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Abstract 

Proton therapy is undergoing a rapid development making it increasingly popular as a 

treatment of cancer. Protons interact differently with the tissue compared to 

conventional radiation therapy with photons, resulting in a more beneficial dose 

distribution with greater dose conformation. The radiation quality is also different for 

protons and photons, as the ionisation density, often quantified by the linear energy 

transfer (LET), is higher for protons than for photons. Irradiation experiments on cells 

and animal models have shown that protons are slightly more effective in producing 

biological damage than photons. This difference in biological response is quantified by 

the relative biological effectiveness (RBE), which aid the comparison of the dose 

deposition from the two modalities and enables transferal of established clinical 

protocols from photon therapy to proton therapy. A conservative and constant RBE of 

1.1 is used in proton therapy clinics, even though experiments have shown that the RBE 

can be both higher and lower, varying with different biological and physical quantities, 

including the LET value. 

Phenomenological RBE models try to determine the various RBE dependencies from 

large experimental databases of cell irradiation experiments. In this work, existing 

phenomenological models were analysed and explored in a coherent manner: All 

models were parameterised and described by functions of the maximum RBE (RBEmax) 

and minimum RBE (RBEmin), the two model functions that make every model unique. 

The models were implemented in the FLUKA Monte Carlo code and used in estimation 

of the RBE and RBE-weighted dose for multiple patient plans and relevant dose 

parameters. The models were also analysed and compared regarding the underlying 

similarities and differences, which forms the basis for the unique definitions of RBEmax 

and RBEmin of each model. A new phenomenological RBE model was proposed, 

introducing the full LET spectrum as an input parameter for phenomenological models. 

Statistical methods were used to test whether a non-linear LET dependency of RBEmax 

would give a superior description of the experimental data compared to using the 

established linear dependency of the dose-averaged LET (LETd).  Further, we analysed 

the LETd dependency of RBEmin in a two-step regression analysis, as the RBEmin 
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function is most commonly assumed to be constant for all LETd values. Specifically, 

we analysed how restriction on the minimum dose of the underlying experimental 

database influenced RBEmin. 

The estimation of the RBE and the RBE-weighted dose from the various models 

differed significantly. The largest deviations were seen for organs at risk (OAR) with 

low fractionation sensitivity ((α/β)x) and high LET. These variations are a result of the 

distributions of (α/β)x values and LETd values in the experimental databases, the 

assumptions for RBEmax and RBEmin and regression analysis method. The full LET 

spectrum was found to give a better representation of the experimental database 

included in our analysis. Regression weighted to the reported experimental 

uncertainties showed that a non-linear function (quartic function) gave a better fit to 

the data than a linear function. The RBEmin function was found to vary with the LETd 

value if dose constraints were added to the experimental database. By restricting the 

minimum dose in the database to be 1 Gy or lower, the analysis gave a non-negligible 

linear LETd dependency, while higher minimum doses indicated that the dependency 

is constant. 

The deviations in the estimated RBE from the models can be traced back to the model 

differences in the database construction, the model assumptions and the regression 

techniques. Various methods were used in this thesis to develop novel models by 

reanalysing published data, such as construction of model databases with strict 

constraints, using the pure dose-survival data instead of only  α and β values, statistical 

analysis of model assumptions, applying multiple regression techniques and 

recognition of the LET spectrum as a relevant input parameter. Together, these 

techniques could minimise the researcher bias and make more accurate RBE models, 

resulting in better dose predictions for clinically relevant scenarios.  
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1.  Introduction 

Cancer is a group of diseases where the genetic code of a cell has mutated, leading to 

an abnormal cell growth with the potential of also invading other regions of the body. 

From being an almost certain death 50 years ago, the development of better diagnostics 

and treatment through cancer research have changed the face of cancer. Overall 

survival rates for cancer diseases have been steadily increasing since the 1970s 

(Quaresma, Coleman, and Rachet 2015). A study assumed that approximately 5 million 

have avoided death to cancer in Europe over the three last decades (Malvezzi et al. 

2018). Still, at what might seem contradictive, cancer was the most common cause of 

death in Norway in 2017 for the first time (FHI 2018). It is estimated that over 30 000 

patients every year are diagnosed with cancer in Norway, and the number is increasing.  

Radiation therapy is one of three main modalities used for cancer treatment, together 

with surgery and chemotherapy. A study reported that around half of all cancer patients 

in Australia would benefit from radiation therapy (Barton et al. 2014). The principle of 

radiation therapy is that ionising radiation should target and damage the unwanted 

cancer cells, while sparing the healthy normal cells. If the treatment is successful, the 

cells are not able to proliferate, and the cancer cells will eventually die.  

As more people are cured from cancer, an increasing amount of people are also living 

with complications and late reactions induced by the radiation therapy. The damage to 

the healthy tissue should be minimised to avoid harming the patient. There exists 

therefore a strong rationale for decreasing the dose to the non-cancerous tissue of 

patients, as one assumes there is a correlation between higher dose and increased 

normal tissue complication probability (NTCP). 

Today, conventional external radiotherapy is delivered by linear accelerators, creating 

high energetic X-rays that penetrate through the body, harming cells on the way 

through the patient. Radiotherapy have been aided heavily by modern technology and 

software development over the last decades. The radiotherapy technology has taken 

incremental steps to optimise the treatment delivery; from simple single field plans all 

the way to complicated Volumetric Modulated Arc Therapy (VMAT) plans. Every step 



 14 

has increased the overall dose conformity, targeting tumour tissue and sparing healthy 

tissue. However, the steady increase in dose conformity through technological 

developments is about to converge towards a physical limit, governed by the spatial 

dose distribution of photons and electrons. For many sites, organs at risk (OAR) still 

limit the dose that can safely be administered to the target volume. Conventional 

photon treatment may deliver an unacceptable large dose to OAR, due to the physical 

dose distribution of photon beams.  

If the patient is treated with protons instead of photons, the dose conformity in radiation 

therapy can still be improved. A proton beam has a significantly different depth dose 

curve compared to photons. High energetic X-rays and gamma-rays have a depth dose 

distribution with a maximum a few centimetres into the tissue and thereafter decreasing 

with increasing depth. Protons on the contrary have a relative flat dose in the entrance 

and a maximum towards the end of their path, known as the Bragg peak. The location 

of the Bragg peak is determined by the energy of the proton beam. This energy can be 

modulated to create a spread out Bragg peak (SOBP), which cover the full extent of 

the tumour with a uniform dose (Wilson 1946).  

The number of patients treated with proton therapy is increasing at an exponential rate, 

with a more than 170 000 patients treated worldwide (Jermann 2018). In general, the 

better dose conformity of protons compared to conventional radiation lowers the dose 

to OARs and other normal tissue, which will lower the NTCP for many patients 

(Widder et al. 2016). However, the increased dose conformity is not the only benefit 

from protons.   

The ionisation density of protons is higher than for photons, meaning that ions are more 

effective in the inactivation processes of cancer cells. If photons and protons deliver 

the same physical dose, the latter will be more biological effective, e.g. inactivate a 

higher fraction of cells. This difference is not negligible and must be accounted for in 

proton therapy. The relative biological effectiveness (RBE) is introduced as a scaling 

factor for the physical proton dose. The quantity is able to estimate the comparable 

photon doses to proton doses, consequently aiding the transferral of knowledge gained 
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from photon therapy to proton therapy. Based on experiments with animals in the 

1970s, the RBE of protons was set to be 1.1, i.e. protons are assumed to be 10% more 

effective than photons for the same physical dose. The conservative value is still used 

today in proton therapy clinics, even though experiments have shown that the RBE can 

be higher and varies with the fraction dose, tissue type and the ionisation density. 

Multiple dose planning studies of patient plans have shown that a potential variable 

RBE could lead to an increased dose to OARs compared to the doses reported by the 

clinically used treatment planning system, which only calculate the dose using an RBE 

of 1.1. These studies estimated RBE from various RBE models. Phenomenological 

RBE models are a group of models that rely and focus on experimental data. The model 

creators try to find relationships between the input and output quantities of experiments 

without modelling specific subcellular effects, contrary to mechanistic models.  

The goal of this study was to analyse and compare established phenomenological RBE 

models for proton therapy, by exploring their similarities and experimental basis. We 

also wanted to investigate existing experimental data found in the literature to develop 

novel phenomenological models. The creation of better and more precise RBE models 

could improve the dose determination of proton therapy and make safer and better 

predictions of the treatment outcome. 
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2. Radiation physics 

Ionising radiation is radiation that carries high enough energy to ionise material, i.e. 

removing electrons from atom and molecules. The treatment dose in radiotherapy is 

traditionally quantified using the absorbed dose, D, representing the amount of energy 

deposited by the radiation per unit mass of the tissue: 

where ΔE is the energy (Joules) and Δm is the mass of the tissue (kg) where the energy 

is deposited. The absorbed dose is a physical measurable quantity, measured in units 

of Gray (Gy). Conventional radiation therapy is performed by neutral photons without 

mass, whereas proton therapy is performed with massive charged particles. The 

primary goal of radiation therapy is to damage the DNA molecules inside the cancer 

cells, either directly by  the initial particles/radiation (direct action) or subsequently by 

free radicals produced by the radiation (indirect action). The biology is further 

described in section 3, while an overview of the physical interactions between protons 

and tissue are given in this section. 

2.1 Proton Interactions 

The protons are accelerated to relativistic velocities before entering the patient. They  

will primarily interact with the patient’s tissue through three different mechanisms: 

Stopping, scattering and nuclear interactions. Bremsstrahlung is also theoretical 

possible, however, at therapeutic proton energies the effect is negligible (Newhauser 

and Zhang 2015). 

When the protons traverse the tissue, electrons will absorb parts of the kinetic energy 

through electromagnetic force interactions, resulting in ionisations and excitations. As 

a result, the kinetic energy of the protons is transferred to the matter and the protons 

are slowed down. This inelastic force imparted on the protons from the matter is termed 

“stopping power” and defined as the loss of energy per unit of length. The force is 

dependent on multiple parameters, such as the material composition and electron 

density of the tissue and the velocity of the protons. The stopping power for different 

 � � ��
��

, ��	
��



 18 

charged particles and materials can be calculated by the Bethe-Bloch formula (Bethe 

1930, Bloch 1933a, 1933b) or experimental tables (Lühr et al. 2012, Greilich et al. 

2010, ICRU 1993). The protons will ionise the impacted molecules and create 

secondary electrons (delta ray), transferring energy from the protons to the material. 

This is described more in depth in section 2.3. 

In addition to being stopped by the electrons in the tissue, protons also interact with the 

electromagnetic field of the nuclei. If the protons come too close to the nucleus, the 

protons may change their trajectory, introducing a lateral deflection in the proton track. 

The elastic coulomb interactions between the protons and the nuclei are dependent on 

the charge of the nuclei, which can be analytical calculated by the Molière’s theory 

(Molière 1948, Bethe 1953). Heavier elements in the tissue will increase the magnitude 

of scattering. Beam absorbers should therefore be created of material with low Z, to 

decrease the spread of the pencil beam (Brennsæter 2015). 

The electromagnetic interactions with the electrons and the nuclei of the tissue material 

are the dominating modes of interaction, however, in rare instances, protons are also 

able to overcome the Coulomb barrier and interact directly with the particles within the 

nucleus. These nuclear interactions can result in secondary particles through creation 

of heavier elements and recoil particles from the tissue, which themselves can ionise 

the tissue (Paganetti 2002). Similar to the ionised electrons, these secondary particles 

can be highly energetic and interact with tissue far away from the central axis of the 

protons, by creating delta rays or ion clusters. Besides secondary protons, helium ions 

are the most usual secondary particles seen in proton therapy. These are primarily 

created in the entrance, when the kinetic energy of the proton beam is high (Grassberger 

and Paganetti 2011, Paganetti 2002).  

The three different interactions describe the energy transfer on a subatomic scale 

between the proton and the tissue. All these interactions can be regarded as random and 

stochastic, even though the probability of an interaction is dependent on the proton 

energy, electron density and nuclei composition in the tissue (Newhauser and Zhang 

2015). The stochastic nature of every interaction makes it impossible to predict the fate 
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of a single proton, and every proton track and local dose deposition is unique. A 

schematic example of a short proton track is shown in the diagram in Figure 1A. 

2.2 Macroscopic dose distrubution 

In a clinical beam, billions of protons are accelerated and used in the irradiation of the 

tumour. The beam consists of many independent track structures. This leads to a stable 

and reproducible dose distribution, following the mathematical laws of large numbers 

(Metropolis and Ulam 1949). A macroscopic dose distribution of a monoenergetic 

proton beam deposited in a water phantom is illustrated by isodose curves in the lateral 

direction in Figure 1B and the dose intensity along the central axis in Figure 1C. 

The ionisation density of the traversing protons increases towards the end of the range, 

before the protons come to a halt. This results in the distinctive peak at the end of the 

depth dose distribution. The initial energy spread in the proton beam combined with 

the stochastic nature of the proton stopping (i.e. range straggling) determine the width 

of the Bragg peak. The scattering effect is significant in proton therapy compared to 

heavier ions, and narrow pencil beams will broaden and become widened at the end of 

range, as seen by the expanded isodose curves in Figure 1B. 
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Figure 1: A: An example of the track structure in a nanometric scale of an 
accelerated proton traversing matter. Each point represents one interaction 
between the traversing proton or secondary particles and the atoms in the 
tissue. Although a single-track structure is chaotic, many protons leads to a 
stable dose distribution, as shown in the macroscopic diagrams in B and C. 
B: Arbitrary isodose curves, illustrating the result of lateral scattering, i.e. a 
broadening of the lateral dose with depth. C: The depth dose distribution 
along central axis, where the dose is relatively constant until the distinctive 
Bragg peak. Inspired by ICRU report 16 (1970). 

2.3 Linear energy transfer  

Even though two different radiation modalities, e.g. 6 MV photons and protons, deposit 

the same physical macroscopic dose within the tissue, the pattern of dose deposition 

can be different because of differences in the ionisation density and track structure. The 

term radiation quality is used to describe these physical properties, normally quantified 

by the linear energy transfer (LET) of the radiation (ICRU 1970). LET is defined as 
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the infinitesimal amount of mean energy transferred from the proton to the tissue 

locally (dE in keV) per infinitesimal part of the proton track (dl in μm): 

The energy transferred to the tissue locally from a proton could maximum equal the 

energy lost by the proton. If the energy of the incoming proton is high enough, the 

collision could create delta ray electrons, which could deposit their energy relative far 

away from the origin. A restricted LET (LETΔ) definition is used to focus on the energy 

deposited in the vicinity of the proton track, which exclude the transfer to electrons 

with energies above a maximum transfer energy Δ. If all collisions are included in the 

definition, the quantity is termed unrestricted LET (LET∞). As no energy is excluded, 

LET∞ will then equal the stopping power of the proton. There is little difference 

between LETΔ and LET∞ in the clinical energy range for protons and relevant 

secondary particles (Grzanka 2014).  

The LET is dependent on the energy of the traversing proton, as the stopping power 

varies with the velocity of the proton. As shown in Figure 2, the LET value decreases 

with increasing energy and ranges between 0.2 and 84 keV/μm in the clinical relevant 

energy range (ICRU 1993, Wilkens, J J and Oelfke 2004). By integrating the proton 

stopping power from zero to the full proton energy, the residual range of the proton can 

be estimated, e.g. by the continuous slowing down approximation (CSDA) (Fano 

1953). As shown, the LET value increases with decreasing CSDA, i.e. closer to the 

proton track end. 

 
�� �
��
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Figure 2: The unrestricted LET value of protons in water as a function of the 
energy of the proton. The x-axis on the top quantifies the remaining range of 
the protons in water, estimated with the continuous slowing down 
approximation (CSDA). The curve was obtained using the Libamtrack online 
calculator (Greilich et al. 2010). 

The LET value also varies significantly the type of particle traversing the tissue, as 

heavier particles such as helium and carbon ions have a higher electrical charge, leading 

to a greater stopping power. Furthermore, the stopping power is dependent on the 

electron density and the composition of the tissue material with different materials 

leading to a change in the LET value of the accelerated protons (Bernard Gottschalk 

2011). In conventional photon therapy, the dose is reported by the dose to water (Dw) 

instead of the dose to tissue. Similarly, radiation quality is primarily reported by the 

LET to water (LETw), independent on the tissue the particles are traversing through 

(Wilkens, Jan J. and Oelfke 2004, Paganetti 2009).  

For an infinitesimal volume, the dose from monoenergetic protons can be calculated 

from the fluence and the LET value of those protons: 

where � is the proton fluence and � is the tissue density. As the equation states, fewer 

protons are needed to deposit a prescribed dose for a beam consisting of high LET 
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protons, compared to a beam consisting of low LET protons. Equation ��	�� can also 

be used to describe the dose to water, by finding the LETw from tables and using the 

water density (��) instead of the specific tissue density. 

2.3.1 Linear energy transfer spectrum 
In a clinical setting, the treatment beam within the patient do not consist of only 

monoenergetic protons, even for pristine pencil beams. As the mean energy decreases 

with increasing depth, the energy spread increases and the stochastic nature of stopping 

and scattering creates a beam with a range of energies. In addition, heavier secondary 

particles are produced by nuclear interactions and “pollutes” the proton beam 

(Grassberger and Paganetti 2011). The radiation quality can therefore be described by 

a dose weighted spectrum from protons of different LET values (d(L)) at every spatial 

location, instead of a single quantity:  

where L is the LET value, D(L) is the absolute dose yielded by particles with LET 

value L and D is the total dose given to the specific location. The dose weighted LET 

spectrum (d(L)) is defined such that the sum of all dose compositions is normalised to 

1 (ICRU 1970).  

Examples of dose weighted spectra are shown in Figure 3, where the LET spectrum is 

depicted in the entrance and at the Bragg peak. As shown, the spectrum is narrow in 

the entrance, while at the end of the range the spectrum is shifted towards higher values 

and broaden out. The composition of the beam gets increasingly complex for a 

Spread-out Bragg Peak (SOBP) beam with multiple initial energies, and even more 

complex for treatments with many fields, often termed a “mixed treatment field” (Lam 

1987, Inaniwa et al. 2015). 
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Figure 3: A depth dose curve of a monoenergetic proton beam of 116 MeV 
in a water phantom shown in Figure A. The LET spectrum at the entrance is 
shown in B and the spectrum at the Bragg peak is shown in C, both positions 
illustrated in A. The depth dose curve and the LET spectra is created by the 
author with the FLUKA Monte Carlo code. 

Alternatively, the LET spectrum can be track (or fluence, f(L)) weighted , where the 

LET values are distributed relative to the number of particles traversing the tissue 

instead of the dose deposited by them. For our work, we only focus on the dose 

weighted LET spectrum, hereafter referred to as the LET spectrum. For simplicity, it 

is common to only use the dose averaged LET (LETd) value, a single quantity, instead 

of the full LET spectrum (Polster et al. 2015):  

Generally, the LETd value increases with increasing treatment depth, and the highest 

LETd values are found distal to the Bragg peak at the distal dose falloff. In a practical 

clinical setting, only a limited range of LETd values between 0 and 20 keV/μm are seen 
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(Paganetti 2014). The typical LETd values in the middle of the SOBP, i.e. middle of the 

tumour, are 2-3 keV/μm. 

Alternative approaches to describe the radiation quality are the energy spectrum (Belli, 

Campa, and Ermolli 1997) or microdosimetric quantities such as lineal energy (l) or 

specific energy (z) (Loncol et al. 1994, Inaniwa et al. 2010) or the number of proton 

pencil beam track-end (Traneus and Ödén 2019). 
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3. Radiation biology 

The purpose of radiation therapy is to heal cancer patients by sterilising and stopping 

the proliferation of the cancer cells. Studies have shown that the DNA within the 

nucleus is the molecule target which inactivates the cancer cells, as well as normal cells 

(Kaplan and Moses 1964). The ionisation process might lead to single strand breaks 

(SSB) or double strand breaks (DSB) of the DNA molecules. Most SSB are repaired 

immediately or at most a few hours later by biological processes (Hall and Giaccia 

2006). Incomplete repair of the damaged DNA might induce cell death, inhibiting the 

proliferating of cells. Generally, normal cells have lower division rates and better repair 

mechanisms compared to cancer cells, making them more resistant to radiation. In very 

rare instances the repair can be performed incorrectly and introduce a gene mutation 

which will be inherited by the daughter cells.  

As mentioned in section 2, the DNA can be damaged either directly by the proton beam 

or secondary electrons, or indirectly by free radicals created in the water around the 

DNA molecule (Joiner and Kogel 2016). Direct action creates more DSBs than indirect 

action and is more prominent in proton therapy compared to conventional therapy, as 

the local ionisation density of a proton beam is higher than for conventional photon 

radiation (Hirayama et al. 2009). 

The biological effects of radiation can be quantified with respect to different endpoints. 

At the cellular level, endpoints such as e.g. cellular survival, induction of radiosensitive 

proteins or DSBs, can be measured in cells radiated in vitro (Tommasino and Durante 

2015). Examples of endpoints for mice and rats irradiated in vivo  are early skin damage 

or crypt regeneration (Paganetti et al. 2002). However, clinically the primary and most 

important endpoints are the tumour control and a variety of normal tissue 

complications, which forms the basis for the clinical treatment protocols (Hall and 

Giaccia 2006). These are, however, more complex and difficult to measure, requiring 

and large clinical trials to be determined.  
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3.1 The linear-quadratic model 

The linear quadratic model (LQ-model) is a general dose response model which can 

describe the effect of radiation on multiple endpoints, both clinical and pre-clinical. To 

describe the survival fraction of cells irradiated in vitro, the model is defined as: 

where S is the fraction of cells surviving the radiation, ���� and �� are the absolute 

number of surviving radiated and non-radiated reference cells and α and β are the 

LQ-model parameters. The model parameters are found by regression fitting to 

experimental data. Even though the model coefficients do not have a direct 

interpretation, the parameters can be coupled to the repair mechanisms of the cells. The 

first term of the exponential function in Equation ��	
� describes unrepairable lethal 

damage, while the second term describes the repairable non-lethal damage. The ratio 

between the parameters (α/β), is commonly used to describe the fractionation 

sensitivity of different tissues and organs, as it is possible to extract the ratio from 

clinical endpoints, not only cell survival data.  The LQ-model is illustrated in Figure 4 

by two survival curves drawn using LQ-model regressions. The LQ model can be 

expanded to consider other effects that cannot be described by only two parameters. 

These effects include hyper sensitivity at low doses, linear effects at high doses, 

hypoxia, time dependencies and repopulation of the cells.  

3.2 Relative Biological Effectiveness 

By moving from photon therapy to proton therapy, the radiation quality changes, as 

described in Section 2.3. If the same amount of physical dose is given with photon and 

proton therapy, the latter will normally have higher effect, i.e. in a cell experiment the 

proton radiation would have inactivated a higher fraction of the cells (Paganetti 2014).  
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The variations in biological effect for the same physical dose is described by the 

relative biological effectiveness (RBE), a scaling factor defined as: 

where �, and �- are the absorbed physical doses deposited by the reference photon 

and proton radiation, respectively. The RBE can be found by calculating the ratio of 

the dose levels for a specific endpoint, where both modalities are isoeffective. The most 

common endpoint measured by RBE experiments is cell survival fraction from in vitro 

irradiation, which also has become the basis for most RBE models. Mathematically, 

the survival fraction for both radiation modalities equals each other: 

where  &�-+ and  ��,� are the survival fractions of proton and photon irradiations, 

respectively. 

 

Figure 4: Schematic dose response curves of V79 hamster cells, irradiated 
with monoenergetic protons (α = 0.469 Gy-1 and β = 0.043 Gy-2) and with 
X-rays (α = 0.129 Gy-1 and β = 0.046 Gy-2) as reference radiation. The data 
originates from Belli et al. (1998). 
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In vitro and in vivo experiments have shown that the RBE is variable and dependent on 

the measured biological endpoint, cell type, dose and radiation quality. The effect of 

selected endpoint is visualised in Figure 4. The scientific community, however, agreed 

in the 1970s that the proton RBE can be regarded as constant and settled on a general 

value of 1.1 as for the RBE (RBE1.1). Proton therapy clinics around the world have 

adapted this ratio in their protocols (Paganetti 2015). The assumption of 1.1 was 

adapted as a conservative number, even though experimental data have shown that the 

effect can be higher and is variable within a treatment field (Paganetti 2014).  

The RBE can then be multiplied with the physical proton dose to achieve the 

RBE-weighted dose (or sometimes termed biological dose), which is the dose quantity 

that is used and reported in clinics:  

To distinguish the difference from physical dose, the unit Gy(RBE) is used for 

RBE-weighted dose (Durante 2014). The most distinct variation in RBE and 

RBE-weighted dose is seen along the treatment depth, as qualitatively illustrated by the 

spread-out Bragg peak (SOBP) example in Figure 5. 

 

Figure 5: An example of a physical depth dose distribution for a SOBP, found 
by Monte Carlo simulations. The RBE-weighted dose is plotted above the 
physical dose, indicating the higher effectiveness for protons over photons, 
both corresponding to the left axis. The variable RBE value is shown by the 
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points and the dashed curve. The lines between the points are only for 
guidance. As seen, the RBE is therefore not constant but increasing with 
depth in this example. Data extracted from Wouters et al. (2015) and Polster 
et al. (2015). 

The increased RBE with increasing depth is especially an issue for the organs at risk 

(OARs) distal to the target volume. This increased biological dose to OARs may 

increase the normal tissue complication probability (NTCP) of a patient treatment, even 

though the dose constraints are met with the RBE1.1 proton therapy plan (Jones 2016).  

3.3 Biological modelling of protons 

Better understanding of the proton RBE can give more precise treatment and ultimately 

a reduction in treatment complications. RBE modelling for protons is therefore a 

subject of high interest, and multiple models have been developed in the recent years. 

3.3.1 RBE models in literature 
RBE models found in literature can be divided into three major groups: 

Phenomenological models, plan-based models and mechanistic models.  

Phenomenological models try to describe the relationship of measurable empirical 

quantities (Belli, Campa, and Ermolli 1997, Wilkens, J J and Oelfke 2004, Tilly et al. 

2005, Chen and Ahmad 2012, Carabe et al. 2012, Wedenberg, Lind, and Hårdemark 

2013, Jones 2015a, 2015b, McNamara, Schuemann, and Paganetti 2015, Mairani et al. 

2017, Peeler et al. 2016). The models do not include any information or assumptions 

of cells on a subcellular level. Instead, the models rely on measurable input and output 

variables of cell irradiation experiments, typically the LETd and = and > of 

experiments. The model creators then assume appropriate dependencies for the model 

functions with free fitting parameters and perform regression analysis to the data to 

determine the parameters. This is covered in depth by this thesis. 

Plan-based models were developed as an alternative to the phenomenological and 

mechanistic models and are not directly based on cell experiments (Frese et al. 2011, 

Unkelbach et al. 2016). The term “plan-based model" is made to make the distinction 

that the model is made based on information from treatment plans, such as dose and 



 32 

LETd distributions. Instead of being based on empirical cell data, the model creators 

assumed that the average RBE inside the target volume is 1.1, while the variable model 

functions are normalised to this.  

The last group of models are fundamentally different from the other two kind of 

models, as mechanistic models aim to model the biological effects on a microscopic 

scale within the cells, not only assuming and calculating relationship between 

experimental variables (Scholz et al. 1997, Hawkins 1994, Carlson et al. 2008, Cunha 

et al. 2017, McMahon et al. 2017). The microscopic dose distribution will give rise to 

lesions and local events within the nucleus, such as double strand breaks (DSB), which 

are estimated by the models. These events are quantified and used in the estimation of 

overall cell survival. 

The radiosensitivity of the cells is also known to vary with the oxygen level, as hypoxic 

cells are normally more radioresistant, both for photon and proton radiation (Hall and 

Giaccia 2006). Specialised models that incorporate the oxygen enhancement ratio 

(OER) have been developed (Durante 2014), which include the spatial oxygen level as 

input data. The developed proton RBE models do not consider effects of hypoxia.  

3.3.2 Mathematical model functions 
The RBE can be coupled with the LQ-model by inserting the mathematical description 

of the LQ-model of the proton and photon irradiation, as given in Equation ��	
, into 

Equation ��	��: 

where Dp is the physical proton dose, αx and βx are the LQ-parameters of the photon 

radiation, is the physical proton dose and the = and > values are the LQ-parameters 

of the proton radiation. This equation can be solved for Dx and inserted into the 

definition of RBE, as given in Equation ��	�: 
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The RBE of the proton beam is then only a function of the proton dose and the 

LQ-model parameters. As a general rule, the RBE is highest at low doses and decreases 

with increasing dose. By evaluating the equation at the proton dose extremes, we 

achieve two equations for RBE values for either very low doses (RBEmax) or high doses 

(RBEmin):  

As seen, the extremes are simply the ratios (or square root of the ratio) of the LQ-model 

parameters of the photon and proton radiation. Equation ��	L can be reformulated with 

respect to RBEmax and RBEmin:  

where �= >M �,, equivalent to =, >,M , is the treatment fractionation sensitivity of the 

reference radiation.  

In principle, all phenomenological proton RBE models created up to this date can be 

parametrised into describing the two RBE extrema, even though the models are derived 

and modelled from different principles. The models will differ in how RBEmax and 

RBEmin are defined and on which input parameters the models are made dependent. It 

should be mentioned that some models quantify the = and > model parameters instead 

of RBEmax and RBEmin, however, these are closely linked to each other by Equation 

��	N. One generic example for both RBEmax and RBEmin are given in Figure 6, where 

the equations are made linearly dependent on the LETd value. For a specific dose value, 

the RBE is found between these two lines, depending on both the dose deposited and 

the LETd values of the protons. 
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Figure 6: An illustration of two model functions for RBEmax and RBEmin where 
the RBEmax always is greater than RBEmin. For a specific physical fraction 
dose, the resulting RBE is found somewhere in between the two extreme 
functions.   

3.3.3 RBE dependencies 
The variable RBE models for proton therapy can be made dependent on three major 

parameters: The physical proton dose per fraction, radiation quality and tissue type 

(Paganetti 2014). The dose dependency is covered by the dose input in Equation ��	Z, 

as RBEmax and RBEmin are independent on the fraction dose.  

An example of the variation in RBE with radiation quality can be seen in Figure 7 for 

one cell line. The steepness of the curves increases with increasing LETd value. 

Therefore, a proton beam with a higher LETd value will reach a chosen survival fraction 

at a lower dose compared to a beam with a lower LETd. This means that the RBE is 

positive dependent on the LETd value.  It is therefore typical to incorporate the increase 

in RBE with increasing LETd in RBE models, at least for the RBEmax, as illustrated in 

the generic example of Figure 6. 
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Figure 7: Schematic dose response curves of irradiated U87 cells, irradiated 
with monoenergetic protons with the noted LETd values or with X-rays as 
reference radiation. The α and β data originates from Chaudhary et al. 
(2014). 

The RBE also varies with different tissue types and cell lines. Survival curves for five 

cell lines irradiated with approximately the same LETd value are shown in Figure 8A, 

with the LETd dependency of RBEmax of the cell lines shown in Figure 8B. The large 

variation between the cell lines, advocates the inclusion of a tissue dependency in RBE 

models. For modelling proposes, the tissue or cell line is commonly represented by the 

(α/β)x value. It has been shown both analytically and experimentally, that RBEmax is 

inversely dependent on the (α/β)x value (Hawkins 1994, Wedenberg, Lind, and 

Hårdemark 2013).    
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Figure 8: Cell survival curves of five different cell lines, irradiated with 
monoenergetic protons with approximately 20 keV/μm (A). The RBEmax of the 
same cell lines relative to the LETd value of the experiments. The lines are 
only shown for guidance. The lines in A corresponds to the points in the 
middle of figure B. Data from Belli et al. (1998) and Belli et al. (2000). 

3.3.4 Mixed field radiation 
As described in section 2.3.1, a clinical beam does not consist of only monoenergetic 

protons of a single energy, a fact that needs to be taken into consideration when RBE 

models are created. To simplify the calculation of the RBE from the protons with a 

wide range of energies and LET values, the LETd of the total beam is most commonly 

used as input. This is mathematically correct if the biological weighting functions are 

linear, thus the model functions can be simplified to be LETd dependent: 

and 

where a, b, c and d are model constants, determined by the model creators (Paganetti 

2018, Paganetti et al. 2019a). Models with a linear LET dependency enables estimation 

of the RBE based only on the dose and LETd distributions. The estimation of RBE and 

RBE-weighted dose with the help of Equations (3.9) and (3.10) can be performed 
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subsequent to the dose calculation, a method termed offline calculation (Polster et al. 

2015). 

Equations (3.9) and (3.10) do, however, only approximate the correct RBE if the LET 

dependency of the model functions are linear. The approach of using LETd as a 

parameter might induce increased uncertainty in the RBE estimates, as some 

information about the radiation quality of the beam is lost when averaging the spectrum 

(Grassberger and Paganetti 2011, Inaniwa et al. 2015). If we assume that the LET 

dependency is non-linear, the equations need to be generalised. The RBE from a mixed 

field can be regarded as the dose weighted sum of individual RBE components, as 

earlier showed by Lam (1987). The formula for the mixed RBE can be parameterised 

into: 

where ^�_� is a LET dependent biological weighting function and ��_� is the dose 

weighted LET spectrum. As shown by Kanai et al. (1997) and others, the general 

formula can be separated into the extreme RBE functions: 

and 

where ^�S,�_� and ^�`a�_� are the LET dependent biological weighting functions. It 

can be shown that Equations (3.9) and (3.10) are specific versions of Equations (3.12) 

and (3.13) if the biological weighting functions ^�S,�_� and ^�`a�_� are linear 

dependent on the LET value. If a model includes a biological weighting function with 

a non-linear LET dependency, these equations are obligatory. The RBE estimation then 

requires the whole LET spectrum as input. This further requires the LET spectrum to 

be found for every spatial location, if the RBE where to be calculated offline. 

Alternatively, Equations (3.12) and (3.13) can be estimated during the dose calculation, 

referred to as online calculation of the RBE-weighted dose (Polster et al. 2015). In 
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online calculations the RBE model need to be implemented into the software before 

the dose calculation is performed.  
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4. Thesis Objective 

The overall objective of this thesis was to investigate and improve phenomenological 

modelling of RBE for proton therapy. This comprised of analysis of existing models, 

methodology and available experimental data, as well as development of a new 

phenomenological RBE model. The specific objectives of each paper are given in the 

following.  

Paper I:  

� To review the published phenomenological and plan-based RBE models and 

compare their underlying experimental background and dependencies.  

� To create a general formalism for the RBE models and implement them into MC 

based architecture with a comparison of the resulting RBE-weighted doses to 

clinical cases. 

Paper II: 

� To investigate the LET dependency of RBE of cell survival experiments and 

test if a non-linear dependency will give a better representation of the existing 

data than a linear dependency.  

� To formulate a tissue dependent phenomenological model based on the LET 

spectrum as a parameter for the radiation quality. 

Paper III: 

� To aid the creation of RBE models by extracting more data from published 

experimental data. 

� To test how the dose range in the experimental data impact the resulting models. 
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5. Materials and Methods 

5.1 Creation of RBE models from experimental data 

Based on previously published models, we devised a standardised routine for creation 

of phenomenological RBE models for proton therapy, as summarised in the flowchart 

in Figure 9. All models were made from an experimental database, normally gathered 

from a literature search with one or several inclusion and exclusion criteria (Figure 9, 

Box 1a). Some model creators modified and standardised the database before the fitting 

(Figure 9, Box 1b). The decision on dependencies of the model functions were 

formulated by the model creators before fitting, often as an educated guess based on 

the experimental database or inspired by previous publications (Figure 9, Box 2). The 

fitting of the functions to the database is done by regression to the database (Figure 9, 

Box 3) and the coefficients are numerically determined (Figure 9, Box 4). 

 

Figure 9: Flow chart of the creation of phenomenological RBE models based 
on the LQ-model formalism. The green parallelograms describe the input and 
output, the blue rectangles the calculation processes and the yellow hexagon 
describe regression preparations. 
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5.1.1 Experimental database 
For Papers II and III, we collected all proton cell survival experiments performed and 

published up to the time of writing the manuscripts. The extensive literature search was 

primarily based on the comprehensive database included in the review paper by 

Paganetti (2014), and complemented by more recent publications.  

For both these studies, we only analysed monoenergetic experiments, excluding cells 

irradiated with an SOBP beam or laser accelerated protons. In Paper II, all LETd values 

were allowed, while experiments above 20 keV/μm were excluded in Paper III. The 

model developed in Paper II was configured for a wide range of cell types, however, 

experiments with very high (α/β)x values (above 25 Gy) were excluded. Only late 

responding cells were analysed in Paper III, therefore the exclusion criterium was set 

to be maximum 5 Gy. 

From the included experiments, we extracted the reported LETd values. Further, the 

reported LQ-model parameter values were used in Paper II, while for Paper III, we 

extracted the dose/survival data points from all relevant experiments and refitted the 

LQ-model to the data points. The refitting was only done for the proton experiments, 

while the reference photon experiments were kept the same. The database in Paper III 

was further used as a basis to construct multiple restricted databases, with constraints 

on the minimum dose followed by refitting of the LQ-model. 

After extracting the data from the experiments in Paper II and III, we updated the 

databases (Figure 9, Box 1b). First, we adjusted for different radiation qualities of the 

reference radiation by calculating the relative LETd* (Paganetti 2014, Mairani et al. 

2016b). We also found the RBEmax and RBEmin of every experiment and determined 

the uncertainty of these quantities. The errors were found by using Gauss error 

propagation principle from the values and uncertainties in =, >, =, and >,. The origins 

of the uncertainties in =, >, =, and >, differs from publication to publication, however, 

most studies only report the uncertainties found from the regression analysis of the data 

points.  
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We did not create a new model or estimate the trend in RBEmax and RBEmin in Paper I 

for a specific database. For this study, we found all phenomenological models for the 

proton RBE published to this date. We further explored all the experimental databases 

used in the models and compared these to each other, with respect to their LETd and 

(α/β)x distributions. We also refitted some of the model functions to the model 

databases, to check the consequence of excluding outliers from the database.  

5.1.2 Model assumptions 
In Paper II, we fitted multiple potential functions for the RBEmax to the defined database 

to test the linearity assumption of RBE models. We assumed that the experiments were 

performed with monoenergetic beams, such that the beam only consisted of protons 

with a LET value equal to the reported LETd value. The cell response of the experiment 

corresponded to the specific LET value _, and the effect of monoenergetic protons can 

be extrapolated to a mixed field beam with multiple energies. Based on this assumption, 

we created a biological weighting function (^cTd�_�) based on Equation (3.12, which 

can be determined by regression to the monoenergetic database: 

where [e, [H, [f, [g and [h are coefficents determined by the regression analysis. The 

higher order terms were excluded from the regression when fitting the lower order 

polynomials. The function is inversely dependent on the (α/β)x value, similar to other 

modern models (Wedenberg, Lind, and Hårdemark 2013). 

In the creation of the model(s) in Paper II, we assumed that the RBEmin is constant and 

equal to 1 for all LETd values, which is the most common assumption for RBEmin in 

phenomenological RBE models (Wedenberg, Lind, and Hårdemark 2013, Chen and 

Ahmad 2012, Wilkens, J J and Oelfke 2004). This assumption was tested in Paper III, 

by introducing a linear function with only the first order coefficient c as a free fitting 

parameter: 

where c was found from linear regression to each of the restricted database. Only 

RBEmin was estimated in Paper III, not RBEmax. 
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5.1.3 Regression analysis 
In both Paper II and Paper III, the RBEmax and RBEmin functions were found by 

unweighted and weighted regression. For the latter, the inverse of the uncertainty of 

RBEmax and RBEmin were used as weights. 

A more complex function will naturally fit better to the data, however, increasing the 

polynomial order may lead to overfitting (Hawkins 2004, Friedrich 2016). A 

Chi-squared test was used in Paper II to decide the superior fit. The test rejected the 

lower order polynomial, if the results gave a p-value under 0.05 (95% confidence 

level), which indicate that the extra parameters result in a better fit without overfitting.  

In Paper III regression was performed in two separate procedures: As described in 

section 5.1.1, the LQ-model was first fitted to the dose/survival data points, and these 

parameters were used in the experimental database. Subsequently, the function in 

Equation �A	�� was fitted to the restricted databases to determine the single c 

parameter. If the fitting interval of c did not include 0, we regarded the RBEmin function 

to be independent on the LETd value. 

5.2 Recalculation of treatment plans 

Today in proton therapy, no treatment planning systems (TPS) includes a standard 

option to estimate the LETd or the RBE-weighted dose (DRBE) with a variable RBE 

model. In order to quantify the RBE and DRBE for clinical treatment plans we used the 

FLUKA Monte Carlo code (Böhlen et al. 2014, Ferrari et al. 2005) to estimate the RBE. 

In Paper I, we compared the RBE-modelled dose for all phenomenological models, 

both in a water phantom and for clinical cases. In Paper II, we compared our own 

developed RBE-model to the models by Wedenberg et al. (2013) and McNamara et al. 

(2015) for a SOBP in a water phantom. 

All treatment plans were created in a clinical TPS (Varian Eclipse™ (Varian Medical 

Systems, Palo Alto, California)) and imported into the FLUKA/Flair architecture by a 

locally developed software solution (Fjæra et al. 2017). All the SOBP plans were 
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optimised with a single field to give a uniform dose across the target volume, while the 

patient plans were planned with two treatment fields.  

Within the FLUKA architecture, the CT images of the patient were imported and 

transformed to the FLUKA geometry with Flair, a graphical user interface software for 

FLUKA. The system had previously been calibrated to the Eclipse™ TPS to give an 

acceptable and comparable proton range for every relevant energy and material (Fjæra 

et al. 2017).  In FLUKA, so-called subroutines are used for complex simulations not 

achievable through standard source definition and scoring. Two subroutines were 

modified to calculate the dose.  

First, the source subroutine was adapted to simulate all the pencil beams with the 

internal distribution. Based on their weighting, the properties (energy, spot position, 

beam focus) of each primary proton was randomly sampled from the distribution of 

pencil beams. Each pencil beam was defined by its position and energy. The SOBP 

plans were calculated with 100 million primary protons, while each field of the clinical 

plans were simulated with 50 million protons. 

Further, a fluscw (FLUence SCoring Weight) subroutine was also used to score the 

dose to water (Dw), the LETd
w

 and the DRBE. This was done in an identical grid to the 

scoring matrix of the prefabricated plan made by the TPS, thus keeping the same 

resolution. For a single particle, the fluence-like quantity of a single particle can be 

estimated by finding the infinitesimal length of the particle trajectory, divided by 

infinitesimal volume (Papiez and Battista 1994):  

The subroutine can modify the spatial scoring, by weighting the spatial fluence (�W) of 

a particle i in the individual voxel by a user defined quantity (W), before it is summed 

together with the total spatial scored quantity:  

 �W �
V�O

Vk
	 (5.3)�

  ]lbOmn � o pW ; �W�
O
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For every voxel, the total scored quantity will be summed over for all particles i passing 

through. To obtain dose to water for each particle i, Equation (5.4 was modified to 

score: 

where �� is the density of water, LETi
w is the LET to water of particle i and �W is the 

“fluence-like” quantity scored by the traversing particles. The LETw value of the 

particle traversing the voxel was obtained with the GETLET() function, included in 

FLUKA. The function is dependent the particle type, energy and type of material, and 

it outputs the LET by a lookup table. In our work, we have used the LET from all 

particles when calculating the full physical dose. Equation (5.5) was also modified to 

only score the dose to water by protons and deuterium ions, ignoring heavier ions and 

other particles.   

Scoring of LETd
w was performed in two steps. First the dose to water times the LETd

w 

was scored: 

The division of LETd
wDw

 by Dw to find LETd
w was done subsequently in an offline 

Python script (Fjæra et al. 2017). For all pure proton RBE models, we only estimated 

the dose deposited and LET value of protons, deuterium ions and tritium ions, both 

primary and secondary. For all LETd based models, this quantity was used to find the 

RBEmax and the RBEmin for every model. Subsequently, these quantities were used 

together with the spatial distributed Di
w values to find the RBEi values by Equation 

��	Z.  
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For RBE models based on the energy and LET spectrum, the ./�RS, and ./�RWX 

quantities had to be calculated online during the simulations. This was also done by the 

fluscw subroutine by finding the quantities multiplied by the dose and dividing with the 

dose offline. The quantities were found based on Equations (3.12) and (3.13): 

and 

where bRS, and bRWX are the biological weighting functions defined by each RBE 

model.  

All these quantities are scored in a volume, estimated from the track length of the 

particles in a grid of voxel volumes. While for the SOBP examples, we scored the full 

LET spectrum (d(L)) directly from planes perpendicular to the beam axis with the 

USRYIELD (USeR defined YIELD) scoring card. The spectrum was defined as a 

histogram of 1000 bins, logarithmic spaced between 0.01 keV/μm and 100 keV/μm for 

every 0.5 mm along the depth of the phantom. The LETd and the RBE and DRBE of the 

models where all found in a MATLAB analysis architecture offline, subsequent the 

simulations. 
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6. Summary of Results 

6.1 Paper I: Comparison of phenomenological models 

Paper I include a wide comparison of all phenomenological models for the proton RBE 

that were published before November 2017, as well as two plan-based models leading 

to an investigation of in total 14 models. For all models the RBE values increased with 

increasing LETd value and depth, as seen in Figure 10. The extent of the RBE varied 

with the models and the RBE-weighted doses ranged, in some extreme cases, from 

28-52 Gy(RBE). This indicates that the selection of RBE model in a dose planning 

study is highly significant.  

 

Figure 10: A depth distribution of a SOBP in water. The physical dose is 
shown by the black line, corresponding to the left y-axis and the estimated 
RBE values from all models are shown by the coloured lines corresponding 
to the right y-axis.  

The differences in RBE could be traced back to the fundamental definition of the RBE 

model functions, RBEmax and RBEmin. The comparison showed that the functions 

mainly diverged by three major reasons: the experimental database of the model, the 

dependency assumptions of the model functions and the regression technique. The 
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model databases varied with respect to the distribution and range of LETd values and 

reference radiation fractionation sensitivity ((α/β)x). The model functions also varied 

in their different dependencies, based on the assumptions made by the model authors. 

This is the main reason why some models are made dependent on the (α/β)x value, 

while other models estimate a constant RBE for all tissue types. Lastly, the regression 

techniques also differed, mainly as some models used weighted regression with respect 

to the experimental uncertainty, such that experiments with low uncertainty are 

preferred over the other. Most models did, however, not include the uncertainties in the 

LQ-model parameters and used unweighted regression. 

6.2 Paper II: LET spectra based model 

Two of the models covered in the model study in Paper I (Rørvik unweighted and 

Rørvik weighted) were developed in Paper II. All phenomenological RBE models for 

protons developed up to the time of writing had assumed that the RBE-LET 

relationship was linear, an assumption we wanted to test. The paper introduces the 

mathematical formalism to incorporate the LET spectrum in phenomenological 

models, which could also be used in future models. In our literature search, we found 

85 monoenergetic experiments fulfilling our database constraints. The statistical test 

determined which of the five polynomials fitted to the database gave the best fit.  

The results showed that the relationship might be non-linear if the database was 

weighted relative to the measurement uncertainty with a quartic function as shown in 

Figure 11. The non-linear shape of the weighted RBEmax function is relatively flat until 

10 keV/μm, where the function increases drastically. This means in practice that 

monoenergetic beams with LETd around 5-10 keV/μm will give a relatively low RBE 

value, while a proton beam with many energies with similar LETd values typically 

found at the end of a poly-energetical SOBP, would give higher values. If all the 

experiments in the database were instead considered equal and an unweighted method 

was applied, RBEmax would be linear. 
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Figure 11: The experimental database used in the modelling shown in grey 
and the superior polynomial. The expression used in this figure 
((α/β)x(RBEmax - 1)) is a substitute for the RBEmax value, independent on the 
(α/β)x value of the experiments, enabling 2D illustration and analysis of the 
LET dependency. 

For all clinically relevant LETd values, the unweighted method gave a higher RBEmax 

value compared to the weighted method. In the SOBP example included in the paper, 

the weighted model gave relatively similar RBE values to models made by Carabe et 

al. (2012), McNamara et al. (2015) and Wedenberg et al. (2013), with a mean RBE of 

1.14 across the SOBP, while the unweighted gave a significant higher value of 1.22. 

6.3 Paper III: The dose dependency of RBEmin  

Paper III address the issue of creating a phenomenological model from a database of 

multiple experiments from different publications and connecting it to the variation in 

RBEmin by modifying the database constraints. The resulting variation in the RBEmin 

function can be seen in Figure 12, where the c value is the first order coefficient in 
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Equation �A	��. In those cases where c equals 0, the RBEmin function is considered 

constant, which is seen in the figure for high Dη values i.e. high minimum dose in the 

restricted database.  

 

Figure 12: The evolution of the c parameter, the first order coefficient of the 
LETd dependent RBEmin function. The Dη value correspond to the minimum 
dose of the restricted database. As seen, the c parameter decreases with 
increasing minimum dose, until around 2 Gy. 

Our results for both weighted and unweighted regression revealed the RBEmin to be 

constant for databases with high minimum doses, i.e. 2 Gy or higher. By including low 

dose data in the LQ-model regression, the RBEmin can be regarded as variable and 

increasing with increasing LETd value, as seen in Figure 12. A database based on a low 

minimum dose will then give an RBEmin of 1.4±0.1 for a LETd value around of 

5 keV/μm, while databases with only high dose data (> 2 Gy) gave an RBEmin of 

1.0±0.1. None of our restricted databases gave a decreasing RBEmin with increasing 

LETd, in contrary to some of the phenomenological and mechanistic RBE models. 

Applying a constant RBEmin equal to 1 might underestimate the RBE.  
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7. Discussion 

The published phenomenological models deviate in the RBE-weighted dose 

estimations. As we have shown, the models vary in the definition of the RBEmax and 

RBEmin functions, which originate from different decisions in the construction of 

databases, model assumptions and regression techniques. The variations in the 

databases can be seen by the database distribution illustrations shown in Paper I and 

the effect of database variations are also demonstrated in the RBEmin function with 

variable minimum dose in Paper III. The great variation in the estimated RBE-weighted 

doses indicate that it is not irrelevant which model that is chosen in a dose planning 

study. These results indicate that users of RBE models should make their choice of 

model based on the underlying database and assumptions, suitable to the specific use.  

The statistical analysis in Paper II indicate that the LET-RBEmax relationship is 

non-linear. This is in contrast to the established and recognised linear dependency 

assumed and applied in most proton RBE models (Paganetti 2015). Simultaneous to 

the publication of Paper II, Mairani et al. also tested this assumption (Mairani et al. 

2017). The statistical analysis of their work did, however, conclude that a linear 

dependency was sufficient. Mairani et al. used the same experimental publications as 

was used in the database applied in the model by Wedenberg et al. (2013), however, 

they also included experiments with LETd value above 30 keV/μm, adding 6 

experiments to the database up to 37.8 keV/μm. Our differences in the conclusions 

could be traced back to differences in the database construction. As shown in Paper I, 

the database in our work was significantly greater, with 85 experiments. Specially, our 

database also included the 24 experiments done by Guan et al. (2015a), which showed 

a clear non-linear LET-RBEmax relationship. The experiment was reproduced at another 

location, also showing indications of a non-linear LET-RBEmax relationship (Patel et 

al. 2017).  

The investigation in Paper II expanded the use of LET spectrum as an input for 

phenomenological models. Since the publication of the paper, Grün et al. have 

investigated the use of LET spectrum instead of the LETd value in the Local Effect 
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Model (LEM) (Grün et al. 2019). The LEM model has a clear non-linear RBEmax 

function, with a super linear dependency around 5 keV/μm, in agreement with our  

weighted model. Grün et al conclude that a model cannot be based on the LETd value 

if there is a clear non-linear dependency, this should also be true for our 

phenomenological approach.   

The uncertainty in the RBE value can be lowered by gaining more knowledge and 

creating better and more precise models. The work done in this thesis, by including the 

full LET spectrum or the dose dependency of the experimental data, might be a 

stepping stone for the creation of other novel models, increasing the precision of the 

RBE estimations. 

7.1 Experimental databases 

For our modelling work in Paper II and III, we collected data from multiple 

experimental groups and arranged them together in a large database with different 

experiments. The creation of databases from different papers and labs could be 

problematic, as the various experiments have different setups and protocols. 

Differences in the biological lab work, such as the chemicals used and cell counting 

methods applied might also cause a difference between the experiments (Guan et al. 

2015a). The publications may include and report different errors or correct the 

experiments for different effects (Paganetti 2014). Recently, two guides on reporting 

of experimental data have been published, which could contribute to more coherent 

methods in future experiments (Paganetti et al. 2019b, Durante et al. 2019). 

For the work in this thesis, experiments executed with a SOBP beam or laser 

accelerated protons were excluded, as these result in a wide LET spectrum for each 

radiation quality of the experiments. In Paper II, we practically assumed that the LET 

spectra for all our experiments were very narrow, such that they formed a perfect delta 

function around the LETd value. This assumption could lead to inaccuracies in the 

modelling, especially for low energetic protons with high LETd value from a degraded 

high energy beam, as the range straggling effect widen the spectrum (Guan et al. 
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2015a). Additionally, some inconsistencies in the LETd value could be caused by 

different LET estimation methods, as some groups have only found the LET value from 

analytical models based on the remaining range or energy (Belli et al. 1993), while 

other have found this from comprehensive Monte Carlo calculations (Dahle et al. 

2017). A longer discussion on the estimation and reporting of LET value is given in 

section 7.4. 

The regression of the LQ-model could also cause variations, if it is fitted to the linear 

or logarithmic survival data, or whether it is done with a weighted or unweighted 

regression technique, as we investigated in Paper III, illustrated in Appendix A1 of the 

paper. In this paper, the associated interlaboratory error was minimised, as we fitted 

the LQ-model directly to the dose-survival data in a coherent manner. It could be 

debated that our unweighted regression to the logarithmic data is suboptimal compared 

to weighted regression, however, it was impossible to extract the uncertainties from the 

various experiments. 

7.2 Assumptions made for RBEmax and RBEmin 

The general dependencies of the RBEmax and RBEmin functions are determined by the 

model authors before fitting to the database. Ideally, the models should be as 

independent of the authors as possible to minimise the impact of researcher bias. This 

can be done by introducing multiple assumptions and let statistical analysis decide 

which assumptions that best describe the database, as was done in Paper II and other 

models (Mairani et al. 2017, Wedenberg, Lind, and Hårdemark 2013).  

For paper III we only included a linear LET dependency of the RBEmin function since 

our goal was to test the common assumption of a constant RBEmin, independent of the 

LETd value. In this work, we excluded an (α/β)x dependency on RBEmin by only 

including experiments with low (α/β)x values in our database. From the analysis in 

Paper I, the (α/β)x dependency of RBEmin deviated for the different models, either 

linearly dependent on the (α/β)x value (Peeler 2016), the square root of the (α/β)x value 
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(McNamara, Schuemann, and Paganetti 2015) or the inverse of the (α/β)x value (Carabe 

et al. 2012). The (α/β)x dependency of RBEmin should therefore be investigated further.  

7.3 Regression techniques 

In Paper I, we revealed that model functions were usually created by regression analysis 

of fitting functions with free variables, either by unweighted regression or weighted 

regression where the variations in uncertainties in the database are considered. For our 

own model in Paper II and the analysis in Paper III, we used both regression methods. 

As shown in Figure 11 and by the regression results in Paper II, the choice of method 

has a significant impact. Generally speaking, one would assume that the weighted 

technique would give the best representation of the database. Weighted regression can 

be beneficial when the experimental database is unequally sampled, since it can reduce 

the bias due to outliers with large uncertainties. This is given under the assumption that 

there is a coherent reporting of the uncertainty in experiments, which is not the case in 

the existing experiments (Paganetti et al. 2019b).  

It is also possible to create RBEmax and RBEmin functions by other methods than 

statistical regression. As shown in Paper I, Belli et al. created the functions by linear 

interpolations in between the experimental data points (Belli, Campa, and Ermolli 

1997). Mairani et al. also tested an alternative to the RBEmin function by having a 

running average (Mairani et al. 2017). Machine learning techniques could also be 

applied to find dependencies in the database. If full LET spectrum data extracted from 

the experiments will be reported in the future, as discussed in recent reviews (Durante 

et al. 2019, Paganetti et al. 2019b), spectral unfolding techniques could alternatively 

be used to find the best fitting model functions (Reginatto 2010). As our investigations 

in Paper I shows, most models can be described by simple functions with one to four 

coefficients. However, the model by Belli et al. (1997) is an noticeable exeption, as it 

is defined by a table to find the corresponding RBEmax and RBEmin values for a given 

energy. The use of tables instead of explicit functions is already common for 

mechanistic models (Stewart et al. 2018), and it could also be applied in new 

phenomenological models.  
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7.4 Software implementations  

Over the recent years, multiple Monte Carlo based software solutions have been 

developed with the possibility to recalculate patient plans with biological dose 

estimation (Böhlen et al. 2014, Ferrari et al. 2005, Polster et al. 2015). We used the 

FLUKA Monte Carlo code to estimate the dose and RBE in this thesis, as it enables a 

wide range of possibilities and ability to score various quantities. Other software 

architectures have been developed to specifically estimate the LETd and RBE 

distribution of a proton plan. Some of these implementations are based on fast and 

simplified Monte Carlo algorithms (Ödén, Eriksson, and Toma-Dasu 2017a, Kohno et 

al. 2019), while other are based on analytical LETd algorithms (Choi et al. 2018, Wieser 

et al. 2017). Even though they are faster than a full Monte Carlo simulation, the user 

should be aware of the limitations, as precision is traded against calculation time. With 

regard to our work in Paper I, only full Monte Carlo software like FLUKA is able to 

produce the full LET spectra today, which is needed for the input. Creating an 

analytical algorithm for the full LET spectrum for a TPS should be feasible, based on 

simplified rules for range straggling and nuclear interactions.  

Spectrum based models need to be implemented directly into the software and 

calculated online during the dose calculation. In practice, this means that model 

functions need to be defined before the calculation, together with all relevant (α/β)x 

values and variations of the model coefficients. Offline calculation only estimates the 

pure physical quantities (dose and LET values) and offer the possibility to adjust the 

physical values after the patient plan have been calculated. This can be convenient for 

analysis of various models’ coefficients and some robust planning procedures. 

Furthermore, typical offline analysis of the uncertainty of RBE models similar to the 

work by Ödén et al (2017b) is not straight forward for spectrum based models. 

In our calculations, we estimated the LET value with two different methods, either 

volumetrically or across boundaries (Guan et al. 2015b). Ideally, the LET should be 

scored in a grid equal to the dose grid, so the LET value needs be scored volumetrically. 

Volumetric scoring also enables more precise scoring from multiple fields with 



 58 

different angles. Only the LET to water was scored in this work, instead of LET to 

tissue. Dose to water is standardised to report in radiotherapy (Liu, Keall, and Hendee 

2002). It is therefore natural that the equivalent is also reported for LET, even though 

it can differ significantly from LET to tissue, and might exclude some effects, 

especially within the lungs and bone (Wilkens, Jan J. and Oelfke 2004).  

In our calculations, we used the LET value from only protons, both primary and 

secondary protons, which is typical for other studies as well (Yepes et al. 2019, 

Granville and Sawakuchi 2015, Wilkens and Oelfke 2003). However, other secondaries 

could also affect the LET value (Grassberger and Paganetti 2011). According to a 

recent study, the variation from including or excluding heavier ions might be large and 

could double the LETd value (Grzanka, Ardenfors, and Bassler 2018). A method to 

include the effect of various particles into a single RBE estimate have been integrated 

in the phenomenological model by Mairani (Mairani et al. 2017, 2016a, 2016b) or for 

many mechanistic models (Stewart et al. 2018). 

7.5 Suggestions to experimental reporting 

The reported quantities in phenomenological models should ideally be similar, both for 

the reported experimental data and application to clinical cases. The dose and LET 

value of the experiment should be calculated in the same manner as the use in patient 

calculations, with the same definitions of the scored LET, with regard to the material 

and energy cut off value. The dose levels of experiments should also be covering a 

greater range of values, especially including low doses under 1 Gy, as these values are 

clinically relevant for OARs in normal fractionated proton plans. As we showed in 

Paper III, many experiments are, however, lacking data for dose levels under 1 Gy. 

As recently suggested by the work groups on RBE experiments (Durante et al. 2019, 

Paganetti et al. 2019b), the full LET spectrum from experiments could be reported. 

Some recent articles have included experiments and analysis of wide and narrow 

spectra with the same LETd value (Chaudhary et al. 2014, Howard et al. 2018, Grün et 

al. 2019, Dahle et al. 2017), however, all of these only give an illustration of the spectra. 
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As it is not possible or convenient to report full spectra numerically in conventional 

articles, it could be possible that the data is uploaded directly into an online database, 

like the Particle Irradiation Data Ensemble (Friedrich et al. 2013). This could both help 

create more precise models and verify the precision of existing models. Further, such 

a database could also include all the individual dose-survival data points from the 

experiment including uncertainties, not only the commonly reported α and β values. 

This will aid projects like the work in Paper III, as we had to extract data from figures, 

instead of the directly measured data. It could also enable easier adaptation and 

development of the novel global fitting method, as described by Abolfath et al. (2017). 

This method fit both the RBEmax and RBEmin functions simultaneous and directly to the 

experimental survival data in one single regression, instead of conventional approach 

of one regression of the LQ-model followed by another fit for each of the two model 

functions.  

7.6 The effect of variable RBE 

A variable RBE can be beneficial, if the increased effect of protons is located at the 

tumour location. This aspect could be quantified by the ratio of RBE-weighted dose to 

the tumour and the normal tissue, i.e. the biological effective dose ratio (BEDR) 

(Holzscheiter et al. 2006, Grün et al. 2015). A higher BEDR value correspond to a 

better treatment effect and is preferred for optimal treatment. An increased BEDR is 

the reason why heavier ions, like helium ions and carbon ions are considered extra 

effective compared to protons, as shown in a comparison by Jäkel (2006, 2009).  

From Paper I we see that most models estimate an increasing RBE value with 

increasing LETd value, decreasing (α/β)x value and decreasing physical proton dose, 

similar to the conclusions given by Paganetti in a review paper of experimental data 

(Paganetti 2014). The LETd value is higher in the tumour than the normal tissue in front 

of the tumour, leading to a generally greater BEDR value. However, this is only valid 

with the assumption of similar (α/β)x for the tumour and normal tissues. With higher 

(α/β)x for the tumour, the predicted BEDR will be reduced. The BEDR will therefore 

be highly case specific.  
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7.7 Is an RBE of 1.1 still an appropritate assumption? 

In this work, we have only reanalysed existing experimental data in the literature. Most 

of the cells included in our analysis in Paper II and III are from Chinese hamsters and 

other animals (Paganetti 2014). This could introduce an uncertainty in biological 

response, as these cell lines could divert from the spontaneous human tumours.  

Phenomenological models could then be based solely on cultivated normal cells from 

human tissue, estimating the RBE for normal tissue or solely on human cancer cells for 

the RBE to the target (Hall et al. 1988, Belli et al. 2000).  

In vitro experiments and analysis of cell irradiations is perhaps not enough alone to 

challenge the established assumption of a constant RBE of 1.1. There should at least 

be relevant in vivo data, from irradiation of rats and mice, proving that there is a 

non-negligible variable RBE in proton therapy that needs to be accounted for. A 

meta-analysis of existing in vivo data from 2002 found no significant variation in the 

RBE and ratified the use of a constant RBE of 1.1 (Paganetti et al. 2002). However, 

more recent experiment work on animal models, irradiated with multiple LETd values, 

have indeed indicated that there is a correlation between increased LET and RBE 

(Sørensen et al. 2017, Saager et al. 2018, Szabó et al. 2018).  

Although a variable RBE has been seen in preclinical experiments, there has not been 

documented an increased rate of clinical complications in treated patients which can be 

traced back to an increased RBE above 1.1 (Lühr et al. 2018, Paganetti 2015). This still 

advocates for keeping a constant RBE in clinical protocols (Paganetti 2015). However, 

a recent study investigating MR images of the brain post treatment, found a correlation 

between increased LET values and image changes (Peeler et al. 2016). Another study 

also found image changes in the chest wall of lung, which could be related to increased 

LET values (Underwood et al. 2018). The clinical consequences for the patients with 

these image changes are still unknow, and longer follow up time is needed to determine 

if they lead to complications. Nevertheless, proton therapy clinics should still consider 

the potential risk in treatment planning by carefully selecting the treatment fields to 

spare OARs of possible high RBE values (Paganetti et al. 2019b). 
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8. Conclusion 

The transfer from conventional radiotherapy with photons to modern radiotherapy with 

protons is not only a change in the physical dose deposition, but also in the biological 

response of the ionising radiation. The RBE concept enables easy transition of existing 

photon therapy protocols to be used in proton therapy. In this thesis, possible 

alternatives to the generic use of constant RBE have been investigated, through analysis 

and development of phenomenological models from cell survival databases. 

Large deviations between different RBE models were found in the estimations of the 

RBE-weighted dose. The dissection and parameterisation of the models traced the 

differences in the estimation to the variations in database distributions of (α/β)x values 

and LETd values, model assumptions and regression technique.  

The LET dependencies for both RBEmax and RBEmin were further investigated. To 

explore non-linear models, the full LET spectrum was implemented as input in 

phenomenological RBE models. Based on a large database of all published cell survival 

experiments with monoenergetic protons and statistical analysis, a weighted regression 

analysis indicated that the LET-RBEmax relationship is indeed non-linear, contrary to 

other established models. By extracting the dose-survival data from a large database of 

experiments on late responding cells, the LETd-RBEmin relationship was studied with a 

novel two step regression analysis method. The examination of restricted databases of 

experiments with a minimum dose at 1 Gy or lower indicated that the RBEmin function 

increases with increasing LETd value.   

Overall, the thesis shows similarities and differences between existing 

phenomenological RBE models for proton therapy and show multiple possibilities of 

developing novel model by reanalysing existing experimental data that can challenge 

common assumptions in the RBE dependencies and give a better understanding of the 

biological differences between photon therapy and proton therapy.  
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