

2009 10,437 1,454 (13.9%) 2.1 (1.9, 2.3) 1.5 (1.3, 1.8)

2010 13,236 1,632 (12.3%) 1.8 (1.7, 2.0) 1.6 (1.4, 1.8)

2011 21,981 2,414 (11%) 1.6 (1.5, 1.7) 1.4 (1.3, 1.6)

2012 20,714 1,574 (7.6%) 1.1 (1.0, 1.2) 1.0 (0.9, 1.1)

2013 17,129 1,231 (7.2%) ref.‡ ref.

Sex

Male 47,733 4,811 (10.1%) ref. ref.

Female 47,482 5,284 (11.1%) 1.1 (1.1, 1.2) 1.2 (1.1, 1.3)

Age (months) ¶

Under six months 71,486 5,964 (8.3%) ref.

6–12 months 23,729 4,131 (17.4%) 2.3 (2.2, 2.4)

Age at diagnosis

Under/= eight weeks 52,504 3,307 (6.3%) ref. ref.

Over eight weeks 42,711 6,788 (15.9%) 2.8 (2.7, 3.0) 2.5 (2.3, 2.7)

Maternal regimen

sdNVP only 2,763 279 (10.1%) 2.0 (1.8, 2.3) 1.7 (1.5, 2)

ART for prophylaxis 11,634 1,199 (7.4%) 1.5 (1.3, 1.6) 1.5 (1.3, 1.6)

ART for treatment 4,551 1,171 (5.2%) ref. ref.

Infant breastfed ¶

Yes 75,643 7,703 (10.2%) ref.

No 2,126 327 (15.4%) 1.6 (1.4, 1.8)

Unknown 17,446 2,065 (11.8%) n.i§

Mother received ARV ¶

Yes 45,865 3,225 (7%) ref.

No 3,182 632 (19.9%) 3.3 (3.0, 3.6)

Unknown 352 72 (20.5%) n.i§

Notes:
* OR, odds ratio.
† aOR, adjusted odds ratio.
‡ ref., referent category.
§ n.i, category not included in the analysis.
¶ Variable not included in the multivariable model due to collinearity.
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55% reported in Kenya over the period 2009–2015 (Joint United Nations Programme on

HIV/AIDS (UNAIDS), 2016a). While the overall MTCT rate up to infancy for the Nyanza

region was ∼7% in 2013, our results show great progress towards e-MTCT. PMTCT

through widespread use of ART can reduce the rate of vertical transmission to <5% in

breastfeeding populations (World Health Organization (WHO), 2010). Our study showed

increased use of ART for life which is one of the factors that could have led to reduced

MTCT. However, using percentage rates may not appropriately measure the progress

since it does not take into account the underlying population. We additionally used

standardized MTCT rates per 100,000 live births. Out of 12 districts, none had attained

e-MTCT impact target of �50 pediatric infections per 100,000 live births. By 2013, of the

12 districts, only Kuria, Kisumu, and Migori were close to attaining e-MTCT goal of <5%

MTCTrate. StandardizedMTCTrate was still high at 447 per 100,000 live births and above

the target of 50 new infections per 100,000 live births. This rate is moderate and

comparable to estimated 384 infants per 100,000 live births in South Africa (Goga et al.,

2016). The differences at district level for fitted MTCTrates and standardized MTCTrates

per 100,000 live births may due to the differences with which the methods are applied with

the latter taking into account estimated live births.

Our challenge then is to understand the drivers of these varied results despite uniform

policy and little variation in resource availability. In understanding disparities in PMTCT

progress, ecological studies such as ours have previously been proposed (Hampanda,

2013). In our setting, for example, one such study has identified social barriers which may

slow progress towards e-MTCT. These include individual level factors such as mothers’

competing priorities including work affecting service utilization and medication

adherence; family-related factors such as lack of support by male spouses and partners;

community-related such as fear and stigma; and institutional factors such as negative

attitudes by health workers (Onono et al., 2015), and accessibility of facilities due to

distance (Gourlay et al., 2013). These issues have been identified and described in other

low-income settings (Turan & Nyblade, 2013). Challenges in implementation of Option

B+ in western Kenya have been described despite successful implementation. These have

to do with health system readiness, e.g., same-day initiation into treatment, staffing,

training, and resource constraints; service-centered challenges such as scolding of

nonadherent patients and inconvenient operation hours (Helova et al., 2017).

Table 3 Model comparison using deviance information criterion (DIC) to identify best fitting

model.

Model type DIC Effective parameters Model choice

Model 1—A generalized linear model (nonspatial) 1,153 4.0 Fourth

Model 2—Spatial model without covariates 1,319 11.8 Fifth

Model 3—Spatial–temporal model without covariates 306 59.7 Second

Model 4—Spatial–nontemporal model with covariates 325 62.3 Third

Model 5—Spatial–temporal model with covariates 305 58.8 First*

Note:
* Best fitting model with lowest DIC (>10) from the next model of a different nature (model 4).
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Figure 3 Study location and spatial–temporal trend of fittedMTCTrates inWestern Kenya, 2007–2013.

(A) Figure shows the study location in relation to the rest of Kenya. (B) Shows spatial–temporal trend of

fitted MTCT rates. Full-size DOI: 10.7717/peerj.4427/fig-3
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Higher infection rates among infants tested after eight weeks after birth indicate

high postnatal transmission during the breastfeeding period. In the more recent years

where use of lifelong ART during pregnancy and after birth (Option B+) is common,

transmission rates are expected to be lower than in previous years. The estimates and

projections package has estimated that generally 50% or more of transmission is expected

Table 4 Comparison of raw and fitted MTCT by district and year among infants in western Kenya,

2007 and 2013.

District Raw MTCT rates (%) Adjusted MTCT rates (%)

2007 2013 Reduction Rank* 2007 2013 Reduction Rank*

Total 19.7 7.0 64.3% – 19.7 7.2 63.6% –

Bondo 21.3 6.7 68.5% 4 17.6 7.8 55.8% 10

Kisii 17.9 6.6 63.1% 7 23.5 6.3 73.2% 3

Gucha 17.6 6.8 61.4% 8 17.1 7.2 57.6% 8

Homa bay 18.0 8.3 53.9% 11 20.6 7.9 61.7% 6

Kisumu 19.1 6.8 64.4% 6 21.4 5.5 74.3% 1

Kuria 33.3 7.4 77.8% 1 15.1 5.4 64.4% 5

Migori 17.6 7.4 58.0% 9 22.1 5.8 73.6% 2

Nyamira 18.5 4.9 73.5% 2 17.3 7.1 58.9% 7

Nyando 22.6 7.9 65.0% 5 16.2 7.4 54.6% 11

Rachuonyo 19.7 8.3 57.9% 10 23.2 6.7 71.2% 4

Siaya 10.1 7.2 28.7% 12 23.7 10.9 54.1% 12

Suba 20.2 6.0 70.3% 3 19.2 8.3 57.0% 9

Note:
* Rank = highest to lowest MTCT reduction rates (2013 minus 2007 rate).

Table 5 Absolute transmissions and transmission rates per 100,000 live births by district among infants in western Kenya, 2013.

District Estimated live

births in 2013*
Women tested

for HIV in 2013†
HIV+ women

in 2013

Infants tested

in 2013

Absolute transmission

(number infected)

Transmission rates

per 100,000 live births‡
Rank§

All 275,169 203,069 15,136 17,129 1,231 447 –

Bondo 13,262 9,925 1,372 1,739 116 875 11

Kisii 36,841 25,143 622 701 46 125 3

Gucha 17,231 17,316 375 293 20 116 2

Homa bay 43,423 13,159 1,257 1,968 163 375 5

Kisumu 24,931 29,599 2,882 2,469 167 670 9

Kuria 11,696 13,774 214 473 35 299 4

Migori 30,193 26,391 2,503 2,582 190 629 7

Nyamira 26,640 15,827 354 445 22 83 1

Nyando 19,063 10,307 1,208 1,286 102 535 6

Rachuonyo 17,243 12,658 1,451 1,457 121 702 10

Siaya 24,984 21,589 1,998 2,276 163 652 8

Suba 9,662 7,381 900 1,440 86 890 12

Notes:
* Kenya population estimates 2010–2018.
† PEPFAR annual progress report (APR 2013) data.
‡ Transmission rate per 100; 000 live births ¼ Absolute transmission in 2013

Estimated live births in 2013
� 100; 000.

§ Ranked from lowest to highest case rates.
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to happen after six weeks of delivery in pre-Option B+ population for the Nyanza region.

Early testing for HEI is recommended for timely intervention. According to the final

stock-taking report on e-MTCT, by 2015, only four countries in East and Southern Africa

were meeting targets of early testing to over 50% of HEI (Claessens et al., 2014). In our

study, reduction inMTCT corresponded to a reduction in use of sdNVP use over time and

adoption of more efficacious regimens. Our analyses covers a pre-Option B+ phase hence

better progress would be expected during full implementation of Option B+. This

progress towards use of efficacious regimens was in response to recommendations for use

of universal ART (World Health Organization (WHO), 2010; DeCock et al., 2000). In this

regard, Kenya has identified PMTCT goals for e-MTCT including implementing

guidelines and improving EID and pediatric ART (Claessens et al., 2014).

Our best fitting model was a spatial–temporal model with covariates and had the least

DIC (by over 10 points) from the next model of a different nature (spatial–nontemporal

model). Therefore, this model was better in explaining geographical variation in MTCT

rates over time. The fit observed for the spatial–temporal model with covariates can be

explained by the way the PMTCT program has been implemented within the 12 districts.

Initial PMTCT program implementation started in former southern Nyanza districts

namely; Homa Bay, Suba, Migori, Gucha, Kisii, Nyamira, and Kuria districts. The spike

in rates in Homa Bay district in 2010 may have been the result of intensified efforts in

EID leading to diagnosis of more HIV-infected infants who may have been missed

previously. After 2010, the trend shows a gradual reduction of MTCT rates for most

districts up to the end of 2013. However, there was a spike for Gucha district in 2011 after

a gradual decline up to 2010. By 2013 though, the decline to the 5–8%MTCTrate category

was observed for most (10/12) districts. The highest rates by 2013 were in Siaya and

Suba districts. Despite substantive program investments in these districts, the impact

could be less due to rural nature of the district. Lower rates were observed in contiguous

districts that were further away from Lake Victoria.

We acknowledge that our data have limitations. Routine program data may lack

high-level quality due to missing values, although by focusing on a specific laboratory

request form we had more complete results than routine patient records. In our data,

we used the first infant PCR test and not the final one at 18 months. Our data does not

describe final transmission rate, but lets us examine important factors in e-MTCT

including early diagnosis. The variables included in the models are not exhaustive in

explaining reducing MTCT rates including health seeking behaviors and other structural

factors such as distance to health facility. We did not also include infant ART variable

due to lack of sufficient data. However, we did include the variables that have been shown

to be most important in impact on reducing MTCT rates in published literature such as

level of facility (Lerebo et al., 2014), however, due to lack of data, we did not consider

structural factors (Aarons et al., 2016), nor retention associated factors (Obai, Mubeezi &

Makumbi, 2017) and other maternal related factors (Lerebo et al., 2014). We also

acknowledge that DIC only measures the goodness of fit and cannot be used singly

to conclusively indicate that the spatial–temporal model with covariates was best.

We however tested for sensitivity with resulting similarity in final fitted rates.
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CONCLUSION
To the best of our knowledge, there is no comparable geospatial–temporal analysis for

MTCT in SSA countries. We have revealed geographic disparities in progress attained in

reductions of MTCT in this high-burden, low-resource setting. Rigorous country-wide

analyses of this nature will be a useful addition to unveiling progress towards e-MTCT.

Taking into account adoption and use of national PMTCT program guidelines, the spatial

disparities revealed in our study imply the need to consider location-specific challenges.
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