
Marika Ivanova

Optimization Problems in
Communication Networks and
Multi-Agent Path Finding

2019

Thesis for the degree of Philosophiae Doctor (PhD)
University of Bergen, Norway

at the University of Bergen

Avhandling for graden philosophiae doctor (ph.d)

ved Universitetet i Bergen

.

2017

Dato for disputas: 1111

Marika Ivanova

Optimization Problems in Communication
Networks and Multi-Agent Path Finding

Thesis for the degree of Philosophiae Doctor (PhD)

Date of defense: 13.09.2019

The material in this publication is covered by the provisions of the Copyright Act.

Print: Skipnes Kommunikasjon / University of Bergen

© Copyright Marika Ivanova

Name: Marika Ivanova

Title: Optimization Problems in Communication Networks and Multi-Agent Path Finding

Year: 2019

Acknowledgements

Firstly, I would like to express my deep and sincere gratitude to my adviser Professor
Dag Haugland for his guidance and encouragement during the four years I spent as his
PhD student. Without his constant feedback and immense patience, this thesis and the
publications written throughout my doctoral education would not have been attainable.
I learned a lot from my adviser, and gained valuable experience for which I am deeply
indebted. His hardworking, passionate, and precise attitude inspired me greatly in my
academic growth.

I am also very grateful to doc. RNDr. Pavel Surynek, PhD, from Czech Technical
University, for giving me the precious and unforgettable opportunity to spend three
months as an intern in Artificial Intelligence Research Center in Japan. As a co-author
of two papers resulting from my internship, he contributed to this thesis as well.

My sincere thanks goes to the entire Department of Informatics. It was a pleasure
to work in such an inspiring and accepting environment. In particular, I would like to
mention Professor Jan-Joachim Rückmann for his advice and affability, and my fellow
doctoral students from the Optimization group for being good friends and making my
days enjoyable and exciting. In addition, I greatly appreciate the work of administration
staff for helping me with any organisational issue.

I must not forget to thank my husband Jahan Zeb for his endless patience and sup-
port during the ups and downs of the entire PhD. Last but not least my parents have
always believed in me, encouraged and motivated me in my studies. Anything that I
have achieved in my life would be impossible without their unconditional support.

ii Acknowledgements

Abstract

This dissertation is a compilation of six research papers that are focused on three dif-
ferent topics summarized in the text.

The first three papers address NP-hard problems arising in ad-hoc wireless com-
munication discussed in Chapter 2. In general, the task is to broadcast a message in a
given network of wireless devices while minimizing the power consumption. Problems
in this category differ in requirements on the network connectivity, models of power
consumption, and the ability of the devices to initiate a signal transmission. Some of
the common features of these problems are that a device can simultaneously transmit a
signal to all devices within its communication vicinity, and that a signal can travel from
its originator to its recipient via multiple intermediate devices. The wireless networks
are modeled and studied by means of graph theory. Solution techniques for these prob-
lems involve mainly methods of integer linear programming and inexact algorithms
with or without performance guarantee.

The next paper is focused on the problem of minimum broadcast time. Unlike the
previous topic, the devices are in this problem supposed to send a signal to at most one
neighbouring device at a time. The objective is to determine a sequence of signal trans-
mission from a given set of source devices to the remaining ones, while minimizing the
time needed for spreading the signal. Chapter 3 describes this problem in detail along
with several related problems. The minimum broadcast time problem is also studied
from the perspective of integer linear programming as well as the inexact algorithm
perspective. Continuous relaxations of the ILP models help to evaluate the quality of
the studied inexact methods. The stronger the model is, the more accurate assessment
it provides.

The last two papers are dedicated to problems belonging to path planning for mul-
tiple robots discussed in Chapter 4. In general, these problems involve a group of
agents (robots) initially deployed in an environment. The task is to find a sequence
of their moves so that they reach pre-defined destination locations while optimizing a
given criterion such as minimum makespan or minimum total arrival time. The agents’
movement must obey a set of given rules. An extension of the problem considers agents
divided into two (or more) adversarial teams, where the teams have either symmetric or
asymmetric objectives. After introducing the adversarial element, the problem of find-
ing a winning strategy for a given team becomes PSPACE-hard, like many other two
player games with alternating turns.

iv Abstract

Contents

Acknowledgements i

Abstract iii

1 Preliminaries 1
1.1 Graph Terminology . 1
1.2 Combinatorial Optimization . 2

1.2.1 Relaxation and Bounds . 3
1.2.2 Duality . 3
1.2.3 Solution Methods . 4

1.3 Problems and Complexity . 5

2 Power Minimizing Trees in Ad-hoc Wireless Networks 9
2.1 Wireless Sensor Networks . 10
2.2 Combinatorial Optimization Problems Motivated by WANETs 11

2.2.1 Network Model . 11
2.2.2 Minimum Energy Broadcast 12
2.2.3 The Range Assignment Problem 17
2.2.4 Shared Broadcast Trees . 19

3 Minimum Broadcast Time 23
3.1 Network Model and Definitions . 23
3.2 Computational Complexity . 25
3.3 Integer Linear Programming Models 27

3.3.1 Binomial Tree Model . 27
3.4 Related Problems . 32

3.4.1 Broadcast Graphs . 32
3.4.2 The Gossiping Problem . 33

4 Path Finding for Multiple Robots 35
4.1 Basic Path Finding . 35
4.2 Path Finding for Multiple Robots . 36

4.2.1 Mathematical Model and Variants 38
4.2.2 Cooperative Path-Finding . 39

4.3 Scenarios with Adversaries . 42
4.3.1 Adversarial Cooperative Path Finding 43
4.3.2 Area Protection Problem . 43

vi CONTENTS

4.3.3 Area Protection Problem with Communication Maintenance . . 44

5 Contribution of the Thesis 47
5.1 Paper I: Shared Multicast Trees in Ad-hoc Wireless Networks 47
5.2 Paper II: The Shared Broadcast Tree Problem and MST 48
5.3 Paper III: Integer Programming Formulations for the Shared Multicast

Tree Problem . 48
5.4 Paper IV: Computing the Broadcast Time of a Graph 48
5.5 Paper V: Area Protection in Adversarial Path-finding Scenarios with

Multiple Mobile Agents on Graphs . 49
5.6 Paper VI: Maintaining Ad-hoc Communication Network in Area Pro-

tection Scenarios with Adversarial Agents 50

6 Attached Papers 59
6.1 Shared Multicast Trees in Ad Hoc Wireless Networks 61
6.2 The Shared Broadcast Tree Problem and MST 77
6.3 Integer Programming Formulations for the Shared Multicast Tree Prob-

lem . 83
6.4 Computing the Broadcast Time of a Graph 117
6.5 Area Protection in Adversarial Path-finding Scenarios with Multiple

Mobile Agents on Graphs . 141
6.6 Maintaining Ad-Hoc Communication Network in Area Protection Sce-

narios with Adversarial Agents . 151

A List of Computationally Hard Problems 159
A.1 NP-hard Problems . 159

A.1.1 Satisfiability . 159
A.1.2 Graph Theory . 160
A.1.3 Sets . 160
A.1.4 Wireless Networks . 160
A.1.5 Broadcasting in Graphs . 161
A.1.6 Path Finding for Multiple Robots 162

A.2 PSPACE-hard Problems . 162
A.2.1 Satisfiability . 162
A.2.2 Path Finding for Multiple Robots with Adversarial Teams . . . 163

Chapter 1

Preliminaries

1.1 Graph Terminology

A graph G is a pair (V,E) of vertices 1 and edges, where E ⊆
(V
2

)
. If this inclusion is an

equality, G is said to be complete. The set A of arcs is derived from E by considering
both directions of orientation of the edges. Formally, A= {(i, j),(j, i) : {i, j} ∈ E}. The
notation |G| is sometimes used for denoting the number of nodes in G, thus, |G|= |V |.
A path in a graph is a sequence of edges connecting a sequence of distinct vertices. A
path from u to v is denoted by Pu,v. The length of a path is the number of its edges.
Consider the set of shortest paths between any two nodes in a graph G. The length
of the longest among these shortest paths is called the graph diameter, and is usually
denoted ∆G. A graph is said to be connected if there exists a path between every two
vertices, otherwise it is disconnected. A cycle in G is a subset of E that forms a path
such that the first vertex of the path equals the last one. If G contains a cycle, G is
called cyclic, otherwise it is called acyclic.

Definition 1. A tree is a graph that is connected and acyclic.

For a vertex v ∈ V , a neighbourhood of v (open neighbourhood), denoted as N(v),
is the set of vertices adjacent to v. The size of neighbourhood of v, deg(v), is called a
degree of v. A subgraph of G = (V,E) is a graph G′ = (V ′,E ′) such that V ′ ⊆ V and
E ′ ⊆ E. This relation is often written as G′ ⊆ G.

Definition 2. A spanning tree of graph G = (V,E) is a tree T = (VT ,ET) such that
T ⊆ G and VT =V.

A bipartite graph is a graph with vertices decomposed into two disjoint sets such
that no two vertices within the same set are adjacent. Every acyclic graph is bipartite.
A cyclic graph is bipartite if and only if it does not contain a cycle of odd length. If all
cycles on four or more vertices in G contain an edge which is not a part of the cycle but
connects two vertices of the cycle, then G is called a chordal graph. A clique in G is a
subset V ′ ⊆V of vertices such that there is an edge between every two distinct vertices
of the clique. Conversely, if no two nodes in V ′ are adjacent, V ′ is an independent set.
Vertices in a split graph can be partitioned into a clique and an independent set.

1We use the term vertex when a graph is considered as an abstract structure. Whenever a graph is discussed
in a context in which it represents real objects, we refer to vertices as nodes.

2 Preliminaries

For a given subset V ′ ⊆V of nodes in G, G [V ′] denotes the subgraph of G induced
by V ′ consisting of nodes in V ′ and edges in E whose both endpoints are in V ′.

In a weighted graph G, a weight or cost w : E 7→ R is associated witch each edge
e ∈ E. We use the terms heavier and heaviest when comparing weights of different
edges in a graph. The weight of G is defined as ∑e∈E w(e). A spanning tree of G with
minimum weight is called a minimum spanning tree (MST) of G. Analogous concept
is defined for paths in graphs. A shortest path from u to v in a weighted graph is a path
of minimum weight connecting u and v.

Definition 3. For a graph G= (V,E) and a subset of vertices D⊆V, a Steiner tree of
G and D is a tree T = (V ′,E ′) such that T ⊆ G and D⊆V ′.

Analogously in weighted graphs, a minimum Steiner tree is a Steiner tree of mini-
mum weight.

A directed graph is graph, where all the edges are directed from one vertex to an-
other. A directed graph is sometimes called a digraph, and its edges are referred to
as arcs. Let

−→
G = (V,A) be a directed graph. The upstream neighbourhood N−(v)

of node v is the set {u ∈ V : (u,v) ∈ A}. Similarly, the downstream neighbourhood
N+(v) is {u ∈ V : (v,u) ∈ A}. We use the standard notation deg−(v) = |N−(v)| and
deg+(v) = |N+(v)|, called the in-degree and the out-degree of v, respectively. An ar-
borescence rooted at vertex r ∈ V is a directed tree with arcs directed from r.

−→
G is

strongly connected, if for every pair of vertices u,v ∈V , there exists a path from u to v
and from v to u in

−→
G .

An embedding in plane of a graph G is determined by a function Φ : V 7→ R×R
that assigns a coordinate to each node in V . The open and closed line segment between
Φ(u) and Φ(v) is denoted by Φ(u,v) and Φ [u,v], respectively. The length of the line
segment Φ(u,v) is denoted by d(u,v).

Definition 4. Φ is a planar embedding of G, if for all {u1,v1} ,{u2,v2} ∈ E, where
{u1,v1} ̸= {u2,v2}, Φ(u1,v1)∩Φ(u2,v2) = /0. If such an embedding exists then G is
planar.

Every tree has a planar embedding and is therefore planar. However, not every em-
bedding of a tree is planar. For an embedding that is not planar, Φ(u1,v1)∩Φ(u2,v2) ̸=
/0 is called crossing. A Euclidean graph is a graph together with its embedding Φ, and
edges are assigned weights equal to the Euclidean distance between their endpoints
given by Φ.

1.2 Combinatorial Optimization

Combinatorial optimization (CO) is a part of applied mathematics that tackles opti-
mization problems over discrete structures. It combines methods from graph theory,
linear programming, combinatorics, and the theory of algorithms. In this section, we
briefly introduce main concepts in CO used later in the text. For a comprehensive ren-
dition of this topic, interested readers are referred to [77] and [54].

Combinatorial problems arise in many areas of computer science, with a wide range
of applications in various industrial disciplines such as production scheduling, logistics,

1.2 Combinatorial Optimization 3

communication network design, and many more. The core of tackling a problem by
methods of CO is the identification of a discrete mathematical structure hidden in the
problem, and finding a sufficient abstraction.

CO concerns problems of minimization or maximization of an objective function of
several variables subject to inequality and equality constraints and integrality restric-
tions on at least some of the variables. In this work, both the objective function and
the constraints are assumed to be linear. Combinatorial problems are often formulated
as mixed integer linear programs (MILP, sometimes abbreviated as ILP or IP) of the
standard form

max
x,y

c⊤x+h⊤y

subject to
Ax+By≤ b,

x ∈ Zn
+,y∈ Rp

+.

(1.1)

The problem instance is specified by the input data c ∈ Rn, h ∈ Rp, A ∈ Rm×n

B ∈ Rm×p and b ∈ Rm, m,n, p ∈ N. A MILP that is not in the standard form, for
example if the objective is to minimize or if the constraints contain equalities, can be
straightforwardly converted into the standard form. If the integrality constraints are not
present, (1.1) is a linear program (LP).

The set of points S = {(x,y) : x ∈ Zn
+,y ∈ Rp

+,Ax+By ≤ b} is called the feasible
region, and a point (x,y) ∈ S is referred to as a feasible point (feasible solution) with
objective function value c⊤x+ h⊤y. A feasible point (x∗,y∗) is called an optimal so-
lution if for every feasible points (x,y) we have that c⊤x+ h⊤y ≤ c⊤x∗+ h⊤y∗. Then,
c⊤x∗+h⊤y∗ is called the optimal objective function value.

1.2.1 Relaxation and Bounds

Definition 5. Let F be the MILP max{c⊤x+ h⊤y : (x,y) ∈ S}. The problem R :
max{g(x,y) : (x,y) ∈ T} is a relaxation of F if and only if

1. T ⊇ S, and

2. g(x,y)≥ c⊤x+h⊤y for all (x,y) ∈ S.

Let z∗ and z be the optimal objective function value of a MILP and its relaxation,
respectively. Further, let z̄ be the objective function value of some feasible point. Then,
z ≤ z∗ ≤ z̄. Values z and z̄ are referred to as a lower bound and an upper bound on z∗,
respectively.

A combinatorial relaxation of a MILP is achieved by omitting one or more con-
straints. By omitting the integrality constraints of a MILP F, we obtain its continuous
relaxation, also called the LP relaxation, denoted as LP(F).

1.2.2 Duality

Let A ∈ Rm×n and b ∈ Rm. Consider an LP (primal)

max
{
c⊤x : Ax≤ b,x≥ 0

}
. (1.2)

4 Preliminaries

We are looking for the best upper bound. If x∗ is an optimal solution to (1.2), y⊤Ax
with y ∈ Rn

+ is a general linear combination of equations. If it is possible to select a
vector y so that y⊤Ax∗ = c⊤x∗, we have that y⊤b ≥ c⊤x∗. The best bound for any x is
then the optimal solution to the following LP (dual)

min
{
b⊤y : A⊤y≥ c,y≥ 0.

}
(1.3)

The relation between primal and dual LP is summarized by

Proposition 1. If the primal has an optimal solution x∗ then the dual has an optimal
solution y∗ such that c⊤x∗ = b⊤y∗.

For LPs, duality provides a standard way to obtain upper bounds. A similar concept
is applied to IPs.

Definition 6. [77] The two problems

z=max{c(x) : x ∈ X} (1.4)

and
w=min{ω(u) : u ∈U} (1.5)

form a (weak)-dual pair if c(x) ≤ ω(u) for all x ∈ X and all u ∈U. When z = w, they
form a strong-dual pair.

For obtaining an upper bound from the LP relaxation, it is necessary to solve the
relaxed program to optimality, whereas any dual feasible solution provides an upper
bound on z.

Proposition 2. [77] The IP z=max{cx : Ax ≤ b,x ∈ Zn
+} and the LP wLP =min{ub :

uA≥ c,u ∈ Rm
+} form a weak dual pair.

Proposition 3. [77] Suppose that problems (1.4) and (1.5) form a weak-dual pair.

1. If w is unbounded, (1.4) is infeasible, i.e., X = /0.

2. If x∗ ∈ X and u∗ ∈U satisfy c(x∗) = ω(u∗), then x∗ is optimal in (1.4) and u∗ is
optimal in (1.5).

1.2.3 Solution Methods

Several effective methods for solving LPs are used in practice. Among these are the
simplex method and the interior point method. The simplex method sequentially tests
adjacent vertices of the feasible region (a convex polytope) so that at each new vertex
the objective function is either improved or unchanged. The simplex method is very
efficient in practice, although its worst-case complexity is exponential.

The interior point method constructs a sequence of feasible points lying inside of
the polytope but never on its boundary, that converges to the solution. Its worst-case
time complexity is polynomial.

A MILP can be solved by the branch and bound (B&B) method, which system-
atically enumerates candidate solutions by means of state space search. The set of

1.3 Problems and Complexity 5

candidate solutions gradually forms a rooted tree with the full set at the root. The algo-
rithm explores branches of this tree, which represent subsets of the solution set. Before
enumerating the candidate solutions of a branch, a bound on the best possible result of
the branch is calculated and compared with estimated upper and lower bounds on the
optimal solution. If a solution better than the best one found so far by the algorithm
cannot be produced, the entire branch is discarded. Performance of the algorithm de-
pends on efficient estimation of the lower and upper bounds of branches of the search
space. If bounds cannot be calculated, the algorithm becomes an exhaustive search.

These and other algorithms are integral parts of most modern solvers such as
CPLEX and GUROBI.

1.3 Problems and Complexity

A computational problem (problem) is an infinite collection of instances together with
a solution for each instance. A problem that can be posed as a yes-no question of the
input values is referred to as a decision problem. An example of a decision problem
is the CLIQUE problem: Given a graph G and an integer k, is there a clique in G of
size at least k? In optimization problems, the task is to find a “best possible” solution
in the set of all feasible solutions to the problem instance. The optimization version of
CLIQUE asks for a maximum clique in a given graph G. An optimization problem can
be solved by answering a sequence of decision problems: Assume there is an oracle
that is able to solve the CLIQUE problem for a given (G,k). The MAXIMUM CLIQUE
problem can then be solved by answering its decision version for k = 1,2, . . . until the
answer is “no” for some k = k′, and so the maximum clique has the size k′−1.

Throughout this thesis, we use several well known concepts from complexity theory,
which we state in the following. Detailed explanations of the terminology can be found
in any textbook on this topic, such as [67].

An algorithm is a procedure that solves a given problem in a finite number of steps.
The computational complexity of an algorithm is the amount of time needed for its
run, and is measured in terms of the input size. A polynomial algorithm runs in time
O(nc), for some constant c and input w of size |w| = n. A verifier is an algorithm that
determines whether a given certificate is a proof to the fact that w is a yes-instance. An
example of a certificate to CLIQUE is some subset of nodes of size k. It can be verified
in polynomial time whether there exists an edge between every two nodes.

Definition 7. P is the class of decision problems for which there exists a polynomial
algorithm that solves them.

Definition 8. NP is the class of decision problems for which there exists a polynomial
verifier.

Definition 9. Problem X is polynomial time reducible to problem Y , if a polynomial
computable function f exists where for every w, w is a yes-instance of X if and only if
f (w) is a yes instance of Y .

Definition 10. A decision problem Y is NP-complete if it satisfies:

1. Y is in NP.

6 Preliminaries

2. Every X in NP is polynomial time reducible to Y .

Remark: A verifier does not decide whether a certificate is an optimal solution to
a given optimization problem instance. When addressing optimization problems, we
consider only the second property in Def. 10. If this property is satisfied, we say that
the problem is NP-hard.

There are many well know examples of NP-hard problems, and they can be formu-
lated as ILP. Therefore, ILP itself is also NP-hard.

The space complexity of an algorithm is the amount of memory space required for
its run as a function of the size of the input. An algorithm runs in polynomial space if
for input of size n requires the space O(nc), for some constant c.

Definition 11. PSPACE is the class of decision problems for which there exists an
algorithm that solves them in a polynomial space.

Definition 12. A decision problem Y is PSPACE-complete if it satisfies:

1. Y is in PSPACE.

2. Every X in PSPACE is polynomial time reducible to Y .

If Y satisfies condition 2 in Def. 12 we say that X is PSPACE-hard.
Approximation algorithms are polynomial algorithms that find approximate solu-

tion to NP-hard optimization problems with provable guarantee on the distance of the
solution to the optimal one.

Definition 13. [76] Let ρ ≥ 0 be a real number. A ρ-approximation algorithm for
an optimization problem is a polynomial-time algorithm, that for all instances of the
problem produces a solution whose value is within a factor of ρ of the value of an
optimal solution.

The factor ρ is called the approximation ratio or performance guarantee. For mini-
mization problems, ρ > 1, and for maximization problems, ρ < 1. An NP-optimization
problem A is a quadruple (I,sol,m,goal) such that [20]

1. I is the set of the instances of A and it is recognizable in polynomial time.

2. Given an instance x of I, sol(x) denotes the set of feasible solutions of x. These
solutions are short, that is, the size of any y ∈ sol(x) is polynomial with respect
to the size of x. Moreover, it can be determined in polynomial time whether, for
any x and for any y, y ∈ sol(x).

3. Given an instance x and a feasible solution y of x, m(x,y) denotes the positive
integer measure of y. The function m is computable in polynomial time.

4. goal ∈ {min,max}.

Definition 14. The class APX is the set of NP optimization problems for which there
exists an approximation algorithm with constant approximation ratio.

There are problems that are hard to approximate. A problem for which there is a con-
stant ρ such that it is NP-hard to find an approximation algorithm with approximation
ratio better than ρ is said to be APX-hard.

1.3 Problems and Complexity 7

Definition 15. [76] A polynomial-time approximation scheme (PTAS) is a family of
algorithms in which there is an algorithm Aε for each ε > 0, such that Aε is a (1+
ε)-approximation algorithm for minimization problems, and a (1− ε)-approximation
algorithm for maximization problems.

Proposition 4. APX-hard problems do not admit a PTAS.

8 Preliminaries

Chapter 2

Power Minimizing Trees in Ad-hoc Wireless
Networks

A wireless ad-hoc network (WANET) is a collection of two or more devices with wire-
less communication and networking capabilities. Broadly speaking, there are two mod-
els of wireless networks: single-hop and multi-hop. The single-hop model is based on
the cellular network model that provides one-hop wireless connectivity between mo-
bile hosts and static nodes known as base stations [15]. This network type relies on a
fixed backbone infrastructure that interconnects all base stations by wired links. Un-
like cellular and wired networks, WANETs depend on neither a wired infrastructure nor
pre-determined interconnectivity, and are thus a decentralized type of wireless network.

The set of uniform wireless communication devices with fixed locations are con-
nected via wireless links depending on distance between the nodes, their transmis-
sion power, error control scheme, background noise and interference. Each device is
equipped with an omnidirectional antenna with a communication range schematically
illustrated in Fig. 2.1. Hence, a signal reaches all nodes within the communication
range of its sender. This range is determined by the power assigned to the sender, and
this power can be adjusted over time. The power necessary for relaying a signal to mul-
tiple devices is the maximum rather than the sum of the powers necessary to reach all
intended receivers. This feature is referred to as the wireless advantage [75]. Each de-
vice works as a transceiver, which means that it can both transmit and receive a signal.

(a) Top view (b) Side view

Figure 2.1: Omnidirectional antenna

The absence of infrastructure implies their quick deployment and simple configu-
ration. The recent years have witnessed an increasing interest in WANETs, motivated
by numerous both civil and military applications and by the continual progression in

10 Power Minimizing Trees in Ad-hoc Wireless Networks

wireless technologies. Digital battlefield, disaster management, luggage handling in
airports, context aware computing and mobile commerce are examples of the growing
list of potential applications of WANETs [78].

Consider a group of devices and a specific sender that initiates a signal transmission.
A unicast means that there is a single recipient. Whenever the recipients are all the
remaining devices within the group, we talk about a broadcast. Finally, a multicast
means that only some of the devices must receive the message. The remaining ones do
not have to, but they can serve as intermediate devices forwarding the signal.

The wireless devices should be able to detect the presence of other such devices and
to perform the necessary initialization to allow information sharing. Since the devices
can take different forms, their computation, storage and communication capabilities
and battery capacity vary tremendously [71]. The wireless devices are typically heav-
ily energy constrained due to the use of batteries as their energy source. Energy conser-
vation in WANETs is therefore a plentifully pursued research topic. Most of the energy
is spent on signal transmission [34], and so it is desirable to design energy efficient
transmission protocols that also satisfy certain requirements imposed on a WANET.

Various levels of connectivity are required on WANETs. However, from a practical
point of view, a topology which is “too connected” would often cause communication
interference to occur even between nodes that are far apart. Theoretical as well as prac-
tical experimental results suggest that the communication graph in WANETs should be
as sparse as possible while preserving connectivity [9].

Models considered for WANETs are usually deterministic, that is, they assume that
the nodes are fully reliable. In reality, the nodes are devices that may be subject to
temporary or permanent failure due to technical damage or battery draining. This fact
leads to considering probabilistic models whose aim is to capture the real world more
plausibly by taking into account the uncertain character of nodes’ availability. Besides
minimizing the power consumptions of the network, it is also required to guarantee a
certain level of reliability over the whole network.

2.1 Wireless Sensor Networks

A related paradigm to WANET are Wireless Sensor Networks (WSN) which attracted
a wide range of disciplines where close interactions with the physical environment are
essential. A WSN consists of tiny sensor nodes, which act as both data generators
and network relays [1]. Each node act as a sensor, a microprocessor, and a transceiver.
Sensor nodes have usually a fixed position and are powered by batteries. Data measured
by sensors are transmitted via wireless communication links.

There are countless of sensor types, including seismic, electromagnetic, and acous-
tic, suggesting a broad area of practical application areas such as military, environmen-
tal, health, home, and industrial applications.

Multiple sensors are typically integrated into higher-level topologies varying in
complexity. These topologies can be divided into flat and hierarchical architecture
[49]. In a flat (peer to peer) architecture, every node has the same computational and
communication capabilities. In a hierarchical architecture, simple sensor nodes oper-
ate in close proximity to their respective cluster heads, which possess more processing
capacity than ordinary sensor nodes do.

2.2 Combinatorial Optimization Problems Motivated by WANETs 11

WSNs are often built using one of the following configurations [49]:

• Bus topology. Each node is connected to a shared communication bus, in which a
signal is transmitted in both directions.

• Ring topology. A networks set up in a circular fashion is similar to linear topology,
but does not contain the terminating nodes.

• Star topology. Consists of a single central node such as hub or a switch to which
every node in the network is connected. An intelligent central node is required as
all data traffic flows through it. This topology is one of the most common WSN
topologies.

• Tree topology. A hierarchy of nodes where in the highest level of the hierarchy
is a single root node connected to one or many nodes in the level below. The
processing and power requirements in nodes increase as the data moves from the
branches towards the root node.

• Mesh topology. Nodes disseminate their own data and also act as relays to propa-
gate the data from other nodes. The mesh topology can be partially connected or
fully connected (where there is a connection between every two nodes).

• Grid topology. The network area is partitioned into non-overlapping grid squares
of equal size. There should be exactly one node in an active state in each grid
square at any time.

There is a need to reduce energy consumption so as to enhance the performance of the
network in terms of lifetime. The selection of a suitable topology is therefore crucial.
Grid topology has been found energy efficient in theoretical comparison [63], however,
this may vary according to specific applications.

2.2 Combinatorial Optimization Problems Motivated by WANETs

As indicated above, energy conservation is a crucial requirement in the design of
WANETs. Combinatorial optimization is endowed with methods suitable for this task.
It is necessary to introduce a formal network model in order to apply suitable mathe-
matical tools.

2.2.1 Network Model

A WANET is modeled by a complete graph G = (V,E), and a function p : E 7→ R+.
The wireless devices are represented by nodes in V . As no power limit is imposed
on the nodes, a transmission can be established between any two nodes, and thus G is
complete. The function p indicates the power requirement for sending a signal along a
certain edge. This requirement depends on distance and environmental properties, and
is given by pi j = κdα

i j , where di j is the Euclidean distance between the devices repre-
sented by nodes i and j, α is the constant environmentally dependent factor typically
valued between 2 and 4, and κ ≥ 0 is the transmission quality parameter. Since the

12 Power Minimizing Trees in Ad-hoc Wireless Networks

value of κ does not affect the optimal solution, it is often assumed to be 1. The trans-
mission range of a node i depends on the power supply Pi assigned to it. The overall
power assignment to individual nodes induces a directed transmission graph (see the
example in Fig. 2.2). On the other hand, for a given transmission graph, the power as-
signment to a node corresponds to its longest outgoing arc. It is usually assumed that

A

B

C

D

Figure 2.2: Power assignment to nodes (circles) and corresponding induced transmission graph
(blue arrows)

nodes are distributed in a Euclidean space, although there are multiple results on vari-
ants where general input graphs are considered. In the following combinatorial prob-
lems motivated by WANETs, the task is to assign powers to individual nodes while
satisfying certain criteria so that the overall power is minimized. The total power is
expressed by an objective function varying among the problems.

Multicasting

In certain situations, some of the wireless nodes never initiate any transmission, nor
they have to receive any signal. Including them in the network may lead to a more
efficient communication. Assumption of the existence of these nodes is often studied as
an extension of the problems described in the sections below. In addition to the graphG
and the power requirement vector p, the set of nodes D⊆V , called destinations, is also
a part of the input. Nodes in V \D are referred to as non-destinations. The inclusion of
non-destination nodes resembles the generalization of MST leading to the MINIMUM
STEINER TREE problem. In WANET scenarios, the presence of such nodes is often
referred to as a multicast version.

2.2.2 Minimum Energy Broadcast

The MINIMUM ENERGY BROADCAST (MEB) problem consists of a node set V and
a specified source s ∈ V , that is supposed to initiate a transmission. All the remaining
nodes must receive the signal via communication links induced by power assignment
to the nodes.

2.2 Combinatorial Optimization Problems Motivated by WANETs 13

Problem 1. Given a directed graph G= (V,A), a source s∈V, and power requirements
p : E 7→R+, find a power vector (P1,P2, . . . ,Pn) ∈Rn of minimum component sum such
that there exists a path from s to each t ∈ V \ {s} in GP = (V,AP), where the arc set
AP = {(i, j) ∈ A : pi j ≤ Pi}.

For two distinct nodes u and v in G, the optimal solutions to MEB on the input
(G,u, p) and (G,v, p) may differ. An optimal solution differs for different transmission
sources. Hence, the nodes must by endowed with a mechanism that allows them to
adjust their power levels for a corresponding transmission session. This places demands
on the computational capacity and technological solution of the nodes. The advantage
of this concept lays in the optimality of each broadcast session.

The directed graph induced by power assignments as defined in Problem 1 is not
necessarily an arborescence. However, MEB could be stated slightly differently:

Problem 2. Given a directed graph G= (V,A), a source s∈V, and power requirements
p : E 7→ R+, find an arborescence T spanning G rooted at s minimizing

∑
i∈V

max
j∈N−T (i)

pi j.

Observation 1. The optimal objective function value of a given instance is equal in
Problem 1 and 2.

MEB has received a significant attention during the last two decades. The problem
has been introduced in [75], where the authors suggest three greedy heuristic methods
and an additional “sweep” operation aiming to remove unnecessary transmission:

MST algorithm. AMST is constructed, and subsequently the edges are oriented towards
the leaves, starting from the source. The last step is to assign power levels to each node
v according to the longest arc outgoing from v.

SPT algorithm. The shortest path tree (SPT) algorithm establishes a minimum-cost path
from the source node to every other node. The broadcast tree consists of superpositions
of these unicast paths.

BIP algorithm. The Broadcast Incremental Power (BIP) algorithm resembles Prim’s al-
gorithm for MST. BIP gradually constructs a broadcast tree as follows:

• Initially, the tree T contains only the source s, and all nodes have zero power
assignment.

• While there are some nodes outside of T

– Find a node v not already in T whose addition to T results in a minimum
increase of power assignment of some node u already in T , and add v to T .

– Increase the power assignment of u so that v is reached.

14 Power Minimizing Trees in Ad-hoc Wireless Networks

The sweep operation. Sweep can be applied after a solution T is constructed by one of
the methods above. It can be called iteratively to its own output to further improve the
solution. Non-leaf nodes in T are inspected one by one, and if for some node v there
exists u ∈ N+(v) such that power assignment of v is sufficient to reach all nodes in
N+(u), then the transmission of u is eliminated.

Problem complexity and approximability

NP-hardness results for both general and geometric MEB are provided in [72] by re-
duction from SET COVER and PLANAR 3-SAT, respectively. In the former case, the
network topology is represented by a generic graph with arbitrary weights, whereas
in the latter, a Euclidean distance is considered. The special case where α = 1, i.e.,
where the edge weights correspond to distances between the endpoints belongs to the
complexity class P. An optimal solution is determined trivially by assigning minimum
power sufficient to reach all nodes in a single hop, regardless of the nodes’ arrange-
ment.

The first analytical study of the three methods proposed in [75] is given in [73],
where the authors provide quantitative characterization in terms of approximation ra-
tios. It has been showed that the approximation ratio of MST and BIP lies in the interval
[6,12] and [13/3,12], respectively. The approximation ratio of SPT is proved to be at
least n/2. These results were gradually improved in several works. The upper bound of
the MST algorithm was improved to 6 in [4], which closes the gap, and thus proves that
the approximation ratio of the MST algorithm is 6. This upper bound is valid for BIP
as well, due to a lemma in [73], which says that for Euclidean instances of MEB, the
objective function value of a solution obtained by BIP is at most the weight of a MST
for this instance. The lower bound on the approximation ratio of BIP was strengthened
to 4.598 in [8]. This work also devises an implementation of BIP with improved time
complexity O(|V |2).

Problem variants

As an extension of MEB, the introduction of non-destinations leads to the MINIMUM
ENERGY MULTICAST (MEM) problem, introduced along with MEB in [75]. It is easy
to see that MEM is NP-hard due to the fact that MEB is a special case where D=V .

A variant of MEB, assuming that there are k adjustable power levelswi,1,wi,2, . . .wi,k
at each node i is studied in [45]. This problem remains NP-hard which is proved by
reducing 3-CNF-SAT to it. In addition, [45] contains an approximation algorithm
for this version of MEB with a performance guarantee O(nε) and time complexity
O((k+ 1)

1
ε n

3
ε) for ε ∈ (0,1]. Another restriction considered in [45] is that each node

has the same adjustable power levels, i.e., wi,l = w j,l for 1 ≤ l ≤ k and 1 ≤ i, j ≤ n.
For this problem, another approximation algorithm, which delivers a solution within
O(log3n) times the optimum is devised.

Probabilistic MEB, where a node reliability is considered, has also been investi-
gated. The probabilistic settings aims to reflect the fact that the wireless devices may
be subject to temporary or permanent failure. Each node i is thus assigned a value
qi ∈ [0,1] representing the probability that i does not fail during the whole operating
time. The value qi depends on the characteristic of the device represented by i as well

2.2 Combinatorial Optimization Problems Motivated by WANETs 15

as its surroundings. For example, in military settings, the nodes close to an enemy have
smaller qi than those in a safer distance. A given minimum reliability level σ ∈ [0,1]
of each path from the source node s to all other nodes has to be achieved. The prob-
ability of a multi-hop transmission along a path from i to j being available is equal to
the product of the probabilities qk associated with the nodes involved in the path. Three
ILP formulations of probabilistic MEB together with suitable solving methods are de-
veloped in [53]. Another study of ILP formulations and associated valid inequalities is
pursued by [7].

A restriction of node locations can be imposed. One example is a random grid
network, where nodes are chosen independently and randomly from points of a

√
n×√

n square grid in the plane. The probability distribution of existence of a node can be
non-uniform. A lower bound on the optimal objective function value is proved in [10]
together with a near optimal construction method. The 6-approximation of MST turns
out to be too pessimistic for instances with restricted node locations which represent
the real-life instances more closely. The authors of [31] argue that the approximation
ratio of the MST algorithm can be considered close to 4 for practical instances.

ILP models

Integer linear programs for MEB are studied in various works. Three ILP formulations
are proposed in [22]. The first formulation assumes exactly one transmission from the
source s, and at most one transmission from each node inV \{s}. This formulation op-
erates with order of transmissions which helps to establish connectivity of the resulting
solution. Power assignments are straightforwardly modeled by one continuous variable
for each node, leading to an objective function minimizing their sum.

The same objective function is used in the second formulation. In contrast, the
second formulation allows at least one transmission from the source, and an arbitrary
number of transmissions from the other nodes. The necessary subtour elimination is
achieved by additional “sequencing variables”, proposed for the TRAVELING SALES-
MAN PROBLEM.

The last formulation is built upon a single-commodity network flow model, and its
interpretation follows from the second formulation.

A similar formulation is proposed in [80], where the continuous power variables for
each node are replaced by binary variables yi j for each pair (i, j) of nodes, attaining
the value 1 if and only if the power of node i equals pi j. Connectivity is achieved by
multi-commodity flow variables and associated flow conservation constraints.

The authors of [37] provide a formal proof that using binary power variables instead
of continuous ones leads to a stronger formulation, which can be further strengthened
by introducing the multi-commodity flow variables.

Yet another network flow model formulation along with efficient solution tech-
niques utilizes a fast solution of a combinatorial relaxation of the model [51].

Planarity of an optimal solution

Alternatively to Problem 1 and 2, a MEB instance can be specified by G = (V,E),
s ∈V, and coordinates [xv,yv] for each node v ∈ V . These coordinates implicitly imply
distance di j between every two nodes i and j.

16 Power Minimizing Trees in Ad-hoc Wireless Networks

We address the question whether the embedding of an optimal solution to a Eu-
clidean MEB instances is planar. To the best of our knowledge, the available literature
does not provide results on this topic. The unpublished findings presented below are
based on the assumption that a feasible solution to MEB is a tree as stated by Prob. 2.

By inspecting a large number of instances and their optimal solution, the planarity
of the optimum cannot be guaranteed in general, even though in the majority of cases,
the optimum is indeed planar.

Proposition 5. Consider a Euclidean instance of MEB with a subgraph on four nodes
that form a simple (not self-intersecting) quadrilateral ABCD. In the following cases,
there exists an optimal solution containing at most one of the arcs (A,C) and (B,D) (or
their reverse):

1. ABCD is a rectangle.

2. Three internal angles in ABCD are obtuse.

3. Two adjacent internal angles in ABCD are obtuse, and the other two are acute.

Proof. Consider an instance of MEB which contains, besides other nodes, four nodes
that form a simple quadrilateral ABCD with internal angles α , β , γ , and δ , and the
source node S as depicted in Fig. 2.3. It follows from the law of cosine that the longest

A
D

CB

S

γβ

α
δ

Figure 2.3: Four nodes forming a convex quadrilateral

side of an obtuse triangle is the one opposite to the obtuse angle. The proof ana-
lyzes possible solutions in which both diagonals (A,C) and (B,D) (or their reverse) are
present. Existence of an alternative solution without crossing and with no greater ob-
jective function value is then demonstrated in each case. Let T = (V,AT) be a solution
to the given instance, and let PX ,Y be the path from X to Y in T .

1. Assume without loss of generality that B,C,D ̸∈ PS,A and (A,C),(B,D) ∈ AT . By
the law of cosine and the wireless advantage, because (A,C) ∈ AT , both B and D
are covered (receive the signal). The arc (B,D) is thus not needed in T .

2. Assume without loss of generality that δ is the acute angle.

2.2 Combinatorial Optimization Problems Motivated by WANETs 17

• Let A,C,D ̸∈ PS,B and (B,D) ∈ AT . Both A andC are covered by (B,D), and
so (A,C) as well as (C,A) are thus superfluous in the solution. An analogous
argument applies when A,B,C ̸∈ PS,D and (D,B) ∈ AT .
• Let B,C,D ̸∈ PS,A and (A,C),(B,D) ∈ AT . B is covered by (A,C). If (A,C)
is replaced by (A,B), (B,D) coversC without creating a crossing.
• Let B,C,D ̸∈ PS,A and (A,C),(D,B) ∈ AT . B is covered by (A,C), (D,B) is
thus not needed.

3. Assume without loss of generality that β and γ are obtuse.

• Let A,C,D ̸∈ PS,B, dBD < dAC, and (B,D) ∈ AT .
– If (A,C) ∈ AT , (B,D) coversC, and so (A,C) can be eliminated.
– If (C,A) ∈ AT , D is covered as dCD < dBD < dAC. (B,D) can either be
removed or replaced with (B,C), if so is needed.

• If A,C,D ̸∈PS,B, dBD> dAC and (B,D)∈AT , it is clear that dBD> dAB. There-
fore, (B,D) covers both A and C, implying that neither (A,C) nor (C,A) is
needed.
• If B,C,D ̸∈ PS,A and (A,C) ∈ AT .

– (D,B) ∈ AT is not needed, because B is already covered by (A,C).
– If (B,D)∈AT ,(A,C) does not coverD, so (B,D) is needed. By replacing
(A,C) with (A,B), the coverage of all nodes is achieved.

• The cases where A,B,C ̸∈ PS,D and A,B,D ̸∈ PS,C are resolved analogously.

Remark: If the conditions from Prop. 5 hold for all subsets of four nodes in an
instance, then there exists a planar optimal solution. ILP models can be extended by
optimality cuts following from the subsets of four nodes satisfying the conditions.

Fig. 2.4 demonstrates an instance in which the conditions form Prop. 5 are not
met. In this instance, the quadrilateral ABCD has three acute angles, and coordinates
A= [75,63], B= [50,77],C= [49,63], D= [50,50], X = [45,22] and Y = [47,55]. The
blue edge weights correspond to the power requirements between two nodes. For a
convenient display, lengths of edges in the figure are not proportional.

2.2.3 The Range Assignment Problem

In the RANGE ASSIGNMENT PROBLEM (RAP), the task is to minimize the total power
consumed under the constraint that adequate power is provided to the nodes to ensure
a strong connectivity of the graph. Formally, the problem is stated as follows:

Problem 3. Given a directed graph G = (V,A) and power requirements p : E 7→ R+,
find a power vector (P1,P2, . . . ,Pn) ∈ Rn of minimum sum such that the induced graph
GP = (V,AP) is strongly connected, where AP = {(i, j) ∈ A : pi j ≤ Pi}.

The requirement on strong connectivity ensures that broadcasting initiated by any
node can take place. An obvious advantage of RAP over MEB is that a single transmis-
sion graph is constructed in RAP regardless of the source node. However, this can lead

18 Power Minimizing Trees in Ad-hoc Wireless Networks

A

B
C

D

X
Y

676

68
34

729

809

794
821

197 170

Figure 2.4: A unique optimal solution with crossing to a Euclidean instance of MEB with
source in node A.

to solutions that are optimal with respect to RAP, but for certain sources initiating the
transmission, the solution may be too expensive. Sect. 2.2.4 describes a problem with a
more complicated objective function that combines advantages of both RAP and MEB.

Problem complexity and approximability

In [43], it is shown that for instances consisting of collinear points, there exists an
algorithm that solves the problem to optimality in O(n4). The authors further prove
by reduction from VERTEX COVER that RAP in 3-dimensional Euclidean space is NP-
hard for any value of α , and that there exists a O(n2) time 2-approximation algorithm
based on finding MST. The results are strengthened in [17], where it is proved that RAP
is NP-hard for instances in a 2-dimensional Euclidean space for any α , and that for 3-
dimensional space, the problem is APX-complete, thus does not admit a PTAS unless
P=NP. Let us recall that unlike RAP, for α = 1, when the power requirements equal the
distances, MEB is solvable in polynomial time. An approximation algorithm improving
the performance guarantee approaching 1.69 is presented in [11]. For the case α = 1,
there exists an approximation algorithm with performance guarantee 1.5 [5]. A recent
work [12] achieves an exact O(n2) algorithm for instances with nodes arranged in 1-
dimensional line.

Problem variants

In an extension of RAP, a further constraint requires that diameter of the transmission
graph has to be at most some constant value h. On a family of instances limiting the
proximity of two nodes, this variant of RAP is in APX [18]. The 1-dimensional problem
with restricted diameter (number of hops) has been studied in [16], where the authors
introduce an exact algorithm that runs in O(hn2).

Another modification imposes symmetric communication links. This version is
often found in the literature under the abbreviation SRAP. In a generalized version,
weakly symmetric RAP (WSRAP), the symmetry requirement applies only to a pre-
defined subset of edges. Other edges which are not essential for connectivity are al-
lowed to be unidirectional. The motivation for studying WSRAP stems from the ob-
servation that what is really important in the design of WANETs and WSNs is the

2.2 Combinatorial Optimization Problems Motivated by WANETs 19

existence of a connected backbone of symmetric edges [61]. Imposing symmetry does
not change the complexity of the problem, which remains NP-hard in networks with
nodes arranged in two and three dimensions [9].

The abbreviation SRAP is sometimes used for the Steiner RAP, where there is a
predefined subset D ⊆ V of destination nodes that are required to be included in a
solution. The remaining nodes, referred to as Steiner nodes, take part in the solution
only if their presence reduces the objective function value.

ILP models

An ILP model with an exponential number of constraints, along with a cutting plane
method solving it, is presented in [3]. A model based on network flows with a polyno-
mial number of constraints is introduced in [23]. Although this work concerns SRAP
with directional antennas, their model can be adapted to the more common version
with omnidirectional antennas. For modelling the power assignments, this model uses
continuous power variables. By replacing them with binary ones and a corresponding
adjustments in the model [37, 52], it is possible to achieve a stronger formulation. An
even stronger model uses multi-commodity network flow variables [37]. These strength
results are analogous to those regarding MEB. Yet a stronger formulation is obtained by
using a multi-tree model [37]. The authors employ binary variables indicating whether
or not an arc (i, j) is in the arborescence rooted at t ∈ D. This model is thus applicable
to the Steiner RAP.

2.2.4 Shared Broadcast Trees

The idea of broadcasting using a single broadcast tree was first investigated in [57].
The Shared Broadcast Tree (SBT) problem in the form presented here was pursued in
[81], where the authors develop an ILP model along with a suitable solving method.

A feasible solution to the SBT problem is any (undirected) spanning tree. This
concept is motivated by the intention of incorporating the frequency of use of each
node for different broadcast sessions. Every node can transmit a signal, but some are
actively transmitting more often than others. We assume that a node acts as a source
with a uniform probability. A leaf l transmits a signal only when l is the source, whereas
other nodes transmit more often as they also relay signals initiated in other nodes.

Observe that a forwarding node does not have to send a signal back to the node from
which it is received. If the signal is received in a node i from its most distant neighbor
node i1, it has to be forwarded to nodes that have not received it yet. That is ensured by
relaying the signal along the link to the second most distant node i2. Due to the wireless
advantage, all other neighbor nodes closer than i2 receive it as well. Conversely, if the
signal is received by i from a neighbor node different from its most distant neighbor
i1, node i has to forward it to i1. It is therefore evident that i does not always have to
transmit with the power corresponding to its most distant neighbour. It transmits either
with power level pii2 , if the signal comes from the most distant node i1, or with power
level pii1 , otherwise. The situation is depicted in Fig. 2.5.

Consider an edge {i, j} in a solution T to SBT. Let Ti/ j denote the subtree of T
consisting of nodes from which the path to j contains (i, j). A node i in T contributes

20 Power Minimizing Trees in Ad-hoc Wireless Networks

Ti1/i

a

b
c

d
i1

i2

i3
i e

Figure 2.5: Example instance explaining power levels necessary for transmitting a signal from
different sources

to the objective function by the expression cT (i) as follows:

cT (i) = |Ti1/i|pii2 + |T \Ti1/i|pii1. (2.1)

We can also regard cT (i) as a convex combination of i’s power levels, with weights cor-
responding to the number of nodes whose signal is transmitted using the corresponding
power level. The objective function is to minimize overall nodes’ contributions, that is,

c(T) = ∑
i∈V

cT (i). (2.2)

The SBT problem is thus defined as follows:

Problem 4. Find a tree T ⊆ G spanning D minimizing c(T).

Remark: The requirement that a solution must be a tree is necessary due to the
nature of the objective function.

Like in MEB, an optimal solution to SBT does not guarantee a planarity of the
resulting tree, although a vast majority of its instances have optimal trees with a planar
embedding. As an example of the converse, we state the instance on five nodes depicted
in Fig 2.6.

AB C

D

X

2501

2866

13
250

Figure 2.6: A unique optimal solution with crossing to an instance of SBT with objective
function value 19904. If the edge {DC} is forbidden, the optimal solution becomes a star graph
with objective function value 19917. The nodes have coordinates A = [50,30], B = [49,80],
C = [51,48], D= [48,46] and X = [5,1].

The introduction of Steiner nodes that are not required to be a part of the resulting
tree leads to an extension of SBT referred to as the SHARED MULTICAST TREE (SMT)
problem. Some preliminary results are published in Paper I [38], which contains an ILP

2.2 Combinatorial Optimization Problems Motivated by WANETs 21

model and heuristic methods with local search improvements. Further investigation of
the ILP model and a more extensive experimental evaluation are given in Paper III.

In SMT, the objective function has to be adjusted accordingly. The contribution of a
single node must reflect the fact that non-destination nodes do not initiate any transmis-
sion. Let us define the function µ : G 7→ N+

0 that returns the number of destinations in
a given graph G. The contribution of one node in a solution T to the resulting objective
function given by Eq. (2.1) is in SMT changed to

cT (i) = µ(Ti1/i)pii2 +µ(T \Ti1/i)pii1. (2.3)

This objective function takes into account energy consumption by transmission only.
Available literature on multicast versions of MEB and RAP applies this energy model
too, however, it is also possible to incorporate other, less significant energy consump-
tion sources as indicated by [34]. As each node that participates in the solution poses
an additional energy outlay ε , the objective function (2.2) would then become

c(T) = ε|VT |+ ∑
i∈V

cT (i), (2.4)

if the energy expenses of each node are homogeneous.

22 Power Minimizing Trees in Ad-hoc Wireless Networks

Chapter 3

Minimum Broadcast Time

Broadcasting is the information dissemination process in a communication network.
The MINIMUM BROADCAST TIME (MBT) problem is identified by a set of communi-
cation devices (nodes), among which some selected ones act as originators of a signal.
The number of originators is at least one, and we refer to them as sources. The task is
to spread a signal from the sources to the remaining nodes along pre-defined communi-
cation links in a shortest possible time. In general, communication links are not present
between every two nodes. The continuous time is divided into discrete time steps. The
communication among the nodes must fulfill the following rules:

1. Each transmission takes place between two adjacent nodes.

2. Each transmission requires one time step.

3. Each node can participate in at most one transmission per time step.

Although this communication protocol is primarily considered as a theoretical
model, it appears in various practical applications such as communication among com-
puter processors and telephone networks. Military command, control, communication,
computers, intelligence, surveillance and reconnaissance (C4ISR) pose another appli-
cation for these models [26]. In satellite networks, even though the communication is
wireless, signals have to cover large distances, and so the information is sent from one
satellite to one of its neighbours at a time. The MBT problem was studied in the context
of an existing Chinese BeiDou Global Navigation Satellite System [14].

3.1 Network Model and Definitions

The communication network is determined by a graph G = (V,E) and a subset S ⊆ V
of sources.

Definition 16. The broadcast time τ(G,S) of S ⊆ V in G is defined as the smallest
integer t ≥ 0 for which there exist a sequence V0 ⊆ ·· · ⊆Vt of node sets and a function
π :V \S 7→V, satisfying:

1. V0 = S and Vt =V,

2. for all v ∈V \S,{v,π(v)} ∈ E,

24 Minimum Broadcast Time

3. for all k = 1, . . . , t and all v ∈Vk, π(v) ∈Vk−1, and

4. for all u,v ∈Vk \Vk−1, π(u) = π(v) only if u= v.

A node is said to be informed at a given time if it is a source, or it already has
received the signal from some other node. Otherwise, the node is said to be uninformed.
Consequently, the set of informed nodes is initially exactly the set of sources. Each
node set Vi, 0 ≤ i ≤ t consists of nodes informed in time step i. The function π(u)
determines a parent node which forwarded the signal to node u. With this interpretation,
the conditions 1.-4. of Def. 16 can be translated into natural language as

1. Initially, the only informed nodes are the sources, and at the end of the transmis-
sion, all nodes are informed.

2. Nodes send signal along communication links defined by the set of edges.

3. In each time step, a node is informed by its parent who was informed in the
previous time step.

4. A node can inform only one child node at a time.

Any feasible solution determines a communication forest F with the set of nodes
V . Arcs in F are induced by the communication: if a node u sends a message to v,
(u,v) is an arc in F. It is easily verified that the F contains arborescences rooted at
distinct sources. Individual arborescences in F are referred to as communication trees.
Let Ts = (VTs,ATs) denote the communication tree rooted at source s ∈ S, and define the
function α :V → S such that v ∈VTα(v) for all v ∈V . That is, α associates a node v with
the source at which the communication tree containing v is rooted. For an arc (u,v)
in a given communication tree, the integer tu,v denotes the time step in which node u
informs v.

Formally, the optimization MBT problem is defined as follows:

Problem 5. Given G= (V,E) and S⊆V, find τ(G,S).

In the literature, authors often consider the decision version, because some of the
theoretical results depend on a given deadline.

Problem 6. Given G= (V,E), S⊆V, and a deadline t ∈ Z+
0 , does τ(G,S)≤ t hold?

Even though the set of sources in a MBT instance is an arbitrary subset of V , the
following concept assumes a single source. In a given graph G, any node can be a
source. Different sources in G form MBT instances with generally different broadcast
times. The broadcast center of a graph is the set of all nodes having the smallest
broadcast times, i.e., argmin{τ(G,{v}) : v ∈V}.

In c-broadcastting, which is a generalization of regular broadcasting, a signal can
be sent to up to c nodes adjacent to an informed node in each time step.

3.2 Computational Complexity 25

3.2 Computational Complexity

MBT has been thoroughly studied from the perspective of computational complexity
and approximability, particularly in the early 90’. Its NP-completeness or belonging to
P was proved for various graph classes and values of deadline t.

It has been shown that the problem is NP-complete for arbitrary graphs [32] and
few years later, this result was obtained for arbitrary graphs with deadline t = 4 and a
single source by reduction from 3D MATCHING [68]. The same work also contains an
O(n) algorithm for the determining broadcast time of a tree with a single source. As a
by-product, this algorithm determines the broadcast center of the input tree.

These results are improved and extended in [42], where the authors exploit the prop-
erties of the NP-complete problem PLANAR 3-SAT. First, they prove that another sat-
isfiability problem, referred to as PLANAR 3,4-SAT, is NP-complete, and subsequently
use this property to show that MBT is NP-complete for:

• bipartite planar graphs, deadline t = 2, and maximum degree at most 3,

• split graphs with deadline t = 2,

• chordal graphs with a single source,

• planar graphs with a single source and maximum degree at most 3,

• bipartite planar graphs with maximum degree at most 3 and a single source,

• grid graphs with deadline t = 2 and maximum degree at most 3,

• grid graphs with a single source, and

• complete grid graphs with deadline t = 2.

The question whether MBT is NP-complete for split graphs with a single source is
stated as open. Another complexity result proving that MBT remains NP-complete for
3-regular planar graphs with constant deadline t ≥ 2 is given in [50] by reduction from
EXACTLY-ONE-IN-THREE-3-SAT.

The complexity results above typically exploit sophisticated reductions. We provide
a very simple and straightforward proof of NP-completeness of MBT for deadline at
most t = 3 on bipartite graphs with maximum degree at most 3. There are many restric-
tions on SAT that preserve NP-completeness. We concentrate on the variant of 3-SAT
with the property that each variable is restricted to appear at most three times, and each
literal at most twice. This problem is known as 3-3-SAT, and its NP-completeness
proof can be found in [56]. Note that in this particular version of 3-SAT, it can no
longer be assumed that each clause consists of exactly 3 literals. Further, the assump-
tion about at most two occurrences of a literal is automatic, because a formula φ that
contains a variable x that appears only as a positive or only as a negative literal can triv-
ially be transformed into φ ′ that does not contain x at all, such that φ is satisfiable if
and only if φ ′ is satisfiable.

We now define the association between 3-3-SAT and the decision version of MBT
(Prob. 6). For that purpose, consider the following instance

φ = (x1∨ x2∨ x3)∧ (x̄1∨ x4)∧ (x2∨ x̄3∨ x̄4)∧ (x̄1∨ x̄3)∧ x̄2 (3.1)

26 Minimum Broadcast Time

u1 v1 w1 u2 v2 w2 u3 v3 w3 u4 v4 w4

x1 x̄1 x2 x̄2 x3 x̄3 x4 x̄4

c1 c2 c3 c4 c5

1 1 1 13 3 3 3

2 2 2 23 3 3 3

2
2

2

3

2

Figure 3.1: Reduction from formula φ (Eq. (3.1)) of 3-3-SAT to an instance of MBT with
deadline 3 and maximum node degree 3

of 3-3-SAT with variables x1, . . . ,xn and clauses c1, . . . ,cm, reducing to the instance of
Prob. 6 in Fig. 3.1. For each variable xi, we construct a gadget comprising five nodes
xi, x̄i, ui, vi, wi, where ui is a source, i= 1, . . .n . The first two nodes represent possible
literals associated with the variable xi. The gadget further contains four edges, {ui,xi},
{ui, x̄i}, {ui,vi}, and {vi,wi}. For each clause c j, there is a node c j and whenever the
clause c j contains a literal xi (x̄i), there is an edge {c j,xi} ({c j, x̄i}).
Proposition 6. MBT (Prob. 5) is NP-hard.

Proof. We show that an instance φ of 3-3-SAT is satisfiable if and only if τ(G,S)≤ 3
for the corresponding instance (G,S) of MBT.

Let φ be satisfiable. A source node ui sends the signal towards the node representing
the literal that is evaluated as true in the given truth assignment. In the next two time
steps, the signal is further relayed to the nodes representing clause that are satisfied by
the literal. As each literal can cause satisfaction of up to two clauses, the corresponding
clause nodes receive the signal from the respective literals within the deadline 3. Nodes
vi must receive the signal in the time step 2, in order to reach wi on time. Thus, the node
representing the literal evaluated as false receives the signal in time step 3.

Conversely, let the constructed instance of MBT have broadcast time no more than
3. In a solution T to the instance (highlighted as blue in Fig. 3.1) argminv∈{x,x̄}{tux,v}
represents the assignment of truth value to the variable x. The presence of an arc en-
tering a clause node c in T indicates that a truth value of certain variable caused satis-
faction of clause c. The auxiliary path (ux,vx,wx) ensures that the clause satisfaction
is modeled correctly. As tux,vx ≤ 2, one of tux,x and tux,x̄ must be 3, and thereby the arc
that would incorrectly indicate satisfaction of a clause that is not satisfied by the se-
lected truth assignment would have cost 4, which is not allowed. It is possible to have
an arc outgoing from a clause node of cost 3, but the second endpoint is always a node
representing some literal y, but the arc (uy,y) is already a part of T .

The correctness of the truth valuation is ensured by the existence of nodes vi, so that
the node representing literal that is evaluated as false is informed in time step 3, and
thereby cannot forward the signal to any clause nodes.

Proposition 7. The decision version of MBT (Prob. 6) is NP-complete for bipartite
graphs with maximum node degree 3 and deadline 3.

Proof. In [68], a polynomial algorithm for MBT in trees is devised. As the sequence
of vertices V0 ⊆ ·· · ⊆ Vt and function π in Def. 16 determine a unique forest F of

3.3 Integer Linear Programming Models 27

1

2

4

8

6

3

7

5

Figure 3.2: A binomial tree with nodes labeled by their positions

arborescences, it can be verified in polynomial time whether the broadcast time of each
broadcast tree in F does not exceed 3, proving that MBT belongs to NP. This concludes
together with Prop. 6 that MBT is NP-complete for deadline at most 3.

As each literal appears at most twice in φ , the degree of nodes representing literals
is at most 3. Each clause node has degree at most 3 since φ is in 3-CNF. Degrees of
nodes ui, vi, and wi do not depend on φ , and have degrees 3, 2, and 1, respectively.
Thus, none of the node degrees in the constructed MBT instance exceeds 3.

Nodes of the constructed graph are divided into two disjoint sets X = {ui,wi,c j},
i= 1, . . . ,n, j = 1, . . . ,m and Y = {xi, x̄i,vi}, i= 1, . . . ,n. The graph is bipartite as there
are no edges between any two nodes within X or Y .

3.3 Integer Linear Programming Models

A straightforward ILP formulation of MBT has been proposed in Paper IV together
with a suitable solution method. Independently, a similar formulation has recently been
published in [24]. In the following, we present an unpublished ILP model for MBT,
which exploits the regular structure of binomial trees.

3.3.1 Binomial Tree Model

A binomial tree Bk of order k is an ordered tree defined recursively as follows [19]:

• The binomial tree B0 consists of a single node.

• The binomial tree Bk has a root with k children where the i-th child is the root of
a binomial tree of order k− i, i= 1, . . . ,k.

An example of B3 is depicted in Fig. 3.2. For a given time step k, the maximum number
of informed nodes within k steps is |S|2k. This occurs when the solution of MBT
consists of broadcast trees that are binomial.

Observation 2. If r is the root of Bk, then τ(Bk,{r}) = k.

Let k ∈ N and I = {1, . . . ,2k}. A directed binomial tree Bk = (VBk ,ABk) with arcs
oriented towards the leaves has a regular structure that allows to define a systematic
numbering of nodes so that a node number determines unambiguously a position in Bk.
That is, we need an applicable bijective function β : VBk → I. A suitable bijection β
assigns values from I to nodes increasingly with decreasing outgoing degree. In case

28 Minimum Broadcast Time

of a tie, β takes the smaller value at the node whose parent node is assigned the smaller
value. This function is defined recursively as

β (v) =

{
1, if v is the root of Bk,

β (u)+2k−deg
+(v)−1, if π(v) = u.

Nodes in Fig. 3.2 are labeled with their positions according to β .

Definition 17. For a node v∈VBk with position i= β (v), define the corresponding child
position set, C(i), consisting of positions of child nodes of v in Bk. That is,

C(i) =
{

β (u) : π(u) = v, i.e., u is a child of v in Bk
}
.

By the definition of β , it follows that

C(i) = {2 j+ i : j = ⌈log2 i⌉, . . . ,k−1}. (3.2)

The idea behind this model is that every broadcasting from a single source follows
arcs of a (potentially pruned) binomial tree. The value of τ(G,S) can be retrieved from
the maximum among the positions assigned to nodes. Intuitively, an advantage of this
concept is when applied on dense graph instances where feasible solutions should be
found quickly. To see this, consider a complete graph Kn. Any assignment of positions
1,2, . . . ,n to nodes is valid and optimal. Moreover, a broadcast time of dense graphs is
often equal to the lower logarithmic bound. Near complete graphs have therefore many
optimal solutions, which are expected to be discovered easily.

The formulation

Consider a graph G′ = (V ′,E ′) constructed by adding an auxiliary universal node v0 to
G. The set of nodes and edges is then V ′ = V ∪{v0} and E ′ = E ∪{{v0,v} : v ∈ V}.
So far we have considered binomial trees Bk of an arbitrary order k. For finding a valid
assignment of positions to the nodes, we need a binomial tree of order at least τ(G,S).
As τ(G,S) is unknown, we must determine some suitable upper bound t̄ on τ(G,S).

Observation 3. A trivial upper bound on τ(G,S) is n−|S|.

The ILP formulation based on a partition into binomial trees uses variables

z j =

{
1, if j ≤ τ(G,S),
0, otherwise,

yvis =

{
1, if β (v) = i and α(v) = s,
0, otherwise,

where v ∈V ′, i ∈ I =
{
1, . . . ,2t̄

}
, s ∈ S and 0≤ j ≤ t̄. With the definition of G′ above,

it is straightforward to specify constraints that enforce desired values for y-variables.
Whenever yv0is = 1, it indicates that the binomial tree rooted at s is pruned at node with

3.3 Integer Linear Programming Models 29

position i. The formulation based on binomial trees is the following:

min
t̄

∑
j=0

z j,

s. t.

∑
i∈I

∑
s∈S

yvis = 1 v ∈V, (3.3a)

∑
v∈V ′

yvis = 1 i ∈ I,s ∈ S, (3.3b)

ys1s = 1 s ∈ S, (3.3c)

yv0is + yuis+ ∑
v∈V\N(u)

yvℓs ≤ 1 u ∈V, i ∈ I, ℓ ∈C(i),s ∈ S, (3.3d)

yv0is + yuℓs+ ∑
v∈V\N(u)

yvis ≤ 1 u ∈V, i ∈ I, ℓ ∈C(i),s ∈ S, (3.3e)

∑
v∈V

yvis ≤ z⌈log i⌉ i ∈ I,s ∈ S, (3.3f)

y ∈ {0,1}I×S×V ′,z ∈ {0,1}t̄ . (3.3g)

The interpretation of constraints (3.3a) is that every node in the original graph G
belongs to exactly one binomial tree. Note that these constraints are quantified only
over V and not over V ′. In this way it is achieved that v0 can be regarded as a part
of several binomial trees. By (3.3b) is enforced that exactly one node, possibly v0, is
allocated to position i of each binomial tree. By the summation over V ′ is ensured,
that pruned nodes are collectively represented by v0. Next, (3.3c) enforce that source
nodes are always the first nodes in corresponding binomial trees, in accordance with
definition (3.3.1) of the function β . Constraints (3.3d) and (3.3e) guarantee that the
arcs of binomial trees follow edges in E. In particular, it is enforced by (3.3d) that
if u and v are not adjacent in G, then v must not have a position of child of u in any
binomial tree. Similarly by (3.3e), if u and v are not adjacent in G, then v must not act
as a parent of u in any binomial tree. Without (3.3d) and (3.3e), it could be possible to
find a feasible solution, even when no partition of G into pruned binomial trees exists.
Finally, the relation (3.3f) between y and z variables follows from Obs. 2. It says that
whenever there is a node in a position i, then the delay is at least ⌈log i⌉.

Consider a subset U ⊆ V . Let N(U) = {v : {u,v} ∈ E,u ∈U}, and N̄(U) = V \
N(U). Constraints (3.3d) - (3.3e) can then be replaced by stronger

∑
v∈N̄(u)

yvℓs ≤ ∑
v∈N(N̄(u))

yvis u ∈V, i ∈ I, ℓ ∈C(i),s ∈ S, (3.4a)

∑
v∈N̄(N̄(u))

yvℓs ≤ ∑
v∈N(u)

yvis u ∈V, i ∈ I, ℓ ∈C(i),s ∈ S. (3.4b)

It is enforced by (3.4a) that if there is some non-neighbor v of u with a position ℓ
in a binomial tree rooted at s, then there must be a neighbor of some non-neighbor
of u with position i in the same binomial tree. Similarly, Constraints (3.4b) state that
if there is a node v where β (v) = ℓ in a binomial tree rooted at s in the complement

30 Minimum Broadcast Time

of neighborhood of all non-neighbors of u, there must also be a neighbor of u with
position i in this binomial tree. This reflects the obvious fact that if a tree is pruned at
some node, all its descendants must also be excluded from the tree.

Valid inequalities

LetW be a maximal independent set in G. Model (3.3) is strengthened by

yv0is + ∑
v∈W

(yvis+ yvℓs)≤ 1 i ∈ I, ℓ ∈C(i),s ∈ S, (3.5)

which exploits the fact that no pair of nodes inW is adjacent, and so there must be no
two nodes with adjacent β -positions.

We now generalize this idea by using the notion of graph power Gm = (V,Em) com-
monly defined as a graph with the same set of nodes as G, and an edge between two
nodes in Gm is present if and only if there is a path of length at most m between them
in G. For our purposes, we use a slightly modified definition of the edge set

Em = {{u,v} : there exists a path between u and v in G of length m}.

Definition (3.2) can be generalized to descendants of an arbitrary distance m= 1,2, . . .
from v in Bk:

C1(i) =C(i),

Cm+1(i) =
∪

j∈C1(i)

Cm(j). (3.6)

Further strengthening of model (3.3) is achieved by introducing valid inequalities

yv0is + ∑
v∈Wm

(yvis+ yvℓs)≤ 1 i ∈ I, ℓ ∈Cm(i),s ∈ S,1≤ m≤ ∆G−1. (3.7)

Clearly, inequality (3.5) is included in (3.7) form= 1. The distance between positions i
and ℓ=Cm(i) in a binomial tree is m. The maximal independent setWm contains nodes
such that length of any path between any two nodes is different from m, and so there
cannot be two nodes inWm with positions i and ℓ at the same time.

Symmetry removal

Another improvement of this model is achieved by a symmetry removal. If a broadcast
tree is identical to a binomial tree, we notice that nodes with positions from C(i), i.e.,
children of some node v with β (v) = i, are informed in increasing time steps. For
example in B3, C(2) = {4,6} and the corresponding nodes are informed in time step 2
and 3, respectively. If a position ℓ ∈C(i) corresponds to a node of a binomial tree that
is pruned (if yv0ℓs = 1 for some s ∈ S), all positions j ∈C(i) such that j > ℓ can also be
pruned. Thus, adding

yv0js ≤ yv0ℓs i ∈ I, j, ℓ ∈C(i), j < ℓ,s ∈ S (3.8)

to the model reduces the set of feasible solutions, while preserving at least one optimal
solution.

3.3 Integer Linear Programming Models 31

Decision version

To determine whether a given deadline k is sufficient for broadcasting in an instance
(G,S) of MBT, consider the following ILP model:

max ∑
v∈V

∑
i∈I

∑
s∈S

yvis,

s. t.

∑
i∈I

∑
s∈S

yvis ≤ 1 v ∈V, (3.9a)

(3.3b)− (3.3e),

y ∈ {0,1}I×S×V ′. (3.9b)

This model is a modification of formulation (3.3), and uses the same type of variables.
The objective function is to maximize the number of nodes that are assigned a position
in binomial trees. The constraints (3.9a) state that each node belongs to at most one
binomial tree. In contrast to (3.3a), (3.9a) is an inequality, because the binomial trees
do not necessarily form a partition of G, and so not all nodes have to be used. The
remaining constraints are taken from formulation (3.3).

The parameter k affects I. If the objective function attains the target value |V |, it is
obvious that positions

{
1,2, . . . ,2k

}
can be assigned to all nodes in G under the given

constraints, and therefore τ(G,S) ≤ k. If the objective function value is less than |V |,
then clearly τ(G,S)> k.

An optimal solution to Prob. 5 can be determined by a sequential solution to model
(3.9) for varying deadlines k. Assume we are given a lower bound t and an upper
bound t̄ on the minimum broadcast time. Initially, we define the set I = {1, . . . ,2t} and
iteratively solve the model while doubling the set I (increasing t) until the objective
function attains the value |V |. That indicates that it is the first iteration in which all
nodes are assigned a position, and it can be concluded that the minimum broadcast
time is log2 |I|= t. If the target value |V | is not met for k = t̄−1, the last iteration with
k = t̄ does not have to be conducted, as it is already obvious that τ(G,S) = t̄.

It is suggested that the sequence of models is solved for an increasing k. Different
strategies are also available. For example, a binary search may seem a more natural
way, however, running the model for larger values of k takes significantly more time
than for smaller values of k. Furthermore, large graphs tend to have their broadcast
time closer to the lower bounds.

Discussion

Preliminary experimental results indicate that using binomial tree model for obtaining
optimal solutions of MBT instances takes longer time compared to the model presented
in Paper IV in virtually all tested instances. Tab. 3.1 shows solution times for two
instance sets with number of nodes 50 and 100. Each instance set is further divided
by the number of sources, in this case 1 and 2. The last parameter that identifies an
instance is the number of edges (1st and 6th column). An instance is identified by
values |V |, |S| and |E|. Each instance is solved by an iterative algorithm described in
section 3.3.1 on model (3.9) (columns with heading Y), and an analogous algorithm on
model introduced in Paper IV (columns with heading X).

32 Minimum Broadcast Time

Even this small sample of test instances suggests that the model in Paper IV finds
an optimal solution substantially faster than (3.9). However, there is a potential in
improving the model by means of techniques such as further symmetry removal and
additional valid inequalities following from the concept of unique numbering of nodes
in a binomial tree. Also, it can be seen that the more sources, the shorter time the
computation takes, which is more apparent for model (3.9).

|V |=50 |V |=100
|S|=1 |S|=2 |S|=1 |S|=2

|E| X Y X Y |E| X Y X Y
276 0.22 7.39 0.18 4.37 1041 0.99 261.71 0.7 109.32
262 0.19 4.76 0.2 2.67 1078 0.78 243.66 0.84 84.45
269 0.2 8.43 0.1 2.62 1013 1.26 326.66 0.78 141.28
194 0.3 9.81 0.13 3.08 798 0.74 441.31 0.39 47.28
192 0.14 2.72 0.15 3.16 781 0.91 254.67 0.52 53.74
188 0.16 4.75 0.09 2.26 726 0.87 299.97 0.78 225.19
63 0.19 8.49 0.17 11.82 125 0.57 904.51 0.54 705.06

100 0.16 7.49 0.08 2.59 200 1.23 1126.11 0.76 298.8

Table 3.1: Comparison of solution time of methods based on model (3.9) and an analogous
model in Paper IV

3.4 Related Problems

There are many communication protocols for broadcasting in different practical appli-
cations, and their description is out of the scope of this thesis. We therefore describe
only the problems closely related to MBT.

3.4.1 Broadcast Graphs

A related problem to MBT is the MINIMUM BROADCAST GRAPH problem. In this
settings, broadcast protocol according to Def. 16 and |S|= 1 are assumed. A broadcast
graph is a communication network on n nodes with optimal broadcast time ⌈logn⌉
regardless of the source. Every complete graph Kn satisfies this property, yet Kn is not
minimal. The minimum number of edges in any broadcast graph on n nodes is denoted
as B(n). A Minimum broadcast graph is a broadcast graph with B(n) edges.

NP-completeness follows from the same result for MBT. A long list of papers deals
with determining minimum broadcast graph for different number of nodes. The initial
work [30] shows minimum broadcast graphs for n = 2k and n ≤ 15. Further inves-
tigation [36] leads to a technique for constructing broadcast graphs for many values
of n.

In the generalized c-broadcasting, a c-broadcast graph has a broadcast time
⌈logc+1n⌉, and analogously, Bc(n) denotes the minimum number of edges in any c-
broadcast graph. A c-broadcast graph with Bc(n) edges is said to be a minimum c-
broadcast graph. A time-relaxed c-broadcasting [48] allows additional t time steps.
Thus, a time-relaxed c-broadcast graph has broadcast time ⌈logc+1n⌉+ t.

3.4 Related Problems 33

Another generalization is the k-fault tolerant broadcast problem [46]. The task is to
identify sparse graphs with reliable transmission schemes. The protocols of a k-fault
tolerant broadcast graph are predefined in such a way that if any k edges in the protocol
fail, the signal still reaches all nodes in the graph.

ILP formulations to construct c-broadcast graphs, k-fault tolerant c-broadcast
graphs and minimum c-broadcast graphs are presented in [48].

3.4.2 The Gossiping Problem

The last problem mentioned in this overview is THE GOSSIPING PROBLEM, also
known as the TOTAL INFORMATION EXCHANGE. In this problem, each node is ini-
tially given a different message that needs to be distributed to all other nodes [13]. For
this, in each time step the nodes send each other messages consisting of an arbitrary
number of pieces of information. The standard restriction is that in one time step, a
node can communicate with only one of its neighbors. One distinguishes 1-way (or
half-duplex) mode, where the information can be sent through a link in only one di-
rection in a single time step, and 2-way (or full-duplex) mode, where two nodes may
exchange all their information through a link that connects them within a single time
step. The most intensively studied efficiency criterion in this theory is the number of
time steps needed for disseminating all pieces of information to every node [27].

34 Minimum Broadcast Time

Chapter 4

Path Finding for Multiple Robots

Before focusing on path finding for multiple robots, let us summarize techniques for
simple path finding in graphs, which act as building blocks in problems that consider
multiple robots.

4.1 Basic Path Finding

Basic path finding is a well known task in computer science. Given a graph G= (V,E),
the objective is to find a path between two selected nodes s and t referred to as the
source and the target, respectively. Graph searching methods such as breadth-first
search and depth-first search find a path if given a sufficient amount of time.

The aim is often to find a shortest path between s and t in G with given edge
lengths. Bellman-Ford algorithm yields a shortest path from s to all of the other nodes
in O(|V ||E|) time.

A common approach used for finding a shortest path is Dijkstra’s algorithm [28],
which guarantees to yield an optimal path in O(|E| log |V |) time. Dijkstra’s Algorithm
visits vertices in the graph starting with s. It then repeatedly inspects the vertex which
was not yet visited that lies closest to s. It expands outwards from s until it reaches t.
A drawback of this approach is that it may expand too many vertices that later turn out
to lie very far from t.

Another possibility is the greedy best first search algorithm which can find a path
to t faster, but the selected path is not guaranteed to be optimal. Instead of expanding
nodes close to s, it selects those close to t. Obviously, which node is exactly the closest
is not known, and therefore it uses a heuristic estimate, which guides the way towards t.

A* algorithm [35] combines the advantages of Dijkstra’s algorithm and the best
first search algorithm. It guarantees to find an optimal path and also exploits a heuris-
tic estimation of the distance to the target, which helps to avoid expanding unsuitable
vertices. The heuristic estimation is particularly useful when there is incomplete infor-
mation about the graph. For that reason, A* is popular in video game development,
where the exact distances cannot be predicted due to a frequent change of the environ-
ment, or due to a lack of knowledge of the current situation in the environment.

A* searches for a shortest path from s to t by maintaining a tree of paths originating
at s, and extending those paths until its termination criterion is satisfied. Alg. 1 shows
a pseudocode of A*. At each iteration, the algorithm determines which of its paths
should be extended. The selection is based on the cost of the path so far and a heuristic

36 Path Finding for Multiple Robots

estimate of the cost required to extend the path all the way to t. Specifically, A* chooses
the path that minimizes

f (v) = g(v)+h(v),

where v is the node by which the path is extended, g(v) is the cost of the path from
s to v, and h(v) is the heuristic estimate of the cost of the cheapest path from v to the
target t. A* terminates when the path it chooses to extend is a path from start to goal or
if there are no paths eligible to be extended.

The performance of A* strongly depends on the selected heuristic function h. The
heuristic is admissible if h(v) is no larger than the length of the shortest path from v
to t. An admissible heuristic is an optimistic guess as it underestimates the length of
the shortest path. Thus, f (v) is a lower bound on the path cost via v. The heuristic is
said to be monotonous or consistent if for all v′ ∈N(v) we have that h(v)≤wvv′+h(v′).

Observation 4. Every monotonous heuristic is admissible.

Proof. Let h be monotonous, and let s = v1,v2, . . . ,vk = t be an optimal path. As
h is monotonous, we have that h(vi)− h(vi+1) ≤ wvivi+1 . This implies that h(v1) ≤
∑k−1
i=1 wvivi+1 .

Observation 5. For a monotonous heuristic, f is non-decreasing along any path.

Proof. Let v′ ∈ N(v), i.e., g(v′) = g(v)+wvv′ . Then, f (v′) = g(v′)+ h(v′) = g(v)+
wvv′+h(v′)≥ g(v)+h(v) = f (v).

Proposition 8. If h is a monotonous heuristic, A* finds an optimal path.

Proof. By Obs. 5, if h is monotonous, the values of f (v) are not decreasing along any
path. A* selects for expansion the node v with minimal value of f , that is, among
all paths to v there cannot be a shorter path than the one just selected. Thus, the path
selected from s to v is optimal, which is inductively extended up to t.

If the trivial monotonous heuristic h(v) = 0 for all v ∈ V is used, the algorithm
becomes Dijkstra’s algorithm.

There are two different perspectives of the running time. The first way counts the
running time as a function of |V | and |E|, which is more common in the context of graph
theory. In this case, if the monotonous heuristic is determined in constant time, the
complexity of A* equals the complexity of Dijkstra’s algorithm. Another way, popular
in AI community, is measuring the running time in terms of the depth of the solution
and the branching factor of the search space. In this context, graphs are typically very
large, and avoiding examination of the entire graph is desirable, in fact, it is one of the
major goals of the algorithm. If we examine every node at depth up to d before the
target is found, we end up visiting O(bd) nodes before termination.

4.2 Path Finding for Multiple Robots

The requirement of finding multiple non-colliding paths significantly increases the
complexity of the problem.

4.2 Path Finding for Multiple Robots 37

Algorithm 1: A* algorithm

Input : G= (V,E), s, t ∈V , w : E 7→ R+

Output: A shortest path from s to t or failure if no such path exists

C← /0 // Closed set - expanded nodes, will not be entered again

O←{s} // Open set - nodes to be expanded

for v ∈V \{s} do
g(v)← ∞
f (v)← ∞
π(v)← null // Predecessor of node v

end
g(s)← 0
f (s)← h(s)
while O ̸= /0 do

v← select a node from argmin{ f (u) : u ∈ O}
if v= t then return path from s to t reconstructed using π
O← O\{v}
C←C∪{v}
for u ∈ N(v)\C do

if u ̸∈ O or g(v)+wvu < g(u) then
O← O∪{u}
π(u)← v
g(u)← g(v)+wvu
f (u)← g(u)+h(u)

end
end

end
return failure

38 Path Finding for Multiple Robots

We consider an environment with several identical moving entities referred to as
agents. Source and target locations are uniquely determined for each agent. The ob-
jective is to find a route for every agent from its source to its target while avoiding
obstacles in the environment. The environment is modeled as an undirected graph,
where the agents are placed in the nodes, and move along the edges from one node to
another. In this context, the paths/routes are allowed to contain a node multiple times.
Movement of the agents is carried out in discrete time steps, where the relocation of an
agent from one node to its neighbor takes exactly 1 time step. Agents must not collide
with obstacles and other agents that are also moving along planned routes towards their
own targets.

Methods for solving path finding for multiple robots are divided into two main ap-
proaches: centralized (coupled) and decentralized (decoupled). A centralized approach
incorporates a global decision maker that regards all the agents as a single entity, and
plans paths for them simultaneously. On the other hand, a decentralized approach can
considerably reduce computations by decomposing the problem into several smaller
subtasks. Paths are typically computed for each agent individually, ignoring all other
agents. The interactions are handled along the way to avoid collisions. This is usually
much faster but yields suboptimal solutions and loses completeness [60].

Local repair A* (LRA*) [65] is a decentralized algorithm readily applicable to path
finding for multiple robots. Each agent searches for a route to the destination using the
A* algorithm, ignoring all other agents except for its current neighbours. The agents
then start to follow their routes, until a collision is impending. Whenever an agent is
about to move into a position occupied by another agent, it instead replans the route
from its current position.

Problems dealing with navigating a group of mobile robots can be formulated as
multi-agent path planning. However, the primary motivations for the problem are tasks
of moving certain entities within an environment with obstacles. The constraint of lim-
ited free space represents a key aspect that makes the problem non-trivial. Examples
of applications include, but are not limited to: parcel delivery in office building by
multiple mobile robots [33], navigation of robots within an industrial warehouse envi-
ronment [29], and control and management of a fleet of autonomous mobile robots for
transshipment tasks in harbors, airports and marshalling yards [2]. Shipping container
rearranging can also be formulated as path-planning for multiple agents where agents
are represented by containers [70].

4.2.1 Mathematical Model and Variants

The problem of path finding for multiple robots is defined by a quadruple (G,R,λ0,λ+),
where

1. G= (V,E) is the undirected graph representing the environment,

2. R=
{
r1, . . . ,r|R|

}
is the set of robots or agents, |R| ≤ |V |,

3. λ0 : R 7→V is the injective function that assigns each agent its initial node, and

4. λ+ : R 7→V denotes the injective function that assigns a target node to each agent.

4.2 Path Finding for Multiple Robots 39

In general, there is no restriction on the graph, but majority of works in this area con-
siders 4 or 8-connected grid graphs with some missing nodes representing obstacles.
There are the following two different models of agents’ movement dynamics: Multi-
Agent Path Finding (MPF) and Pebble Motion on Graph (PMG).

Multi-Agent Path Finding An agent can shift from one node to its neighbor on condition
that the neighbor is either unoccupied or is being left by some other agent at the same
time step. At most one agent is allowed to pass an edge within one time step. That is,
agents are not allowed to exchange their positions within one time step. It is however
possible that there is not a single unoccupied node, and agents still perform cyclic
moves, although most of the studied instances contain at least one unoccupied node.
Finally, no two agents can enter the same node at the same time, as there cannot be
more than one agent simultaneously at a node. Under this settings, the optimization
variant of MPF is shown to be NP-hard [69].

In general, agents are considered as independent isolated units, and one agent is not
aware of other agents’ path plans. There are variants of MPF where this is not the case
(see Sect. 4.2.2).

Pebble Motion on Graphs Pebble motion on graphs [44] can be regarded as a restricted
variant of MPF. The difference lies in the rules for movement. While MPF enables
entering a vertex that is simultaneously being left by another agent, such transfer is not
permissible in pebble motion. As an illustration we mention the 15-puzzle, also known
as Lloyd’s 15 [6]. Its generalized N×N version has been proved to be NP-hard in [21].
The situation becomes much easier when the optimality of the number of moves is not
required, i.e., when the problem is to find any sequence of movements so that the target
locations are reached. In this case the problem belongs to P [44], and so does MPF
when the optimality is abandoned, as every solution to PMG is a solution to MPF. As
all results relevant to this chapter consider the movement rules of MPF, PMG is not
discussed any further.

There are three most common optimization criteria [79] in problems belonging to
path finding for multiple robots to be pursued:

• Minimum total arrival time - total number of time steps that the agents need before
arriving in their targets.

• Minimum makespan - the number of time steps needed by the latest arriving
agent.

• Minimum total distance - total number of moves performed by the agents.

In a corresponding decision problem, we are given a parameter k and ask whether it is
possible that agents reach their targets so that the objective function does not exceed k.

4.2.2 Cooperative Path-Finding

Cooperative Path-finding (CPF) [65] is a special case of MPF where each agent is
assumed to have a full knowledge of all other agents and their planned routes. Precisely
speaking, a solution algorithm can take into account paths planned for agents that were

40 Path Finding for Multiple Robots

λ0(a1) = λ+(a2)

A B C

λ0(a2) = λ+(a1)

D

a1 a2

(a) An instance for which CA* fails to find a so-
lution

λ0(a1) = λ+(a2)

A B C

λ0(a2) = λ+(a1)

D

a1 a2

(b) An instance for which CA* finds an optimal
solution

Figure 4.1: Demonstration of incompleteness of CA*

processed earlier, and adjust paths searched later according to them. The concept of
CPF is most relevant to the contribution of this thesis, as all the studied variants assume
knowledge to at least some agents’ path planning.

CA*

A decoupled algorithm for solving CPF, known as cooperative A* (CA*), has been
introduced in [65] together with several improvements reducing its complexity. Its
basic version works with a spatial graph G′ constructed from the initial graph G =
(V,E). The spatial graph can be regarded as k copies (layers)G0,G1, . . . ,Gk ofG, which
are arranged parallel with each other. These layers represent the time dimension of the
agents’ movement. All edges within one layer are removed, because a movement along
them would represent an agent’s change of position in zero time, which is prohibited
by the rules for movement. Consider nodes vi and vi+1 in two consecutive layers of
G′, both corresponding to node v in the original graph. Further, let v1i+1, . . . ,v

|N(v)|
i+1 be

the nodes in the (i+ 1)-th layer corresponding to neighbors of v in the original graph.
The spatial graph contains edge {vi,vi+1}, which represents an agent staying at its node
from time step i to i+1, and edges

{
vi,v1i+1

}
, . . . ,

{
vi,v

|N(v)|
i+1

}
representing an agent’s

movement to the adjacent nodes. Edges in G′ are always directed from the lower layer
to the higher layer, as it is forbidden to move “back in time”.

Agents are initially placed in the first layer of G′, and if a node t is a target of some
agent a in the original graph, nodes corresponding to t in each layer become targets of
a in G′, and a must reach one of them. This models the fact that an agent can reach
its target at any time step. The algorithm processes agents one by one, and always
searches a path in G′ for a currently considered agent using A*. Once a path is found
in G′, its nodes in G′ are reserved, and agents processed afterwards must avoid the
reserved nodes. In this way it is ensured that no collisions occur during the agents’
advancement.

CA* is neither complete, nor optimal. It is however popular because it does not pose
any specific requirement on the instance and also because of its simplicity. An example
of an instance for which CA* is unable to find a solution is depicted in Fig. 4.1a. The
instance consists of a path on five nodes λ0(a1),A,B,C,λ0(a2), and a node D adjacent
to the node B in the middle of the path. Agents a1 and a2 are placed at the two endpoints
of the path, and have targets λ+(a1) and λ+(a2) at the opposite endpoints, respectively.

4.2 Path Finding for Multiple Robots 41

λ0(a2))

C

B

A

λ0(a1)

0

D

1 2 3 4 5 6 7

Figure 4.2: Spatial graph corresponding to the instance in Fig. 4.1b

This instance has a solution in which one agent uses the node D outside of the path in
order to allow the other agent to pass towards its target. CA* finds a path in the spatial
graph that corresponds to the shortest path from a1’s initial position λ0(a1) to λ+(a1).
When a2 is subsequently processed, no path to λ+(a2) in G′ that avoids reserved nodes
and edges exists. Fig. 4.1b depicts a slightly modified situation in which CA* is able
to find the optimal solution. The plan of a1 is again to go through the shortest path
towards λ+(a1), i.e., λ0(a1),A,B,C,λ+(a1). When the path for a2 is calculated in G′,
the only option to avoid reserved nodes is to make a step aside in the second step, let
a1 pass, and then continue towards λ+(a2). Thus, a2 passes the sequence of nodes
λ0(a2),C,D,D,C,B,A,λ+(a2). The spatial graph corresponding to the instance shown
in Fig. 4.1b, in which agent a1 is processed first, is displayed in Fig. 4.2. Green and
blue nodes represent the positions occupied by agent a1 and agent a2, respectively, in
some time step. Coloured edges mark those edges along which an agent moves, and
cannot be passed by another agent. Therefore, both directions are always marked, as no
two agents are allowed to exchange their position within a single time step. The quality
of a solution often depends on the order in which agents are processed. Note that in
some orderings of the agents, a solution may not exist, while there can be a solution for
another ordering. This is also the case of the instance in Fig 4.1b, because if a path for
a2 was planned first, a solution would again not be found.

OD+ID

An example of a coupled algorithm is to apply A* on the following state space: Each
state is encoded as an |R|-tuple representing all agents’ positions. There is an edge
between two states if and only if the transition between the two states represents a valid
move. With this representation, A* finds an optimal solution, but the obvious drawback
of this approach is its time and space complexity. The size of the state space isO(|V ||R|)
with the branching factor O(d|R|max) where dmax is the maximum degree in G.

An improvement of this naive approach is achieved by operator decomposition
(OD)[62]. In this approach, a fixed ordering of agents is assumed, and a move is as-
signed to each agent in succession. Thus, a transition from one state to another cor-

42 Path Finding for Multiple Robots

responds to moving only one agent while other agents’ positions remain unchanged.
Under this representation, every |R|-th state corresponds to a full move of the group
of agents, and is known as standard state. The other states are referred to as inter-
mediate states. Standard and intermediate states are conceptually different, they are
nevertheless treated equivalently by A*.

Although operator decomposition allows the algorithm to avoid considering a sub-
stantial portion of the search space, the resulting algorithm is still exponential in the
number of agents [62]. Independence detection (ID) aims to plan paths for agents as
independently as possible. The idea is to plan paths for agents separately whenever a
cooperation is not needed as they would not collide if they moved along their short-
est paths. When OD is combined with ID, agents are divided into groups which are
then planned separately using OD. Once a plan for all groups is known, the movement
is simulated, and if the plans for two or more groups contain conflicts, the affected
groups are merged together, and a new plan is searched for these larger groups.

Other notable algorithms

Besides the methods described above, there are many algorithms of various properties
designed for CPF in recent decades, and the research in this area still continues.

An alternative method developed in [59] achieves an implicit cooperation among
agents by using so called direction maps.

In [74], a decoupled algorithm flow annotated replanning (FAR) for grid graphs
is presented. FAR trades the completeness for an improved efficiency, and uses an
abstraction of the grid graph into a flow-annotated grid graph. A* is then applied sepa-
rately for each agent in this abstracted environment.

Another CPF algorithm that claims completeness is Push and Swap [47]. However,
in [25] were identified instances for which this algorithm fails to obtain a solution.
Consequently, algorithm Push and Rotate is then presented as an adaptation of the
Push and Swap technique. By fixing the Push and Swap’s shortcomings, the authors
developed an algorithm that is complete for the class of instances that contain at least
two unoccupied nodes.

An alternative approach for arbitrary graphs introduces a two-level Increasing Cost
Tree Search (ICTS) algorithm [64], consequently compared with A* based techniques.
Another algorithm capable of solving a wider range of instances than ICST is Conflict-
based Search (CBS) [64]. Low-level searches in CBS are performed as single-agent
path finding.

4.3 Scenarios with Adversaries

Consider a problem of MPF where agents are divided into two (or more) adversarial
teams competing for achieving some goal. The teams move in turns so that the i-th
team moves in every i-th time step, while agents of other teams act as obstacles.

The division into adversarial team is a generalization of MPF that increases the
problem’s complexity. The problem becomes a multi-player game with full informa-
tion, and so various search space algorithms developed for these types of games are ap-
plicable for adversarial versions of MPF. Examples of these algorithms include alpha-

4.3 Scenarios with Adversaries 43

beta algorithm widely applied on computer chess, and Monte Carlo tree search which
was recently successfully employed in the game of Go [66]. These algorithms are of-
ten combined with methods of machine learning, such as neural networks and genetic
algorithms.

In problems with adversarial elements, we consider one specific team of agents,
and try to solve the decision problem whether there exists a winning strategy for the
selected team.

4.3.1 Adversarial Cooperative Path Finding

In ADVERSARIAL COOPERATIVE PATH FINDING (ACPF), all the agents are defined
by their initial and target nodes in a graph, and the task of one team is to reach all
the targets by corresponding agents before the opponent’s agents reach their positions.
The teams are typically assumed to be of the same number of agents, although it is not
required in general. Similarly, the placement of targets of the teams does not have to
be symmetric, and so the starting conditions are not necessarily “fair” for the teams.

Besides the points 1.-4. in Sect 4.2.1, the formal definition of ACPF consists of the
following elements:

5. T =
{
T1,T2, . . . ,T|T|

}
, |T| ≤ |R| contains the set of disjoint teams. Each agent

belongs to exactly one team. Two teams are considered in a typical instance.

6. t∗ ∈ {1,2, . . . , |T|} denotes the index of a team for which the strategy is searched,
and for which the answer whether there exists a winning strategy is of interest.

It is also assumed that there is a mechanism that determines the next move of a team
different from Tt∗ when given the sequence of all agents’ previous placements. This
mechanism is unknown, and is expected to act as an oracle that is able to determine the
best possible move for an adversarial team in each time step. The decision version of
ACPF is formulated as

Problem 7. Given an instance (G,R,λ0,λ+,T, t∗) of ACPF, does there exist a move-
ment of team Tt∗ at every time step in which the team is to move, so that every agent
a ∈ Tt∗ reaches its target location λ+(a), and so that no other team reaches its desired
locations earlier?

The problem was proved to be PSPACE-hard for two teams in [39] by a polynomial
reduction from TRUE QUANTIFIED BOOLEAN FORMULA (TQBF). It is also known
that the problem is EXPTIME, but whether or not it belongs to PSPACE remains an
open question.

In experimental settings, a time limit during which the agents move is imposed.
When this limit is up, the winner is the team whose agents captured the highest number
of target nodes.

4.3.2 Area Protection Problem

Another concept of adversarial MPF is the AREA PROTECTION PROBLEM (APP). Un-
like ACPF, where the goals of all teams of agents is to reach their targets, the adversarial
teams in APP have different objectives. The first team of attackers consists of agents

44 Path Finding for Multiple Robots

whose goal is to capture pre-defined targets in the area protected by the second team of
defenders. There is a one-to-one mapping between attackers and target nodes. The op-
ponent team of defenders aims to prevent the attackers from reaching their targets by
occupying selected locations.

The common feature in all MPF problems is that once a location is occupied by an
agent, it cannot be entered by another agent unless it is first vacated by the agent which
occupies it (agents cannot push away each other). This property is a key tool for the
team of defenders. Formally, the problem is defined by points 1.-3. in Sect. 4.2.1, and

5. D ⊆ R and A ⊆ R with D∩A = /0 and D∪A = R, that is, an agent is either an
attacker or a defender,

6. λA
+ : A 7→V , an injective function that assigns a target node to each attacker.

Defenders do not have any pre-defined targets, as their objective is to prevent at-
tackers from reaching their targets. The decision version of APP is formulated as

Problem 8. Given an instance (G,R,λ0,A,D,λA
+), is it possible to navigate the defend-

ers in a way that no attacker reaches its target?

Paper V [40] contains a PSPACE-hardness proof of APP.
Like in problems without the adversarial element, there are several possible objec-

tive functions of APP:

• Maximize the number of targets not captured by attackers.

• Maximize the sum of distances between attackers and their targets.

• Minimize the time spent by attackers at captured targets.

The available literature focuses on the first objective.

Target allocation

Finding a solution to APP can be viewed as two separate subproblems. As there are no
predefined targets for defenders, the initial step is to identify nodes which are important
for attackers on paths towards their targets. This subproblem is called target allocation.
The nodes that are determined as important then become targets of defenders. The
next subproblem is then to navigate defenders towards the targets allocated to them in
the previous step. A typical candidates for defenders’ targets are obviously attackers’
targets, but it is not necessarily the smartest option. Particularly in instances where
defenders are highly outnumbered by attackers, it is more reasonable to capture nodes
lying in bottlenecks through which attackers must pass. In this way, even a small group
of defenders may be able to protect a large number of attackers’ targets.

4.3.3 Area Protection Problem with Communication Maintenance

An extension of APP by a requirement of communication maintenance (APPC) has
been introduced in Paper VI [41]. The environment is assumed to be a 4-connected grid
graph with possible missing nodes (obstacles), which allows to define the connectivity
constraints.

4.3 Scenarios with Adversaries 45

A Graph G representing the environment is embedded in a plane so that all edges
have length 1 unit and each node v has coordinatesCv = (xv,yv). The physical location
lv represented by v is the unit square centered atCv. Further, the set B consists of square
areas representing obstacles. The visibility range r is the maximum distance between
two locations, such that if there are agents placed at them, they can communicate with
each other. A communication is impossible between locations lu and lv if the line
segment [Cu,Cv] intersects any obstacle.

Definition 18. Given a visibility range r, Gr = (V,Er), where
Er = {{u,v} : [Cu,Cv]∩B= /0 and d(Cu,Cv)≤ r} is the visibility graph of G.

Let St ⊆ V denote the set of nodes occupied by defenders at time step t. The deci-
sion problem is extended from Prob. 8 with the additional requirement of connectivity
formulated as

Problem 9. Given an instance (G,R,λ0,A,D,λA
+), is it possible to navigate the defend-

ers in a way that no attacker reaches its target, and the induced subgraph Gr [St] of the
connectivity graph remains connected at every time step t?

PSPACE-hardness of APP implies also the same result for APPC.

46 Path Finding for Multiple Robots

Chapter 5

Contribution of the Thesis

This thesis is a compilation of six papers in which three independent topics are looked
into. The first three papers are focused on ad-hoc wireless networks discussed in Chap-
ter 2. The fourth paper deals with the broadcast time problem addressed in Chapter 3.
These four papers share the common characteristic that integer programming is an es-
sential solution method. In this sense, the last two papers are distinguished from the
former. They are devoted to adversarial variants of path finding for multiple robots
summarized in Chapter 4, which are commonly approached by methods prevalent in
the field of artificial intelligence.

5.1 Paper I: Shared Multicast Trees in Ad-hoc Wireless Networks

The contribution of Paper I lies in introducing the Shared Multicast Tree (SMT) prob-
lem, a generalization of the Shared Broadcast Tree (SBT) problem. An ILP model for
SMT is proposed by modification of a model for SBT presented in [81]. Additional
constraints related to non-destination nodes are included in the model, and constraints
in the existing model for SBT are quantified with respect to the non-destinations. The
presented model is subsequently proved to be a correct formulation of SMT. Appendix
A of Paper I contains details of the proof.

Further, several inexact construction methods are proposed. The first two methods
are based on construction of a solution to different problems, specifically MST and
MEB, respectively. The construction is followed by local search, which identifies non-
destinations whose presence in the solution is disadvantageous. These non-destinations
are then eliminated from the solution. The third method is an algorithm devised specif-
ically for SBT/SMT. Its main idea is to gradually expand a solution by adding new
edges, anticipate subtree sizes in the resulting solution, and thereby give an estimate of
the final objective function value each time a new edge is appended.

The experimental part is divided into two sections. The first section focuses on
investigation of the instance sizes that are solvable by the proposed ILP model using
the CPLEX solver. It is also studied how the increasing number of destinations and non-
destinations affects the solution time and the objective function value. In the second
section, the comparison of the inexact algorithms indicates that the method based on
subtree size anticipation outperforms the other two algorithms.

48 Contribution of the Thesis

5.2 Paper II: The Shared Broadcast Tree Problem and MST

Because of the limited size of instances practically solvable to optimality, following
from the computational complexity of SBT, approximability and approximation algo-
rithms are often researched. Paper II presents an instance of SBT for which the algo-
rithm that construct a MST yields a solution to SBT with objective function value six
times the optimum, proving that the approximation ratio of the algorithm that constructs
a MST as a solution to SBT is at least 6. In addition, experimental results then reveal
that the ratio between the optimal objective function value, and the objective function
value of MST solutions in randomly generated instances is much more favourable than
the lower bound on the approximation ratio.

5.3 Paper III: Integer Programming Formulations for the Shared Mul-
ticast Tree Problem

Two ILP formulations for SMT are developed in Paper III. The first model is based
on broadcast trees, whereas the second one adapts several network flow techniques
presented in [58]. Both models are subsequently extended by redundant variables and
corresponding constraints which strengthen the formulations. The models are further
strengthened by introducing valid inequalities. A theoretical study of the models proves
that network flow based models are at least as strong as corresponding models built on
broadcast trees. The experimental evaluation discovers instances showing that flow
based models are in fact stronger.

Experimental evaluation further exhibits a profound trade-off between the time nec-
essary for solving LP relaxation of the models, and the strength of the lower bound
obtained. The LP relaxation of the strongest model yields an integral solution in most
of the instances. However, its running time rules out its practical usability. For address-
ing this issue, a constraint generation (CG) technique is developed, which increases the
size of practically solvable instances. Lower bounds are also yielded during the course
of standard branch and bound algorithm. A comparison of lower bound produced from
CG and branch and bound shows that CG is able to obtain stronger lower bounds within
the selected time limit of 20 minutes.

Paper III also contains an adaptation of a metaheuristic algorithm from [55], orig-
inally developed for the minimum Steiner tree problem, combined with local search
methods developed in Paper I. The algorithm is able to solve a vast majority of tested
instances to optimality. However, the optimality is proved only in instances for which
it is possible apply branch and bound and solve them to optimality within a practical
time. In larger instances, the computed solutions are not proved to be optimal, but the
results indicate a very good potential of the metaheuristic algorithm.

5.4 Paper IV: Computing the Broadcast Time of a Graph

We develop a straightforward ILP model for the Minimum Broadcast Time (MBT)
problem, as the existing literature focusing on mathematical models for MBT is rather
scarce. Recently published [14] contains a non-linear mathematical formulation of

5.5 Paper V: Area Protection in Adversarial Path-finding Scenarios with Multiple
Mobile Agents on Graphs 49

MBT, and authors in [24] present an ILP model. The models in these works serve for
the purpose of formal description of MBT, and are not investigated further as potential
solution methods. On the contrary, an exact method that exploits the problem charac-
teristics and iteratively solves a decision version of the presented ILP model is devised
in Paper IV. This method is also applied to the LP relaxation of the model, and the
outcome indicates that it yields fairly strong lower bounds, often coinciding with the
optimum.

Besides the continuous relaxation, analytical and combinatorial lower bounding
techniques are studied. According to the experimental evaluation, these methods pro-
vide weaker lower bounds than the LP relaxation. Upper bounds are obtained by a
greedy algorithm of which the main feature is an iterative construction of broadcast
trees of restricted size. This algorithm is parametrized by the size limitation of the
broadcast trees. The larger trees are searched, the tighter upper bound can be achieved.

The numerical experiments also provide an insight into the relation between some
of the graph properties and its broadcast time. It has been observed that graphs with
more nodes as well as denser graphs tend to have its broadcast time closer to its trivial
lower bound log(n) (see Sect. 3.4.1). Also, increasing size and density of the graph
instances narrows the gap between upper and lower bounds.

5.5 Paper V: Area Protection in Adversarial Path-finding Scenarios
with Multiple Mobile Agents on Graphs

Paper V introduces the Area Protection Problem (APP) as a modification of the pre-
viously studied Adversarial Cooperative Path Finding (ACPF) [39] problem. Its main
contribution lies in the proof that APP is PSPACE-hard. This result is achieved by
demonstrating a polynomial-time reduction from TRUE QUANTIFIED BOOLEAN FOR-
MULA (TQBF).

Several strategies are investigated for the team of defenders. A building block of all
the considered strategies is a so called single stage destination allocation, in which a
node is assigned to each defender at the beginning of the agents’ movement. The de-
fenders then try to reach these destinations by any cooperative path-finding algorithm,
in this case we selected local repair A* (see Sect. 4.2). A destination can be regarded
as a target node for defenders, the difference is that while a target is part of the input,
the destination is determined by a solution method.

The strategies differ in the approach of target allocation. The two simplest methods,
random and greedy allocation, select attackers’ targets as destinations for defenders.
A more sophisticated method, bottleneck simulation, runs a simulation of attackers’
movement and tries to predict locations frequently passed by attackers. These locations
are assumed to be bottlenecks in the environment, and blocking them may prevent a
larger number of attackers from reaching their targets.

The experiments are carried out on different environment types and different posi-
tions of teams. This method is particularly successful in environments rich on bottle-
necks, as it correctly identifies them.

50 Contribution of the Thesis

5.6 Paper VI: Maintaining Ad-hoc Communication Network in Area
Protection Scenarios with Adversarial Agents

An extension of APP, in which defenders are required to maintain the possibility of
communication between each other, is presented in Paper VI. The possibility of com-
munication is modeled by connectivity of the communication graph, whose nodes are
the defenders’ locations, and whose edges connect node pairs between which agents
can communicate.

We approach this problem by dividing the defenders into communicators and occu-
piers with different purposes. Occupiers have the same task as regular defenders, i.e.,
they intend to prevent attackers from reaching their targets, while communicators are
supposed to ensure the connectivity maintenance by moving to suitable nodes.

From a theoretical point of view, we show that the problem whether it is possible for
communicators to maintain communication when all occupiers reach their destinations
is NP-complete, which was proved by reducing VERTEX COVER to it.

Bibliography

[1] AKYILDIZ, I., AND VURAN, M. C. Wireless Sensor Networks. John Wiley &
Sons, Inc., New York, NY, USA, 2010. 2.1

[2] ALAMI, R., FLEURY, S., HERRB, M., INGRAND, F., AND ROBERT, F. Multi-
robot cooperation in the martha project. IEEE Robotics Automation Magazine 5,
1 (March 1998), 36–47. 4.2

[3] ALTHAUS, E., CALINESCU, G., MANDOIU, I. I., PRASAD, S., TCHERVENSKI,
N., AND ZELIKOVSKY, A. Power efficient range assignment in ad-hoc wireless
networks. In 2003 IEEEWireless Communications and Networking, 2003. WCNC
2003. (March 2003), vol. 3, pp. 1889–1894 vol.3. 2.2.3

[4] AMBÜHL, C. An optimal bound for the mst algorithm to compute energy efficient
broadcast trees in wireless networks. In Automata, Languages and Programming
(Berlin, Heidelberg, 2005), L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi,
and M. Yung, Eds., Springer Berlin Heidelberg, pp. 1139–1150. 2.2.2

[5] AMBÜHL, C., CLEMENTI, A. E. F., PENNA, P., ROSSI, G., AND SILVESTRI,
R. Energy consumption in radio networks: Selfish agents and rewarding mecha-
nisms. In WAOA (2003). 2.2.3

[6] ARCHER, A. F. A modern treatment of the 15 puzzle. American Mathematical
Monthly 106 (1999), 793–799. 4.2.1

[7] BARTA, J., LEGGIERI, V., MONTEMANNI, R., NOBILI, P., AND TRIKI, C.
Some valid inequalities for the probabilistic minimum power multicasting prob-
lem. Electronic Notes in Discrete Mathematics 36 (2010), 463 – 470. ISCO 2010
- International Symposium on Combinatorial Optimization. 2.2.2

[8] BAUER, J., HAUGLAND, D., AND YUAN, D. New results on the time complexity
and approximation ratio of the broadcast incremental power algorithm. Informa-
tion Processing Letters 109, 12 (2009), 615 – 619. 2.2.2

[9] BLOUGH, D. M., LEONCINI, M., RESTA, G., AND SANTI, P. On the Symmetric
Range Assignment Problem in Wireless Ad Hoc Networks. Springer US, Boston,
MA, 2002, pp. 71–82. 2, 2.2.3

[10] CALAMONERI, T., CLEMENTI, A. E., MONTI, A., ROSSI, G., AND SILVESTRI,
R. Minimum-energy broadcast in random-grid ad-hoc networks: Approximation
and distributed algorithms. In Proceedings of the 11th International Symposium
onModeling, Analysis and Simulation of Wireless andMobile Systems (NewYork,
NY, USA, 2008), MSWiM ’08, ACM, pp. 354–361. 2.2.2

52 BIBLIOGRAPHY

[11] CALINESCU, G., MANDOIU, I., AND ZELIKOVSKY, A. Symmetric connectivity
with minimum power consumption in radio networks. vol. 223, pp. 119–130.
2.2.3

[12] CARMI, P., AND CHAITMAN-YERUSHALMI, L. On the minimum cost range
assignment problem. In Algorithms and Computation - 26th International Sym-
posium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings (2015),
pp. 95–105. 2.2.3

[13] CHROBAK, M., GASIENIEC, L., AND RYTTER, W. Fast broadcasting and gos-
siping in radio networks. In Proceedings of the 41st Annual Symposium on Foun-
dations of Computer Science (Washington, DC, USA, 2000), FOCS ’00, IEEE
Computer Society, pp. 575–. 3.4.2

[14] CHU, X., AND CHEN, Y. Time division inter-satellite link topology generation
problem: Modeling and solution. International Journal of Satellite Communica-
tions and Networking 36, 2 (2017), 194–206. 3, 5.4

[15] CLEMENTI, A. E. F., CRESCENZI, P., PENNA, P., ROSSI, G., AND VOCCA,
P. On the complexity of computing minimum energy consumption broadcast
subgraphs. In STACS 2001 (Berlin, Heidelberg, 2001), A. Ferreira and H. Reichel,
Eds., Springer Berlin Heidelberg. 2

[16] CLEMENTI, A. E. F., IANNI, M. D., AND SILVESTRI, R. The minimum broad-
cast range assignment problem on linear multi-hop wireless networks. Theor.
Comput. Sci. 299 (2003), 751–761. 2.2.3

[17] CLEMENTI, A. E. F., PENNA, P., AND SILVESTRI, R. Hardness results for
the power range assignment problem in packet radio networks. In Random-
ization, Approximation, and Combinatorial Optimization. Algorithms and Tech-
niques (1999), D. S. Hochbaum, K. Jansen, J. D. P. Rolim, and A. Sinclair, Eds.,
Springer Berlin Heidelberg, pp. 197–208. 2.2.3

[18] CLEMENTI, A. E. F., PENNA, P., AND SILVESTRI, R. The power range assign-
ment problem in radio networks on the plane. In STACS 2000 (Berlin, Heidelberg,
2000), H. Reichel and S. Tison, Eds., Springer Berlin Heidelberg, pp. 651–660.
2.2.3

[19] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN, C. Introduc-
tion to Algorithms, 2nd ed. The MIT Press, 2001. 3.3.1

[20] CRESCENZI, P., AND KANN, V. Approximation on the web: A compendium of
NP optimization problems. In Randomization and Approximation Techniques in
Computer Science, International Workshop, RANDOM’97, Bolognna, Italy, July
11-12. 1997, Proceedings (1997), pp. 111–118. 1.3

[21] DANIEL, R., AND K., W. M. Finding a shortest solution for the n x n extension of
the 15-puzzle is intractable. In AAAI (1986), T. Kehler, Ed., Morgan Kaufmann,
pp. 168–172. 4.2.1

BIBLIOGRAPHY 53

[22] DAS, A. K. Minimum power broadcast trees for wireless networks: Integer pro-
gramming formulations. In INFOCOM (2003). 2.2.2

[23] DAS, A. K., MARKS, R. J., EL-SHARKAWI, M., ARABSHAHI, P., AND GRAY,
A. Optimization methods for minimum power bidirectional topology construction
in wireless networks with sectored antennas. In IEEE Global Telecommunications
Conference, 2004. GLOBECOM ’04. (Nov 2004), vol. 6, pp. 3962–3968 Vol.6.
2.2.3

[24] DE SOUSA, A., GALLO, G., GUTIERREZ, S., ROBLEDO, F., RODRÍGUEZ-
BOCCA, P., AND ROMERO, P. Heuristics for the minimum broadcast time.
Electronic Notes in Discrete Mathematics 69 (2018), 165 – 172. Joint EU-
RO/ALIO International Conference 2018 on Applied Combinatorial Optimization
(EURO/ALIO 2018). 3.3, 5.4

[25] DE WILDE, B., TER MORS, A., AND WITTEVEEN, C. Push and rotate: cooper-
ative multi-agent path planning. In AAMAS (2013). 4.2.2

[26] DEKKER, A. Applying social network analysis concepts to military . . . Connec-
tions 24 (2002), 93–103. 3

[27] DIETZFELBINGER, M. Gossiping and broadcasting versus computing functions
in networks. Discrete Applied Mathematics 137, 2 (2004), 127 – 153. 3.4.2

[28] DIJKSTRA, E. W. A note on two problems in connexion with graphs. Numer.
Math. 1, 1 (1959), 269–271. 4.1

[29] EVERETT, H. R., GAGE, D. W., GILBREATH, G. A., LAIRD, R. T., AND
SMURLO, R. P. Real-world issues in warehouse navigation. vol. 2352, pp. 2352
– 2352 – 11. 4.2

[30] FARLEY, A., HEDETNIEMI, S., MITCHELL, S., AND PROSKUROWSKI, A. Min-
imum broadcast graphs. Discrete Mathematics 25, 2 (1979), 189 – 193. 3.4.1

[31] FLAMMINI, M., NAVARRA, A., AND PERENNES, S. The “real”
approximation factor of the mst heuristic for the minimum energy broadcasting.
J. Exp. Algorithmics 11 (Feb. 2007). 2.2.2

[32] GAREY, M. R., AND JOHNSON, D. S. Computers and Intractability; A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1979. 3.2

[33] HADA, Y., AND TAKASE, K. Multiple mobile robot navigation using the indoor
global positioning system (igps). In Proceedings 2001 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Expanding the Societal Role of
Robotics in the the Next Millennium (Cat. No.01CH37180) (Oct 2001), vol. 2,
pp. 1005–1010 vol.2. 4.2

[34] HALGAMUGE, M. N., ZUKERMAN, M., RAMAMOHANARAO, K., AND VU,
H. L. An estimation of sensor energy consumption. Electromagnetics Research
B, 12 (2009), 259–295. 2, 2.2.4

54 BIBLIOGRAPHY

[35] HART, P. E., NILSSON, N. J., AND RAPHAEL, B. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics SSC-4(2) (1968), 100–107. 4.1

[36] HARUTYUNYAN, H. A., AND LIESTMAN, A. L. More broadcast graphs. Dis-
crete Applied Mathematics 98, 1-2 (1999), 81–102. 3.4.1

[37] HAUGLAND, D., AND YUAN, D. Compact Integer Programming Models for
Power-optimal Trees in Ad Hoc Wireless Networks, vol. 158. 01 2011, pp. 219–
246. 2.2.2, 2.2.3

[38] IVANOVÁ, M. Shared multicast trees in ad hoc wireless networks. In Combina-
torial Optimization - 4th International Symposium, ISCO 2016, Vietri sul Mare,
Italy, May 16-18, 2016, Revised Selected Papers (2016), pp. 273–284. 2.2.4

[39] IVANOVÁ, M., AND SURYNEK, P. Adversarial cooperative path-finding: Com-
plexity and algorithms. In 26th IEEE International Conference on Tools with Arti-
ficial Intelligence, ICTAI 2014, Limassol, Cyprus, November 10-12, 2014 (2014),
pp. 75–82. 4.3.1, 5.5

[40] IVANOVÁ, M., SURYNEK, P., AND HIRAYAMA, K. Area protection in adver-
sarial path-finding scenarios with multiple mobile agents on graphs - A theoret-
ical and experimental study of strategies for defense coordination. In Proceed-
ings of the 10th International Conference on Agents and Artificial Intelligence,
ICAART 2018, Volume 1, Funchal, Madeira, Portugal, January 16-18, 2018.
(2018), pp. 184–191. 4.3.2

[41] IVANOVÁ, M., SURYNEK, P., AND NGUYEN, D. T. N. Maintaining ad-hoc
communication network in area protection scenarios with adversarial agents. In
Proceedings of the Thirty-First International Florida Artificial Intelligence Re-
search Society Conference, FLAIRS 2018, Melbourne, Florida, USA. May 21-23
2018. (2018), pp. 348–353. 4.3.3

[42] JANSEN, K., AND MÜLLER, H. The minimum broadcast time problem for sev-
eral processor networks. Theoretical Computer Science 147, 1 (1995), 69 – 85.
3.2, A.1.1

[43] KIROUSIS, L. M., KRANAKIS, E., KRIZANC, D., AND PELC, A. Power con-
sumption in packet radio networks. Theor. Comput. Sci. 243, 1-2 (July 2000),
289–305. 2.2.3

[44] KORNHAUSER, D., MILLER, G., AND SPIRAKIS, P. Coordinating pebble motion
on graphs, the diameter of permutation groups, and applications. In 25th Annual
Symposium onFoundations of Computer Science, 1984. (Oct 1984), pp. 241–250.
4.2.1

[45] LIANG, W. Constructing minimum-energy broadcast trees in wireless ad hoc
networks. In Proceedings of the 3rd ACM International Symposium on Mobile Ad
Hoc Networking &Amp; Computing (New York, NY, USA, 2002), MobiHoc ’02,
ACM, pp. 112–122. 2.2.2

BIBLIOGRAPHY 55

[46] LIESTMAN, A. L. Fault-tolerant broadcast graphs. Networks 15, 2 (1985), 159–
171. 3.4.1

[47] LUNA, R., AND BEKRIS, K. E. Push and swap: Fast cooperative path-finding
with completeness guarantees. In Proceedings of the Twenty-Second Interna-
tional Joint Conference on Artificial Intelligence - Volume Volume One (2011),
IJCAI’11, AAAI Press, pp. 294–300. 4.2.2

[48] MCGARVEY, R. G., RIEKSTS, B. Q., VENTURA, J. A., AND AHN, N. Binary
linear programming models for robust broadcasting in communication networks.
Discrete Appl. Math. 204, C (2016), 173–184. 3.4.1

[49] MCGRATH, M. J., AND SCANAILL, C. N. Sensor Network Topologies and De-
sign Considerations. Apress, Berkeley, CA, 2013, pp. 79–95. 2.1

[50] MIDDENDORF, M. Minimum broadcast time is np-complete for 3-regular planar
graphs and deadline 2. Information Processing Letters 46, 6 (1993), 281 – 287.
3.2

[51] MIN, M., PROKOPYEV, O., AND PARDALOS, P. M. Optimal solutions to mini-
mum total energy broadcasting problem in wireless ad hoc networks. Journal of
Combinatorial Optimization 11, 1 (Feb 2006), 59–69. 2.2.2

[52] MONTEMANNI, R., AND GAMBARDELLA, L. Exact algorithms for the mini-
mum power symmetric connectivity problem in wireless networks. Computers &
Operations Research 32, 11 (2005), 2891 – 2904. 2.2.3

[53] MONTEMANNI, R., LEGGIERI, V., AND TRIKI, C. Mixed integer formulations
for the probabilistic minimum energy broadcast problem in wireless networks.
European Journal of Operational Research 190, 2 (10 2008), 578–585. 2.2.2

[54] NEMHAUSER, G. L., AND WOLSEY, L. A. Integer and Combinatorial Optimiza-
tion. Wiley-Interscience, New York, NY, USA, 1988. 1.2

[55] PAJOR, T., UCHOA, E., AND WERNECK, R. F. A robust and scalable algorithm
for the steiner problem in graphs. Mathematical Programming Computation 10,
1 (Mar 2018), 69–118. 5.3

[56] PAPADIMITRIOU, C. H. Computational complexity. Addison-Wesley, 1994. 3.2

[57] PAPADIMITRIOU, I., AND GEORGIADIS, L. Minimum-energy broadcasting in
multi-hop wireless networks using a single broadcast tree. Mobile Networks and
Applications 11, 3 (Jun 2006), 361–375. 2.2.4

[58] POLZIN, T., AND DANESHMAND, S. V. A comparison of steiner tree relax-
ations. Discrete Applied Mathematics 112, 1 (2001), 241 – 261. Combinatorial
Optimization Symposium, Selected Papers. 5.3

[59] RENEE JANSEN, M., AND R. STURTEVANT, N. Direction maps for cooperative
pathfinding. 4.2.2

56 BIBLIOGRAPHY

[60] ROSS KINSELLA RYAN, M. Exploiting subgraph structure in multi-robot path
planning. Journal of Artificial Intelligence Research 31 (01 2008), 497–542. 4.2

[61] SANTI, P. Topology control in wireless ad hoc and sensor networks. ACM Com-
put. Surv. 37, 2 (June 2005), 164–194. 2.2.3

[62] SCOTT STANDLEY, T. Finding optimal solutions to cooperative pathfinding prob-
lems. vol. 1. 4.2.2

[63] SHARMA, D. A., VERMA, S., AND SHARMA, K. Network topologies in wireless
sensor networks : A review. 2.1

[64] SHARON, G., STERN, R., GOLDENBERG, M., AND FELNER, A. The increasing
cost tree search for optimal multi-agent pathfinding. Artificial Intelligence 195
(2013), 470 – 495. 4.2.2

[65] SILVER, D. Cooperative pathfinding. In Proc. of the 1st Artificial Intelligence and
Interactive Digital Entertainment Conference, 2005 (2005), pp. 117–122. 4.2,
4.2.2, 4.2.2

[66] SILVER, D., HUANG, A., MADDISON, C. J., GUEZ, A., SIFRE, L., VAN DEN
DRIESSCHE, G., SCHRITTWIESER, J., ANTONOGLOU, I., PANNEERSHELVAM,
V., LANCTOT, M., DIELEMAN, S., GREWE, D., NHAM, J., KALCHBRENNER,
N., SUTSKEVER, I., LILLICRAP, T., LEACH, M., KAVUKCUOGLU, K., GRAE-
PEL, T., AND HASSABIS, D. Mastering the game of Go with deep neural net-
works and tree search. Nature 529, 7587 (jan 2016), 484–489. 4.3

[67] SIPSER, M. Introduction to the Theory of Computation, second ed. Course Tech-
nology, 2006. 1.3

[68] SLATER, P., COCKAYNE, E., AND HEDETNIEMI, S. Information dissemination
in trees. SIAM Journal on Computing 10, 4 (1981), 692–701. 3.2, 3.2

[69] SURYNEK, P. An optimization variant of multi-robot path planning is intractable.
In AAAI (2010). 4.2.1

[70] SURYNEK, P. Multi-robot path planning. InMulti-Robot Systems, T. Yasuda, Ed.
IntechOpen, Rijeka, 2011, ch. 14. 4.2

[71] TOH, C. K. Ad Hoc Wireless Networks: Protocols and Systems, 1st ed. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2001. 2

[72] ČAGALJ, M., HUBAUX, J.-P., AND ENZ, C. Minimum-energy broadcast in all-
wireless networks: Np-completeness and distribution issues. In Proceedings of
the 8th Annual International Conference on Mobile Computing and Networking
(New York, NY, USA, 2002), MobiCom ’02, ACM, pp. 172–182. 2.2.2

[73] WAN, P.-J., CĂLINESCU, G., LI, X.-Y., AND FRIEDER, O. Minimum-energy
broadcasting in static ad hoc wireless networks. Wireless Networks 8, 6 (Nov
2002), 607–617. 2.2.2

BIBLIOGRAPHY 57

[74] WANG, K.-H. C., AND BOTEA, A. Fast and memory-efficient multi-agent
pathfinding. In Proceedings of the Eighteenth International Conference on Inter-
national Conference on Automated Planning and Scheduling (2008), ICAPS’08,
AAAI Press, pp. 380–387. 4.2.2

[75] WIESELTHIER, J. E., NGUYEN, G. D., AND EPHREMIDES, A. On the con-
struction of energy-efficient broadcast and multicast trees in wireless networks.
pp. 585–594. 2, 2.2.2, 2.2.2, 2.2.2

[76] WILLIAMSON, D. P., AND SHMOYS, D. B. The Design of Approximation Al-
gorithms, 1st ed. Cambridge University Press, New York, NY, USA, 2011. 13,
15

[77] WOLSEY, L. Integer Programming. Wiley Series in Discrete Mathematics and
Optimization. Wiley, 1998. 1.2, 6, 2, 3

[78] YOUNIS, M., AND OZER, S. Z. Wireless ad hoc networks: technologies and
challenges. Wireless Communications and Mobile Computing 6, 7 (2006), 889–
892, doi: 10.1002/wcm.449. 2

[79] YU, J., AND LAVALLE, S. M. Structure and intractability of optimal multi-robot
path planning on graphs. In Proceedings of the Twenty-Seventh AAAI Conference
on Artificial Intelligence, July 14-18, 2013, Bellevue, Washington, USA. (2013).
4.2.1

[80] YUAN, D. Computing optimal or near-optimal trees for minimum-energy in wire-
less networks. In Third International Symposium on Modeling and Optimization
in Mobile, Ad Hoc, and Wireless Networks (WiOpt’05) (April 2005), pp. 323–331.
2.2.2

[81] YUAN, D., AND HAUGLAND, D. Dual decomposition for computational opti-
mization of minimum-power shared broadcast tree in wireless networks. IEEE
Transactions on Mobile Computing 11 (2012), 2008–2019. 2.2.4, 5.1

58 BIBLIOGRAPHY

Chapter 6

Attached Papers

60 Attached Papers

Paper I

6.1 Shared Multicast Trees in Ad Hoc Wireless Networks

Marika Ivanova

In: Cerulli R., Fujishige S., Mahjoub A. (eds) Combinatorial Optimization. ISCO
2016. Lecture Notes in Computer Science, vol 9849. Springer, Cham

62 Attached Papers

6.1 Shared Multicast Trees in Ad Hoc Wireless Networks 63

Shared Multicast Trees in Ad Hoc

Wireless Networks

Marika Ivanova

University of Bergen, Norway
Marika.Ivanova@uib.no

http://www.uib.no/en/persons/Marika.Ivanova

Abstract. This paper addresses a problem of shared multicast trees
(SMT), which extends a recently studied problem of shared broadcast
trees (SBT). In SBT, a common optimal tree for a given set of nodes al-
lowing broadcasting from any node to the rest of the group is searched.
In SMT, also nodes that neither initiate any transmission, nor act as des-
tinations are considered. Their purpose is exclusively to relay messages
between nodes. The optimization criterion is to minimize the energy con-
sumption. The present work introduces this generalization and devises
solution methods. We model the problem as an integer linear program
(ILP), in order to compute the exact solution. However, the size of in-
stances solvable by ILP is significantly limited. Therefore, we also focus
on inexact methods allowing us to process larger instances. We design
a fast greedy method and compare its performance with adaptations of
algorithms solving related problems. Numerical experiments reveal that
the presented greedy method produces trees of lower energy than alter-
native approaches, and the solutions are close to the optimum.

Keywords: ad hoc wireless network, Steiner tree, multicast communi-
cation, ILP model, heuristic algorithm

1 Introduction

The purpose of a multicast communication in a wireless ad-hoc network is to
route information from a source to a set of destinations. Given a set of devices
and distances between them, the task is to assign power to each device (node), so
that the demands of the network are met and the energy consumption is as low
as possible, assuming their locations are fixed. Power efficiency is an important
aspect in constructing ad-hoc wireless networks since the devices are typically
heavily energy-constrained. Individual devices work as transceivers, which means
that they are able to both transmit and receive a signal. Moreover, the power
level of a device can be dynamically adjusted during a multicast session.

Unlike wired networks, nodes in ad-hoc wireless networks use omnidirectional
antennas, and hence a message reaches all nodes within the communication range
of the sender. This range is determined by the power assigned to the sender,
which is the maximum rather than the sum of the powers necessary to reach

64 Attached Papers

2 Shared Multicast Trees

all intended receivers. This feature is often referred to as the wireless multicast
advantage [19].

The problems of finding power-minimizing trees in wired networks are gener-
alizations of the minimum Steiner tree problem (e.g. [15]). Many wireless network
design tasks are NP-hard [8,13]. The following problems are relevant to our work.

Minimum Energy Broadcast (MEB) is the problem of constructing an opti-
mal arborescence for broadcasting from a given source to all remaining nodes. In
order to be able to perform a broadcast session from different sources, a separate
tree has to be stored for each source. A generalized multicast version assumes
that the message is intended for a predefined subset of vertices. Remaining ver-
tices can be used as intermediate nodes forwarding the message to other nodes,
and possibly reduce the total cost. Such nodes are referred to as Steiner nodes.

Range Assignment Problem (RAP) concerns the problem of assigning trans-
mission powers of minimum sum to the wireless nodes while ensuring network
connectivity [1, 7]. Unlike MEB, the resulting links formed by the energy as-
signment are undirected. A generalization of the problem considers the strong
connectivity within a nonempty subset of nodes.

Shared Broadcast Tree (SBT). A crucial drawback of MEB is the necessity
of storing one tree for each source. The basic idea of SBT [17,20] is to construct
a common tree that is source independent and hence simplifies routing, as the
relaying node does not need to know the original source in order to adjust its
corresponding power level. Instead, the power level depends merely on the im-
mediate neighbour from which the message was received. This idea is based on
the observation that a signal that is being forwarded by a node does not have
to reach the neighbour from which it originally came. So, if a signal comes from
the most distant neighbour, the relaying power must correspond to the second
most distant neighbour. When, on the other hand, a message comes from one of
the closer neighbours, it has to be forwarded with the power necessary to reach
the most distant one. With this conception, we get two power levels, and their
selection involves only a single binary decision making.

This work introduces the shared multicast tree (SMT) problem, a general-
ization of SBT. Analogously to the multicast versions of MEB and RAP, in
SMT we assume that there are two types of nodes, called destinations and non-
destinations, respectively. Destinations can initiate a transmission, and must
receive every transmission initiated by other destinations. Non-destinations can
relay a message, but do not initiate any transmission. Neither do they have to
receive any transmission. Passing messages via non-destinations is thus optional,
and is chosen only if it saves energy, which is the main motivation for SMT. The
goal is to find a common source-independent tree that connects the destinations
while minimizing the power.

The decentralized nature of wireless ad-hoc networks implies its suitability for
applications, where it is not possible to rely on central nodes, or where network
infrastructure does not exist. This is typical for various short-term events like
conferences or fixtures. Simple maintenance makes them useful in applications

6.1 Shared Multicast Trees in Ad Hoc Wireless Networks 65

Shared Multicast Trees 3

such as emergency situations, disaster relief, military command and control, and
most recently, in the mobile commerce sector.

2 Related Work

MEB was introduced in [19], where the authors considered three heuristic al-
gorithms of which most cited is Broadcast Incremental Power (BIP), a greedy
O(N2 logN) approximation algorithm. To our best knowledge, the most recent
results for lower and upper bounds on the approximation ratio are 4.6 [3] and
6 [2], respectively. Much is written about refinements of fast sub-optimal meth-
ods, for instance [11,12,14,18]. In [7], the authors study RAP and compare cases
when the resulting graph is required to be strongly and weakly connected. Several
heuristic approaches are proposed (e. g. in [5,6]). Many works are also dedicated
to mathematical programming techniques. Various ILP models for both MET
and RAP are presented in [9, 10, 13, 16]. A special case where the transmission
ranges of the stations ensure the communication between any pair of stations in
at most h hops is investigated in [8].

The first work concerning SBT is [17], where the idea of a single source-
independent tree embedding N broadcast trees for different sources is intro-
duced. The authors show that using the same broadcast tree does not result in
widely varying total powers for different sources. Another contribution of [17]
is a polynomial-time approximation algorithm to construct a single broadcast
tree, including an analysis of its performance. In [20], the authors present an
ILP formulation and apply a dual decomposition method. This approach en-
ables solving larger instances than an explicit formulation can solve, and with
less than 3% performance gap to global optimality.

3 Notation and Assumptions

Let H = (VH , EH) be an undirected graph and u ∈ VH . The degree of u in H

is denoted by degH(u). The input and output degree of v ∈ VK in a directed
graph K = (VK , AK) is denoted by deg−K(v) and deg+K(v), respectively. Let
H ′ = (VH′ , EH′) be a subgraph of H. Then, H \H ′ denotes the graph induced
by the node set VH \ VH′ .

A wireless network is modelled as a complete graph G = (V,E), where V

corresponds to the network nodes, and the edges E correspond to potential direct
links between them, i.e. ∀i, j ∈ V, i 6= j : {i, j} ∈ E. The set A = {(i, j) : i, j ∈
V, i 6= j} contains all arcs derived from E. Next, D ⊆ V is a nonempty set of
destinations with N = |V | and M = |D|.

Let z ∈ {0, 1}E be a vector with components corresponding to edges in E.
The undirected graph induced by z is defined as Gz = (V,Ez), where {i, j} ∈
Ez ⇔ zij = 1. The directed graph induced by x ∈ {0, 1}A is defined analogously.

For i, j ∈ V , the power requirement for transmission from i to j is denoted
by pij , and depends on the distance dij between i and j and environmental
properties. More precisely, pij = κdαij , where α is an environment-dependent

66 Attached Papers

4 Shared Multicast Trees

parameter (typically valued between 2 and 4) and κ is a constant. In this work,
the power requirements pij are referred to as the arc costs. It follows from dij =
dji that the power requirements are symmetric.

If {i, j} is an edge in a tree T = (VT , ET), where VT ⊆ V , ET ⊆ E, we use
Ti/j to denote the subtree of T consisting of all vertices k such that the path
from k to j visits i, as introduced in [20]. Additionally, we define a function
nod(Ti/j) that returns the number of destinations in Ti/j .

Neighbours of i in T are denoted iT
1
, iT

2
, iT

3
, . . . in non-increasing order of

distance from i. If there is no risk of confusion, we simply omit the superscript
T . The highest and second highest power levels of i are defined by its neighbours
i1 and i2, respectively. If i is a leaf, we set pii2 = 0. The contribution cT (i) of i
in T to the total cost depends on i’s power levels:

cT (i) = nod(Ti1/i)pii2 + nod(T \ Ti1/i)pii1 . (1)

The total cost P (T) of the tree T is then determined as

P (T) =
∑

i∈V

cT (i). (2)

Problem 1. (SMT): Find a tree T in G minimizing P (T) such that T spans D.

The most costly two incident edges of each node contribute to the objective
function value. This reflects the nature of SBT/SMT, when the power level of
a node is determined by the most costly link along which a message has to be
forwarded. The power requirement of the link is multiplied by the number of
senders whose transmissions are relayed through this link, which captures how
often the link is used.

4 Discrete Optimization Model

We present an integer programming model for SMT, extending the model in [20]
by non-destinations. In this setting we consider a set of destinations D ⊆ V

where a broadcast session takes place. Variables are defined as follows:

zij =

{

1 if edge {i, j} ∈ E is in T ,

0 otherwise,

xs
ij =

{

1 if arc (i, j) ∈ A is used to transmit messages from s ∈ D,

0 otherwise,

ysij =

{

1 if node i ∈ V uses power pij to transmit messages from s ∈ D,

0 otherwise.

Let xs ∈{0, 1}A denote the vector consisting of variables xs
ij for all (i, j) ∈ A.

The ILP model is presented below. The x-variables induce |D| directed trees,

6.1 Shared Multicast Trees in Ad Hoc Wireless Networks 67

Shared Multicast Trees 5

that are encapsulated into a single spanning tree induced by the z-variables. The
power levels are determined by the y-variables.

min
∑

(i,j)∈A

∑

s∈D

pijy
s
ij (3a)

s.t.
∑

{i,j}∈E

zij ≤ N − 1, (3b)

∑

i∈V \{j}

xs
ij = 1 j, s ∈ D, j 6= s, (3c)

xs
jk ≤

∑

i∈V \{j}

xs
ij ≤ 1 j ∈ V \D, s ∈ D, k ∈ V \ {j}, (3d)

∑

i∈V \{j}

xs
ij ≤

∑

k∈V \{j}

xs
jk s ∈ D, j ∈ V \D, (3e)

xs
ij + xs

ji = zij {i, j} ∈ E, s ∈ D, (3f)

x
j
ij = 0 j ∈ D, i ∈ V \ {j}, (3g)

xs
ij ≤

∑

k∈V :pik≥pij

ysik s ∈ D, (i, j) ∈ A, (3h)

z ∈ {0, 1}E ,x,y ∈ {0, 1}A×D. (3i)

By constraint (3b), we express the upper bound on the number of edges in
the Steiner tree. There is also a lower bound M − 1 on the size of the spanning
tree, but addition of this constraint would neither reduce the space of feasible
solutions nor increase the strength of the model. If the tree does not contain any
Steiner nodes, its size is the lower bound, while if all nodes are used (either as
Steiner nodes, or D = V), its size equals the upper bound. By (3c), we ensure
that a message from source s reaches a destination j from exactly one neighbour
i ∈ V . Next, constraint (3d) covers the case when j ∈ V \D: If a non-destination
j forwards a message from s towards k, the message must come from exactly one
neighbour i. Note that assuming there is no outgoing arc from a non-destination
j, constraint (3d) does not prevent j from being a leaf in Gx

s . We make such
undesired solutions impossible by adding constraint (3e), which reduces the set
of feasible solutions. However, (3e) is not necessary, because a solution, where a
non-destination that does not relay any message is assigned a non-zero power,
would be filtered out by the minimization procedure. The expression (3f) says
that for any edge {i, j} in Gz a message from s is transferred via either arc (i, j)
or arc (j, i). The next constraint (3g) expresses that a transmission initiated
by s ∈ D cannot reach s again, which implies non-existence of a directed cycle
containing s. Finally, by (3h), we define a relation between x-variables and y-
variables. When arc (i, j) is used for transmission of a message from s ∈ D, vertex
i relaying the message must be assigned power at least pij . The remainder of

68 Attached Papers

6 Shared Multicast Trees

this section justifies that the model is a correct formulation of SMT. Proofs of
all claims can be found in Appendix A.

Lemma 1. Let (x, z) satisfy (3b) - (3i). A replacement of all directed arcs in
Gx

s by undirected ones yields graph Gz, for all s ∈ D.

Lemma 2. Let (x, z) satisfy (3b) - (3i) and s ∈ D. All arcs in a path (s =
u1, u2, . . . , uk) in digraph Gx

s are directed from s towards uk.

Proposition 1. Let (x, z) satisfy constraints (3b) - (3i). If Q is a connected
component in Gz such that VQ ∩D 6= ∅, then, Q does not contain any cycle.

Proposition 2. If (x, z) satisfies constraints (3b) - (3i), then there exists a path
in Gz between any two destinations s, t ∈ D.

The optimal solution to (3a) - (3i) is a graph Gz with one connected com-
ponent containing all destinations. Non-destinations outside of this component
are isolated vertices, as any potential links between them would be eliminated
by the optimization.

Proposition 3. If (x,y, z) is an optimal solution to (3a) - (3i), then one of the
connected components of Gz is an optimal tree in Problem 1, and
∑

(i,j)∈A

∑

s∈D pijy
s
ij = P (Gz).

5 Inexact Methods

Solving the ILP model presented in the previous section provides the optimal
power assignment, but the computation in large instances takes prohibitively
long time. Hence, we now focus on algorithms with better trade-off between
optimality and runtime. Any tree T in G spanning D is a feasible solution to
SMT . We study the following methods:

1. Construction by MST (minimum-weight spanning tree), where all vertices
are considered as destinations, and a MST is constructed over the set V .

2. Construction by BIP, where we regard the set of vertices as an instance of
MEB, and apply the BIP algorithm over V .

3. Greedy Anticipating SMT algorithm described in the following Section 5.1.

The global impact of a local change suggests that the first two algorithms are
rather myopic for our purposes. Unlike MST and MEB, the nature of SBT/SMT
implies that an addition of an edge does not cause only a local change of power
levels. Every time a new edge is appended, all nodes already included in the
tree increase their contributions to the resulting cost, because the addition of
an edge also increases the size of corresponding subtrees of every interior node.
Therefore, the new cost cannot be calculated in constant time.

In general, the algorithms work in two phases. The first phase, construction,
creates a spanning tree according to a certain strategy. Further improvements
can be achieved in the second phase (refinement) which can be applied regardless
of what construction method is used.

6.1 Shared Multicast Trees in Ad Hoc Wireless Networks 69

Shared Multicast Trees 7

5.1 Greedy SMT Approach

We present in Alg. 1 GASMT, a greedy algorithm aimed to construct a Steiner
tree T = (VT , ET), with low SMT cost. The algorithm starts with T containing
only a pre-defined root, and iteratively expands T by an edge until all destina-
tions are present in VT . The selection of the new edge is based on an anticipation
of the entire resulting tree.

Algorithm 1 Greedy Anticipating SMT (GASMT)

Input: Complete graph G = (V,E), root r ∈ V , destinations D ⊆ V

Output: Steiner tree T = (VT , ET), D ⊆ VT ⊆ V , ET ⊆ E

1: procedure BuildTree(G)
2: T ← ({r}, ∅)
3: while D 6⊆ VT do

4: bestCost ← ∞
5: Cand ← {{i, j} : i ∈ VT , j = argmin{dik : k ∈ V \ VT }}
6: for each {i, j} ∈ Cand do

7: T ′ ← AnticipateTree(T, i, j)
8: if P (T ′) < bestCost then

9: bestCost ← P (T ′)
10: {i∗, j∗} ← {i, j}

11: T ← (VT ∪ {j∗}, ET ∪ {{i∗, j∗}})

return T

12:
13: procedure AnticipateTree(T, i, j)
14: T ′ ← (VT ∪ {j}, ET ∪ {{i, j}})
15: Disconnected ← V \ VT ′

16: for each v ∈ Disconnected ∩D do

17: u ← argmin{dkv : k ∈ VT ′}
18: T ′ ← (VT ′ ∪ {v}, ET ′ ∪ {{u, v}})

return T ′

Before a new edge is appended, we determine a set Cand of potential edges
that can be selected: for every u ∈ VT , we remember a potential edge linking u to
the closest v ∈ V \VT (line 5 in Alg. 1). For each candidate edge {i, j}, we build
an anticipated tree spanning D. The edge {i, j} is temporarily appended to T ,
which produces tree T ′. Subsequently, all destinations that are not yet included
in T ′ are connected one by one to the growing anticipated T ′ using the shortest
possible edges. The candidate link resulting in the cheapest anticipated tree is
then selected and added permanently to T . The purpose of the anticipation
procedure is to predict the sizes of individual subtrees in the final tree. This
allows a more realistic estimation of the resulting objective value, in contrast
to the construction by MST and BIP. Non-destinations are disregarded in the
anticipation procedure, because they do not alter the subtree sizes.

70 Attached Papers

8 Shared Multicast Trees

5.2 Refinement

Any construction algorithm can be followed by an additional phase refining the
existing tree T . In particular, this phase handles non-destinations, and replaces
expensive transmissions by cheaper ones.

Although the use of non-destinations may reduce the cost, the construction
phase does not guarantee that all non-destinations do. Thus, cost reductions
can be achieved by removing non-destinations that actually deteriorate the tree.
How a non-destination v is processed depends on its degree:

• deg(v) = 1: Non-destination leaves can immediately be deleted recursively.
• deg(v) = 2: Let (v1, . . . , vm) be a maximal path in T such that deg(v1) =

· · · = deg(vm) = 2 and v1, . . . , vm ∈ V \D, and consider the two connected
components T1 and T2 arising when the path is deleted from T . If there
exists an edge e ∈ E connecting T1 and T2 such that P (T ′) < P (T), where
T ′ = (VT1

∪ VT2
, ET1

∪ ET2
∪ {e}), the path is replaced by the best choice of

e. If no such edge exists, T .
• deg(v) ≥ 3: Let E(v) be the set of edges incident to v in T and let T ′ =

(VT \ {v}, (ET \ E(v)) ∪ EMST), where EMST is the set of edges of a MST
constructed over the set of v’s neighbours in T . If P (T ′) < P (T), the current
tree is updated to T ′.

The cost of the tree can be further improved by eliminating unnecessary
transmissions by means of so called “sweep” operations [19]. After removal of an
edge e, the vertices are partitioned into a cut. We then select and include the
edge across the cut leading to the cheapest tree, possibly e itself. This procedure
can be done for all edges, or only for selected ones - for example it makes sense
to test only edges longer than a certain threshold.

6 Experimental Evaluation

We have implemented the ILP model as well as the inexact algorithms and
compared numerically their performance in terms objective value and runtime.

The input parameters of the procedure generating individual instances are
the number of all vertices and the number of destinations. It generates instances
with the intended number of destinations and non-destinations with random
coordinates uniformly distributed on a square. Finally, the power requirements
are determined using pij = κdαij with κ = 1 and α = 2. All experiments were
run on an Intel Core 2 Quad CPU at 2.83 GHz and 7 GB RAM.

6.1 ILP Model

The integer programming formulation was implemented in AMPL and submitted
to solver CPLEX [21] which computed optimal solutions as well as LP relaxations
of the generated instances. The running time of determining the optimal solution
for instances containing more than 22 vertices becomes excessively long, and so

6.1 Shared Multicast Trees in Ad Hoc Wireless Networks 71

Shared Multicast Trees 9

we computed only the corresponding LP relaxations, which gives lower bounds
on the objective function value.

Fig. 1: Dependence of the total cost on the number of all vertices

Two instance settings were tested. In the first setting, we kept the number of
non-destinations |V \ D| constant, while increasing the number of destinations
|D|. The abbreviation ID-CN is used to refer to this series of experiments, fol-
lowed by |V \ D| whenever it needs to be specified. In the second setting, |D|
was constant while |V \D| was increasing (IN-CD).

The first series of experiments concerns the change of the objectve function
value with growing instance size. It is obvious from the graphs in Fig. 1, that
in ID-CN, increasing the number of vertices also increases the total SMT cost.
On the other hand, in IN-CD, the total cost decreases. This decline gradually
mitigates, and it can be assumed that the average cost converges to a constant
value. By way of contrast, the first graph in Fig. 1 also contains the costs obtained
by the inexact algorithm. The difference between the optimum and the result of
GASMT is almost negligible.

72 Attached Papers

10 Shared Multicast Trees

The second series of experiments shows how fast the CPU time grows with
increasing number of nodes. It is apparent that the time used by the solver grows
faster in ID-CN than in IN-CD, as seen in Fig. 2. Nevertheless, in both settings,
the time grows exponentially. In the smallest instances, the CPU time is longer
for IN-CD, because the number of destinations is higher than in ID-CN. This
difference is gradually reduced. From approximately 20 vertices on, the solving
time of the LP-relaxations in ID-CN becomes longer. In IN-CD(10) and ID-
CN(10), every added destination causes an average increase in the ILP solution
time by 89% and 208%, respectively.

Fig. 2: Dependence of the solution time on the total number of vertices

6.2 Greedy and Heuristic Approach

The next set of experiments compares the objective value of inexact solutions
produced by GASMT and the construction by MST and BIP discussed in Sect. 5.
Each run of an inexact algorithm was followed by a refinement procedure, namely
two iterations of non-destination removal and two iterations of sweep operations
for every edge. The graphs in Fig. 3 show the results of two experimental settings,
IN-CD(10) (left) and ID-CN(10) (right). Each column in the graphs corresponds
to the average SMT cost calculated for 100 instances with fixed |V |/|D| ratio.

Fig. 3: Comparison of the greedy methods. The fractions on the x-axis determine
the corresponding |D|/|V | values.

6.1 Shared Multicast Trees in Ad Hoc Wireless Networks 73

Shared Multicast Trees 11

It can be seen that the cost of the solutions produced by the construction
by MST and BIP are similar, but GASMT is always perceptibly better. Never-
theless, worse time complexity of GASMT becomes apparent while processing
instances of around 100 nodes, when the time spent on one instance is approx-
imately units of minutes. On the contrary, the other two methods return the
solution almost immediately.

7 Conclusion and Future Work

We have introduced a multicast version of SBT, a natural generalization of
the problem. We have proposed a discrete optimization model together with the
proof of its correctness. Due to the limited size of instances solvable in a practical
time, heuristic and greedy approaches are also developed.

Moreover, we have conducted several numerical experiments using the CPLEX
solver. It turned out that the presented ILP model can be used for solving in-
stances with up to around 20 vertices. An increasing number of destinations
causes a much faster growth of the solution time than an increasing number
of non-destinations. In addition, these experiments give us insight into the cost
reduction as a function of increasing number of non-destinations.

Further experiments involved the inexact methods. The GASMT algorithm
presented in this work gives better results than the construction by MST and
BIP applied on SMT. Moreover, the solutions provided by GASMT are close to
the optimal ones determined by solving the ILP model.

A subject of continued research is a detailed theoretical study of the inex-
act methods. There are several interesting questions regarding this topic, like
whether any inexact method is an approximation algorithm for SBT/SMT, or
whether any method performs consistently better than others. There is also a
substantial room for further improvements of the ILP model so that it can be ap-
plicable for larger instances. In particular, methods like strong valid inequalities,
lazy constraints and user cuts could serve for this purpose.

References

1. Althaus, E., Calinescu, G., Mandoiu, I.I., Prasad, S., Tchervenski, N., Zelikovsky,
A.: Power efficient range assignment in ad-hoc wireless networks. Wireless Commu-
nications and Networking. 3, 1889–1894 (2003)

2. Ambühl, C.: An Optimal Bound for the MST Algorithm to Compute Energy Ef-
ficient Broadcast Trees in Wireless Networks. ICALP’05 Proceedings of the 32nd
international conference on Automata, Languages and Programming. 1139–1150
(2005)

3. Bauer, J., Haugland, D., Yuan, D.: New results on the time complexity and ap-
proximation ratio of the Broadcast Incremental Power algorithm. INFORMATION
PROCESSING LETTERS. 109, 12, 615–619 (2009)

4. Bauer, J., Haugland, D., Yuan, D.: A fast local search method for minimum energy
broadcast in wireless ad hoc networks. Operations Research Letters. 37, 2, 75–79
(2009)

74 Attached Papers

12 Shared Multicast Trees

5. Bein, D., Zheng, S. Q.: Energy efficient all-to-all broadcast in all-wireless networks.
Information Sciences. 180, 10, 1781–1792 (2010)

6. Bhukya, W.N., Singh, A.: An effective heuristic for construction of all-to-all mini-
mum power broadcast trees in wireless networks. Advances in Computing, Commu-
nications and Informatics. 74–79 (2014)

7. Blough, D.M., Leoncini, M., Resta, G., Santi, P.: On The Symmetric Range Assign-
ment Problem In Wireless Ad Hoc Networks. Proceedings of the IFIP 17th World
Computer Congress - TC1 Stream / 2Nd IFIP International Conference on The-
oretical Computer Science: Foundations of Information Technology in the Era of
Networking and Mobile Computing. 71–82 (2002)

8. Clementi, E.F., Penna, P., Silvestri, R.: On the power assignment problem in radio
networks Mobile Networks and Applications - Discrete algorithms and methods for
mobile computing and communications. 9, 2, 125–140 (2004)

9. Das, A. K., Marks, R. J., El-sharkawi, M.: Minimum power broadcast trees for
wireless networks: Integer programming formulations. The 22nd Annual Joint Con-
ference of the IEEE Computer and Communications Societies. 245–248 (2003)

10. Das, A.K.; Marks, R.J., II; El-Sharkawi, M.; Arabshahi, P.; Gray, A.: Optimiza-
tion methods for minimum power bidirectional topology construction in wireless
networks with sectored antennas. Global Telecommunications Conference. 6, 3962–
3968 (2004)

11. Das, A.K., Marks, R.J., El-sharkawi, M., Arabshahi, P., Gray, A.: r-Shrink: A
heuristic for improving minimum power broadcast trees in wireless networks. Pro-
ceedings of the IEEE GLOBECOM’03. 1, 523–527 (2003)

12. Das, A.K., Marks, R.J., El-sharkawi, M., Arabshahi, P., Gray, A.: e-Merge : A
heuristic for improving minimum power broadcast trees in wireless networks Tech-
nical Report, Department of Electrical Engineering, University of Washington. 2003.

13. Haugland, D., Yuan, D.: Wireless Network Design: Optimization Models and So-
lution Procedures. International Series in Operations Research & Management Sci-
ence. New York, Springer. 219–246 (2011)

14. Liang, W.: Constructing Minimum-energy Broadcast Trees in Wireless Ad Hoc
Networks. Proceedings of the 3rd ACM International Symposium on Mobile Ad
Hoc Networking & Computing. 112–122 (2002)

15. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Annals of
Discrete Mathematics. Elsevier Science. (1992)

16. Montemanni, R., Gambardella, L.M.: Exact Algorithms for the Minimum Power
Symmetric Connectivity Problem in Wireless Networks. Computers and Operations
Research. 32, 11, 2891–2904 (2005)

17. Papadimitriou, I., and Georgiadis, L.: Minimum-energy Broadcasting in Multi-hop
Wireless Networks Using a Single Broadcast Tree. Mobile Networks and Applica-
tions. 11, 3, 361–375 (2006)

18. Wan, P., Clinescu, G., Yi C.: Minimum-Power Multicast Routing in Static Ad Hoc
Wireless Networks. IEEE/ACM Transactions on Networking (TON). 12, 3, 507–514
(2004)

19. Wieselthier, J. E., Nguyen, G. D., Ephremides, A.: On the Construction of Energy-
Efficient Broadcast and Multicast Trees in Wireless Networks. Proceedings of the
Nineteenth Annual Joint Conference of the IEEE Computer and Communications
Societies. 2, 585–594 (2000)

20. Yuan, D., Haugland, D.: Dual Decomposition for Computational Optimization of
Minimum-Power Shared Broadcast Tree in Wireless Networks. IEEE Transactions
on Mobile Computing. 12, 11, 2008–2019 (2012)

21. IBM ILOG CPLEX V12.1 User’s Manual for CPLEX. 2009

6.1 Shared Multicast Trees in Ad Hoc Wireless Networks 75

Shared Multicast Trees 13

Appendix A

Lemma 1. Let (x, z) satisfy (3b) - (3i). A replacement of all directed arcs in
Gx

s by undirected ones yields graph Gz, for all s ∈ D.

Proof. By constraint (3f), {i, j} ∈ Ez if and only if (i, j) ∈ Ex
s or (j, i) ∈ Ex

s .
The lemma then follows immediately. ⊓⊔

Lemma 2. Let (x, z) satisfy (3b) - (3i) and s ∈ D. All arcs in a path (s =
u1, u2, . . . , uk) in digraph Gx

s are directed from s towards uk.

Proof. By (3g), we have xs
u2,s

= 0, hence xs
s,u2

= 1. Let us assume that there is
a directed path from s to ui. Then xs

ui,ui+1
= 1 holds, because if xs

ui+1,ui
= 1,

constraint (3c) would be violated (in case ui ∈ D) or constraint (3d) would be
violated (in case ui ∈ V \ D), since we already assumed that xs

ui−1,ui
= 1. In

other words, the constraints (3c) - (3d) ensure that for any vertex there is no
more than 1 inbound arc with xs-value 1. The result then follows by induction
on i. ⊓⊔

Proposition 1. Let (x, z) satisfy constraints (3b) - (3i). If Q is a connected
component in Gz such that VQ ∩D 6= ∅, then, Q does not contain any cycle.

Proof. By contradiction, let us assume that there exists a cycle (c1, c2, . . . , cp =
c1) in Q. From Lemma 1, we have a corresponding directed subgraph C in Gx

s

for any s ∈ D. Depending on the arc orientations, C is either a directed cycle or
a directed acyclic graph.

If C is not a directed cycle, it contains at least one vertex ci with degC
−
(ci) = 2.

This means that xs
ci−1,ci

= xs
ci+1,ci

= 1, which violates constraint (3c) if ci ∈ D

or (3d) if ci ∈ V \ D. Therefore, C is a directed cycle. As every ci ∈ C has
degC

−
(ci) = degC

+
(ci) = 1, we have xs

ci−1,ci
= xs

ci,ci+1
= 1, for all s ∈ D. Thus,

C can not contain s ∈ D, because that would contradict constraint (3g), which
says that the input degree of s ∈ D in Gx

s is zero.
The remaining possibility is that C is a directed cycle containing only vertices

in V \ D. As Q contains at least one destination s ∈ D, there is a path (s =
u1, u2, . . . ul) connecting s and C. Without loss of generality, let c1 = ul be the
vertex in C closest to s. By Lemma 2, we see that all edges of the path from s

to c1 in Gx
s are directed from s, which means that also xs

ul−1,c1
= 1. However,

that contradicts (3d), because we already assumed xs
cp−1,c1

= 1 and ul−1 6= cp−1.
It follows that the subgraph C is neither a cyclic graph nor a directed acyclic
graph, which is a contradiction completing the proof. ⊓⊔

Proposition 2. If (x, z) satisfies constraints (3b) - (3i), then there exists a path
in Gz between any two destinations s, t ∈ D.

Proof. Because (3g) implies that degGx
s

−
(s) = 0, the claim is equivalent to the

following: Any maximal directed path in Gx
s to t starts in s. Assume the con-

trary, that the path starts in j 6= s. If j ∈ D, constraint (3c) ensures that there is
one inbound arc (i, j), and hence the path can be extended by (i, j). Similarly, if

76 Attached Papers

14 Shared Multicast Trees

j ∈ V \D, by (3d), if j has an outgoing arc (which is fulfilled by the assumption),
there must be an inbound arc, which again contradicts the maximality of the
path. According to Proposition 1, Gz is acyclic, and the proof is complete since
the number of vertices in V is finite. ⊓⊔

Proposition 3. If (x,y, z) is an optimal solution to (3a) - (3i), then one of the
connected components of Gz is an optimal tree in Problem 1, and
∑

(i,j)∈A

∑

s∈D pijy
s
ij = P (Gz).

Proof. It follows from Prop. 2 that Gz has a connected component d(Gz) span-
ning D, and from Prop. 1 that d(Gz) is a tree. Also, it is obvious that for any
tree T in G spanning D, there exists a feasible solution (x′,y′, z′) to (3a) - (3i)
such that d(Gz

′) = T . Consequently, we only need to show that for all i ∈ V ,

∑

j∈V :(i,j)∈A

∑

s∈D

pijy
s
ij = cGz

(i) (4)

as defined by (1).
Consider an arbitrary vertex i. If i is a leaf in d(Gz), it must be a destination.

Recall that i1 denotes the most distant, in this case the only, neighbour of i in
Gz. Because of (3f) and (3g), we have xi

ii1
= 1. Constraint (3h) then enforces

yiii1 = 1, which implies (4).
If i is an interior vertex, constraints (3c) and (3d) enforce that there is one

inbound arc to i in Gx
s . So, either xs

i1i
= xs

ii2
= 1 or xs

i2i
= xs

ii1
= 1. In

the first case, (3h) assigns ysii2 = 1. In the second case, ysii1 = 1 holds. Due
to minimization, all variables ysiij with j > 2 are set to 0. As the first case

corresponds to s ∈ Ti1/i and the second case to s ∈ T \Ti1/i, summing over all s ∈
D yields (4). The contribution of i to (2) is then nod(Ti1/i)pii2+nod(T \Ti1/i)pii1 .

⊓⊔
By satisfying the constraints, we obtain a solution where each vertex is as-

signed powers necessary for relaying a message from a particular source. By
optimality, the solution involves the power levels representing minimal SMT
cost.

Paper II

6.2 The Shared Broadcast Tree Problem and MST

Marika Ivanova

Electronic Notes in Discrete Mathematics, vol 55, 2016

78 Attached Papers

6.2 The Shared Broadcast Tree Problem and MST 79

The Shared Broadcast Tree Problem and MST

Marika Ivanova 1

Department of Infomatics,

University of Bergen,

Bergen, Norway

Abstract

The shared broadcast tree (SBT) problem in Euclidean graphs resembles the mini-
mum spanning tree (MST) problem, but differs from MST in the definition of the
objective function. The SBT problem is known to be NP-hard. In the current work,
we analyse how closely the MST-solution approximates the SBT-solution, and we
prove in particular that the approximation ratio is at least 6. Further, we conduct
numerical experiments comparing the MST-solution and the optimum. The results
show that the cost of the MST-solution is around 20% higher than the optimal cost.

Keywords: shared broadcast tree, MST, approximation algorithm

1 Introduction

The purpose of a broadcast communication in a wireless ad-hoc network is

to route information from one source node to all other nodes. Given a set of

devices and distances between them, the task is to assign a power to each node,

so that the communication demands are met and the energy consumption is

minimized, assuming their locations are fixed. The devices are able to both

transmit and receive a signal, as well as dynamically adjust their power level.

1 Email: marika.ivanova@uib.no

80 Attached Papers

Omnidirectional antennas are used, and hence a message reaches all nodes

within the communication range given by a power assigned to the sender, i.e.

the maximum of the powers necessary to reach all intended recipients.

Minimum Energy Broadcast [3] (MEB) is the problem of constructing an

optimal arborescence for broadcasting from a given source to all remaining

nodes, such that the total power consumption is minimized. A separate tree

has to be stored for each source. The idea of SBT [2][4] is to construct a

common source-independent tree, instead of a set of individual arborescences.

The power levels then depend merely on the immediate neighbour from which

a message is received. This idea is based on the observation that a forwarded

signal does not have to reach the neighbour from which it originally came.

The decentralized nature of wireless ad-hoc networks implies its suitability

for applications, where it is not possible to rely on central nodes, or where

network infrastructure does not exist. This is typical for various short-term

events like conferences or fixtures. Simple maintenance makes them useful in

emergency situations, military conflicts, and home networking.

We model a wireless network as a complete graph G = (V,E), where V

corresponds to the network nodes (points in R
2), and the edges E correspond

to the potential links between them. The energy requirement for transmission

from i to j is denoted by pij = κdαij, where dij is the Euclidean distance

between i and j, α is an environment-dependent parameter (typically valued

between 2 and 4) and κ is a constant. In this work, we use α = 2 and κ = 1.

Let T = (V,ET), ET ⊆ E be a spanning tree of G. Then Ti/j denotes the

subtree of T consisting of all vertices k such that the path from k to j visits i,

as introduced in [4]. For a non-leaf node i in T , i1 and i2 denote the first and

the second most distant neighbour of i in T , respectively. If i is a leaf, i2 is not

defined, and we let pii2 = 0. If a message is generated at a node k in Ti1/i then

i needs power pii2 to relay the message to i2 and other neighbours in T \Ti1/i.

Power pii1 is needed to relay messages initiated in T \Ti1/i. Assuming that all

nodes initiate messages equally frequently, the SBT problem is to construct a

spanning tree T minimizing the objective function

P (T) =
∑

i∈V

|Ti1/i|pii2 + |T \ Ti1/i|pii1 . (1)

2 MST as an approximate solution to the SBT problem

Since the SBT problem is NP-hard, inexact solutions are often considered.

Because any spanning tree is a feasible solution, the MST-solution yields one

6.2 The Shared Broadcast Tree Problem and MST 81

such approximation. This approach is also valid for MEB, where MST ap-

proximates the optimum with factor 6 [1]. We define the MST approximation

ratio ρ as the supremum, taken over all SBT instances, of the ratio between

the power consumptions in the MST solution and an optimal SBT.

Theorem 2.1 The MST approximation ratio for SBT is at least 6.

Proof. For an integer k ≥ 2, let Gk be a complete Euclidean graph with a

node o located in the center of a unit circle, nodes t1, . . . , t6 evenly distributed

on the circumference, and nodes si1, . . . , sik, (i = 1, . . . , 6), evenly distributed

on the radial line [o, sik] ⊂ [o, ti], where sik is located 1/k units from o. Thus,

since arc costs puv are the square of arc lengths duv, we have puv = 1/k4 for

u = sij, v = si,j+1, whereas puv = (1 − 1/k)2 for u = sik, v = ti. A possible

MST (denoted Tk) of Gk consists of the 6 paths (o, si1, . . . , sik, ti). For this

tree, the objective function (1) evaluates to

P (Tk) = 6
(
1− k−1

)
2

︸ ︷︷ ︸
ti

+6
[
(6k + 6)

(
1− k−1

)
2

+ k−4

]

︸ ︷︷ ︸
sik

+(6k − 5)(6k + 7)k−4

︸ ︷︷ ︸
o,si1,...,si,k−1

.

Another spanning tree of Gk is the star T ∗

k centered at node o. For this

solution, (1) evaluates to

P (T ∗

k) = 6︸︷︷︸
ti

+6
∑k

i=1

(
i
1

k2

)
2

︸ ︷︷ ︸
si1,...,sik

+6k + 7︸ ︷︷ ︸
o

.

Thus, the MST-approximation ratio satisfies ρ ≥ P (Tk)

P (T ∗

k
)
. Since lim

k→∞

P (Tk)

P (T ∗

k
)
= 6,

the claim follows. ✷

3 Numerical Experiments

The SBT problem can be modelled as a MILP [2][4], and moderately sized

instances can be solved. We have generated instances of a specific number

of nodes with random coordinates distributed uniformly on a square, and

compared the MST-solution to the optimal one. The MILP solver CPLEX is

used to compute the optimal solution. Each number of nodes is tested in 100

instances. Although the theoretical approximation ratio suggests that MST

is not very suitable for SBT, the experimental results summarized in Tab. 1

reveal that in practice, MST represents a feasible solution with objective value

approximately 1.2 times the optimum. This factor does not seem to change

much with growing number of nodes. However, calculation of the optimum

82 Attached Papers

Table 1
Average SBT costs of MST and optimal solutions for various instance sizes.

Number of nodes 10 12 14 16 18 20

P (OPT) 46268 56060 66747 69727 84250 94039

P (MST) 9432 68833 80195 84262 101816 119679

P (MST)/P (OPT) 1.198 1.232 1.206 1.210 1.209 1.271

for larger instances takes prohibitively long time, so we have access only to
limited data. The largest ratio observed in the experiments is 1.59.

4 Conclusion and Future Work

This paper studies the relation between MST and the optimal solution to SBT
in terms of the objective value. It has been shown that the MST approximation
ratio is at least 6. Numerical experiments suggest that even though there are
instances where MST is nearly 60% above the optimum, it represents a good
solution in the vast majority of cases. The current research leads to several
interesting questions that merit further investigation. A prominent question
is whether there exists a constant upper bound on the MST-approximation
ratio. For the related MEB problem, approximation algorithms with constant
performance guarantee are well studied. Adapting these methods and the
corresponding analysis to SBT is a research question to be pursued.

References

[1] Ambühl, C.: An Optimal Bound for the MST Algorithm to Compute Energy
Efficient Broadcast Trees in Wireless Networks. Automata, Languages and
Programming. 32nd International Colloquium, ICALP 2005, Lisbon, Portugal.
1139–1150 (2005)

[2] Papadimitriou, I., and Georgiadis, L.: Minimum-energy Broadcasting in Multi-
hop Wireless Networks Using a Single Broadcast Tree. Mobile Networks and
Applications, 11, 3 361–375 (2006)

[3] Wieselthier, J. E., Nguyen, G. D., Ephremides, A.: Energy-efficient broadcast
and multicast trees in wireless networks. Mob. Netw. Appl. 7, 6, 481-492 (2002)

[4] Yuan, D., Haugland, D.: Dual Decomposition for Computational Optimization
of Minimum-Power Shared Broadcast Tree in Wireless Networks. IEEE
Transactions on Mobile Computing, Vol 12, no 11. 2008–2019 (2012)

Paper V

6.5 Area Protection in Adversarial Path-finding Scenarios with Multi-
ple Mobile Agents on Graphs

Marika Ivanova, Pavel Surynek, Katsutoshi Hirayama

In: Proceedings of the 10th International Conference on Agents and Artificial Intelli-
gence (ICAART 2018), pp. 184-191, Funchal, Madeira, Portugal, SciTe Press, 2018,
ISBN 978-989-758-275-2.

142 Attached Papers

6.5 Area Protection in Adversarial Path-finding Scenarios with Multiple Mobile Agents
on Graphs 143

Area Protection in Adversarial Path-finding Scenarios with Multiple
Mobile Agents on Graphs

A Theoretical and Experimental Study of Strategies for Defense Coordination

Marika Ivanová1, Pavel Surynek2 and Katsutoshi Hirayama3

1Department of Informatics, University of Bergen, Thormhlensgt. 55, 5020 Bergen, Norway
2National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26, Aomi, Koto-ku, Tokyo 135-0064, Japan

3Kobe University, 5-1-1, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan

marika.ivanova@uib.no, pavel.surynek@aist.go.jp, hirayama@maritime.kobe-u.ac.jp

Keywords: Graph-based Path-finding, Area Protection, Area Invasion, Asymmetric Goals, Mobile Agents, Agent

Navigation, Defensive Strategies, Adversarial Planning.

Abstract: We address a problem of area protection in graph-based scenarios with multiple agents. The problem consists

of two adversarial teams of agents that move in an undirected graph. Agents are placed in vertices of the graph

and they can move into adjacent vertices in a conflict-free way in an indented environment. The aim of one

team - attackers - is to invade into a given area while the aim of the opponent team - defenders - is to protect

the area from being entered by attackers. We study strategies for assigning vertices to be occupied by the team

of defenders in order to block attacking agents. We show that the decision version of the problem of area

protection is PSPACE-hard. Further, we develop various on-line vertex-allocation strategies for the defender

team and evaluate their performance in multiple benchmarks. Our most advanced method tries to capture

bottlenecks in the graph that are frequently used by the attackers during their movement. The performed

experimental evaluation suggests that this method often defends the area successfully even in instances where

the attackers significantly outnumber the defenders.

1 INTRODUCTION

We address an Area Protection Problem (APP) with

multiple mobile agents moving in a conflict-free way.

APP can be regarded as a modification of known

problem of Adversarial Cooperative Path Finding

(ACPF) (Ivanová and Surynek, 2014) where two

teams of agents compete in reaching their target po-

sitions. Unlike ACPF, where the goals of teams of

agents are symmetric, the adversarial teams in APP

have different objectives. The first team of attackers

consists of agents whose goal is to reach a pre-defined

target location in the area being protected by the sec-

ond team of defenders. Each attacker has a unique

target in the protected area. The opponent team of

defenders tries to prevent the attackers from reaching

their targets by occupying selected locations so that

they cannot be passed by attackers.

Another distinction between ACPF and APP is a

definition of victory of a team. A team in ACPF wins

if all its agents reach their targets and agents of no

other team manage to do so earlier. In APP, the team

of defenders wins if all attackers are kept out of their

targets. Our effort is to design a strategy for the de-

fending team, so the success is measured from the de-

fenders’ perspective. It is often not possible to pre-

vent all attackers from reaching their targets, and so

the following objective functions can be pursued:

1. maximize the number of target locations that are

not captured by the corresponding attacker

2. maximize the number of target locations that are

not captured by the corresponding attacker within

a given time limit

3. maximize the sum of distances between the at-

tackers and their corresponding targets

4. minimize the time spent at captured targets

The common feature of APP and ACPF is that

once a location is occupied by an agent, it cannot be

entered by another agent until it is first vacated by the

agent which occupies it (opposing agent cannot push

the agent out). This is utilized both in competition for

reaching goals in ACPF, where agents may try to slow

down the opponent by occupying certain locations, as

184

Ivanová, M., Surynek, P. and Hirayama, K.

Area Protection in Adversarial Path-finding Scenarios with Multiple Mobile Agents on Graphs - A Theoretical and Experimental Study of Strategies for Defense Coordination.

In Proceedings of the 10th International Conference on Agents and Artificial Intelligence (ICAART 2018) - Volume 1, pages 184-191

ISBN: 978-989-758-275-2

Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

144 Attached Papers

well as in APP, where it is a key tool for the defenders

for keeping attackers out of the protected area.

APP has many real-life motivations from the do-

mains of access denial operations both in civil and

military sector, robotics with adversarial teams of

robots or other type of penetrators (Agmon et al.,

2011), and computer games.

Our contribution consists in analysis of computa-

tional complexity of APP. In particular, we show that

APP is PSPACE-hard. Next, we suggest several on-

line solving algorithms for the defender team that al-

locate selected vertices to be occupied so that attacker

agents cannot pass into the protected area. We iden-

tify suitable vertex allocation strategies for diverse

types of APP instances and test them thoroughly.

1.1 Related Work

Movements of agents at low reactive level are as-

sumed to be planned by some cooperative path-

finding - CPF (multi-agent path-finding - MAPF) (Sil-

ver, 2005; Ryan, 2008; Wang and Botea, 2011) algo-

rithm where agents of own team cooperate while op-

posing agents are considered as obstacles. In CPF the

task is to plan movement of agents so that each agent

reaches its unique target in a conflict free manner.

There exist multiple CPF algorithms both com-

plete and incomplete as well as optimal and sub-

optimal under various objective functions.

A good trade-off between the quality of solutions

and the speed of solving is represented by subopti-

mal/incomplete search based methods which are de-

rived from the standard A* algorithm. These meth-

ods include LRA*, CA*, HCA*, and WHCA* (Silver,

2005). They provide solutions where individual paths

of agents tend to be close to respective shortest paths

connecting agents’ locations and their targets. Con-

flict avoidance among agents is implemented via a so

called reservation table in case of CA*, HCA*, and

WHCA* while LRA* relies on replanning whenever a

conflict occurs. Since our setting in APP is inherently

suitable for a replanning, the algorithm LRA* is a can-

didate for underlying CPF algorithm for APP. More-

over, LRA* is scalable for large number of agents.

Aside from CPF algorithms, systems with mobile

agents that act in the adversarial manner represent an-

other related area. These studies often focus on pa-

trolling strategies that are robust with respect to var-

ious attackers trying to penetrate through the patrol

path (Elmaliach et al., 2009).

Theoretical or empirical works related to APP also

include studies on pursuit evasion (Hespanha et al.,

1999; Vidal et al., 2002) or predator-prey (Benda

et al., 1986; Haynes and Sen, 1995) problems. The

Tileworld (Pollack and Ringuette, 1990) also provides

an experimental environment to evaluate planning and

scheduling algorithms for a team of agents. A ma-

jor difference between these works and the concept of

APP is that, unlike the previous works, we assume the

agents in each team perform CPF algorithms, which

provide a new foundation of team architecture.

1.2 Preliminaries

The environment is modeled by an undirected un-

weighted graph G = (V,E). We restrict the instances

to 4-connected grid graphs with possible obstacles.

The team of attackers and defenders is denoted by

A = {a1, . . . ,am} and D = {d1, . . .dn}, respectively.

Continuous time is divided into discrete time steps.

Agents are placed in vertices of the graph at each

time step so that at most one agent is placed in each

vertex. Let αt : A∪D → V be a uniquely invertible

mapping denoting configuration of agents at time step

t. Agents can wait or move instantaneously into ad-

jacent vertex between successive time steps to form

the next configuration αt+1. Abiding by the follow-

ing movement rules ensures preventing conflicts:

• An agent can move to an adjacent vertex only if

the vertex is empty, or is being left at the same

time step by another agent

• A pair of agents cannot swap along a shared edge

• No two agents enter the same adjacent vertex at

the same time

We do not assume any specific order in which

agents perform their conflict free actions at each time

step. Our experimental implementation moves all at-

tackers prior to moving all defenders at each time

step. The mapping δA : A →V assigns a unique target

to each attacker. The task in APP is to find a strat-

egy of movement for defender agents so that the area

specified by δA is protected.

We state APP as a decision problem as follows:

Definition 1. The decision APP problem: Given an

instance Σ = (G,A,D,α0,δ
A) of APP, is there a strat-

egy of movement for the team D of defenders, so that

agents from the team A of attackers are prevented

from reaching their targets defined by δA.

In many instances it is not possible to protect all

targets. We are therefore also interested in the opti-

mization variant of the APP problem:

Definition 2. The optimization APP problem: Given

an instance Σ = (G,A,D,α0,δ
A) of APP, the task is to

find a strategy of movement for the team D of defend-

ers such that the number of attackers in A that reach

their target defined by δA is minimized.

Area Protection in Adversarial Path-finding Scenarios with Multiple Mobile Agents on Graphs - A Theoretical and Experimental Study of

Strategies for Defense Coordination

185

6.5 Area Protection in Adversarial Path-finding Scenarios with Multiple Mobile Agents
on Graphs 145

2 THEORETICAL PROPERTIES

APP is a computationally challenging problem as

shown in the following analysis. In order to study

theoretical complexity of APP, we need to consider

the decision variant of APP. Many game-like prob-

lems are PSPACE-hard, and APP is not an exception.

We reduce the known problem of checking validity of

Quantified Boolean Formula (QBF) to it.

The technique of reduction of QBF to APP is in-

spired by a similar reduction of QBF to ACPF, from

which we borrow several technical steps and lemmas

(Ivanová and Surynek, 2014). We describe the reduc-

tion from QBF using the following example. Con-

sider a QBF formula in prenex normal form

ϕ = ∃x∀a∃y∀b∃z∀c

(b∨ c∨ x)∧ (¬a∨¬b∨ y)∧

(a∨¬x∨ z)∧ (¬c∨¬y∨¬z) (1)

This formula is reduced to the APP instance depicted

in Fig. 4. Let n and m be the number of variables and

clauses, respectively. The construction contains three

types of graph gadgets.

For an existentially quantified variable x we con-

struct a diamond-shape gadget consisting of two par-

allel paths of length m+2 joining at its two endpoints.

tx1 t2
x txm-1 txm

fx1 f2
x fxm-1 fxm

ax2

ax1

ax3

(a
x1)

dx1 dx2

(
ax2

)

(a

x
3
)

Figure 1: An existentially quantified variable gadget.

There are 4 paths connected to the diamond at spe-

cific vertices as depicted in Fig. 1. The gadget further

contains three attackers and two defenders with initial

positions at the endpoints of the four joining paths.

The vertices in red circles are targets of specified at-

tackers. The only chance for defenders dx1 and dx2 to

prevent attackers ax3 and ax1 from reaching their tar-

gets is to advance towards the diamond and occupy

δA(ax3) by dx2 and either δA(ax1) or δA(ax2) by dx1.

For every universally quantified variable a there

is a similar gadget with a defender da1 and an attacker

aa1 whose target δA(aa1) lies at the leftmost vertex of

the diamond structure (see Fig. 2). The defender has

to rush to the attacker’s target and occupy it, because

otherwise the target would be captured by the attacker.

Moreover, there is a gadget in two parts for each

clause C depicted in Fig. 3. It contains a simple path

ta1 t2
a tam-1 tam

fa1 fam-1 fam

da1
aa1

(
aa1

) fa2

Figure 2: A universally quantified variable gadget.

p of length ⌊n/2⌋+1 with a defender dC placed at one

endpoint. The length of p is chosen in order to ensure

a correct time of dC’s entering to a variable gadget, so

that gradual assignment of truth values is simulated.

E.g., if a variable occurring in C stands in the second

∀∃ pair of variables in the prefix (the first and last pair

is incomplete), then p is connected to the correspond-

ing variable gadget at its second vertex. The second

part of the clause is a path of length k, with one end-

point occupied by attacker aC whose target δA(aC) is

located at the other endpoint. The length k is selected

in a way that the target δA(aC) can be protected if the

defender dC arrives there on time, which can happen

only if it uses the shortest path to this target. If dC is

delayed by even one step, the attacker aC can capture

its target. These two parts of the clause gadget are

connected through variable gadgets.

dC

n/2+1k

aC(aC)

Figure 3: A clause gadget.

The connection by edges and paths between vari-

able and clause gadgets is designed in a way that

allows the agents to synchronously enter one of the

paths of the relevant variable gadget. A gradual evalu-

ation of variables according to their order in the prefix

corresponds to the alternating movement of agents. A

defender dC from clause C moves along the path of

its gadget, and every time it has the opportunity to en-

ter some variable gadget, the corresponding variable

is already evaluated.

If there is a literal in ϕ that occurs in multiple

clauses, setting its value to true causes satisfaction of

all the clauses containing it. This is indicated by a si-

multaneous entering of affected agents to the relevant

path. Each clause defender dC has its own vertex in

each gadget of a variable present in C, at which dC can

enter the gadget. This allows a collision-free entering

of multiple defenders into one path of the gadget.

Theorem 1. The decision problem whether there ex-

ists a winning strategy for the team of defenders,

i.e. whether it is possible to prevent all attackers

from reaching their targets in a given APP instance

is PSPACE-hard.

Proof. Suppose ϕ to be valid. To better understand

validity of ϕ we can intuitively ensure that variables

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

186

146 Attached Papers

ax2

ax1

ax3

dx1

dx2

ay2

ay1

ay3

dy1

dy2

az2
dz1 dz2

az1

az3

aa1da1

db1

ab1

ac1

dc1

dC1

dC2

dC3

dC4

9

7

5

4

1

2

2

6

3

2

1

1

(ax3)

(ax1)

(ax2)

(a

y
3)

(ay1)

(ay2)

(
a z3
)

(az1)

(az2)

(
aa1

)

(a
b1)

(a
c1)

(a

C
1
)

(a

C
2
)

(a
C3)

(
a C4

)

x

a

y

b

z

c

Figure 4: A reduction from TQBF to APP. Black points rep-
resent unoccupied vertices. If two points are connected by
a line without any label, it means there is an edge between
them. A line with a label k indicates that the two points
are connected by a path of k internal vertices. Initial posi-
tions of attackers and defenders are represented by red and
green nodes, respectively. A red circle around a node means
that the node is a target of some attacker. For simplicity we
do not fully display the second part of the clause gadget.
Instead, there is a red number near the target of a clause
gadget that indicates the distance of the attacker aiming to
that target. A vertex with an agent is labeled by the agent’s
name. Labels of targets specify the associated agents.

are assigned gradually according to their order in the

prefix. For every choice of value of the next ∀-

variable there exists a choice of value for the corre-

sponding ∃-variable so that eventually the last assign-

ment finishes a satisfying valuation of ϕ. The strategy

of assigning ∃ variables can be mapped to a winning

strategy for defenders in the APP instance constructed

from ϕ. Every satisfying valuation guides the defend-

ers towards vertices resulting in a position where all

targets are defended. Every time a variable is valu-

ated, another agent in the constructed APP instance is

ready to enter the upper path, if the variable is eval-

uated as true, or the lower path, otherwise. Note that

the vertices on the paths are labeled as t and f in-

dicating the truth value that is simulated by passing

through a path. When the evaluated variable x is exis-

tentially quantified, the defender dx1 enters the upper

or lower path. In case of universally quantified vari-

able a, the entering agent is the attacker aa1. Since

the valuation satisfies ϕ, every clause C j has at least

one variable q causing the satisfaction of C j. That is

modeled by the situation where defenders dq1 and dC j

meet each other in one of the diamond’s paths, which

enables either the defender dq2 (in case q is existen-

tially quantified) or dq1 (in case q is universally quan-

tified) to advance towards the target δA(dC1). The sit-

uation for an existentially quantified variable is ex-

plained by Fig. 5.

Whenever there exists a winning strategy for the

constructed APP instance, the defenders must arrive

in all targets on time. This is possible only if variable

defenders and clause defenders meet on one of the

paths in a diamond gadget, and only if all defenders

use the shortest possible paths. The variable agents’

selection of upper or lower paths determines the eval-

uation of corresponding variables. An advancement

of variable and clause defenders that leads to meeting

of the defenders at adjacent vertices, and a subsequent

protection of targets indicates that the corresponding

variable causes satisfaction of the clause.

3 DESTINATION ALLOCATION

Solving APP in practice is a challenging problem due

to its high computational complexity. Our solving ap-

proaches are based on a technique called destination

allocation. The basic idea is to assign a destination

vertex to each defender and subsequently use some

CPF algorithm modified for the environment with ad-

versaries to lead each defender to its destination. A

defender may be allocated to any vertex, including

the attackers’ targets. Destination allocation can be

divided into two basic categories: single-stage, where

agents are allocated to destinations only once at the

beginning, and multi-stage, where destinations can be

reassigned any time during the agents’ course. This

work focuses merely on the single-stage destination

allocation and uses the LRA* algorithm for control-

ling agents’ movement.

The defenders are initially not allocated to any

destination and do not have any information about the

intended target of any attacker. However, the defend-

ers have a full knowledge of all target locations in the

protected area. The task in this setting is to allocate

each defender agent to some location in the graph,

so that via its occupation, defenders try to optimize

a given objective function.

Area Protection in Adversarial Path-finding Scenarios with Multiple Mobile Agents on Graphs - A Theoretical and Experimental Study of

Strategies for Defense Coordination

187

6.5 Area Protection in Adversarial Path-finding Scenarios with Multiple Mobile Agents
on Graphs 147

148 Attached Papers

that, our implementation selects the vertex of maxi-

mum frequency with the shortest distance to an ap-

proximate location of defenders.

After obtaining such a frequently visited vertex,

we then search its vicinity. If we find out that there is

indeed a bottleneck, its vertices are assigned to some

defenders as their destinations. Under the assumption

that the bottleneck is blocked by defenders, the paths

of attackers may substantially change. For that reason

we estimate the paths again and find the next frequent

vertex of which vicinity is also explored and so on.

The whole process is repeated until all available

defenders are allocated to a destination, or until no

more bottlenecks are found. The high-level descrip-

tion of this procedure is expressed by Algorithm 1.

The input of the algorithm is the graph G and sets

Data: G = (V,E), D, A

Result: Destination allocation δD

Davailable = D; // Defenders to be allocated

F = /0 ; // Set of forbidden locations

δ′A = Random guess of δA;

while Davailable 6= /0 do

for a ∈ A do

pa = shortestPath(α0(a),δ
′
A(a),G,F);

end

f (v) = |{pa : a ∈ A∧ v ∈ pa}|
w ∈ argmaxv∈V f (v);
B = exploreVicinity(w);
if B 6= /0∨|D|< |B| then

D′ such that D′ ⊆ Davailable, |D
′|= |B|;

assignToDefenders(B, D’);

Davailable = Davailable \D′;

F = F ∪B
else

break ;

end

end

assignToRandomTargets(Davailable);

Algorithm 1: Bottleneck simulation procedure.

D and A of defenders and attackers, respectively. Dur-

ing the initialization phase, we create the set Davailable

of defenders that are not yet allocated to any desti-

nation. Next, we create the set F of so called for-

bidden nodes. The following step takes attackers one

by one and every time makes a random guess which

target is an attacker aiming for, resulting in the map-

ping δ′. The algorithm then iterates while there are

available defenders. In each iteration, we construct a

shortest path from each attacker a between its initial

position α0(a) and its estimated target location δ′(a).
A vertex w from among the vertices contained in the

highest number of paths is then selected, and its sur-

roundings is searched for bottlenecks. If a bottleneck

is found, the set of vertices B is determined in order

to block the bottleneck. The set D′ contains a suf-

ficient number of available defenders that are subse-

quently allocated to the vertices in B. Agents from D′

are no longer available, and vertices from B are now

forbidden. The pathfinding in the following iterations

will therefore avoid vertices in B. If no bottleneck is

found, it is likely that agents have a lot of freedom for

movement, and blocking bottlenecks is not a suitable

strategy. The loop is left and the remaining available

agents are assigned to random targets from Tavailable.

The search of the close vicinity of a frequently

used vertex w is carried out by an expanding square

centered at w. We start with distance 1 from w and

gradually increase this value1 up to a certain limit. In

every iteration we identify the obstacles in the fringe

of the square and keep them together with obstacles

discovered in previous iterations. Then we check

whether the set of obstacles discovered so far forms

more than one connected components. If that is the

case, it is likely that we encountered a bottleneck.

We then find the shortest path between one connected

component of obstacles and the remaining compo-

nents. This shortest path is believed to be a bottle-

neck in the map, and its vertices are assigned to the

available defenders as their new destinations.

In order to discover subsequent bottlenecks in the

map, we assume that the previously found bottlenecks

are no longer passable. They are marked as forbidden

and in the next iteration, the estimated paths will not

pass through them. The procedure shortestPath re-

turns the shortest path between given source and tar-

get, that does not contain any vertices from the set F

of forbidden locations.

In this basic form, the algorithm is prone to find-

ing ”false” bottlenecks in instances with an indented

map that contains for example blind alleys. It is possi-

ble to avoid undesired assigning vertices of false bot-

tlenecks to defenders by running another simulation

which excludes these vertices. If the updated paths are

unchanged from the previously found ones, it means

that blocking of the presumed bottleneck does not af-

fect the attackers movement towards the targets, and

so there is no reason to block such a bottleneck.

4 EXPERIMENTAL EVALUATION

Experimental evaluation is focused on competitive

comparison of suggested destination allocation strate-

gies with respect to the objective 2. - maximization

1Two locations are considered to be in distance 1 from
each other if they share at least one point. Hence, a location
that does not lie on the edge of the map has 8 neighbors.

Area Protection in Adversarial Path-finding Scenarios with Multiple Mobile Agents on Graphs - A Theoretical and Experimental Study of

Strategies for Defense Coordination

189

6.5 Area Protection in Adversarial Path-finding Scenarios with Multiple Mobile Agents
on Graphs 149

of the number of locations not captured by attackers

within a given time limit.

Our hypothesis is that the random strategy would

perform as worst since it is completely uninformed.

All the simple strategies are expected to be outper-

formed by more advanced bottleneck simulation.

We implemented all suggested strategies in Java as

an experimental prototype. Our testing scenarios use

maps of various structures and initial configurations

of agents. Our choice of testing scenarios is focused

on comparing studied strategies and discovering what

factors have a significant impact on their success.

As the following sections show, different strate-

gies are successful in different types of instances. It

is therefore important to design the instances with a

sufficient diversity, in order to capture strengths and

weaknesses of individual strategies.

4.1 Instance Generation and Types

The instances used in the practical experiments are

generated using a pseudo random generator, but in a

controlled manner. An instance is defined by its map,

the ratio |D| : |A| and locations of individual defend-

ers, attackers and their targets. These entries form

an input of the instance generation procedure. Fur-

ther, we select rectangular areas inside which agents

of both teams and the attackers’ targets are placed ran-

domly. We use 4 maps with increasingly complicated

obstacle structure depicted in Fig. 7. Each map size

is in the order of thousands of vertices.

(a) Orthogonal rooms (b) Ruins

(c) Waterfront (d) Dark forest

Figure 7: Maps.

In the main set of experiments, each map is popu-

lated with agents of 3 different |D| : |A| ratios, namely

1 : 1, 1 : 2 and and 1 : 10, with fixed number of at-

tackers |A| = 100. Each of these scenarios is further

divided into two types reflecting a relative positions

of attackers and defenders. The type overlap assumes

that the rectangular areas for both teams have an iden-

tical location on the map, while the teams in the type

separated have distinct initial areas. The maximum

number of agents’ moves is set to 150 for each team.

Note that the individual instances are never com-

pletely fair to both teams. It is therefore impossible to

make a conclusion about a success rate of a strategy

by comparing its performance on different maps. The

comparison should always be made by inspecting the

performance in one type of instance, where we can

see the relative strength of the studied algorithms.

4.2 Results

The performed experiments compare random, greedy,

and simulation strategy in different instance settings.

Each entry in Table 1 is an average number of attack-

ers that reached their targets at the end of the time

limit. The average value is calculated for 10 runs in

each settings, always with a different random seed.

Random and greedy strategies have very similar re-

sults in all positions and team ratios. It is apparent

and not surprising that with decreasing |D| : |A| ratio,

the strength of these strategies decreases. The simu-

lation strategy gives substantially better results in all

settings. Also note that in case of overlapping teams,

the simulation strategy scores similarly in all |D| : |A|
ratios.

Table 1: Average number of agents that eventually reached
their target in the map Orthogonal rooms.

Team position |D| : |A| RND GRD SIM

Overlapped

1:1 40.4 49.2 21.0

1:2 56.7 56.5 20.8

1:10 67.8 64.7 24.7

Separated

1:1 39.0 40.7 10.3

1:2 57.7 50.1 13.3

1:10 78.5 69.9 30.2

Table 2 contains results of an analogous experi-

ment conducted on the map Ruins. The random strat-

egy performs well in instances with many attackers.

The dominance of the simulation strategy is apparent

here as well.

Maps Waterfront and Dark forest contain very ir-

regular obstacles and many bottlenecks, and are there-

fore very challenging environments for all strategies.

In the Dark forest map, random and greedy methods

are more suitable than the simulation strategy in in-

stances with equal team sizes, as oppose to the scenar-

ios with lower number of defenders, where the bottle-

neck simulation strategy clearly leads. In the sepa-

rated scenario, the simulation strategy is even worse

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

190

150 Attached Papers

Table 2: Average number of agents that eventually reached
their target in the map Ruins.

Team position |D| : |A| RND GRD SIM

Overlapped

1:1 36.8 49.4 17.7

1:2 80.0 63.5 33.0

1:10 92.5 88.9 58.2

Separated

1:1 9.5 33.6 11.8

1:2 47.6 34.4 11.8

1:10 85.6 85.9 14.7

in all tested ratios (see Tab. 3 and Tab. 4). This be-

havior can be explained by the fact that occupying all

relevant bottlenecks in such a complex map is harder

than occupying targets in the protected area. In con-

trast, bottlenecks in the Waterfront map have more

favourable structure, so that those relevant for the area

protection can be occupied more easily.

Table 3: Average number of agents that eventually reached
their target in the map Waterfront.

Team position |D| : |A| RND GRD SIM

Overlapped

1:1 32.0 41.7 37.1

1:2 60.6 63.8 39.8

1:10 77.8 72.9 51.7

Separated

1:1 15.8 19.3 10.7

1:2 46.4 37.6 9.8

1:10 75.3 65.5 14.9

Table 4: Average number of agents that eventually reached
their target in the map Dark forest

Team position |D| : |A| RND GRD SIM

Overlapped

1:1 21.6 37.9 48.8

1:2 53.7 42.6 37.8

1:10 60.9 51.9 38.4

Separated

1:1 35.3 35.9 61.5

1:2 40.6 41.3 59.6

1:10 65.1 67.0 66.0

5 CONCLUDING REMARKS

We have shown the lower bound for computational

complexity of the APP problem, namely that it is

PSPACE-hard. Theoretical study of ACPF (Ivanová

and Surynek, 2014) showing its membership in EX-

PTIME suggests that the same upper bound holds

for APP but it is still an open question if APP is

in PSPACE. In addition to complexity study we de-

signed several practical algorithms for APP under the

assumption of single-stage vertex allocation. Per-

formed experimental evaluation indicates that our

bottleneck simulation algorithm is strong even in

case when defenders are outnumbered by attacking

agents. Surprisingly, our simple random and greedy

algorithms turned out to successfully block attacking

agents provided there are enough defenders.

For future work we plan to design and evaluate al-

gorithms under the assumption of multi-stage vertex

allocation. As presented algorithms have multiple pa-

rameters we also aim on their optimization. Another

generalization motivated by practical applications in

robotics is APP with communication maintenance.

REFERENCES

Agmon, N., Kaminka, G. A., and Kraus, S. (2011). Multi-
robot adversarial patrolling: Facing a full-knowledge
opponent. J. Artif. Intell. Res., 42:887–916.

Benda, M., Jagannathan, V., and Dodhiawala, R. (1986). On
optimal cooperation of knowledge sources - an empir-
ical investigation. Technical Report BCS–G2010–28,
Boeing Advanced Technology Center.

Elmaliach, Y., Agmon, N., and Kaminka, G. A. (2009).
Multi-robot area patrol under frequency constraints.
Ann. Math. Artif. Intell., 57(3-4):293–320.

Haynes, T. and Sen, S. (1995). Evolving beharioral strate-
gies in predators and prey. In Proc. of Adaption
and Learning in Multi-Agent Systems, IJCAI’95 Work-
shop, pages 113–126.

Hespanha, J. P., Kim, H. J., and Sastry, S. (1999). Multiple-
agent probabilistic pursuit-evasion games. In Pro-
ceedings of the 38th IEEE Conference on Decision
and Control (Cat. No.99CH36304), volume 3, pages
2432–2437 vol.3.

Ivanová, M. and Surynek, P. (2014). Adversarial coopera-
tive path-finding: Complexity and algorithms. In 26th
IEEE International Conference on Tools with Artifi-
cial Intelligence, ICTAI 2014, pages 75–82.

Pollack, M. E. and Ringuette, M. (1990). Introducing the
tileworld: Experimentally evaluating agent architec-
tures. In Proc. of the 8th National Conference on Ar-
tificial Intelligence, pages 183–189. AAAI Press.

Ryan, M. R. K. (2008). Exploiting subgraph structure
in multi-robot path planning. J. Artif. Intell. Res.,
31:497–542.

Silver, D. (2005). Cooperative pathfinding. In Proc. of the
1st Artificial Intelligence and Interactive Digital En-
tertainment Conference, 2005, pages 117–122.

Vidal, R., Shakernia, O., Kim, H. J., Shim, D. H., and Sas-
try, S. (2002). Probabilistic pursuit-evasion games:
theory, implementation, and experimental evaluation.
IEEE Trans. Robotics and Autom., 18(5):662–669.

Wang, K. C. and Botea, A. (2011). MAPP: a scalable multi-
agent path planning algorithm with tractability and
completeness guarantees. J. Artif. Intell. Res., 42:55–
90.

Area Protection in Adversarial Path-finding Scenarios with Multiple Mobile Agents on Graphs - A Theoretical and Experimental Study of

Strategies for Defense Coordination

191

Paper VI

6.6 Maintaining Ad-Hoc Communication Network in Area Protection
Scenarios with Adversarial Agents

Marika Ivanova, Pavel Surynek, Diep Thi Ngoc Nguyen

In: Proceedings of the 31st International Florida Artificial Intelligence Research So-
ciety Conference (FLAIRS 2018), pp. 348-353, Melbourne, FL, USA, AAAI Press,
2018.

152 Attached Papers

6.6 Maintaining Ad-Hoc Communication Network in Area Protection Scenarios with
Adversarial Agents 153

Maintaining Ad-Hoc Communication Network in Area Protection Scenarios with
Adversarial Agents

Marika Ivanová
Department of Informatics

Faculty of Mathematics and Natural Sciences
University of Bergen, Norway

marika.ivanova@uib.no

Pavel Surynek
Faculty of Information Technology

Czech Technical University
Czech Republic

pavel.surynek@fit.cvut.cz

Diep Thi Ngoc Nguyen
AIRC, National Institute of Advanced

Industrial Science and Technology (AIST)
Japan

diep.nguyen@aist.go.jp

Abstract

We address a problem of area protection in graph-based sce-
narios with multiple mobile agents where connectivity is
maintained among agents to ensure they can communicate.
The problem consists of two adversarial teams of agents that
move in an undirected graph shared by both teams. Agents
are placed in vertices of the graph; at most one agent can oc-
cupy a vertex; and they can move into adjacent vertices in a
conflict free way. Teams have asymmetric goals: the aim of
one team - attackers - is to invade into given area while the
aim of the opponent team - defenders - is to protect the area
from being entered by attackers by occupying selected ver-
tices. The team of defenders need to maintain connectivity
of vertices occupied by its own agents in a visibility graph.
The visibility graph models possibility of communication be-
tween pairs of vertices.

We study strategies for allocating vertices to be occupied by
the team of defenders to block attacking agents where con-
nectivity is maintained at the same time. To do this we re-
serve a subset of defending agents that do not try to block
the attackers but instead are placed to support connectivity of
the team. The performance of strategies is tested in multiple
benchmarks. The success of a strategy is heavily dependent
on the type of the instance, and so one of the contributions
of this work is that we identify suitable strategies for diverse
instance types.

INTRODUCTION

In this work we study a generalization of Area Protec-
tion Problem (APP) with connectivity maintenance (APPC).
APP is already a computationally hard problem (Ivanova,
Surynek, and Hirayama 2018) (namely PSPACE-hard). In
addition to APP, where two teams of mobile agents move in
an undirected graph in a conflict free way, a possibility of
communication among agents is required in APPC. APP it-
self can be regarded as a modification of known problem of
Adversarial Cooperative Path Finding (ACPF) (Ivanová and
Surynek 2014) where two teams of agents compete in reach-
ing their target positions. Unlike ACPF, where the goals of
teams of agents are symmetric - agents of each team try to
reach their targets as first, the adversarial teams in APP have
different objectives. The first team of attackers contains

Copyright © 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

agents whose goal is to reach a pre-defined target location
in the area being protected by the second team of defenders.
Each attacker has a unique target in the protected area, and
each target is assigned to exactly one attacker. The opponent
team of defenders tries to prevent the attackers from reach-
ing their targets by occupying selected locations, referred
to as destinations, so that they cannot be passed by attack-
ers. Specially in APPC, we require that vertices occupied by
the defender team always form a connected subgraph with
respect to the visibility graph. We assume that both teams
use the same cooperative path-finding (CPF) algorithm for
reaching temporarily selected locations.

Another distinction between ACPF and APP is a defini-
tion of victory of a team. A team in ACPF wins if all its
agents reach their targets and agents of no other team man-
age to do so earlier. In APP, the team of defenders wins
if all attackers are kept out of their targets. Our effort is
to design destination allocation strategies for the defending
team. A hard constraint that can never be violated will be
that defending agents always form a connected component.
Success of the strategy is measured from the defenders’ per-
spective via an objective function which plays a role of soft
constraint (area protection may not be perfect). The follow-
ing objective functions can be pursued:

1. maximize the number of target locations that are not cap-
tured by the corresponding attacker

2. maximize the number of targets that are not captured by
the corresponding attacker within a given time limit

3. maximize the sum of distances between the attackers and
their corresponding targets

4. minimize the time spent at captured targets

The common feature of APP, APPC and other related
problems is that once a location is occupied by an agent it
cannot be entered by another agent until it is first vacated by
the agent which occupies it (opposing agent cannot push it
out). This property represents a key tool for the defenders to
protect the area.

APPC has many real-life motivations from the domains of
access denial operations, robotics with adversarial teams of
robots or other type of penetrators (Agmon, Kaminka, and
Kraus 2011), and computer games. In most practical ap-
plications, agents of given team need to communicate with

154 Attached Papers

each other while individual robots can communicate at short
visual range only as it has been already done in contempo-
rary multi-robot systems Hence it needs to be ensured that
the communication reaches every agent of the team. Such
property can be modeled as connectivity over the visibility
graph whose edges represent possibility of communication
between pairs of vertices.

Our contribution consists in suggesting several on-line
solving strategies for defenders that determine suitable ver-
tices to be occupied by defenders so that attacker agents
cannot pass into the protected area, and connectivity in the
defender team is maintained. We conduct an experimental
evaluation of the proposed strategies and assess their suit-
ability for diverse types of APPC instances.

Communication Maintenance

APPC requires, in addition to APP, that any two defenders
are able to communicate with each other at any time dur-
ing their movement. The communication within the team of
defenders is modeled by a connectivity of subgraph of the
visibility graph induced by the set of occupied vertices. The
visibility graph is derived from the graph in which agents
move; it has the same set of vertices, but the set of edges is
different in general. This assumption allows us to model the
inability to communicate of two agents, if there is an obsta-
cle between them.

In various practical applications of APP, the possibility
of sending messages among the agents is often demanded.
Agents may be equipped by an omnidirectional antenna or
visual communication device (such as LEDs and IR sensors
(Rubenstein et al. 2014)), and hence a message reaches all
nodes within the communication range of its sender. This
feature is often referred to as wireless advantage (Wieselth-
ier, Nguyen, and Ephremides 2002). We assume that the
agents have equal and constant communication range, and
that they can also work as transceivers, which means that
they have the ability to both transmit and receive a signal.

Related Work

APPC, APP, as well as ACPF share the way how move-
ment of agents is treated with the basic variant of cooper-
ative path-finding problem - CPF (multi-agent path-finding
- MAPF) (Silver 2005; Ryan 2008; Wang and Botea 2011).
In CPF, the task is to plan the movement of agents so that
each agent reaches its unique target in a conflict free man-
ner. Movements of agents in APPC at the low reactive level
are assumed to be planned by some CPF algorithm where
agents of own team cooperate while the opposing agents are
considered as obstacles.

There exist multiple CPF algorithms both complete and
incomplete as well as optimal and sub-optimal under vari-
ous objective functions. A good compromise between qual-
ity of solutions and the speed of solving is represented by
suboptimal/incomplete search based methods which are de-
rived from the standard A* algorithm. These methods in-
clude LRA*, CA*, HCA*, and WHCA* (Silver 2005). They
provide solutions where individual paths of agents tend to
be close to respective shortest paths connecting agents’ lo-
cations and their targets. Conflict avoidance among agents

is implemented via a so called reservation table in case of
CA*, HCA*, and WHCA*. Another approach is LRA* which
plans path for individual agents independently using A*, and
relies on replanning whenever a conflict occurs. Since our
setting in APPC is inherently suitable for a replanning algo-
rithm, LRA* is a candidate for the underlying CPF algorithm
for APPC. Moreover LRA* is scalable for large number of
agents which is expected to happen in APPC.

Aside from CPF algorithms, systems with mobile agents
that act in the adversarial manner represent another re-
lated area. These studies often focus on patrolling strate-
gies that are robust with respect to various attackers try-
ing to penetrate through the patrol path (Elmaliach, Ag-
mon, and Kaminka 2009). Theoretical works related to APP
also include studies on pursuit evasion (Vidal et al. 2002)
or predator-prey (Haynes and Sen 1995) problems. The
major difference between these works and the concept of
APP/APPC is that we consider a relatively higher number of
agents and our agents are more limited in their abilities.

DEFINITIONS AND ASSUMPTIONS

The environment in APPC is modeled by an undirected un-
weighted graph G = (V,E). In this work we restrict the
instances to 4-connected grid graphs with possible missing
vertices indicating obstacles. Agents are not considered as
obstacles. The team of attackers and defenders is denoted
by A = {a1, . . . ,am} and D = {d1, . . .dn}, respectively. Con-
tinuous time is divided into discrete time steps. At each
time step agents are placed in vertices of the graph so that at
most one agent is placed in each vertex. Let αt : A∪D →V
be a uniquely invertible mapping denoting configuration of
agents at time step t. Agents can wait or move instanta-
neously into adjacent vertex between successive time steps
to form the next configuration αt+1. Abiding by the follow-
ing movement rules ensures preventing conflicts:

• An agent can move to an adjacent vertex only if the ver-
tex is empty, or is being vacated at the same time step by
another agent

• No two agents enter the same vertex at the same time

• A pair of agents cannot swap across an edge

We do not assume any specific order in which agents per-
form their conflict free actions at each time step. However,
our experimental implementation moves all attacking agents
prior to moving all defender agents at each time step. The
mapping δA : A →V assigns a unique target to each attacker.
The task in APP is to move defender agents so that area spec-
ified by δA is protected. This task can be equivalently spec-
ified as a search for strategy of destination assignments for
the defender team. That is, we are trying to find an injec-
tive mapping δD

t : D → V which specifies where defender
agents should proceed at time step t as a response to pre-
vious attackers movements. The superscripts A and D are
sometimes dropped when there is no danger of confusion.

From APP to APPC

APPC generalizes APP by considering connectivity con-
straints. As we assume that G is always a grid graph we
can introduce connectivity constraints in the following way.

6.6 Maintaining Ad-Hoc Communication Network in Area Protection Scenarios with
Adversarial Agents 155

156 Attached Papers

6.6 Maintaining Ad-Hoc Communication Network in Area Protection Scenarios with
Adversarial Agents 157

complete problem of Vertex Cover (VC) to our problem. Let
H = (VH ,EH) be an instance of VC. For each e ∈ EH we
create ve ∈ V such that Ve is a destination assigned to some
occupier d ∈ Do. For each u ∈VH we construct vu ∈V such
that for all e ∈ EH incident with u we create {vu,ve} ∈ E.
Vertices vu s. t. u ∈VH form a complete subgraph of G. Fi-
nally, we set |Dc| = k. Now H has a vertex cover of size at
most k if and only if it is possible to assign destinations to
communicators so that the connectivity of Gr is maintained
in the desired position given by δDo .

Let To and Tc be the set of targets allocated to occupiers
and communicators, respectively. If the induced subgraph
Gr [To] has several connected components, the used modi-
fication of LRA* algorithm could not lead all of them to
their targets, because it would cause a loss of communica-
tion ability. At this point the set of communicators comes
into play. The aim is to find target locations for communica-
tors so that the graph Gr [To ∪Tc] is connected. First, the con-
nected components of Gr [To]. are identified. We then iter-
ate while there are available communicators and connected
components to be covered by them. In every iteration, a
location l from which a communicator can cover a set of
connected components that contains maximum number of
targets allocated to occupiers is selected together with the
set of covered connected components. The location l is sub-
sequently assigned to the closest unallocated communicator.
For a more formal explanation see Alg. 2.

Data: Gr = (V,Er), Do, Dc, To

Result: Destination allocation δDc

Tc = /0; // Destinations assigned to communicators

while Dc 6= /0 do
C = connected components of Gr [To ∪Tc];
while C 6= /0 do

/* A pair of a locatoin l and a subset C
′

of connected components covered by l

that minimizes the number of vertices

in C
′ */

(l,C′) = arg max
C′∈C,l∈V

{ ∑
C∈C′

|C| : ∃v ∈C : (v, l) ∈

Er};
/* An available agent closest to l */

a = argmina∈Dc{|pα0(a),l |};

δDc(a) = l; // assign destination to agent

Tc = Tc ∪{l};
C= C\C′;
Dc = Dc \{a};
if Dc = /0 then

break ;
end

end

end
Algorithm 2: Destination allocation to communicators

PRELIMINARY EXPERIMENTS

The aim of experimental evaluation is to compare individual
strategies described above with their counterparts adapted

to connectivity maintenance. We would like to find out
whether the adaptation improves the success rate of a strat-
egy and also how instance types affect its performance.

Our hypothesis is that when there is a sufficient number
of defenders, the adaptation has little or no effect. We pre-
dict that in instances, where defenders are outnumbered by
attackers, the adaptation increases the success rate of the cor-
responding strategy. Furthermore, it is likely that the simula-
tion strategy is worse when the connectivity maintenance is
required, because the identified bottlenecks may be far from
each other, which makes it difficult to preserve communica-
tion among them.

We implemented all suggested strategies in Java as an ex-
perimental prototype. In our testing scenarios we use maps
of different structure with various initial configurations of
attackers and defenders. Our choice of testing scenarios is
focused on comparing performance of the strategies and dis-
covering what factors have impact on their success.

Different strategies are successful in different types of in-
stances. It is therefore important to design the instances with
a sufficient diversity, in order to capture strengths and weak-
nesses of individual strategies.

Instance generation and types

The instances used in the practical experiments are gener-
ated using a pseudo random generator, but in a controlled
manner. An instance is defined by its map, the ratio |A| : |D|
and locations of individual defenders, attackers and their tar-
gets. These three entries form an input of the instance gen-
eration procedure. Further, we select rectangular areas in-
side which agents of both teams and the attackers’ targets
are placed randomly. The experiments are conducted on 3
different maps that vary in their structure (see Fig. 3).

(a) Orthogonal rooms (b) Ruins (c) Waterfront

Figure 3: Three different maps used in the evaluation

Each map is populated with agents of 3 different |D| : |A|
ratios, namely 1 : 1, 1 : 2 and and 1 : 5, with fixed number of
attackers |A| = 50. The maximum number of moves of the
agents is set to 150 for each team. Note that the individual
instances are never completely fair to both teams. It is there-
fore impossible to make a conclusion about a success rate of
a strategy by comparing its performance on different maps.
The comparison should always be made by inspecting the
performance in one type of instance, where we can see the
relative strength of the studied algorithms.

Experimental results

The following set of experiments compares random, greedy,
simulation strategy and their communication counterparts in
different instance settings. Each of the following tables con-
tains results associated with one map.

158 Attached Papers

Each entry in the tables shows an average number of at-
tackers that reached their targets at the end of the time limit.
The average value is calculated for 10 runs in each settings,
always with a different random seed. Random and greedy
strategies have very similar results in all positions and team
ratios. It is apparent and not surprising that with decreasing
|D| : |A| ratio, the strength of defensive strategies decreases.

Table 1: Average number of agents that eventually reached
their target in the map Orthogonal rooms

|D| : |A| RND RND-C GRD GRD-C SIM SIM-C

1:1 26.0 29.0 25.5 29.1 20.8 28.3

1:2 41.0 39.6 39.4 40.5 29.3 31.7

1:5 48.1 45.7 46.1 46.8 46.9 46.8

We focused on evaluation of the effect of using commu-
nicating agents in implemented target allocation strategies.
For each target allocation strategy we compare the standard
version and the version with communicating agents.

Tab. 1 shows results for Orthogonal rooms map. It can
be observed that using communicators is beneficial in case
of random strategy where defenders tend to be outnumbered
by attackers. On the other hand, communicators cause no
improvement in Ruins map (Tab. 2). Small improvement of

Table 2: Average number of agents that eventually reached
their target in the map Ruins.

|D| : |A| RND RND-C GRD GRD-C SIM SIM-C

1:1 21.5 21.1 24.8 24.7 18.3 18.6

1:2 42.1 40.2 39.0 40.3 37.1 36.9

1:5 47.1 47.1 46.0 46.2 44.3 43.8

the bottleneck simulation strategy can be observed in Wa-
terfront map (Tab. 3) again in cases when defenders are out-
numbered. Both types of maps where communicators turned
out to be beneficial appear to have the structure of large open
spaces separated by narrow bottlenecks.

Table 3: Average number of agents that eventually reached
their target in the map Waterfront

|D| : |A| RND RND-C GRD GRD-C SIM SIM-C

1:1 20.7 21.6 18.9 18.5 20.8 21.9

1:2 35.2 31.2 30.7 31.4 35.8 33.5

1:5 41.6 41.4 40.7 40.7 42.3 41.3

CONCLUSION AND FUTURE WORK

We have designed several practical algorithms for APPC.
We extended previous algorithms for APP with a technique
of connectivity maintenance. This is done by dividing de-
fending agents into two groups - occupiers and communi-
cators. The role of occupiers is to protect the area while
communicators are placed so that they cover as largest part

of the protected area as possible in order to support con-
nectivity among occupiers. Performed experimental evalu-
ation indicates that the effect of using dedicated agents as
communicators is much smaller than expected but there is
some in maps having the structure of large open spaces sep-
arated by bottlenecks. One possible explanation of this be-
havior is that several defenders are not able to reach their
targets because the ability of communication would be lost
during their movement and this is not significantly affected
by the target allocation. Hence, for the future work we plan
to design and evaluate algorithms with more sophisticated
mechanism for connectivity maintenance. A more promis-
ing direction seems to be an adaptation of LRA* rather than
modifications of the allocation strategies.

References

Agmon, N.; Kaminka, G. A.; and Kraus, S. 2011. Multi-
robot adversarial patrolling: Facing a full-knowledge oppo-
nent. J. Artif. Intell. Res. 42:887–916.

Elmaliach, Y.; Agmon, N.; and Kaminka, G. A. 2009. Multi-
robot area patrol under frequency constraints. Ann. Math.
Artif. Intell. 57(3-4):293–320.

Haynes, T., and Sen, S. 1995. Evolving beharioral strategies
in predators and prey. In Proc. of Adaption and Learning in
Multi-Agent Systems, IJCAI’95 Workshop, 113–126.

Ivanová, M., and Surynek, P. 2014. Adversarial cooperative
path-finding: Complexity and algorithms. In 26th IEEE In-
ternational Conference on Tools with Artificial Intelligence,
ICTAI 2014, 75–82.

Ivanova, M.; Surynek, P.; and Hirayama, K. 2018. Area
protection in adversarial path-finding scenarios with multi-
ple mobile agents on graphs - a theoretical and experimental
study of strategies for defense coordination. In Proceedings
of the 10th International Conference on Agents and Artifi-
cial Intelligence - Volume 1: ICAART,, 184–191. INSTICC.

Rubenstein, M.; Ahler, C.; Hoff, N.; Cabrera, A.; and Nag-
pal, R. 2014. Kilobot: A low cost robot with scalable oper-
ations designed for collective behaviors. Robotics and Au-
tonomous Systems 62(7):966–975.

Ryan, M. R. K. 2008. Exploiting subgraph structure in
multi-robot path planning. J. Artif. Intell. Res. 31:497–542.

Silver, D. 2005. Cooperative pathfinding. In Proc. of the 1st
Artificial Intelligence and Interactive Digital Entertainment
Conference, 2005, 117–122.

Vidal, R.; Shakernia, O.; Kim, H. J.; Shim, D. H.; and Sas-
try, S. 2002. Probabilistic pursuit-evasion games: theory,
implementation, and experimental evaluation. IEEE Trans.
Robotics and Autom. 18(5):662–669.

Wang, K. C., and Botea, A. 2011. MAPP: a scalable multi-
agent path planning algorithm with tractability and com-
pleteness guarantees. J. Artif. Intell. Res. 42:55–90.

Wieselthier, J. E.; Nguyen, G. D.; and Ephremides, A. 2002.
Energy-efficient broadcast and multicast trees in wireless
networks. Mob. Netw. Appl. 7(6):481–492.

Appendix A

List of Computationally Hard Problems

The list below consists of NP-hard and PSPACE-hard problems that appear throughout this thesis.
The problems are stated either in their decision or optimization form, depending on the context they
are used. The decision versions are in fact NP-complete (PSPACE-complete), nevertheless, the NP-
hardness (PSPACE-hardness) holds regardless. In some instances, several very similar problems differ-
ing only in small details are discussed in the thesis. In these cases, only the basic variants are stated in
this list .

A.1 NP-hard Problems

A.1.1 Satisfiability

BOOLEAN SATISFIABILITY (SAT)
Input: A Boolean formula φ .
Question: Is there a truth assignment to variables of φ such that φ evaluates to TRUE?

3-SAT
Input: A Boolean formula φ in 3-CNF.
Question: Is there a truth assignment to variables of φ such that φ evaluates to TRUE?

3-3-SAT
Input: A Boolean formula φ in 3-CNF with an additional requirement that each variable

appears at most three times and each literal at most twice.
Question: Is there a truth assignment to variables of φ such that φ evaluates to TRUE?

PLANAR 3-SAT [42]
Input: A set of unnegated variables X = {x1, . . . ,xn} and negated variables X̄ = {x̄1, . . . , x̄n},

a collection of clausesC over X ∪ X̄ such that

1. The graph G= (X ∪C,E) with edge set E = {{x,c} : x ∈ c∨ x̄ ∈ c} is planar.

2. Each clause e ∈C contains two or three literals y ∈ X ∪ X̄ .

Question: Does there exist a truth assignment for the variables such that each clause is satisfied?

PLANAR 3,4-SAT
Input: Same as PLANAR 3-SAT with an additional requirement that each clause c ∈ C

contains exactly three literals and that each variable xi appears in at most four clauses.
Question: Does there exist a truth assignment for the variables such that each clause is satisfied?

160 List of Computationally Hard Problems

A.1.2 Graph Theory

CLIQUE

Input: A graph G and a an integer k.
Question: Does there exist a complete subgraph of G of size at least k in G?

MINIMUM STEINER TREE

Input: A graph G= (V,E), non-negative edge-weights c, and D⊆V .
Question: Find a minimum-weight tree in G spanning D.

TRAVELLING SALESMAN PROBLEM

Input: A complete graph G= (V,E) with edge weights c : E 7→ R+
0 and an integer k.

Question: Is there a path P= (V,E ′) such that E ′ ⊆ E and ∑e∈E ′ c(e)≤ k?

VERTEX COVER

Input: A graph G= (V,E) and an integer k.
Question: Is there a subset V ′ ⊆V such that {u,v} ∈ E⇒ u ∈V ′ or v ∈V ′ of size at most k?

A.1.3 Sets

3D-MATCHING

Input: Finite disjoint sets X , Y , and Z, a set T ⊆ X×Y ×Z, and an integer k.
Question: Does there exist a set M ⊆ T with |M| ≥ k such that for any two distinct triples

(x1,y1,z1) ∈M and (x2,y2,z2) ∈M, we have x1 ̸= x2,y1 ̸= y2, and z1 ̸= z2?

SET COVER

Input: A universe U = {1,2, . . . ,n}, a collection S of sets such that ∪S∈SS = U , and an
integer k.

Question: Is there a sub-collection S′ of S of size at most k such that ∪S∈S′S=U?

A.1.4 Wireless Networks

MINIMUM ENERGY BROADCAST (MEB)
Input: A directed graph G = (V,A), a source s ∈ V , and power requirements p : A 7→ R+

0
such that pi j = p ji for each (i, j) ∈ A.

Question: Find a power vector (P1,P2, . . . ,Pn)∈Rn of minimum component sum such that there
exists a path from s to each t ∈V \{s} inGP = (V,AP), where AP = {(i, j)∈ A : pi j ≤
Pi}.

MINIMUM ENERGY MULTICAST (MEM)
Input: A directed graphG= (V,A), a subsetD⊆V , a source s∈D, and power requirements

p : A 7→ R+
0 such that pi j = p ji for each (i, j) ∈ A.

Question: Find a power vector (P1,P2, . . . ,Pn)∈Rn of minimum component sum such that there
exists a path from s to each t ∈D\{s} inGP = (V,AP), where AP = {(i, j)∈ A : pi j ≤
Pi}.

RANGE ASSIGNMENT PROBLEM (RAP)
Input: A directed graph G= (V,A) and power requirements p : A 7→ R+

0 such that pi j = p ji

for each (i, j) ∈ A.
Question: Find a power vector (P1,P2, . . . ,Pn) ∈ Rn of minimum component sum such that the

induced graph GP = (V,AP) is strongly connected, where AP = {(i, j)∈ A : pi j ≤ Pi}.

A.1 NP-hard Problems 161

MINIMUM SHARED BROADCAST TREE (SBT)
Input: A graph G= (V,E) and power requirements p : A 7→R+

0 such that pi j = p ji for each
(i, j) ∈ A.

Question: Find a spanning tree T in G minimizing

∑
i∈V
|Ti1/i|pii2 + |T \Ti1/i|pii1 ,

where for an edge {i, j} in T , Ti/ j denotes the subtree of T consisting of nodes whose
path to j contains (i, j), and i1 and i2 denote the closest and second closest neighbor
of i in T , respectively.

MINIMUM SHARED MULICAST TREE (SMT)
Input: A graph G= (V,E), a subset D⊆V , and power requirements p : A 7→ R+

0 such that
pi j = p ji for each (i, j) ∈ A.

Question: Find a tree T in G spanning D minimizing

∑
i∈V

µ(Ti1/i)pii2 +µ(T \Ti1/i)pii1 ,

where for an edge {i, j} in T , Ti/ j denotes the subtree of T consisting of nodes whose
path to j contains (i, j), and where µ(S) = |VS ∩D| for a subtree S = (VS,ES) of T ,
and i1 and i2 denote the closest and second closest neighbor of i in T , respectively.

A.1.5 Broadcasting in Graphs

MINIMUM BROADCAST TIME (MBT)
Input: A graph G= (V,E) and a subset S⊆V .
Question: Find the smallest integer t ≥ 0 for which there exists a sequence V0 ⊆ ·· · ⊆ Vt of

node sets and a function π :V \S 7→V , satisfying:

1. V0 = S and Vt =V ,

2. for all v ∈V \S,{v,π(v)} ∈ E,

3. for all k = 1, . . . t and all v ∈Vk, π(v) ∈Vk−1, and

4. for all u,v ∈Vk \Vk−1, π(u) = π(v) only if u= v.

MINIMUM BROADCAST GRAPH

Input: An integer n.
Question: Construct a graph G= (V,E) with the minimum possible number of edges such that

for every node s ∈ V there exists a sequence V0 ⊆ ·· · ⊆ V⌈log2(n)⌉ of node sets and a
function π :V \{s} 7→V , satisfying:

1. V0 = {s} and V⌈log2(n)⌉ =V ,

2. for all v ∈V \{s} ,{v,π(v)} ∈ E,

3. for all k = 1, . . . ,⌈log2(n)⌉ and all v ∈Vk, π(v) ∈Vk−1, and

4. for all u,v ∈Vk \Vk−1, π(u) = π(v) only if u= v.

162 List of Computationally Hard Problems

A.1.6 Path Finding for Multiple Robots

MULTI-ROBOT PATH FINDING

Input: An environment modeled by a graphG= (V,E), a set of agents Rwith an initial and a
target node for each agent defined by injective functions λ0 : R 7→V and λ+ : R 7→V ,
respectively.

Question: Find a path (λ0(a),λ1(a), . . . ,λt(a)(a) = λ+(a)) with possible repetition of nodes in
G for each agent a ∈ R from its initial node to its target node satisfying

• ∀a ∈ R,∀i ∈ {0, . . . , t(a)−1} : λi(a) = λi+1(a)∨{λi(a),λi+1(a)} ∈ E, (that
is, an agent moves along edges or stays at a node),

• ∀a,a′ ∈ R,∀i ∈ {0, . . . , t(a)} : λi(a) = λi(a′)⇔ a= a′, (that is, a node can be
occupied by at most one agent at a time),

• ∀a,a′ ∈ R,a ̸= a′,∀u,v ∈ V,u ̸= v,∀i ∈ {0, . . . , t(a)−1} : ((λi(a) =
u)&(λi+1(a) = v)&(λ−1i (v) = a′))⇒ (λi+1(a′) ̸∈ {u,v}), (that is, if an agent
a located at node u at time imoves to a node v that was occupied at time step i
by some agent a′ different from a, agent a′ must move away at the same time,
and two agents are not allowed to exchange their positions within one time
step),

minimizing the makespan, i.e., minmaxa∈R t(a).

PEBBLE MOTION ON GRAPH

Input: An environment modeled by a graphG= (V,E), a set of agents Rwith an initial and a
target node for each agent defined by injective functions λ0 : R 7→V and λ+ : R 7→V ,
respectively.

Question: Find a path (λ0(a),λ1(a), . . . ,λt(a)(a) = λ+(a)) with possible repetition of nodes in
G for each agent a ∈ R from its initial node to its target node satisfying

• ∀a ∈ R,∀i ∈ {0, . . . , t(a)−1} : λi(r) = λi+1(r)∨{λi(r),λi+1(r)} ∈ E, (that is,
an agent moves along edges or stays at a node),

• ∀a,a′ ∈ R,∀i ∈ {0, . . . , t(a)} : λi(a) = λi(a′)⇔ a= a′, (that is, a node can be
occupied by at most one agent at a time),

• ∀a,a′ ∈ R,a ̸= a′,∀u,v ∈ V,u ̸= v,∀i ∈ {0, . . . , t(a)−1} : ((λi(a) =
u)&(λi+1(a) = v))⇒ (λi(a′) ̸= v), (that is, an agent is not allowed to move to
a node that is simultaneously being left by another agent, it can only move to
an unoccupied node),

minimizing the makespan, i.e., minmaxa∈R t(a).

A.2 PSPACE-hard Problems

A.2.1 Satisfiability

TRUE QUANTIFIED BOOLEAN FORMULA (TQBF)
Input: A fully quantified Boolean formula φ .
Question: Is φ equivalent to TRUE?

A.2 PSPACE-hard Problems 163

A.2.2 Path Finding for Multiple Robots with Adversarial Teams
ADVERSARIAL COOPERATIVE PATH FINDING (ACPF)
Input: An environment modeled by a graphG= (V,E), a set of agents Rwith an initial and a

target node for each agent defined by injective functions λ0 : R 7→V and λ+ : R 7→V ,
respectively, and a partition of R into adversarial teams T0, . . . ,Tk−1.

Question: Is there a strategy deciding a next move for agents of T0 so that all agents of T0 arrive
at their targets before any other team does so, assuming the following movement
rules are satisfied:

• ∀a ∈ R,∀i ∈ Z+
0 : λi(a) = λi+1(a)∨ {λi(a),λi+1(a)} ∈ E, (that is, an agent

moves along edges or stays at a node),

• ∀a,a′ ∈ R,∀i ∈ Z+
0 : λi(a) = λi(a′)⇔ a= a′, (that is, a node can be occupied

by at most one agent at a time),

• ∀a,a′ ∈ R,a ̸= a′,∀u,v ∈ V,u ̸= v,∀i ∈ Z+
0 : ((λi(a) = u)&(λi+1(a) =

v)&(λ−1i (v) = a′))⇒ (λi+1(a′) ̸∈ {u,v}), (that is, if an agent a located at
node u at time i moves to a node v that was occupied at time step i by some
agent a′ different from a, agent a′ must move away at the same time, and two
agents are not allowed to exchange their positions within one time step),

• ∀i ∈ Z+
0 ,∀a ∈ R \ Ti(mod k) : λi(a) = λi+1(a), (the only agents that can move

between time step i and i+1 are those from the team Ti(mod k)),

regardless of the movement of agents from other teams?

AREA PROTECTION PROBLEM (APP)
Input: An environment modeled by a graph G = (V,E), and a set of agents R partitioned

into the set of defenders T0 and the set of attackers T1, with an initial node for each
agent defined by injective functions λ0 : R 7→ V , and a target node for each attacker
defined by λ+ : T1 7→V .

Question: Is there a strategy deciding a next move for the defenders so that no attacker reaches
its target, assuming the following movement rules are satisfied:

• ∀a ∈ R,∀i ∈ Z+
0 : λi(a) = λi+1(a)∨ {λi(a),λi+1(a)} ∈ E, (that is, an agent

moves along edges or stays at a node),

• ∀a,a′ ∈ R,∀i ∈ Z+
0 : λi(a) = λi(a′)⇔ a= a′, (that is, a node can be occupied

by at most one agent at a time),

• ∀a,a′ ∈ R,a ̸= a′,∀u,v ∈ V,u ̸= v,∀i ∈ Z+
0 : ((λi(a) = u)&(λi+1(a) =

v)&(λ−1i (v) = a′))⇒ (λi+1(a′) ̸∈ {u,v}), (that is, if an agent a located at
node u at time i moves to a node v that was occupied at time step i by some
agent a′ different from a, agent a′ must move away at the same time, and two
agents are not allowed to exchange their positions within one time step),

• ∀i ∈ Z+
0 ,∀a ∈ R \ Ti(mod 2) : λi(a) = λi+1(a), (the only agents that can move

between time step i and i+1 are those from the team Ti(mod 2)),

regardless of the movement of attackers?

164 List of Computationally Hard Problems

Graphic design: Com
m

unication Division, UiB / Print: Skipnes Kom
m

unikasjon AS

uib.no

ISBN: 9788230846056 (print)
9788230847053 (PDF)

	151042 Marika Ivanova_Elektronisk
	151042 Marika Ivanova_innmat
	151042 Marika IvanovaElektronsk_bakside

