
Machine learning methods
for preference aggregation

Hanna Kujawska

Dissertation for the Master’s degree (MSc)
at the University of Bergen, Norway

2019

Dissertation date: November 7, 2019



© Copyright Hanna Kujawska
The material in this publication is protected by copyright law.

Year: 2019
Title: Machine learning methods for preference aggregation
Author: Hanna Kujawska



Scientific environment

The author has carried out the research reported in this dissertation at the Research Group
on Optimization, Department of Informatics, Faculty of Mathematics and Natural Sciences,
University of Bergen, Norway and at the Research Group on Logic, Information and Inter-
action, Department of Information Science and Media Studies, Faculty of Social Sciences,
University of Bergen, Norway.



iv Scientific environment



Acknowledgements

I would first like to thank my thesis advisors: Associate Professor Marija Slavkovik of
the Department of Information Science and Media Studies at the University in Bergen and
Professor Jan-Joachim Rückmann of the Department of Informatics at the University in
Bergen in Norway. Prof.Marija Slavkovik consistently allowed this paper to be my own
work but steered me in the right direction whenever she thought I needed it.

I would also like to acknowledge Prof. Jan-Joachim Rückmann as the second reader of
this thesis, and I am gratefully indebted to him for his very valuable comments on this thesis
and support on building overall strategy.

Finally, I must express my very profound gratitude to my parents, my husband Filip and
our son Leonard for providing me with unfailing support and continuous encouragement
throughout my study period and through the process of researching and writing this thesis.
This accomplishment would not have been possible without them. Thank you.

Author
Hanna Kujawska



vi Acknowledgements



Abstract

Preference aggregation is the process of combining multiple preferences orders into one
global ranking. The top-ranked alternative is called the winner. Many aggregation methods
have been considered in the literature. Some methods, like Borda count, require polynomial
time, with respect to the input, to find the winner. For others, like for the Kemeny and
Dodgson methods, the winners are computationally hard to compute.

We explored experimentally if machine learning algorithms can be used to predict the
winner of Borda, Kemeny and Dodgson voting rules, effectively trading computational
complexity for (in)accuracy.

Machine learning models were trained using two datasets: a real-world Spotify dataset
and a synthetic dataset, both of profiles of sizeN = 20 alternatives and V = 25 voters. Four
different methods for converting profiles into data sets were considered. The experimen-
tal study compared several supervised machine learning models (among others XGBoost,
Gradient Boost, Support Vector Machine, Stochastic Gradient Descent (SGD) classifiers).
Using less than 0.1% of all the possible profiles for the training set, models were found that
predict: (i) Borda winner with the XGBoost classifier with accuracy of 100%, (ii) Kemeny
winner(s) with the SGD classifier with 85% accuracy; and (iii) Dodgson winner(s) with the
Gradient Boost classifier with 89% accuracy.



viii Abstract



Contents

Scientific environment iii

Acknowledgements v

Abstract vii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.1 Success criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Voting theory 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Notation and assumptions . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Condorcet winner . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Score-based voting rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Borda method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Distance-based voting rules . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Swap distance / Kendall’s tau metric . . . . . . . . . . . . . . . . . 15
2.3.2 Kemeny rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Dodgson rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 DEMOCRATIX - label extraction tool . . . . . . . . . . . . . . . . . . . . 21
2.5 Tie-breaking rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Machine learning techniques 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Voting as a supervised classification problem . . . . . . . . . . . . 25
3.2 ML algorithms for classification . . . . . . . . . . . . . . . . . . . . . . . 26



x CONTENTS

3.2.1 Generalized linear models . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Support Vector Machines (SVM) . . . . . . . . . . . . . . . . . . . 26
3.2.3 Gradient Boosted Decision Trees (GB) . . . . . . . . . . . . . . . 27
3.2.4 Multilayer Perceptrons (MLP) . . . . . . . . . . . . . . . . . . . . 28
3.2.5 Regularized linear classifiers with stochastic gradient descent (SGD) 28
3.2.6 Naive Bayes classifier (NB) . . . . . . . . . . . . . . . . . . . . . 29

3.3 Data transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Dataset transformation: pre-processing and scaling . . . . . . . . . 29
3.3.2 Feature engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.1 Cross-validation testing . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Evaluating learning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5.1 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5.2 Diagnosis tool: learning curves . . . . . . . . . . . . . . . . . . . . 34
3.5.3 Diagnosis tool: classification rapport . . . . . . . . . . . . . . . . . 34

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Experimental study 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Machine learning pipeline . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Datasets description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Data preparation and exploration . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Profile as data point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4.1 Representation 1: score factorisation . . . . . . . . . . . . . . . . . 43
4.4.2 Representation 2: occurrence factorisation . . . . . . . . . . . . . . 44
4.4.3 Representation 3: pairwise cumulative score . . . . . . . . . . . . 45
4.4.4 Representation 4: weighted sum . . . . . . . . . . . . . . . . . . . 46

4.5 Model selection - experiments and results. . . . . . . . . . . . . . . . . . . 46
4.5.1 Borda results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5.2 Kemeny results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.3 Dodgson results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Discussion and important remarks . . . . . . . . . . . . . . . . . . . . . . 54
4.6.1 Error analysis and diagnosing model behavior . . . . . . . . . . . . 55

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Summary 59
5.1 Summary of major findings . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Appendices
A.1 Borda, Kemeny and Dodgson results . . . . . . . . . . . . . . . . . . . . . 65



CONTENTS xi

Bibliography 101



xii CONTENTS



List of Figures

1.1 Project workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Borda, Kemeny and Dodgson winner for working example (Table 4.5). . . 11

3.1 Traditional ML fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Model representation for supervised learning. Modified from Ng (2019). . 24
3.3 Learning to rank concept [miro.medium.com (2016)]. . . . . . . . . . . . . 25
3.4 Logistic function [thefactmachine.com (2016)]. . . . . . . . . . . . . . . . 27
3.5 SVM’s hyperplane for classification [scikit learn.org (2013a)]. . . . . . . . 27
3.6 Random Forest technique [Verikas et al. (2016)]. . . . . . . . . . . . . . . 28
3.7 Multilayer perceptron diagram [scikit learn.org (2013b)]. . . . . . . . . . 29
3.8 Gaussian Naive Bayes method [Raizada and Lee (2013)]. . . . . . . . . . . 30
3.9 Diagram of the cross-validationmodel training technique [Wikipedia (2019c)]. 32
3.10 Errors trouble-shooting techniques. Modified from Ng (2019). . . . . . . . 34

4.1 ML project’s steps. Modified from Aziz et al. (2013). . . . . . . . . . . . . 37
4.2 Steps of the framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Borda winner’s distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Kemeny’s winner distribution. . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Dodgson’s winner distribution. . . . . . . . . . . . . . . . . . . . . . . . . 43
4.6 Working example factorized into Representation 1. . . . . . . . . . . . . . 44
4.7 Working example factorized into Representation 2. . . . . . . . . . . . . . 45
4.8 Working example factorized into Representation 3. . . . . . . . . . . . . . 46
4.9 XGBoost classifier learned in Representation 1. . . . . . . . . . . . . . . . 48
4.10 SGD classifier results trained in Representation 3. . . . . . . . . . . . . . . 51
4.11 Gradient Boosting classifier results trained in Representation 3. . . . . . . 55

A.1 Model evaluation metrics for Representation 2. . . . . . . . . . . . . . . . 67
A.2 Train and validation learning curves for models learned in Representation 2. 69
A.3 Classification rapport for models learned in Representation 1. . . . . . . . 71
A.4 Train and validation learning curves for models learned in Representation 1. 73
A.5 Train and validation learning curves for models learned in Representation 2. 75
A.6 Evaluation metrics (Representation 4|Borda winner(s) predictions). . . . . 76



xiv LIST OF FIGURES

A.7 Train and validation learning curves (Representation 1|Kemeny winner(s)
predictions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.8 Classification report (Representation 1|Kemeny winner(s) predictions). . . 79
A.9 Train and validation learning curves (Representation 2|Kemeny winner(s)

predictions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.10 Classification report (Representation 2|Kemeny winner(s) predictions). . . 82
A.11 Train and validation learning curves (Representation 3|Kemeny winner(s)

predictions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.12 Classification report (Representation 3|Kemeny winner(s) predictions). . . 85
A.13 Train and validation learning curves (Representation 4|Kemeny winner(s)

predictions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.14 Classification report (Representation 4|Kemeny winner(s) predictions). . . 88
A.15 Train and validation learning curves (Representation 1|Dodgson winner(s)

predictions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.16 Classification report (Representation 1|Dodgson winner(s) predictions). . . 91
A.17 Train and validation learning curves (Representation 2|Dodgson winner(s)

predictions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.18 Classification report (Representation 2|Dodgson winner(s) predictions). . . 94
A.19 Train and validation learning curves (Representation 3|Dodgson winner(s)

predictions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.20 Classification report (Representation 3|Dodgson winner(s) predictions). . . 97
A.21 Train and validation learning curves (Representation 4|Dodgson winner(s)

predictions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.22 Classification report (Representation 4|Dodgson winner(s) predictions). . . 100



Chapter 1

Introduction

1.1 Background

Aggregation of individual preferences towards a collective choice has been studied orig-
inally in social choice theory (mutual decision making and voting systems) [Brandt et al.
(2016), F. Rossi and Walsh (2011)]. A voting rule is a preference aggregation technique
called a social choice function (SCF). Computational complexity of determining the output
of a voting rule imports a concept from theoretical computer science to computational so-
cial choice [Chevaleyre et al. (2007). Recently machine learning (ML) methods are being
used to automatically learn the ranking techniques, including these typically designed for
human-generated preference data [Chu and Ghahramani (2005), Procaccia A.D. (2009)].
While this area, known as learning-to-rank (LTR), usually lack the theoretical support of
the social choice, they perform excellently in empirical studies and handle large data, plac-
ing no restrictions on the data type [Volkovs (2013)].

Individual preference is a linear ordering, also called ranking or ranked list of alterna-
tives, i.e. a rank-ordered list over the set of alternatives. Thus, a ranking vector is a per-
mutation of the integers 1 through n, where each integer gives the rank position of the cor-
responding alternative. Rank aggregation is the process of using mathematical techniques,
like voting rules, to create one robust aggregated rank from several individually ranked
lists. In this thesis, the prediction of the winner in the aggregated rank appears as an inter-
disciplinary task linking voting theory and ML, using methods from statistics, optimization
and data mining. Preference learning (PL) is a sub-field in ML that handles datasets with
ordinal relations [Farrugia et al. (2015), Hüllermeier and Fürnkranz (2011)].

Learning the result of the aggregated preferences in ML consist of discovering the pref-
erence model that is fitted to the given preference data as the training data, to predict the
final aggregated ranking from a new set of preferences [Corrente et al. (2013)]. Specifically,
in this thesis, we are concerned with theML-based winner determination problem (WDP) -
we applied supervisedML to voting methods to predict awinner as a top-ranked alternative.



2 1. Introduction

1.2 Motivation
We can observe many diverse problems with ordinal relations, including image retrieval
[Yang Hu et al. (2008)], web pages ranking [Dwork et al. (2001), Renda and Straccia
(2003)], protein selection [Ben-Bassat et al. (2018)], machine translation [Corrente et al.
(2013)], game players ranking [Deng et al. (2014))] and many others.

In this thesis, we are interested in predicting the winner, since finding the winner in
some voting rules is NP-hard problem [Dwork et al. (2001), Truchon (2008), Chevaleyre
et al. (2007)]. Therefore the real question is: can we design mechanisms for preference ag-
gregation that allow solving the WDP problem optimally and provably fast with traditional
supervised ML techniques? Is there a time-efficient way to tackle the WDP? In this thesis,
we are assuming only complete and strict orderings. This research, to the best knowledge of
the author, was the first evaluation of the application of supervised ML algorithms that are
provably fast (polynomial time in the size of the problem instance) and preferably successful
in finding an optimal solution to the given problem instances.While computationally attrac-
tive, this approach may suffer in some cases. Thus, this work ought to significantly point
also out negative results where traditional ML algorithms fail to find the desired output.
Future work might compare the output of this research with works resulting from the LTR
concepts or other approaches such as unsupervised ML algorithms or time-series models.
Thus, this work outlined also avenues for future research.

1.3 Objectives
The purpose of this thesis is to investigate the learnability of the voting rules and evaluate
the performance of ML models when predicting the top-alternative in a given aggregated
preference rank.

We persuaded three fundamentally coherent research questions:

• How can we use traditional ML to predict winners of Borda, Kemeny and Dodgson
voting rules?

• Which proportion of possible “data points” is sufficient, as the training dataset, for an
efficient classification?

• What is the best way to represent preferences as a dataset?

We considered three different voting rules - Borda, Kemeny and Dodgson - because they
belong to different complexity classes concerning winner determination problem:

• the Borda voting rule belongs to the class of score-based rules, solvable deterministi-
cally, in polynomial time [Wikipedia (2019b)] (for more details see Section 2.2.1);

• the Kemeny voting rule belongs to the class of distance-based rules and measures
the distance between two linear orderings, by counting pairs of alternatives on which



1.4 Methodology 3

they disagree, Kemeny rule returns the ranking(s) minimizing the distance; solvable in
nondeterministic polynomial time [Brandt et al. (2016)] (for more details see Section
2.3.2);

• the Dodgson voting rule is computationally harder than Kemeny rule. For each pref-
erence ranking, determines the fewest number of pairwise swaps needed to make that
candidate the Condorcet winner (an alternative that defeats every other alternative in
the strict pairwise majority sense). The candidate(s) with the fewest swaps is (are)
declared the winner(s); solvable in nondeterministic polynomial time [Brandt et al.
(2016), Nurmi (2010)] (for more details see Section 2.3.3).

An important part of this thesis was to build a suitable training and testing pipeline to
test different ML algorithms, with new parameters, and quickly and easily compare it to
other models. A robust pipeline enabled us to find the best possible models.

We tested different ML models for four preferences’ representations. We explored ten
classifiers to maximize the predictive performance of the model. In particular, we com-
pared ten ML classifiers, namely: Gradient Boosting, XGBoost, AdaBoost, Support Vector
Machine (SVM), Naive Bayes, Neural Network, Decision Tree, Random Forest, Linear
classifiers with Stochastic Gradient Descent (SGD) and Ridge classifier. We chose those
classification algorithms based on the literature review [Li (2008). Lucchese et al. (2018)]
and their availability in the scikitlearn library for Python. In the experimental study, we
tested these models against actual real-world and large-scale synthetic collection of prefer-
ences comprising 20 alternatives and 25 voters.

1.4 Methodology
We empirically tested different supervised ML methods to assess the learning performance
of three voting rules: Borda, Kemeny and Dodgson. Figure 1.1 illustrates the project frame-
work.

Figure 1.1: Project workflow.

Specifically, data collection included taking rankings from the following resources (step 1
in Figure 1.1):



4 1. Introduction

• a real-world dataset from Spotify and

• high-dimensional synthetic dataset.

The ranking represents the set of agents having preferences over a set of alternatives. Since
the ML algorithms require a certain format of the input space, we next represented the pref-
erences in four dataset representations (step 2). Then, the studied representations have been
labeled (step 3), i.e. for every preference of all agents (so-called profile), the mechanism
outputted a winner(s). A winner becomes a label in ML model1. To extract the labels for
NP-hard voting rules, as Kemeny and Dodgson, we applied aggregations algorithms and
queried DEMOCRATIX (see Chapter 2.4), online tool evaluating preference profiles con-
cerning various voting rules. Next, such labeled data have been introduced to the traditional
ML algorithms (step 4). Finally, learning, prediction, tuning and evaluation processes re-
spectively have been closing the entire proposed framework (steps 5 and 6).

These thesis calculations were performed in Python using related scientific libraries,
such as scikit-learn, numpy, scipy, pandas, matplotlib, seaborn and selenium.

1.4.1 Success criteria

We tested three voting rules - Borda, Kemeny and Dodgson - against two datasets: Spotify
with 361 samples and generated a dataset with 12360 samples. The following equation
describes the total number of all possible profiles:

total_num_profiles = (|V |+ |C|!− 1)!

|C|!(|V | − 1)!
, (1.1)

where: |C| = 20 is number of alternatives, and |V | = 25 is number of preference ranks
(votes) per sample.

Using less than 0.01% of all the possible profiles for the training set, we found:

• different preference representations as a dataset that can be used to train ML classi-
fiers,

• classification models that predict:

– Borda winner(s) with the XGBoost classifier with accuracy of 100% accuracy,
– Kemeny winner(s) with the SGD classifier with 85 % accuracy,
– Dodgson winner(s) with the Gradient Boost classifier with 89% accuracy.

To choose the classification model with the best performance, we applied two different
evaluationmetrics: F1-score and accuracy.We didn’t prioritize the algorithms’ run-time.We
used accuracy in particular for uniform class distribution in a high-dimensional synthetic
dataset. The F1-score, as it considers false positives and false negatives (see Section 3.4.2
for more details), is especially useful for uneven class distribution, as we have in the Spotify
dataset (some winners occur more often than others).

1Labeling algorithm included tie-breaking mechanism in case of multi-winner instances (see Chapter 4
for more details)



1.5 Literature review 5

1.5 Literature review

The concept of automated design of voting rules approaches the problem of finding the
winner of the voting rule. This process finds the (known) voting rule that captures specific
properties/criteria if there does exist a prior set of specification of features that can be used
to determine the winner. Developing a theory of automated design of voting rules by learn-
ing has been discussed by Procaccia A.D. (2009). This paper demonstrated the learnability
results of Probably Approximately Correct (PAC) learning for two types of voting rules:
scoring rules and voting trees. In score-based rules, the candidate receives points according
to its position in the preferences of each voter. Voting rules represented by small trees select
a candidate based on pairwise comparisons in an iterative process. Procaccia A.D. (2009)
showed that the class of scoring rules is learnable efficiently, namely in polynomial time for
all alternatives and voters by the PAC model. These results are the reason why we expected
to get good results for the Borda method. In particular, we achieved a classification accu-
racy comparable to (or higher than) the results presented (Procaccia A.D. (2009)) - 100%
accurate predictions. Procaccia A.D. (2009) also demonstrated the possibility of learning
voting rules that can be represented as small voting trees. In general, a learning process of
small voting trees requires to provide an exponential number of samples. Procaccia A.D.
(2009) proved that polynomial training set suffices if the number of leaves is polynomial in
the size of the set of alternatives.

Learning preference and rank aggregation is a subject of research interest in many areas,
among others in the election winner determination problem in computational voting [Con-
dorcet (1785), Borda (1781))], but also games’ competitions ranking [Deng et al. (2014)],
meta-search engines [Dwork et al. (2001), Renda and Straccia (2003)] or in meta-analytic
bioinformatics [Patel et al. (2013)] .

Discovering the best ML classifier and tuning its hyperparameters can be a very time-
consuming task. Donini et al. (2018), in their work, presented a voting problem with Ran-
dom Neural Networks. In particular, the authors introduced an ensemble classifier method
that exploits neural networks and voting theory and does not require neither domain knowl-
edge nor the expertise in fine-tuning of the parameters. This work encouraged us to extend
our ML models portfolio with neural network (NN) classifier: we tested a multi-layer per-
ceptron (MLP). The tempting perspective of achieving a high level of predictive accuracy
allowed us to receive in particular good results - 80% of accurate Dodgson winner(s) pre-
dictions trained in Representation 2. We found that NN requires a large amount of training
data to optimize the model. Additionally, NN not converged to a single solution (are not
deterministic). Maybe more complex NN having more layers and neurons could associate
better each input variable with the output variable through the different weights.

Relevant techniques for learning and predicting from rank orderings might be in partic-
ular challenging, since it might involve the prediction of complex structures, such as weak
or partial order relations, rather than single values [Ailon (2010), Kamishima et al. (2011)].
Complex learning tasks, such as predicting the winners of preference aggregation, differs
strongly from the standard classification and regression ML tasks. In this work, we pre-



6 1. Introduction

dicted a single value, and not complex structures, like partial preference orderings or
weak rank relations. This work objective was not to establish the full rank-ordered solu-
tion of all alternatives (aggregated rank), as it takes place in Ali and Meila (2012) or LNR
concept, but to predict the top alternative of the aggregated rank - the winner.

Incompleteness in the preferences of voters is prevalent in many real-world scenarios.
Lang et al. (2012) considers voting problems in voting trees with incomplete preferences
and weighted votes. Authors performed a sequence of pairwise comparisons in an iterative
procedure, similarly to Procaccia A.D. (2009) work, where each comparison decision is
made based on majority voting rule. In comparison to the work of Lang et al. (2012) or
Ailon (2010) we also researched learning and predicting preference models but for full
(total) preference orderings. Moreover, our training input space comprised explicit pref-
erence information, rather than data from diverse indirect (implicit) feedback or relative
preferences. Thus, the format of input data might deviate from standard ML training data.
In this research, the input is in the format of the list of nested vectors. However, ML-WDP
input space format might comprise even more general types of information, such as relative
preferences or different kinds of indirect feedback [Hüllermeier and Fürnkranz (2011)].

In the domain literature, we distinguish two main approaches to the learning rank ag-
gregation problem. The first one considers generative probabilistic model. The generative
probabilistic model approach comes from the fundamental work of Condorcet in the 18th
century (Condorcet (1785)). Condorcet selects a winner by maximizing the likelihood of a
candidate aggregate ranking. Condorcet’s approach is based on principled Bayesian pref-
erence elicitation frameworks for collecting rank data. The statistical method such as max-
imum likelihood estimation (MLE) has been very popular in ML and computational social
choice [Truchon (2008), Conitzer and Kalagnanam (2006), Conitzer and Sandholm (2005),
Xia (2019)]. Recently this approach also addressing partial preferences has been developed
by Conitzer and Xia (2009). Authors developed and discussed a model that assumes each
partial ballot is a noisy observation of several pairwise comparisons of candidates. These
findings enlighted us to also explored probabilistic classifiers -MLmodels enabling predict-
ing the probability distribution over classes given input variables. We applied, for instance,
the Naive Bayes classifier. We proved, based on findings, that they are highly scalable when
tested against large amounts of data - 100% accurate prediction of Borda winners for all four
preference representations, 81% of accurate predictions for Dodgson winners predictions
trained in Representation 1.

The secondmain alternative is the metric approach. It is expressed by choosing a (quasi-
) distance on the set of rankings, also called swap distance (described in the ensuing part
of this work, see 2.3.1) and then finding a barycentric permutation, sometimes referred to
as a consensus or median ranking, i.e. a ranking at minimum distance from the observed
ones [Korba et al. (2017)]. This approach encompasses numerous methods, including the
Kemeny aggregation. In the statistical setting, the Kemeny aggregationmethod can be inter-
preted as equivalent to theMLE approach under the noisemodel distinguished by Condorcet
[Young (1988)], Korba et al. (2017), Ali and Meila (2012)]. In this work, we demonstrated
empirically that ML algorithms could be used to predict the winner of Kemeny voting rule,



1.6 Structure of the thesis 7

effectively trading computational complexity for 85% accuracy with the stochastic gradient
descent classifier.

De Neve (2014) discussed the ideological change in the US and the economics of voting.
Authors presented a voting model using independent variables, such as personal income
growth rate, unemployment rate, GNP, taxes and inflation rate. In contrast to De Neve
(2014) work, in this thesis, we demonstrated the possibility of learning the winner of voting
rules from no additional independent variables, namely all data insights contributed from
given preference ranks only.

1.5.1 Contributions

In the research:

• we extended the exploration of learnability of voting rules approximated by scoring-
rules, such as Borda count (as partially covered in Procaccia A.D. (2009) work) by
also investigating classification models for distance-based voting rules: Kemeny and
Dodgson,

• we represented voting problems as ML problems by introducing four data represen-
tations that can be used to train ML classifiers,

• we converted preference dataset into PrefLib2 format (library for preferences, popu-
lar in the computational voting community), allowing contributing data and helping
extend this online resource,

• we introduced ML training and testing pipeline allowing us to quickly and easily
generate performance metrics for different models and hypotheses,

• we assessed ten ML models’ performance,

• we explored if ML models can be used for the optimization of intractable functions.
Specifically, selecting a winner becomes an optimization problem.

1.6 Structure of the thesis
This thesis is organized as follows. In Chapter 2, we introduced the voting theory and pre-
sented the domain theoretical aspects of this work. We discussed three types of aggregating
methods: Borda, Kemeny and Dodgson voting rules. Here also we introduced the practical
(working) example.

In Chapter 3, we addressed the problem of ML and rank learnability. We provided an
overview of several algorithms we used to predict the winner based on preference rankings.

In Chapter 4, we described the experimental study with ML methods for preference ag-
gregation. More precisely, here we defined the ML-based winner determination problem.

2http://www.preflib.org



8 1. Introduction

Within the experimental study, we describe the approach on how to represent preferences
into the dataset in the learning process. We introduced four different preference represen-
tations and we discussed their advantages and disadvantages. Here also we analyzed the
experimental result analysis concerning the evaluation metrics.

Finally, in Chapter 5, we concluded with a summary of the obtained results. We pre-
sented here the implications of major findings and also the recommendation for future re-
search.



Chapter 2

Voting theory

2.1 Introduction

In this chapter we introduce the relevant concepts and definitions from computational voting
theory. In this research we consider three voting rules: Borda’s, Kemeny’s and Dodgson’s,
described in following sections: 2.2.1, 2.3.3, 2.3.3. Borda method represents score-based
rules, while Kemeny and Dodgson are distance-based rules. Borda’s rule and Kemeny’s
rule are prominent examples of voting rules depending only on weighted pairwise major-
ity comparisons (also known as type C2 functions) [Brandt et al. (2016)]1. On the other
hand, Dodgson rule is historically significant voting rule belonging to the class C3, mean-
ing voting rule requiring strictly more information than a weighted directed graph, with
computationally hard winner determination problems.

In this chapter, we also discussed the computational complexity of considered voting
rules. In particular, Kemeny and Dodgson methods are NP-hard. Thus, here we described
how we circumvented their intractability, namely by introducing DEMOCRATIX online
tool for preference orderings.

Finally, we provided a working example to illustrate the differences between the results
of voting rules better.

2.1.1 Notation and assumptions

Voting theory, in particular computational voting theory, which studies computational is-
sues in voting, is a branch of computational social choice that recently gain probably the
most attention in this field’s literature [Xia (2019)]. Throughout this thesis, a vote is a linear
order over the set of alternatives (candidates). We referred to it as preference ordering or
simply rank. First, each voter (agents) cast one vote. These votes together constitute a pro-
file. Next, we apply a voting rule to the profile in order to distinct the winning alternative, i.e.
the winner. We call this process preference aggregation for winner determination problem

1Here, pairwise comparisons can be easily represented by use of weighted directed graphs, where the
weight of an edge from alternative x to alternative y is the number of voters who prefer x to y [F. Rossi and
Walsh (2011)].



10 2. Voting theory

(WDP). Preference aggregationmodel is thus composed of three components: (i) input: data
(complete preferences, not comparison), (ii) transformation (aggregation) and (iii) output:
global ranking (optimal permutation), and so the winner (top alternative in consensus).

Now, formulating above assumptions we introduce following notations. Given is a finite
set of alternatives (or candidates)C = {c1, c2, . . . , cm} , withm ≥ 2, and a finite set of agents
(voters) V = {v1, v2, . . . , vn}.

Definition 2.1.1. Preference ordering.
Each voter i ∈ V is represented with her preference relation referred to as ≻i, i.e. the order
≻i over the set C of alternatives that is [Brandt et al. (2016)]:

1. strict,

2. complete, if c1 ≻i c2 or c2 ≻i c1, for all c1 ̸= c2 ∈ C,

3. transitive, if c1 ≻i c2 and c2 ≻i c3 then c1 ≻i c3, for all c1, c2, c3 ∈ C and

4. antisymmetric, if c1 ≻i c2 and c2 ≻i c1, then c1c2, for all c1, c2 ∈ C.

A voter i prefers candidate c over candidate c′ if c ≻i c
′. The top-ranked candidate of ≻

is at position 1, the successor at position 2, while the last-ranked candidate is at positionm.

Definition 2.1.2. Profile.
A collection of preference orders P = (≻1, . . . ,≻n) for each voter i ∈ V is called a prefer-
ence profile. L(C)n denotes the set of all such profiles for a given n. An election E is a pair
E = (C,P ).

Definition 2.1.3. Voting rule.
A voting rule F is a mapping from an election E to a non-empty subset of the candidates
W ⊆ C, i.e., the winners of the election [Kim (2017)].

Some distance-based voting rules, for instance Kemeny method, chooses the winning
ranking that is the closest to the individual rankings based on the total number of pairwise
switches. It means it requires the calculations of the distance from the given profile to the
so-called unanimous profile.

Definition 2.1.4. Unanimous profiles.
A profile is called unanimous when all the preference orders in it are the same, namely
≻1= · · · =≻n.

An example of a unanimous profile P for C = {a, b, c, d} withm = 4 options and n = 3

agents (voters) is presented by 2.1:

P =

b ≻1 a ≻1 d ≻1 c

b ≻2 a ≻2 d ≻2 c

b ≻3 a ≻3 d ≻3 c

 (2.1)



2.1 Introduction 11

Running example

For better illustration of the calculus, let’s introduce now a preliminary example with one
preference profile.

Example 2.1.1. Let us consider an electionE with four candidatesC = {a; b; c; d} (|C| = 4)
and |V | = 7 voters. Table 4.5 presents the preference profile P of the V voters. Each row
represents the preference order of a subset of voters, where the first column is the number
of people who voted with this preference order, and the following column is the order of the
vote. For instance, 3 voters have the preference order: a ≻ b ≻ c ≻ d.

Table 2.1: Preference profile example.

number of voters preference order
3 voters a ≻ b ≻ c ≻ d

1 voter d ≻ b ≻ a ≻ c

1 voter d ≻ c ≻ a ≻ b

1 voter b ≻ d ≻ c ≻ a

1 voter c ≻ d ≻ b ≻ a

The Borda winner is b, the Kemeny winner is a and Dodgson winner is b. We discussed
detailed calculus in the upcoming sections.

Figure 2.1: Borda, Kemeny and Dodgson winner for working example (Table 4.5).

2.1.2 Condorcet winner

This research aims to use preference aggregation to determine the winner. In the voting
theory, a prevalent WDP concept consists of comparing each candidate with all the other
candidates and seeing how many agents support each pair. For instance, we observe it in
the examined Kemeny and Dodgson voting rules.



12 2. Voting theory

Definition 2.1.5. Condorcet winner.
Condorcet winner for the profile P is the alternative c ∈ C that defeats every other alterna-
tive in the strict pairwise comparison. Condorcet winner is the candidate that has at least n

2

votes compared to any other candidate, where n is the number of preference orders in the
profile.

Condorcet winner is unique. However, there are elections where a Condorcet winner
might not exist. For instance, let us consider the set of candidates C = {a, b, c, d} and the
following profiles P and P ′ (see Equation 2.2):

P =

a ≻1 b ≻1 c ≻1 d

a ≻2 b ≻2 c ≻2 d

b ≻3 a ≻3 d ≻3 c

 P ′ =

a ≻′
1 b ≻′

1 c ≻′
1 d

d ≻′
2 b ≻′

2 a ≻′
2 c

c ≻′
3 d ≻′

3 b ≻′
3 a

 (2.2)

The Condorcet winner of the profile P is a candidate a, since for candidate awe have that: a
defeats bwith 2 votes (≻1 and≻2) ; a defeats cwith 3 votes (≻1,≻2 and≻3); a defeats dwith
3 votes (≻1, ≻2 and ≻3) - which in every case constitutes more than 1, 5 votes compared to
any other candidate (at least n

2
votes, given n = 3 preference orders in profile P ). Table 2.2

presents the full pairwise comparison count matrix, called also popularity matrix.

Table 2.2: Popularity matrix for profile P given by 2.2.

≻ a ≻ b ≻ c ≻ d

a ≻ - 2 3 3
b ≻ 1 - 3 3
c ≻ 0 0 - 2
d ≻ 0 0 1 -

Let us consider profile P ′ from equation 2.2. This profile does not have a Condorcet
winner. Table 2.3 presents the full defeat matrix, where we see that no candidate receives
at least n

2
= 1, 5 votes within pairwise comparison of all candidates.

Table 2.3: Popularity matrix for profile P ′ given by 2.2.

≻ a ≻ b ≻ c ≻ d

a ≻ - 1 (≻1) 2 (≻1 and ≻2) 1 (≻1)
b ≻ 2 (≻1 and ≻3) - 2 (≻1 and ≻2) 1 (≻1)
c ≻ 1 (≻3) 1 (≻3) - 2 (≻1 and ≻3).
d ≻ 2 (≻2 and ≻3) 2 (≻2 and ≻3) 1 (≻2) -

The Algorithm 1 (modified from Charwat and Pfandler (2015)) presents encoding of the
Condorcet rule. The first step is to determine the position of each candidate in the preference
order, this contains full candidates set {1, . . . ,m} (line 1). If Ci ̸= Cj holds in the preference



2.2 Score-based voting rules 13

Require: M = |C|, N = |V |, P
1: candidate(I)← candnum(m), 1 ≤ I ≤M .;
2: prefer(P,C1, C2)← p(P, Pos1, C1), p(P, Pos2, C2), Pos1 ≤ Pos2

3: preferCount(C1, C2)← candidate(C1;C2), C1 ̸= C2

4: noWinner(C)← preferCount(C, _, N), voternum(V ), N · 2 ≤ V .
5: winner(C)← candidate(C), not noWinner(C)

6: anyWinner ← winner(_)
7: ← not anyWinner

8: return winner(C)
Algorithm 1: Condorcet encoder

relation, prefer(P,C1, C2) has been determined (line 2). This corresponds to this element of
popularity matrix which compares the pair (C1, C2) in the profile P . The value of function
prf(c1, c2) is computed in the line 3. Next, the rule that candidate ci cannot be a Condorcet
winner has been encoded, if there is some other candidate cj , such that prf(ci, cj) ≤ n

2
(line

4). Here, noWinner(C) is obtained if such a counterexample can be found for candidateCi.
The different cases, if no counterexample exists, then the Condorcet winner has been found
(line 5). The final two steps ensure that no answer set is returned if no Condorcet winner
exists (lines 6 and 7).

Table 2.4: Pairwise comparison matrix for profile P given in the Table 4.5

≻ a ≻ b ≻ c ≻ d

a≻ - 4 4 3
b≻ 3 - 5 4
c≻ 3 2 - 4
d≻ 4 3 3 -

Presented case in Table 4.5 has no Condercet winner, since none candidate collected at
least n

2
= 3, 5 votes in pairwise comparison with all other candidates. Table 2.4 presents in

details pairwise comparison matrix.

2.2 Score-based voting rules

Scoring rules form this class of voting rules that award points to alternatives according to
their position in the preferences of the voters [Procaccia A.D. (2009)]. Well-known exam-
ples of scoring rules are Borda count, plurality and anti-plurality. The plurality rule selects
the candidate who was ranked first by the most voters. Thus the vector of scoring weights
is described by α = (1, 0, 0, . . . , 0). Plurality is the voting rule commonly used in real-world
elections. The main drawback of this rule is that it completely ignores all the information



14 2. Voting theory

given by the voter preferences besides for the top ranking. Anti-plurality rule is charac-
terised by a vector of scoring weights is described by α = (1, 1, 1, . . . , 1, 0).

2.2.1 Borda method

The Borda method, also known as Borda count, is a positional scoring rule. Each ranked
candidate in C is associated with a score that is obtained by the position that candidate has
in the preference orders of the profile. A candidate c ∈ C receives (m−1) points from each
≻i where it is top-ranked, (m− 2) points from all ≻i where it is second-ranked, and so on,
receiving 0 points from the last ranked alternative. Thus formally, for a fixed number of
candidates m Borda count is expressed by non-negative score vector (also known as vector
of scoring weights) given by ??:

α = (m− 1,m− 2, . . . , 1, 0). (2.3)

Definition 2.2.1. Borda winner.
Borda winner for the profile P is the alternative c ∈ C that has a maximal sum of points
that he receives from all voters.

Borda winner is also called the winner with the highest Borda score. While it sometimes
elects broadly acceptable candidates rather than those preferred by the majority, the Borda
count is often described as a consensus-based electoral system, rather than a majoritarian
one [Wikipedia (2019a)].

Borda’s rule is a multi-winner method (also called the irresolute method), meaning more
than one candidate can receive maximal Borda score for one profile P .

The Algorithm 2 (modified from Charwat and Pfandler (2015)) presents program solver
for the Borda’s rule. The first step is to determine the candidate relation, namely position in
the rank. This relation contains all elements of candidates set {1, ...,m} (line 1). The second
step is to the score from set α each candidate in every preference relation according to her
position (line 2). The next step sums the scores of overall candidate votes (line 3). Finally,
the winner(s) is determined (line 4 and 5).

Require: M = |C|, N = |V |, P
1: candidate(I)← candnum(m), 1 ≤ I ≤M .;
2: posScore(P,C, S)← p(P, Pos, C), candnum(M), S := M−Pos

3: score(C,N)← candidate(C), N : =
∑S posScore(_, C, S).

4: maxScore(M)←M := maxSscore(_, S).
5: winner(C)← candidate(C), score(C,M),maxScore(M)

6: return winner(C)
Algorithm 2: Borda count encoder

In the running example given in Table 4.5 Borda count is represented by following score
vector (vector of scoring weights): α = {3; 2; 1; 0}. Borda scores B(i), where i ∈ C, are



2.3 Distance-based voting rules 15

computed as follows:

B(i) =


B(a) = (3 · 3) + (1 · 1) + (1 · 1) + (1 · 0) + (1 · 0) = 11

B(b) = (3 · 2) + (1 · 2) + (1 · 0) + (1 · 3) + (1 · 1) = 12
B(c) = (3 · 1) + (1 · 0) + (1 · 2) + (1 · 1) + (1 · 3) = 9

B(d) = (3 · 0) + (1 · 3) + (1 · 3) + (1 · 2) + (1 · 2) = 10

(2.4)

The Borda winner is the candidate who collects the highest total number of points (high-
est cumulative score). Here the Borda winner is candidate b since this alternative received
the highest Borda score from all agents (voters), which is equal to 12. Candidate b, there-
fore, becomes the desired output of this preference profile (also called label or ground truth)
for supervised ML task.

2.3 Distance-based voting rules

We considered two distance-based rules: Kemeny and Dodgson. Those rules may be inter-
preted asminimizing a distance to consensus (minimization of disagreement). BothKemeny
and Dodgson methods use the same metric2 to compute dissimilarity or distance between
two rankings:Kendall’s tau distance (see Subsection 2.3.1). In Kemeny and Dodgson meth-
ods, if Condorcet winner exists, it becomes the winner.

2.3.1 Swap distance / Kendall’s tau metric

For two preference orders ≻i and ≻j we can define the swap distance, also called Kendall
distance or Kemeny distance, as the minimal number of pairwise swaps, i.e. transposition
of discordant pair, required to make the two linear orderings the same.

Definition 2.3.1. Discordant pair.
Discordant pair is adjacent pair of alternatives in disorder-rank that at least one alternative
does not match the pattern-rank [Teknomo (2018)].

Pattern-rank has order or sequences that disorder-rank wants to achieve. Pattern-rank
serves as an example, guide or goal that the disorder-rank will reach after several trans-
formations or operations. Distance for ordinal variables measures the minimum number of
operation steps to make from disorder-rank the pattern-rank. One can think of this metric
as the number of flips one needs to perform on a ranking to turn it into the other, and it is
sometimes referred to as bubble-sort distance3.

Thus, the algorithm to compute Kendall distance metric is to count theminimum number
of operation interchange (or transposition) of discordant pair:

2The most common practices among others not covered in this work are: normalized rank transformation,
Spearman distance, Footrule distance, Cayley distance, Ulam distance and Minkowski distance.

3Closely-related Tau correlation coefficient is implemented in Scipy as scipy.stats.kendalltau.



16 2. Voting theory

1. choose adjacent pair on disorder rank that at least one of alternatives does not match
to the corresponding alternative in the pattern-rank (i.e. discordant pair);

2. interchange the order of the pair.

Definition 2.3.2. Kendall tau distance (swap distance).
The swap distance d between two orders≻ and≻′ over a set of candidates C with ci, cj ∈ C

is defined as:

d(≻,≻′) = |{(ci, cj) : (ci ≻ cj and cj ≻′ ci) or (cj ≻ ci and ci ≻′ cj)}|. (2.5)

We have that d(≻,≻′) = 0 if and only if≻1 is the same order as≻′, i.e. for unanimous profile
given for instance by 2.1. Otherwise, swap distance is the number of pairwise comparisons
on which two preference orders differ.

For instance, swap distance d(≻1,≻2) between two following orders:

(1) a ≻1 b ≻1 c ≻1 d as pattern-vector and

(2) b ≻2 a ≻2 d ≻2 c as disordered-vector

is 2, we write d(≻1,≻2) = 2, because above two preference orders represented as pairwise
comparisons are as follows:

(1) {a ≻1 b, a ≻1 c, a ≻1 d, b ≻1 c, b ≻1 d, c ≻1 d}

(2) {b ≻2 a, a ≻2 c, a ≻2 d, b ≻2 c, b ≻2 d, d ≻2 c}.

The two orders differ on 2 discordant pairs (pairwise comparisons), which are: a ≻1 b vs.
b ≻2 a and c ≻1 d vs. d ≻2 c, but no other pairs.
We define swap distanceD between two profiles of preferences, such that P = (≻1, ...,≻n)

is a list of preference orders and P ′ = (≻′
1, ...,≻′

n) is another list of preference orders, as
follows:

D(P, P ′) = ds(≻1,≻′
1) + · · ·+ ds(≻n,≻′

n). (2.6)

For example, we have that swap distance between profiles given by 2.2 is 9, sinceD(P, P ′) =

0 + 4 + 5 = 9.

2.3.2 Kemeny rule

The Kemeny method is a distance-based rule. The collective preference order or a profile P
is the order ≻ for which the sum of swap distances from ≻ to each ≻i∈ P is minimal. This
collective preference order is called Kemeny ranking, also known as Kemeny consensus,
with respect to electionE. In order to calculate Kemmeny winner we use popularity matrix.
Pairwise comparison counts may be expressed by table representing sequence of choices
such that most popular choices are in the top left corner of the matrix and the least popular
in bottom right (e.g. see Figure 2.1 b). Kemeny winners are the top-ranked alternatives in
a Kemeny consensus. Computing Kemeny consensus is NP-hard over 4 candidates[Young



2.3 Distance-based voting rules 17

(1988), Lang et al. (2012),Dwork et al. (2001)]. Formally, we can define the Kemeny rule as
follows. Let C be the set of all total, strict and antisymmetric orders that can be constructed
over a set of alternatives C.

KemenyRanking(P ) = argmin
≻∈C

∑
≻i∈P

d(≻,≻i) (2.7)

Thus, given a profile P of n preference orders over the set of candidates C, the Kemeny
winner is:

KemenyWinner(P ) =



the Condorcet winner, if P has a Condorcet winner

else, the top ranked alternative in profile P ′,

such that Ds(P, P
′) is minimal

and P ′ is a unanimous profile of n preference orders.

(2.8)

Therefore, to calculate the Kemeny winner we first need to consider the set X of all com-
plete, strict, antisymmetric and transitive orders that can be constructed over C. For C =

{a, b, c, d} we have that X is given by Equation 2.9:

X =



a ≻ b ≻ c ≻ d

a ≻ b ≻ d ≻ c

a ≻ c ≻ b ≻ d

a ≻ c ≻ d ≻ b

a ≻ d ≻ b ≻ c

a ≻ d ≻ c ≻ b

b ≻ a ≻ c ≻ d

b ≻ a ≻ d ≻ c

b ≻ c ≻ a ≻ d

b ≻ c ≻ d ≻ a

b ≻ d ≻ a ≻ c

b ≻ d ≻ c ≻ a

c ≻ b ≻ a ≻ d

c ≻ b ≻ d ≻ a

c ≻ a ≻ b ≻ d

c ≻ a ≻ d ≻ b

c ≻ d ≻ b ≻ a

c ≻ d ≻ a ≻ b

d ≻ b ≻ c ≻ a

d ≻ b ≻ a ≻ c

d ≻ c ≻ b ≻ a

d ≻ c ≻ a ≻ b

d ≻ a ≻ b ≻ c

d ≻ a ≻ c ≻ b



(2.9)



18 2. Voting theory

We then need to consider the set U of all unanimous profiles for n agents constructed
from orders in X. For C = {a, b, c, d} there are 24 such profiles. Finally, we calculate the
swap distance D from P to each of the profiles of U and find the profile P ’ ∈ U for which
D(P, P ’) is minimal.

Require: M = |C|, N = |V |, P
1: candidate(I)← candnum(m), 1 ≤ I ≤M .;
2: wrank(P,C2, C1)← p(P, Pos1, C1), p(P, Pos2, C2), Pos1 ≤ Pos2

3: wrankCount(C2, C21← candidate(C1;C2), C1 ̸= C2

4: gpref(Pos, C)← candidate(Pos;C), notnpref(Pos, C)..
5: npref(Pos, C)← domain(Pos;C), notgpref(Pos, C)

6: ← gpref(Pos, C1), gpref(Pos, C2), C1 ̸= C2

7: ← gpref(Pos1, C), gpref(Pos2, C), Pos1 ̸= Pos2

8: occupied(Pos)← gpref(Pos, _)
9: ← domain(Pos), not occupied(Pos)

10: rank(C1, C2)← gpref(Pos1, C1), gpref(Pos2, C2), Pos1 ≤ Pos2

11: gwrankC(C1, C2, N)← rank(C1, C2), wrankC(C1, C2)

12: gwrankC(_, _)
13: winner(C)← gpref(1, C)

14: return winner(C)
Algorithm 3: Kemeny encoder

In Step 1 of Algorithm 3 (modified from Charwat and Pfandler (2015)), we obtain rela-
tion, which is used to identify candidates and their positions in preference relations (line 1).
Next, we determine for each preference order the candidates C2 that are worse-ranked than
C1 (line 2). After that, the algorithm sums the overall number of voters that do not prefer
C2 ≻ C1 (line 4). We guessed the preference relation by assigning to each candidate exactly
one position ( line 4-9). Notably, we the Kemeny relation rank has been found whenever
C1 ≻ C2 in the guessed preference relation (line 10). Next, we computed the number of
votes that disagree on C1 ≻ C2 (line 11). Then, we summed up all N , and in gwrankC Ke-
meny score has been computed and (Kemeny consensus) determined (line 12). Finally, in
the last step, we returned Kemeny winner, meaning the candidate ranked first in a Kemeny
consensus (line 13).

For a given running example presented in Table 4.5, which has no Condorcet winner, we
construct the popularity matrix to determine Kemeny winner. Kemeny consensus ranking
K =

∑
i∈C K(i), is computed based on (2.5) as follows:

K(i) =


K(a) = 0 · (a ≻ a) + 4 · (a ≻ b) + 4 · (a ≻ c) + 3 · (a ≻ d) = 11
K(b) = 0 · (b ≻ b) + 5 · (b ≻ c) + 4 · (b ≻ d) = 9

K(c) = 0 · (c ≻ c) + 4 · (c ≻ d) = 4

K(d) = 0 · (d ≻ d) = 0

(2.10)



2.3 Distance-based voting rules 19

Kemeny score for following preference ranking a ≻ b ≻ c ≻ d, is equal to 24 (11+9+4)

since this is the sum of all the counts in an upper-right triangle (see Fig. ?? b). Now, we
were calculating all the ranking scores, i.e. for all 24 possible ranking sequences, given by
X (2.9). Based on the best Kemeny score, we determine the consensus ranking, which in
this example is a ≻ b ≻ c ≻ d with the Kemeny score equal to 24. Therefore top-ranked
candidate a is the Kemeny winner.

2.3.3 Dodgson rule

Dodgson voting rule elects Condorcet winner, as very favorable property, by making swaps
of adjacent candidates in the votes such that there is a Condorcet winner. For this rule, the
winner is the candidate that needs the minimum number of swaps.

Given a profile P of n preference orders over the set of candidates C, the Dodgson
winner is:

DodgsonyWinner(P ) =



the Condorcet winner, if P has a Condorcet winner

else, the top-ranked alternative in profile P ′,

such that Ds(P, P
′) is minimal

and P ′ is a profile of n preference orders
that has a Condorcet winner.

(2.11)

Here, first, we construct the set X of all complete, strict, antisymmetric and transitive
orders that can be built over C. For C = {a, b, c, d}, we have the set X composed of 24
preference orders given by Equation 2.9. Next, we construct the set K of all profiles of n
agents been built from orders in X that have a Condorcet winner4. Finally, we calculate
the swap distance D from P to each of the profiles of K and find the profile P ′ for which
D(P ;P ′) is minimal.

In the first two steps of Algorithm 4, we determine voters and the domain (positions
and candidates). In steps 3 and 4, we guess the shifts in the votes. For a voter V the candi-
date at position Pos1 will be shifted to Pos2. One shift consists of Pos1−Pos2 elementary
exchanges, namely swaps, of adjacent candidates. At most one shift per voter (steps 5-6)
to a better position (step 7) is allowed. The preference profile is now recomputed: the can-
didate C1 is moved from Pos1 to Pos2 (step 8) and each candidate originally at Pos with
Pos2 ≤ Pos < Pos1 is shifted by one position downwards (step 9). In the newly com-
puted votes nv, the shifted candidates are assigned to their new positions (step 10) and the
remaining positions are filled with the respective candidates of the original vote (steps 11
and 12). Steps from 13 to 18 encode the computation of the Condorcet winner, similarly to
Algorithm 1. Finally, step 19 minimizes the number of swaps.

4The brute-force way to create K is to construct all combinations of size n with repetitions from the
elements of X and then eliminate those profiles that do not have a Condorcet winner.



20 2. Voting theory

Require: M = |C|, N = |V |, P4
1: voter(I)← voternum(N), 1 ≤ I ≤ N

2: candnum(I)← candnum(M) , 1 ≤ I ≤M

3: shift(V, Pos1, Pos2)← voter(V ), domain(Pos1;Pos2), not noshift(V, Pos1, Pos2)

4: noshift(V, Pos1, Pos2)← voter(V ), domain(Pos1;Pos2), not shift(V, Pos1, Pos2)

5: ← shift(V, Pos1, _), shift(V, Pos′1, _), Pos1 ̸= Pos′1
6: ← shift(V, _, Pos2) , shift(V, _, Pos′2), Pos2 ̸= Pos′2
7: ← shift(V, Pos1, Pos2),Pos1 ≤ Pos2

8: sv(V, Pos2, C1)← shift(V, Pos1, Pos2), v(V, Pos1, C1)

9: sv(V, PosShift, C)← shift(V, Pos1, Pos2), v(V, Pos, C), Pos2 ≤ Pos, Pos ≤ Pos1,
PosShift := Pos+ 1

10: nv(V, PosShift, C)← sv(V, PosShift, C)

11: occupied(V, Pos)← sv(V, Pos, _)
12: nv(V, Pos, C1)← v(V, Pos, C1), not occupied(V, Pos)

13: prefer(V,C1, C2)← nv(V, Pos1, C1), nv(V, Pos2, C2), Pos1 < Pos2

14: preferCnt(C1, C2, N)← domain(C1;C2), C1 ̸= C2, N := countprefer(_, C1, C2)

15: noWinner(C)← preferCnt(C, _, N), voternum(V ) , N · 2 ≤ V

16: winner(C)← domain(C), not noWinner(C)

17: anyWinner ← winner(_)
18: ← notanyWinner

19: return winner(C)
Algorithm 4: Dodgson rule encoder

Since in the given running example, presented in Table 4.5, is no Condorcet winner, we
built a weighted directed graph to represent pairwise comparisons. Here, the weight of an
edge from alternative a to the alternative b is the number of voters who prefer a over b. In
the running example, we consider only two candidates: b and c, since only those collected
at least n

2
= 3, 5 votes in pairwise comparison with all other candidates.

D(i) =


D(a) = 3 with one swap with d,

D(b) = 5 with one swap with a,

D(c) = 5 with two swaps with a and b,

D(d) = 3 with two swaps with b and c,

(2.12)

Dodgson winner elects Condorcet winner as the candidate that needs the minimum num-
ber of swaps. Candidate b needs one swap of adjacent candidates in the votes, i.e. inter-
change with the candidate a, such that there is a Condorcet winner (collects at least four
votes). Therefore the candidate b is the Dodgson winner in the running example.



2.4 DEMOCRATIX - label extraction tool 21

2.4 DEMOCRATIX - label extraction tool
Voting rules determine a winner, namely top-ranked alternative in the aggregated rank. In
ML, the winner is the label, more precisely desired output that classification models want
to predict. The ongoing research phase was enlightened to search for available tools that
would allow evaluating preference profiles, particularly for Kemeny and Dodgson voting
rules, since they areNP-hard over four candidates [Dwork et al. (2001), Brandt et al. (2016)].
A valuable open-sourced and web-based tool called DEMOCRATIX5 supports strict-order,
complete preference profiles for following voting rules: Plurality, Veto, Simpson, Borda,
Condorcet, Kemeny, Dodgson, Sluter, Bucklin, Copeland, Young and Black.

This approach ensured an automatic label extraction technique by domain-specific web
crawling. It means we used this tool in the research for labeling Kemeny and Dodgson
winner. Thus, to determine a ground truth (label): first, we connected to web data; next, we
run the script sending selected profiles’ database in required PrefLib format; and finally,
parsed received data and saved it locally. The full DEMOCRATIX crawling framework is
presented and described more detailed in Figure 4.2 in Chapter 4.

It is important to mention also the main drawback of using DEMOCRATIX tool for de-
termining the winner. In some cases, for instance, when the solver of the tool has been
interrupted or killed by a signal, it was necessary to rerun the web-crawling script, which
happened in 2472 cases for Kemeny winner determination and 1842 cases for Dodgson
winner determination. That might significantly increase the processing time for larger in-
stances.

2.5 Tie-breaking rules
Typically, voting rules are accompanied by tie-breaking mechanisms. The subject litera-
ture includes, but is not limited to, four possible tie-breaking approaches [Obraztsova and
Elkind. (2011); N. Mattei and Walsh (2014)]:

1. Use a fixed ordering of the alternatives (or a designated voter) to break all ties.

2. Use a randomized mechanism to break all ties.

3. Deal with set-valued outcomes directly.

4. Ignore or suppress the issue (assume no ties exist).

All the above approaches have their pros and cons [Aziz et al. (2013)]. Voting rules such as
Borda, Kemeny and Dodgson are irresolute, meaning that in some settings might determine
multi-winner result.

In this work, we applied explicitly lexicographic tie-breaking rule in addition to a voting
rule to enforce that the size of the winner setW is equal to k = 1. In the lexicographic tie-
breaking rule, ties are broken using a priority ordering on the candidatesC, meaning if there

5http://democratix.dbai.tuwien.ac.at/examples/index.php



22 2. Voting theory

is a set of tied alternatives, the winner is selected as a candidate who is (alphabetically) first
in the sequence, according to a fixed priority ordering. For instance, given the tied set of the
multi-winner result: {a, b, c} the lexicographic tie-breakingmechanism produces the output:
{a}.

2.6 Conclusions
In this section, we presented the preliminaries and definitions from computational vot-
ing theory. We introduced three votings (rank aggregation) methods: Borda, Kemeny and
Dodgson. We selected them based on the increasing level of computational complexity, i.e.
Borda method is scored-based rule solvable in polynomial time, Kemeny and Dodgson are
distance-based methods solvable in non-deterministic polynomial time. To label the win-
ner in aggregated rank we used an available online tool called DEMOCRATIX. Finally, we
presented a running example to better illustrate the calculus for all three considered voting
rules.



Chapter 3

Machine learning techniques

In this chapter, we established notations forMLmodels.We presented an overview of popu-
lar supervised ML techniques for classification. We discussed also error analysis and model
behavior diagnosis tools.

3.1 Introduction
ML enables computers’ programs (algorithms) to learn from data alone instead of being
explicitly programmed. Traditional ML field is composed of the following tree areas [Xia
(2019)] (see Figure 3.1):

• supervised learning,

• unsupervised learning1,

• reinforcement learning2.

Next to that is Deep Learning field3.
1Unsupervised learning goal is to find patterns and correlations in data. Unsupervised learning enables us

to identify problems with little or no knowledge of what the results should look like since there are no given
labels. The goal of unsupervised learning is clustering the data based on relationships/correlations among the
variables in the data or find their hidden structure. It is possible to extract the structure from the dataset where
there is not known the explicit effect of the variables. For instance, given a collection of 1,000,000 different
stars pictures, clustering might derive the data structure and find a way to automatically group these stars into
collections that are related or associated by different variables, such as stars’ age, location or brightness. With
unsupervised learning, there is no feedback based on the prediction results.

2The goal of reinforcement learning is to find the best actions to take to achieve goals or maximize rewards.
The learning model is composed of four main components: decision process, reward system, learning series
of steps, expecting an agent to learn by themselves by punishment and reward actions how to react in the
environment.

3 There is also semi-supervised learning. Semi-supervised learning is localized between supervised and
unsupervised learning methods. The goal of semi-supervised learning is classification, and here, however, the
input dataset contains labeled and unlabelled data. In a classification task, there must be labeled data, since
classification is an ML method for identifying a new observation based on data training. In semi-supervised
learning, there exists a small amount of labeled data and a large amount of unlabelled data. Thus, to enable
the classification, the unlabelled data are being trained to learn the existing class.



24 3. Machine learning techniques

Figure 3.1: Traditional ML fields.

Supervised learning is the task of learning a function (hypothesis) that maps input data
to output data based on given examples of input-to-output pairs.Classification occurs when
the algorithm predicts a discrete result - the output is a category. In our case, we predicted
the outcome category (winner, i.e. one of 20 possible alternatives - categories), so we are
only interested in the supervised learning landscape of ML (see Figure 3.1).

The classification process is composed of two phases: first is learning, also referred to
as training, and second called predicting (also known as testing). For model-tuning reasons
one might introduce also validation phase, which is included in the learning phase. Figure
3.2 presents the road-map of processing data in the learning and predicting phase.

Figure 3.2: Model representation for supervised learning. Modified from Ng (2019).

We established notion of x ∈ X to describe the input variables, also called input features,
and y ∈ Y to denote the label or target variable or ground truth that the ML model is trying
to predict as the desired output. Thus, classification model learn a function h(x), called a
hypothesis, assigning the label to the given input.



3.1 Introduction 25

Definition 3.1.1. Data point.
A pair (x, y) is called a training example or data point or sample. A data point is a vector
of values, where each value is associated with a feature.

Features are used to build a factorized representation of an entity.

3.1.1 Voting as a supervised classification problem

To model voting rule as function h(x) : X→Y to be learned by supervised ML model,
we took a profile to be a data point x(i), all preference profiles as input space X, and the
set of alternatives as the set of labels (or classes) Y to be associated with a profile (see
Figure 3.3).While we havem-alternatives, this ism-class classification problem (|m| = 20).
However, both the Borda and the Kemeny methods are irresolute voting rules, namely there
can be more than one candidate tied as winners for one profile. Typically, a voting rule
is accompanied with a tie-breaking mechanisms to account for such situations. We here
address ties’ problem by considering lexicographic tie-breaking rule for profiles that contain
tied winners.

Figure 3.3: Learning to rank concept [miro.medium.com (2016)].

Therefore, we considered the following learning problem:
Given:

• a set of labels C = {Ci|i = 1, ..., c}

• a set of examples (profiles) P = {pk|k = 1, ...,m}

• for each training example pk: a set of voters V = {vj|j = 1, ..., n} with individually
ordered preferences set C = {Ci|i = 1, ..., c} (pk ∈ V ×C).



26 3. Machine learning techniques

Find: a function that selects the top-ranked alternative (label) {Ci|i = 1, ..., c} of ag-
gregated rank for any given example.

Classification here consist on assigning to each example a single class labelCi. Inmulti-
label classification each training example pk is associated with a subset Sk ∈ C of possible
labels. As pointed out before, we predicted a top-ranked label(alternative) in aggregated
ranking (total order) of the labels. Thus, we assume that for each instance, there exists a
total order of the labels, namely they form a transitive and asymmetric relation.

3.2 ML algorithms for classification

We now introduce the ML methods we used in our experiments. These are: XGBoost, Lin-
ear Support Vector Machines (SVM), Multilayer Perceptron, regularized linear classifiers
with stochastic gradient descent (SGD)and Ridge classifier. These approaches were cho-
sen through a process of trial and error experimentation starting from a large pool of all
available ML classification methods in the scikitlearn library4.

3.2.1 Generalized linear models

Generalized linear models (GLM) belong to popular predicting techniques as they are easy
to implement. If we assume linearity between input variables and the output variable, these
models generate robust predictions. A significant advantage of GLM models is an easy
interpretation of the fitted coefficients. The downside of these models is that they not always
fit the problem and can be too simple if there is no linearity between input and output
variables. Also, if the input variables are highly correlated, the model performance can be
quite poor. Logistic Regression is an example of classification models from the GLM group
for a binary output variable problem (see Figure 3.4).

3.2.2 Support Vector Machines (SVM)

Support Vector Machines (SVM). Conceptually, a data point, for which all feature values
are real numbers, can be seen as a point in hyperspace. Binary classification would then
be the problem of finding a hyper-plane that separates the points from one class from the
points of the other class. SVM’s find this hyper-plane by considering the two closest data
points from each class. Since not all datasets are separable with a hyper-plane, SVM’s use
kernels to transform the dataset into one that can be split by a hyperplane (Figure 3.5). We
might apply both linear and nonlinear kernels. Here we used an SVM with a linear kernel.
The efficiency of anMLmethod can be improved by tuning the so-called hyper-parameters.
The SVM we used provides one hyper-parameter to tune: cost of the miss-classification of
the data on the training process (C).

4https://scikit-learn.org/stable/



3.2 ML algorithms for classification 27

Figure 3.4: Logistic function [thefactmachine.com (2016)].

Figure 3.5: SVM’s hyperplane for classification [scikit learn.org (2013a)].

3.2.3 Gradient Boosted Decision Trees (GB)

Gradient Boosted Decision Trees (GB) are among the most powerful and widely used
models for supervised learning. Predicting a label can be done with a decision tree built
using the training data (see Figure 3.6). To increase the prediction performance, GB builds
an ensemble of decision trees serially: each new tree is built to correct the mistakes of the
previous one. GB’s offers a wide range of hyper-parameters that can be tuned to improve
prediction performance, among else the number of trees (n_estimators) and learing_rate,
which controls the degree to which each tree is allowed to correct the mistakes of the pre-



28 3. Machine learning techniques

vious trees.

Figure 3.6: Random Forest technique [Verikas et al. (2016)].

3.2.4 Multilayer Perceptrons (MLP)

Multilayer Perceptrons (MLP) are feed-forward neural networks. Supervised learning
tasks often applyMLPs. They learn tomodel the correlation (or dependencies) in two phases
process: forward pass and backward pass. In the forward pass, the training data flow moves
from the input layer through the hidden layers to the output layer (also called the visi-
ble layer); see Figure 3.7. There, the prediction (decision) of the output layer is measured
against the target labels. The error can be measured in a variety of ways, e.g. root mean
squared error (RMSE). In the backward pass, backpropagation is used to make model pa-
rameters, i.e. weigh and bias adjustments relative to the error. That act of differentiation,
based on any gradient-based optimization algorithm, gives us a landscape of error. During
the convergence state, we adjust the parameters along the gradient, which minimizes the
error of the model.

3.2.5 Regularized linear classifiers with stochastic gradient descent
(SGD)

Regularized linear classifiers with stochastic gradient descent (SGD) SGD is a very
efficient approach in the context of large-scale learning. For classification purposes, regu-
larized linear classifiers use plain stochastic gradient descent learning routine which sup-
ports different regression loss functions (L), that measures model (miss-) fit and penalties
(R), regularization term that penalizes model complexity. SGD is fitted with the training
samples and the target values (class labels) for the training samples and each observation



3.3 Data transformation 29

Figure 3.7: Multilayer perceptron diagram [scikit learn.org (2013b)].

updates the model parameters: weights and bias (also called offset or intercept). A com-
mon choice to find the model parameters is by minimizing the regularized training error.
Stochastic Gradient Descent is sensitive to feature scaling, so it is highly recommended to
scale the training data set before learning a linear scoring function with model parameters
and intercept5.

3.2.6 Naive Bayes classifier (NB)

Naive Bayes classifier (NB) belongs to the group of probabilistic classifiers. This group of
MLmodels predicts the probability distribution over classes given input variables. In partic-
ular, NB bases on the’ naive’ assumption that every two different features are independent
(Bayes’ Theorem). For Gaussian Naive Bayes, the likelihood P (xi|y) of the features follows
a Gaussian distributions (3.8). The main advantage of applying Naive Bayes classifiers is
that they are highly scalable when presented with large amounts of data6.

3.3 Data transformation

3.3.1 Dataset transformation: pre-processing and scaling

An important step before building the model is to analyze and pre-process the data to ensure
that dataset is in a usable format when training and testing different MLmodels. The way of
representing the types of features might have a significant effect on the performance of the

5https://scikit-learn.org/stable/modules/sgd.html
6They take an approximately linear time to train when adding features.



30 3. Machine learning techniques

Figure 3.8: Gaussian Naive Bayes method [Raizada and Lee (2013)].

MLmodels. Learning a new representation of the data can sometimes improve the accuracy
of supervised algorithms, or can lead to reduced memory and time consumption.

Data scaling

Neural networks and SVMs are very sensitive to the scaling of the data. Therefore, the
common practice is to adjust the features, so the data representation is more suitable for
these algorithms. StandardScaler from scikit-learn library ensures that for each feature
the mean is 0, and the variance is 1. Thus, all features are brought to the same magnitude.
The effect of rescaling the data is quite significant.

Handling skew data

Skew data are the imbalanced data, not uniformly distributed over all labels. In this research,
we use classifiers, where each winner is a separate class. The baseline model consists of
N = 20 different candidates. In the Spotify dataset, for some cases, there are very few
profiles (observations) of the same winner (i.e., very few training examples per class.).
That makes it hard to train most classifiers. Additionally, in the future, we might like to add
a new candidate for the winner, without needing to retrain a large model.

Data augmentation

The Spotify dataset results in a very biased winner distribution, meaning contains a lot
of one class winners, whereas the other class not many. If we continued with the future



3.4 Testing 31

extraction or learning process from this baselinemodel, the result would be overwhelmed by
the likelihood of the candidate of the most frequently appearing class. Thus, we generated
the dataset balanced in the sense of Borda score (symmetric, not biased) for 20 unique
alternatives (classes).

3.3.2 Feature engineering

Feature engineering is an approach of representing a given dataset in the best way for par-
ticular application7 (the most informative approach for learning process). Representing data
in the right way can have a bigger influence on the performance of a supervised model than
the exact parameters we choose. In practice, the features that are used (and the match be-
tween features and method) is often the most important piece in making an ML approach
work well. Finding the transformation that works best for each combination of the dataset
and model is considered as the most challenging step (non-intuitive approach). Tree-based
models (such as decision trees, gradient boosted tree and random forest) or SVMs might
often be able to discover complex, necessary dependencies themselves, and don’t require
transforming the data explicitly most of the time, in contrast to, in particular, families of
linear models.

3.4 Testing

Below we presented different testing methods and metrics that we applied in this thesis as
a foundation of optimizing the model.

3.4.1 Cross-validation testing

Cross-validation is one of the most commonly applied validation techniques used when
training a model to avoid over-fitting. That is, in the situation when the model fits the train-
ing data very well but is not able to generalize to unseen before data. Figure 3.9 illustrate the
principle of the cross-validation model training technique. The attribute of this method is k
denoting the number of folds (also called sections) into which the whole training dataset is
divided. For instance, given the model selection section with 4- folds cross-validation, the
whole training set is arbitrarily divided into four equal folds. For a dataset with 20 instances
and k = 4, the dataset is divided into set of 5 and 15 instances for k-folds: 1, 2, 3, 4. In this
case of the cross-validation, the step is as follows:

• 1 used as a validation set and 2, 3, 4 used as a training set,

• 2 used as a validation set and 1, 3,4 used as a training set,

• 3 used as a validating set and 1, 2, 4 used as a training set,
7It is one of the main tasks of data scientists and ML practitioners trying to solve real-world problems.



32 3. Machine learning techniques

• 4 used as a validating set and 1, 2, 3 used as a training set.

Figure 3.9: Diagram of the cross-validation model training technique [Wikipedia (2019c)].

Next, the validation error from each step is taken and the mean is used as a final valida-
tion error. Now, for datasets with the large training set and validation set, the model with
the least validation error will be selected as the best model for the given dataset. In con-
trast, for a small dataset with a small training set and validation set, there might be again a
case of overfitting problems. The main pitfall of using cross-validation technique is that the
training time grows proportionally to the number of cross-validation iterations. Generally,
it is worth sacrificing model training speed to reach a more robust final model that is less
prone to over-fitting.

3.4.2 Evaluation metrics

Two different evaluationmetrics have been used to assess the performance of ten classifiers:
accuracy and F1-score.

• accuracy is a simple metric defining the performance of classification model based
on the proportion of samples that a classifier correctly predicted:

accuracy =
#true
#total , (3.1)

where:

– #true is the number of samples correctly predicted by classifier,
– #total is the total number of profiles (samples)

• F1-score is a more complex metric than the accuracy, in particular for interpreting
a multi-label classification problem we have in this thesis (20 possible classes). F1-
score is calculated for each class (category) separately and the average is taken as the
final F1-score:

F1score = 2 ∗ precision ∗ recall
precision ∗ recall

, (3.2)



3.5 Evaluating learning algorithm 33

where:

– precision = tp
tp+fp

, here:
tp is the number of true positive, namely the number of samples correctly pre-
dicted as positive; fp is the number of false positive, namely number of samples
wrongly predicted as positive

– recall = tp
tp+fn

, here:
tp is the number of true positive; fn is the number of false negative, namely
number of samples wrongly predicted as negative

To choose the ML classifier with the best performance, we applied both metrics, accuracy
and F1-score. These metrics are cost functions to be maximized.

3.5 Evaluating learning algorithm

3.5.1 Error analysis

From the wide range of ten examined classification models predicting the winner for a new
observation, only one model has been selected. We chose the model based on an evaluation
metric when we analyzed errors. The error is the percentage of examples for which the
predicted top-ranked alternative was incorrect in comparison to the given label. The
goodness of the model to predict a new observation is called generalization. However, as a
learning algorithm (model) fits a training set well, that does not mean it is a good classifier.
There are two common pitfalls in the generalization process: under- and overfitting. Un-
derfitting occurs when a simple hypothesis is trying to explain complex data. In this case,
the training set contains already a lot of false predictions. On the other hand, selecting a
complex hypothesis for the too-small data set can also compromise the data. In this case,
the selected hypothesis works perfectly for the given data set. However, the problem arises
when it is tested for new instances8. Thus, in the first place, we have to conduct explanatory
data analysis of given datasets. This allows deciding if the dataset is big or small, biased or
balanced, linear or nonlinear, simple or complex and so on, to eventually select a hypothe-
sis describing the best fit between modeled function and given data. Model convergence is
reflected in the evaluation of learning algorithms and takes place with error analysis.

General trouble-shooting process

Once the trouble-shooting process for errors in the model predictions is conducted by:

• providing more training examples - by the generation of high-dimensional synthetic
dataset;

8The error of selected model as measured on the data set with which model trained the parameters is lower
than the error on any other data set, in particular, testing set. Thus, the problem of over-fitting is easily visible
on the later stage of the testing phase, where the selected model is tested with real-world data. Therefore,
minimal error might lead to the false conclusion of best model selection.



34 3. Machine learning techniques

Figure 3.10: Errors trouble-shooting techniques. Modified from Ng (2019).

• checking smaller sets of features /additional features / polynomial features - by intro-
ducing five different feature representation based on the row vector of preferences;

• increasing or decreasing learning rate λ.

then the evaluation of the next (new) hypothesis began, see Figure 3.10.

3.5.2 Diagnosis tool: learning curves

A learning curve is a graphical representation of model learning performance9 over expe-
rience or time. The learning curves were used in this research as an ML diagnostic tool for
generalization behavior (under-fitting, over-fitting or good fit) of ML models. It diagnoses
if the datasets (training and validation) are not relatively representative of the problem do-
main. Figure ??, for instance, presents the learning curves of Borda model performance on
the train and test sets learned in Representation 1.

The learning curve’s shape was analyzed during the experimental study (see Chapter
4) to diagnose the behavior of ML models, in particular, to suggest possible improvement
avenues for learning or performance process. In this diagnosis process , we were looking at
maximizing metric (accuracy/F1-score), meaning that higher relative scores on the y-axis
indicate more or better learning.

3.5.3 Diagnosis tool: classification rapport

The error analysis is performed by using the confusion matrix tool, which shows the error
rate, in particular false positives, for every label’s configuration. Moreover, the tuning tech-
nique conducted to increase the performance (reduce the error rate) consists of additional
checking if the winner model predictions are included in the original label, i.e. before break-
ing ties. This check, however, is only possible in case of irresolute voting rules, meaning
those that can produce more than one winner in the aggregation process.

9algorithms that learn from a training dataset incrementally



3.6 Conclusions 35

3.6 Conclusions
In this chapter, we introduced preliminaries from ML theory. We defined voting as a super-
vised classification problem. We presented an overview of used supervised ML techniques
for classification.We discussed diagnosis tools for (i) error analysis and (ii) model behavior,
i.e. how to detect common pitfalls of learning from rank data, such as under-/overfitting and
representations of the dataset for the problem domain. We presented also testing techniques
and model evaluation metrics.



36 3. Machine learning techniques



Chapter 4

Experimental study

4.1 Introduction
In this chapter, we described the experimental study. Figure 4.1 visualizes the general
overview of the process’ steps. Next, we introduced four different feature representations’
approaches for forecasting (learning and predicting). Finally, we discussed the model tuning
and evaluation to select the best classification model for winner prediction.

Figure 4.1: ML project’s steps. Modified from Aziz et al. (2013).

Winner determination problem over 4 alternatives becomes NP-hard1 [F. Rossi and
Walsh (2011)]. We explored experimentally if machine learning algorithms can be used to
predict the winner of Borda, Kemeny and Dodgson voting rules, effectively trading com-
putational complexity for (in)accuracy. The winner determination problem in this setting
is categorized into a supervised static classification task, as we fed the algorithms with
labeled data off-line. The label was extracted from web-based DEMOCRATIX tool (see
Section 2.4). The model prediction target is one-class label describing the winner selected
by the corresponding voting model.

We measured model effectiveness with two different metrics: accuracy and F1-score
(see Section 3.4.2). We represented the input of the model by a list of preference orderings
(nested lists). The output is a single alternative.

1Nowadays there are solution for computing social choices, poll results and analysis, including probability
theorems, when there are overlapping classes. The recent solutions have been been presented in the Section
1.5.



38 4. Experimental study

4.1.1 Machine learning pipeline

An important part of this thesis was to build a suitable training and testing pipeline to test
ten classification models, with new parameters, and quickly and easily compare it to other
models. A robust pipeline enabled us to find the best possible models. Implementation of
this pipeline consisted of the following elements:

• we originally stored datasets in the Excel database.We importedCSV files intoDataFrames
in Python 3. This step allowed us to read and write to different tables easily. The
pipeline reads the data from the database but does not write to it. Instead, we gener-
ated a new CSV file with saved results. Such an approach allowed us to run diverse
possible versions of the model, with different parameters, in parallel. This strategy
proves to be particularly useful when optimizing the model parameters.

• we applied Python 3 to write scripts for each component in the pipeline, using the fol-
lowing libraries: selenium for web-querying DEMOCRATIX tool; pandas, numpy,
scipy for algebraic and statistical calculations; matplotlib and seaborn for visualiza-
tion and analytics. This selection of many useful data analysis tools allowed us to ex-
tract data from the Excel database and use DataFrames tomanipulate the data through-
out the pipeline.

• we used Scikitlearn libraries for Python for modeling and prediction in the ML part.
Easy implementation of various ML algorithms in this library allowed us to try and
optimize examined ten classifiers.

• we stored model performance metrics in dedicated CSV file which allowed to keep
track which models performed the best.

Before executing the model pipeline, we pre-processed the Spotify dataset (described
more detailed in Section 4.3) and queried the web-basedDEMOCRATIX tool with selenium
library for Python. We used this labeling technique for identifying Kemeny and Dodgson
winners in both datasets: Spotify and a synthetic one.

4.2 Datasets description

In the experimental study two datasets were used: (i) a real-world dataset of ranked lists of
music tracks (songs) from Spotify2 and (ii) a high-dimensional dataset of the synthetically
generated ranks. Table 4.1 presents a comparison of the two datasets. Both datasets consist
of profiles for N = 20 candidates with V = 25 ranked preferences (votes) per profile. The
distinction between the datasets is in the number of profiles.

2https://spotifycharts.com/regional



4.2 Datasets description 39

Table 4.1: Dataset instances.

Instance # candidates # votes # profiles (elections)
Spotify dataset 20 25 361
Synthetic dataset 20 25 12,360

Spotify dataset

The Spotify3 dataset consists of daily top-200 music rankings for 63 countries in 20174.
Ranked are music tracks (songs) described by position, track name, artist, streams andURL.
The set of candidates Y 5 is thus the set of tracks and the votersX6. However, since all of the
preference orders assumed to be (i)total and (ii) single-winner, and due to (iii)computational
complexity and algorithms running time, it was necessary to reduce the dataset to |C| = 20

tracks and the voters to |V | = 25 countries7 (meaning 25 permutations of 20 alternatives per
each sample).

Figure 4.2: Steps of the framework.

3https://spotifycharts.com/regional
4Dataset is composed of 361 CSV files and takes 7 MB disc space. Each file represent the ranking of 200

top songs for each day and country within following columns: position, track name, artist, streams, URL
5The research aims to define the best classifier (also called predictor), such that when evaluating the func-

tion at profile x, one obtains the best prediction of its corresponding label y. Here y denotes winner candidate.
When selecting the label’s set, more precisely a list of the candidates (alternatives), it is important to consid-
ered unique tracks only, namely the combination of information from columns: position, track name and
artist, since the track name alone not necessarily were unique. In the processing stage, a new independent
feature was created from an ensemble of track name + artist, such that we stored the list of unique tracks
in the dictionary, where the key was denoted by index and value by track name + artist value. Number of
alternatives (songs/candidates) is equal to N = 20.

6 A single voter preferences represents one ranking for one day in one country. We stored preference
ranking as a list of codded in dictionary keys. This setting formulated 365 profiles, one for each day of the
year.

7Retrieved and pre-processed data included the information about the position of the candidate in the rank,
number of candidates in every rank N , number of ranks V in one observation (in the profile).



40 4. Experimental study

Synthetic dataset

We generated synthetic dataset in Python by creating permutations of |C| = 20 alterna-
tives and joining them into |V | = 25 combination with repetitions. The following equation
describes the total number of all possible to generate ranks:

total_num_profiles = (|V |+ |C|!− 1)!

|C|!(|V | − 1)!
, (4.1)

where: |C| = 20 is number of alternatives, and |V | = 25 is number of preference ranks
(votes) per sample.

In the newly created dataset, we copied the first 361 profiles from the Spotify dataset.
For the next newly constructed profile, we immediately determined the Borda winner. In the
synthetic dataset, we kept only those profiles that, together with already existing in dataset
profiles, revealed an equal number of each of Borda’s winners. Precisely, in a dataset of
12360 profiles and 20 alternatives, we created 6180 samples for each Borda winner.Finally,
we used less than 0.01% of all the possible to generate profiles for 20 alternatives and
25 agents.

Borda, Kemeny and Dodgson dataset

For both instances from Table 4.1 we further created three datasets: separately for Borda,
Kemeny and Dodgson voting model. Each dataset consists of preference ranks (the same
for all voting rules) along with labels denoting the winner (unique for each voting rule). The
labels determining the desired winner consist of the single alternative selected from the set
of N = 20 values (number of candidates). Queering DEMOCRATIX8 web-based applica-
tion (see Section 2.4 for more details) led to the brute-forced determination of the winner
(see Figure 4.2), and so create the dataset ready for supervised learning.Ultimately, twenty
four different datasets (2 datasets · 3 voting rules · 4 representations = 24 datasets) were
established for exploration of learnability of Borda, Kemeny and Dodgson winner(s).

4.3 Data preparation and exploration

The process of the explanatory data analysis (EDA) allows deciding if the dataset is big
or small, skewed or balanced, linear or nonlinear, simple or complex, to eventually select a
classification model describing the best fit between modeled function and given data. EDA
revealed that the Spotify profiles’ labels are not uniformly distributed (referred to as imbal-
anced or skewed data), namely not all candidates are winners of an approximately equal
number of the profiles in the dataset. For instance, Spotify dataset contains many profiles
where the winner is candidate number 16 or candidate 18. This was the first addressed
problem that influenced the performance of the learned prediction model.

8http://democratix.dbai.tuwien.ac.at/index.php



4.3 Data preparation and exploration 41

We handled this issue by generating a synthetic dataset with the same number of can-
didates |C| and voters |V | as in Spotify. However, in the newly built dataset, we kept only
those profiles that ensured class-balanced output, i.e. the same number of each winner (see
description of the second dataset instance in Table 4.1).

What important to recall now is that earlier to all our profile representations we intro-
duced the pre-processing step, namely (i) lexicographic tie-breaking mechanism and (ii)
dataset clearance step, meaning deleting not correctly labeled profiles, such as those with
missing values or nans that failed during labeling when query DEMOCRATIX tool. Origi-
nal Borda, Kemeny and Dodgson dataset’ contained 12360 profiles. The number of Borda
profiles didn’t change since the DEMOCRATIX system did not query it, so Borda’s dataset
contained 12360 samples. Kemeny and Dodgson label were extracted based on the results
from DEMOCRATIX. However, some profiles didn’t reveal the winner. Instead, they were
marked as not valid or interrupted during queering DEMOCRATIX web-application. We
assumed it could be because of some of the profile didn’t have a solution, i.e. consensus
(winning aggregated rank). Thus, the pre-processing phase consists of final clearance, i.e.
the elimination of the “time run-out” samples and also an implicit selection of a single win-
ner based on the lexicographic tie-breaking mechanism results.

For Kemeny, after introducing a tie-breaking mechanism, the count didn’t change; how-
ever, after final clearance, the number of profiles for training and prediction counted 10653.
A final number of Dodgson’s profiles used for training and predicting was 11754.

We split the dataset into a training, validation and testing sets (70/15/15[%]), using the
Stratified ShuffleSplit cross-validator from the Model Selection module of scikit-learn li-
brary9, which creates a single training/testing set having equally balanced (stratified) classes.
Table 4.2 presents the train, validation and test split of profiles in the generated dataset, so

Dataset Training set Validation set Test set
Borda 6666 1429 1429
Kemeny 6921 1484 1483
Dodgson 7362 1578 1578

Table 4.2: Number of profiles used for training, validation and test set in generated dataset.

for instance in the Dodgson dataset 7362 data points were used for training, 1578 profiles
for validation and 1578 profiles for testing.

The detailed final distribution of total and training samples per candidate is presented in
Table 4.3 and illustrated in Figure 4.3(Borda winner’s distribution), in Figure 4.4 (Kemeny
winner’s distribution) and in Figure 4.5 (Dodgsonwinner’s distribution). For each candidate
in its column, we see the number of profiles in which that candidate is the Borda /Kemeny
/Dodgson winner and how many of the profiles in which the candidate is the winner are
included in the training set.

9The seed for the random number generator during the split is equal to 42.



42 4. Experimental study

Table 4.3: Borda, Kemeny and Dodgson winner distribution in the generated dataset.

Candidate as Borda winner in training as Kemeny winner in training as Dodgson winner in training
1 483 338 597 418 483 338
10 358 250 299 209 551 386
11 481 337 419 293 511 358
12 307 215 322 225 460 322
13 491 344 397 278 542 379
14 544 381 401 281 519 363
15 522 365 387 271 499 349
16 404 283 381 267 1156 809
17 387 271 360 252 206 144
18 479 335 496 347 513 359
19 513 359 585 409 522 365
2 497 348 613 429 515 361
20 553 387 598 419 500 350
3 494 346 563 394 502 352
4 550 385 612 428 489 342
5 453 317 565 396 501 351
6 475 332 522 365 535 375
7 508 355 633 443 512 358
8 484 339 590 413 513 359
9 541 379 548 384 489 342

Figure 4.3: Borda winner’s distribution.

4.4 Profile as data point

Profile is a unit (sample), single observation (instance) represented initially as a nested
list of voters’ preferences 10. ML algorithms might not process data in the form of nested

10In case of Spotify dataset, it was the list of all countries’ ranks on a single day. The number of profilesX =

365, which is equal to the number of days in the year, created the total input space. To this end, we considered
the time horizon from 1-01-2017 to 31-12-2017 with the step of one day. In the case of the synthetic data set,
the number of profiles was equal toX = 12360. Thanks to such architecture, we ensured the scalability of the
solution. Precisely, a good base for scalability was not the set of rankings in the profile, but a set of voters in
the profile.



4.4 Profile as data point 43

Figure 4.4: Kemeny’s winner distribution.

Figure 4.5: Dodgson’s winner distribution.

vectors11. Therefore, there are several ways in which a winner determination problem can
be represented as a labeled data point12. Being aware that the choice of representation can
have a substantial impact on the winner prediction, we explored four different approaches.
The approaches differ in what is considered a feature.

4.4.1 Representation 1: score factorisation

This factorised representation transforms original list of ranks into Borda count dataset,
such that the feature is set of the candidates C and the value of the feature is Borda

11The idea behind future extraction is that it is possible to find a representation of the data that is better
suited to analysis than the given raw representation

12A voting problem is typically a pair of < C, V >, where C is set of candidates, V is a collection (list) of
voters each represented as preference order over C.



44 4. Experimental study

Figure 4.6: Working example factorized into Representation 1.

score13of the feature. The profile from Example 2.1.1 is given in Table 4.4 and Figure 4.6.

Table 4.4: The profile from Example 2.1.1 in Representation 1.

f-a f-b f-c f-d label
11 12 9 10 b

The shape of the new representation is:

(#profiles, #candidates).

Here, the shape of the Spotify model is (361, 20) and the generated model is (12360, 20).
The main drawback of this factorization is the lack of reduction in time consumption

during the training phase and minor in memory (data) compression. Another disadvantage
of this transformation is forced anonymity, namely lost information, e.g. about who voted
for whom. From the other side, the main advantage of this approach is that the original
profiles don’t have to be the same size to transform the dataset to this feature representation.
Moreover, once learned new representation of the data, the predictive model might be used
for winner prediction of any new set of candidates. Finally, we fund this representation
much more informative for further processing in terms of improved accuracy of supervised
algorithms (we will discuss it in the next chapter).

Table 4.5: Preference profile example.

number of voters preference order
3 voters a ≻ b ≻ c ≻ d

1 voter d ≻ b ≻ a ≻ c

1 voter d ≻ c ≻ a ≻ b

1 voter b ≻ d ≻ c ≻ a

1 voter c ≻ d ≻ b ≻ a

4.4.2 Representation 2: occurrence factorisation

The features in this representation are the set of candidates together with the position
at which each candidate can be ranked. In other words, this transformation consists of

13 Depending on the position of the candidate in each rank n, Borda rule assigns n − 1 points to a top
ranked-choice, n− 2 points to second ranked-choice, down to 0 points for a bottom-ranked alternative.



4.4 Profile as data point 45

counting the occurrence of each candidate at each position of the ranking, such that the
features are the combinations of the candidates at each rank position. The value of the feature
is the number of votes for the candidate appearing at the featured position, so the value of
the feature is the number of times the candidate occurs in the particular position in the
profile. For example, if the set of candidates has four candidates, we obtain 16 features, one
for each position inwhich each candidate can be ranked. The shape of the new representation
is:

(#profiles, |C| · |C|).

Thus, for given N = 20 candidates and length of each vote (ranking) equal to 20 posi-
tions, we obtain 400 features. Here, the shape of the Spotify model is (361, 400) and of the
generated model: (12360, 400). The profile from Example 2.1.1 is given in Table 4.6 and

Figure 4.7: Working example factorized into Representation 2.

Figure 4.7.

Table 4.6: The profile from Example 2.1.1 in Representation 2.

f-a1 f-a2 f-a3 f-a4 f-b1 f-b2 f-b3 f-b4 f-c1 f-c2 f-c3 f-c4 f-d1 f-d2 f-d3 f-d4 label
3 0 2 2 1 4 1 1 1 1 4 1 2 2 0 3 b

The main drawback of this transformation is that we lose the information about the se-
quence of individual preference. On the other hand, we gain more information about hall
profile complex dependencies. This presentation of given data leads to a significant reduc-
tion in time consumption, in particular in Kemeny winner prediction models. Moreover,
learning this data transformation also improve the accuracy of supervised algorithms in
comparison to making “most frequent” predictions or random predictions of Kemeny win-
ners.

4.4.3 Representation 3: pairwise cumulative score

Here, the set of features is the set of unique pairs of candidates. The value of the feature is the
number of voters that prefer the first candidate to the second. The profile fromExample 2.1.1
is given in Table 4.7 and Figure 4.8 .

Table 4.7: The profile from Example 2.1.1 in Representation 3.

ab ac ad ba bc bd ca cb cd da db dc label
4 4 3 3 5 4 3 2 5 4 2 3 b



46 4. Experimental study

For given N = 20 candidates we have 380 possible combination (without repetition,
with order).The shape of the representation is:

(#profiles,
(
|C|
2

)
).

Here, shape of the Spotify model is: (361, 380) and the generated model: (12360, 380).
This transformation implies the reduction in time complexity. However, it didn’t lead to

an increase in the accuracy of the algorithms but stays on a similar level as making “most
frequent” predictions or random predictions for Kemeny winners.

Figure 4.8: Working example factorized into Representation 3.

4.4.4 Representation 4: weighted sum

The feature is the set of the voters V and the value of the feature is the weighted sum of
voter’s rank. The profile from Example 2.1.1 is given in Table 4.8. The shape of the new
representation is:

(#profiles, #voters).

Here, the shape of the Spotify model is (361, 25) and the generated model is (12360, 25).

Table 4.8: The profile from Example 2.1.1 in Representation 4.

f-v1 f-v2 f-v3 f-v4 f-v5 f-v6 f-v7 label
180 180 180 187 189 187 189 b

4.5 Model selection - experiments and results.
In this section, we concentrated on experiments undertaken to select the classification mod-
els we used in the final model at different stages of our pipeline.

We needed a classification model for predicting the winner given the preferences, as a
dataset, (i) in four different representations and (ii) for three voting rules. We tested and
compared ten different classification models:

• Gradient Boosting Classifier

• XGBoost Classifier

• AdaBoost Classifier



4.5 Model selection - experiments and results. 47

• Support Vector Machine (SVM)

• Gaussian Naive Bayes

• Multilayer Perceptron

• Decision Tree Classifier

• Random Forest Classifier

• Linear classifiers with Stochastic Gradient Descent (SGD)

• Ridge classifier

4.5.1 Borda results

The results we obtained using the same parameters, keeping all other elements of the pipeline
constant and training a new general classification model given preference Representation
1, are presented in Table 4.9 in columns: Accuracy and F1-score. In this table we presented
also the results of execution time for training and prediction phase, and precision/recall
evaluation metrics.

Table 4.9: Representation 1: Borda predictions performance after hyper-parameter tuning.

Fitting time Prediction time Accuracy Precision Recall F1score # In ties ties Acc. with ties
[s] [s] [%] [%] [%] [%] [# samples] [%] [%]

GaussianNB
0.02359819412 0.02658939362 100 100 100 100 0 0 100XGBClassifier
3.550036907 0.04513978958 99.5 66.56 66.37 66.47 4 0.22 99.79RandomForestClassifier
0.0721616745 0.005528211594 90.29 33.34 31.88 32.52 2 0.11 90.4SGDClassifier
0.09017705917 0.002687692642 85.6 49.58 46.82 47.92 26 1.4 87SVC(kernel=’linear’)
0.08874988556 0.01698827744 76.86 27 23.05 24.79 20 1.08 77.94RidgeClassifier
0.02047753334 0.003262758255 70.01 26.25 21.1 21.95 5 0.27 70.28DecisionTreeClassifier
0.02439689636 0.004003763199 66.07 49.94 57.14 52.33 0 0 66.07RandomForestClassifier
0.03056502342 0.004910945892 4.91 25.04 17.54 19.37 44 2.37 57.28LinearSVC(C=1.0)
0.8422548771 0.003510475159 52.32 25.82 16.05 16.64 38 2.05 54.37AdaBoostClassifier
0.4562883377 0.02396583557 48.33 33.21 42.86 35.58 0 0 48.33MLPClassifier
0.007092237473 0.02181887627 43.37 19.18 13 15.16 111 5.99 49.36SVC(C=1, kernel=’rbf’)
0.150769949 0.01939749718 22.55 86.3 22.49 15.87 0 0 22.55

We obtain the best accuracy by using the Gaussian Naive Bayes model (100%) and
XGBclassifier (99,5%).We noticed that top-performing classification models are belonging
to a group of algorithms capable of generating probability predictions. Both models have
been chosen to build final classification models. We took two models since 100% accurate
predictions could be the result of the overfitting, and so this model would not generate well.
Thus, we conducted a diagnosis of both models’ behavior.

Moreover, Figure 4.9 illustrates the execution time for the training and prediction phase.
The longest fitting time (ca. 3,5s) characterizes the XGBoost classifier, which in contrast,
is very fast in prediction (ca. 0.045s).

The performance of the final model for Borda winners prediction was improved by:

• testing classifiers against synthetic dataset (ensuredwinner-balanced training dataset),



48 4. Experimental study

(a) Learning curves . (b) Model evaluation metrics.

(c) Training and prediction execution time. (d) Classification report.

Figure 4.9: XGBoost classifier learned in Representation 1.

• scaling features before the training and the testing

• checking if the predicted winner is in ties

The most accurate in Representation 1 is the Gaussian Naive Bayes classifier with 100%
accuracy and 0.023s fitting time and almost the same 0.026s predicting time. Thus, we
observed that the most prominent models’ origin from a group of ensemble algorithms, like
XGBoost, AdaBoost or Random forest classifiers, also had the highest F1-score. Here, we
based model prediction on the cross-entropy of choices learned during the training phase.
This approach is the reason why, e.g. XGBoost classifier had disproportional long learning
process (fitting time over 3s). Additionally, the next model improvement step consisted
of checking the ties. After the tie-breaking mechanism, we ensured a single-winner in the
class. In reality, the voting rule could determine other winners that the model could predict
correctly. We checked the ties and compared predicted the winner with the other winners
before the tie-breaking mechanism. If predicted winners were present in the tie, we counted
that sample as true positive. That improved the results by 0-6% of algorithm accuracy.

We built interesting insight by noticing that GaussianNaiveBayes tended to push prob-
abilities to 0 or 1. The reason for it is because it assumes that features are conditionally
independent given the class, which is the case in this dataset in Representation 1 containing
not redundant features.



4.5 Model selection - experiments and results. 49

Table 4.10 presents detailed Borda’s results for all MLmodels learned in Representation
2. We observed strong linearity in the Borda count system. Representation 2 also performed
best for the algorithms taking into account prior probabilities of the classes, like Gaussian
Naive Bayes classifier (by 100 % prediction accuracy) and accumulating the entropy of
learned desired classes outcome (the information, a measure of the number of possible ar-
rangements the class in a system can have), like XGBoost classifier (also by 100 % predic-
tion accuracy).

Table 4.10: Representation 2: Borda predictions performance after hyper-parameter tuning.

Fitting time Prediction time Accuracy Precision Recall F1score # In ties ties Acc. with ties
[s] [s] [%] [%] [%] [%] [# samples] [%] [%]

XGBClassifier
30.4573338 0.05381321907 100 100 100 100 0 0 100GaussianNB

0.02711296082 0.02467918396 100 100 100 100 0 0 100DecisionTreeClassifier
0.08309459686 0.004017114639 66.07 49.94 57.14 52.33 0 0 66.07SVC(kernel =′ linear′)
1.517385006 0.1696600914 64.72 33.04 29.97 30.75 0 0 64.72AdaBoostClassifier
1.4271245 0.04778265953 48.33 33.21 42.86 35.58 0 0 48.33LinearSVC
2.075093031 0.004464149475 41.96 19.57 13.33 15.58 2 0.11 42.07SGDClassifier
0.3524949551 0.004344463348 40.45 20.3 14.38 16.18 0 0 40.45RidgeClassifier
0.05543828011 0.004752635956 30.04 17.12 9.09 11.45 52 2.8 32.84MLPClassifier
0.03619837761 0.4821381569 29.29 11.43 9.74 9.87 1 0.05 29.34SVC(kernel =′ rbf ′)
1.579460859 0.174980402 22.55 86.3 22.49 15.87 0 0 22.55RandomForestClassifier
0.1510174274 0.007100582123 17.31 9.4 5.2 6.4 151 8.14 25.45

Figure A.1 presents model evaluation metrics for Representation 2. Noticeable two al-
gorithms XGBoost and Gaussian NB classifiers learned Representation 2 dataset extremely
well (by 100%). The learning process of the XGBoost predictor was significantly longer
(more than the 30s) than other models.

Tables 4.7 and 4.12 presents Representation 3 and Representation 4 performance re-
spectively. Those representations were more descriptive for the tied samples, and here it
improved the examined models’ accuracy by extra 4̃ % and 12% for MLP predictor. Again,
the best classifiers - XGBoost and Gaussian NB -learned the linearity of the Borda score
rule in Representation 3 and 4 with 100% accuracy.

Table 4.11: Representation 3:Borda predictions performance after hyper-parameter tuning.

Fitting time Prediction time Accuracy Precision Recall F1score # In ties ties Acc. with ties
[s] [s] [%] [%] [%] [%] [# samples] [%] [%]

XGBClassifier
30.21589756 0.05239534378 100 100 100 100 0 0 100GaussianNB
0.02364778519 0.02355194092 100 100 100 100 0 0 100SVC(kernel=’linear’)
0.7123975754 0.1593894958 81.55 26.87 24.49 25.57 2 0.11 81.66LinearSVC
9.615909815 0.004586696625 70.12 26.04 21.07 23.2 9 0.49 70.61DecisionTreeClassifier
0.1124827862 0.003812789917 66.07 49.94 57.14 52.33 0 0 66.07SGDClassifier
0.7037308216 0.007167100906 60.46 29.33 19.66 19.67 20 1.08 61.54AdaBoostClassifier
1.689310789 0.04125356674 48.33 33.21 42.86 35.58 0 0 48.33MLPClassifier
0.01814723015 0.2230367661 46.44 18.87 13.92 15.74 72 3.88 50.32RandomForest(depth = 5)
0.1785812378 0.007026910782 45.47 19.74 13.66 15.47 76 4.1 49.57RidgeClassifier
0.04805111885 0.004705429077 38.78 20.57 11.65 14.16 36 1.94 40.72RandomForestClassifier
0.03068852425 0.006850004196 31.45 17.29 9.4 11.17 76 4.1 35.55SVC(kernel=’rbf’)
1.510657787 0.1677224636 22.55 86.3 22.49 15.87 0 0 22.55



50 4. Experimental study

Table 4.12: Representation 4: Borda predictions performance after hyper-parameter tuning.

Fitting time Prediction time Accuracy Precision Recall F1score # In ties ties Acc. with ties
[s] [s] [%] [%] [%] [%] [# samples] [%] [%]

XGBClassifier
3.655939102 0.03061032295 100 100 100 100 0 0 100GaussianNB
0.01229357719 0.004845142365 100 100 100 100 0 0 100DecisionTreeClassifier
0.02488136292 0.002355337143 66.07 49.94 57.14 52.33 0 0 66.07AdaBoostClassifier
0.5383927822 0.02752375603 48.33 33.21 42.86 35.58 0 0 48.33SVC(kernel=’linear’)
513.806108 0.01938676834 43.58 29.09 26.36 26.87 0 0 43.58RandomForestClassifier

0.09772253036 0.00602555275 31.01 11.75 9.36 9.8 15 0.81 31.82SVC(kernel=’rbf’)
0.1583929062 0.01837658882 22.55 86.3 22.49 15.87 0 0 22.55MLPClassifier
0.006424665451 0.02417945862 12.57 7.17 3.78 4.89 218 11.76 24.33LinearSVC
4.357069254 0.003664731979 10.14 5.11 3.41 3.14 13 0.7 10.84RandomForest(depth = 5)
0.03180623055 0.005166292191 9.12 7.29 2.73 3.67 43 2.32 11.44RidgeClassifier
0.01920890808 0.002331256866 7.93 6.8 2.41 3.11 8 0.43 8.36SGDClassifier
0.1527459621 0.002839565277 0.16 1.59 0.14 0.25 0 0 0.16

4.5.2 Kemeny results

Table 4.13 shows the performance of the algorithms learning Kemeny labels by Represen-
tation 1. Here top predictors were: XGBoostCLassifier, Gaussian NB and Random Forest
classifier with the after hyperparameter tuning performance ranging from 58,13 %, 50,37%
and 51,19% respectively. The percentage of the correctly predicted winner involved in the
ties varied from 5 % for Random Forest classifier up to ca.30% for AdaBoost classifier.

Table 4.13: Representation 1: Kemeny rule performance after hyper-parameter tuning.

Fitting time Prediction time Accuracy Precision Recall F1score # In ties ties Acc. with ties
[s] [s] [%] [%] [%] [%] [# samples] [%] [%]

XGBClassifier
4.137499571 0.07161974907 51.81 38.96 37.51 37.4 101 6.32 58.13GaussianNB
0.01627016068 0.03955364227 44.43 35.39 36.51 34.88 95 5.94 50.37RandomForestClassifier
0.2941424847 0.03845930099 42.55 34.31 35.42 33.47 138 8.64 51.19SVC(kernel=’linear’)
1.134880781 0.05269598961 40.43 32.57 31.91 31.08 136 8.51 48.94RidgeClassifier

0.008381843567 0.00386762619 35.48 36.86 33.36 28.43 205 12.83 48.31LinearSVC
1.357146263 0.006160259247 35.23 40.81 27.36 24.62 97 6.07 41.3RandomForest(depth = 5)
0.03054499626 0.00642156601 34.61 31.47 27.64 26.26 130 8.14 42.75SGDClassifier
0.1166534424 0.007428407669 25.34 30.36 23.42 20.94 93 5.82 31.16AdaBoostClassifier
0.8649594784 0.1009278297 24.97 21.46 18.59 17.7 472 29.54 54.51MLPClassifier
0.004200696945 0.02492451668 18.46 19.86 19 15.02 253 15.83 34.29SVC(kernel=’rbf’)
0.5110402107 0.07839155197 8.64 90.14 10.46 10.42 151 9.45 18.09DecisionTreeClassifier
0.03039526939 0.02007961273 5.94 16.57 12.84 6.88 109 6.82 12.76

Table 4.14 presents the models performance trained by Representation2. The best results
achieved XGBoost classifier with extremely long fitting time over 90 s and the accuracy
33%. The tie-breaking mechanism decreased the performance results up to 25% for the
AdaBosst predictor.

Table 4.15 illustrates the models performance trained by Representation 3. Surprisingly,
the SGDC classifier reached very high accuracy: 85%, after checking tied labels. That was
a very good result taking into account that the accuracy of the first predictions was on
the level of 2,4 % model accuracy (see Figure 4.10). Next, Random Forest classifier and
SVMwith rbf kernel reached the prediction results on the level of 66 and 64% of accuracy,
respectively.

Table 4.16 presents results of algorithms trained in Representation 4. Random Forest



4.5 Model selection - experiments and results. 51

(a) Learning curves.

(b) Classification report.

Figure 4.10: SGD classifier results trained in Representation 3.

Table 4.14: Representation 2: Kemeny rule performance after hyper-parameter tuning.

Fitting time Prediction time Accuracy Precision Recall F1score # In ties ties Acc. with ties
[s] [s] [%] [%] [%] [%] [# samples] [%] [%]

XGBClassifier
90.58778834 0.2741849422 21.53 24.42 21.8 18.02 188 11.76 33.29LinearSVC
5.24428463 0.03603768349 19.27 19.89 19.28 16.71 149 9.32 28.59SVC(kernel=’linear’)
1.168784142 0.1247189045 19.21 21.67 19.19 16.49 201 12.58 31.79SGDClassifier
1.073603153 0.03670167923 17.83 24.42 18.43 16.14 91 5.69 23.52RidgeClassifier
0.03056669235 0.004123210907 17.65 19.46 17.6 15.23 151 9.45 27.1GaussianNB
0.01425242424 0.01847815514 16.21 22.71 18.24 14.7 189 11.83 28.04RandomForestClassifier
0.09783053398 0.00573348999 9.64 15.38 10.75 9.09 278 17.4 27.04SVC(kernel=’rbf’)
3.055214882 0.2706463337 8.64 90.14 10.46 10.42 151 9.45 18.09MLPClassifier
0.06370639801 0.6993527412 7.32 11.25 8.93 6.38 241 15.08 22.4AdaBoostClassifier
0.946659565 0.03643536568 6.7 15.65 7.98 5.46 402 25.16 31.86RandomForest(depth = 5)
0.02654576302 0.005226135254 5.51 9.43 8.14 5.15 272 17.02 22.53DecisionTreeClassifier
0.0720334053 0.003858089447 3.5 7.04 5.41 2.88 189 11.83 15.33

model predicted correctly 66,87% of tested samples after checking the results in the ties.
This representation was not more informative then Representation 3 for predicting Kemeny
winners.

4.5.3 Dodgson results

Dodgson voting rule is computationally even harder than Kemeny rule (NP-hard) since it
requires strictly more information than a weighted directed graph 14.

Table 4.17 presents the performance of the algorithms learned in Representation 1 with
Dodgson labels. Here the maximum accuracy received XGBoost classifier with 66,19%,

14 To label dataset in a reasonable time, we decided to reduce the dataset to 20 alternatives (candidates) and
25 ranks (votes). However, we kept the same number of profiles, i.e. 12360.



52 4. Experimental study

Table 4.15: Representation 3: Kemeny rule performance after hyper-parameter tuning.

Accuracy Precision Recall F1score # In ties ties Acc. with ties
[%] [%] [%] [%] [# samples] [%] [%]

SGDClassifier
2.44 0.12 5.0 0.24 1771 83.11 85.55RandomForestClassifier
60.86 57.18 61.32 55.78 128 6.01 66.87SVC(kernel=’rbf’)
60.58 95.26 61.82 71.49 82 3.85 64.43GradientBoostingClassifier
59.5 55.43 58.66 54.09 79 3.71 63.21XGBClassifier
26.94 38.13 28.27 25.07 175 8.21 35.15RandomForest(depth = 5)
7.74 37.15 14.93 8.26 348 16.33 24.07AdaBoostClassifier
6.29 7.04 7.32 5.04 232 10.89 17.18DecisionTreeClassifier
5.02 10.71 6.6 3.65 252 11.83 16.85GaussianNB()
6.34 8.28 7.72 5.37 219 10.28 16.62RidgeClassifier
4.27 8.11 6.99 3.09 245 11.5 15.77MLPClassifier
4.41 2.54 4.71 1.7 115 5.4 9.81LinearSVC
6.62 0.33 5.0 0.62 15 0.7 7.32

Table 4.16: Representation 4: Kemeny rule performance after hyper-parameter tuning.

Accuracy Precision Recall F1score # In ties ties Acc. with ties
[%] [%] [%] [%] [# samples] [%] [%]

RandomForest
60.86 57.18 61.32 55.78 128 6.01 66.87SVC
60.58 95.26 61.82 71.49 82 3.85 64.43GradientBoosting
58.94 54.92 58.14 53.59 88 4.13 63.07XGBClassifier
26.94 38.13 28.27 25.07 175 8.21 35.15RandomForest(maxdepth=5) 7.74 37.15 14.93 8.26 348 16.33 24.07AdaBoost
6.29 7.04 7.32 5.04 232 10.89 17.18DecisionTree
5.02 10.71 6.6 3.65 252 11.83 16.85GaussianNB
6.34 8.28 7.72 5.37 219 10.28 16.62RidgeClassifier
4.27 8.11 6.99 3.09 245 11.5 15.77SGDClassifier
10.46 0.52 5.0 0.95 22 1.03 11.49MLPClassifier
3.94 2.58 5.2 2.07 158 7.41 11.35LinearSVC
6.62 0.33 5.0 0.62 15 0.7 7.32

next GaussianNB with 62.5% accuracy (with a short fitting time 0.007 s) followed by Ran-
dom Forest classifier achieving 61.54% accuracy.We received those results after ties verifi-
cation, which for Dodgson rule learned in Representation 1 consists of 0.45% (SVC(kernel=’rbf’)
classifier) up to over 10% (MLP classifier) improvement in predictors accuracy.

Tables 4.18, 4.19 and 4.20 present the performance of the algorithms learned Dodgson’s
winners in Representation 2, 3 and 4, respectively.

Noticeable, the best classifier trained in Representation 1 was ensemble algorithm: Gra-
dient Boosting with the accuracy of 89,37% (after miss-prediction analysis).

The next model, also from a group of ensemble algorithms: Random Forest, reached
86,52% and finally even from the same group: XGBoost classifier with the result of 81,46%.
The robustness of false positives ranged between 1% (Decision Tree classifier) and 5,5%
(SGD classifier).

The best performance of Dodson’s winner prediction in Representation 2 reached Gradi-



4.5 Model selection - experiments and results. 53

Table 4.17: Representation 1: Dodgson rule performance after hyper-parameter tuning.

Accuracy Precision Recall F1score # In ties ties Acc. with ties
[%] [%] [%] [%] [# samples] [%] [%]

GradientBoostingClassifier
87.2 81.37 75.34 77.95 51 2.17 89.37RandomForestClassifier
84.22 75.05 73.68 73.87 54 2.3 86.52XGBClassifier
77.63 65.96 48.98 53.13 90 3.83 81.46GaussianNB
66.31 42.34 41.84 41.63 120 5.1 71.41RandomForest(depth = 5)
66.57 55.43 36.24 39.26 88 3.74 70.31SVC(kernel=’rbf’)
68.06 97.07 61.14 73.34 10 0.43 68.49RidgeClassifier
63.16 40.37 38.84 38.73 114 4.85 68.01MLPClassifier
57.64 43.33 44.4 38.79 113 4.81 62.45AdaBoostClassifier
55.98 35.27 36.61 35.32 117 4.98 60.96SGDClassifier
50.91 27.14 30.64 23.01 129 5.49 56.4LinearSVC
34.11 34.02 25.55 19.77 116 4.93 39.04DecisionTreeClassifier
23.52 17.17 12.22 8.5 25 1.06 24.58

Table 4.18: Representation 2: Dodgson rule performance after hyper-parameter tuning.

Accuracy Precision Recall F1score # In ties ties Acc. with ties
[%] [%] [%] [%] [# samples] [%] [%]

GradientBoostingClassifier
80.77 68.75 73.07 70.46 59 2.51 83.28MLPClassifier
77.16 63.44 71.98 66.57 68 2.89 80.05XGBClassifier
69.72 53.67 57.13 54.12 97 4.13 73.85SVC(kernel=’rbf’)
68.06 97.07 61.14 73.34 10 0.43 68.49LinearSVC
62.91 51.52 55.26 50.62 125 5.32 68.23RandomForestClassifier
61.93 52.59 62.03 52.66 141 6.0 67.93RidgeClassifier
63.16 46.38 51.67 47.73 102 4.34 67.5GaussianNB
57.59 42.61 51.65 44.99 120 5.1 62.69SGDClassifier
53.21 48.54 40.55 37.82 93 3.96 57.17AdaBoostClassifier
25.1 19.39 22.26 18.23 195 8.29 33.39DecisionTreeClassifier
21.23 9.1 9.0 5.52 66 2.81 24.04RandomForest(depth=5)
22.59 1.13 5.0 1.84 19 0.81 23.4

ent Boosting Classifier with accuracy by 83,38% (with the depreciation of the tie-breaking
mechanism). Next, neural network classifier MLPCwith 80,05% and finally, XGboost clas-
sifier was closing the top triad with 73,85% prediction accuracy. Dodgson’s winner miss
predictions analyzed by checking possible winner in ties allowed to increase the algorithms
performance from 0.5(SVC) - 8,3% (AdaBoost).

The Representation 3 is the most effective in learning Dodgson’s winners. The Gradient
Boosting classifier learned in Representation 3 reached an accuracy of 89.41%, slightly
higher than the same model trained in Representation 1.

Finally, the Dodgson WDP problem tackled by predictive models learned in Represen-
tation 4 reached 68,49% of accuracy by the SVC algorithm with rgb kernel. The number of
false-positive in ties varied from 0,5% (SVC classifier) to 8,5% (Ridge classifier).



54 4. Experimental study

Table 4.19: Representation 3: Dodgson rule performance after hyper-parameter tuning.

Accuracy Precision Recall F1score # In ties ties Acc. with ties
[%] [%] [%] [%] [# samples] [%] [%]

GradientBoostingClassifier
87.28 80.85 77.62 78.91 50 2.13 89.41XGBClassifier
85.92 77.83 78.41 77.9 66 2.81 88.73RandomForestClassifier
71.08 59.15 69.32 60.71 105 4.47 75.55GaussianNB
65.76 50.52 45.52 45.62 115 4.89 70.65SVC(kernel=’rbf’)
68.06 97.07 61.14 73.34 10 0.43 68.491RidgeClassifier
62.14 42.01 43.51 41.85 113 4.81 66.95MLPClassifier
54.4 39.04 42.54 38.8 110 4.68 59.08SGDClassifier
50.87 36.31 29.72 22.74 128 5.44 56.31LinearSVC
41.56 46.0 19.17 20.69 51 2.17 43.73RandomForest(depth = 5)
26.8 62.52 10.2 10.87 23 0.98 27.78DecisionTreeClassifier
17.31 10.01 18.27 9.93 192 8.17 25.48AdaBoostClassifier
15.06 11.9 14.83 9.21 172 7.32 22.38

Table 4.20: Representation 4: Dodgson rule performance after hyper-parameter tuning.

Accuracy Precision Recall F1score # In ties ties Acc. with ties
[%] [%] [%] [%] [# samples] [%] [%]

SVC(kernel=’rbf’
68.06 97.07 61.14 73.34 10 0.43 68.49RandomForestClassifier
61.12 50.79 60.55 51.39 140 5.95 67.07GradientBoostingClassifier
58.23 48.46 57.31 49.4 73 3.11 61.34XGBClassifier
32.41 31.67 23.27 21.26 125 5.32 37.73SGDClassifier
22.59 1.13 5.0 1.84 19 0.81 23.4RandomForest(depth = 5)
22.59 1.13 5.0 1.84 19 0.81 23.4DecisionTreeClassifier
19.61 5.78 6.26 3.41 165 7.02 26.63RidgeClassifier
19.27 3.83 6.58 2.91 200 8.51 27.78GaussianNB
17.74 8.51 9.31 6.12 167 7.1 24.846AdaBoostClassifier
15.65 8.91 8.29 5.6 184 7.83 23.48LinearSVC
8.59 0.43 5.0 0.79 18 0.77 9.36MLPClassifier
6.17 1.55 5.26 1.47 59 2.51 8.68

4.6 Discussion and important remarks

The winner determination problem as a supervised classification task was explored in this
research very extensively, precisely selecting details of building the best approach for unique
voting scheme predictions. The research exploration covered over 120 problem settings:
three separated datasets (Borda, Kemeny and Dodgson voting rules) persuaded in four fun-
damentally different Representations; for each of those datasets, we applied ten traditional
ML algorithms.



4.6 Discussion and important remarks 55

(a) Learning curves.

(b) Classification report.

Figure 4.11: Gradient Boosting classifier results trained in Representation 3.

4.6.1 Error analysis and diagnosing model behavior

Borda miss-prediction are reported in Figure A.1. This rapport showed the main classifi-
cation metrics on a per-class basis: precision15, recall16 and F1-score17. To support more
intuitive interpretation and eventually problem detection, in the report, we integrated nu-
merical scores within the color-coded heatmap. The range of the heat maps is (0.0, 1.0).
Such a solution facilitated the comparison of classification across different predictive mod-
els. In this research, we were looking for the weighted accuracy of F1-score in particular,
since it should be used to compare the classifier’s model instead of global accuracy. The
prediction set not included all classes (red areas also marked as 0 in the parenthesis). The
best classifiers for Representation 1 is the XGBoost classifier. A learning curve is a graph-
ical representation of model learning performance18 over experience or time. The learning
curves were used here as an ML diagnostic tool for generalization behavior (underfitting,
overfitting or good fit) of ML models and diagnose if the datasets (training and validation)
are not relatively representative of the problem domain. Figure ?? presents the learning
curves of model performance on the train and test sets.

The learning curve’s shape was used to diagnose the behavior of ML models, in par-
ticular, to suggest possible improvement avenues for learning or performance processes.

15Precision is the classifier’s ability not to label an instance positive that is negative. The problem statement:
for all instances classified positive, what percent was correct?

16Recall is the classifier’s ability to find all positive instances. The problem statement: for all positive
instances, what percent was classified correctly?

17The F1 score is a weighted harmonic mean of precision and recall. F1 range from is 1.0 for the best 0.0
for the worst.

18algorithms that learn from a training dataset incrementally



56 4. Experimental study

In this diagnosis process, the optimized function wasmaximizing accuracy and F1-score
metrics, meaning that higher relative scores on the y-axis indicate more or better learning.

Borda model behavior. We identified underfitting in the following models: SVM with
RBF kernel (e) and Random Forest (d), where the training loss remains flat regardless of
experience19.

On the other hand, some of the algorithms were diagnosed with over-fitting. We identi-
fied over-fitted models by analyzing the learning curve of the training and validation loss.
Learning curve shows under-fitting if: (i) the training loss continues to increase until the
end of training, i.e. premature halt occurs, like examined MLP (h) and SGD (j) classifier;
or (ii) validation loss increases in order to decrease again, like random forest (c) at its late
state.

Finally, the learning curves’ plot showed a good fit for XGBoost (a), linear SVM (f )
or AdaBoost (g) classifiers, where we observed (i) the training loss decrease to the point of
stability and (ii) the validation loss increase to stability point but remained a small gap with
the training loss.

Figure A.1 presents train and validation learning curves for models learned in Repre-
sentation 2. Here, the suitable model fit was presented by XGBoost, Linear SVMwith SGD
learning. Representation 2 training set was easier to learn my examined ML models com-
paring to Representation 1 (more algorithms achieved 100% accuracy for the training set at
the same time increasing accuracy for test set).
Kemeny miss-predictions. The evaluation of the Kemeny miss-predictions consists of
checking if a predicted winner, classified as false positive, is the true positive, meaning
the label is the desired output of the considered voting rule.

Interestingly in Kemeny’s winner’s prediction case, Representation 3 and 4 were very
well learnable by SGD classifier. Here, however, the accuracy of the original dataset was
very low ca. 2% and the number of miss-prediction was very high, ca. 83 % were wrongly
classified (false positive) since were correct. Kemeny WDP is an example of the irreso-
lute voting rule, meaning it is a multi-winner aggregation method. After checking the ro-
bustness of the negative result for Kemeny winners, we identified that 83% of original
miss-predictions were found in ties, meaning were correct but ignored by the designed lex-
icographic tie-breaking mechanism. That analysis yielded to better model accuracy: up to
85%. Next, the ensemble algorithm, such as Random Forest, trained in Representation 4
reached 68% of accurate Kemeny’s winners’ classifications.
Dodgson miss-predictions. The evaluation of the Dodgson miss-prediction is similar to
Kemeny’s. For the most efficient predictor - Gradient Boost classifier - learned in Repre-
sentation 2, the range of false positive is 2,13%, meaning 50 labels were ignored during
the lexicographic tie-breaking process. We don’t interpret the miss-predictions concerning
where in the Dodgson consensus rank is the wrongly predicted alternative since the Dodg-

19We identify under-fitted models by analyzing of the learning curve of the training loss. The learning curve
shows under-fitting if : (i) the training loss continues to increase until the end of the training, i.e. premature
halt occurs or (ii) the training loss remains flat regardless of training.



4.7 Conclusions 57

son full global rank is unknown and finding it is not a subject of this research. The goal
of the study is learning and predicting the top-winning alternative in the three voting rules.
Since we consider irresolute voting rules, if there is more than a single winner, we used a
tie-breaking mechanism with the voting rule.

4.7 Conclusions
Experimental study demonstrated that Borda winners could be predicted with great accu-
racy, as expected from the theoretical evaluation for the learnability of scoring rules from
Procaccia A.D. (2009). For Kemeny’s rule, we encounter some more problems, obtaining
in the base model roughly 38% of predictions accurately identifying the Kemeny winner.
Further experiments led to a stratifying shuffled training set and ensured a balanced dis-
tribution of the candidates. Applied different preference representations enlightened new
insights into the performance of the ML algorithms for rank aggregation.

Representation 1 led to an increase in the performance for Borda winner prediction by
100% accuracy with the XGBooster classifier. The main drawback of Representation 1 is
the lack of reduction in time during the training phase and minor gain in memory (data)
compression. However, we found that this representation is much more informative for
further processing in terms of improved accuracy of supervised algorithms.

On the other hand, Representation 3 and 4 give the best results in predicting Kemeny
winners, and it assured the performance on the level 20 times higher than a random predic-
tion, i.e. ca. 85% accuracy with the SGD classifier.

During the error analysis and the model behavior diagnosis we encountered important
challenges:

• overfitting problem - we recognized when evaluating estimator performance. The
training accuracy was very high (up to 100% of learned examples was explainable by
predictive model) and the test accuracy was much worse (for instance in Kemeny’s
winner case, the extremely insufficient application predicted correctly only 1% test
data points)

• non-uniform distribution of labels in the Spotify dataset. This problem was handled
by:

– data augmentation

– stratified shuffled split into training, validation and test sets

• model enhancement was handled by:

– tuning the hyper-parameters of the predictive model

– miss-predictions analysis

Since voting rules are irresolute, we applied a tie-breaking mechanism (i.e. selection as sin-
gle label the first winner from the complete sequence of winning candidates). We conducted



58 4. Experimental study

the verification if the miss-predicted label was included in the first solution that, by implicit
assumption, was excluded from the labels.

Those actions demonstrated a good effect on the problem generalization. The experi-
mental study revealed that the obtained results are satisfying. For training we used less than
0.01% of all possible voting profiles for a given number of voters (25) and alternatives (20).
We explored ten different ML classification models with various parameters to optimize the
final prediction model’s performance. Careful selection from a wide range of problem for-
mulation setting led to the identification of the best predictive model for rank aggregation,
increasing accuracy of (i) Borda winner with the XGBoost classifier by 100%, (ii) Kemeny
winner(s) with the SGD classifier by 85%; and (iii) Dodgson winner(s) with the Gradient
Boost classifier by 89%.



Chapter 5

Summary

5.1 Summary of major findings
The main objective of this thesis was to investigate the learnability of the voting rules and
evaluate the performance of ML models when predicting the top-alternative in a given ag-
gregated preference rank. We explored experimentally if machine learning algorithms can
be used to predict the winner of Borda, Kemeny and Dodgson voting rules, effectively trad-
ing computational complexity for (in)accuracy.

Classification models were trained using two datasets: a real-world Spotify dataset and
a synthetic dataset, both of profiles of size N = 20 alternatives and V = 25 voters. We
compared ten supervised ML algorithms (among others SVM, XGBoost and GaussianNB)
to identify the best final classification model.

We prepared the data for the learning algorithms by applying two pre-processing meth-
ods: data transformation and augmentation. Data transformation included engineering fea-
ture representation techniques to represent preferences as datasets that could be used to
train ML models. Consequently, we factorized, trained and tested four fundamentally dif-
ferent preference representations for three voting rules: Borda, Kemeny and Dodgson. Data
augmentation had to be performed due to the biased distribution of the Spotify winner(s)’
classes and to optimize of ML models performance.We selected the final classification
model based on the function to optimize, namely for maximizing of accuracy and F1-score
(evaluation metrics). We applied augmentation and data transformation that led to improve-
ment of prediction accuracy of the Borda winner(s) with the XGBoost classifier with ac-
curacy by 100 % ; Kemeny winner(s) with the SGD classifier with 85 % and Dodgson
winner(s) with the Gradient Boost classifier with 89% accuracy. Interestingly in Ke-
meny’s winners’ prediction case, Representation 3 and 4 were extremely well learnable by
SGD classifier.

We empirically demonstrated that the Borda count, as a voting rule with linear depen-
dencies, can be learned and predicted with high accuracy (>95%). Specifically, we reached
100 % accuracy with XGBoost classifier regardless of the Representation it was trained
with.

We have been specifically interested in the NP-hard Kemeny and Dodgson voting rules.



60 5. Summary

The empirical research results for those rules demonstrate that the ensemble learning algo-
rithms are by far better at reducing errors compared to the linear classifiers. Moreover, we
identified the XGboost and GradientBoost models as the best performing predictive model
and we proved it in successful and accurate predicting rank data.

We gained interesting insights fromKemenymiss-predictions analysis. KemenyWDP is
an example of an irresolute voting rule. Irresolute voting rule is the one that selectsmore than
onewinner in a tie. After checking the robustness of the negative result for Kemenywinners,
we identified that 83% of original miss-predictions were found in ties, meaning were correct
but ignored by the designed lexicographic tie-breaking mechanism. That analysis yielded to
better model accuracy: up to 85%. Next, the ensemble algorithm, such as Random Forest,
trained in Representation 4 reached 68% of accurate Kemeny’s winners’ classifications.

Finally, Dodgson’s winner prediction is the most complicated voting rule out of the three
explored in this research. Machine learning models reached a maximum of 89.47% by the
Gradient Boosting model learned in Representation 3.

As a concluding remark, the experimental study revealed that the sequence of the votes
in each profile doesn’t play any role in contrast to the order of preference given by each
vote - which must be kept while being the fundamental assumption for rank aggregation
method.

To diagnose the learning and generalization behavior of ML models we used the learn-
ing curves - the graphical representations of the changes in learning performance over time
in terms of experience. Performance curves (learning curves of model performance) were
used to diagnose model dynamics’ behavior, precisely: an under- or overfitting. We cre-
ated dual learning curves for an ML model while learning both the training and validation
datasets. Although the synthetic dataset was generated based on uniform distribution of the
classes, and the test and validation set was selected with the stratified split, the overfit and
underfit (premature learning hold) problem occurred in specific algorithms settings. Rank
data problem seemed to be well fitted by a group of ensemble algorithms, such as: XGBoost
classifier, AdaBoost and probabilistic algorithms such as the Gaussian Naive Bayes model.

Summarizing, the contributions of this thesis are:

• we provided analyses of winner miss-predictions in ties, in particular for NP-hard vot-
ing rules: Kemeny and Dodgson. For Kemeny, for instance, we identified that 83 % of
original miss-predictions were found in ties, meaning classification model predicted
them correctly but ignored due to designed lexicographic tie-breaking mechanism,

• we have built an easy-to-use training and testing pipeline that can efficiently be re-
produced and reused to check the performance of new classification models,

• we converted Kemeny and Dodgson profiles into PrefLib format, which allows to
contribute data and help extend the online library for preferences,

• we built easy-to-useweb-querying script for high-dimensional dataset (seleniumPython)
crawling DEMOCRARIX online tool, it can be used for new online tools querying,



5.2 Future work 61

• we achieved a high classification accuracy for Borda scored-based rule - 100% this
was expectable from the results of Procaccia A.D. (2009),

• we achieved reasonable accuracy for winner(s) predictions of the Kemeny (85 %) and
Dodgson (89 %) voting rules,

• we explored ten different ML classification models with different parameters to opti-
mize the final prediction model’s performance,

• for training we used less than 0.01% of all possible voting profiles for a given num-
ber of voters (25) and alternatives (20), we assume that using more of the profiles
for training would make the final classification model more robust and increase its
performance,

• we identified four preference representations, as a dataset that ML classifiers used for
training/validating/predicting, and we discussed their influence on the performance
of the classifiers,

• we used cross-validation testing technique to select the best final classification model.

However, the thesis also pointed out these weaknesses:

• we used real-world Spotify dataset, that size was too small to hit a good level of
classifiers accuracy, also in this settings, we easily encountered overfitting problem,

• preference ranks need to be transformed into one of introduced dataset representations
to use a (pre-trained ) final, classification model and predict the winner,

• the labeling process for NP-hard voting rules, like Kemeny and Dodgson, is very
time-consuming but can be done in parallel for different profiles, for instance, in
DEMOCRATIX online tool.

5.2 Future work
Apart from the prediction evaluation metrics used in this research - accuracy, confusion
matrix and classification report (with which we computed precision, recall, and f-score) - in
this setting, it might be worthwhile to look into the receiver operating characteristic (ROC)
andAUC curves. An attractive alternativemight be using the ranked probability score (RPS)
metric, which is a measure of how similar two probability distributions are and is used as a
way to evaluate the quality of a probabilistic prediction.

As a concluding remark, we noticed that pairwise comparison is a universal way to in-
vestigate the partial preferences, however rank centralitymight be the interesting direction
of future research as it is a simple and intuitive algorithm for rank aggregation itself.

Whereas the issue of computing (approximately) ranking medians has received much
attention in the literature, just like statistical modeling of the variability of ranking data,



62 5. Summary

the generalization ability of practical ranking aggregation methods has not been studied in
general probabilistic setup by describing optimal elements and establishing the learning rate
bounds for empirical Kemeny ranking medians (Korba et al. (2017)).

Finally, an interesting avenue of research is using unsupervised learning methods in-
stead, which would attempt to cluster the profiles. An interesting insight would be to study
whether the profiles will be clusterable by the winner or different profile properties would
stand out.



Appendices





A.1 Borda, Kemeny and Dodgson results 65

A.1 Borda, Kemeny and Dodgson results
In this appendix we included selected results for (i) ten explored classification models in
(ii) four preference representations for:
Borda winner(s) predictions:

• train and validation learning curves for Representation 1,

• classification report for Representation 1,

• evaluation metric curves for Representation 2.

Kemeny winner(s) predictions:

• learning curves for Representation 1, Representation 2 , Representation 3 and Repre-
sentation 4

• classification report for Representation 1, Representation 2, Representation 3 and
Representation 4.

Dodgson winner(s) predictions:

• learning curves for Representation 1, Representation 2, Representation 3 and Repre-
sentation 4,

• classification report for Representation 1, Representation 2, Representation 3 and
Representation 4.



66

(a) XGBoosta classifier.

aeXtreme Gradient Boosting
(b) Decision tree classifier.

(c) Random forest classifier. (d) Random forest classifier.

(e) Support Vector classifier with RBF kernel. (f) Support Vector classifier with linear kernel.

(g) AdaBoost classifier. (h) Multi-layer perceptron classifier.



A.1 Borda, Kemeny and Dodgson results 67

(i) Ridge classifier.
(j) Linear SVM with SGDa training.

astochastic gradient descent (SGD) learning

Figure A.1: Model evaluation metrics for Representation 2.



68

(a) XGBoosta classifier.

aeXtreme Gradient Boosting
(b) Decision Tree classifier.

(c) Random Forest classifier. (d) Random Forest classifier.

(e) Support Vector classifier with RBF kernel. (f) Support Vector classifier with linear kernel.

(g) AdaBoost classifier. (h) MLP classifier.



A.1 Borda, Kemeny and Dodgson results 69

(i) Ridge classifier.
(j) Linear SVM with SGDa training.

astochastic gradient descent (SGD) learning

Figure A.2: Train and validation learning curves for models learned in Representation 2.



70

(a) XGBoosta classifier.

aeXtreme Gradient Boosting

(b) Decision tree classifier.

(c) Random forest classifier. (d) Random forest classifier.

(e) Support Vector classifier with RBF kernel. (f) Support vector classifier with linear kernel.



A.1 Borda, Kemeny and Dodgson results 71

(g) AdaBoost classifier. (h) Multi-layer perceptron classifier.

(i) Ridge classifier. (j) Linear SVM with SGDa training.

astochastic gradient descent (SGD) learning

Figure A.3: Classification rapport for models learned in Representation 1.



72

(a) XGBoosta classifier.

aeXtreme Gradient Boosting
(b) Decision tree classifier.

(c) Random forest classifier. (d) Random forest classifier.

(e) Support Vector classifier with RBF kernel. (f) Support Vector classifier with linear kernel.

(g) AdaBoost classifier. (h) Multi-layer perceptron classifier.



A.1 Borda, Kemeny and Dodgson results 73

(i) Ridge classifier.
(j) Linear SVM with SGDa training.

astochastic gradient descent (SGD) learning

Figure A.4: Train and validation learning curves for models learned in Representation 1.



74

(a) XGBoost classifier. (b) Decision Tree classifier.

(c) Random Forest classifier. (d) Random Forest classifier.

(e) Support Vector classifier with RBF kernel. (f) Support Vector classifier with linear kernel.

(g) AdaBoost classifier. (h) MLP classifier.



A.1 Borda, Kemeny and Dodgson results 75

(i) Ridge classifier.
(j) Linear SVM with SGDa training.

astochastic gradient descent (SGD) learning

Figure A.5: Train and validation learning curves for models learned in Representation 2.

(a) XGBoost classifier. (b) Decision tree classifier.

(c) Random forest classifier. (d) Random forest classifier.

(e) Support Vector classifier with RBF
kernel.



76

(f) AdaBoost classifier. (g) MLP classifier.

(h) Ridge classifier. (i) Linear SVM with SGD

Figure A.6: Evaluation metrics (Representation 4|Borda winner(s) predictions).



A.1 Borda, Kemeny and Dodgson results 77

(a) Gaussian Naive Bayes classifier.
(b) XGBoosta classifier.

aeXtreme Gradient Boosting

(c) Decision tree classifier. (d) Random forest classifier.

(e) Random forest classifier. (f) Support Vector classifier with RBF kernel.

(g) Support Vector classifier with linear kernel. (h) AdaBoost classifier.

(i) MLP classifier. (j) Ridge classifier. (k) Linear SVM with SGD

Figure A.7: Train and validation learning curves (Representation 1|Kemeny winner(s) pre-
dictions).



78

(a) Gaussian Naive Bayes classifier. (b) XGBoost classifier.

(c) Decision tree classifier. (d) Random forest classifier.

(e) Random forest classifier.
(f) Support Vector classifier with RBF
kernel.



A.1 Borda, Kemeny and Dodgson results 79

(g) Support Vector classifier with linear
kernel.

(h) AdaBoost classifier.

(i) MLP classifier. (j) Ridge classifier.

(k) Linear SVM with SGD

Figure A.8: Classification report (Representation 1|Kemeny winner(s) predictions).



80

(a) Gaussian Naive Bayes classifier. (b) XGBoost classifier.

(c) Decision tree classifier. (d) Random forest classifier.

(e) Random forest classifier.
(f) Support Vector classifier with RBF
kernel.

(g) Support Vector classifier with linear
kernel.

(h) AdaBoost classifier.

(i) MLP classifier. (j) Ridge classifier. (k) Linear SVM with SGD

Figure A.9: Train and validation learning curves (Representation 2|Kemeny winner(s) pre-
dictions).



A.1 Borda, Kemeny and Dodgson results 81

(a) Gaussian Naive Bayes classifier. (b) XGBoost classifier.

(c) Decision tree classifier. (d) Random forest classifier.

(e) Random forest classifier.
(f) Support Vector classifier with RBF
kernel.



82

(g) AdaBoost classifier. (h) MLP classifier.

(i) Ridge classifier. (j) Linear SVM with SGD

Figure A.10: Classification report (Representation 2|Kemeny winner(s) predictions).



A.1 Borda, Kemeny and Dodgson results 83

(a) Gaussian Naive Bayes classifier. (b) XGBoost classifier.

(c) Decision tree classifier. (d) Random forest classifier.

(e) Random forest classifier. (f) Support Vector classifier with RBF kernel.

(g) Support Vector classifier with linear kernel. (h) AdaBoost classifier.

(i) MLP classifier. (j) Ridge classifier. (k) Linear SVM with SGD

Figure A.11: Train and validation learning curves (Representation 3|Kemeny winner(s) pre-
dictions).



84

(a) Gaussian Naive Bayes classifier. (b) XGBoost classifier.

(c) Decision tree classifier. (d) Random forest classifier.

(e) Random forest classifier.
(f) Support Vector classifier with RBF
kernel.



A.1 Borda, Kemeny and Dodgson results 85

(g) AdaBoost classifier. (h) MLP classifier.

(i) Ridge classifier. (j) Linear SVM with SGD

Figure A.12: Classification report (Representation 3|Kemeny winner(s) predictions).



86

(a) Gaussian Naive Bayes classifier. (b) XGBoost classifier.

(c) Decision tree classifier. (d) Random forest classifier.

(e) Random forest classifier. (f) Support Vector classifier with RBF kernel.

(g) Support Vector classifier with linear kernel. (h) AdaBoost classifier.

(i) MLP classifier. (j) Ridge classifier. (k) Linear SVM with SGD

Figure A.13: Train and validation learning curves (Representation 4|Kemeny winner(s) pre-
dictions).



A.1 Borda, Kemeny and Dodgson results 87

(a) Gaussian Naive Bayes classifier. (b) XGBoost classifier.

(c) Decision tree classifier. (d) Random forest classifier.

(e) Random forest classifier.
(f) Support Vector classifier with RBF
kernel.



88

(g) AdaBoost classifier. (h) MLP classifier.

(i) Ridge classifier. (j) Linear SVM with SGD

Figure A.14: Classification report (Representation 4|Kemeny winner(s) predictions).



A.1 Borda, Kemeny and Dodgson results 89

(a) Gaussian Naive Bayes classifier. (b) XGBoost classifier.

(c) Decision tree classifier. (d) Random forest classifier.

(e) Random forest classifier. (f) Support Vector classifier with RBF kernel.

(g) AdaBoost classifier. (h) MLP classifier.

(i) Ridge classifier. (j) Linear SVM with SGD

Figure A.15: Train and validation learning curves (Representation 1|Dodgson winner(s)
predictions).



90

(a) Gaussian Naive Bayes classifier. (b) XGBoost classifier.

(c) Decision tree classifier. (d) Random forest classifier.

(e) Random forest classifier.
(f) Support Vector classifier with RBF
kernel.



A.1 Borda, Kemeny and Dodgson results 91

(g) AdaBoost classifier. (h) MLP classifier.

(i) Ridge classifier. (j) Linear SVM with SGD

Figure A.16: Classification report (Representation 1|Dodgson winner(s) predictions).



92

(a) Gaussian Naive Bayes classifier. (b) XGBoost classifier.

(c) Decision tree classifier. (d) Random forest classifier.

(e) Random forest classifier. (f) Support Vector classifier with RBF kernel.

(g) AdaBoost classifier. (h) MLP classifier.

(i) Ridge classifier. (j) Linear SVM with SGD

Figure A.17: Train and validation learning curves (Representation 2|Dodgson winner(s)
predictions).



A.1 Borda, Kemeny and Dodgson results 93

(a) Gaussian Naive Bayes classifier. (b) XGBoost classifier.

(c) Decision tree classifier. (d) Random forest classifier.

(e) Random forest classifier.
(f) Support Vector classifier with RBF
kernel.



94

(g) AdaBoost classifier. (h) MLP classifier.

(i) Ridge classifier. (j) Linear SVM with SGD

Figure A.18: Classification report (Representation 2|Dodgson winner(s) predictions).



A.1 Borda, Kemeny and Dodgson results 95

(a) Gaussian Naive Bayes classifier. (b) XGBoost classifier.

(c) Decision tree classifier. (d) Random forest classifier.

(e) Random forest classifier. (f) Support Vector classifier with RBF kernel.

(g) AdaBoost classifier. (h) MLP classifier.

(i) Ridge classifier. (j) Linear SVM with SGD

Figure A.19: Train and validation learning curves (Representation 3|Dodgson winner(s)
predictions).



96

(a) Gaussian Naive Bayes classifier. (b) XGBoost classifier.

(c) Decision tree classifier. (d) Random forest classifier.

(e) Random forest classifier.
(f) Support Vector classifier with RBF
kernel.



A.1 Borda, Kemeny and Dodgson results 97

(g) AdaBoost classifier. (h) MLP classifier.

(i) Ridge classifier. (j) Linear SVM with SGD

Figure A.20: Classification report (Representation 3|Dodgson winner(s) predictions).



98

(a) Gaussian Naive Bayes classifier. (b) XGBoost classifier.

(c) Decision tree classifier. (d) Random forest classifier.

(e) Random forest classifier. (f) Support Vector classifier with RBF kernel.

(g) AdaBoost classifier. (h) MLP classifier.

(i) Ridge classifier. (j) Linear SVM with SGD

Figure A.21: Train and validation learning curves (Representation 4|Dodgson winner(s)
predictions).



A.1 Borda, Kemeny and Dodgson results 99

(a) Gaussian Naive Bayes classifier. (b) XGBoost classifier.

(c) Decision tree classifier. (d) Random forest classifier.

(e) Random forest classifier.
(f) Support Vector classifier with RBF
kernel.



100

(g) AdaBoost classifier. (h) MLP classifier.

(i) Ridge classifier. (j) Linear SVM with SGD

Figure A.22: Classification report (Representation 4|Dodgson winner(s) predictions).



Bibliography

Ailon, N. (2010). Aggregation of partial rankings, p-ratings and top-m lists. Algorith-
mica 57(2), 284–300. 5, 6

Ali, A. andM. Meila (2012). Experiments with kemeny ranking: What works when? Math-
ematical Social Sciences 64, 28–40. 6

Aziz, H., S. Gaspers, N. Mattei, N. Narodytska, and T. Walsh (2013). Ties matter: Com-
plexity of manipulation when tie-breaking with a random vote. In Proceedings of the
27th AAAI Conference on Artificial Intelligence (AAAI), 74–80. xiii, 21, 37

Ben-Bassat, I., B. Chor, and Y. Orenstein (2018). A deep neural network approach for
learning intrinsic protein-RNA binding preferences. Bioinformatics 34(17), i638–i646.
2

Borda, J. (1781). Mémoire sur les élections au scrutin, Mémoire de l’Académie Royale.
Histoire de l’Académie des Sciences. 5

Brandt, F., V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia (2016). Handbook of
Computational Social Choice (1st ed.). New York, NY, USA: Cambridge University
Press. 1, 3, 9, 10, 21

Charwat, G. and A. Pfandler (2015). Democratix: A declarative approach to winner deter-
mination. In T. Walsh (Ed.), Algorithmic Decision Theory, Cham, pp. 253–269. Springer
International Publishing. 12, 14, 18

Chevaleyre, Y., U. Endriss, J. Lang, and N. Maudet (2007). A short introduction to com-
putational social choice. In J. van Leeuwen, G. F. Italiano, W. van der Hoek, C. Meinel,
H. Sack, and F. Plášil (Eds.), SOFSEM 2007: Theory and Practice of Computer Science,
Berlin, Heidelberg, pp. 51–69. Springer Berlin Heidelberg. 1, 2

Chu, W. and Z. Ghahramani (2005). Preference learning with gaussian processes. In Pro-
ceedings of the 22Nd International Conference on Machine Learning, ICML ’05, New
York, NY, USA, pp. 137–144. ACM. 1

Condorcet, N. (1785). Essai sur l’application del’analyse ‘a la probabilit´e des d´ecisions
rendues ‘a lapluralit´e des voix. l’imprimerie royale, paris. 5, 6



102 BIBLIOGRAPHY

Conitzer, V., D. A. and J. Kalagnanam (2006). Improved bounds for computing kemeny
rankings. Volume 6, pp. 620–626. 6

Conitzer, V., R. M. and L. Xia (2009). Preference functions that score rankings andmaxi-
mum likelihood estimation. Volume 9, pp. 109–115. 6

Conitzer, V. and T. Sandholm (2005). Common voting rules as maximum likelihood esti-
mators. Volume 9, Arlington, Virginia.AUAI Press, pp. 145–152. 6

Corrente, S., S. Greco, M. Kadziński, and R. Słowiński (2013). Robust ordinal regression
in preference learning and ranking. Machine Learning 93(2), 381–422. 1, 2

De Neve, J. (2014). Ideological change and the economics of voting behavior in the US,
1920–2008.. Elect Stud 34:27–3. 7

Deng, K., S. Han, K. J. Li, and J. S. Liu (2014). Bayesian aggregation of order-based rank
data. Journal of the American Statistical Association 109(507), 1023–1039. 2, 5

Donini, M., A. Loreggia, M. S. Pini, and F. Rossi (2018). Voting with random neural net-
works: a democratic ensemble classifier. In RiCeRcA@AI*IA. 5

Dwork, C., R. Kumar, M. Naor, and D. Sivakumar (2001). Rank aggregation methods for
the web. In Proceedings of the 10th International Conference onWorldWideWeb, WWW
’01, New York, NY, USA, pp. 613–622. ACM. 2, 5, 17, 21

F. Rossi, K. B. V. and T. Walsh (2011). A Short Introduction to Preferences: Between
Artificial Intelligence and Social Choice. Morgan Claypool Publishers. 1, 9, 37

Farrugia, V. E., H. P. Martínez, and G. N. Yannakakis (2015). The Preference Learning
Toolbox. arXiv e-prints, arXiv:1506.01709. 1

Hüllermeier, E. and J. Fürnkranz (2011). Learning from label preferences. In T. Elomaa,
J. Hollmén, and H. Mannila (Eds.), Discovery Science, Berlin, Heidelberg, pp. 2–17.
Springer Berlin Heidelberg. 1, 6

Kamishima, T., H. Kazawa, and S. Akaho (2011). A Survey and Empirical Comparison of
Object Ranking Methods, pp. 181–201. Berlin, Heidelberg: Springer Berlin Heidelberg.
5

Kim, S. (2017). Ordinal versus cardinal voting rules: Amechanism design approach. Games
and Economic Behavior 104(C), 350–371. 10

Korba, A., S. Clémençon, and E. Sibony (2017). A learning theory of ranking aggregation.
6, 62

Lang, J., M. S. Pini, F. Rossi, D. Salvagnin, K. B. Venable, and T.Walsh (2012). Winner de-
termination in voting trees with incomplete preferences and weighted votes. Autonomous
Agents and Multi-Agent Systems 25(1), 130–157. 6, 17



BIBLIOGRAPHY 103

Li, P. (2008). Learning to rank using classification and gradient boosting. In NIPS 2008. 3

Lucchese, C., F. M. Nardini, R. Perego, S. Orlando, and S. Trani (2018). Selective gradient
boosting for effective learning to rank. In The 41st International ACM SIGIR Conference
on Research &#38; Development in Information Retrieval, SIGIR ’18, New York, NY,
USA, pp. 155–164. ACM. 3

miro.medium.com (2016). Learning to rank concept. xiii, 25

N. Mattei, N. N. and T. Walsh (2014). How hard is it to control an election by breaking
ties?. In Proceedings of the 21st European Conference on Artificial Intelligence (ECAI),
1067–1068. 21

Ng, A. (2019). Machine learnig. Mhttp://cs229.stanford.edu/syllabus.html. [On-
line; accessed 12-04-2019]. xiii, 24, 34

Nurmi, H. (2010). e-democracy: A group decision and negotiation perspective. Voting
Theory, 101–123. 3

Obraztsova, S. and E. Elkind. (2011). On the complexity of voting manipulation under
randomized tie-breaking. In Proceedings of the 22nd International Joint Conference on
Artificial Intelligence (IJCAI), 319–324. 21

Patel, T., D. Telesca, R. Rallo, S. George, T. Xia, and A. E. Nel (2013). Hierarchical rank
aggregation with applications to nanotoxicology. In Journal of Agricultural, Biological,
and Environmental Statistics, pp. 18(2):159–177. 5

Procaccia A.D., Zohar A., P. Y. R. J. (2009). The learnability of voting rules. Artificial
Intelligence 173(12–13), 1133–1149. 1, 5, 6, 7, 13, 57, 61

Raizada, R. and Y. S. Lee (2013). Diagram of the gaussian naive bayes model. Mhttps://
www.researchgate.net/figure/Illustration-of-how-a-Gaussian-Naive-Bayes-
GNB-classifier-works-For-each-data-point_fig1_255695722. [Online; accessed
12-06-2019]. xiii, 30

Renda, M. E. and U. Straccia (2003). Web metasearch: Rank vs. score based rank aggre-
gation methods. In Proc. of the 18th Annual ACM Symposium on Applied Computing,
Melbourne, Florida, pp. 841–846. ACM Press. 2, 5

scikit learn.org (2013a). Plot of the svm hyperplane. Mhttp://scikit-learn.org/
stable/modules/svm.html. [Online; accessed 12-10-2019]. xiii, 27

scikit learn.org (2013b). Plot of the svm hyperplane. Mhttp://scikit-learn.org/
stable/modules/neural_networks_supervised.html. [Online; accessed 12-03-
2019]. xiii, 29

Teknomo, K. (2018). Revoledu. [Online; accessed 22-09-2018]. 15

http://cs229.stanford.edu/syllabus.html
https://www.researchgate.net/figure/Illustration-of-how-a-Gaussian-Naive-Bayes-GNB-classifier-works-For-each-data-point_fig1_255695722
https://www.researchgate.net/figure/Illustration-of-how-a-Gaussian-Naive-Bayes-GNB-classifier-works-For-each-data-point_fig1_255695722
https://www.researchgate.net/figure/Illustration-of-how-a-Gaussian-Naive-Bayes-GNB-classifier-works-For-each-data-point_fig1_255695722
http://scikit-learn.org/stable/modules/svm. html
http://scikit-learn.org/stable/modules/svm. html
http://scikit-learn.org/stable/ modules/neural_networks_supervised.html
http://scikit-learn.org/stable/ modules/neural_networks_supervised.html


104 BIBLIOGRAPHY

thefactmachine.com (2016). Logistic regression. Mhttp://www.thefactmachine.com/
logistic-regression/. [Online; accessed 12-10-2019]. xiii, 27

Truchon, M. (2008). Borda and the maximum likelihood approach to vote aggregation. 2,
6

Verikas, A., E. Vaiciukynas, A. Gelzinis, and M. C. Olsson (2016). Architecture of the
random forest model. Mhttps://www.researchgate.net/figure/Architecture-of-
the-random-forest-model_fig1_301638643. [Online; accessed 12-01-2019]. xiii, 28

Volkovs, M. (2013). Machine Learning Methods and Models for Ranking. Ph. D. thesis,
University of Toronto. 1

Wikipedia (2019a). Borda count. Mhttps://en.wikipedia.org/wiki/Borda_count.
[Online; accessed 12-02-2019]. 14

Wikipedia (2019b). Definition of nondeterministic polynomial time. M[ttps://en.
wikipedia.org/wiki/NP_(complexity). Accessed: 2019-10-11. 2

Wikipedia (2019c). Diagram of the cross-validation model training technique. M[https:
//en.wikipedia.org/wiki/Cross-validation_(statistics)1. Accessed: 2019-08-
10. xiii, 32

Xia, L. (2019). Learning and decision-making from rank data. Synthesis Lectures on Arti-
ficial Intelligence and Machine Learning 13, 1–159. 6, 9, 23

Yang Hu,Mingjing Li, and Nenghai Yu (2008). Multiple-instance ranking: Learning to rank
images for image retrieval. In 2008 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–8. 2

Young, H. P. (1988). Condorcet’s theory of voting. american political science review. 82(4),
1231–1244. 6, 16

http://www.thefactmachine.com/logistic-regression/
http://www.thefactmachine.com/logistic-regression/
https://www.researchgate.net/figure/Architecture-of-the-random-forest-model_fig1_301638643
https://www.researchgate.net/figure/Architecture-of-the-random-forest-model_fig1_301638643
https://en.wikipedia.org/wiki/Borda_count
[ttps://en.wikipedia.org/wiki/NP_(complexity)
[ttps://en.wikipedia.org/wiki/NP_(complexity)
[https://en. wikipedia.org/wiki/Cross-validation_(statistics)1
[https://en. wikipedia.org/wiki/Cross-validation_(statistics)1

	Scientific environment
	Acknowledgements
	Abstract
	Introduction
	Background
	Motivation
	Objectives
	Methodology
	Success criteria

	Literature review
	Contributions

	Structure of the thesis

	Voting theory 
	Introduction
	Notation and assumptions
	Condorcet winner

	Score-based voting rules
	Borda method

	Distance-based voting rules
	Swap distance / Kendall’s tau metric
	Kemeny rule
	Dodgson rule

	DEMOCRATIX - label extraction tool
	Tie-breaking rules
	Conclusions

	Machine learning techniques
	Introduction
	Voting as a supervised classification problem

	ML algorithms for classification
	Generalized linear models
	Support Vector Machines (SVM)
	Gradient Boosted Decision Trees (GB)
	Multilayer Perceptrons (MLP)
	Regularized linear classifiers with stochastic gradient descent (SGD)
	Naive Bayes classifier (NB)

	Data transformation
	Dataset transformation: pre-processing and scaling
	Feature engineering

	Testing
	Cross-validation testing
	Evaluation metrics

	Evaluating learning algorithm
	Error analysis
	Diagnosis tool: learning curves
	Diagnosis tool: classification rapport

	Conclusions

	Experimental study
	Introduction
	Machine learning pipeline

	Datasets description 
	Data preparation and exploration
	Profile as data point
	Representation 1: score factorisation
	Representation 2: occurrence factorisation
	Representation 3: pairwise cumulative score
	Representation 4: weighted sum

	Model selection - experiments and results.
	Borda results
	Kemeny results
	Dodgson results

	Discussion and important remarks
	Error analysis and diagnosing model behavior

	Conclusions

	Summary
	Summary of major findings
	Future work
	 Borda, Kemeny and Dodgson results

	Bibliography

