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Summary 

This work was performed at the Department of Informatics, University of Bergen 
between August 2018 and September 2019 with Professor Eivind Valen as supervisor 
and Håkon Tjeldnes as co-supervisor. 

The main objective of the work has been to develop the understanding of the 
difference between RNA structure probing approaches; in vivo, in vitro and in silico. 
Similarities and differences between three libraries of data from each of the probing 
approaches were then studied. 

The difference between the results was obtained by coverage-plotting of the three 
datasets and eventually, match and mismatch status of the RNA structural data for the 
three approaches were tabulated.  

It was shown that the in vitro and in silico data match for the leader region whereas in 
vivo data mismatch with the in silico data for the same region.  

Benchmarking the experimental data with computational data, CDS region data for 
both in vitro and in vivo show an appropriate match with in silico data.  

For the trailer region, neither in vitro nor in vivo datasets did match with in silico data.  

When in vivo and in vitro data were compared, it was observed that CDS and trailer 
regions match while their leader regions mismatch. 

In this thesis R coding was used to analyze the data. The source codes are available in 
the appendix of the thesis as well as an online software development hosting service 
(GitHub) [1]. 
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Chapter 1         
            
Introduction 

An introduction to the master thesis work is provided in this chapter. The chapter begins 
with an explanation of the background of the work and then describes the drive and 
motivation for understanding significant differences in RNA secondary structure in vivo 
and in vitro data compared to in silico data. 

1.1 Background 

 
The central dogma of molecular biology is a description of the transfer of genetic 
information from DNA to RNA and then to protein within biological systems. This 
concept was first defined by Francis Crick in 1957 [2]. 
 
Crick stated that as soon as information have transferred from DNA to RNA 
(transcription), there will be a route of reverse information from RNA to DNA (reverse 
transcription process), but when sequential information finally is transferred to protein 
(translation) there is no reverse process (reverse translation) [2]. Figure 1-1 
schematically presents this concept. 
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Figure 1-1: The transfer routes in the biological systems 

 
All subjects of biology and microbiology rely on the Crick’s notion which makes a 
framework for understanding the transfer process of genetic information within living 
organisms. 
 
In genetics, gene expression is the most important process that occurs in all living 
organisms i.e. eukaryotes (animals and plants), prokaryotes (bacteria and archaea) and 
viruses. In this process, the genetic information stored in DNA are converted into a 
functional gene product. The product of a gene is usually a protein, but sometimes it can 
also be a functional RNA. 
 
There are three key steps in the gene expression process, including transcription, 
transportation and translation. Transcription is the process of transferring data from 
DNA to RNA, transportation is RNA transferring from the nucleus into cytoplasm and 
translation here, is the process of the synthesis of protein out of RNA. 
 
The RNAs are intermediate molecules in gene expression and have different important 
roles in each step of this cellular process [3]. In the first step, the DNA is transcribed 
into a type of RNA called messenger RNA (mRNA), which is a copy of the gene’s 
DNA except for having a single strand. In the next step, the mRNA is transported from 
the nucleus into the cytoplasm and gets attached to a ribosome, where the biological 
protein synthesis (translation) is carried out. 
 
The RNA in the ribosome is called ribosomal RNA (rRNA) that synthesizes proteins 
according to the instructions stored in the sequence of mRNA. Eventually in the last 
step, a type of RNA called transfer RNA (tRNA) transfers corresponding amino acids to 
the mRNA during protein synthesis [3]. 
 
Commonly, those RNA molecules translated into proteins are called messenger RNAs 
and those that do not encode proteins are referred to as non-coding RNA (ncRNA) [4]. 
Abundant and functionally important non-coding RNAs include tRNAs and ribosomal 
RNAs, as well as small RNAs such as miroRNAs and snRNAs. 
 
In addition to typical roles of RNA in protein synthesis, RNA molecules can have many 
active roles in other cell processes including roles in catalysis, cellular defense and 
regulation [5]. The structure of RNAs plays an important role in the properties and thus 
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function of them in cellular processes. It is then crucial to study RNA structures and 
their effects on the biological roles of RNAs in living cells [6].  
 
In this thesis we looked at regulation of RNA and particularly that of RNA structure. 
 

1.1.1 Problem statement 
It is presented that there are several approaches (in vivo, in vitro and in silico) to 

probe and assess RNA structures. We shall try to demonstrate some of the shortcomings 
associated with these approaches and examine that to what extent, these approaches 
agree upon the structural predictions for a zebrafish RNA sample. 

 

1.1.2 Thesis structure 
The thesis consists of four chapters, a bibliography and an appendix. 

In Chapter 1, relevant concepts of RNA folding and RNA structure together with brief 
information about in vivo, in vitro and in silico studies are introduced. At the end of this 
chapter, zebrafish data and their importance for biological studies were discussed.      

In Chapter 2 the software and tools used in the master thesis and also the protocol for 
analyzing in vivo, in vitro and in silico data are presented. 

Chapter 3 comprises the results and relevant discussions. 

The conclusion and recommendations for future work are reflected in Chapter 4. 

Finally, the source code written for the thesis following the protocol in Chapter 2 is 
presented as an appendix. 

The figures in the thesis have been made by the author of the master thesis and are 
copyrighted. 
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Figure 1-2: Overview of the hierarchy and the project concept   

 

Figure 1-2 shows an overview of the important subjects connected to bioinformatics 
from one end and the content of this thesis from the other end. We have obtained the in 
vivo and in vitro data from SHAPE_seq experiment and in silico data via computational 
approaches. The outcome was then used to predict and compare RNA secondary 
structures. 

1.2 RNA Structure 

Ribonucleic acids (RNA) are linear polymeric molecules built from 4 possible 
monomers: Adenine (A), Guanine (G), Uracil (U) and Cytosine (C). These monomers 
can form complementary interactions to build base-pairings: A with U and C with G. 
 
Unlike DNA which is double-stranded, RNA is most often found as a single-stranded 
nucleic acid molecule that often contains complementary regions to form double helices 
when it can fold onto itself [7]. 
 
These foldings create a structure that can be divided into three major levels of 
organization: primary, secondary, and tertiary structure [8]. 
 
The primary structure refers to the nucleotide sequence of an RNA, which can be 
obtained from the DNA sequence of the gene encoding the RNA. 
 
The secondary structure of RNA is a two-dimensional representation of its Watson-
Crick C.G and A.U pairs as well as the weaker G.U wobble pairs.  
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The tertiary structure refers to a three-dimensional representation of the RNA structure 
that is emerged from a secondary structure. The elements of this structure involve an 
interaction between two or more secondary structural elements. 
 
In this thesis we have focused on the secondary structure of RNA as it is straightforward 
to predict and measure its structure. 
  
All other combinations of pairing nucleotides, called non-canonical pairs, are ignored in 
the secondary structure prediction, although they do occur especially in tertiary structure 
motifs [9]. RNA secondary structure contains different structural forms, including 
single-stranded regions, stem, internal loops, hairpin loops, bulge loops, junctions 
(multibranch loop) and pseudoknot [10]. The single-stranded regions are formed where 
no base pairs are found. 
 
The double-stranded secondary structure is defined as a stem. The internal loops in 
RNA are formed where the double-stranded separates because of no base pairing 
between the nucleotides. 
The most common structure that RNA molecules fold into is called hairpin loop that is 
formed at the end of a stem (see Figure 1-3). Bulge loop occurs when there are one or 
more unpaired nucleotides placed in one of the strands of the double-stranded (see 
Figure 1-3). 
 
Another structural form of RNA is known as a multibranch loop. It is a more complex 
that is formed when more than two stems intersect. They are major elements of tertiary 
structure of RNA. One important structural motif of RNA secondary structures is a 
pseudoknot which occurs when two hairpins or bulges are connected through single-
stranded regions. This structural form is very difficult to predict thus most of the RNA 
secondary structure prediction methods do not consider pseudoknots in the structure of 
RNA. However, the number of pseudoknots in the RNA structure is small but often take 
place in highly structured and functional RNAs. Figure 1-3 schematically presents an 
RNA secondary structure. 



6 Introduction 
 

 

 

 
 

Figure 1-3: RNA secondary structure 
 
 
 
RNA molecules perform several cellular functions ranging from translation of genetic 
information to regulation of the genes activity. 
 
These biological functions of RNAs highly depend on their secondary structures [6] 
thus, for understanding both the function of the RNA molecules and the mechanism 
behind that function, the study of RNA secondary structure is necessary. Additionally, 
predicting RNA secondary can be useful for the interpretation of experiments linked to 
the mechanism of RNA function and to propose new experiments to probe biological 
functions[11][12][13]. 
 
Because RNA folding process is generally hierarchical, the RNA secondary structure 
can be predicted without any knowledge of tertiary structure[14] which are typically 
predicted by complicated and expensive experiments.  
 
The stability of the RNA secondary structure is an important factor to predict and 
explain the function of the RNA in the cell.  
The stability of the secondary structure is calculated based on the amount of free energy 
released by the forming base pairs in RNA folding process. The number of base pairs 
specially G.C base pairs which release more free energy (i.e. more negative free energy) 
when forming, increase the stability of the hairpin loop region. On the other hand, the 
number of unpaired bases decreases the stability of the interior loops, hairpin loops and 
bulge loops. Thus, a structure with minimum free energy, is more stable and considered 
as an optimal structure (most structured). This structure is called the MFE secondary 
structure[15][16]. 
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There are many applications that compute the free energy of RNA secondary structure 
to predict the RNA folding structure. 

1.3 Predicting RNA folding structure 

To completely understand the various biological functions of RNAs, including both 
coding RNAs and non-coding RNAs (ncRNAs), we need to first characterize and 
predict RNA structures. 
 
These functions are initially encoded in the primary structure [17]. Then the base pairs 
in the RNA secondary structure that are created by interactions such as hydrogen bond, 
will be identified by predicting RNA secondary structure methods. 
 
Predicting RNA secondary structure approaches can be classified into physical, 
computational and experimental methods. 
 
Physical methods use physical properties of RNAs structure for the investigation of the 
structure. The most powerful tools here are X-ray crystallography and nuclear magnetic 
resonance (NMR)[18]. However, these methods are expensive and complex, and it led 
researchers to go after more straightforward and cost-effective methods such as 
predicting RNA structure by computational approaches [9].  
 
Computational approaches can be classified into two categories: thermodynamic 
approaches and comparative approaches [9]. 
 
Thermodynamic approaches use dynamic programming which is a popular method to 
compute the secondary structure of RNA [9]. This method involves computing the 
optimal secondary structure of an RNA sequence which is the structure with minimum 
free energy of the interaction between nucleotides. 
 
For finding the optimal structure, first the minimum free energy is determined for each 
possible base pair in the shortest sequence fragments and then for longer fragments until 
the minimum free energy of the complete sequence is calculated [19].  
 
However, there is a major issue in this method for identifying pseudoknots because the 
dynamic programing considers only the interactions between the closest nucleotides for 
predicting secondary structure, while pseudoknotted structures are formed by 
interactions between distant nucleotides[20]. In general, thermodynamic methods have 
been appropriate for small RNAs. 
 
In contrast comparative approaches are suitable to manually predict the structure of long 
RNA sequences. This approach is used when several aligned homologous RNA 
sequences are available and is useful for the cases that several sequences are used. 
These methods find pairs that covary to keep Watson-Crick and Wobble 
complementarities[21][22]. 
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The common practice for studying RNA structures by experimental methods is to use 
chemical probing experiments [23] that provide information regarding RNA structures 
by measuring access of nucleotide for RNase cleavage or chemical modification[24] 
,[25]. 
 
These experiments use chemicals as reagents that react with specific nucleotide 
positions on the RNA structure to covalently modify them. These reagents can be 
divided into three classes [25]: 1) base-specific reagents such as DMS (dimethyl 
sulfate), 2) backbone-cleaving reagents such as hydroxyl radicals [26] and 3) SHAPE 
(selective 2’-hydroxyl acylation analyzed by primer extension) reagents that modify the 
2’-OH of the RNA backbone [25] [27]. 
 
After chemical modifications, RNAs are converted into cDNAs through reverse 
transcription (RT), which either stop [25],[28] or introduce a mutation at each 
modification positions [27]. Finally, the pool of cDNA molecules is sequenced, and 
modification frequency at each position is determined by using sequence alignment 
algorithms.  
 
There are modern chemical probing approaches that by using next generation 
sequencing (NGS), can probe several RNAs, sequence and analyze the cDNA 
molecules all in a single experiment [29][30][31][32][33][34]. These datasets can be 
analyzed in several ways and are used as restraints in computational RNA folding 
algorithms to improve the accuracy of structure prediction algorithms [33]. 
 
Although there are many different chemicals that can be used to probe RNA structure, 
in this thesis, we looked at the SHAPE class of chemical probes. SHAPE is believed to 
be a very suitable method for characterizing the structure features of large RNAs [35]. 
This type of experiment improves the accuracy of RNA secondary structure prediction. 

1.3.1 SHAPE 
 
These days, many chemical probing techniques have been suggested to guide the 
computational predictions of RNA structure as an attempt to improve the accuracy of 
the RNA secondary structure prediction [36][37][38]. 
 
A common chemical method widely used nowadays is to use Selective 2’-Hydroxyl 
Acylation analyzed by Primer Extension sequencing (SHAPE) as reagent in the 
chemical probing experiments. 
 
An advantage of SHAPE probing is that it provides information for all positions and 
that it can be used to probe RNA structure[39] both in vitro and in vivo.  
 
SHAPE reagents modify the 2’ OH (Hydroxyl) group of the RNAs backbone. These 
chemical probes of RNA structure react with structurally flexible nucleotide positions 
and will covalently modify them[40][41]. Single-stranded or flexible RNA regions has 
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high 2’ OH reactivity, while nucleotides in base pairing form or other forms have lower 
reactivity[42].  
 
After chemical modification, the position of these modifications are detected with 
reverse transcription (RT) which stops [43][44] at one nucleotide before the RNA 
modifications (+channel) to create the cDNAs (complementary DNAs). 
 
RT process will go on until reaching to the first modified position where it will be 
stopped. Therefore, each cDNA can only encode one probe position per RNA. 
 
Additionally, a control RT is performed on an unmodified RNA (-channel) to identify 
locations where early-stage or the 5’ end termination of RT are carried out. 
 
The pool of cDNA molecules of both unmodified and modified RNAs are sequenced, 
and modification positions are mapped by using sequence alignment algorithms. These 
datasets can be analyzed in several ways and are used as restrains in computational 
RNA folding algorithms to improve the accuracy of structure prediction algorithms 
[24]. 
 
Figure 1-4 schematically presents the SHAPE strategy. 
 
These datasets can then be used to estimate the relative modification frequency or 
reactivity at each nucleotide of RNA[45][46]. The reactivity is the likelihood of the of 
modification of nucleotide within an RNA by the SHAPE reagent. Mathematically, a 
division of the number of modified nucleotide by the total number of nucleotide in the 
RNA will give the reactivity[46][45]. So, the higher the number of the modification of 
nucleotide, the higher the reactivity and vice versa. 
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Figure 1-4: SHAPE strategy 

 
 
 
High SHAPE reactivities refer to nucleotides that are unstructured (unpaired nucleotides 
such as loops and bulges), while low reactivities can refer to the nucleotides that have 
structural inflexibility due to being located in double-stranded helices, bound to a 
protein (protein interaction) or ligand (ligand binding), tertiary interactions, or other 
factors that cause reducing nucleotide flexibility[47][48][49]. In addition to this 
interpretation, SHAPE reactivity data can also be used as restrains in computational 
RNA folding algorithms to improve the accuracy of structure prediction algorithms [50] 
[51][52][53][54]. 
 
Restraining computational RNA folding algorithms with SHAPE reactivities can be 
achieved by two approaches: 1) modifying the model parameters in the folding 
calculation algorithm [51] 2) selecting the structure from a set of generated structures by 
the folding calculation that highly matches with the SHAPE data [55][56][57]. 
 
Two abovementioned approaches perform the same job of calculating a partition 
function which defines the way that a population of RNA divide into various structures 
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in equilibrium state, where the occurrence of each structure entails its own probability 
[58].This partition function can be used for predicting a minimum free energy (MFE) 
structure which has the maximum probability of occurring in the different structures 
[58]. 
 
The two approaches use SHAPE reactivity data for the folding calculations with 
different techniques. The first technique converts the SHAPE reactivity data into 
pseudo-free energy terms that are considered for each nucleotide involved in base 
stacking in the calculating overall free energies of RNA structure according to the 
below form: 

∆𝐺 (i) = m ln[𝑟(𝑖) + 1] + 𝑏 (1-1) 

Where ∆𝐺 (i) is the pseudo-free energy term at nucleotide i, m and b are constant 
parameters and r(i) is the reactivity at nucleotide i [51]. 
 
Finally, the ∆𝐺 (i) is included in the calculation of free energy and the MFE 
structures that are more consistent with the achieved reactivity data are created[51][50].  
 
The second approach to select the best structure from a set of possible structures  
first converts SHAPE reactivity data to a binary vector (0,1) and similarly each possible 
RNA structure is converted into a binary vector (0,1) where 0 and 1 correspond to 
paired and unpaired bases, respectively. Next step, the distance between the vector of 
SHAPE reactivity and each possible structure vector is calculated and then a structure 
that has minimum distance is selected. 
Eventually a characteristic centroid structure is calculated by clustering of structures 
based on the most related minimum distance structure [57]. 
 
Recently, some new SHAPE reagents are developed that can be used to global probing 
of in vivo RNA structure such as 1M7 (1-methyl-7-nitroisatoic anhydride) and FAI (2-
methyl-3-furoic acid imidazolide). These reagents are based on imidazolide chemistry 
that can probe RNA structure inside living cells (in vivo) [39]. 
However, in vivo SHAPE probing is more difficult and complex than the probing of 
RNA molecules in vitro because, in vivo SHAPE reagents encounter the RNA 
molecules and additionally elements present in the cell. 
 

1.3.2 SHAPES 
As mentioned in the SHAPE method, SHAPE reagents react with the 2′ OH group of 
the ribose of each nucleoside within an RNA to create covalent adducts at flexible 
regions of RNA structure. This process is called “SHAPE probing”. 
 
After SHAPE probing, probed RNAs are converted to cDNAs by reverse transcriptase 
that terminate at a position located one nucleotide before SHAPE modifications 
(adducts).  
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However, reverse transcriptase can also be stopped at positions of RNA degradation or 
other structures such as stable RNA structures. Thus, a control RT on a RNA that is not 
probed with reagents (-channel) is also performed in parallel with a RT on modified 
RNA. The control data can be used to normalize the SHAPE probing data in order to 
remove the background signal present in SHAPE probing data caused by natural 
termination or 5´ end drop-off (run-off). 
 
Performing this strategy to correct the background signal in SHAPE probing data, 
allows accurate calculation of adduct frequencies for each position in RNA.  
 
Different strategies have been developed for enhancing SHAPE modification and the 
efficiency of adduct detection, particularly in living cells (in vivo) [59][60] [61]. 
 
There are some SHAPE reagents such as 1M7 (1-methyl-7-nitroisatoic anhydride), 1M6 
(1-methyl-6-nitroisatoic anhydride) and NMIA (N-methylisatoic anhydride) that have 
little different modification properties [62][54][63] which can be used as probe in 
chemical probing-sequencing methods inside living cells. Recently two more class of 
SHAPE reagents have been proposed, consisting NAI (2-methylnicotinic acid 
imidazolide) and FAI (2-methyl-3-furoic acid imidazolide). 
 
A novel SHAPE Selection (SHAPES) reagent, NPIA (N-propanone isatoic anhydride) 
have been introduced for enhancing adduct detection [64]. This new reagent has ability 
to react with RNA and be coupled with biotin. The ability can be helpful for getting 
only cDNAs that terminate at probed positions by performing a special selection 
strategy on SHAPE probed RNA[64]. 
 
The SHAPES reagent modifies the 2´- OH group of the ribose in each nucleoside of an 
RNA by NPIA (RNA is probed by NPIA) and afterwards reverse transcription is 
performed to create cDNA. There are cDNAs that contain structural information, they 
were created by termination of RT at the NPIA modification and cDNAs that were 
created by early-stage termination of RT or its termination at the 5´end of the RNA (i.e. 
background signal). Then the N-propanone group of NPIA is biotinylated with biotin 
hydrazide. The product is now cDNA/RNA–NPIA–biotin hybrids at the end of this step. 
 
This product will interact with RNase I and cause that all single stranded RNAs be 
cleaved then this interaction will be followed by performing a CAGE-like (cap analysis 
of gene expression)[65][66] selection strategy, on streptavidin beads which has high 
affinity for biotin. This strategy effectively removes the cDNAs caused by premature 
termination or 5´ end drop off and only cDNAs containing the structural information 
remain. These are cDNAs with termination at probed positions [64]. 
 
The cDNAs with the structural information are sequenced and then the corresponding 
modification positions are identified. As mentioned for the regular probing method, this 
dataset can be used to guide computational methods for predicting secondary RNA 
structure. Figure 1-5 schematically presents the SHAPES strategy. 
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Figure 1-5: SHAPES strategy 
 
 
As consequence, in SHAPES method, the background signal present in SHAPE probing 
data, is removed without normalization with a no-reagent control, thus; only one sample 
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(modified RNA) needs to be sequenced. However, in regular SHAPE methods, a control 
RT is performed on no-reagent RNA to identify background signal, thus the cost of 
SHAPE experiment is more than SHAPES method. On the other hand, selection step in 
SHAPES increases the time needed to perform the experiment but having more data 
causes to get more accurate result. 
 
Additionally, the SHAPES technology provides an alternative to regular in vitro 
SHAPE probing of RNA structure and will be especially suitable for in vivo structure 
probing which has low probing and high background signal. 

1.4 In vivo, in vitro and in silico 

The studies of RNA folding structure are categorized into three groups: in vitro studies, 
in vivo studies, and in silico studies [6]. 
 
In vitro (Latin word for “within the glass”) studies refers to perform a given procedure 
in a controlled environment (i.e. in a laboratory environment) outside of a living 
organism. 
Data obtained from in vitro experiments may not accurately predict the effects on a 
whole organism. 
 
In vivo (Latin for “within the living”) refers to experimentation using a whole living 
organism or cells as opposed to a dead organism. 
In contrast to in vitro experiments, the effects of various biological objects are tested on 
living organisms or cells. 
 
In silico is an expression used to mean, “performed on computer or via computer 
simulation” in reference to biological experiments. 
 

 
Figure 1-6: Graphical representation of in vitro, in silico and in vivo 
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There are some advantages and restrictions for probing RNA structure by each of these 
approaches, and the information of the biological functions of RNAs produced by each 
of these experiments can be unique [6]. 

 
Most of the information of the RNA structure and folding pathway have been 
discovered by in vitro studies and newly some chemical methods have been developed 
for in vitro probing of RNA structure. 
In the in vitro studies the biological components in cells including proteins, ligands and 
biological ion compositions are missing in vitro experiments and therefore, the 
laboratory conditions (environment) of this type of experiments are very different from 
the cellular environment. This appears to be the most important drawback of in vitro 
approach since the mentioned components have influence in the structure and function 
of RNAs within a cell. Given the limitations of the in vitro approach, the development 
of experiments and techniques for understanding how RNA folds and functions in 
cellular environmental conditions (in vivo) is critical.  
 
In vivo studies can be useful for understanding how the cellular environment affects 
RNA folding and structure. The RNA structure motifs and interactions between RNA 
and protein can be verified through in vivo experiments. In addition, by some new 
methods, the probing of RNA structure is possible with in vivo conditions. However, 
studying RNA folding and structure in vivo has limitations too. In vivo studies provide 
information about the average RNA structure in a cell and not information on RNA 
dynamics and RNA folding pathway. 
 
Both in vivo and in vitro studies of probing RNA structure in genome-wide have shown 
that the coding regions of RNAs are more structures than the untranslated regions of 
RNAs[67] [68][69][70][71]. In addition, the start and stop codons have less structures 
than in the rest of the transcript, which is probably a simplified read-through by the 
ribosome. 

The in silico studies in the field of molecular biology were first introduced in the 1980 
by Pedro Miramontes [72], a mathematician from National Autonomous University of 
Mexico (UNAM). He stated that biological experiments can be performed virtually 
using computers. 

The in vivo and in vitro experiments are used to navigate in silico methods to improve 
the accuracy of in silico modeling [73]. For example, the RNA structural probing 
methods use in silico structure prediction tools to predict structure that is guided by the 
in vivo and in vitro structure probing data. 

In silico experiments make possibility of working on a symbolic gene [74], while in 
vivo and in vitro experiments are performed on a material object. 

In general, as Wieber mentioned, the in silico experiment has been added to the toolbox 
which molecular biologists use to provide and interpret experimental results [74][75]. 

Despite a broad use of in silico nowadays, the most popular applications that use in 
silico experiments for predicting RNA folding structure have some limitations. For 
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example, these applications cannot predict pseudoknots in general. However, Hajdin 
and his teams have shown that there could be a possibility for the prediction of 
pseudoknots by in silico structure prediction that is guided by in vitro SHAPE data[76]. 

1.5 Zebrafish 

The function of a cell or organism depends on its whole transcriptome (all RNAs). 
Global transcriptional profiling is a powerful tool for analyzing all transcripts that can 
exposes the gene activities in the significant biological processes, including 
developmental processes and genetic disorder. 

Embryogenesis is a complex developmental process that requires the interaction of 
genes and causes changes in gene expression[77]. In recent years, there has been much 
studies in the transcriptomes of vertebrate embryogenesis to understand the effects of 
genes interaction and changes in gene expression in embryogenesis at the molecular and 
cellular levels.  

The embryonic development consists of 8 stages including Zygote, Cleavage, Blastula, 
Gastrula, Segmentation, Pharyngula, Hatching, Early larva. 

After fertilization event (a female egg is joined by a male sperm), a zygote cell is 
formed and then during the periods of embryonic development, the zygote as a single 
cell is changed to embryo. 

The transcriptomes of vertebrate embryogenesis are analyzed by transcriptomics 
techniques including DNA microarrays and next-generation sequencing technologies 
called RNA-Seq [78]. This dataset reveals information about the global expression 
patterns during vertebrate embryogenesis. 

The Zebrafish is an excellent model organism to study vertebrate development. 
The zebrafish, scientifically called “Danio rerio” is a freshwater fish belonging to the 
minnow family and can be found in the streams of South Asian countries. 

Since the 1960, the Zebrafish has been a successful vertebrate model to scientific 
research as mammalian models. It has several distinct advantages over other vertebrate 
models that make it an interesting model for investigating human genetics and disease 
[79]. 
 
Some advantages of zebrafish are as follows: 
 

 Zebrafish is typically small (2.5 cm to 4 cm long) so they are cost-effective since 
they require minor lab space. They also make the use of high-throughput 
strategies possible. 

 Their fertilization is external, and their embryos are transparent. This allows 
direct visualization of development of internal structures for researchers. 
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 Zebrafish have a similar genetic structure to humans. In fact, 70% of human 
genes are found in zebrafish. 

 82 percent of genes involved in the human disease with their corresponding 
zebrafish genes are known. 

 Zebrafish has the same major structures and tissues as humans. 

 Entire zebrafish genome has been sequenced with high accuracy [80].  

Considering all these advantages, zebrafish is deemed as an excellent vertebrate model 
to study vertebrate developmental disorders and human diseases [81][82]. 

In this thesis we used SHAPE-Seq data from zebrafish in both in vivo and in vitro 
experiments for Oblong stage of Blastula.  

 

 

 

 

 

 

 

 

 



 

Chapter 2         
           
Methodology 

This chapter briefly presents the list of the software used in the thesis with brief 
introductions for each one, capabilities and output. The chapter eventually presents the 
protocol for analyzing data in vivo, in vitro and in silico that we performed by different 
tools and software in this thesis. 

 

2.1 Software and tools used 

To perform this project, a personal MacBook Air with a 1.8-GHz Intel Core i5 
processor as the hardware and a CentOS as remote server was used for the programming 
parts.  

The software used in this thesis are: HISAT, SAMtools, HTSeq, ViennaRNA and 
RStudio for using R version 3.6.  

2.1.1 HISAT 
HISAT (hierarchical indexing for spliced alignment of transcripts) is an efficient tool 
for alignment of reads from both RNA and DNA sequencing experiments that has faster 
performance than other methods with better alignment quality[83]. HISAT is designed 
with an indexing scheme based on the Burrows-Wheeler transform (BWT) and the 
Ferragina-Manzini (FM) index, employs two types of indexes for alignment: a whole-
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genome FM index to anchor each alignment, and numerous local FM indexes for very 
rapid extensions of these alignments. 
 
Despite its large number of indexes, HISAT requires low memory footprint 
approximately 4.3 gigabytes of memory for the human genome so HISAT supports 
genomes of any size, including those larger than 4 billion bases. 
 
After RNA-seq experiment, analysis of data begin by mapping reads to a reference 
genome to determine the location of reads against the reference genome, it can be done 
by HISAT, which is available as free, open-source software from reference [83]. 
 
HISAT 2 is developed based on the HISAT and Bowtie2 implementations so it is a 
good  replacement to both HISAT and TopHat2 . 
 
HISAT2 outputs alignments in SAM format, enabling interoperation with a large 
number of other tools (e.g. SAMtools) that use SAM. HISAT2 is distributed under 
the GPLv3 license, and it can be install on the Linux, Mac OS X and Windows. 
 
After running HISAT2 for the RNAseq, messages summarizing which is an information 
of mapping the RNAseq to the reference genome, is printed to the "standard error" 
("stderr") filehandle. 
 
The summary might look like this: 
 
7465103 reads; of these: 
7465103 (100.00%) were paired; of these: 
5238926 (70.18%) aligned concordantly 0 times 
1198410 (16.05%) aligned concordantly exactly 1 time 
1027767 (13.77%) aligned concordantly >1 times 
---- 
5238926 pairs aligned concordantly 0 times; of these: 
8441 (0.16%) aligned discordantly 1 time 
---- 
5230485 pairs aligned 0 times concordantly or discordantly; of these: 
10460970 mates make up the pairs; of these: 
6718543 (64.22%) aligned 0 times 
2499251 (23.89%) aligned exactly 1 time 
1243176 (11.88%) aligned >1 times 
55.00% overall alignment rate 

2.1.2 SAMtools 
SAM (Sequence Alignment Map) format is a common format for storing large 
biological sequence alignments. The advantage of using sam format: 

 Supports all the alignment information produced by different alignment 
programs 

 can be easily converted to other formats 
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 The data in the sam file can be stored in binary file as a compressed file with the 
same data 

 Is compact in file size 
 Can be indexed by genomic position to efficiently recover all reads aligning to a 

locus. 
The SAM format contains a header and an alignment section.  
 
The header section is previous of the alignment section if it exists in the sam file. 
Heading part begins with the '@' symbol, which separates them from the alignment 
section. Alignment sections have 11 mandatory fields, as well as a variable number of 
optional fields[84]. 
 
The mandatory fields include QNAME, FLAG, RNAME, POS, MAPQ, CIGAR, 
RNEXT, PNEXT, TLEN, SEQ and QUAL. 
 
Sam files can be analyzed and edited with the software SAMtools. Some utilities of the 
SAMtools include sorting, merging, indexing and generating alignments in the sam 
format. 

2.1.3 HTSeq 
 
The HTSeq is a Python package that provides infrastructure to process and analyze 
high-throughput sequencing (HTS) data. 
HTSeq includes parsers for many common file formats in HTS projects and is suitable 
as a general platform for a various range of projects, as well as classes  that simplifies 
working with data such as genomic coordinates (e.g. read coverage), sequences, 
sequencing reads, alignments, gene model information and genomic intervals (e.g. 
genomic features such as exons or genes) [85]. 

While the main purpose of HTSeq is to allow us to write our analysis scripts, there are 
also two stand-alone scripts, namely HTSeq are htseq-qa for common tasks that can be 
used from the shell command line, without any Python knowledge. 

The script htseq-qa is used for reading quality assessment and producing plots that 
summarize the nucleotide compositions of the positions in the read and the base-call 
qualities. 

Another script, the htseq-count is a tool for preprocessing RNA-Seq alignments for 
differential expression analysis by counting the number of sequencing reads overlap 
each of the features. 

This script is one of the typical use cases for the HTSeq library that takes a SAM/BAM 
file and GTF/GFF file with gene models as inputs and counts for each gene how many 
aligned reads map to it. 
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These counts can then be used for gene-level differential expression analysis using R 
packages. As the script is designed specifically for differential expression analysis, only 
reads mapped unambiguously to a single gene are counted. On the other hand, the reads 
aligned to multiple positions or overlapping with more than one feature, is a special case 
that should be dealt with using htseq-count available modes as described below. 

The htseq-count script allows to choose different three modes: union mode, mode 
intersection-strict and intersection-nonempty. 

The three modes of htseq-count work as follows. For each position i in the sequencing 
read, a set S(i) is the set of all features mapped to position i. Then, the set S can be the 
union of all the sets S(i) for mode union, the intersection of all the sets S(i) for 
mode intersection-strict and the intersection of all non-empty sets S(i) for 
mode intersection-nonempty. 

When S contains exactly one feature, the read or read pair is counted for this feature, 
likewise, when S is empty; the read or read pair is counted as no_feature. If S contains 
more than one feature, htseq-count behaves according to the two available options 
below: 

 --nonunique none (default): the read or read pair is considered as ambiguous and 
not counted for any features. Also, if the read or read pair aligns to more than 
one genomic position, it is scored as alignment_not_unique. 

 --nonunique all: the read or read pair is considered as ambiguous and is counted 
in all features where it was originally mapped. When the read or read pair is 
aligned to more than one position in the reference, it is scored 
as alignment_not_unique and it will be also individually counted for each 
position. 

Here it should be noted that since the reads with multiple alignments or overlaps get 
scored multiple times, the sum of total counts will not be equal to the number of reads 
or read pairs.  

If none of the abovementioned modes of htseq-count addresses the specific need in 
hand, own script can be written with HTSeq. Chapter A tour through HTSeq in 
reference  [86] provides a step-by-step guideline on HTSeq. 

Since the emerge of htseq-count in 2010, it has been widely used by the bioinformatics 
society. Lately, competing tools for counting reads have been published such as 
the summarizeOverlap function in the GenomicRanges Bioconductor package [87] 
and featureCount[88]. The latter possesses fast runtimes due to be run in C.  
In 2014 Fonseca et al. [89] made a comparison between the accuracy counting reads 
of htseq-count and these other tools. They concluded that htseq-count is of higher 
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accuracy in this matter. However, none of these tools including htseq-count was flexible 
enough to properly deal with special cases. To compensate for that, HTSeq offers own 
script writing possibility for users which is explained in detail in reference  [86]. 

2.1.4 ViennaRNA 
 

The ViennaRNA is a useful tool for the RNA bioinformatics community which 
contains a C code library and several stand-alone programs for the prediction and 
comparison of RNA secondary structures. The first version of this package was released 
by HOfacker et al. in 1994[25]. 

The computer codes of ViennaRNA are based on dynamic programming algorithms 
introduced by Zuker [90] to compute such as predict minimum free energy structures, 
the equilibrium partition functions of RNA molecules, base pairing probabilities and 
other functions (a comprehensive programs included in the viennaRNA package as well 
as the reference manual are presented in reference[91]). 

Amongst all implementation of viennaRNA package, RNAfold which computes the 
RNA secondary structure prediction through minimum free energy is the most used 
function in the package. 

   The RNAfold use RNA sequences as an input and the output is a string representation 
of the minimum free energy (MFE) structure and MFE values which are written in the 
standard output stream. RNAfold also can compute the partition function, the matrix of 
base pairing probabilities, and the centroid structure by using the -p option in command 
line. 

RNAfold for representing the secondary structures, uses the dot-parentheses format 
i.e the three characters (,), and. to denote nucleotides that are paired or unpaired with a 
upstream and downstream. The dot-parentheses format is also used in many 
independent tools e.g. [92][93][94]. 

The tools included in the viennaRNA package and additional tools are available in the 
viennaRNA webserver [91]for public use through a web browser interface.  All 
computations of webserver are according to the performance of the new version of 
viennaRNA package so the viennaRNA webserver always has been upgraded. 

In this thesis we used RNAfold program. It has several command line options and we 
used the option –noPS in this work. By using this option one can have an output of only 
minimum free energy and skip producing postscript drawing of the MFE structure. 

2.1.5 R  
 

R is a powerful programming language and free software environment for analysis data 
and producing graphical displays of data [95]. 

R is free software and can run on a variety of operating systems, so it is accessible 
and comfortable for students and researchers.  
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What is most interesting about R is its flexibility which allows for many different 
packages to be added on its structure [96]. Several packages are being developed to 
address specific sets of biologic tasks.   

The Bioconductor community developed several R packages [97] which include tools 
for analyzing biological data and addressing many bioinformatic problems. 

By flexible and extensible capability of R, most bioinformatics data analysis tasks can 
be done in one program with add-on packages so researchers can use one programming 
environment for many tasks rather than using multiple tools. 

The motivation of the use of R language in this thesis were also its extensibility and 
the growing use in bioinformatics by biological researcher.  

 R is accessible by command line interface and sever graphical user interfaces, such 
as RStudio and an integrated development environment. 

In this thesis we used RStudio as open source and enterprise-ready professional 
software for R since it makes working with R more efficient. 

2.1.6 RStudio  
 

RStudio is a free and open source integrated development (IDE) for R. It was developed 
by JJ Allaire [98] who created the programming language ColdFusion.  

RStudio is accessible in two ways: RStudio Desktop which is a standalone desktop 
application and it works with the R that installed on local Windows, Mac OS X or 
Linux workplace and RStudio Server which is provided a browser-based interface (the 
RStudio IDE) to a version of R running on a remote Linux server. 

In this thesis we used RStudio server because of addressing the problems of below: 

 Access to R workspace from any computer  

 Access to the more powerful computer resources (larger CPU and memory 
footprints) 

 Easy sharing of code, data, and other files 

 

Logging to RStudio server depends on type of authentication system. By default, 
RStudio uses PAM authentication which can log in by username and password of Linux 
server for other authentication system, it is needed to create local PAM accounts. 
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2.2 Data processing 

Figure 2-1 below shows the protocol used in this master thesis to utilize different tools 
for SHAPE-seq data analysis. Different software used in the assignment are also 
mentioned in the protocol. In the figure, straight lines and curvy lines indicate data input 
and data output to and from software respectively. The rectangulars in the figure 
represent data with the type of data mentioned in a bracket, and the ovals represent the 
tools used. 
 
HISAT, SAMtools, HTSeq, ViennaRNA package and Rstudio are free, open-source 
software tools for analysis of SHAPE-seq experiments. They are useful for alignment of 
reads to a reference genome, computing the abundance of reads per gene in each 
sample, and comparing In vivo, In vitro and In silico data samples. 
The protocol describes all the steps necessary to process a large set of raw sequencing 
reads and to create different kind of plots to properly compare the data samples. The 
execution time of this protocol highly depends on the available computing resources, 
but approximately takes under 720 minutes for the resources used in this master thesis 
which were explained in detail in section 2.1. 
 

 

Figure 2-1: An overview of the Shape-seq data analysis protocol 
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2.2.1 Collecting the FASTQ files of the Oblong stage from in vitro and in vivo 
experiments 
 
The FASTQ files can be reached in the directory of remote system that is described 
below: 
 
/export/valenfs/data/raw_data/SHAPE/SHAPES_June2018/raw 
 
 Connecting to ssh kjempetuja, copying the files to a directory that was created to 

store all data of this thesis 
 
In command line: 
$ ssh haniehr@login.ii.uib.no 
$ ssh kjempetuja 
$cd /export/valenfs/data/raw_data/SHAPE/SHAPES_June2018/raw 
 
In vivo data: 
$ cp {NAI-N3_Oblong_S21_L008_R1_001.fastq.gz, NAI-
N3_Oblong_S21_L008_R2_001.fastq.gz, NAI-
N3_old_Oblong_S24_L008_R1_001.fastq.gz,NAI-
N3_old_Oblong_S24_L008_R2_001.fastq.gz} /Home/ii/haniehr/ 
 
In vitro data: 
$ cp {invitro_MCE_Oblong_S26_L008_R1_001.fastq.gz, 
invitro_MCE_Oblong_S26_L008_R2_001.fastq.gz, 
invitro_old_Oblong_S25_L008_R1_001.fastq.gz, 
invitro_old_Oblong_S25_L008_R2_001.fastq.gz} /Home/ii/haniehr/ 
 
$logout (from kjempetuja) 
$logout (from haniehr) 
 
$ scp haniehr@login.ii.uib.no:/Home/ii/haniehr/{NAI-
N3_Oblong_S21_L008_R1_001.fastq.gz, NAI-
N3_Oblong_S21_L008_R2_001.fastq.gz, NAI-
N3_old_Oblong_S24_L008_R1_001.fastq.gz, NAI-
N3_old_Oblong_S24_L008_R2_001.fastq.gz} /Users/haniehroodashty/bin 
 
$ scp 
haniehr@login.ii.uib.no:/Home/ii/haniehr/{invitro_MCE_Oblong_S26_L008_R1_001.f
astq.gz, cp invitro_MCE_Oblong_S26_L008_R2_001.fastq.gz, 
invitro_old_Oblong_S25_L008_R1_001.fastq.gz, 
invitro_old_Oblong_S25_L008_R2_001.fastq.gz} /Users/haniehroodashty/bin 
 

2.2.2 Using Hisat2 to map paired-end reads to the transcriptome/genome 
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We used HISAT2, which uses algorithmic improvements that give higher accuracy than 
the original HISAT system. 

2.2.2.1 Downloading and installing 

 Requirements for running Hisat2 
 Download and setup xcode form apple store 

 Install GNU GCC compiler on mac OS X (gcc version 7.1.0) 

 A directory was created to store all the executable programs and data used and 
created in the thesis. 
 

In command line: 
$ mkdir $HOME/bin 
Add the above directory to my PATH  
$ export PATH=$HOME/bin:$PATH 
 
 The binary package of Hisat2 was downloaded from [1] 

 
 Hisat2 executables was copied to a directory in our PATH 

 
In command line: 
$ cp hisat2-2.1.0/hisat2* $HOME/bin 

2.2.2.2 Procedure 

 A Genome Index from danRer11.fa was created 
 

The GRCz11 zebrafish genome (danRer11.fa) was downloaded from [2]. 
 
In command line: 
$ Hisat2-build danRer11.fa danRer_index 
The output is: 
danRer_index.1.ht2, danRer_index.2.ht2, . . . and danRer_index.8.ht2 
 
Splice sites from a GTF annotation file was extracted and the GRCz11 annotation was 
downloaded as a GTF file from [2]. 
 
We needed to have the same name chromosome in fa and gtf file when using them in 
different tools so we downloaded them from one source and also to change the gene_Id 
in gtf file because the gene_Id and transcript_Id fields had the same name so we 
changed the gene_Id names in Excel by removing dot(.) and value after that (For 
example, if the gene_Id is "XM_021475941.1" after changing it is "XM_021475941”). 
 
In command line: 
$ Hisat2_extract_splice_sites.py annotation_danRer11_edited.gtf > 
danRer11_splice_sites.txt 
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 Running Hisat2 to Map the reads to the reference genome for each sample (In 
vivo and In vitro) 
 

In command line: 
$ hisat2 -x danRer11_index --known-splicesite-infile danRer11_splice_sites.txt -p 2 -1 
invitro_MCE_Oblong_S26_L008_R1_001.fastq.gz -2 
invitro_MCE_Oblong_S26_L008_R2_001.fastq.gz -S 
invitro_MCE_Oblong_S26_L008.sam 
 
The output is: 
7542803 reads; of these: 
7542803 (100.00%) were paired; of these: 
4830582 (64.04%) aligned concordantly 0 times 
1326801 (17.59%) aligned concordantly exactly 1 time 
1385420 (18.37%) aligned concordantly >1 times 
---- 
4830582 pairs aligned concordantly 0 times; of these: 
10609 (0.22%) aligned discordantly 1 time 
---- 
4819973 pairs aligned 0 times concordantly or discordantly; of these: 
9639946 mates make up the pairs; of these: 
5966484 (61.89%) aligned 0 times 
2320425 (24.07%) aligned exactly 1 time 
1353037 (14.04%) aligned >1 times 
60.45% overall alignment rate 
 
In command line: 
$ hisat2 -x danRer11_index --known-splicesite-infile danRer11_splice_sites.txt -p 2 -1 
invitro_old_Oblong_S25_L008_R1_001.fastq.gz -2 
invitro_old_Oblong_S25_L008_R2_001.fastq.gz -S 
invitro_old_Oblong_S25_L008.sam 

 
The output is: 
7465103 reads; of these: 
7465103 (100.00%) were paired; of these: 
5238926 (70.18%) aligned concordantly 0 times 
1198410 (16.05%) aligned concordantly exactly 1 time 
1027767 (13.77%) aligned concordantly >1 times 
---- 
5238926 pairs aligned concordantly 0 times; of these: 
8441 (0.16%) aligned discordantly 1 time 
---- 
5230485 pairs aligned 0 times concordantly or discordantly; of these: 
10460970 mates make up the pairs; of these: 
6718543 (64.22%) aligned 0 times 
2499251 (23.89%) aligned exactly 1 time 
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1243176 (11.88%) aligned >1 times 
55.00% overall alignment rate 
 
In command line: 
$ hisat2 -x danRer11_index --known-splicesite-infile danRer11_splice_sites.txt -p 2 -1 
NAI-N3_Oblong_S21_L008_R1_001.fastq.gz -2 NAI-
N3_Oblong_S21_L008_R2_001.fastq.gz -S NAI-N3_Oblong_S21_L008.sam 

 
The output is: 
7471263 reads; of these: 
7471263 (100.00%) were paired; of these: 
5027424 (67.29%) aligned concordantly 0 times 
1784490 (23.88%) aligned concordantly exactly 1 time 
659349 (8.83%) aligned concordantly >1 times 
---- 
5027424 pairs aligned concordantly 0 times; of these: 
11035 (0.22%) aligned discordantly 1 time 
---- 
5016389 pairs aligned 0 times concordantly or discordantly; of these: 
10032778 mates make up the pairs; of these: 
6368605 (63.48%) aligned 0 times 
2899903 (28.90%) aligned exactly 1 time 
764270 (7.62%) aligned >1 times 
57.38% overall alignment rate 
 
In command line: 
$ hisat2 -x danRer11_index --known-splicesite-infile danRer11_splice_sites.txt -p 2 -1 
NAI-N3_old_Oblong_S24_L008_R1_001.fastq.gz -2 NAI-
N3_old_Oblong_S24_L008_R2_001.fastq.gz -S NAI-N3_old_Oblong_S24_L008.sam 
 
The output is: 
39509059 reads; of these: 
39509059 (100.00%) were paired; of these: 
28691477 (72.62%) aligned concordantly 0 times 
8428212 (21.33%) aligned concordantly exactly 1 time 
2389370 (6.05%) aligned concordantly >1 times 
---- 
28691477 pairs aligned concordantly 0 times; of these: 
61445 (0.21%) aligned discordantly 1 time 
---- 
28630032 pairs aligned 0 times concordantly or discordantly; of these: 
57260064 mates make up the pairs; of these: 
37479137 (65.45%) aligned 0 times 
16067137 (28.06%) aligned exactly 1 time 
3713790 (6.49%) aligned >1 times 
52.57% overall alignment rate 
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2.2.3 Sorting and converting sam files using SAMtools  

2.2.3.1 Downloading and installing 

 SAMtools were downloaded from [3], SAMtools tar file was unpacked, cd to the 
SAMtools source directory and SAMtools binary was copied to our path 
 

In command line: 
$ tar jxvf samtools-0.1.19.tar.bz2 
$ cd samtools-0.1.19 
$ make 
$ cp samtools-0.1.19/samtools $HOME/bin 

2.2.3.2 Procedure 

 Sort and convert the sam files to bam files 
 

In command line: 
$ samtools sort -@ 2 invitro_MCE_Oblong_S26_L008.sam -o 
invitro_MCE_Oblong_S26_L008.bam 
$ samtools sort -@ 2 invitro_old_Oblong_S25_L008.sam 
-o invitro_old_Oblong_S25_L008.bam 
$ samtools sort -@ 2 NAI-N3_Oblong_S21_L008.sam -o NAI-
N3_Oblong_S21_L008.bam 
$ samtools sort -@ 2 NAI-N3_old_Oblong_S24_L008.sam -o NAI-
N3_old_Oblong_S24_L008.bam 
 

2.2.4 Counting reads of genes by HTSeq 

2.2.4.1 Downloading and installing 

 Requirements for running HTSeq [4] 
 Install Python 2.7 or above 

 
In command line: 
$ brew install python 
 

 Install NumPy, a commonly used Python package for numerical 
calculations (We needed as well as to install pip3) 

In command line: 
$ pip3 install --upgrade pip 
$ python3 -m pip install --user numpy scipy matplotlib ipython jupyter pandas sympy 
nose 
 

 Install Pysam, a Python interface to SAMtools 
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In command line: 
$ pip install pysam 
 
 The source package of HTSeq was downloaded from [5], unpacked the tar file, 

cd to the HTSeq source directory and compiled HTSeq 
 

In command line: 
$ tar jxvf HTSeq-0.11.2.tar 
$ cd HTSeq-0.11.2 
$ python3 setup.py build 
$ python3 setup.py install 

2.2.4.2 Procedure 

 Counting how many reads map to each gene by htseq-count tool for all bam 
files. 
 

In command line: 
$python3 -m HTSeq.scripts.count -f bam -r pos -s yes --nonunique all 
invitro_MCE_Oblong_S26_L008.bam annotation_danRer11_edited.gtf > 
result_HTSeq_count_invitro_MCE_Oblong_yes.txt 
 
The output is: 
__no_feature  198532 
__ambiguous  527094 
__too_low_aQual    4916712 
__not_aligned 1283637 
__alignment_not_unique    2361465 
 
$ python3 -m HTSeq.scripts.count -f bam -r pos -s yes --nonunique all 
invitro_old_Oblong_S25_L008.bam annotation_danRer11_edited.gtf > 
result_HTSeq_count_invitro_old_Oblong_yes.txt 
 
The output is: 
__no_feature 161400 
__ambiguous 484373 
__too_low_aQual    4661359 
__not_aligned 1592509 
__alignment_not_unique    1916912 
 
$ python3 -m HTSeq.scripts.count -f bam -r pos -s yes --nonunique all NAI-
N3_Oblong_S21_L008.bam annotation_danRer11_edited.gtf > 
result_HTSeq_count_NAI-N3_Oblong_S21_L008_yes.txt 
 
The output is: 
__no_feature  173066 
__ambiguous  788940 
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__too_low_aQual     4268109 
__not_aligned  1404581 
__alignment_not_unique    1206926 
 
$ python3 -m HTSeq.scripts.count -f bam -r pos -s yes --nonunique all NAI-
N3_old_Oblong_S24_L008.bam annotation_danRer11_edited.gtf > 
result_HTSeq_count_ NAI-N3_old_Oblong_S24_L008_yes.txt 
 
The output is: 
__no_feature  754269 
__ambiguous  3725121 
__too_low_aQual     21941000 
__not_aligned  9061528 
__alignment_not_unique     5134797 
 

2.2.5 Calculating minimum free energy secondary structures and getting csv matrix of 
them by Vienna RNA  

2.2.5.1 Downloading and installing 

 Requirements for installing viennaRNA package: 
 Install conda with the Miniconda package from [6] 
 After installing conda we need to add the bioconda channel as well as the 

other channels bioconda depends on 

In command line: 
$ conda config --add channels defaults 
$ conda config --add channels bioconda 
$ conda config --add channels conda-forge 
 
 Install ViennaRNA package  

 
In command line: 
$conda install viennarna 
 
In this thesis it was tried to install viennaRNA package according to the instruction from 
[7], it should be noted that after the installation of binary package when [./configure] is 
typed this error message appeared: 
Gcc-ar cannot find liblto-plugin.so 
We found that mac has an issue with gcc-ar which has not solved yet. The solution was 
to install vennaRNA by conda. 
 
 Copying the RNAfold executable file from vennaRNA package which is in 

annaconda3 package to a directory that was created to store all data of this 
thesis  
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2.2.5.2 Procedure 

 Connect to ssh kjempetuja and download three files (parse_vf.pl, 
fasta_windows.pl and minimum free energy.sh).  
 

In command line: 
$ cd /export/valenfs/projects/adam/final_results/scripts/repo3/giess-
scripts/TIS_prediction/prediction_scripts/05_prediction_plots/plots_novel 
$ cp {parse_vf.pl, fasta_windows.pl, minimum free energy.sh} /Home/ii/haniehr/ 
$logout (from kjempetuja) 
$logout (from haniehr) 
$ scp haniehr@login.ii.uib.no:/Home/ii/haniehr/ {parse_vf.pl, fasta_windows.pl} 
/Users/haniehroodashty/bin 
 
 Run minimum free energy.sh shell script [1] for input tx.fasta file (sequence of 

filtered transcripts) 
 

In the shell script, those two downloaded files are used to split fasta file in sliding 
windows of 39 bases and RNAfold with option –noPS run on all split fasta files to 
create MFE for each window of transcripts. Eventually the matrix of minimum free 
energy from all transcripts is obtained in csv format. 

The tx.fasta is created by viennaScript.R script that can be found in the appendix of this 
thesis and also in GitHub [1]. 

  

In command line: 

$ minimum free energy.sh -f tx.fasta –o ./Vienna 

(This command also can run in R) 

After running this script, three folders are created in thesis directory with names csvs, 
viennas and windows. The csv file is on csvs folder with name am.csv.  
 
It is noteworthy that the file am.csv has some lines that do not have any information 
about minimum free energy, so we removed (skip) 23479 first lines, because these lines 
are just the names of the transcripts without any values. After these lines, the values for 
the transcripts start to appear. We called this new csv file “am2.csv”. 
 

2.2.6 Using Rstudio to create scatter plot and coverage meta plot of data 

 
We used Rstudio server in this thesis since the files had so large size that could not be 
processed on Rstudio desktop. 
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2.2.6.1 Downloading and installing 

 The Rstudio server has been installed in the kjempetuja (the instruction of the 
installation of Rstudio server can be found from [98]). 

 

2.2.6.2 Procedure 

 Connect to Rstudio server  
 

In command line: 
$ ssh -L 20002:kjempefuru.cbu.uib.no:8787 -N  haniehr@login.ii.uib.no 
 

Then we go to browser and write localhost:20002. 
 
The main page of Rsudio server will be open after using valid credential to login. 
 
 Loading annotation file, csv, bam and txt files  

 
Loading the annotation file and extract the exons grouped by filtered transcript: 
 
Library (GenomicFeatures) 
txdb <- makeTxDbFromGFF (file = "annotation_danRer11_edited.gtf") 
tx <- exonsBy (txdb, use.names = TRUE) 
tx <- tx [widthPerGroup(tx) > 200]  
 

Load the csv file: 
library(data.table) 
hits <- fread ("am2.csv" ,nrow = length(tx), header = FALSE , fill=TRUE ) 
 
It was tried to load csv file in R with fread function, but the error message appeared: 
 
"Expected 10082 fields but found 14663 fields". 
 
This issue was related to the different fields (number of columns) that existed in some 
lines. 
 
The solution was to use skip argument in fread. We used this argument 3 times. In other 
words, every time the error was experienced fread function was used again by starting 
from the problematic fields had problem and eventually we received 3 data table (hits2, 
hits3, hits4) and then bound them into hit file. 
 
Loading the aligned reads of in vitro and in vivo (bam file): 
 
For example, loading first replicate of in vitro data 
Library (GenomicAlignments) 
invitroRep1<- GRanges (readGAlignments ("invitro_MCE_Oblong_S26_L008.bam")) 



34 Methodology 
 

 

 

 
Load txt file: 
For example, loading the output of HTSeq  of first replicate for in vitro data  
htseq_invitro_rep1 <- read.delim 
("result_HTSeq_count_invitro_MCE_Oblong_yes.txt",header = FALSE) 
 
 Creating scatter plot and coverage meta plot for comparing data 

 
For creating these plots, it was required to load two libraries below: 
 
Library (ggplot2) 
Library (ORFik) 
 
Now, it is possible to use ggscatter function for making scatter plot of in vitro and in 
vivo data and then by windowCoveragePlot function from ORFik package, make 
coverage meta plot of transcripts and transcript regions i.e. Leader (5' UTR), CDS and 
Trailer (3' UTR). 
 
For more details of data prepared analysis and plotting see R code in the appendix of the 
thesis or the entry for this master project in GitHub [1]. 
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Chapter 3         
            
Results and Discussion 

The output of the generated code for analyzing and comparing data for both in vivo and 
in vitro and eventually in silico is presented in this chapter. Relevant discussions and 
observations are also mentioned together with the results.  
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3.1 Introduction 

As explained in Chapter 2, the data for in vivo, in vitro and in silico were collected and 
prepared for analysis in the first step. Then the coverage plots along transcript and also 
along regions per transcript were plotted separately for each set of data. 

A comparison of structurality between the plotted data was performed afterwards. It was 
eventually discussed how and why the structure of various regions are different and 
what implications the number of reads in each case have in connection with the RNA 
structure. 

In all following data processing, the transcripts were filtered based on size restrictions: 
leader > 100 bases, CDS > 100 bases and trailer > 100 bases and also the longest 
transcript per gene is selected, therefore the number of transcripts is equal to the number 
of genes. 

3.2 Processing in vivo data and results 

3.2.1 Scatter plot of observed reads per gene for in vivo replicates data 
The number of genes in the data is shown in relation to the number of the mapped reads 
per gene for both in vivo replicates “Invivo_NAI-N3_Oblong” and “Invivo_NAI-
N3_old_Oblong”.  

Here the X-axis is log2 number of observed reads per gene and the Y-axis is log2 
frequency of genes. 

These plots were made to control the quality of the data and the depth of sequencing 
which come from in vivo experiment.  
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Figure 3-1 : A) Scatter plot of Invivo_NAI-N3_Oblong (replicate one). B) Scatter plot 
of Invivo_NAI-N3_old_Oblong (replicate two) 

 

It can be seen from  

Figure 3-1 that there are many genes with numerous reads that indicates high enough 
number of reads for both replicate 1 and 2, vouching for a trustworthy in vivo library. 

3.2.2 Correlation plot of in vivo replicate one with in vivo replicate two 
 

Pearson’s coefficient (R) of number of reads is mapped to per gene between in vivo 
replicates is shown in the following plot (Figure 3-2). The number of reads were 
transformed to logarithmic scale in base 2 and shown as scatter plot. Here each dot 
represents the number of reads of a specific transcript. 

In the figure below, the X-axis is log2 number of reads per gene for REP1 (Invivo_NAI-
N3_Oblong) and the Y-axis is the log2 number of reads per gene for REP2 
(Invivo_NAI-N3_old_Oblong). 
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Figure 3-2: Correlation of scatter plot of in vivo REP1 and REP2  

It can be observed from Figure 3-2 that the two replicates in vivo experiment agree at 
abundance and have a high correlation (R=92%). It will however be explained in the 
next section that a high correlation here can not necessarily guarantee for high accuracy 
of the in vivo experiment results, unless the error for the specific transcript regions are 
also examined and proved to be low enough.   

3.2.3 Plot of percentage difference between replicate one and replicate two in vivo  
The correlation between the two in vivo replicates data determines the error between the 
total numbers of the reads per transcript in each replicate. It does not then specify the 
error for each transcript region (leader, CDS and trailer) in the ‘total error’. Therefore, 
we require to determine the difference between the number reads per transcript region 
(regional error) for replicate 1 and 2 and look at the summation of these errors that we 
call ‘global error’.  

Figure 3-3 is an attempt to show the role of the regional errors in the overall 
correlation of two replicates. In this case, the total error of the transcript is 0 between 
two replicates while errors for transcript regions are significant values.  

 

Figure 3-3 Illustration of the role of regional error in correlation of replicates 
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In Figure 3-3, the numbers above each transcript region correspond to their number of 
mapped reads. In this case, that the numbers are chosen to be extreme for the sake of 
clarity, while the total number of reads for a specific transcript are the same, the number 
of reads per transcript regions are totally different and the ‘regional error’ are 
significant. Then we consider working with the summation of regional errors, i.e. global 
error, as a more meaningful parameter rather than total error to understand the 
difference between the two replicates. In the example above the different type of errors 
between replicate 1 and 2 will be as follows: 

 

Total error: [1 + 0 + 9] replicate1 - [9 + 1 + 0] replicate 2 = 0 

Regional errors:  

 % Leader-error: [1/10] leader - replicate 1 - [9/10] leader - replicate 2 = 80% 

 %CDS-error: [o/10] CDS - replicate 1 - [1/10] CDS- replicate 2 = 10% 

 %Trailer-error: [9/10] Trailer - replicate 1 - [0/10] Trailer - replicate 2 = 90% 

Global errors: 80% + 10% + 90% = 180% 

 

Thereafter, global errors for all transcripts between the two replicates were calculated. 
Then the frequency of transcripts was plotted versus corresponding global errors.  

In Figure 3-4 the X-axis is the global errors between two in vivo replicates in percent 
and the Y-axis is frequency of genes. 

 

 

Figure 3-4: Plot of global error between in vivo REP1 and REP2  
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The peak at 100% shows around 4000 transcripts that have 100% global error. Such 
global error can appear in the conditions of the following example are met. In one of the 
replicates (replicate one in this example), 50% of the reads of a certain transcript is 
placed on one of the transcript regions (for example leaders). 50% of the remaining 
reads is then placed on one of the other two transcript regions (for example trailer) the 
last transcript region (i.e. CDS in this example) has no reads. Following the same 
example, in replicate two, 50% of the reads of transcript is placed on the CDS region of 
the transcript and 50% of the remaining reads is placed on trailer region. Here the last 
region, leader in this example, has no reads. Then the global error between the two 
replicates is equal to 100%.  

In Figure 3-4 the peak at 200% shows around 1000 transcripts, in other words, there are 
~1000 transcripts that have 200% global error. An example of such error can be when in 
replicate one, 100% of the reads of a given transcript is placed on the leader region of 
the transcript while in replicate two, 100% of the reads of the transcript is placed on the 
CDS region of the transcript. Then the global error between two replicates for the 
transcript is equal to 200%. 

As we can see most of the transcripts have less than half a percent difference in the 
count reads. In other words, the global error is not significant here between the 
corresponding transcripts of the two replicates, i.e. the two replicates have a proper 
correlation. We can then pool both replicates and make up one library as in vivo data to 
be later used for comparison with in silico and in vitro data. This will be shown in the 
Comparison and Discussion section.  

 

3.2.4 Coverage metaplot of the number of reads along the transcripts for in vivo 
replicates. 
 

The number of normalized reads over transcripts (count read /sum of counts per 
transcript) is represented in relation to scaled position along transcript and along regions 
per transcript (leader, CDS and trailer) separately. 

We used a 100-nt sliding window approach to scale all positions to the width of 100. 

For each position, the count read was calculated as the average of the count reads 
obtained in each of the overlapping windows. 

In Figure 3-5 A and C, the X-axis is the scaled position along transcript and along 
regions per transcript respectively, for in vivo replicate one and the Y-axis is the total 
number of normalized reads for each position in all transcripts. Figure 3-5 A and C 
appear different in terms of peak distribution while both are from in vivo replicate one. 
The reason is that we scaled the position of all transcripts to 100 in A but in C each 
region of transcripts is scaled to 100. It means that each region in Figure 3-5 C has a 
certain number of positions (100 positions). It is known that in general the number of 
nucleotides of leader and trailers are less than CDS and in case of zebrafish, the leader 
is less than trailer. When we scale the leader and trailer to 100, we actually stretch the 
positions of these two regions. Likewise, scaling the CDS to 100 means that the 
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positions of CDS are compressed. Based on these notes, we can see that the peak 
appearing in the early positions of the transcripts in Figure 3-5 A cannot be seen in 
leader region of Figure 3-5 C. It is also noteworthy that for Figure 3-5 A, the start 
positions of leader, CDS and trailer are not known since the transcripts can have 
different start position for each transcript regions. This is the case for every dataset that 
the coverage transcript plots and coverage leader, CDS and trailer are plotted in this 
thesis.  

In Figure 3-5 B and D, the X-axis is the scaled position along transcript and regions per 
transcript respectively, for in vivo replicate one and Y-axis is the total number of 
normalized reads for each position in all transcripts. 
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Figure 3-5: A) Coverage meta plot of transcripts in Invivo_NAI-N3_Oblong 
(replicate one). B) Coverage meta plot of transcripts in Invivo_NAI-N3_old_Oblong 
(replicate two). C) Coverage meta plot of leader, CDS and trailer in Invivo_NAI-
N3_Oblong (replicate one). D) Coverage meta plot of leader, CDS and trailer in 
Invivo_NAI-N3_old_Oblong (replicate two) 
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As expected from the results in Figure 3-4; the coverage meta plot of in vivo 
replicates are similar in Figure 3-5. This is a reassured sign of satisfactory accuracy for 
in vivo experiments. Also, from Figure 3-5, CDS region of transcript appears to be less 
structure compared to other regions. The implications and results related to these 
observations will be discussed in detail in Comparison and Results section. 

3.3 Processing in vitro data and results 

3.3.1 Scatter plot of observed reads per gene for in vitro replicates data 
 

The number of genes in the data is shown in relation to the number of mapped reads 
per gene for both in vitro replicates “Invitro_MCE_Oblong” and “Invitro_old_Oblong”. 

Similar to data processing for in vivo data, these plots here also were made to control 
the quality of the data and the depth of sequencing.  

In the plots below, the X-axis is log2 number of observed reads per gene and the Y-
axis is log2 frequency of genes. 

 

A B 

  

 

Figure 3-6: A) Scatter plot of Invitro_MCE_Oblong (replicate one). B) Scatter plot of 
Invitro_old_Oblong (replicate two)  

In Figure 3-6 there are many genes with numerous reads that indicates high enough 
number of reads for both replicate 1 and 2. This will also guarantee for a reliable in vitro 
library. 
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3.3.2 Correlation plot of in vitro replicate one with in vitro replicate two 
 

Pearson’s coefficient (R) of the number of reads is mapped to per gene between in 
vitro replicates is shown in  Figure 3-7. The number of reads were transformed to 
logarithmic scale in base 2, are shown as scatter plot. Each dot represents the number of 
reads of a specific transcript. 

In Figure 3-7, X-axis is log2 number of reads per gene for REP1 
(Invitro_MCE_Oblong) and Y-axis is log 2 number of reads per gene for REP2 
(Invitro_old_Oblong). 

 

 

Figure 3-7: Correlation of scatter plot of REP1 and REP2 in vitro 

 

3.3.3 Plot of percentage difference between REP1 and REP2 in vitro  
In Figure 3-8 the X-axis is the global errors between two in vitro replicates data and 

Y-axis is frequency of genes. 
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Figure 3-8:  Plot of percentage difference between REP1 and REP2 in vitro 

The majority of the transcripts in Figure 3-8 have also high similarity in count reads for 
both replicates. This means that two replicates have a proper correlation. We can then 
pool both replicates and make up one library as in vitro data to be later used for 
comparison with in silico and in vivo data. This will be shown in the Comparison and 
Discussion section. 

3.3.4 Coverage metaplot of the number of reads along the transcripts for in vitro 
replicates. 
 

The number of normalized reads over transcript is represented in relation to scaled 
positions along transcript and along regions per transcript separately in Figure 3-9 for in 
vitro replicates. 

    The positions of transcripts and each region of them are scaled to 100. 

In Figure 3-9 A and C, the X-axis is the scaled position in all transcripts for in vitro 
replicate one and the Y-axis is the number of normalized reads for each position in all 
transcripts. 

In Figure 3-5 B and D, X-axis is the scaled position in all transcripts for in vitro 
replicate one and Y-axis is the total number of normalized reads for each position of 
regions in all transcripts. 
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Figure 3-9: A) Coverage meta plot of transcripts in Invitro_MCE_Oblong (replicate 
one). B) Coverage meta plot of transcripts in Invitro_old_Oblong (replicate two). C) 

Coverage meta plot of leader, CDS and trailer in Invitro_MCE_Oblong (replicate one). 
D) Coverage meta plot of leader, CDS and trailer in Invitro_old_Oblong (replicate two) 
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Figure 3-9 is also in line with the expectation raised from Figure 3-8 where two 
replicates are similar, and this is an indication of a proper correlation between the two 
replicates. Also similar to 3.2.4, CDS region of transcript are the least structured region. 
Again, the detailed outcome related to these observations will be discussed in detail in 
Comparison and Results section. 

3.4 Processing in silico data and results  

The mean and most structured (most negative value of MFE) obtained by MFE of 
each transcript are consider as score of each transcript that are shown in the following 
figures and supplementary information including the coverage metaplots and the 
relevant discussion and comparisons are presented in sections 3.5.3 and 3.5.4.  

3.4.1 Density plot of mean and most structured obtained by MFE of each transcript for 
in silico dataset 
In Figure 3-10 A, mean score per gene is plotted against frequency of genes while, in 
Figure 3-10 B, the Maximum score per gene is plotted versus frequency of genes. 

A B 

 

Figure 3-10: A) Density plot of Leader, CDS and Trailer for mean scores of in silico 
data. B) Density plot of Leader, CDS and Trailer for maximum scores of in silico data 
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The observation from Figure 3-10 A is that the leader region is more structure than CDS 
and CDS itself, is more structure than trailer. Figure 3-10 B shows maximum score 
divided to leader, CDS and trailer region. It shows how strong the structure is in 
different transcript regions. 

3.5 Comparison and discussion 

3.5.1 Scatter plot of in vivo and in vitro data  
 

A B 

  

 

Figure 3-11: A) Scatter plot of In vitro. B) Scatter plot of In vivo. 

Figure 3-11 shows several genes with numerous reads that is a quality control 
measure to imply high enough number of reads for both in vivo and in vitro datasets.  

 

3.5.2 Correlation plot of In vivo with In vitro 
 

Pearson’s correlation coefficient (R) of number of reads mapped for each gene 
between in vivo and in vitro data is shown in this plot. The number of reads that were 
transformed to logarithmic scale in base 2, are shown as scatter plot here. Each dot 
represents the number of reads of a certain transcript. 

In this following figure, the number of reads per gene for in vitro is plotted versus the 
number of reads per gene for in vivo data. 
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Figure 3-12: Correlation of scatter plot of in vivo and in vitro 

 

Figure 3-12 demonstrates a high correlation between in vivo and in vitro data (R=88%). 
This only means that the number of reads per transcript is similar in both studies. 

 

3.5.3 Plot of percentage difference between in vivo, in vitro and in silico   
Here the number of genes in a SHAPE-Seq data is shown in relation to sum of 
difference percentages of count reads of regions per transcript between in vivo and in 
vitro, in vivo and in silico and in vitro and in silico data.  

In Figure 3-13 A, B and C the X-axis is total percentage difference between in vivo and 
in vitro, in vitro and in silico and in vivo and in silico data respectively. The Y-axis is 
frequency of genes in all graphs. 
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C 

 

 

Figure 3-13: A) Plot of percentage difference between in vivo, in vitro. B)  Plot of 
percentage difference between in vitro and in silico. C) Plot of percentage difference 

between in vivo and in silico 

 

Figure 3-13 A shows insignificant difference in the count reads for the transcripts. i.e. 
the global error is minor here between the corresponding transcripts of in vivo and in 
vitro. We can possibly argue here that the cellular environment does not have significant 
effect on in vivo experimental output. 

It is also observed in Figure 3-13 B and C that most of the transcripts have 100% global 
error in both cases. In case of in vitro and in silico (Figure 3-13 B), the 100% global 
error peak corresponds to a frequency of gene almost twice as the frequency of gene for 
the 100% peak in case of in vivo and in silico (Figure 3-13 C).  
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3.5.4 Comparison of Coverage metaplot of in vivo, in vitro and in silico. 
  

   The number of normalized reads over transcripts is represented in relation to scaled 
position along transcript and along regions per transcript (leader, CDS and trailer) 
separately. 

    The transcripts were filtered based on size restrictions: leader > 100 bases, CDS > 
100 bases and trailer > 100 bases. The positions of transcript and each region of 
transcript is scaled to 100. 

 

As seen in the results of section 3.2.3, the two replicates in vivo have a proper 
correlation. We now pool both replicates and make up one library as in vivo data. The 
next step is to make coverage meta plot of the in vivo data library. Likewise, the same 
process (pool and plot) was performed for two replicates of in vitro data according to 
the results from section 3.3.3. 

Coverage meta plot of transcripts and regions per transcript for in silico data was 
plotted using absolute MFE values of transcripts. 
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Figure 3-14: A) Coverage meta plot of transcripts in vivo. B) Coverage meta plot of 
transcripts in vitro. C) Coverage meta plot of transcripts in silico. D) Coverage meta 
plot of leader, CDS and trailer in vivo. E) Coverage meta plot of leader, CDS and trailer 
in vitro. F) Coverage meta plot of leader, CDS and trailer in silico. 
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Figure 3-14 A and B show the coverage meta plot of in vivo and in vitro transcripts 
respectively. A feature to note in Figure 3-14 A is the significant peak at early positions 
which may appear as high number of modifications in these areas. However, this is not 
the case here. As a matter of fact, many reads in the RT process ended up at these points 
and the termination of many reads (cDNA) then contributed to this peak. 

It is evident from the comparison of Figure 3-14 A and B that the in vivo data have 
more modifications than that of in vitro, i.e. the transcript regions in in vivo data are less 
structured than in vitro data. And also, in both figures there is low modifications at the 
end position of transcripts. However, Figure 3-14 C indicates the scores significantly 
declined at the end position of transcripts. We know that for RT process to progress, a 
primer needs to be bound to its complementary sequences on the RNA template and 
serves as a starting point for synthesis of cDNAs. We then believe that the end positions 
of transcripts in the Figure 3-14 A and B  show that there are not many modifications in 
this region due to the lack of enough position for initialization of the RT process. In 
other words, we believe that there were much more modifications there, but RT process 
could not make them visible. 

Figure 3-14 D and E present coverage meta plot of leader, CDS and trailer in vivo and 
in vitro respectively. Comparing the leader regions in both figures, it is clear that the in 
vivo data possess higher modifications and consequently less structure compared to in 
vitro data while Figure 3-14 F shows there more structure in the leader region of 
transcripts as it is observed also in vitro leader region. We believe that this structural 
difference is due to RNA interactions with RNA binding proteins in the cellular 
environment, that open up the RNA structure. 

 Looking at CDS regions in both in vitro and in vivo data, it can be seen that CDS 
regions are less structured than the other regions, interpreted from the higher reads in 
the middle of the graphs. And also, the upstream CDS of both in vivo and in vitro is 
more structure than the downstream CDS of them. Despite this similarity between the 
two sets of data, there are some positions in CDS region of in vitro that have coverages 
as high as 180, while the maximum coverage in CDS region of in vivo is around 140. 

Trailer regions in both in vitro and in vivo are very similar in the general trends. By 
looking at  Figure 3-14 F, it is obvious that there is almost no structure in the trailer 
region while the number of modifications in the trailer of in vivo and in vitro is not high. 
Here again, there is an observation of almost no structure at the region of trailers. The 
explanation here is also the same as previously presented, where we believe that the 
lack of sufficient space to initialize the RT process leads to these modifications not 
being captured by the assay. 
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Figure 3-15: A) Coverage meta plot of transcripts in vivo. B) Coverage meta plot of 

transcripts in vitro. C) Coverage meta plot of transcripts of the maximum scores from in 
silico. D) Coverage meta plot of leader, CDS and trailer in vivo. E) Coverage meta plot 
of leader, CDS and trailer in vitro. F) Coverage meta plot of leader, CDS and trailer of 
the maximum scores from in silico. 
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Figure 3-15 C presents the coverage meta plot of transcripts for the maximum scores 
(most negative value of MFE) in the in silico dataset. The coverage at each position was 
calculated by summing the number of the maximum scores for the position in all 
transcripts. The graph shows that the early positions of the transcripts have more 
structure while the number of maximum scores significantly declined after the scaled 
position of ~25 and it almost vanished after the position ~50. It could indicate that the 
more structure in the beginning of the transcript positions turned to less structure after 
the second half of the scaled position. This is at odds with the fact that that number of 
maximum scores cannot become zero at the end position of the transcripts. It could be 
happened because of picking up the first position of transcript with maximum score 
when there was multiple position with the maximum score.  

Figure 3-15 F shows coverage meta plot transcripts for the maximum scores in the in 
silico data set but this time, divided into leader, CDS and trailer regions. Here again, 
there is an observation of almost no maximum score at the region of trailers. The 
explanation here is also the same as previously presented for Figure 3-15 C. 

In the area downstream of the TIS from Figure 3-15 F, the highest peaks are seen. It is 
believed that these peaks are linked to the fact that downstream of the TIS, structures 
that are supposed to stall the scanning ribosome exist, so that the ribosome can more 
easily initiate translation [99]. 
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Chapter 4         
            
Conclusion and future work 

In this chapter the conclusions of the work are summarized together with 
recommendations for future work. 

4.1 Concluding remarks 

This project has been aiming to enhance the understanding of the difference between 
RNA structure probing approaches; in vivo, in vitro and in silico. To address this, the 
three sets of data for a zebrafish were compared to each other and similarities and 
differences were determined.  

Quality control of the data were performed prior to analysis and delivered satisfactory 
results. 

It was understood how SHAPE strategy probes RNA structure in vivo and in vitro 
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conditions. It was observed that RNA structures are often different in in vivo and in 
vitro datasets. This is due to the limitations that exist in both studies. For example, in 
vivo an uncontrolled cellular environment such as the presence of biological 
components, can lead to changed RNA structure. Also, in in vitro experiments, indirect 
interpretation and linkage to living cells, can provide less-representative results for 
actual RNA folding and thus negatively affect the resultant structures. Consequently, by 
comparison of in vivo and in vitro data, it can be determined how the cellular 
environment changes the structural pattern of RNA. 

An overview of the data comparison for the three sets of data (in vivo, in vitro and in 
silico) in terms of match or mismatch for the structural information of each transcript 
region (leader, CDS and trailer) is presented in the following table. 

Table 4-1: An overview of the data comparison for each transcript region 

Strategies 
In vivo in vitro In silico 

Leader CDS Trailer Leader CDS Trailer Leader CDS Trailer 

In
 v

iv
o 

Leader    ✘   ✘   

CDS     ✓   ✓  

Trailer      ✓   ✘ 

In
 v

it
ro

 Leader ✘      ✓   

CDS  ✓      ✓  

Trailer   ✓      ✘ 

In
 s

il
ic

o Leader ✘   ✓      

CDS  ✓   ✓     

Trailer   ✘   ✘    

 

Here the ✓ symbol means a match and the ✘ symbol means a mismatch between the 
data when comparing the structural data of a transcript region for one of the datasets 
with the corresponding transcript region for another dataset. 

Table 4-1 then quickly communicates that the leader region for in vivo data mismatch 
with the in silico data leader region while the same region for in vitro and in silico do 
match.  CDS region data for both in vitro and in vivo show a proper match with in silico 
data. The trailer transcript region data for both in vitro and in vivo datasets did not 
match with in silico data of the trailer region.  

Comparing in vivo and in vitro data, CDS and trailer regions match while leader regions 
in these two datasets do not match. 

4.2 Recommendations for future work 

Probing the RNA folding structures is essential to understand and control the biological 
structure-dependent characterizes of RNAs. Towards accomplishing this goal, several 
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researchers have used in vivo and in vitro studies. Nonetheless both in vivo and in vitro 
studies have drawbacks hindering them to fully address this goal. Also in several 
studies, in vitro and in vivo datasets for the same structure can have significant 
mismatch. It appears that the root cause for these discrepancies is that the RNAs do not 
adopt the same structures in vivo as in vitro. 

Also, the process for probing RNA structural data and relevant handling and analysis of 
the data today is not perfect since it involves numerous functions in different R 
packages and various software.  

The following list of investigations may be then considered as future work following 
this master thesis: 

 Proving an ultimate software solution to collect, purify and analyze structural 
data and export plots and tables of interest for the characterization of RNA 
structure. Such software will have FASTA and GTF file as the only input and 
e.g. BAM files, coverage plots of transcripts and matrix of minimum free 
energies as direct output.   

 Using more efficient reagents in SHAPE_seq experiment capable of 
distinguishing between structure and superstructures in RNA configurations. 

 Probing RNA structure in an artificial cellular environment as an attempt to 
provide more representative structural data 

 Developing novel experiments to probe RNA structure using fine-tuned 
experimental conditions in order to minimize the inconsistencies between 
dataset 
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Appendix: R code 

Analyzing and plotting HTSeq_count data  

 

1 #Specify a working directory 
2  
3 getwd() 
4 setwd("/Users/haniehroodashty/bin") 
5 list.files() 
6  
7 #load HTseq_count data (two replicates for in vitro) 
8  
9 htseq_invivo_rep1 <- read.delim("result_HTSeq_count_invivo1.txt",header = FALSE) 
10 htseq_invivo_rep2 <- read.delim("result_HTSeq_count_invivo2.txt",header = FALSE) 
11  
12 htseq_invivo = htseq_invivo_rep1 
13 names(htseq_invivo) = c("gene_Id","reads") 
14 m <- dim(htseq_invivo)[1] 
15  
16 #Remove summery text from the 5 last rows of HtSeq_count data 
17 htseq_invivo<- htseq_invivo[1:(m-5),] 
18  
19  
20 #Consider only genes which have reads 
21 high_count <- subset(htseq_invivo, reads > 0) 
22  
23 #Find how many genes have zero,1,2, ... reads(frequency of genes) 
24 read_freq_table = table(htseq_invivo$reads) 
25  
26 read_freq = as.data.frame(read_freq_table) 
27 names(read_freq)[1] = 'reads' 
28  
29 #Find how many genes have 1,2,3,.. (frequency of genes) 
30 high_count_freq_table= table(high_count$reads) 
31 high_count_freq= as.data.frame(high_count_freq_table) 
32  
33 names(high_count_freq)[1]= 'Reads' 
34  
35 high_count_freq$Reads<-as.numeric(as.character(high_count_freq$Reads)) 
36  
37 #Save data in corresponding data 
38  
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39 saveRDS(high_count_freq, 'high_count_freq_Invivo_rep1.rds') 
40  
41 library(ggpubr) 
42 library(ggplot2) 
43 library(scales) 
44  
45 #ScatterPlot of Inviro replicate one or two 
46 #Use high_count-freq_InvitroRep1 or high_count-freq_InvitroRep2 or 

high_count_freq_InvitroData as input data 
47 high_count_freq = high_count_freq_Invivo_rep1 
48 sp <- ggplot(high_count_freq,x = "Reads",y = "Freq" , aes(x = Reads, y = Freq)) + 

geom_point() 
49  
50 printplot <- sp +scale_y_continuous( name = "Frequency of genes\n" ,trans = 

'log2',limits = c(1,3000)) + scale_x_continuous(name = "\nNumber of 
reads",trans='log2',limits = c(0.1,100000)) + theme( 

51   axis.text = element_text(size = 18), axis.title  = element_text(size = 20 , face = "bold") 
52 )  
53 print(printplot) 
54  
55 #Compaire invivo replicate one and two (correlation of two replicates) 
56 #Use htseq_invivo_rep1 anad htseq_invivo_rep2 as input data (data are after removing 

summery text) 
57 htseq_invivoData1 <- readRDS('high_count_freq_Invitro_rep1.rds') 
58 htseq_invivoData2 <- readRDS('high_count_freq_Invitro_rep2.rds') 
59  
60 #Change the second column of data for merging two data 
61 names(htseq_invivoData1)[2]= 'Invivo1' 
62 names(htseq_invivoData2)[2]= 'Invivo2' 
63  
64 mergeInvivo1Invivo2 <- merge(x = htseq_invivoData1, y = htseq_invivoData2, by = 

"gene_Id", all.x = TRUE) 
65 mergeNew<- mergeInvivo1Invivo2[,2:3]+1 
66  
67 sp <- ggscatter(mergeNew ,x = "Invivo1",y = "Invivo2" , add = "reg.line" , add.params = 

list(color = "blue", fill = "lightgray"),  
68                  conf.int = TRUE ,cor.coef = TRUE, cor.coef.size = 8 ,cor.method = 

"pearson") 
69 print(sp +scale_y_continuous( name = "Invivo2\n" ,trans = 'log2',limits = c(1,600000)) + 

scale_x_continuous(name = "\nInvivo1",trans='log2',limits = c(1,100000))+ theme( 
70   axis.text = element_text(size = 18), axis.title  = element_text(size = 20 , face = "bold") 
71 ) ) 
72  
73 cor.test(mergeNew$Invivo1,mergeNew$Invivo2 , method = "pearson") 
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74  
75 # Pool two in vitro(in vivo) replicates if replicates have a good correlation 
76 # First we need normalization CPM for both replicates 
77 # Second add the number of reads rep1 to rep2  
78  
79 htseq_invivo_rep1$reads <- (( htseq_invivo_rep1$reads ) / sum 

(htseq_invivo_rep1$reads) ) * 10 ^ 6 
80 htseq_invivo_rep1$reads <- round (htseq_invivo_rep1$reads ,3) 
81  
82 # Save data in corresponding data for both replicates 
83  
84 saveRDS(htseq_invivo_rep1 ,'htseq_invivo_NormRep1.rds') 
85 htseq_invivo_NormRep1 <- readRDS('htseq_invivo_NormRep1.rds') 
86  
87 saveRDS(htseq_invivo_rep2, 'htseq_invivo_NormRep2.rds') 
88 htseq_invivo_NormRep2 <- readRDS('htseq_invivo_NormRep2.rds') 
89  
90 # DO the same as befor for making scatterPlot of invivo data 
91 htseq_invivo$reads <- htseq_invivo_NormRep1$reads + 

htseq_invivo_NormRep2$reads 
92  
93 saveRDS(htseq_invivo, 'htseq_invivoData.rds') 
94 htseq_invivoData <- readRDS('htseq_invivoData.rds') 

 

Making coverage meta plot of transcripts 

 

1 #Specify a working directory 
2  
3 getwd() 
4 setwd("/Users/haniehroodashty/bin") 
5  
6 #index fasta file 
7 indexFa("danRer11.fa") 
8 fa <- FaFile("danRer11.fa") 
9  
10 library(data.table) 
11 library(ORFik) 
12 library(GenomicAlignments) 
13  
14 #Load the aligned reads of in vivo(in vitro) 
15  
16 invivo1 <- GRanges(readGAlignments("NAI-N3_Oblong_S21_L008.bam")) 
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17 invivo2 <- GRanges(readGAlignments("NAI-N3_old_Oblong_S24_L008.bam")) 
18  
19 typeSample = invivo2 
20  
21 seqlevelsStyle(typeSample) <- "NCBI" 
22  
23 # Load the annotation file 
24 library(GenomicFeatures) 
25 txdb <- makeTxDbFromGFF (file = "annotation_danRer11_edited.gtf" ) 
26 seqlevelsStyle(txdb) <- "NCBI" 
27  
28 #Filter transcripts 
29 txNames <- filterTranscripts(txdb,100,100,100) 
30  
31 # Get leaders 
32 leaders <- fiveUTRsByTranscript(txdb,use.names=TRUE)[txNames] 
33  
34 # Get the CDS grouped by transcript 
35 cds <- cdsBy(txdb,"tx", use.names = TRUE)[txNames] 
36  
37 # Get the trailers 
38 trailers <- threeUTRsByTranscript(txdb,use.names=TRUE)[txNames] 
39  
40 # Get the exons grouped by transcript 
41 tx <- exonsBy(txdb, by = "tx", use.names = TRUE)[txNames] 
42  
43 #Make coverage plot of one transcript by ggplot 
44 tx_cvg <- coverageByTranscript(typeSample,tx,ignore.strand=TRUE) 
45  
46 a = IRanges::IntegerList(tx_cvg) 
47 l <- lengths(tx_cvg,use.names = FALSE) 
48 l <- rep.int(seq.int(length(l)), l) 
49 res <- data.table(count= unlist(a) , genes= l) 
50  
51 #Give one gene (first or second ,..) 
52 gene <- 1 
53 test_gene<- res[genes==gene,] 
54 test_gene[, position := cumsum(genes)] 
55  
56 #Plot one gene (count across position) 
57 library(ggplot2) 
58 plot <- ggplot(test_gene, aes(x = position, y = count)) + geom_bar(stat = "identity") + 
59   theme(axis.text.x = element_text(angle = 90, hjust = 1, 
60                                    vjust = 0.5)) + labs(title = paste("gene:", names(tx)[gene])) + 
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ylab("Averaged counts")  
61  
62 print(plot) 
63  
64 # Get windowCoverage in scale=100 for all transcripts (all width of transcripts are 

divided to 100 (so under 100 width is ignored)) 
65  
66 seqlevelsStyle(tx) <- "NCBI" 
67 coverage <- scaledWindowPositions(tx,typeSample) 
68 coverageTran <- windowCoveragePlot(coverage = coverage,scoring 

="transcriptNormalized") 
69 print(coverageTran) 
70  
71 # Get windowCoverage in scale=100 for regions per transcripts 
72 coverageLeader <- scaledWindowPositions(leaders,typeSample) 
73 coverageLeader[, `:=` (fraction="In vivo replicate one",feature="transcripts")] 
74  
75 coverageCds <- scaledWindowPositions(cds,typeSample) 
76 coverageCds[, `:=` (fraction="In vivo replicate one",feature="transcripts")] 
77  
78 coverageTrailers <- scaledWindowPositions(trailers,typeSample) 
79 coverageTrailers[, `:=` (fraction="In vivo replicate one",feature="transcripts")] 
80  
81 coverage <- rbindlist(list(coverageLeader,coverageCds,coverageTrailers)) 
82 coverageRegions <- windowCoveragePlot(coverage = coverage ,scoring 

="transcriptNormalized,") 
83 print(coverageRegions) 
84  
85 # Multiple plot in one image 
86  
87 A<- ggarrange(coverageTran , coverageRegions, 
88               ncol = 1, nrow = 2,labels = c ("A","B"), 
89               heights = c(1,1)) 
90  
91 # Normalization CPM  for both replicates in vivo(in vitro), htseq_invitro_rep1 is 

HTSeq_count for replicate one 
92 names(txNames)=c ('gene_Id') 
93 txNames$gene_Id <- sub("\\.\\d+$", "", txNames$gene_Id)# have the same  gene_Id for 

Invivo and txNames Data 
94 htseq_invivo_rep1 <- merge(htseq_invivo_rep1, txNames, by='gene_Id') 
95  
96 coverageTran$score <- (( coverageTran$score ) / sum (htseq_invivo_rep1$reads) ) * 10 

^ 6 
97 coverageTran$score <- round(coverageTran$score,3) 
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98 saveRDS(coverageTran, 'coverageTran_invivo_NormRep1.rds') 
99  
100 coverageLeader$score <- (( coverageLeader$score ) / sum (htseq_invivo_rep1$reads) ) 

* 10 ^ 6 
101 coverageLeader$score <- round(coverageLeader$score,3) 
102 saveRDS(coverageLeader, 'coverageLeader_invivo_NormRep1.rds') 
103  
104 coverageCds$score <- (( coverageCds$score ) / sum (htseq_invivo_rep1$reads) ) * 10 

^ 6 
105 coverageCds$score <- round(coverageCds$score,3) 
106 saveRDS(coverageCds, 'coverageCds_invivo_NormRep1.rds') 
107  
108 coverageTrailers$score <- (( coverageTrailers$score ) / sum (htseq_invivo_rep1$reads) 

) * 10 ^ 6 
109 coverageTrailers$score <- round(coverageTrailers$score,3) 
110 saveRDS(coverageTrailers, 'coverageTrailer_invivo_NormRep1.rds') 
111  
112 # Do the Normalization CPM for replicate two as before 
113 # Add two replicates, make coverage plot for regions per transcripts 
114 # Make coverage plot for invivo data as before 
115 coverageLeader_invivo$score <- coverageLeader_invivo_NormRep1$score + 

coverageLeader_invivo_NormRep2$score 
116 saveRDS(coverageLeader_invivo, 'coverageLeader_invivoData.rds') 
117  
118 coverageCds_invivo$score <- coverageCds_invivo_NormRep1$score + 

coverageLeader_invivo_NormRep2$score 
119 saveRDS(coverageCds_invivo, 'coverageCds_invivoData.rds') 
120  
121 coverageTrailer_invivo$score <- coverageTrailers_invivo_NormRep1$score + 

coverageTrailers_invivo_NormRep2$score 
122 saveRDS(coverageTrailer_invivo, 'coverageTrailer_invivoData.rds') 
123  
124  
125 ##Number of reads for each gene from plot_htseq_count.r file 
126  
127 htseq_invivo_rep1 <- read.delim("result_HTSeq_count_NAI-

N3_Oblong_S21_L008_yes.txt",header = FALSE) 
128 htseq_invivo_rep <- 

read.delim("result_HTSeq_count_invitro_MCE_Oblong_yes.txt",header = FALSE) 
129  
130 htseqTypesample = htseq_invitro_rep1 
131  
132 names(htseqTypesample) = c("gene_Id","reads") 
133 n <- dim(htseqTypesample)[1] 
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134 htseqTypesample <- htseqTypesample[1:(n-5),] 
135  
136  
137 # Single gene plot for comparing  with vienna 
138 htseqTypesample <- htseqTypesample [order(htseqTypesample$reads,decreasing = 

TRUE),] 
139 pickThisone <- txNames[1] 
140 # Get transcriptName from geneName by function geneToTxnames from 

functionMaster.R 
141 sortedTranscripts <- geneToTxnames(txdb,htseqTypesample$gene_Id) 
142  
143 # Pick first transcript from sorted list of transcripts 
144 pickThisone <- sortedTranscripts[1] 
145  
146 library(ORFik) 
147  
148 plotGene <- coveragePerTiling(tx[pickThisone],typeSample,as.data.table = TRUE) 
149 singleGeneplot <- windowCoveragePlot(plotGene, scoring = "sum", title = pickThisone ) 
150 print(singleGeneplot) 
151  
152 # Vienna print top gene by function outputFasta from functionMaster.R 
153 outputFasta(fa,tx,gene = pickThisone) 

 

 

Analyzing and plotting minimum free energy  

 

1 # Get vienna structure 
2 # 1 get fasta file of gene we are looking at 
3 # 2 send that to viennaRNA 
4 # 3 look at structure 
5  
6 #Specify a working directory 
7 getwd() 
8 setwd("/Users/haniehroodashty/bin") 
9 list.files() 
10  
11 # Load the annotation file 
12 library(GenomicFeatures) 
13 txdb <- makeTxDbFromGFF (file = "annotation_danRer11_edited.gtf" ) 
14  
15 #index fasta file 
16 library(Rsamtools) 



73  
 

  

 

17 library(ORFik) 
18 indexFa("danRer11.fa") 
19 fa <- FaFile("danRer11.fa") 
20  
21 seqlevelsStyle(txdb)  <- seqlevelsStyle(fa) 
22 txNames <- filterTranscripts(txdb, 100, 100, 100) 
23  
24 # Get leaders 
25 leaders <- fiveUTRsByTranscript(txdb,use.names=TRUE)[txNames] 
26  
27 # Get the CDS grouped by transcript 
28 cds <- cdsBy(txdb,"tx", use.names = TRUE)[txNames] 
29  
30 # Get the trailers 
31 trailers <- threeUTRsByTranscript(txdb,use.names=TRUE)[txNames] 
32  
33  
34 #tx filtered by txNames 
35 tx <- exonsBy(txdb, use.names = TRUE)[txNames] 
36 tx <- tx[widthPerGroup(tx) > 300] 
37 a <- extractTranscriptSeqs(fa, transcripts = tx) 
38 writeXStringSet(a, filepath = "tx.fasta") 
39  
40 # Now do perl scripts to get minimum free energy  
41 library(pander) 
42 system(p("/Adams_vienna_explain.sh -f tx.fasta -o ", getwd())) 
43 # Now we have csvs folder which contains am.csv file (MFE of each position of 

transcripts) 
44 # Now do analysis 
45 setwd("/Users/haniehroodashty/bin/vienna/csvs") 
46  
47 library(data.table) 
48 hits<- fread("am.csv" ,nrow = length(tx), header = FALSE , fill=TRUE ) 
49  
50  
51 # Check that all was made  
52 if(nrow(hits) != length(tx)) stop("did not create all") 
53  
54  
55 h <- hits[,-1] 
56 m <- setDT(melt(t(h))) 
57  
58 best <- m[, .(which.min(value)), by = Var2] 
59 bestValue<- m[, .(score = min(value, na.rm = TRUE)), by = Var2] 
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60  
61 saveRDS(best, 'best_filter.rds') 
62 best <- readRDS('best.rds') 
63  
64 positions <- IRanges(best$V1, width = 1) 
65  
66 # Now create window coverage plot 
67 # grl is the minimum free energy position per gene 
68 # pmapfromtranscript means tx coord -> genomic coord 
69  
70 library(GenomicFeatures) 
71  
72 grl <- ORFik:::pmapFromTranscriptF(positions, tx[hits_filter$V1], removeEmpty = 

TRUE)# check this is correct 
73  
74  
75 #In silico scatterplot 
76 meansOfAllGenes <- data.table ( gene_Id = hits_filter[,1], Silico = 

rowMeans(hits_filter[,c(-1)], na.rm = T)) 
77  
78 names(meansOfAllGenes)[1] = 'gene_Id' 
79  
80 meansOfAllGenes$gene_Id <- seq.int(nrow(meansOfAllGenes)) 
81  
82  
83 # Make window coveragePlot of for all transcripts  
84  
85 txCoverage <- scaledWindowPositions(tx, grl) 
86 txCoverage[, `:=` (fraction = "structures", feature = "transcripts")] 
87  
88 outName <- paste("structure_sum", ".pdf", sep="") 
89 windowCoveragePlot(txCoverage, scoring = "sum") 
90 outName <- paste("structure_zscore", ".pdf", sep="") 
91 windowCoveragePlot(txCoverage, output = outName ,scoring = "zscore") 
92 outName <- paste("structure_transcriptNorm", ".pdf", sep="") 
93 windowCoveragePlot(txCoverage ,scoring = "transcriptNormalized") 
94  
95 # Make coverage plot for regions per transcript 
96  
97 coverageLeader <- scaledWindowPositions(leaders,grl) 
98 coverageLeader[, `:=` (fraction="In silico",feature="transcripts")] 
99  
100 coverageCds <- scaledWindowPositions(cds,grl) 
101 coverageCds[, `:=` (fraction="In silico",feature="transcripts")] 



75  
 

  

 

102  
103 coverageTrailers <- scaledWindowPositions(trailers,grl) 
104 coverageTrailers[, `:=` (fraction="In silico",feature="transcripts")] 
105  
106 coverage <- rbindlist(list(coverageLeader,coverageCds,coverageTrailers)) 
107 coverageRegions <- windowCoveragePlot(coverage = coverage ,scoring 

="transcriptNormalized,") 
108  
109 # Coverage plot of all transcripts for Minimum free energy  
110  
111 cov <- m[,-1] 
112  
113 colnames(cov) <- c("genes", "count") 
114 cov <- cov[!is.na(cov$count),] 
115 perGroup <- cov[,.N, by = genes]$N 
116 if ( length(tx) != length(perGroup)) stop('you messed up the filtering of tx, they are not 

the same!') 
117 cov[, ones := rep.int(1L, length(genes))] 
118 cov[, position := cumsum(ones), by = genes] 
119  
120 cov$ones <- NULL 
121  
122 scaleTo = 100 
123 scoring = "meanPos" 
124  
125 cov[, scalingFactor := ((scaleTo)/perGroup[genes])] 
126 cov[, position := ceiling(scalingFactor * position)] 
127  
128 cov[position > scaleTo]$position <- scaleTo 
129 groupFPF <- quote(list(genes, position)) 
130 res <- cov[, .(score = mean(count, na.rm = TRUE)), by = eval(groupFPF)] 
131 res$feature <- 'transcripts' 
132 res$fraction <- 'In silico' 
133  
134 outName <- paste("MFE_distribution", ".pdf", sep="") 
135 coverageTx_plot_insilico<-windowCoveragePlot(res, scoring = "transcriptNormalized", 

colors = c("violetred3 ","deeppink4"))+ theme_bw(base_size = 15) 
+ylab("TranscriptNormalized MFE") + theme(legend.position = "none") 

136 print(coverageTx_plot_insilico) 
137  
138  
139 # Make leader,cds and trailer metacoverage with all free energy positions 
140 # Per gene, find which position cds start, trailers start in transcript coordinate for tx  
141 names(cds) <- sub(x = names(cds), pattern = '_', replacement = '.') 
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142 names(tx) <- sub(x = names(tx), pattern = '_', replacement = '.') 
143 names(trailers) <- sub(x = names(trailers), pattern = '_', replacement = '.') 
144  
145 cdsTrans <- ORFik:::asTX(cds,tx) 
146 cdsStarts <- ORFik:::startSites(cdsTrans) 
147 cdsStartsLong <- cdsStarts[cov$genes] 
148  
149 trailerTrans <- ORFik:::asTX(trailers,tx) 
150 trailerStarts <- ORFik:::startSites(trailerTrans) 
151 trailerStartsLong <- trailerStarts[cov$genes] 
152  
153 # Split hits per gene, into leader, cds, trailer 
154  
155 leaderhits <- cov[position < cdsStartsLong, ] 
156  
157 cdshits <- cov[position >= cdsStartsLong & position < trailerStartsLong, ] 
158 cdshits$position <- cdshits$position - cdsStarts[cdshits$genes] + 1 
159  
160 # The position of cov here is not sacled here 
161 trailerhits <- cov[position >= trailerStartsLong, ] 
162 trailerhits$position <- trailerhits$position - trailerStarts[trailerhits$genes] + 1 
163  
164 perGroupLead <- leaderhits[,.N,by = genes] 
165 perGroupCds <- cdshits[,.N,by = genes] 
166 perGroupTrail <- trailerhits[,.N,by = genes] 
167  
168 scaleTo = 100 
169 scoring = "meanPos" 
170  
171 leaderhits <- merge(x = leaderhits, y = perGroupLead, by = "genes") 
172 leaderhits$scalingFactor <- scaleTo/leaderhits$N 
173 leaderhits[, position := ceiling(scalingFactor * position)] 
174 leaderhits$feature <- 'Leaders' 
175  
176 cdshits <- merge(x = cdshits, y = perGroupCds, by = "genes") 
177 cdshits$scalingFactor <- scaleTo/cdshits$N 
178 cdshits[, position := ceiling(scalingFactor * position)] 
179 cdshits$feature <- 'Cds'  
180  
181  
182 trailerhits <- merge(x = trailerhits, y = perGroupTrail, by = "genes") 
183 trailerhits$scalingFactor <- scaleTo/trailerhits$N 
184 trailerhits[, position := ceiling(scalingFactor * position)] 
185 trailerhits$feature <- 'Trailers' 
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186  
187 fractionhits <- rbindlist(list(leaderhits,cdshits,trailerhits)) 
188 fractionhits[position > scaleTo]$position <- scaleTo 
189 fractionhits$N<- NULL 
190 fractionhits$scalingFactor <- NULL 
191  
192  
193 groupFPF <- quote(list(genes, position, feature)) 
194  
195 resPerTx <- fractionhits[, .(score = mean(count, na.rm = TRUE)), by = eval(groupFPF)] 
196 resPerTx$fraction <- 'In silico' 
197  
198 # Make coverage plot for leader,cds and trailers of minimum free energy  
199 outName <- paste("MFE_distributionLeaderCdsTrailer", ".pdf", sep="") 
200 coverageRegionTx_plot_insilico<- windowCoveragePlot(resPerTx ,scoring = 

'transcriptNormalized', colors = c("violetred3 ","deeppink4"))+ theme_bw(base_size = 
15) +ylab("TranscriptNormalized MFE") + theme(legend.position = "none") 

201 print(coverageRegionTx_plot_insilico) 
202  
203  
204 # Density plot of insilico data for best(most negative MFE) and mean score 
205 # For best 
206 BestScore_Position <- merge(x = best, y = bestValue, by = "Var2") 
207  
208 LeaderBestPosition <- BestScore_Position[V1 < cdsStarts, ] 
209 LeaderBestPosition[, `:=` (feature="Leader")] 
210  
211 CdsBestPosition <- BestScore_Position[V1 >= cdsStarts & V1 < trailerStarts, ] 
212 CdsBestPosition[, `:=` (feature="Cds")] 
213  
214 TrailerBestPosition<- BestScore_Position[V1 >= trailerStarts, ] 
215 TrailerBestPosition[, `:=` (feature="Trailer")] 
216  
217 BestScoreFeature <- 

rbindlist(list(LeaderBestPosition,CdsBestPosition,TrailerBestPosition)) 
218 ggplot(BestScoreFeature,aes(x=score, fill = feature)) + geom_density(alpha=0.5)+ 

theme( 
219   axis.text = element_text(size = 18), axis.title  = element_text(size = 20 , face = 

"bold"),legend.title = element_text(size=20),legend.text= element_text(size=15))  
220 saveRDS(BestScoreFeature, 'BestScoreFeature.rds') 
221  
222 # For mean score 
223  
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224 LeaderMeanPerGene <- leaderhits[, .(MeanScore = mean(count, na.rm = TRUE)), by = 
genes]  

225 LeaderMeanPerGene[, `:=` (feature="Leader")] 
226  
227 CdsMeanPerGene <- cdshits[, .(MeanScore = mean(count, na.rm = TRUE)), by = 

genes]  
228 CdsMeanPerGene[, `:=` (feature="Cds")] 
229  
230 TrailerMeanPerGene <- trailerhits[, .(MeanScore = mean(count, na.rm = TRUE)), by = 

genes]  
231 TrailerMeanPerGene[, `:=` (feature="Trailer")] 
232  
233 MeanScoreFeature <- 

rbindlist(list(LeaderMeanPerGene,CdsMeanPerGene,TrailerMeanPerGene)) 
234 saveRDS(MeanScoreFeature, 'MeanScoreFeature.rds') 
235 ggplot(MeanScoreFeature ,aes(x=MeanScore, fill = feature)) + 

geom_density(alpha=0.5) + theme( 
236   axis.text = element_text(size = 18), axis.title  = element_text(size = 20 , face = 

"bold"),legend.title = element_text(size=20),legend.text= element_text(size=15))  
 

 

Calculating correlation between different datasets  

 

1 #Correlation of replicate one and replicate two in vivo (in vitro ) by computing difference 
percentage of count reads 

2 #Correlation of in vivo and in vitro data 
3 #Correlation of in silico and in vivo as well as in vitro  by computing difference 

percentage of hits 
4  
5 #Load the aligned reads of in vivo (in vitro) 
6  
7 invivo1 <- GRanges(readGAlignments("NAI-N3_Oblong_S21_L008.bam")) 
8 invivo2 <- GRanges(readGAlignments("NAI-N3_old_Oblong_S24_L008.bam")) 
9  
10 seqlevelsStyle(invivo1) <- "NCBI" 
11 seqlevelsStyle(tx) <- "NCBI" 
12  
13 # Replicate one  
14 invivo1_new <- ORFik:::convertToOneBasedRanges(invivo1) 
15  
16 txHits <- countOverlaps(tx, invivo1_new) 
17 leaderHits <- countOverlaps(leaders, invivo1_new)/txHits  
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18 cdsHits <- countOverlaps(cds, invivo1_new) /txHits  
19 trailerHits <- countOverlaps(trailers, invivo1_new) /txHits  
20 Hits_Invivorep1 <- data.frame(leaderHits, cdsHits, trailerHits)  
21  
22 # Percentage of hits per leader, cds and trailer in each transcript 
23 Hitst_Invivorep1<- saveRDS(Hits_Invivorep1,'Hits_Invivorep1.rds') 
24  
25 # Replicate two 
26 seqlevelsStyle(invivo2) <- "NCBI" 
27  
28 invivo2_new <- ORFik:::convertToOneBasedRanges(invivo2) 
29  
30 txHits <- countOverlaps(tx,invivo2_new) 
31 leaderHits <- countOverlaps(leaders, invivo2_new) / txHits 
32 cdsHits <- countOverlaps(cds, invivo2_new) / txHits 
33 trailerHits <- countOverlaps(trailers, invivo2_new)/ txHits  
34 Hits_Invivorep2 <- data.frame(leaderHits, cdsHits, trailerHits)  
35  
36 # Percentage of hits per leader, cds and trailer 
37 saveRDS(Hits_Invivorep2, 'Hits_Invivorep2.rds') 
38 Hits_Invivorep2 <- readRDS('Hits_Invivorep2.rds') 
39 # Difference percentage between two replicates  
40 # Replace na value with zero 
41 Hits_Invivorep1[is.na(Hits_Invivorep1)] <- 0 
42 Hits_Invivorep2[is.na(Hits_Invivorep2)] <- 0 
43  
44 # Find total difference percentage for each transcripts between invivo replicate one and 

replicate two 
45 totalScore <- abs(Hits_Invivorep1$leaderHits - Hits_Invivorep2$leaderHits) + 

abs(Hits_Invivorep1$cdsHits - Hits_Invivorep2$cdsHits) + 
46   abs(Hits_Invivorep1$trailerHits - Hits_Invivorep2$trailerHits) 
47 df <- data.frame(totalScore) 
48 df$totalScore <- round (df$totalScore ,2) 
49 df$totalScore <- (df$totalScore) *100 
50  
51 # Plot of percentage difference between in vivo replicates for each transcript 
52 sp <- ggplot(df, aes(x = totalScore)) + geom_freqpoly() 
53 sp +scale_x_continuous(name = "\n% Difference of count reads", limits = c(0,300)) + 

scale_y_continuous(name = "Frequency of genes\n")+theme( 
54   axis.text = element_text(size = 18), axis.title  = element_text(size = 20 , face = "bold") 
55 )  
56  
57 # Pool two replicates in vivo (in vitro) 
58 txHitsInvivo1 <- countOverlaps(tx, invivo1_new) 
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59 txHitsInvivo2 <- countOverlaps(tx, invivo2_new) 
60 txHitsInvivo <- (txHitsInvivo1 / sum (htseq_invivo_rep1$reads) + txHitsInvivo2  / sum 

(htseq_invivo_rep2$reads))* 10 ^ 6 
61  
62 leaderHitsInvivo1 <- countOverlaps(leaders, invivo1_new) 
63 leaderHitsInvivo2 <- countOverlaps(leaders, invivo2_new) 
64 LeaderHitsInvivo <- (leaderHitsInvivo1 / sum (htseq_invivo_rep1$reads) + 

leaderHitsInvivo2  / sum (htseq_invivo_rep2$reads))* 10 ^ 6 
65 LeaderHitsInvivo <- LeaderHitsInvivo /txHitsInvivo 
66  
67 cdsHitsInvivo1 <- countOverlaps(cds, invivo1_new) 
68 cdsHitsInvivo2 <- countOverlaps(cds, invivo2_new) 
69 cdsHitsInvivo <- (cdsHitsInvivo1 / sum (htseq_invivo_rep1$reads) + cdsHitsInvivo2 / 

sum (htseq_invivo_rep2$reads))* 10 ^ 6 
70 cdsHitsInvivo <- cdsHitsInvivo / txHitsInvivo 
71  
72 trailerHitsInvivo1 <- countOverlaps(trailers, invivo1_new) 
73 trailerHitsInvivo2 <- countOverlaps(trailers, invivo2_new) 
74 trailerHitsInvivo <- (trailerHitsInvivo1 / sum (htseq_invivo_rep1$reads) + 

trailerHitsInvivo2 / sum (htseq_invivo_rep2$reads))* 10 ^ 6 
75 trailerHitsInvivo <- trailerHitsInvivo / txHitsInvivo 
76  
77 # percentage of count reads per leader, cds and trailer in each transcript 
78 Hits_Invivo <- data.frame(LeaderHitsInvivo, cdsHitsInvivo, trailerHitsInvivo)  
79 saveRDS(Hits_Invivo, 'Hits_Invivo.rds') 
80 Hitst_Invivo <- readRDS('Hits_Invivo.rds') 
81  
82 # Do the same script above for in vitro replicates and get in vitro data hits  
83 # Difference percentage between Invitro and Invivo for each transcript 
84 # Replacing na value with zero 
85  
86 Hits_Invivo[is.na(Hits_Invitro)] <- 0 
87 Hits_Invivo[is.na(Hits_Invivo)] <- 0 
88  
89 # Find total difference percentage for each transcripts between in vivo and in vitro data 
90 totalScore <- abs(Hits_Invivo$LeaderHitsInvivo - Hits_Invitro$leaderHitsInvitro) + 

abs(Hits_Invivo$cdsHitsInvivo - Hits_Invitro$cdsHitsInvitro) + 
91   abs(Hits_Invivo$trailerHitsInvivo - Hits_Invitro$trailerHitsInvitro) 
92 df <- data.frame(totalScore) 
93 df$totalScore <- round (df$totalScore ,2) 
94  
95 # Plot of percentage difference between in vivo and in vitro data 
96 sp <- ggplot(df, aes(x = totalScore)) + geom_freqpoly() 
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97 sp +scale_x_continuous(name = "Score difference") + scale_y_continuous(name = 
"Frequency of genes") 

98  
99 # Hits In silico 
100 # Using perGroupLead,perGroupCds and perGroupTrail from ViennaScript.R 
101  
102 perGroupLead <- leaderhits[,.N,by = genes] 
103 perGroupCds <- cdshits[,.N,by = genes] 
104 perGroupTrail <- trailerhits[,.N,by = genes] 
105 # Using cov data from ViennaScript.R 
106 pergroupTx <- cov[, .N,by = genes] 
107  
108 # Find percentage of hits for regions per transcript  
109  
110 Txlead<- merge(x = pergroupTx, y= perGroupLead, by ="genes", all=TRUE) 
111 TxleadCds <- merge ( x = Txlead , y= perGroupCds , by ="genes", all = TRUE) 
112 names(TxleadCds) <- c("genes","Tx","leader","Cds") 
113  
114 TxleadCdsTrai <- merge (x = TxleadCds , y= perGroupTrail ,by ="genes", all = TRUE) 
115 colnames(TxleadCdsTrai)[colnames(TxleadCdsTrai)=="N"] <- "Trailer" 
116  
117 TxleadCdsTrai[is.na(TxleadCdsTrai)] <- 0 
118  
119 TxleadCdsTrai$leader <-TxleadCdsTrai$leader/TxleadCdsTrai$Tx  
120 TxleadCdsTrai$Cds <-TxleadCdsTrai$Cds/TxleadCdsTrai$Tx  
121 TxleadCdsTrai$Trailer <-TxleadCdsTrai$Trailer/TxleadCdsTrai$Tx  
122 Hits_AllInsilico <- TxleadCdsTrai 
123 saveRDS(Hits_AllInsilico, 'Hits_AllInsilico.rds') 
124 Hitst_AllInsilico <- readRDS('Hits_AllInsilico.rds') 
125  
126 # Difference percentage between Insilico and Invitro or Invivo and Insilico 
127 # Replace na value with zero 
128  
129 totalScore <- abs(Hits_Invivo$LeaderHitsInvivo - Hits_AllInsilico$leader) + 

abs(Hits_Invivo$cdsHitsInvivo - Hits_AllInsilico$Cds) + 
130   abs(Hits_Invivo$trailerHitsInvivo - Hits_AllInsilico$Trailer) 
131 df <- data.frame(totalScore) 
132 df$totalScore <- round (df$totalScore ,2) 
133  
134 sp <- ggplot(df, aes(x = totalScore)) + geom_freqpoly() 
135 sp +scale_x_continuous(name = "Score difference") + scale_y_continuous(name = 

"Frequency of genes") 
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Description of functions used in the R scripts   

 

1 # Two function are using in Coverage_plot.R 
2 # Get transcriptName from geneName 
3 geneToTxnames <- function(txdb,geneName){ 
4   names <-transcriptLengths(txdb) 
5   res <- names$gene_id[names$gene_id %in% geneName] 
6   res <- chmatch(as.character(geneName),as.character(names$gene_id)) 
7   return(names$tx_name[res]) 
8 } 
9  
10  
11 # Vienna print top gene 
12 outputFasta <- function(fa,refrence,gene=NULL){ 
13   seqlevelsStyle(refrence) <- seqlevelsStyle(fa) 
14   if (is.null(gene) ){ 
15     seq <- extractTranscriptSeqs(fa,refrence) 
16   } else { 
17     seq <- extractTranscriptSeqs(fa, refrence[gene]) 
18   } 
19    
20   writeXStringSet(seq, filepath = "geneNP_059333.1.fasta") 
21   return() 
22 } 
 

 

 

 

 

 

 

 

 

 


