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Abstract

Hydrological modelling studies vary depending on the purpose, data availability and

number of outputs required. Quantifying the hydrological responses to various human-

and climate-induced changes requires different modelling schemes than those used for

simple flow estimation. Based on these fundamental principles of model use, this

research examines three major model applications. In part I of the research, a

sensitivity analysis of Soil and Water Assessment Tool (SWAT)-simulated streamflow

to hypothetical and Global Climate Model (GCM)-generated climate change scenarios

was conducted within Eastern Nile basins (Blue Nile, Tekeze and Baro Akobo), which

contribute to about 70% of Ethiopia`s total annual surface water potential. In part II,

the effects of climatic and/or land use changes on the hydrology of the highly forested

Omo Gibe river basin in southern Ethiopia were investigated. The study area is selected

because one-third of the country’s power consumption is covered by this basin by

means of constructed cascade hydroelectric power plants. In part III, simple and

complex hydrological models were evaluated at a relatively smaller watershed (Gilgel

Abbay) to revitalize systems-type black-box models for the purpose of flow

forecasting.

In Paper I, the hydrological model SWAT was run with daily and monthly

precipitation and temperature data for the three basins of the Eastern Nile: the Abbay

(Blue Nile), Baro Akobo and Tekeze basins. The model was calibrated and validated

for the daily and monthly streamflow, as presented in the research paper by Mengistu

and Sorteberg (2012). Twenty hypothetical climate change scenarios (perturbed

temperatures and precipitation) were used to test the sensitivity of SWAT-simulated

annual streamflow. The results reveal that the annual streamflow sensitivity to changes

in precipitation and temperature differed among the basins and that the dependence of

the response to the strength of the changes was not linear. On average, the annual

streamflow responses to a change in precipitation with no temperature change were

19%, 17% and 26% per 10% change in precipitation, while the average annual

streamflow responses to a 10% change in temperature and no precipitation change were



−4.4% K−1, −6.4% K−1, and −1.3% K−1 for the Abbay, Baro Akobo and Tekeze river

basins, respectively.

In addition, 47 temperature and precipitation scenarios from 19 AOGCMs participating

in CMIP3 were used to understand future changes in streamflow due to climate changes

(Mengistu & Sorteberg, 2012). The climate models were in disagreement regarding

both the strength and direction of future precipitation changes. Thus, no clear

conclusions could be made about future changes in the Eastern Nile streamflow.

However, such types of assessment are important as they emphasize the need to use

several ensembles of AOGCMs, as the results are strongly dependent on the choice of

climate models.

In Paper II, the sensitivity of the Omo Gibe river basin in southern Ethiopia to both

climatic and land use changes was investigated using the hydrological model SWAT.

The model was calibrated and validated using observational data. Almost 60% of the

average annual rainfall is lost through evaporation in the basin and the average runoff-

rainfall coefficient was 0.26. Around two-thirds of the water yield was estimated to

come from surface runoff, while groundwater was found to be responsible for the other

third.

The sensitivity of streamflow to precipitation changes was found to be high compared

to the sensitivity to land use. On average, there was a 25% change in streamflow for a

10% change in precipitation. On the other hand, the response of streamflow to changes

in temperature while holding the precipitation fixed is modest. A linear regression

analysis of streamflow responses to the different temperature scenarios indicates that a

1°C change in temperature produces a 1.4% change in annual streamflow.

The simulated effect of land use changes resulting from various hypothetical land use

modifications was secondary to the effect of precipitation changes on the annual

streamflow. However, the seasonal changes in streamflow were in some cases strongly

affected by land use. For example, a deforestation scenario (entire forest-area coverage

changed to bare lands) increased the January-April (dry season) streamflow by 38%.

Results further indicate that the combined effects of land use and climate change may



differ from the sum of the individual land use and climate change simulations. For

example, in an increased precipitation scenario, changing land use to more bare land

areas would increase streamflow and water yield less than simple additions of the

individual effects. This shows that according to the model, nonlinear interactions

among the water-balance components may occur when simultaneous changes in land

use and climate change are imposed. From these two applications, streamflow proves

highly sensitive to climate change scenarios and particularly to precipitation. For a unit

change in precipitation, the change in streamflow is nearly double.

Paper III evaluates the performance of different black-box rainfall-runoff models

(simple single input-output models) and complex hydrological models for flow

forecasting of the Gilgel Abbay catchment (upper Blue Nile river basin, Ethiopia).

Seven black-box models embedded in the Galway River Flow Forecasting System

(GFMFS) software packages, as well as HBV and SWAT models were applied.

The performance of the simple linear model (SLM) is inferior to that of all other

models. However, in comparison to the complex hydrological models (SMAR, HBV

and SWAT), the simple single input-output models of the artificial neural network

(ANN) and the linear perturbation model (LPM) outperformed in both simulation and

updated mode when evaluated based on the statistical criteria of Nash-Sutcliffe

Efficiency (NSE) and R2 at the Gilgel Abbay catchment. This indicates increasing

model complexity (thereby increasing the number of tunable parameters), which does

not necessarily enhance the model’s performance. This is clearly reflected in HBV and

SWAT, with the performances accounting 86% and 66% their variances, respectively.

Therefore, insofar as flow forecasting is concerned with smaller catchments, simple

models are efficient and can be used for water development planning and management,

thereby avoiding the difficulty of the calibration/validation of complex hydrological

models. Furthermore, these types of models can be applied in data-scarce areas within

Africa, thereby avoiding multi-parameter complex hydrological models.
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1 Intoduction

1.1 Outline

This thesis consists of three papers, preceded by an introduction and synthesis. The

main purpose of the introduction and synthesis is to provide additional background

information and present their mutual/combined relevance. Chapter 1 begins by

introducing Ethiopia’s socio-economical background, as well as its physiographical

nature and different catchments and major river systems within the country and ends

with the main aims of the thesis. Chapter 2 provides an overview of the three papers’

main findings, while the input data used in the different studies are introduced in

chapter 3. Chapter 4 explains the hydrological modelling hierarchy and the major

hydrological processes calculated in the SWAT model that is used throughout the

thesis. Chapter 5 presents the hydrology of Ethiopia, as well as the rainfall distribution,

seasonality and regional differences among different catchment areas. Concluding

remarks and future perspectives are described in chapter 6, while chapter 7 provides a

list of references, after which the three scientific papers are attached.

1.2 Background

Ethiopia is located in East Africa and comprises a major portion of the Horn of Africa,

covering a land mass of 1.13 million km2. The vast majority of its landmass consists of

a huge central plateau and lowland plains. The other part of the country consists of

mountains with altitudes between 2,100 and 2,500 m and some peaks rising to 4,500

m, which are characterized by three climatic zones: tropical in the south and southwest,

cold to temperate in the highlands and arid to semi-arid in the northeastern and

southeastern lowlands (Figure 1).



Figure 1: Digital elevation map of Ethiopia

Ethiopia is the second most populous country in Africa, with half of its population

living at around 2,200 m above mean sea level (a.m.s.l), in the areas with cooler

temperatures, higher rainfall and fewer cases of malaria. Another 40% lives in areas

lying between 1,400 and 2,200 a.m.s.l, while the remaining population lives at heights

below 1,400 a.m.s.l. Ethiopia`s population is unevenly distributed, with nearly 80% of

its 83 million inhabitants living in only 37% of the total area of the country.

Ethiopia has 12 major river basins, of which eight drain about 75% of the annual runoff

to neighboring countries (MOWR, 2001a) (Figure 2). The remaining basins are one

lake and three dry basins, which comprise up to 7% of the country`s land mass and

serve as a home for a number of pastoralists, whose livestock has no water.

The annual renewable freshwater potential is 122 billion m3, but 3% of this amount

remains within the country (MOWR, 2001a). It is estimated that 54.4 billion m3 of

surface runoff and 2.2 billion m3 of groundwater can be developed for utilization

(Birhane, 2003). Currently, less than 5% of the surface water potential has been used

(MOWR, 2001a; MOWR, 2001b).



The total hydropower potential of the country is estimated at around 650 million TWH,

of which about 160 million TWH is economically viable. At present, the production

capacity is less than 450 MW and is expected to rise to 670 MW (McCornick P.G et al.,2003).

Figure 2: Major river basins of Ethiopia (MOWR, 2001a)

Ethiopia is largely dependent on the agricultural sector, which provides 86% of the

country’s employment and comprises 57% of its economy (McCornick P.G et al.,

2003). Rainfed crop cultivation is the main activity and is practiced over an area of

27.9 million hectares (ha), which is approximately 23% of potentially arable land

(World Bank, 2006).

The mean annual rainfall varies between 100 mm in the northeast arid and semi-arid

climatic zone to 2,800 mm in the southwest cool and temperate zone (Lemma, 1996).

Due to the uneven and irregular nature of the rainfall distribution across the country in

terms of area and season, there is insufficient opportunity for the economy’s sustainable

growth. The production of food, fiber and other agricultural products cannot meet the



local demand. In addition, frequent drought and famine are life challenges for the

country.

For Ethiopia, the economy of which is highly dependent on agriculture and population

growth, it is wise to efficiently manage water resources and link them with research

results. A comprehensive understanding of hydrological processes in watersheds is a

prerequisite for successful watershed management and environmental restoration,

which this study addresses. Due to the spatial and temporal heterogeneity of soil

properties, vegetation and land use practices, hydrologic cycles become complex

systems. Physically based distributed models can be applied to almost any type of

hydrological problem. This dissertation attempts to investigate the extent to which the

flow of the study area is influenced by climate and/or land use changes using a

physically distributed model. Such models are based on understanding the physics of

the hydrological processes that control catchment response and use physically based

equations to describe these processes.

1.3 Aims

The overall aim of this study is to select and apply hydrological models for flow

forecasting and the analysis of changes in water resources in response to climate and

land use changes in Ethiopia’s watersheds.

Objective 1: Test the applicability of the physically based SWAT model for the Eastern

Nile and perform sensitivity studies to assess the potential impacts of climate change

on water resources.

Objective 2: Quantify the impact of climate and/or land use changes on the water-

balance components of the Omo Gibe river basin in Ethiopia.

Objective 3: Asses the usefulness of different rainfall-runoff models by comparing

nine rainfall-runoff models with different complexities, ranging from simple to

complex hydrological models.



2 Overview and Summary of Papers

The study area of this thesis includes water resources in the Eastern Nile region located

in the western part of Ethiopia (consisting of three large river basins, namely Blue Nile,

Tekeze and Baro Akobo), a forested large river basin in southern Ethiopia (Omo Gibe

basin) and a relatively smaller catchment (Gilgel Abbay, located in the upper Blue Nile

basin) (see Figure 1 in Papers I, II and III for details).

2.1 Paper I: Sensitivity of SWAT-Simulated Streamflow to Climatic Changes
within the Eastern Nile River Basin

Mengistu, D. T. and Sorteberg, A. (2012), Sensitivity of SWAT-Simulated Streamflow to Climatic
Changes within the Eastern Nile River Basin, Hydrol. Earth Syst. Sci., 16, 391-407, doi:
10.5194/hess-16-391-2012.

The River Nile is currently under great pressure from various competing applications,

as well as social, political and legal conditions within the riparian countries (Taye et al.,

2011). To understand and resolve the potential water-resource-management problems

associated with water supply, power generation and agricultural practices, as well as to

contribute to future water-resource planning, reservoir design and management, and

protection of the natural environment, it is necessary to provide quantitative estimates

of the hydrological effects of climate change.

The Eastern Nile on the Ethiopian plateau stretches between 5°N, 33°E and 15°N, 39°E,

with altitudes ranging from 390 m in parts of Baro Akobo (Sobat) to over 4,500 m in

the Tekeze (Atbara) river basin (MoWR, 2002). The total average annual flows are

estimated to be 50, 23.6 and 8.2 billion m3 for the Blue Nile (Abbay), Baro Akobo

(Sobat) and Tekeze (Atbara) river basins, respectively (Arsano et al., 2004; MoWR,

2002). They provide 86% of the Nile’s water [Blue Nile (Abbay) 59%, Baro-Akobo

(Sobat) 14% and Tekeze 13% (Swain, 1997)]. Due to the high seasonal variability in

rainfall on the Ethiopian plateau, the flow of the Blue Nile (Abbay) varies dramatically.

The maximum runoff is recorded in August and is about 60 times greater than the

minimum in the month of February (Arsano, 2005).



Climate-sensitivity scenarios were performed by perturbing the baseline simulation

(the validated simulation forced with observed station data) as input. The climate

perturbations are given as a percentage change in precipitation (precipitation is

multiplied by a given factor). Thus, the number of wet and dry days was not perturbed;

this was done only for the precipitation intensity and the temperature change in degrees

Celsius (adding the prescribed change to the baseline simulation temperatures)

(Varanou et al., 2002). Each scenario was then run for the same simulation period as

the baseline simulation. The applied perturbations were temperature increases of 0, +2

and +4°C and precipitation changes of -20%, -10%, -5%, 0%, +5, +10% and +20%. A

combination of the abovementioned temperature and precipitation perturbations served

to examine the sensitivity of the SWAT streamflow to the meteorological parameters.

Climatic variables such as relative humidity, wind speed, cloud cover and solar

radiation were considered to be unchanged.

The CMIP3 global coupled climate models (AOGCMs) were also applied to calculate

the annual mean temperature and precipitation changes from the base period 1980–

2000 to the period 2080–2100 for the three subbasins. A total of 47 climate change

simulations were assessed for each subbasin using three different emission scenarios

(SRES A2, A1B and B1) and 19 models. Together with the aforementioned sensitivity

tests and an assessment of the impact of the AOGCMs, temperature and precipitation

changes were carried out on the annual flow of the various sub-basins.

The SWAT2005 adequately simulated the monthly variability in flows for the Eastern

Nile basin. The total simulated monthly streamflow ranged from good (0.65<ENS<0.75)

to very good (ENS>0.75). The average daily and monthly difference between the

observed and simulated flow (PBIAS) was good (PBIAS ≤ ±20%) for the calibration

period, with the exception of the Abbay subbasin where it was only satisfactory (±20%

< PBIAS ≤ ±40%). In summary, the model’s good performance in the validation period

indicates that the fitted parameters during the calibration period listed in Table 4 of

Paper I can be taken as a representative set of parameters for the Eastern Nile watershed

and can be used for further simulation and evaluation of alternative scenario analysis

for other periods using the SWAT model. The model simulated monthly flows better



than daily flows and is probably not adequate for studies of single severe events in

small catchments.

Sixty percent of the average annual rainfall was estimated to be lost through

evaporation. The simulations estimated the runoff coefficients to be 0.24, 0.30 and 0.18

for the Abbay, Baro Akobo and Tekeze subbasins, respectively. Surface runoff carried

around 55% of the streamflow in the Abbay and Tekeze, while in Baro Akobo it carried

about 72% of the streamflow. The remaining contribution was from groundwater.

The streamflow sensitivity to changes in precipitation and temperature differed among

the basins and depended on the strength of the changes. The annual streamflow

responses to a 10% change in precipitation with no temperature change were on average

19%, 17% and 26% for the Abbay, Baro Akobo and Tekeze river basin, respectively.

However, the responses to a reduction and increase in precipitation were not the same.

While Baro Akobo was more sensitive to a reduction in precipitation, Tekeze showed

a larger sensitivity to precipitation increases.

The streamflow sensitivity to temperature was moderate. The average annual

streamflow responses to a 1°C change in temperature and no precipitation change were

-4.4%, -6.4% and -1.3% for the Abbay, Baro Akobo and Tekeze river basins,

respectively. The very low sensitivity of the Tekeze basin indicated that flows were

moisture limited for a large part of the year.

The overall assessment made by a sensitivity analysis for the 20-hypothetical climate-

sensitivity scenarios revealed that the annual streamflow of the Eastern Nile was very

sensitive to variations in precipitation and moderately sensitive to temperature

changes. In addition, we showed that the modelled response to a combined temperature

and precipitation change were very similar to simulations in which the responses from

only the temperature change and only the precipitation change were added.

Applying the combined temperature-precipitation sensitivities and 47 temperature and

precipitation scenarios from 19 AOGCMs participating in CMIP3, we estimated the

future streamflow change to be very uncertain and strongly dependent on the choice of

climate model. This is due to the disagreement between the different climate models



on both the strength and direction of future precipitation changes. Thus, based on state-

of-the-art climate models, little can be said about future changes in the Eastern Nile’s

streamflow. However, our analysis emphasizes the need for performing ensemble runs

using different climate models in this type of assessment. This uncertainty may have

implications for long-term water-resource planning, estimation of future hydropower

potential, reservoir design and determination of the extent to which the development of

agriculture should utilize river- or groundwater-based irrigation systems.

2.2 Paper II: Sensitivity Analysis of Omo Gibe River Basin to Climate and
Land Use Changes, Southern Ethiopia

Mengistu, D. T. and Sorteberg, A. (2015), Sensitivity Analysis of Omo Gibe River Basin to Climate and
Land Use Changes, Southern Ethiopia.

The Omo Gibe river basin is a lifeline for hundreds of thousands of indigenous people

in southwestern Ethiopia and northern Kenya, and the construction of hydroelectric

power plants in the basin has been widely debated. According to a report made by

Avery (2010), “Runoff patterns in the Omo River have changed in the last twenty years.

Forests and vegetation have been cleared in the Omo Basin through human activity,

and as a consequence, runoff has become more variable, with much more rapid

response to rainfall. Without effective catchment management, the overall runoff

volume can be expected to increase with catchment land use change.” In addition, the

key issue reported by international media is the “elimination of the riverine forest and

woodland, due to the construction of hydroelectric power plant in the basin lead to at

least a 50% to 60% reduction of river flow volume” (BBC, 2009; Avery, 2010).

Based on the controversy around the management of the basin, this paper focuses on

four basic research questions that may be useful for basin-integrated management

practices. 1) Does changing land use due to deforestation affect the streamflow volume

in the amount specified in the abovementioned report (BBC, 2009; Avery, 2010)? 2)

How sensitive is the annual streamflow to land use change compared to climate

change? 3) How will the emerging hydropower development be affected by individual

and combined changes of land use and/or climate change? 4) Are the combined effects



of land use and climate change on the streamflow-generation process the sum of the

individual effects or are there nonlinearities in the system? Moreover, the paper is

further aimed at quantifying the effect of climate and land use changes on the water-

balance components of the Omo Gibe river basin.

Understanding the Omo Gibe river basin’s sensitivity to climate and land use changes

has become crucial for ongoing cascaded large-scale hydropower development and

overall river basin management. This study attempts to understand the likely impact of

climate and land use change using the SWAT simulation model, which was calibrated

and validated using daily-discharge data series.

The results show that the sensitivity of streamflow to precipitation changes was high.

A 10% change in the precipitation generally changes the annual or wet season

streamflow more than twofold (22–23%). On the other hand, the response of

streamflow to changes in local temperature between 2°C and 4°C is insignificant. In

terms of land use change, the results of various hypothetical land use modifications

indicate that a 10% change in the land use system affects the annual or wet season flow

by less than 7% in both directions (either deforestation or afforestation). For example,

keeping the precipitation unchanged while changing 10% of the forest land use to bare

land would increase the annual water yield by 4.1% and during the wet season by 5.1%.

This would not, however, offset the impact reduction resulting from a drier

precipitation scenario. A possible nonlinear interaction among the water balance

components or feedbacks may occur when simultaneous changes in land use and

climate change occur. However, given the slow nature of land use change, a change in

precipitation is more sensitive and impactful for water developments than a change in

land use. Given Ethiopia’s history of high precipitation variability, a fluctuation of 10%

or more in precipitation is possible. Therefore, managing the emerging cascaded

hydropower development requires careful consideration of implementing seasonal

flow-forecasting models and reservoir-operation management for sustainable

upstream-downstream interaction.



2.3 Paper III: Revisting Systems Type Black-Box Rainfall-Runoff Model for
Flow Forecasting Application

Mengistu, D. T. and Sorteberg, A. (2015), Revisiting Systems Type Black-Box Rainfall-Runoff Model for
Flow Forecasting Application.

We tend to spend huge amounts of time and resources to setup and use complex

hydrological models for the simple goal of flow estimation. Running complex models

becomes even more difficult when the amount of available data is scarce, which is a

common problem in many parts of Africa. The aim of this paper is to evaluate and

revitalize the systems type black-box model against complex hydrological models for

easy flow estimation application. Six systems type black-box models, namely the

simple linear model (SLM), the non-parametric simple linear model (NP-SLM), the

linear perturbation model (LPM), the non-parametric linear perturbation model (NP-

LPM), the linearly varying gain factor model (LVGFM) and the nonlinear black-box

type artificial neural network model (ANN) are compared with the three complex

hydrological models SMAR, HBV and SWAT. The models are compared based on

daily rainfall and stream-flow data (1980–2000) on the Gilgel Abbay watershed. The

Gilgel Abbay catchment (4,051km2) is the largest among the four main sub-catchments

in the Lake Tana basin in northern Ethiopia (Fig.1 in Paper III) and provides about 60%

of the lake inflow.

A comparison of the systems type black-box and complex hydrological models in the

study area indicates that the LPM and ANN models perform better than complex

hydrological models such as SMARG, HBV and SWAT in terms of R2 and the NSE

criteria. This confirms that simpler models (which take only rainfall as input) can

surpass their complex counterparts in performance regarding continuous simulation

and the reproduction of hydrographs or flow estimations. There is a strong justification,

therefore, for the claim that increasing a model’s complexity and thereby the number

of parameters does not necessarily enhance its performance. It is suggested that the

simpler models may still play a significant role in practical hydrology as effective

simulation tools and that countries with scarce hydrological data should revitalize the



application of systems type black-box modelling schemes that depend only on rainfall

and runoff data sets, which could be readily available.



3 Data

This section attempts to describe the number and types of datasets used for the study

basin. A range of spatially distributed data, for instance on topographic features, soil

types, land use and stream networks (optional) are required for the model.

Hydrometeorological data are also used as input for the model.

3.1 Precipitation and Temperature Observations

Table 1 summarizes precipitation and temperature observation data used in the study.

The data source is obtained from National Meteorological Agency of Ethiopia (NMA).

A total of 114 precipitation and 72 temperature gauged stations data were collected and

carefully analyzed for the application of the model. The locations and distributions of

these stations are shown in the Figure 5 in Paper I, and Figure 1 in Papers II and III.

Table 1: Precipitation and temperature observation data summary used in the study

Basin Parameter Number

of

stations

Temporal

resolution

Period Reference Paper(s)

where

data is

used

Eastern Nile

Precipitation 97

Daily

1987-

2006

NMSA

Paper ITemperature 60

Omo Gibe
Precipitation 17 1987-

2007

Paper II

Temperature 12

Gilgel

Abbay

Precipitation 7 1980-

2000

Paper III

Temperature 4



3.2 Hydrological data

Hydrological discharge data were collected from the Ministry of Water Resources of

Ethiopia for the purpose of calibrating and validating the model simulation. As shown

in Table 3, six and two stations were selected for the calibration and validation of the

Eastern Nile and Omo Gibe river basins, respectively.

Table 2: Number of stream gauges used to calibrate and validate the model
simulation of the study basin

Basin Parameter Number

of

stations

Temporal

resolution

Period Reference Paper(s)

where

data is

used

Eastern Nile

basin

 Abbay

 Baro

 Tekeze
Stream

flow

3

2

1

Daily MOWR

Paper I

1991-

2000

1990-

2004

1994-

2003

Omo Gibe basin 2 1987-

2007

Paper II

Gilgel Abbay 1 1980-

2000

Paper III

3.3 DEM

Digital elevation models (DEMs) were created using a topographic database of 1km2

and 90 m2 resolution for the Eastern Nile, the Omo Gibe and the Gilgel Abbay basins

(Papers I, II and III, respectively). These data were sourced from the Ministry of Water

Resources, Ethiopia. The DEMs (see Figure 2 in Paper I) were used to delineate the

watershed and the drainage patterns of the surface analysis. Subbasin parameters such



as slope gradient and slope length of the terrain, and stream network characteristics

such as channel slope, length and width were derived from the DEMs.

3.4 Land Use and Soil Data

Land use is one of the main factors affecting surface erosion and evapotranspiration in

a watershed. The source of the land use map in this study is the Ministry of Water

Resources, Ethiopia and the land use/land cover map is sourced from the global

Hydro1K dataset (Hansen, 1998) and adapted to correspond with the SWAT-

predefined land use classification (see Figure 3 in Paper I, Figure 2 in Paper II and

Figure 1 for Gilgel Abbay in paper III). About 50% of the Eastern Nile (Paper I) and

69% of the Gilgel Abbay basins (Paper II) are used for agricultural purposes, while the

Omo Gibe basin is covered with mixed forest, which comprises over 40% of its total

catchment area (Table 3).

Table 3: Summary of the most dominant land uses for the three study areas

Basin

Dominant land use Second most

dominant land use

Reference Spatial

resolution

Name % Name %

Eastern

Nile

Agriculture 50 Pastoral 28.8 MOWR and

global Hydro

1k dataset

(Hansen,1998)

1km*1km

Omo Gibe Mixed forest 48.1 agriculture 36.6

Gilgel

Abbay

Agriculture 65 Agro-

pastoral

33

Different types of soil texture and physical-chemical properties are required for the

SWAT model. These data were obtained from various sources. The soil map was

obtained from the Water Resources Information and Metadata Base Centre Department

at the Ministry of Water Resources, Ethiopia. However, several properties such as



moisture-bulk density and saturated hydraulic conductivity, as well as percentages of

clay content, silt content and sand content in the soil, which are required by SWAT

model, were not incorporated. These additional data were extracted from Wambeke

(2003), USDA (1999) and FAO (1995). Table 4 shows the most dominat soil-type

percentage cover and resoultion of the map (Figure 4 in Paper I, Figure 2 in Paper II

and Figure 1 in Paper III).

Table 4: Dominant soil types of the three study basins

Basin

Dominant soil type Second most

dominant soil type

Reference Spatial

resolution

Name % Name %

Eastern

Nile
Chrome Luvisols

21
EutricVertisol

17.3 MOWR

and

modified

using FAO

10*10km

Omo Gibe Dystric Cambisols 32.6 Orthic

Acrisols

17.6

GIlgel

Abbay

Haplic Luvisols 69.7 Chromic

Luvisols

15.4



4 Models

4.1 General

Hydrological models can be a tool for better understanding changes in climate and land

use that affect components of the hydrological cycle, as well as evapotranspiration,

stream flow, recharge to sub-surface storage, and so forth.

For the proper management and integration of issues around water resources in the

management plans of irrigation, hydropower, health and other sectors, attaining a better

understanding of the hydrologic processes in a watershed is beneficial. As many of the

basins only have a few observational points regarding a few parameters, these

hydrologic processes need to be modeled with appropriate hydrological models.

The two classical types of hydrological models are the deterministic and stochastic

models.

Figure 3: Classification of hydrological models according to process
description (Chow et al., 1988).
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Figure 4: Classification of hydrological models according to process
description, spatial scale, time scale and method of solution (Chow et
al., 1988).

Deterministic Hydrological Models

Deterministic models permit only one outcome from a simulation with one set of inputs

and parameter values. Deterministic models can be classified depending on whether

the model offers a lumped or distributed description of the considered area and whether

the description of the hydrological processes is empirical, conceptual or physically
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based (Figures 3 and 4). Most conceptual models are lumped and most physically based

models are distributed. The three main groups of deterministic models are as follows:

• Empirical models (black box)

• Lumped conceptual models (grey box)

• Distributed process (physical) description-based models (white box)

Empirical (Black-Box) Models

Black-box models are empirical, involving mathematical equations that have been

assessed not from the physical processes in the catchment but from analyses of

concurrent input and output time series.

The first of this type of model is the rational method published by the Irish engineer

Thomas James Mulvaney (1822–1892) in 1851. The model was a single simple

equation often used for drainage design in small suburban and urban watersheds. The

equation assumes the proportionality between peak discharge, qpk, and the maximum

average rainfall intensity, ieff:

= × ×
Where AD is the drainage area and CR is the runoff coefficient, which depends on

watershed land use.

The equation was derived from a simplified conceptual model of travel times on basins

with negligible surface storage. The model reflects how discharges are expected to

increase with area, land use and rainfall intensity in a rational way, hence its name: the

rational method.

The scaling parameter C reflects the fact that not all rainfall becomes discharge. The

method does not attempt to separate the different effects of runoff production and

runoff routing that control the relationship between the volume of rainfall falling on the

catchment in a storm and the discharge at the hydrograph peak. In addition, the constant

C is required to take account of the nonlinear relationship between antecedent

conditions and the profile of storm rainfall, and the resulting runoff production. Thus,



C is not a constant parameter, but varies from storm to storm on the same catchment

and from catchment to catchment for similar storms.

The other well-known model among the black-box models is the unit hydrograph

model published by Sherman (1932), who used the idea that the various time delays for

runoff produced on the catchment to reach the outlet could be represented as a time

distribution without any direct link to the areas involved.

Because the routing procedure was linear, this distribution could be normalized to

represent the response to a unit of runoff production or the effective rainfall generated

over the catchment in a one-time step (Figure 4). The method is one of the most

commonly used hydrograph modeling techniques in hydrology and is simple to

understand and easy to apply. The unit hydrograph represents a discrete transfer

function for effective rainfall to reach the basin outlet, lumped to the scale of the

catchment.

Other empirical models were developed using linear regression and correlation

methods used to determine functional relationships between different data sets. The

relationships are characterized by correlation coefficients and standard deviation, and

the parameter estimation is carried out using rigorous statistical methods involving tests

for the significance and validity of the chosen model.

Lumped Conceptual Models

Lumped models treat the catchment as a single unit, with state variables that represent

average values over the catchment area, such as storage in the saturated zone. Due to

the lumped description, the description of the hydrological processes cannot be based

directly on the equations intended to be valid for the individual soil columns. Hence,

the equations are semi-empirical, but still have a physical basis. Therefore, the model

parameters usually cannot be assessed from field data alone but have to be obtained

with the help of calibration.

One of the first and most successful lumped digital computer models was the Stanford

watershed model developed by Linsley et al. in 1960 at Stanford University. The

Stanford model has up to 35 parameters, although it was suggested that many of them



could be fixed on the basis of the catchment’s physical characteristics and only a far

smaller number needed to be calibrated.

Distributed Process Description-Based Models

Another approach to hydrological process modeling is the attempt to produce models

based on the governing equations describing all the surface and subsurface flow

processes in a catchment. Freeze and Harlan (1969) made a first attempt to outline the

potentials and some of the elements in a distributed process description-based model

on the scale of a catchment. The calculations require large computers to solve the flow

domain and the points at the elements of the catchment.

Distributed models of this type have the possibility of defining parameter values for

every element in the solution mesh. They provide a detailed and potentially more

correct description of the hydrological processes in a catchment than the other model

types. The process equations require that many different parameters are specified for

each element and make the calibration difficult in comparison with the observed

responses of a catchment.

In principle, parameter adjustment for this type of model is not necessary if the process

equations are valid and the parameters are strongly related to the physical

characteristics of the surface, soil and rock. In practice, the model requires effective

values at the scale of the elements. Because of the heterogeneity of the soil and surface

vegetation, establishing a link between measurements and element values is difficult.

Distributed process description-based models can in principle be applied to almost any

kind of hydrological problem. Their development increased in recent years due to the

increase in computer power, programming tools and digital databases, and the need to

handle processes and predictions of runoff, sediment transport and/or contaminants.

Another reason for this increase in interest is that the models are needed for impact

assessment. Changes in land use such as deforestation and urbanization often affect

only part of a catchment area. With a distributed model, it is possible to examine the

effects of such land use changes in their correct spatial context by understanding the

physical meaning between the parameter values and the land use changes.



Recent examples of distributed process-based models include SHE (Abbott et al.,

1986), MIKE SHE (Refsgaard & Storm, 1995), IHDM (Institute of Hydrology

Distributed Model; Calver & Wood 1995), THALES (Grayson et al.1992) and SWAT

(Arnold and Allen, 1996).

Stochastic Time-Series Model

Stochastic models allow for some randomness or uncertainty in the possible outcomes

resulting from uncertainty in the input variables, boundary conditions or model

parameters. Traditionally, a stochastic model is derived from a time-series analysis of

a historical record. The stochastic model can then be used for the generation of long

hypothetical sequences of events with the same statistical properties as the historical

record. In this technique, several synthetic series with identical statistical properties are

generated. These generated sequences of data can then be used in the analysis of design

variables and their uncertainties, for example in estimating reservoir storage

requirements.

With regard to process description, the classical stochastic simulation models are

comparable to the empirical, black-box models. Hence, stochastic time-series models

are composed of a simple deterministic core (the black-box model), which is contained

within a comprehensive stochastic methodology. Hence, these form the broad generic

classes of rainfall-runoff models, be they lumped or distributed, i.e., deterministic or

stochastic. The vast majority of models used in rainfall-runoff modeling are

deterministic, though simpler models still offer wide applicability and flexibility. If the

interest lies in simulating and predicting a one-time series, for instance run-off

prediction, simple lumped-parameter models can provide just as good a simulation as

complex process description-based models.

4.2 Use of SWAT and its Comparison with other Models

Borah and Bera (2003, 2004) compared SWAT with several other watershed scale

models. In their 2003 study, they report that the dynamic watershed simulation model



(DWSM) (Borah et al., 2004), the Hydrologic Simulation Program - Fortran (HSPF)

model (Bicknell et al., 1997), SWAT and other models have hydrology, sediment, and

chemical routines that are applicable to watershed-scale catchments. They conclude

that SWAT is a promising model for continuous simulations in predominantly

agricultural watersheds. In their 2004 study, they found that SWAT and HSPF could

predict yearly flow volumes and pollutant losses, were adequate for monthly

predictions, with the exception of months with extreme storm events and hydrologic

conditions, and were poor in simulating daily extreme flow events. Gosain et al. (2005)

used SWAT to estimate the return flows on account of introducing an irrigation project

in a subbasin of the Krishna River in southern India. The assessment of return flow is

a very challenging task and very often the used estimates are erroneous. Gosain et al.

(2006) also used SWAT to evaluate the climate change impact on 12 Indian river

systems using data from the HadRM2 regional climate model.

Van Liew et al. (2003a) compared the streamflow predictions of SWAT and HSPF in

eight nested agricultural watersheds within the Little Washita river basin in

southwestern Oklahoma. They conclude that SWAT is more consistent than HSPF in

estimating streamflow for different climatic conditions and may thus be better suited

for investigating the long-term impacts of climate variability on surface water

resources. Saleh and Du (2004) found that the average daily flow, sediment loads and

nutrient loads simulated by SWAT came closer than HSPF to the measured values that

were collected at five sites during both the calibration and verification periods for the

upper North Bosque River watershed in Texas. Singh et al. (2005) found that SWAT

flow predictions were slightly better than the corresponding HSPF estimates for the

5,568 km2 Iroquois River watershed in eastern Illinois and western Indiana, primarily

due to SWAT’s superior simulation of low flows. Nasr et al. (2007) found that both

SWAT and the MIKESHE model (Refsgaard & Storm, 1995) simulated the hydrology

of Belgium’s Jeker River basin in an acceptable way. However, MIKESHE predicted

the overall variation of river flow slightly better.

Srinivasan et al. (2005) found that SWAT estimated flow more accurately than the soil

moisture distribution and routing (SMDR) model (for the 39.5 ha FD36 experimental



watershed in east central Pennsylvania) and that SWAT was also more accurate on a

seasonal basis.

Recently, climate change impact assessment has become a very pertinent concern for

the water and agriculture sectors. The Soil and Water Assessment Tool has been

modified in response to a widely acknowledged need for tools and information that can

help water and land managers assess and manage the impacts of climate variability and

change. The users can conduct watershed-based studies of the potential implications of

climate variability and changes in water and land resources. Specifically, SWAT pro-

vides flexible capabilities for creating climate change scenarios, allowing users to

quickly assess a wide range of “what if” questions about how weather and climate could

affect their systems. The existing capabilities of SWAT for assessing the effects of land

use change and management practices have been enhanced to assess the coupled effects

of climate and land use change.

In summary, the wide range of SWAT applications described above underscores that

the model is a very flexible and robust tool that can be used to simulate a variety of

watershed problems.

4.3 Major Hydrological Processes Calculated in SWAT

This section is adopted directly from SWAT theoretical document which is available

at http://www.scribd.com/doc/48374721/swat2000.

4.3.1 Surface Runoff

The two methods used in SWAT for estimating surface runoff are the SCS (soil

conservation service) curve number procedure and the Green & Ampt infiltration

method.

In this study, the SCS curve number method was used to estimate surface runoff

volumes due to the unavailability of sub daily rainfall data needed for the Green &

Ampt method. The SCS runoff equation is given by: -
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SIR
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aday
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 (4.1)



where Qsurf is depth of direct runoff, mm Rday depth of 24-hour precipitation, mm, Ia is

the initial abstraction which includes surface storage, interception and infiltration prior

to runoff (mm), and S is retention, mm. Empirical studies found that S is related to soil

type, land use, and the antecedent moisture condition of the basin. These are

represented by the runoff curve number, CN, which is used to estimate S with the

following equation:
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Where CN is the curve number for the day. The Curve Numbers are assigned based on

soil type (hydrologic soil group) and land use, and are modified depending on soil

moisture content at the time of rainfall (Ponce and Hawkins, 1996). CN1, CN2 and CN3

represent the three types of soil moisture conditions I, II and III for the day of the given

study area.

By analyzing rainfall and runoff data for many small watersheds, the following

empirical relation between Ia and S was developed: Ia = 0.2S and substituting it in

equation 4.1 becomes
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NB! Surface runoff (Qsurf) will only occur during Rday > Ia (=0.2S). S (The retention

parameter) is a function of soil water content and calculated as:
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where, Smax is the maximum value the retention parameter, mm, SW is the soil water

content, mm, and w1 and w2 are shape coefficients. The maximum retention parameter

value, Smax, is calculated by solving equation 4.2 using CN1.
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Where CN1 is moisture condition I at wilting point.

The shape coefficients (w1 and w2) are calculated in SWAT as:
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(4.7)

where w1, w2 and w2 are the first and second shape coefficients, respectively, FC is the

amount of water in the soil profile at field capacity (mm of water), S3 is the retention

parameter at, Smax is the retention parameter at CN1, SAT is the amount of water in the

soil profile when completely saturated (mm of water), and 2.54 is the value of the

retention parameter value at CN=99 where the number refers saturation condition.

By rearranging equation 4.2, it is possible to calculate the daily curve number as:

)254(

25400
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The moisture condition II and III curve numbers are calculated from equation 4.9 and

4.10.
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  223 100.00673.0exp. CNCNCN  (4.10)

Where CN2 is moisture condition II which is the average value that the daily curve

number can assume in average moisture condition and CN3 is moisture condition III

that the daily curve number can assume in wet moisture (field capacity) condition.

The moisture condition II curve number provided in the tables of SWAT manual are

assumed to be appropriate for 5% slopes. Equation 4.11 is developed by Williams,

(1995) to calculate the curve number which is adjusted for various slopes and given by.



(4.11)

Where CN2s is adjusted curve number for the moisture condition II, CN3 and CN2 are

the moisture condition III and II curve numbers for the default 5% slope, respectively,

and slp is the average percent slope of the sub basin.

4.3.2 Evapotranspiration

Evapotranspiration is the process by which water from land, plant and water surface on

the earth is converted to water vapor and transferred into the atmosphere. The combined

loss of water from the land to the atmosphere is usually called the loss. It is generally

quite a large fraction of total precipitation over a long period of time. Among the three

methods; the Penman-Monteith method, the Priestley-Taylor method and the

Hargreaves method incorporated in SWAT, we use the Hargreaves method to estimate

potential evapotranspiration (PET). The method was selected due to the fact that it

requires only air temperature. The form used in SWAT was published is (Hargreaves

et al.., 1985);

(4.12)

After SWAT computed the PET, then actual evapotranspiration is calculated from

canopy interception, transpiration from plants and evaporation from soil and/or

sublimation. The following section is discussing about how SWAT treats all these

possible losses.

i) Evaporation of intercepted Rainfall

Interception storage is that portion of the rainfall that is intercepted by trees, plants,

obstacles, and vegetation before it can reach the ground. Interception occurs in the

initial part of the storm and eventually the intercepting surfaces become wet (maximum

holding capacity). Empirical relationships are developed and depend on Density,

Vegetation type and given by:

0EEE cana  (4.13)



    caniINTfINT ERR  (4.14)

Where is the actual evapotranspiration(AET),mm, canE is the volume of water stored

in the canopy, mm, 0E is the potential evapotranspiration, mm,  iINTR is the initial

volume water held in the canopy, mm, and  fINTR is the final volume of water held in

the canopy, mm. If the potential evapotranspiration, 0E is greater than the amount of

free water held in the canopy, RINT, then

 iINTcan RE  (4.15)

  0fINTR (4.16)

Once any free water in the canopy has been evaporated, the remaining evaporative

water demand ( canEEE  00
' ) is portioned between the vegetation.

ii) Transpiration

Transpiration is loss of water through small openings (stomata) of the leaves and

calculated for the methods of Hargreaves and Priestley Talyor methods of estimating

potential evapotranspiration as:

0.3
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0
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iii) Sublimation and Evaporation from the soil

Water lost from soil to atmosphere controlled by surface wetness and replenishment of

wetness. The maximum amount of sublimation/evaporation on a given day is calculated

as:

sols EE cov.0
' (4.19)



Where sE is the maximum sublimation/evaporation on a given day, mm,
0

'E is the

PET adjusted for evaporation of free water in the canopy, mm, and is the soil

cover index and calculated as:

 CVCovsol .100.5exp 5 (4.20)

Where CV is the above ground biomass and residue (kg ha-1). If the snow water content

is greater than 0.5mm H2O, the soil cover index is set to 0.5.

As soil/sublimation is related with the efficiency of water use of plants, the computation

of evaporation is adjusted as:
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Where sE ' is the maximum evaporation adjusted for plant water use, sE is the

maximum sublimation/soil evaporation, 0
'E is the PET for evaporation of free water

in the canopy, and tE is the transpiration. When Et is low E’s Es However, as Et

approach E’o,
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 (4.22)

Once the maximum amount of sublimation/soil evaporation for the day is calculated,

SWAT will first remove water from the snow pack to meet the evaporative demand. If

the water content of the snowpack is greater than the maximum sublimation/soil

evaporation demand, then

ssub EE ' (4.23)

    sif ESNOSNO ' (4.24)

0'' sE (4.25)

Where subE is the amount of sublimation, is the maximum sublimation/soil

evaporation adjusted for plant water use on a given day prior to accounting for



sublimation (mm H2O),  iSNO and  fSNO are the amount of water in the snow pack on

a given day prior to and after accounting for sublimation, mm ,respectively., and sE ''

is the maximum soil water evaporation.

If the water content of the snowpack (SNO) is less than the maximum sublimation/soil

evaporation demand (E`s), then

 isub SNOE  (4.26)

, (4.27)

subs EEE s  ''' (4.28)

Regarding to soil water evaporation, SWAT used to initially portion the evaporation

demand for each layer according to the following equation:

 zZ

Z
EE sZsoil .00713.0374.2exp
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 (4.29)

Where ZsoilE , is the evaporative demand at depth z (mm H2O), sE '' is the maximum soil

water evaporative on a given day (mm H2O), and z is the depth below the surface.

4.3.3 Percolation

Percolation is the downward movement of water through the soil. In SWAT,

percolation is calculated for each soil layer in the profile. Upward flow may occur when

a lower layer exceeds field capacity. If the water content exceeds the field capacity

water content, then the available water is allowed to percolate for that layer. The soil

water to field capacity ratios of the two layers regulates movement from a lower layer

to an adjoining upper layer. Percolation is also affected by soil temperature. Percolation

will not allow in the soil at a particular layer, if the temperature in the layer is 0°C or

below.



Equation 4:30 and 4:31 are used to calculate the amount of water available for

percolation in the soil layer:

lylyexcess.ly FCSWSW  if lyly FCSW  (4.30)

0, excesslySW if lyly FCSW  (4.31)

where SWly, excess is the drainable volume of water in the soil layer on a given day (mm

of water), SWly is the water content of the soil layer on a given day (mm of water) and

FCly is the water content of the soil layer at field capacity (mm of water).

Once the volume of drainable water (SWly, excess) is estimated, the percolating water

amount (Wperc, ly) is calculated as:
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where t is the length of the time step (hrs), and TTperc is the travel time for percolation

(hrs).

The total volume of water (Wseep) leaving from the bottom of the soil profile on day i

is calculated:

btmcrknlypercseep www ,,   (4.33)

Where wperc, ly=n is the volume of water percolating out of the lowest layer, n, in the

soil profile on day i (mm), and wcrk, btm is the volume of water flow past the lower

boundary of the soil profile due to bypass flow on day i (mm).

4.3.4 Groundwater flow

Groundwater balance in SWAT model is calculated by assuming two layers of aquifers.

SWAT partitions groundwater into a shallow, unconfined aquifer and a deep-confined

aquifer. Groundwater flow contribution to total stream flow is simulated by creating

shallow aquifer storage (Arnold et al., 1993). Percolate from the bottom of the root



zone is recharge to the shallow aquifer. A recession constant, derived from daily stream

flow records, is used to lag flow from the aquifer to the stream.

The summary of different formulae used in SWAT for computing shallow and deep

aquifers is summarized in the following table 5:

Table 5: Summary of ground water computation adopted from SWAT theoretical

document which is available at http://www.scribd.com/doc/48374721/swat2000.



Note:

aqsh, i: the volume of water stored in shallow aquifer at time step i, mm

Wrevap: the volume of water flowing into soil zone at time step, i, mm

wdeep: the volume of water percolating from shallow aquifer to deep aquifer at time step I, mm

aqsh, i-1: the volume of water stored in shallow aquifer at time step i-1, mm

wpump, sh: the volume of water lost during pumping from shallow aquifer in time step I, mm

Qgw: ground water or base flow into the main channel

wrchrg: the volume of water entering in the aquifer in time step I, mm

hwtbl: Water table height (m)

Lgw: subbasin divide for the groundwater system to the main channel, m

Ksat: hydraulic conductivity of the aquifer, mm/day

gw: base flow recession constant

Qgw, o: the groundwater flow at the start of the recession, mm

Qgw, N: the groundwater flow on day N, mm

βdeep: the aqifer percolation coefficient

BFD: baseflow days

aqsh: the volume of water stored at the beginning of day i, mm

wdeep, mx: the max amount of water percolating into deep aquifer on day, mm

aqshthr, rvp: the threshold water level in the shallow aquifer for evap.

dhwthi/dt:  the rate of change of water table height

μ: specific yield of the shallow aquifer(m/m)

N: the time elapsed since the start of the recession, day

4.4 Previous Work Using SWAT to Estimate the Effect of Climatic
Changes

The effects of climate change on hydrological systems have been assessed by inserting

the climate-model output (mainly temperature and precipitation) into the hydrological

model. Additionally, numerous studies have been conducted at scales ranging from

small watersheds to the entire globe to assess the impacts of climate change on

hydrologic systems (Jha et al., 2006). As Jha et al. (2006) note with reference to Arnell

et al.’s (2001) survey, nearly 80 studies were published in the late 1990s in which

climate change impacts for one or more watersheds were analyzed using a climate

model - hydrological model approach. These studies represent different sub-regions of

the world, with more than half of them being carried out for river basins in Europe (Jha

et al., 2006). Relatively fewer studies have been conducted in the tropical regions of



Africa, where one of the longest rivers is found, namely the Nile. The River Nile is

already under great pressure due to various competing applications as well as social,

political and legal conditions within the riparian countries (Taye et al., 2011). To

understand and resolve the potential water-resource-management problems associated

with water supply, power generation and agricultural practices, as well as for future

water-resource planning, reservoir design and management, and protection of the

natural environment, it is necessary to quantitatively estimate the hydrological effects

of climate and land use change. In this regard, as Taye et al. (2011) state, several studies

have been conducted on the sensitivity of stream flow to climate change for many parts

of the Nile. Among these studies, Elshamy et al. (2009) ran an ensemble of climate

change scenarios using the Nile forecasting model with bias-corrected precipitation and

temperatures from 17 AOGCMs for the period of 2081–2098. This served to assess the

effects on the stream flow of the Blue Nile at Diem, which belongs to the Eastern Nile

basin. One of the conclusions drawn by Elshamy et al. (2009) is that the uncertainty in

future precipitation change due to increased greenhouse gas emissions is large, which

makes future changes in stream flow very uncertain. Recently, Taye et al. (2011)

simulated the climate change impact on hydrological extremes in two regions (the

Nyando basin located in the White Nile and Lake Tana catchment located in the upper

Blue Nile subbasin). They note that the unclear results for the Lake Tana catchment

imply that the GCM uncertainty was more important for the unclear trend than the

hydrological models’ uncertainty.

Like climate change, researchers are recently becoming more interested in looking at

the spatial-temporal effects of land use and climate change on stream flow responses,

which are crucial for sustainable water-resource planning and management. Several

investigations have been conducted on the question of the impacts of these changes on

stream-flow response. For example, Pikounis et al. (2003) examined the hydrological

effects of specific land use changes in a catchment of the River Pinios in Greece using

SWAT and made an analysis based on the SWAT’s monthly outputs. They developed

three land-use-change scenarios: expansion of agriculture, complete deforestation and

expansion of urban areas. All of these three scenarios resulted in an increase in

discharge during the wet months and a reduction in dry periods (Pikounis et.al, 2003).



Similarly, Fohrer et al. (2001) studied land use changes in Germany. In their study, the

total annual water budget was significantly affected if the land use changes affected

more than 20% of the basin area. The above two studies mainly focus on land use

changes and do not consider the consequences of climate change. Guo et al. (2008)

mention several studies that show a certain degree of interdependence between climate

and land use changes on different aspects of the water cycle. A major finding of their

study is that the climate effect is dominant in the annual stream flow (Guo et. al, 2008).

While land-cover changes had a moderate impact on annual stream flow, they strongly

influenced the seasonal stream flow and altered the annual hydrograph of the basin

(Guo et al., 2008). In a study of the upper Mara river basin in Kenya, Mango et al.,

(2011) show that a conversion of forests to agriculture and grassland in the basin

reduced the dry season flows and increased peak flows, thereby leading to greater

scarcity of water at a critical time of the year. In the same paper, the simulated runoff

responses to climate change scenarios were nonlinear and suggest that the basin was

very vulnerable under low (-3%) and high (+25%) extremes of projected rainfall

changes. However, the impacts of land use are more evident in seasonal stream-flow

change than in climate change effects, which are influenced mainly during extreme

storm events. The two studies discussed above show that various catchments behave

differently due to the effects of climate and land use change on annual and seasonal

scales.

4.5 Previous Work on Systems Type Black-Box Rainfall-Runoff
Models

Several hydrological models have been developed to simulate rainfall-runoff

relationships across the world (Rajurkar et al., 2004). These can be classified as

empirical black-box models, and conceptual and physically based distributed models

(Rajurkar et al., 2004). Black-box models are empirical, involving mathematical

equations that are assessed not from the physical processes in the catchment, but from

an analysis of concurrent input and output time series. Conceptual (lumped) models

treat the catchment as a single unit, with state variables that represent average values

over the catchment area, such as storage in the saturated zone. Another approach to



hydrological process modeling is the attempt to construct models based on the

governing equations describing all the surface and subsurface flow processes in a

catchment. These are called physically distributed models. Each of the models in this

group has particular advantages and limitations (Rajurkar et al., 2004). For instance, in

areas where obtaining sufficient hydro-meteorological data is problematic or where the

purpose of hydrological modeling is limited to flow estimation, applications of linear-

system theoretic models (black-box models) are inevitably important for water-related

development. However, choosing between the various available hydrological models

to suit a practical demand and finding the most appropriate model for a specified basin

is challenging. Many models are in practice simple linear-system theoretic models

(black-box models) (Rajurkar et al., 2003), which do often not represent the nonlinear

dynamics that are inherent in the process of rainfall-runoff transformation.

Minns and Hall (1996), and Campolo et al., (1999) observe that rainfall information

alone is not sufficient to calculate the runoff from a catchment, as the initial state (such

as the amount of soil moisture and orographic features) of a catchment plays an

important role in determining the runoff-rate behavior. The rainfall-runoff relationship

in mountainous regions is influenced by the steep-gradient profiles (i.e., inter flow and

sheet flow) and less influenced by soil composition (Markewich et al., 1990).

Nevertheless, soil composition in less steep environments plays a major role in runoff

generation due to the presence of very to moderately drained soils (Markewich et al.,

1990; Skaggs et al., 1991; Amatya et al., 1999, 2002; Slatyery et al., 2006). Therefore,

higher streamflows and runoff coefficients (R/P, where R is runoff and P is

precipitation) are usually associated with mountainous areas (Sun et al., 2002), while

smaller R/P ratios are expected for low-topographic gradient watersheds (Amatya et

al., 1997, 2000). Sun et al. (2008a, b) argue that runoff in lower-land-plain watersheds

have a far larger variability than upland watersheds due to the wider range of variable

source areas, including ephemeral water storage in depressions on low gradient terrains.

Evapotranspiration is another factor that affects the hydrological processes of the

watershed in shallow water tables (Torres et al., 2011). Evapotranspiration is mainly

influenced by humidity gradients, solar energy, wind speed, soil properties and



vegetation type (Amatya & Trettin, 2007; Sun et al., 2010). Other studies found that,

depending on the soil-moisture status, lowland watersheds were highly responsive to

rainfall by producing more frequent and greater amounts of runoff, with peak-flow rates

also depending on the surface depressional storage (Amatya et al., 1997). Furthermore,

some rainfall-runoff simulation models demonstrate that the degree of water saturation

in the soil prior to a precipitation event [the antecedent soil moisture condition

(AMSC)] correlates with the portioning of the event rainfall into infiltration and stream

flow (Ye et al., 1997; Wei et al., 2007; Tramblay et al., 2010).

Seasonal climate variability affects both the soil moisture and the characteristics of

storm events, which in turn affect the runoff-generation pattern (Torres et al., 2011).

These characteristics include rainfall intensity, frequency, duration and direction

(Singh, 19970). Although the antecedent soil-moisture condition of a watershed

influences the water available for runoff, as well as evapotranspiration and infiltration

via soil-water storage, it is highly variable and difficult to measure (Sun et al., 2002).



5 The Hydrology of Ethiopia

The study areas of this thesis include three river catchments: 1) the Eastern Nile (Paper

I), 2) Omo Gibe (Paper II) and 3) Gilgel Abbay (Paper III). The Eastern Nile and its

tributaries all originate on the Ethiopian plateau and its three subbasins lie between

5ºN, 33ºE and 15ºN, 39ºE, with altitudes ranging from 390 m in parts of Baro Akobo

(Sobat) to over 4,500 m in the Tekeze (Atbara) river basin (MoWR, 2002). The Blue

Nile has a total length of 1,450 km, of which 800 km are inside Ethiopia. The Blue

Nile flows south from Lake Tana and then west across Ethiopia and northwest into

Sudan. Although there are several feeder streams that flow into Lake Tana, the source

of the river is generally considered to be a small spring at Gish Abbay (Lesser Abbay),

which lies north of Lake Tana at an altitude of approximately 2,744 m. Other affluent

streams of this lake include the Gorgora, Magech, Gumara, Ribb and Kilti rivers. Lake

Tana’s outflow then flows for 30 km before plunging into Tis Issat Falls. The river then

loops across north-west Ethiopia through a series of deep valleys and canyons and joins

the Rahad and Dinder rivers downstream of Roseires in Sudan, after which it is known

as the Blue Nile.

There are numerous tributaries of Abbay between Lake Tana and the Sudanese border.

They include the Bashilo, Walaka, Jamma, Muger, Guder, Anger, Didessa, and Dabus

rivers from the left bank and the Muga, Temcha, Lah, Chamoga, Fettam and Beles

rivers from the right bank of the main Abbay River. After flowing past Roseires in

Sudan, the Blue Nile joins the White Nile at Khartoum and flows through Egypt to

the Mediterranean Sea at Alexandria. Due to the high seasonal variability in rainfall

over the Ethiopian plateau, the seasonal variation of the flow of the Abbay is large

with maximum runoff in August, when it is about 60 times greater than its minimum

in the month of February (Arsano, 2005).

The Baro-Akobo (Sobat) river system marks a 380 km frontier between Ethiopia and

Sudan, and originates in the Western Ethiopian Highlands. The Baro River is created

by the confluence of the Birbir and Gebba rivers, east of Metu in the Illubabor Zone of

the Oromia region in Ethiopia. It then flows west through the Gambela region to join



with the Pibor River from Sudan as well as rivers from northern Uganda to form the

Sobat. Other tributaries of the Baro include the Alwero and Gilo rivers. Of the Sobat

River tributaries, the Baro River is the largest, contributing 83% of the total water

flowing into the Sobat. During the rainy season, between June and October, the Baro

River alone provides about 14% of the Nile’s water at Aswan in Egypt. In contrast,

these rivers have very low flow during the dry season.

The Tekeze (Atbara) rises in the Northern Ethiopia Highlands, has the Angereb and

Guang as its major tributaries and replenishes the main Nile north of Khartoum. The

Tekeze joins the Atbara River after entering northeastern Sudan. The climatic pattern

and the physical environment of the Tekeze sub-system are very similar to those of the

Abbay subbasin (Figure 5).

Figure 5: Map showing an outline of Ethiopia and the water sources of the

Eastern Nile basin, including stream gauges at the major tributaries (dots) and

stream gauges for the calibration and validation of the model (boxes).

The total average annual flows are estimated to be 50, 23.6 and 8.2 billion m3 from the

Blue Nile (Abbay), Baro Akobo (Sobat) and Tekeze (Atbara) river basins, respectively



(Arsano et al., 2004; MoWR, 2002). They provide 86% of the water of the Nile (Blue

Nile (Abbay) 59%, Baro-Akobo (Sobat) 14%, Tekeze 13%) (Swain, 1997). Due to the

high seasonal variability in rainfall over the Ethiopian plateau, the flow of the Blue Nile

(Abbay) varies dramatically. The maximum runoff is in August, when it is about 60

times greater than its minimum in the month of February (Arsano, 2005). The climate

varies from warm, desert-like climate at the Sudan border, to wet in the Ethiopian

highlands. The annual rainfall ranges from 800 mm to 2200 mm with an average of

about 1,420 mm for Blue Nile (Abbay). The annual rainfall reaches at maximum of

3,000 mm over the highlands and a minimum of 600 mm in the lowlands with an annual

rainfall of about 1,419 mm in the case of the Baro Akobo basin. In contrast to the Blue

Nile river basin (Abbay) and Baro Akobo, the annual rainfall for Tekeze (Atbara) is far

lower, ranging from 600 mm to 1,200 mm, with an average of about 900 mm. Most of

rainfall occurs from June to September for all three basins (MoWR, 2002). More than

50%, 23% and 15.7% of the Blue Nile, Tekeze and Baro Akobo subbasins respectively

are used for agriculture, whereas the rest is covered by forest, grass, bush and shrubs.

The major soil types are lithosols and eutric cambisols for the Tekeze subbasin; chrome

acid luvisols, eutric vertisol, luvisols and lithic leptosols for the Blue Nile; and dystric

cambisols and orthic acrisols for the Baro Akobo subbasin (Figure 4 in paper I).

The Omo Gibe basin is also one of the significant surface water resources of Ethiopia.

It is drained by two major rivers from the highlands: the Gibe River flowing southwards

and the Gojeb River flowing eastwards. Downstream of their confluence only minor

tributaries join, as the river continues southwards where it empties into Lake Turkana

at the border with Kenya (Avery, 2010) (See Figure 1 in Paper II). By volume, Lake

Turkana is the 24th largest lake and the world's largest permanent desert lake. The Lake

Turkana catchment area is situated in both Ethiopia and Kenya and has an area of

130,860 km2, of which the Omo Gibe river basin covers 50% (74,300 km2) of the total

drainage area. Ninety percent of the inflow to Lake Turkana is contributed by the Omo

Gibe river basin. The Omo River has a total length of about 1,200 km, with an average

slope of 3.1 m/km. The long-term mean flow is estimated to be 435m3/s or 13.5 billion

m3 per annum (EEPCO, 2009) and seasonal variations are substantial, with a monthly



mean flow ranging from 60 m3/s in March to over 1,500 m3/s in August (EEPCO, 2009)

(Figure 6).

Figure 6: Map of the Omo Gibe river basin including major river networks,

meteorological stations and stream gauges used for calibration.

The annual rainfall within the Omo Gibe catchment decreases from north to south and

with its decrease in elevation. It varies from a minimum of 1,200 mm in the lowlands

to a maximum of about 1,900 mm in the highland areas (EEPCO, 2009). The average

annual rainfall calculated over the entire basin is 1,426 mm, with a mean annual

temperature of 20.4°C. Seventy-five to 80% of the annual rainfall occurs during a five-

month period from May to September (EEPCO, 2009). Over 40% of the Omo Gibe

river basin is covered by mixed forest, whereas the rest is covered by agriculture,

pasture, grass, bush and shrubs. The major soil types of the Omo Gibe basin are dystric

cambisols and lithosols.



The Gilgel Abbay catchment (4,051 km2) is the largest among the four main sub-

catchments in the Lake Tana basin in northern Ethiopia (Figure 7) and provides about

60% of the lake inflow. It is located at 10° 44'N latitude and 37° 23'E longitude (Figure

5). The catchment includes the two gauged subbasins: Upper Gilgel Abbay (1,664 km2),

which is the focus of this study, and Koga (307 km2) (Figure 6), with elevations ranging

from 1,787 m to 3518 m (see Figure 2 in paper I). The topography is rugged in the

southern part of the catchment and in the periphery to the west and southeast, while the

remaining part is a typical plateau with gentle slopes. The soil is dominated by clays

and clay loams. The dominant land use units are agricultural (65%) and agro-pastoral

land (33%) (BECOM, 1999).

Figure 7: Map of Lake Tana including the four major rivers (the Megeche,

Gumara, Rib and Gilgel Abbay rivers), the drain to Lake Tana, the Upper Blue



Nile river basin and the precipitation, temperature and stream-gauging station

located in the Gilgel Abbay subbasin.

Long-term (1980–2000) annual air-temperature values recorded at Merawi and Dangla

stations ranged from 11°C to 37.7°C, with an average daily temperature of 18.4°C. The

rainfall in Upper Gilgel Abbay has one main rainy season between June and September,

receiving about 70–90% of the annual rainfall (Kebede et al., 2006; Tarekegn &

Tadege, 2005; Abdo et al., 2009). Long-term rainfall data (1964–2005) also range

between 834 and 2,106 mm, with July representing the wettest month (356 mm) and

January representing the driest month (3.1 mm) on average. The rainfall data from

meteorological stations indicate significant spatial variability of rainfall following the

topography, with a decreasing trend from south to north. The temperature variations

are small throughout the year (BCEOM, 1999).



6 Concluding remarks and perspectives

This chapter attempts to present the main findings and conclusions of the study based

on the main objectives. The main objectives of this study are synthesized into three

groups. The first goal is to test the applicability of a physically distributed hydrological

model (SWAT) that is forced by daily station-based precipitation and temperature data

and calibrated with the daily streamflow to simulate two major river basins (Eastern

Nile, Paper I and Omo Gibe basin, Paper II). The second main objective of this study

is to analyze the impact of climate and/or land use change on streamflow and other

water-balance components to the assumed hypothetically synthesized scenarios. The

third goal is to test the usefulness of simpler models compared to complex hydrological

models for flow forecasting purposes.

6.1 Main Findings

The Soil and Water Assessment Tool 2005 adequately simulated the monthly

variability in flows for the Eastern Nile basin. The total simulated monthly streamflow

ranges from good (0.65 < ENS < 0.75) to very good (ENS > 0.75). The average daily and

monthly difference between the observed and simulated flow (PBIAS) was good

(PBIAS ≤ ±20%) for the calibration period, with the exception of the Blue Nile

subbasin, where it was only satisfactory (±20% < PBIAS ≤ ±40%) (Paper I).

The streamflow sensitivity to changes in precipitation and temperature differed among

the basins within the Eastern Nile and depended on the strength of the changes. The

general assessment, which is made by a relative sensitivity analysis for the 20

hypothetical climate change scenarios, is that the Eastern Nile’s annual streamflow is

very sensitive to variations in precipitation and moderately sensitive to temperature

changes (Paper I).

The annual streamflow responses to a 10% change in precipitation with no temperature

change were on average 19%, 17% and 26% for the Abbay, Baro Akobo and Tekeze

river basins, respectively. However, the responses to a reduction and increase in

precipitation were not the same. While Baro Akobo was more sensitive to a reduction



in precipitation, Tekeze showed a larger sensitivity to an increase. The streamflow

sensitivity to temperature was moderate. The average annual streamflow responses to

a 1°C change in temperature and no precipitation change were -4.4%, -6.4%, and -1.3%

for the Abbay, Baro Akobo and Tekeze river basins, respectively. The very low

sensitivity of the Tekeze basin indicates that flows were moisture limited for a large

part of the year (Paper I).

Applying the combined temperature-precipitation sensitivities and 47 temperature and

precipitation scenarios from 19 AOGCMs participating in CMIP3, we estimated the

future streamflow change to be very uncertain and strongly dependent on the choice of

climate model. The reason for this is the disagreement between the different climate

models on both the strength and direction of future precipitation changes.

In Paper II, the sensitivity of the Omo Gibe river basin to climate and/or land use

change was also modeled using SWAT. The model was successfully calibrated and

validated at the Great Gibe and Gojeb river gauges, with good agreement between the

observed and simulated monthly streamflow. The monthly bias during the validation

period was -14% and 7% for the Great Gibe and Gojeb rivers, respectively, while the

Nash-Sutcliffe efficiency factor was 0.75 and 0.88, respectively.

The simulated effect of land use changes resulting from various hypothetical land use

modifications is secondary to the effect of precipitation changes on the annual

streamflow. However, the seasonal changes in streamflow were in some cases strongly

affected by land use. As an example, a deforestation scenario (entire forest-area

coverage changed to bare lands) increased the January-April (dry season) streamflow

by 38% (Paper II).

The results indicate that modeling various changes in land use renders a change in

streamflow that generally lies below 10% per 10% change in land use. Deforestation

of the entire region, through the change of the entire forest-area coverage (48% of the

basin) to bare lands, increased the annual streamflow by 19.9% compared to the



reference simulation. This result deviates from the report by Avery (2010), which states

that the streamflow may decrease by 50–60%.

Streamflow sensitivity to land use change was largest when agricultural land was

converted to either forest or bare lands. In the AAG to BRLNDS scenario, there is

strongly reduced evapotranspiration due to less transpiration and more soil moisture

retained in the soil due to plant cover, which later led to increased streamflow. In

contrast, in the case of AAG to FRST, the soil moisture contributes significantly to

reducing evaporation but there is strong transpiration due to plant cover. The overall

effect results in decreased streamflow.

For many of the simulations, the relative streamflow sensitivity was largest in the dry

period of JFMA due to changes in evapotranspiration, as transpiration (a component of

evapotranspiration) was altered when land use was altered. In addition, many of the

simulations show the weakest streamflow response in the period of October–December.

This is because this period follows the wet period (MJJAS), as well as because

evapotranspiration is dominated by evaporation and the soil moisture is large. Thus,

changes in transpiration due to land use changes are less important.

The results on the sensitivity of streamflow to temperature and precipitation (14

hypothetical climate change scenarios) show that the basin streamflow is very sensitive

to precipitation changes and moderately sensitive to temperature changes. The annual

streamflow response to a 10% change in precipitation with no temperature change was

25% on average, while the streamflow sensitivity to temperature was relatively low.

The average annual streamflow responses to a 1°C change in temperature and no

precipitation change was -1.4%.

The highest sensitivity to precipitation change was observed during the dry period

(JFMA), with a 31% change in streamflow from a 10% precipitation increase. This is

because of the relatively decreased evapotranspiration due to minimum transpiration

from less vegetation cover during this period.



For all seasons except JFMA, the combined effect of a precipitation change and

temperature increase was linear (the sum of the changes to precipitation and

temperature individually). The nonlinear behavior during JFMA was due to the

interaction among various factors that are more pronounced in this season than in other

periods of the simulation. These factors include the soil’s physical properties (in

relation to limited soil moisture), less vegetation cover, minimum precipitation amount

and high temperatures during this period.

The JFMA season is far more sensitive to temperature change than the other two

seasons (-3.5%/K). This is due to moisture constraint and an increased temperature to

dry out moisture from the soil via evapotranspiration in the season, which in turn results

in a reduction of streamflow. The large sensitivity of streamflow in JFMA may have

serious implications for the management of water supply for domestic and industrial

use, and for power generation and agriculture, because a number of small streams

which are currently perennial may be altered to become intermittent.

In addition to describing the effects of individual land use or climate change on seasonal

and annual streamflow, the effect of simultaneous changes in both land use and climate

on the water cycle was investigated. The results indicate that the combined effects differ

only slightly from the effect resulting from the sum of the individual land use and

climate changes. For example, in a wet scenario, changing land use to increase bare

land areas would increase streamflow by 58.41%, which is slightly less than the 63.4%

from simple additions of the individual effects from changes in land use (16.8%) and

climate (46.6%). However, there are exceptions to this linear response, showing that

the model simulates some effects leading to nonlinear interactions among water-

balance components when simultaneous changes in land use and climate change would

take place in the same basin.

Among the nine hydrological models that were tested (Paper III), the performance of

the naïve SLM is inferior to that of all other models. As the study catchment is

characterized by seasonality, the LPM outperforms the LVGFM and even the SMAR

model. However, the ANN, which is characterized by a large number of weights



(parameters), generally performs better than the simpler models. The SMAR model

variants, having either nine or ten parameters, fail to adequately simulate the

hydrological behaviour of the Gilgel Abbay catchment.

Therefore, this study confirms that simpler models (which take only rainfall as input)

can surpass their complex counterparts in performance for continuous simulation and

in reproducing hydrographs or flow estimations.

6.2 Conclusion and Future Perspectives

In summary, the good performance of SWAT in the validation period indicates that the

fitted parameters during the calibration period can be taken as a representative set of

parameters for the Eastern Nile and Omo Gibe watersheds, and that further simulation

and evaluation of alternative-scenario analysis can be carried out for other periods

using this tool. The tool simulates monthly flows better than daily flows and is probably

not adequate for studies of single severe events in small catchments.

The overall assessment made by a sensitivity analysis for the hypothetical climate-

sensitivity scenarios reveals that the annual streamflow of the study areas was very

sensitive to variations in precipitation and moderately sensitive to temperature

changes. In addition, we show that the modelled response of a combined temperature

and precipitation change was very similar to the simulations that resulted from adding

the responses from the temperature change only and the precipitation change only

(Papers I and II).

Using the combined temperature-precipitation scenarios from 19 AOGCMs

participating in IPCC AR4, we estimated that the streamflow change varied strongly,

as the climate models disagree on both the strength and direction of future precipitation

changes. Thus, based on the state-of-the-art climate models, little can be said about

future changes in the Eastern Nile’s streamflow. This finding is similar to that in the

study of Elsahmay et al. (2009). However, our analysis emphasizes the need for

performing ensemble runs using different climate models in this type of assessment.

This uncertainty may have implications for long-term water-resource planning,



estimation of future hydropower potential, reservoir design and determination of the

extent to which the development of agriculture should utilize river- or groundwater-

based irrigation systems (Paper I).

Paper II proposes that the management of the emerging cascaded hydropower

development promises to be a daunting task, given the high sensitivity of precipitation.

This requires careful consideration in implementing seasonal flow-forecasting models

and reservoir-operation management for sustainable upstream-downstream interaction.

In conclusion, Paper III confirms that in cases where the river is well gauged, simpler

models for continuous river-flow simulation can surpass their complex counterparts in

performance. There is a justification for the claim that increasing the model complexity,

thereby increasing the number of parameters, does not necessarily enhance the model

performance as long as the additional parameters are not well constrained. It is

suggested that, in practical hydrological applications, the simpler models may still play

a significant role as effective simulation tools and that performance enhancement is not

guaranteed by the adoption of complex model structures.

Finally, we note several weaknesses of the above analysis. The first is that it attempts

to address climate change impact with only one hydrological model and two forcing

variables (precipitation and temperature), thereby neglecting all other variables (such

as vegetation or radiation changes), which may affect runoff generation. The second

limitation is that we multiplied the precipitation with a fraction, which entails that we

assumed that the wet-day frequency remained unchanged and that the whole

precipitation change was given as a change in intensity. For temperature, we added a

constant for the entire year, thereby assuming that the changes were not dependent on

the season. We also used a simple linear estimate to link the CMIP3 climate change

scenarios to changes in streamflow. These were all crude assumptions. However, we

feel that the substantial uncertainty about future precipitation changes partly justifies

our crude treatment of the parameters.
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Abstract. The hydrological model SWAT was run with daily station-based

precipitation and temperature data for the whole Eastern Nile basin including the three

subbasins: - The Abbay (Blue Nile), Baro Akobo and Tekeze. The daily and monthly

streamflows were calibrated and validated at six outlets with station-based streamflow

data in the three different subbasins. The model performed very well in simulating the

monthly variability while the validation against daily data revealed a more diverse

performance. The simulations indicated that around 60 % of the average annual rainfall

of the subbasins was lost through evaporation while the estimated runoff coefficients

were 0.24, 0.30 and 0.18 for Abbay, Baro Akobo and Tekeze subbasins, respectively.

About half to two-thirds of the runoff could be attributed to surface runoff while the

other contributions came from groundwater. Twenty hypothetical climate change

scenarios (perturbed temperatures and precipitation) were conducted to test the

sensitivity of SWAT simulated annual streamflow. The result revealed that the annual

streamflow sensitivity to changes in precipitation and temperature differed among the

basins and the dependence of the response on the strength of the changes was not linear.

On average the annual streamflow responses to a change in precipitation with no

temperature change were 19 %, 17 %, and 26 % per 10 % change in precipitation while

the average annual streamflow responses to a change in temperature and no

precipitation change were −4.4 % K−1, −6.4 % K−1, and −1.3 % K−1 for Abbay, Baro

Akobo and Tekeze river basins, respectively.



47 t e m p e r a t u r e and p r e c i p i t a t i o n scena r ios f r o m 1 9 AOGCMs

participating inCMIP3 were used to estimate future changes in streamflow due to

climate changes. The climate models disagreed on both the strength and the direction

of future precipitation changes. Thus, no clear conclusions could be made about future

changes in the Eastern Nile streamflow. However, such types of assessment are

important as they emphasis the need to use several an ensemble of AOGCMs as the

results strongly dependent on the choice of climate models.

1 Introduction

Numerous studies have been conducted at different scales ranging from small

watersheds to the entire globe to assess the impacts of climate change on hydrologic

systems (Jha et al., 2006). As Jha et al. (2006) noted with reference Arnell et al. (2001),

nearly 80 studies were published in the late 1990s in which climate change impacts

for one or more watersheds were analyzed using a coupled climate model hydrologic

model approach. However, more than half of the studies were carried out for river

basins in Europe (Jha et al., 2006) and relatively few studies have been conducted in

tropical region in Africa. The River Nile is already under great pressure from various

competing applications as well as social, political and legal conditions within the

riparian countries (Taye et al., 2011). To understand and resolve the potential water

resource management problems associated with water supply, power generation, and

agricultural practices as well as for future water resource planning, reservoir design and

management, and protection of the natural environment, it is necessary to provide

quantitative estimates of the hydrological effects of climate change. In this regard as

Taye et al. (2011) stated several studies have been con- ducted on the sensitivity of

streamflow to climate changes for many parts of the Nile. Among these studies,

Elsahmay et al. (2009) run an ensemble of climate change scenarios using the Nile

Forecasting Model with bias corrected precipitation and temperatures from 17 coupled

general circulation models (AOGCMs) for the 2081–2098 period to assess the effects

on the streamflow of the Blue Nile at Diem which belongs to Eastern Nile basin.   One

of the conclusions in Elshamy et al. (2009) was that the uncertainty in future



precipitation change due to increased greenhouse gas emissions are large, making the

future changes in streamflow very uncertain. Recently Taye et al. (2011) simulated the

climate change impact on hydrological extremes in two regions (Nyando basin found in

White Nile and Lake Tana catchment located in upper Blue Nile subbasin) and noted

that for Lake Tana catchment the GCM uncertainty was more important than the

hydrological models’ uncertainty.

Abbay (Blue Nile), Baro Akobo (Sobat) and Tekeze (Atbara) are the three major river

basins in the Eastern Nile which all originated from the Ethiopian Highlands. 86 % (or

82 km3) of the total average flow of the Nile at Aswan is estimated to origin from these

three river basins (Arsano, 2005). Several attempts have been made to implement

hydrological models for the Blue Nile basin. Sutcliffe et al. (1989) and Dugale et al.

(1991) used a simple daily hydrological model calibrated by METOSAT derived

rainfall estimates and the National Oceanic and Atmospheric Administration, USA in

collaboration with the Egyptian Ministry of Public Works has developed a

comprehensive model of the Nile to predict the inflow to the Aswan Dam (Barrett et al.,

1993; Schaake et al., 1993; Johanson and Curtis, 1994; Todd et al., 1995). However, as

Conway (1997) stated, both of these investigations suffered by the lack of in situ data,

in particular subbasin discharge data to calibrate the hydrological models and gauge

estimates of daily rainfall to calibrate the METEOSAT derived estimates of rainfall.

Conway (1997) applied a grid based water balance model with limited meteorological

and hydrological data inputs on a monthly time step for the Blue Nile catchment.

According to Conway (1997) the correlation between observed and simulated annual

flows was 0.74 for a 76-yr data period and the mean error was 14 %, although relatively

large errors occurred in individual years. Furthermore, Mohamed et al. (2005) focused

on the interaction between the climatic processes and the hydrological processes on the

land surface in the subbasins of Nile (White, Blue Nile, Atbara and the main Nile) using

a regional atmospheric model to show that the model could reproduce runoff reasonably

well over the subbasins of the Nile. The above studies except the latter, have all been

investigating the upper Blue Nile basin but there are still very few published studies on

the two other basins (Tekeze and Baro Akobo). Recently, Setegen et al. (2008)

investigated the Lake Tana Basin (part of the Blue Nile) using the hydrological model



(SWAT) and studies applying the same model have also been conducted for the Meki

basin (Central Ethiopia) and the upper Awash basin (western catchment of the Awash

basin in Ethiopia) by Zeray et al. (2007) and Checkol (2006), respectively. These three

studies showed that the SWAT model was able to describe the study areas with a quality

that makes it suitable for water resource management use.

The aim of this paper is to test the applicability of the Soil and Water Assessment Tool

(SWAT) physically distributed model over the three major subbasins in Eastern Nile at

larger watershed scale and thereby complementing other older studies that have

simulated parts of the catchment. Sensitivity studies to assess the potential impacts of

climate change on the annual streamflow is performed using twenty hypothetical

climate change perturbations in temperature, precipitation or both. In addition, the

sensitivities found above together with 47 temperature-precipitation scenarios from

19AOGCMs which were participating inpahse 3 of the Coupled Model Inercomparison

Project (CMIP3) are used to assess the uncertainty in future streamflow changes for

the Eastern Nile.

2 Description of the study area

The Eastern Nile and their tributaries all originate on the Ethiopian plateau and the

three subbasins of the Eastern Nile lies between 5◦ N 330 E and 15◦ N 390 E with altitude

ranges from 390 m in part of Baro Akobo to over 4500 m in the Tekeze river basin

(MoWR, 2002). The total average annual flows are estimated to be 50.0, 23.6 and 8.2

billion cubic meters from the Abbay, Baro Akobo and Tekeze river basins, respectively

(Arsano et al., 2004; MoWR, 2002). They provide 86 % of the waters of the Nile

(Abbay 59 %, Baro Akobo 14 %, Tekeze 13 %, Swain, 1997).

According to materials published by the Ethiopian Central Statistical Agency, the

Blue Nile has a total length of 1450 kilometer, of which 800 km are inside Ethiopia.

The Blue Nile flows south from Lake Tana and then west across Ethiopia and

northwest into Sudan. Although there are several feeder streams that flow into Lake

Tana, the source of the river is generally considered to be a small spring at Gish Abbay

(Lesser Abbay) north of Lake Tana at an altitude of approximately 2744 m. Other



affluent streams of this lake include, from Gorgora, Magech, Gumara, Ribb, and Kilti

Rivers. Lake Tana’s outflow then flows 30 km before plunging over the Tis Issat Falls.

The river then loops across north- west Ethiopia through a series of deep valleys and

canyons and join Rahad and Dinder rivers downstream of Roseires in Sudan, after

which it is known as the Blue Nile.

There are numerous tributaries of Abbay between Lake Tana and the Sudanese border.

Some of these are Bashilo, Walaka, Jamma, Muger, Guder, Anger, Didessa, and Dabus

Rivers from the left bank, and Muga, Temcha, Lah, Chamoga, Fettam and Beles Rivers

from right bank of the main Abbay River. After flowing past Roseires inside Sudan,

the Blue Nile joins the White Nile at Khartoum and, as the River Nile, flows through

Egypt to the Mediterranean Sea at Alexandria. Due to the high seasonal variability in

rainfall over the Ethiopian plateau, the seasonal variation of the flow of the Abbay is

large with maximum runoff is in August when it is about 60 times greater than its

minimum in the month of February (Arsano, 2005).

The Baro-Akobo (Sobat) river system marks a 380km frontier between Ethiopia and

Sudan and originates in the Western Ethiopian Highlands. The Baro River is created

by the confluence of the Birbir and Gebba Rivers, east of Metu in the Illubabor Zone of

the Oromia Region, Ethiopia. It then flows west through the Gambela Region to join

with the Pibor River from Sudan and Rivers from Northern Uganda to form the Sobat.

Other notable tributaries of the Baro include the Alwero and Gilo Rivers. Of the Sobat

River tributaries, the Baro River is the largest, contributing 83 % of the total water

flowing into the Sobat. During the rainy season, between June and October, the Baro

River alone contributes about 14 % of the Nile’s water at Aswan, Egypt. In contrast,

these rivers have very low flow during the dry season.

The Tekeze (Atbara), rises in Northern Ethiopia Highlands and have the Angereb and

Guang as its major tributaries, it replenishes the main Nile north of Khartoum. The

Tekeze joins the Atbara River after entering northeastern Sudan. The climatic pattern

and physical environment of the Tekeze sub- system are very similar to those of the

Abbay subbasin.

The climate varies from warm, desert-like climate at the Sudan border, to wet in the

Ethiopian Highlands. The annual rainfall ranges from 800 mm to 2200 mm with an



average of about 1420 mm for the Abbay river basin. The annual rainfall reaches at

maximum of 3000 mm over the highlands and a minimum of 600 mm in the lowlands

with annual average rainfall of about 1419 for the case of Baro Akobo Basin. In

contrast to the Abbay and Baro Akobo river basins, the annual rainfall for Tekeze is

much lower, ranging from 600 mm to 1200 mm with an average of about 900 mm. Most

of rainfall occurs from June to September for all the three subbasins (MoWR, 2002).

3 Methods and materials

3.1 Model description
We used the physically based, distributed parameter model- SWAT (Soil and Water

Assessment tool, version SWAT2005) which operates on daily time step and uses

physiographical data such as elevation, land use and soil properties as well as

meteorological data and, river discharge data for calibration (Arnold and Allen, 1996).

3.2 Hydrological processes

The hydrological processes included in the model are evapotranspiration (ET), surface

runoff, infiltration, percolation, shallow and deep aquifers flow, and channel routing

(Arnold et al., 1998). The effects of spatial variations in topography, land use, soil and

other characteristics of watershed hydrology are incorporated by dividing a basin into

several subbasins based on drainage areas of tributaries and is further divided the

subbasins into a number of hydrological response unit (HRUs) within each subbasin,

based on land cover and soils. Each HRU is assumed spatially uniform in terms of land

use, soil, topography and climate. The subdivision of the watershed enables the model

to reflect differences in evapotranspiration for various crops and soils. All model

computations are performed at the HRUs level.

The fundamental hydrology of a watershed in SWAT is based on the following water

balance equation
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Where SW is the soil water content (mm), Rday is the amount of precipitation on (mm),

Qsurf is the amount of surface runoff (mm), Ea is the amount of evapotranspiration

(mm), Wseep is the amount of water entering the vadose zone from the soil profile

(mm), and Qgw is the amount of ground flow (mm).  Detail descriptions of the

different model components can be found in Arnold et al. (1998) and Neitsch et al.

(2002a).

3.3 Physiographical data for the three subbasins

A range of spatially distributed data such as topographic features, soil types, land use

and the stream network (optional) are needed for the model. Table 1 summarizes the

input data use in the AVSWAT-X interface.

3.3.1 Digital elevation model

A DEM was created using a 1 km2 resolution topographic database obtained from

the Ethiopian Ministry of Water Resources. The DEM (see Fig. 2) was used to delineate

the watershed and the drainage patterns of the surface area analysis. Subbasin

parameters such as slope gradient, slope length of the terrain, and the stream network

characteristics such as channel slope, length, and width were derived from DEM.

Table 1: Data sources for the Eastern Nile basin.

Data Type Scale Data Descriptions

DEM (Topographical data) 1km*1km Elevation data from Ethiopia ministry

of water resources

Soil 10km*10km Soil texture data from ministry of

water resources supplemented by the

FAO soil data base



.

Figure 1: Map showing an outline of Ethiopia and the water sources of Eastern Nile

basin including stream gauges at the major tributaries (dots) and stream gauges for

calibration and validation of the model (boxes)

3.3.2 Land use and soil maps

Land use is one of the main factors affecting surface erosion, and evapotranspiration

in a watershed. The source of land use map of the study is the Ministry of Water

Resources Ethiopia and land use/land cover map was taken from the global Hydro1K

dataset (Hansen, 1998) and modified to correspond with the SWAT predefined land

uses classification (Fig. 3).

More than 50 %, 23 % and 15.7 % of Abbay, Tekeze and Baro Akobo subbasin,

respectively, are used for agriculture whereas forest, grass, bush and shrubs cover the

Land use 1km*1km Land classification and their

attributes from Ethiopia ministry of

water resources



rest. For detail see Fig. 3. Land use of the study area has changed over time (Rientjes

et al., 2011) due to over increasing population density, changing agricultural practices,

urbanization and water related infrastructure such as irrigation and hydropower

production. As no detailed mapping of these changes exists for the whole region it

is not taken into account.

Figure 2: Topography (m) of the eastern Nile basin based on a 1 × 1 km digital

elevation model.

Different types of soil texture and physical chemical properties are required for SWAT

simulations. These data were obtained from various sources. The soil map obtained

from Ministry of Water Resources of Ethiopian at Water Resources Information and

Metadata Base Centre department. However, several properties like moisture bulk



density, saturated hydraulic conductivity, percent clay content, percent silt content and

percentage sand content of the soil which are required by SWAT model were not

incorporated. These additional data were substantiated from various sources such as

Wambeke (2003); USDA (1999) and FAO (1995). As it is shown in Fig. 4, the major

soil types are lithosols and Eutric Cambisols for Tekeze subbasin: Chrome Acid

Luvisols, Eutric Vertisol, Luvisols and lithic Leptosols for Abbay and Dystric cambisols

and orthic Acrisols for Baro.

Figure 3: Map of land use of the three sub-basins of the Eastern Nile (Tekeze, Abbay

and Baro Akobo)



Figure 4: Map of soil types of the three sub-basins of the Eastern Nile (Tekeze,

Abbay and Baro Akobo)

3.3.3 Meteorological Data

SWAT requires daily meteorological data, which were collected from the Ethiopian

National Meteorological Agency (NMA) for the period 1987-2006. Figure 5 shows the

stations used in this study and Table 2 summarize the number of stations in each

subbasin. Missing values were filled using the SWAT built-in weather generator

developed by Nicks, (1974). The weather generator used a first-order Markov chain



model. For each subbasin input to the weather generator was observed precipitation

data for the weather station that was nearest the centroid of the subbasin and having a

record length from 1967-2006. Given the observed wet and dry days frequencies, the

model determines stochastically if precipitation occurs or not. When precipitation event

occurs, the amount is determined by generating values from a skewed normal daily

precipitation distribution or a modified exponential distribution which is calculated

based on the observed data. The amount of daily precipitation is partitioned between

rainfall and snowfall using average daily air temperature. The average percentage of

missing data in the observed datasets was less than 10% and 5% of precipitation and

temperature recorded data set respectively.

3.3.4 River Discharge

Hydrological discharge data were collected from the Ministry of Water Resources of

Ethiopia. Table 3 summarizes the number of stream gauges with the date of the record

length used for calibration and validation. All the flow data were daily except at Diem

(Abbay, Sudan Border) where only monthly data was available.

3.5 Model Setup

The Abbay, Baro Akobo and Tekeze stream network and sub watersheds were

delineated using ARCSAWT-X, following specification of the threshold drainage

areas. The threshold area is the SWAT suggested drainage area required to form the

origin of the stream. 24, 29, 25 sub watersheds; and 309, 128 and 313 HRUs of Abbay,

Baro Akobo and Tekeze river basin-



Figure 5: Main Rivers and meteorological stations in the eastern Nile basin.

Table 2: Meteorological data sources for Eastern Nile basin.

Data Type Number of stations Data Descriptions

Temperature (Tmax and

Tmin)

Abbay 42stations
Baro Akobo 8 stations
Tekeze 10 stations

Daily data from the Ethiopian

National Meteorological Agency

(NMSA)

Precipitation Abbay; 74 stations
BaroAkobo 12 stations
Tekeze 11stations

Daily data the Ethiopian National

Meteorological Agency (NMSA)

Temperature station

Ranfall station



Table 3: Streams gauges and their corresponding drainage area with calibration and
validation dates used for model simulation

as a function of 2% land use and 5% soil types within a given watershed, respectively

were delineated up to the point of outlets for each subbasin. These points constituents

of a drainage area of 174,000, 43,906, and 76,343 km2 that drain about 86%, 60% and

93% of the entire Abbay (201,340km2), Baro Akobo (74,102km2) and Tekeze (82,350

km2) subbasins, respectively which all are found in Ethiopia.

The SCS (Soil conservation service) curve number procedure (USDA-SCS,1972) was

applied to estimate surface runoff volumes due to the unavailability of sub daily rainfall

data required for the Green and Ampt method that SWAT offers a different option to

estimate surface runoff. The potential evapotranspiration (PET) estimates and channel

routing were performed using Hargreaves and Muskingum of the model option of

SWAT, respectively.

1 Time period variation were due to differences in readily available measured flow data records

Stream gauge Drainage

Area(km2)

Calibration date1 Validation date

Tana outlet (Abbay) 15321 1/1/1991-

12/31/1996

1/1/1997-12/31/2000

Kessie (Abbay) 65784 1/1/1991-

12/31/1996

1/1/1997-12/31/2000

Diem (Abbay) 17400 1/1/1991-

12/31/1996

1/1/1997-12/31/2000

Embamadre (Tekeze) 45694 1/1/1994-

12/31/1999

1/1/2000-1/31/2003

Gambella (Baro Akobo) 23461 1/1/1990-

12/31/1998

1/1/1999-12/31/2004

Gilo (Baro Akobo) 10137 1/1/1990-

12/31/1998

No recorded data



3.6 Sensitivity Analysis

Table 4: List of adjusted parameters with calibrated values after manual and

automatic calibration at the selected outlets for three subbasins of Eastern Nile using

SWAT 2005 model.

After pre-processing of the data and SWAT model set up, simulation was done for the

periods indicated in Table 3 for the three sub basins. The built-in SWAT sensitivity

analysis tool that uses the Latin Hypercube One- factor-AT-a –Time (LH-OAT) (Van

Griensvenet al., 2002: Van Griensvenet,2005) was used. Six outlets (Figure 1) were

selected for the sensitivity analysis; Three of them (Tana outlet, Kessie and Diem) in

 2 The ranges are based primarily on recommendations given in the SWAT User’s Manual (Neitsch et
al. 2002a).

 * SWAT default parameters and SWAT driven parameters were used.

 ** Field measured and from literature collected parameters.

Id Parameter Description Range2 Initial values Calibrated values

Abbay Baro Tekeze

1 CN2 Initial SCS CN II value ±25% * -10% -12% -24%

2 Sol_K Saturated Hydraulic

conductivity [mm/mm]

±25% ** -4%                   1.3% 19%

3 ESCO Soil evaporation

compensation factor

0.0-1.0 0.95 0.7                    0.58 0.8

4 SOL_AWC Available water capacity

[mm water/mm soil]

±25% ** +25% 7% 9.4%

5 SOL_Z Soil depth[mm] ±25% ** -4%            25% 13%

6 GWQMN Threshold water depth in

the shallow aquifer for

flow[mm]

0.0-

5000

0.0 200            319 53

7 CANMX Maximum canopy storage 0-10 0.0 9.7                      2.4 0.31

8 ALPHA_BF Base flow alpha factor 0.0-1.0 0.048 0.048 0.018 0.002



the Abbay, and two in Baro Akobo (Gambella and Gilo) and one in Tekeze

(Embamadre).

According to Lenhart et al.(2002) the sensitivity of a flow to a parameter can be

categorized into four classes. If the relative sensitivity lies between 0-0.05 and 0.05-

0.2, then the parameter is classified as negligible and medium, respectively, whereas if

it is varying between 0.2-1.0 and greater than 1 then categorized as high and very high

class, respectively. Out of 28 selected parameters the curve number, available water

capacity, average slope steepness, saturated hydraulic conductivity, soil evaporation

compensation factor, soil depth, maximum canopy storage, threshold water depth in

the shallow aquifer for flow, and base flow alpha factor were identified as being

parameters to which the flow has medium, high or very high sensitivity. The ranking

of the parameters was different at various outlets where sensitivity test was carried out.

However, the curve number (CN2) was the main sensitivity parameter for all outlets.

This is due to the fact that the curve number depends on several factors including soil

types, soil textures, soil permeability, land use properties etc. In addition, the relative

sensitivity of the available water capacity (Sol-AWC), the soil evaporation

compensation factor (ESCO) and the saturated hydraulic conductivity (Sol-K) were

also high in all outlets. From the sensitivity test, eight parameters having a relative

sensitivity greater than 0.05 (sensitivity of the flow to the parameter categorized as

medium or higher) were selected for the calibration process.

The ranges are based primarily on recommendations given in the SWAT User’s Manual

(Neitsch et al. 2002a). SWAT default parameters and SWAT driven parameters were

used. ** Field measured and from literature collected parameters.

3.7 Calibration and Validation

Watershed models contain many parameters; these parameters are classified into two

groups: physical and process parameters. A physical parameter represents physically

measurable properties of the watershed (e.g. areas of the catchment, fraction of

impervious area and surface area of water bodies, surface slope etc) while process

parameters represents properties of the watershed which are not directly measurable



e.g. average or effective depth of surface soil moisture storage, the effective lateral

inflow rate, the coefficient of non-linearity controlling the rate of percolation to the

groundwater (Sorooshian and Gupta, 1995). Thus, calibrations against available

streamflow observations are often conducted to tune the model. Because automatic

calibration relies heavily on the optimization algorithm and the specified objective

function we follow the recommendations of Gan, (1998) to use both manual and

automatic calibration procedures. We first conducted manual calibration of daily

stream using the procedure developed by Santhi et al.(2001). Parameters identified

from the sensitivity analysis were varied in sequence of their relative sensitivity within

their ranges (Table 4) until the volume is  adjusted to the required quantity (Zeray et

al.,2007).This process continued till the volume simulated is within ±15% of the

gauged volume.The surface runoff adjustment was then followed by that of the

baseflow. Here,the same apporach was followed being the adjustment made to the most

sensitivity parameters affecting the baseflow. Each time the baseflow calibration is

finalized, the surface runoff volume was also checked as adjustment of the baseflow

parameters can also affect the surface runoff volume. The same procedure was followed

to calibrate the water balance of the monthly flows. After each calibartion, the

coefficient of determintation (proportion of  the variance in the observations explained

by the model, R2) and Nash-Sutcliffe effficeny value (ENS) were checked (R2 > 0.6 and

ENS > 0.5,Santhi et al.,2001). Finally, the automatic calibration algorithm in SWAT is

used for fine tuning the calibration. This is based on the Shuffled Complex Evolution

algorithm developed at the University of Arizona (SCE-UA) which is a global search

algorithm that minimizes a single objective function for up to 16 model parameters

(Duan et al., 1992).

The performance of SWAT was evaluated using the Nash-Sutcliffe efficiency value

(ENs) and the coefficient of determination (R2). The difference between the ENs and the

R2 is that the ENs can interpret the model performance in the replicating individually

observed values while the R2 does not (Rossi et al., 2008). It is only measuring the

deviation from the best fit line. In addition, systematic difference between the model

and observations in the percentage (PBias) and the ratio of the root mean square error

between the simulated and observed values to the standard deviation of the



observations (RSR) was used. The equations and the interpretation of the values are

given in Table 5. After manual and automatic calibration, the daily, monthly and annual

streamflow were compared against the observed data.

3.8 Climate Sensitivity Scenarios

Climate sensitivity scenarios were performed by perturbing the baseline simulation (the

validated simulation forced with observed station data) as input. The climate

perturbations are given as a percentage change in precipitation (precipitation is

multiplied with a given factor). Thus, the number of wet and dry days was not

perturbed, only the precipitation intensity and degrees Celsius change for temperature

(adding the prescribed change to the baseline simulation temperatures) (Varanou et al.,

2002). Each scenario was then run for the same simulation period as the baseline

simulation. The perturbations applied are with temperature increases of 0, +2 and +4°C

and precipitation changes of -20%, -10%, -5%, 0%, +5%, +10% and +20% and

combination of the above temperature and precipitation perturbations to examine the

sensitivity of the SWAT streamflow to the meteorological parameters. Climatic

variables such as relative humidity, wind speed, cloud cover and solar radiation were

considered to be unchanged.

The CMIP3 global coupled climate models (AOGCMs) were also applied to calculate

annual mean temperature and precipitation changes from the base period 1980-2000 to

2080-2100 for the three subbasins. A total of 47 climate change simulations were

assessed for each subbasin using three different emission scenarios (SRES A2, A1B

and B1) and 19 models. Together with the sensitivity tests mentioned above and

estimate of the impact of the AOGCMs temperature and precipitation changes on the

annual streamflow of the different sub basins were conducted.



Table 5: General reported ratings for Nash-Sutcliffe efficiency (ENS), Mean relative

bias (PBIAS), Root mean square error-standard deviation ratio (RSR) and Coefficient

of determination (R2) for calibration and validation process (adopted from Rossi et al.,

2008).

3.9 Sensitivity of annual streamflow to climate change

The relative sensitivity of the streamflow (
T,PQ  ) to either a precipitation ( P ) or a

temperature ( T ) change or a combination of the two is calculated as:
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where Q is the annual or seasonal streamflow calculated using equation (3.1).
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To be able to investigate if there is any nonlinearity in the streamflow change when

both precipitation and temperature are changed we estimate the linear combination of

the two.
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where the local derivatives for each parameter is calculated as the sensitivity response

when the other factor is kept unchanged. For example,  
0,

/



TP

PQ are the

responses in m3/% of the simulations covering the precipitation perturbations ±5, 10

and 20% and no temperature perturbation. Any deviation from this will indicate

nonlinear effects that may arise as precipitation and temperature is changed

simultaneously.

4. Results and discussion

The result part starts with a validation of the SWAT model in the three different sub-

basins, then estimates of the individual sensitivity of the streamflow to temperature and

precipitation in conducted before we investigate if the combined effect of temperature

and precipitation changes may provide any non-linearities in the streamflow response.

Finally we combine the sensitivity simulations with temperature and precipitation
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Figure 6: Daily calibration and validation (a) Baro Akobo at Gambella (b) Tekeze at

Embamadre subbasins

changes from the CMIP3 coupled climate models to investigate the range of possible

streamflow responses given the uncertainty in the global model’s temperature and

precipitation change.

4.1 Model calibration and validation

4.1.1 Abbay calibration and validation

The model was calibrated for the Abbay subbasin with one upstream (Tana), one mid-

way (Kessie) and one downstream (at the Sudan Border) gauging station. It slightly

overestimated the flow in the upper and middle part of the basin and underestimated it

in the lower part (Table 6) during the calibration period (the calibration and validations

periods are given in Table 3). The overestimation of these simulations was particularly

pronounced during extreme events (not shown). However, there were good agreements

between simulated and observed flows on both daily and monthly time scale (Figure

7a) for most of the years except 1995, when little rainfalls were recorded at Tana outlet.

The ENS and R2 ranged from 0.62 to 0.90 and 0.90 to 0.97, respectively for the monthly

calibration (see Table 7 for further details). The daily calibration statistics were lower

ranging from 0.62 to 0.65 and 0.77 for ENS and R2, respectively (see Table 6).
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In the validation period, the model similarly overestimated the flow at Tana outlet and

at Kessie for the year 2000 giving slightly higher bias than the validation period. Thus,

the daily and monthly ENS simulation efficiency was between 0.55 to 0.57 and. 0.53 to

0.65, respectively.

4.1.2 Baro Akobo calibration and validation

Figure 6a and 7b show the time-series comparison of predicted and measured daily and

monthly streamflows for the Baro Akobo subbasin at River Baro near Gambella over

the 9-year (1990-1998) calibration period. In general, SWAT accurately tracked the

measured streamflows for the time, although some peak flow months were over

predicted. The time series comparison of predicted and measured cumulative daily and

monthly streamflows for the 6-year (1999-2004) validation period is shown in the right

side of the dashed line of Figure 6a and 7b, for the Baro Akobo subbasin at River Baro

near Gambella. The predicted flows closely followed the corresponding measured

flows, with less over prediction of peak flow months, as compared to the calibration

period. Daily, and monthly, statistics computed for the calibration and validation

periods (table 3 and 4) also show strong correlations between the simulated and

measured flows. The validation period statistics were weaker than those computed for

the calibration period (e.g. for daily data the Nash-Sutcliffe efficiency value (ENs)

ranged from 0.70 to 0.81 for the calibration period and was 0.64 for the validation

period (Table 6), whereas, the monthly values were higher than 0.80 for both of the

periods).
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Figure 7: Monthly calibrations and validation at (a) Diem (Blue Nile), (b) Gambella
(Baro Akobo and (C) Embamadre (Tekeze) subbasins

Table 6: Summary of daily streamflow statistics for the calibration and validation

simulations for the Eastern Nile subbasins: Dates for calibration and validation period

are given in Table 3.
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Location Calibration Validation

ENs RSR PBias R2 ENs RSR PBias R2

Tana outlet (Abbay) 0.65 0.48 38 0.77 0.55 0.74 25 0.78
Kessie (Abbay) 0.62 0.57 14.2 0.77 0.57 0.66 9.9 0.71
Embamadre (Tekeze) 0.50 0.74 20 0.60 0.8 0.60 6.9 0.68
Gambella(Baro
AKobo)

0.70 0.45 -10.9 0.65 0.64 0.40 -25.0 0.79

Gilo (Baro Akobo) 0.81 0.46 -11.1 0.86



4.1.3 Tekeze calibration and validation

Calibration and validation of the Tekeze subbasin were carried out at Tekeze River near

Embamadre and the predicted streamflows closely followed the corresponding

measured flows, with a ENS of 0.8 and 0.5, and with a R2 of 0.81 and 0.60 for monthly

and daily values during the calibration and validation periods (Table 7 and Table 6),

respectively. Further, a bias of 2% in the calibration period also indicated a good

agreement between measured and simulated monthly flows (Table 7).

Table 7: Summary of monthly streamflow statistics for the calibration and validation

simulations for the Eastern Nile subbasins: Dates for calibration and validation period

are given in Table 3.

4.2 The Annual Water Balance of the Eastern Nile

Table 8 illustrates the average annual water balance components of the Eastern Nile

Basin during the calibration and validation periods. 58/57 percent, 56/58 percent and

62/64 percent of the average annual rainfalls were lost through evaporation in Abbay,

Baro Akobo and Tekeze subbasin of the Eastern Nile during calibration and validation

period, respectively. The average runoff coefficients were thus estimated to be 0.24,

0.30 and 0.18 for Abbay, Baro Akobo and Tekeze subbasins respectively. Surface

runoff carried 55/58.5 percent, 71.6/74 percent and 51/54 percent of the water yield

during the calibration and validation process for Abbay, Baro Akobo and Tekeze

Location Calibration Validation

ENs RSR PBias R2 ENs RSR PBias R2

Tana outlet 0.85 0.32 7.2 0.90 0.53 0.71 21 0.86

Kessie 0.62 0.58 28 0.90 0.54 0.80 37 0.86

Diem 0.90 0.31 -11.3 0.97 0.65 0.39 8.2 0.92

Embamadre 0.80 0.45 2.2 0.81 0.83 0.42 -13.9 0.88

Gambella 0.90 0.31 -3.8 0.92 0.81 0.44 -23.0 0.89

Gilo 0.93 0.40 -2.4 0.91



Table 8: Annual averaged calibrated/validated hydrological balances and percent
contribution of water balance components for the Eastern Nile basin SURQI: surface
runoff, LATQII: lateral flow into stream, GW_QIII: groundwater in the shallow aquifer,
ETIV: evapotranspiration, PETV: potential evapotranspiration (Hargreaves method is
used), PERCVI: percolation below root zone (groundwater recharge), TLOSVII:
transmission losses.

subbasins respectively. While, the groundwater contributions were 46/43 percent for

Abbay, 31.7/30 percent for Abbay and 50/47 percent for Tekeze during calibration and

validation period respectively.

4.3 Sensitivity of annual Eastern Nile streamflow to climate change

The impact of the perturbed temperature and precipitation scenarios on annual

streamflows in the three subbasins are shown in Table 9 and details are given in the

sections below.

Table 9: Percentage change in simulated average annual Streamflow for each of

twenty climate change scenarios compared with the baseline scenario

Subbasin Period

Rainfall

(mm)

SURQI

(mm)

LATQII

(mm)

GW_QIII

(mm)

ETIV(m

m)

PETV

(mm)

PERC
VI

(mm)

TLOSVI

I

(mm)

Abbay Calibration/ validation 1422/1547 314.4/410 1.63/1.7 264.8/302 820.9/816 1585/1558 286/327 11/12

% 100/100 22/26 0.1/0.1 19/20 58/57 20/21 0.8/0.8

Baro

Akobo

Calibration/ validation 1774/1682 527/492 0.3/0.24 233/199 997/979 1519/1542 253/215 24/23

% 100/100 30/29 0.2/0.1 13/12 56/58 14/13 1/1

Tekeze Calibration/ validation 931/872 169/162 1.3/1.0 164/140 579/556 1396/1419 179/154 5/4

% 100/100 18/19 0.1/0.1 18/16 62/64 19/18 0.5/0.5

Precipitation change (%)

Temp.
Change

Abbay Baro Akobo Tekeze

-20 -10 -5 0 5 10 20 -20 -10 -5 0 5 10 20 -20 -10 -5 0 5 10 20

0 -34.9 -18.2 -9.3 0.0 9.8 19.6 40.3 -37.6 -22.5 -14.6 0.0 2.2 10.9 28.9 -42.1 -19.9 -10.8 0.0 12.6 33.0 62.7

+2 -38.6 -22.3 -13.5 -4.4 5.2 14.9 35.4 -43.0 -28.4 -20.6 -6.4 -5.3 4.2 21.8 -41.4 -19.1 -9.5 1.3 13.9 33.8 63.5

+4 -40.4 -24.4 -15.7 -6.6 2.9 12.5 32.8 -43.5 -29.1 -21.4 -7.3 -4.3 3.3 20.8 -44.9 -23.5 -14.0 -3.4 8.8 27.9 57.0



4.3.1 Sensitivity to precipitation changes

Sensitivity of annual streamflow to changes in precipitation, holding the temperatures

fixed (equation 3.2) was different among the three subbasins. As a first approximation,

a linear regression analysis of the streamflow responses for the various scenarios

indicated that a 10% change in precipitation would produce a 19%, 17%, and 26%

change in streamflow for Abbay, Baro Akobo and Tekeze river basin respectively

(Figure 8). Table 9 and Figure 10 shows that the Abbay subbasin is equally sensitive

to a reduction and increase in precipitation and the sensitivity is changing linearly with

the precipitation change. This was not the case or Tekeze. The sensitivity to a

precipitation increase was larger than to a decrease in precipitation (-42% and 63%

change for a -20% and +20% precipitation changes, respectively). For the Baro Akobo

subbasin, this was the opposite. Sensitivity was stronger to a decline in precipitation (-

38% and 29% for -20 and +20% precipitation change, respectively). See Table 9 and

Figure 10 for details. The change in sensitivity was likely due to the difference in

topography and catchment characteristics of the subbasins. In the case of Tekeze basin,

most of the region is categorized with a gentle slope, where sheet flow is dominating

during an increase in precipitation. This is in contrast to Baro Akobo where 2/3 of the

total drainage area is a plain. The land use and soil types of the two basins are also quite

different. The depth of the soil in the Tekeze subbasin is shallower than Baro Akobo

subbasin. Therefore, with an increase in precipitation, the response of the catchment

generating direct streamflow will be smaller since more water infiltrated down to

recharge the groundwater in the case of Baro Akobo subbasin. Thus, the sensitivity of

Baro Akobo to an increase in precipitation will be smaller.



Figure 8: Annual streamflow changes to precipitation change holding temperature
fixed for the three basins

4.3.2 Sensitivity to Temperature change

The relative sensitivity of streamflow to changes in temperature, holding the

precipitation fixed (equation 3.2) was relatively modest in all the three subbasins

(Figure 9). A linear regression analysis of the streamflow responses for the various

temperature scenarios indicated that a 1°C increase in temperature would produce a

4.4%, 6.4%, and 1.3% reduction in streamflow for Abbay, Baro Akobo and Tekeze

Figure 9: Annual streamflow changes to temperature change holding precipitation
fixed for the three basins

river basin respectively (Figure 9). However, the sensitivity was not linear. Two of the

subbasins (Abbay and Baro Akobo) showed a larger sensitivity from 0 to +2oC than



from +20C to +40C. The reason was mainly due to the evaporation losses from the soil.

When the temperature rises, the available water at the top surface of the soil gets lost

easily whereas it is difficult to evaporate water from the deeper layers of the soil. Thus,

a small change in temperature dries out the upper soil layer while a larger change will

be less efficient in changing evaporation as the upper soil is already tried out. The

Tekeze basin was less sensitive to temperature change compared to the other basins

because the basin had limited moisture for approximately 2/3 of the year with today’s

temperatures.

4.3.3 Sensitivity to the combined effect of temperature and precipitation

Comparing the relative sensitivities of the streamflows when both temperature and

precipitation were changed with the linear combination of sensitivities for the separate

temperature and precipitation changes (equation 3.3) revealed that all regions shows a

combined response that is very similar to the linear combination of the separate

temperature and precipitation response (Figure 10). The only hint of a non-linear effect

is in the Tekeze basin where combining a 4°C temperature increase with a positive

precipitation increase gave a response that was around 2% smaller than the linear

combination of the sensitivities (Figure 10c).



Figure 10: Change in annual streamflow (%) for different temperature and

precipitation scenarios. a) Baro Akobo, b) Abbay and c) Tekeze. Black dots indicate

the linear sensitivity estimate based on equation 3.3.

4.3.4 Estimation of future streamflow using CMIP3 simulations

To assess the uncertainty in future streamflow changes for the Eastern Nile we

calculated the temperature and precipitation changes in the CMIP3, global coupled

climate models (AOGCMs) with three different emission scenarios (SRES A2, A1B

and B1). A total of 47 simulations with 19 different models were conducted. As the

AOGCMs often have, large biases when it comes to reproducing the regional climatic

a)

))

b)

c)



features, they are not well suited to force hydrological models without extensive bias

corrections. An alternative approach is to use the combined temperature and

precipitation changes of the AOGCMs, with the sensitivities of the above simulations

T,PQ  (equation 3.2), where P and T are taken from the AOGCMs and
T,PQ  is

the linearly interpolated results of the sensitivity simulations. For example, if the

temperature change

Figure 11: Change in temperature (°C) and precipitation (%) for the period 2081-2100
compared to 1981-2000 from 19 AOGCMs and three emission scenarios (totally 47
simulations). Red square indicates the mean change over all simulations.

is 3.1°C and precipitation change is 18%;
T,PQ  is the linear interpolation for the

four sensitivity simulations +2. °C and +10%, +2. °C and +20%, +4. °C and +10% and

+2. °C and +20%. tests. The results revealed that all models agreed on a temperature

rise, but they disagreed on the direction of precipitation change (Figure 11). The large

uncertainty in the models’ precipitation change translated into large uncertainties in the



streamflow changes (Figure 12). Around 60%, 40% and 55% of the estimates indicated

an increased annual flow in the Abbay, Baro Akobo and Tekeze, respectively and the

ensemble mean changes were modest in all three basins (5%, -1%, and 12% the Abbay,

Baro Akobo and Tekeze, respectively). However, the extremes ranged from a 152%

increase in the Tekeze basin using the CCSM 3.0 SRES A2 scenario changes to a 55%

reduction in the same basin using the same scenario, but the values were from the

GFDL CM2.0 model (Figure 12c). This is in line with the large spread found for the

Abbay in Elshamy et al. (2009).

5. Summary and Conclusion

This study report on a first attempt to use a physically based, distributed hydrological

model (SWAT) forced with daily station based precipitation and temperature data and

calibrated with daily streamflow measurements to simulate the Eastern Nile

streamflow.

SWAT2005 adequately simulated monthly variability in flows for the Eastern Nile

basin. The total simulated monthly streamflow ranged from good (0.65<ENS<0.75 to

very good (ENS>0.75). The average daily and monthly difference between the observed

and simulated flow (PBIAS) was good (PBIAS≤±20%) for the calibration period with

the exception of the Abbay subbasin where it was only satisfactory (±20 %<

PBIAS≤±40%). In summary, good performance of the model in the validation period

indicate that the fitted parameters during calibration period listed in Table 4 can be

taken as a representative set of parameters for the Eastern Nile watershed and further

simulation and evaluation of alternative scenario analysis for other periods using the

SWAT model. The model simulated monthly flows better than daily flows and the

model was probably not adequate for studies of single sever events in small catchments.

Sixty percent of the average annual rainfalls were estimated to be lost through

evaporation. The simulations estimated the runoff coefficients to be 0.24, 0.30 and 0.18

for Abbay, Baro Akobo and Tekeze subbasin respectively. Surface runoff carried

around 55% of the streamflow in the Abbay and Tekeze while in Baro Akobo the

percentage was about 72. The remaining contribution was from groundwater.



The streamflow sensitivity to changes in precipitation and temperature differed among

the basins and depended on the strength of the changes. The annual streamflow

responses to a 10% change in precipitation with no temperature change were on average

19%, 17%, and 26% for Abbay, Baro Akobo and Tekeze river basin respectively.

However, the responses to a reduction and increase in precipitation were not the same.

While Baro Akobo was more sensitive to a reduction in precipitation, Tekeze showed

a larger sensitivity to an increase. The streamflow sensitivity to temperature was

moderate. The average annual streamflow responses to a 1°C change in temperature

and no precipitation change were -4.4%, -6.4%, and -1.3% for the Abbay, Baro Akobo

and Tekeze river basin respectively. The very low sensitivity of the Tekeze basin

indicated that flows were moisture limited for a large part of the year.

a)



Figure 12: Change in annual streamflow (%) for the a) Baro Akobo, b) Abbay and c)

Tekeze basins using the calculated combined temperature-precipitation sensitivities

and precipitation and temperature changes (2081-2100 compared to 1981-2000) from

19 AOGCMs and three emission scenarios (totally 47 simulations for each sub-basin).

b)

c)



The overall assessment made by a sensitivity analysis for the 20 hypothetical climate

sensitivity scenarios, revealed that the annual streamflow of the Eastern Nile was very

sensitive to variations in precipitation and moderately sensitive to temperature

changes. In addition, we showed that the modelled response of a combined

temperature and precipitation change was very similar to adding the responses from

the temperature change only and precipitation change only simulations.

Applying the combined temperature-precipitation sensitivities and 47 temperature and

precipitation scenarios from 19 AOGCMs participating in CMIP3, we estimated the

future streamflow change to be very uncertain and strongly dependent on the choice of

climate model. The reason was the disagreement between the different climate models

on both the strength and the direction of future precipitation changes. Thus, based on

the state of the art climate models little can be said about future changes in Eastern Nile

streamflow. However, our analysis emphasis the need for doing ensemble runs using

different climate models in this type of assessment. This uncertainty may have

implications for long-term water resource planning, estimation of the future

hydropower potential, reservoir design and to which extent development of agriculture

should utilize river or groundwater based irrigation systems.

Finally, we note a few of the weaknesses of this analysis. The first is that it tried to

address the climate change impact with only one hydrological model and two forcing

variables (precipitation and temperature), neglecting all other variables (such as

vegetation or radiation changes) which might affect the runoff generation. In our

sensitivity studies, we multiplied the precipitation with a fraction. This means that we

assumed the wet-day frequency was unchanged and the whole precipitation change was

given as a change in intensity. For temperature, we added a constant for the whole year

and thereby assuming that the changes were not depending on season.  Finally, we used

a simple linear estimate to link the CMIP3 climate change scenarios to changes in

streamflow. These were all crude assumptions. However, we feel that given the huge

uncertainty in the future precipitation changes partly justifies this crude treatment.
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Abstract
The sensitivity of the Omo Gibe river basin in southern Ethiopia to climatic and land

use changes have been simulated using the hydrological model SWAT. Almost 60% of

the average annual rainfall is lost through evaporation in the basin and the average

runoff-rainfall coefficient was 0.26. Around two thirds of the water yield were

simulated to come from surface runoff, while groundwater is responsible for the last

third.

The sensitivity of streamflow to precipitation changes was found to be high. On average

25% change in streamflow for a 10% change in precipitation. On the other hand, the

response of streamflow to changes in temperature, holding the precipitation fixed is

modest. A linear regression analysis of streamflow responses for the different

temperature scenarios indicates that a 1°C change in temperature will produce a 1.4

percent change in annual streamflow.

The simulated effect of land use changes resulting from various hypothetical land use

modifications is secondary to the effect of precipitation changes on the annual

streamflow. However, the seasonal changes in streamflow were in some cases strongly

affected by land use. As an example, a deforestation scenario (entire forest area

coverage changed to bare lands) increased the Jan-April (dry season) streamflow by

38%.

Results further indicate that the combined effect of land use and climate change differs

slightly from the sum of the individual land use and climate change simulations. For

example, in an increased precipitation scenario, changing land use to more bare land

areas would increase streamflow and water yield less than from simple additions of the

individual effects. This shows that according to the model, nonlinear interaction among

the water balance components or feedbacks may occur when simultaneous changes in

land use and climate change are imposed.

Keywords: SWAT; Land use; Climate; sensitivity; Streamflow; hydropower



1 Introduction

The effects of land use and climate change on streamflow responses are crucial for

sustainable water resource planning and management. Several investigations have been

conducted on the question of the impacts of these changes on streamflow response. For

example, Pikounis et al. (2003) examined the hydrological effects of specific land use

changes in a catchment of the river Pinios in Greece using monthly SWAT model

outputs. He developed three land use change scenarios; expansion of agriculture,

complete deforestation and expansion of urban areas. All these three scenarios resulted

in an increase in streamflow during wet months and a reduction in dry periods (Pikounis

et.al, 2003).  Similarly, Fohrer et al., (2001) studied land use changes in Germany and

found out that the total annual water budget is significantly affected if the land use

change is affected by more than 20% of the basin area. The above two studies mainly

focused on land use changes and did not consider the consequences of the likely

changes in the climate. Guo et al. (2008) stated several studies showing some

interdependence of climate and land use changes on different aspects of the water cycle.

A major finding of their study was that the climate effect is dominant in annual

streamflow (Guo et. al, 2008). While land cover changes had a moderate impact on

annual streamflow it strongly influenced the seasonal streamflow and altered the annual

hydrograph of the basin (Guo et al., 2008). In a study of the upper Mara river basin in

Kenya, Mango et al., (2011) showed that a conversion of forests to agriculture and

grassland in the basin reduced the dry season flows and increased peak flows, leading

to greater scarcity of water at critical time of the year. In the same paper the simulated

runoff responses to climate change scenarios were non-linear and suggested that the

basin was very vulnerable under low (-3%) and high (+25%) extremes of projected

rainfall changes. However, the impacts of land use are more shown in seasonal

streamflow change than climate change effects where its influence is mainly during

extreme storm events. The above two studies show that various catchments behave

differently due to climate and land use change on annual and seasonal scales.

Omo Gibe river basin is a lifeline for hundreds of thousands of indigenous people in

southwestern Ethiopia and northern Kenya and the construction of hydroelectric power



plants in the basin has been widely debated. According to the report made by Avery

(2010) “Runoff patterns in the Omo River have changed in the last twenty years.

Forests and vegetation have been cleared in the Omo Basin through human activity,

and as a consequence, runoff has become more variable, with much more rapid

response to rainfall. Without effective catchment management, the overall runoff

volume can be expected to increase with catchment land use change.”  On top of this,

the key issue which was reported on by international media was “elimination of the

riverine forest and woodland, due to the construction of hydroelectric power plant in

the basin lead to at least a 50% to 60% reduction of river flow volume” (BBC, 2009)

and (Avery, 2010).

Based on the controversy around the management of the basin this paper will focus on

four basic research questions that may be useful for basin integrated management

practices. 1) Does changing land use due to deforestation affect the streamflow volume

to the amount specified in the report above (BBC, 2009 and Avery, 2010)? 2) What

sensitive is the annual streamflow to land use change compared to climate change? 3)

How will the emerging hydropower development be affected by individual and

combined changes of land use and/or climate change?  4) Will the combined effects of

land use and climate change on the streamflow generation process be the sum of the

individual effects or are there non-linearities in the system? Moreover, the paper further

aimed to quantify the effect of climate and land use changes on the water balance

components of the Omo Gibe river basin.

2. Description of the Study Area

The Omo-Gibe basin is one of the significant surface water resources of Ethiopia. It is

drained by two major rivers from the highlands, the Gibe River flowing southwards

and Gojeb River flowing eastwards.



Figure 1: Map of the study area includes major River Networks,
Meteorological stations and stream gauged used for calibration

Downstream of their confluence only minor tributaries join, as the river continues

southwards where it empties into Lake Turkana at the border with Kenya (Avery, 2010)



(see figure 1). By volume Lake Turkana is the twenty-fourth largest lake and the world's

largest permanent desert lake. The Lake Turkana catchment area is situated in both

Ethiopia and Kenya and is 130860 km2. Of which the Omo Gibe river basin covers 50

% (74300km2) of the total drainage area and 90% of the inflow to Lake Turkana is

contributed from the Omo Gibe river basin. However, 85% of the basin flow is

originated from the upstream catchment where the Gibe III hydropower plant is situated

(Avery, 2010). The Omo River has a total length of about 1200 kilometers with an

average slope of 3.1 m/km. The long term mean flow is estimated to be 435m3/s or 13.5

billion m3 per annum (EEPCO, 2009) and seasonal variations are huge, with monthly

mean flow ranging from 60 m3/s in March to more than 1,500 m3/s in August (EEPCO,

2009).

The annual rainfall within the Omo Gibe catchment decreases from north to south and

with the decrease in elevation. It varies from a minimum of 1,200 mm in the lowlands

to a maximum of about 1,900 mm high land areas (EEPCO, 2009). The average annual

rainfall calculated over the whole basin is 1,426 mm with a mean annual temperature

is 20.4°C. 75 to 80% of the annual rainfall occurs during a five months period from

May to September (EEPCO, 2009).

3. Methods and Materials
3.1 Model Description

We use the physically based, distributed parameter model SWAT (Soil and Water

Assessment tool, version SWAT2005) which operates on daily time step and uses

physiographical data such as elevation, land use and soil properties as well as

meteorological data and, streamflow data for calibration. It is computationally efficient

for use in large watersheds, and is capable of simulating long-term yields for

determining the impact of land management practices (Arnold and Allen, 1996).

Hydrological processes included in the model are evapotranspiration, surface runoff,

infiltration, percolation, shallow and deep aquifers flow, and channel routing (Arnold



et al., 1998). The effects of spatial variations in topography, land use, soil and other

characteristics of watershed hydrology is incorporated by dividing a basin into several

subbasins based on drainage areas of tributaries and is further divided the subbasins

into a number of hydrological response unit (HRUs) within each subbasin, based on

land cover and soils. Each HRU is assumed spatially uniform in terms of land use, soil,

topography and climate. The subdivision of the watershed enables the model to reflect

differences in evapotranspiration for various crops and soils. All model computations

are performed at the HRUs level.

The fundamental hydrology of a watershed in SWAT is based on the following water

balance equation Arnold et al. (1998).

gwseepasurfday QWETQR
t

SW





(3.1)

Where SW is the soil water content (mm), Rday is the amount of precipitation on (mm),

Qsurf is the amount of surface runoff/streamflow (mm), ETa is the amount of actual

evapotranspiration (mm), Wseep is the amount of water entering the vadose zone from

the soil profile (mm), and Qgw is the amount of ground flow (mm). Detail descriptions

of the different model components can be found in Arnold et al. (1998) and Neitsch et

al. (2002a).

3.2 Sensitivity of annual and seasonal streamflow to climate and
land use change

The relative sensitivity of the streamflow (
LTPQ  ,,

) to either a precipitation ( P ), a

temperature ( T ) or a land use ( L ) change or a combination of the three is calculated
as:
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Where Q is the average annual or seasonal Qsurf which is calculated using equation

(3.1) and a, b and c are the perturbations.



To be able to investigate if there is any nonlinearity in the streamflow change when

precipitation, temperature and land use are changed we estimated the linear

combination of the three changes as done in Mengistu and Sorteberg (2012).
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Where the local derivatives for each parameter is calculated as the mean response for

the sensitivity test where the two other factors kept unchanged. For example,
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PQ is the mean response in m3/% of the four simulations covering the

precipitation perturbations ±10-20%. Any deviation from this will indicate nonlinear

effects that may arise as precipitation, temperature and land use changed

simultaneously.

3.3 Input Data

Topographic features such as elevation, slope and aspect and soil types, land use and

the stream network (optional) are needed for the model. A digital elevation (DEM) was

created using a 90m*90m resolution topographic database obtained from the Ethiopian

ministry of water resources. The DEM was used to delineate the watershed and the

drainage patterns of the surface area analysis. Subbasin parameters such as slope

gradient, slope length of the terrain, and the stream network characteristics such as

channel slope, length, and width were derived from DEM (Fig.2a).

Land use is one of the main factors affecting surface erosion, and evapotranspiration in

a watershed. The source of land use map of the study is the Ministry of water resources

Ethiopia and land use/land cover map is taken from the global Hydro1K dataset

(Hansen, 1998) and modified to correspond with the SWAT predefined land uses

classification (Fig. 2b). More than 40% of Omo Gibe river basin is covered by mixed

forest whereas the rest is covered agriculture, pasture, grass, bush and shrubs. Table 1

summarizes the physical properties of land use of the study area used for SWAT

simulation.

a) b)



Figure 2: Map for a) Digital Elevation Model, b) Land use and c) Soil

c)



Table 1: Parameters for various land-use types

Land-use LAI Maximum

canopy

height (m)

Maximum

stomatal

conductance

(ms-1)

Maximum

root depth

(m)

AGRL

(Agricultural land

Generic)

3.0 1.0 0..005 2.0

AGRR

(Agricultural land-

row crops

3.0 2.5 0.007 2.0

AGRC

(Agricultural land

close grown)

4.0 0.9 0.006 1.3

FRST (Mixed

forest)

5.0 6.0 0.002 3.5

FRSD (Deciduous

forest)

5.0 6.0 0.002 3.5

FRSE (Ever green

forest)

5.0 10.0 0.002 3.5

RNGB (Range

brush)

2.0 0.5 0.005 2.0

RNGE (Range

grasses)

2.5 0.5 0.005 2.0

SPAS (summer

pasture)

4.0 1.0 0.005 2.0

PAST (Pasture) 4.0 1.0 0.005 2.0



Different types of soil texture and physical-chemical properties are requirements for

the SWAT model. These data were obtained from various sources. The soil map was

obtained from ministry of water resources of Ethiopian at Water Resources Information

and Metadata Base Centre department. But several properties like moisture bulk

density, saturated hydraulic conductivity, percent clay content, percent silt content and

percentage sand content of the soil which are required by SWAT model was not

incorporated. This additional data was extracted from Wambeke, (2003); USDA,

(1999) and FAO, (1995).As seen in Fig. 2c the major soil types of the Omo Gibe basin

are Dystric cambisols and Lithosols.

SWAT requires daily meteorological data which were obtained from the Ethiopian

National Meteorological Agency (NMSA) for the period 1987-2007. Twelve

temperature and seventeen precipitation stations were used for the model input.

Missing values were filled using the SWAT built-in weather generator developed by

Nicks, (1974). The precipitation generator uses a first-order Markov chain model. The

weather generator was developed based on observed precipitation data with a record

length from 1967-2007 that was nearest the centroid of the basin. Given the wet-dry

state, the model determines stochastically if precipitation occurs or not. When a

precipitation event occurs, the amount is determined by generating from a skewed

normal daily precipitation distribution or a modified exponential distribution. The

amount of daily precipitation is partitioned between rainfalls using average daily air

temperature. The average percentage of missing data in the observed datasets is less

than 10% and 5% of precipitation and temperature, set respectively. For solar radiation

and wind, we used the daily dataset of Sheffield et al. (2006) derived by combining

reanalysis with observations. The data was interpolated to the meteorological stations

within the region. Figure 1 shows the number and distribution of gauging stations

applied in this study.

For hydrological streamflow data for two stations were collected from the Ministry of

Water Resources of Ethiopia (Table 2).



Table 2: Stream gauge location, Monthly calibration and validation dates used for
model simulation

Table 3: Calibrated values of adjusted parameters for flow calibration of the SWAT

2005 model for the Omo Gibe river basin.

3Time period variation were due to differences in readily available measured flow data records

Stream gauge Calibration date3 Validation date

Great Gibe at Abelti 1/1/1987-12/12/1999 1/1/2000-12/12/2007

Gojeb 1/1/1987-12/12/1999 1/1/2000-12/12/2004

Id Parameter Description Range Initial

values

Calibrated

value

1 CN2 Initial SCS

CN II value

±25% Default -7.5

2 Sol_K Saturated

Hydraulic

conductivity

[mm/mm]

±25% Default -19.6

3 ESCO Soil

evaporation

compensation

factor

0.0-

1.0

0.95 0.99



3.4 Model Setup

The Omo Gibe stream network and sub watersheds were delineated using ARCSAWT-

X with the SWAT suggested minimum drainage area required to form the origin of the

stream. 77 sub watersheds; and 633 HRUs of the Omo Gibe river basin as a function

of 2% land use and 5% soil types within a given watershed, respectively were

delineated up to the point of the outlet. This point constituents of total drainage area of

74300km2 that drains about 95% of the entire Omo Gibe River basin (78213), which is

located in Ethiopia.

The Soil Conservation Service (SCS) curve number procedure (USDA-SCS,1972) was

applied to estimate surface runoff volumes due to the unavailability of sub daily rainfall

data required for the Green and Ampt method that SWAT offers a different option to

estimate surface runoff. The potential evapotranspiration (PET) estimates and channel

routing were performed using Hargreaves and Muskingum methods, respectively.

Table 4: Land use scenarios with percentages of area changed. * Not 100% since 1.2%

of the drainage area is covered by Lake Turkana, small water bodies and artificial

reservoirs created due to hydroelectricity project dams

Scenario name Land cover change Area

changed

(%)

AG to FRST Agricultural lands (AG) with

slope greater than 25%

changed into forest (FRST)

10.3

AAG to FRST All Agricultural lands (AAG)

change into forest

36.6

FRST to GRS Forest to grass land (GRS) 48.1

FRST to BRLNDS Forest to bare land (BRLNDS) 48.1



AAG to BRLNDS All agricultural land changed to

bare land

36.6

ALNDS to BRLNDS All lands (ALNDS) charged to

bare lands*

98.8

3.5 Model Implementation and Sensitivity Analysis

After pre-processing of the data and SWAT model set up, simulation was done for the

period indicated in Table 2 for the basin. The built-in SWAT sensitivity analysis tool

that uses the Latin Hypercube One- factor-AT-a –Time (LH-OAT) (Van Griensvenet

al., 2002: Van Griensvenet, 2005) was used. Two outlets (Fig. 1) were selected for the

sensitivity analysis.

According to Lenhart et al., (2002) the sensitivity of a flow to a parameter can be

categorized into four classes. If the relative sensitivity lies between 0-0.05 and 0.05-

0.2, then the parameter is classified as negligible and medium,

respectively, whereas if it is varying between 0.2-1.0 and greater than 1 then

categorized as high and very high class, respectively. Out of 28 selected parameters the

curve number, saturated hydraulic conductivity, soil evaporation compensation factor,

available water capacity, maximum canopy storage, biological mixing efficiency, soil

depth and deep aquifer percolation fraction, were identified as being parameters to

which the flow has medium, high or very high sensitivity. The ranking of the

parameters was different at the two outlets where sensitivity test was carried out.

However, the curve number (CN2) was the main sensitivity parameter for the two

outlets. From the sensitivity test, eight parameters having a relative sensitivity greater

than 0.05 (sensitivity of the flow to the parameter categorized as medium or higher)

was selected for the calibration process.

Calibrations against available streamflow observations are often conducted to tune the

model. Because automatic calibration relies heavily on the optimization algorithm and

the specified objective function we follow the recommendations of Gan, (1988) to use

both manual and automatic calibration procedures.We first conducted manual



calibration of monthly stream using the procedure developed by Santhi et

al.,(2001).Parameters identified from the sensitivity analysis were varied in sequence

of their relative sensitivity within their ranges (Table 2) until the volume is  adjusted to

the required quantity (Zeray et al.2007).This process continued till the volume

simulated is within ±15% of the gauged volume. After each calibartion, the coefficient

of determintation (R2) and Nash-Sutcliffe effficeny value (ENS) were checked (R2 > 0.6

and ENS > 0.5,Santhi et al.,2001). Finally, the automatic calibration algorithm in SWAT

is used for fine tuning the calibration. This is based on the Shuffled Complex Evolution

algorithm developed at the University of Arizona (SCE-UA) which is a global search

algorithm that minimizes a single objective function for up to 16 model parameters

(Duan et al., 1992).

3.6 Scenario Set up and Sensitivity Tests

Model tests were designed to evaluate effects of land use and climate changes on

streamflow in the Omo Gibe river basin. To quantify these effects, the model was run

with perturbed climatic and land use values from 1987-2007 and compared against the

non-perturbed simulation (base run) using the average changes from 1987-2007

(equation 3.2).

3.6.1 Land use change scenarios

Due to the existing and ongoing hydroelectricity projects in the basin, people were

exposed to resettlement (Campagna per la Riformadella Banca Mondiale, CEE

Bankwatch Network, 2008). In the process, lands which were formerly forest were

turned into fields for agriculture.

On the other hand, in order to ensure the sustainability of the life of the dam, more trees

were planted around the catchment of the dam area which has a direct impact in

streamflow generation. We include several plausible land use change scenarios and in

addition, some extreme land-cover change cases were also included, such as changing

the entire land use in the basin to be either forested or left as bare ground (soil) to



identify the upper limit in water balance response that could be foreseen (Table 4). The

changes in land use scenarios are summarized in Table 4 and Fig. 4.

3.6.2 Climate change scenarios

Several climate change sensitivity cases based on the 1987-2007 meteorological data

has been developed in order to assess the impact of systematic meteorological changes

on streamflow and other water balance components. Incremental changes in

temperature, (0, +2 or +4 °C) and in precipitation (-20%, -10%, 0%, +10%, +20%) were

imposed on the original meteorological data while solar radiation and wind speed were

held at their reference values. A total of fourteen sensitivity test with possible climate

change conditions were used.

a) b)

c) d)

e) f)



Figure 4: Land use in the different change scenarios a) AG to FRST b) AAG to FRST

c) AAG to BRLNDS d) FRST to GRS e) FRST to BRLND f) ALNDS to BRLNDS for

Omo Gibe River basin. See table 4 for a description of the Land use change scenarios.

3.6.3 Combined climate change and land use change scenarios

In order to investigate the combined effect of changes in both the land use and climatic

conditions (e.g., Lahmer et al., 2001; Hu et al., 2004) a third group of sensitivity test

were performed. However, since the model does not include interactive vegetation the

climatic conditions are specified independent of the land use changes and vice versa,

the full effect of interactions and feedbacks between the land use and climate changes

on streamflow cannot be described in these tests. However, these tests are useful for

investigating to what degree the changes in climate and land use are just the sum of the

separate responses from the land use and climate change only runs or if there is a more

subtle non-linear response.

4. Results and Discussion

4.1 Model Calibration and Validation

The model was calibrated at Great Gibe and Gojeb stream outlets which are the two

major tributaries of the basin. The model slightly overestimates the flow during the

calibration period with a bias (the mean difference between the simulation and

observation) of 25% (Table 5). However, there was good agreement between simulated

and observed flow variability on monthly time scale (see Figure 3a and c) for most of

the years except 1992 where maximum simulation was seen, where relatively low

rainfall was recorded in the year. The Nash-Sutcliffe effficeny value (ENS) and

coefficient of determintation (R2) of the monthly values for the Great Gibe and Gojeb

stations were 0.70 and 0.87 and 0.75 and 0.75, respectively (see Figure 3b and d).

d)



a)

b)

c)



Figure 3: Streamflow calibration and validation at G. Gibe at Abelti (a and b)
and Gojeb (c and d) stream gauges, respectively

In the validation period, the simulated flow at Great Gibe and Gojeb outlets showed a

very good agreement for the year 2000-2007 and 2000-2004 respectively. The monthly

ENS and R2 simulation efficiency were between 0.75 and 0.88 and 0.75 to 0.91 for the

two stations, respectively. Other statistical analysis results are shown in Table 5.

4.1.1. Extreme land use change scenarios

In this section we test some extreme land use change scenarios in order to find the upper

bound on the hydrological changes we can expect when changing the land use. In the

fifth test (AAG to BRLNDS) in Table 7, the agricultural lands in the basin turned into

bare lands. This change in land use from AAG to BRLNDS caused a nearly 20.5% and

23.5% increase in annual water yield and streamflow of the basin, respectively. This

increase is due to reduced evapotranspiration of the surface in relation to more efficient

evapotranspiration of the previously vegetated surfaces. Thus, more water is available

for surface runoff (see Figure.5b) and less for the lateral flow (Figure.5b) and

groundwater recharge (Figure.5b). These changes lead to a larger water yield

(Figure.5b) and higher streamflow. Seasonal changes in water yield shown in Table 7

indicate that the large increase will occur in the wet period from May to September

(25.2% increase). In the dry period from October to December and January to April,

the water yield increased by 12.5% and 12.7%, respectively.
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The ALNDS to BRLNDS case the entire basin was converted to bare land, an extended

case of the FRST to BRLNDS scenario, where grasslands and croplands is also changed

to bare land. This change causes the annual water yield and streamflow to increase by

24.3% and 16.8%, respectively compared to the base run. The largest increase of 29.2%

is found in the May–September (wet) period. A relatively smaller increase of 14.2%

occurs in the dry period. In the ALNDS to BRLNDS scenario one would expect a larger

streamflow increase when all the land cover of the study area was altered to bare land

(soil) compared to the FRST to BRLNDS scenario where only forested land was

altered, but this was not the case, the streamflow change for the ALNDS to BRLNDS

scenario is slightly smaller than the FRST to BRLNDS scenario (16.8 and 19.9%,

respectively). This is mainly due to the fact that, in the ALNDS to BRLNDS case an

increase of soil temperature in the basin lead to greater evapotranspiration loss and the

soil dried out before producing streamflow. The effect of this was particularly large in

the dry season (JFMA)

Table 5: Statistical evaluation of the simulated monthly streamflow for the Omo Gibe

River basin at Great Gibe and Gojeb gauging stations compared to observations for the

calibration and validation periods.STD is the standard deviation, r2 is correlation

coefficient. NES is Nash Sutcliff

Great Gibe gauging station Gojeb gauging station

Statistica

l measure

Calibration

(1987-1999)

mmd-1

Validation

(2000-2007)

mmd-1

Calibration

(1987-1999)

mmd-1

Validation

(2000-2004)

mmd-1

Observe

d

Simulate

d

Observe

d

Simulate

d

Observe

d

Simulate

d

Observe

d

Simulate

d

MEAN 3.22 4.01 2.69 3.07 0.9 1.02 0.84 0.78

STD 0.88 0.79 0.63 0.41 0.21 0.29 0.31 0.27

r2 0.75 0.79 0.70 0.91

NES 0.70 0.75 0.87 0.88

Bias (%) -25 -14 13 7



4.2 The Annual Water Balance

Table 6 summaries the simulated average annual water balance results for the

calibration and validation periods. About 59/59% of the average annual rainfall is lost

through evaporation in the calibration and validation periods respectively. The average

surface runoff is 26/26% of the average annual rainfall. The groundwater contribution

is about 14/13% of the average annual rainfall while percolation into the deep aquifers

accounts about 15/14% in the calibration and validation periods respectively. Overall

67/68% of the total water yield is contributed from surface flow while 35/34% the total

water yield is contributed from the shallow ground water flow. Not that the slight

discrepancy in the total water balance is due to the unaccounted TLOSS in the system.

Table 6: Annual averaged calibrated/validated hydrological balances (mm) and percent

contribution of the different water balance components for the Omo Gibe River

Basin.SURQI: surface runoff, LATQII: lateral flow into stream, GW_QIII: groundwater

in the shallow aquifer, ETIV: evapotranspiration, PETV: potential evapotranspiration

(Hargreaves method is used), PERCVI: percolation below root zone (groundwater

recharge),

Basin Period Rainfall

(mm)

SURQI

(mm)

LATQII

(mm)

GW_QII

I

(mm)

ETIV

(mm)

PETV

(mm)

PERC
V (mm)

TLOSSVII

(mm)

Omo

Gibe

Calibration

/validation

1468/1467 386/385 1.5/1.4 199/191 863/869 1675/169

4

218/210 11/12

% 100/100 26/26 0.1/0.1 14/13 59/59 15/14 0.8/0.8

4.3 Effects of Land Use Change

Effects of land use change on streamflow and water yield are evaluated based on

comparison between simulations using changes in land use (see Table 4 and Fig. 4) and

the base run (base run land use as shown in Fig. 2b). The meteorological conditions in

these tests are the same as in the base run, i.e., the simulations are based on the 1987-

2007 meteorological data.



4.3.1 Increased forestation

The first two sensitivity tests (Table 7) show water yield and streamflow changes that

may result from returning parts or all agricultural lands to forest lands (AG to FRST

and AAG to FRST cases, Table 4). In the first case, farm lands of slope >25% are

restored to forest (AG to FRST). This changes the land use in 10.3% of the basin area.

The latter experiment (AAG to FRST) provides the upper boundary of forestation

changes and changes the land use in 36.6% of the basin area. Both experiment reduced

the annual streamflow with the AAG to FRST experiment resulting in a decrease of -

25.2% compared to the base run (Table 7). The decrease in streamflow may be

attributed to the fact that forest land has a higher rate of water loss by

evapotranspiration than farm land does (an increase of 8.6% of ETa in the AAG to

FRST test). Deep roots of forest plants can draw moisture from soils faster than water

being transpired by short rooted farm plants or bare soils during the operation. In

addition, forest plants have larger leaf areas to transpire with a model leaf area index

change from 3m2/m2 for agricultural land to 5m2/m2 for forested areas (Table 1).

The change in streamflow is around twice the change in water yield (table 7). As water

yield is the sum of both streamflow and ground water, the impact of increased

forestation is more significant in reducing streamflow amount than water yield. This is

due to the available groundwater is less likely to be affected by evapotranspiration.

The reduction of streamflow by increased forest cover in the basin is particularly strong

in the wet period from May to September (Table 7). The reason for this high sensitivity

on May-September is that precipitation is abundant and temperatures are high enough

to support evapotranspiration. Thus, a large change in evapotranspiration takes place

(461.7 mm and 494.8 mm for the AG to FRST and AAG to FRST, respectively

compared to 452mm in the base case). Consequently, as shown by the water budget in

Figure 5a, the surface runoff decreased substantially in May– September, causing

significant decrease of water yield (-18.6 %) and streamflow (-24.1%) for the period.



Table 7: Land use change scenarios with percent annual and seasonal basin discharge

change ∗ 100%, streamflow changes ∗ 100% and

evapotranspiration change ∗ 100% Column 3a, 4a and 5a are percentage

change in water yield, streamflow and evapotranspiration due to land use change to

the total area land use, respectively; Column 3b, 4b and 5b are percentage change in

water yield, streamflow and evapotranspiration per 10% change in land use,

respectively.

Land cover change
[1]

Season
[2]

Water yield
Change (Qwyld)

[3]
(a)              (b)

Streamflow

Change ( surfQ )

[4]
(a)             (b)

Evapo-transipration

Change ( aE )

[5]
(a)                     (b)

AG to FRST ANN -3.0 -2.9 -6.3 -6.1 1.9 1.8
MJJAS -4.6 -4.5 -5.4 -5.2 2.1 2.0
OND 1.0 1.0 -6.9 -6.7 -1.1 -1.1
JFMA -2.5 -2.4 - 10.1 -9.8 3.1 2.9

AAG to FRST ANN -13.0 -3.6 -25.2 -6.3 8.6 2.4
MJJAS -18.6 -5.1 -24.1 -6.6 9.5 2.6
OND 3.8 1.0 -17.8 -4.9 -2.2 0.6
JFMA -17.7 -4.8 -38.3 -10.5 12.4 3.4

FRST to GRS ANN 12.5 2.6 11.5 2.4 -8.5 -1.8
MJJAS 17.5 3.6 13.8 2.9 -7.2 -1.5
OND -5.2 -1.1 -1.8 -0.4 4.4 0.9
JFMA 21.9 4.6 13.7 2.8 -17.0 3.5

FRST to BRLNDS ANN 19.7 4.1 19.9 4.1 -13.6 -2.8
MJJAS 24.7 5.1 19.1 4.0 -15.3 -3.2
OND 3.7 0.8 6.5 1.4 0.1 0.0
JFMA 25.5 5.3 38.0 7.9 -17.5 -3.6

AAG to BRLNDS ANN 20.5 5.6 23.2 6.3 -14.6 -4.0
MJJAS 25.2 6.9 22.9 6.3 -19.5 -5.3
OND 12.5 3.4 9.2 2.5 -0.6 -0.2
JFMA 12.7 3.5 38.9 10.6 -13.5 -3.7

ALNDS to BRLNDS ANN 24.3 2.5 16.8 1.7 -17.3 -1.8
MJJAS 29.2 3.0 18.4 1.9 -22.0 -2.2
OND 14.2 1.4 2.5 0.3 -2.3 -0.2
JFMA 19.8 2.0 23.4 2.4 -17.0 -1.7



Figure 5: Anomalies (relative to the base run) of monthly contributions to surface

streamflow from surface runoff (SURQ); lateral flow (LATQ); groundwater return

flow (GWQ); water yield (WYLD). a) Upper panel shows AAG to FRST scenario

which describes changes of streamflow when the agricultural land was changed to

forest. b) Lower panel shows AAG to BRLNDS scenario which describes the monthly

contributions to surface streamflow when agricultural land was changed to bare land.

(Units are mm per unit area of the basin.

The larger decrease in streamflow in the January–April period resulting from the

changes in land use may be attributed to the sharp decline of rainfall and warm

a)

b)

a)

b)



temperatures in these months. The combined effect causes the increase in

evapotranspiration of the expanded forest areas. There is a slight increase in water yield

during the dry period from October to December. This small increase in water yield is

mainly due to the groundwater contribution (return flow) (Figure 5a). In fact, the

contribution to water yield from the surface runoff decreased from the base run in the

months from May (- 4.5 %) through July (-7.9 %). Most of the extra amount of surface

water percolated into the shallow aquifer. And as indicated in Figure 5a, the increased

groundwater for the period October - December due to return flow and surface runoff

would increase the water yield.

4.3.2 Deforestation

FRST to GRS and FRST to BRLNDS scenarios in Table 7 represent two additional

possible land use scenarios. In FRST to GRS, forest lands (48% of the basin area) are

converted to grassland for grazing. This change resulted in an increase of 12.5% and

11.5% of the annual water yield and streamflow from the base run (Table 7),

respectively. Seasonal changes of water yield and streamflow following these land use

changes show increases from the wet (May-September; 17.5% and 13.8%) to dry

seasons (January to April; 21.9% and 13.7%), respectively. As it is shown in table 3,

these results were accompanied with the large decrease in evapotranspiration both in

the wet and dry season. The water flow within soil profile that enters the main channel

to replenish the small streams when grasses are entering the dormant in dry season

(January to April; 21.9%) contributes larger water yield increment. A relatively small

decrease in streamflow is shown in the dry season from October through December.

This small decline in streamflow may be due to limited moisture in the soil during those

months.

FRST to BRLNDS represents a deforestation scenario when basin forest (48% of the

basin area) is cleared. This change causes an increase in annual water yield and

streamflow of nearly 19.7% and 19.9%, respectively compared to the base run. The

largest temporal increase of 24.7% of the seasonal water yield against the base run

occurred in the period from May to September. These large increases in water yield

resulting from deforestation (still keeping the crop lands and grasslands) are primarily



caused by larger surface runoff. This is because the contribution of forest transpiration

to evapotranspiration is becoming minimized which in turn significantly increased

water yield. However, groundwater (return flow) and lateral flow have minimum

contribution for basin and streamflow due to reduced soil moisture. This implicitly

shows the temporal increase followed by sharp decline in streamflow and water yield

is mainly due to strong evaporation from the soil surface before recharging

groundwater.

4.3.3 Comparing the different land use change scenarios

In order to compare the different land use change scenarios, we rescale the results of

the different scenarios to look at the hydrological change per 10% change in land use

area (see Table 7 and Figure 6). The basin is more sensitive to changing the land use

from agricultural to bare lands (AAG to BRLNDS) or forest (AAG to FRST) than to

the other scenarios. The annual streamflow increased and decreased by 6.3% per 10%

area land use change, respectively. This is about three times greater than the change

caused by changing all lands to bare lands (ALNDS to BRLNDS) (Table 7). Such

difference may be due to the fact that in the ALNDS to BRLNDS scenarios,

AG to FRST AAG to FRST FRST to GRS FRST to
BRLNDS

AAG to BRLNDS ALNDS to
BRLNDS
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Figure 6: The upper two panels show the changes of annual and seasonal basin

discharge (water yield) (a) per 10% area change in land use and (b) to the total area

land use change. The lower two panels show changes in annual and seasonal

streamflow (c) per 10% change in land use and (d) to the total area land use change.

AG to FRST AAG to FRST FRST to GRS FRST to BRLNDS AAG to BRLNDS ALNDS to
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the soil moisture is lost through evaporation before the soil gets saturated to generate

streamflow. But, this was not true for the AAG to BRLNDS where there was strongly

reduced evapotranspiration due to less transpiration and more soil moisture retained in

the soil due to plant cover which later lead to increased streamflow. In contrast in the

case of AAG to FRST, the soil moisture contributes significantly to reduce evaporation

but there is strong transpiration due to plant cover. The overall effect results in

decreased streamflow. This difference in sensitivity extends to the wet period (May-

September) where the change in streamflow reaches at 6.3% and 1.9% for AAG to

BRLNDS and ALNDS to BRLNDS scenarios, respectively. The sensitivity to land use

change scenario in the dry seasons is different from the wet season response where a

10% change from agricultural to bare lands (AAG to BRLNDS) or forest (AAG to

FRST) increased and decreased in the streamflow by10.6% and 10.5%, respectively

(table 7) during January to April.

4.4 Effects of Climate Change on Streamflow

The effects of land use change on streamflow of the Omo Gibe River basin shown in

table 7 were simulated under the same climate conditions; thus, they contained no

contribution from climate variations. To estimate the various climate effects on

streamflow or water yield, fourteen temperature and precipitation change scenarios

were used (Table 8). Figure 7 (a) and (b) shows changes in annual and seasonal

streamflow for different precipitation scenarios holding temperature fixed and various

temperature scenarios at fixed precipitation, respectively.
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The most striking feature in Figure 7 is the strong change in the annual streamflow due

to precipitation compared to those caused by land use changes discussed earlier. For

example, the response of annual streamflow to a climate scenario of +20% precipitation

and no temperature change resulted in an increase of about 50.0 %. In a 20%

precipitation decrease scenario, the decrease of the streamflow was also substantial

(over 42%). However, the sensitivity of streamflow to precipitation changes by holding

temperature fixed and vice versa or combined changes in both may be rather different

for the annual and seasonal streamflow estimation. The main results are given below:

Figure 7: Climate change effects in annual and seasonal streamflow due to a)

precipitation change by holding temperature fixed and b) temperature change by

holding precipitation fixed.
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4.4.1 The effect of precipitation changes

As a first approximation a linear regression analysis of the streamflow responses to the

different scenarios indicates that a 10% change in precipitation and no temperature

change will produce a 25% change in annual streamflow (Table 8). From the seasonal

analysis, a 10% change in precipitation gives a 31%, 24% and 23% change in January-

April (JFMA), May-September (MJJAS) and October-December (OND) streamflow,

respectively (Table 8 and Figure 7a). The increase in streamflow in the JFMA is due to

the reduction in evapotranspiration because of minimum vegetation cover during the

dry period, whereas, in the MJJAS period when vegetation is in its peak growth, strong

evapotranspiration reduces the impact of changes in precipitation on the streamflow,

even though rainfall in absolute values increases considerably for those months.

Interestingly, the impact of increased precipitation influences the Omo basin

streamflow more than a similar reduction in precipitation. This higher sensitivity to a

precipitation increase can be explained by the soil physical properties (for instance; soil

depth, soil moisture holding capacity, soil type and etc. and increased the water table

to substantiate additional flow from subsurface as ground water flow. As the Omo Gibe

catchment mainly covered by Dystric cambisols and Lithosols type with high soil

moisture holding capacity, precipitation increase means increase in soil moisture and

then as the soil moisture storage increases, the moisture gets a chance to percolate down

to recharge groundwater.

4.4.2 The effect of temperature changes

The relative sensitivity of streamflow to changes in temperature, holding the

precipitation fixed is modest in Omo Gibe river basin (Figure 7b). A linear regression

analysis of streamflow responses for the different temperature scenarios indicates that

a 1°C change in temperature will produce a 1.4% change in annual streamflow, 0.1%

in MJJAS, 3.5% in JFMA and 1% in OND (Figure 7b). The JFMA (dry) season is more

sensitivity to temperature change than the other two seasons. This is due to the fact that

the soil is under moisture constraint in this period and an increased temperature will



dry out the soil via increased evapotranspiration which in turn results in the reduction

of the streamflow.

4.4.3 Combined temperature and precipitation changes

Comparing the modelled relative streamflow sensitivity when both temperature and

precipitation is changed with the linear combination of separate temperature and

precipitation changes (equation 3.3), reveals that the Omo Gibe basin shows

sensitivities that is a linear function of the temperature and precipitation changes for all

seasons except JFMA where the combined effect of a strong precipitation reduction

and temperature increase is smaller than the linear combination of the two (Figure 8).

The reason for this is a large reduction in soil moisture and a declining in the water

table due to significantly decreased precipitation result in reduced streamflow in the

period.

a) b)



Figure 8: Change in annual (a) and seasonal (MJJAS (b), OND (c), JFMA (d))

streamflow (%) for different precipitation scenarios. Black dots indicate the linear

sensitivity estimate based on equation 3.3

4.4.4 The Effects of Simultaneous Climate and Land Use Changes

In order to assess if the sensitivity of streamflow to simultaneously changes in land use

and climate is just additive or if there is a more complex response integrated the model

with various specified changes in both land use and climate, and compared the results

to that of the base run where the land use is the present one (Fig. 2b), and the climate

is given by the observed data.

c) d)



Figure 9: Annual streamflow change of the Omo Gibe river basin from simultaneous

land use and climatic change and the sum of the individual effects of the changes.

As noted in the above sections a significant increase/reduction of the annual streamflow

is happening under the increased temperature and simultaneously increased/reduced

precipitation (+4°C and +20% or -20% precipitation change) scenarios (+46.6% and -

42.5%, respectively, Table 8 and figure 9) compared to the simulation with the present

climate. If scenarios with various land cover changes (given in Table 4) are imposed

together with the climatic change of +4°C and +20% or -20% precipitation change the

water budget response is changed. Figure 9 shows the annual water yield and

streamflow change from six specific changes in land use scenarios and three climate

conditions ([-20%, +40c]; [non-perturbed climate] and [+20%, +40c]) which with six

land use changes gives a total of 18 possible combinations. In addition, the change from

a simple addition of the effects from individual changes in climate and land use

(equation 3.3) is shown. The general result from Figure 9 is that in many cases the

nonlinear effects of both climate change and land use change are small. However, there

are a few exceptions. According to Table 7 and Figure 6b and 6d the water yield and

streamflow increased by 20.5% and 23.2% respectively when all lands changed to bare

ground (AAG to BRLNDS scenario) under non-perturbed climate conditions.

However, when both climate (+20%, +40C) and land use changes occurred at the same
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time, annual streamflow increased by 28.4% (Figure 9) compared to the base run, this

is smaller than the 69.8% change that would come from a simple addition of the effects

from individual changes in climate (46.6%) and land use (23.2%) (See Fig.9). The

change in simulated evapotranspiration (ETa) varied from (5.3%), to (-14.6%) and

12.4%) for +4°C and +20% precipitation changes at reference land use, for non-

perturbed climate at AAG to BRLNDS scenario and simultaneous change in the land

use and climate scenario, respectively (Fig.10b). The effect of simultaneous land use

and climate change on groundwater flow reached 59.2% which is slightly smaller than

the sum of individual effects due to climate (27.5%) and land use (37.6%) change

scenario.

Results in Figure 10a, b, c indicates the effects from land use and climate changes on

water budget components (streamflow. ground water, lateral flow and

evapotranspiration) and interactions among the components.  The impacts of such

changes may lead to either maximum or minimum streamflow under low or high

evapotranspiration with big or small groundwater contribution in the basin. When the

climate is becoming wetter (+20%, +40C) and land use changes that cause reduction of

forest coverage in the basin (FRST to BRLNDS), for example, would magnify the wet

climate effect and increase flow intensity and frequency (see Figure. 10b) even though

the groundwater (Fig.10a) and lateral flow (Fig.10c) contribution is very low. On the

other hand, if drier climate (-20%, +40C) is occurring in basin, the policy of returning

agricultural land to forest (AAG to FRST) would further reduce streamflow and water

yield and may enhance minimum flow impacts on water resources in the basin (see

Fig.10a) because of increased losses via transpiration due to forest cover though there

is relatively increase in groundwater and lateral flow contribution (Fig.10 b and c).
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Figure10: Annual percent change in (a)base flow(GWQ), (b)evapotranspiration(ETa)

and (c)lateral flow(LATQ) of the Omo Gibe river basin for various land use scenarios

(AG to FRST: agricultural lands of slope > 25% changed into forest lands (10.3%) ,

AAG to FRST: All agricultural lands changed into forest lands (36.6%), FRST to

GRS: Forest lands changed to grasslands (48.1%), FRST to BRLNDS: Forest lands

changed to bare  lands (48.1%), AAG to BRLNDS: All agricultural lands changed to

bare ground (36.6%) and ALNDS to BRLNDS Change to a bare ground basin (98.8%)

,respectively) at -20% precipitation and +40C temperature change (1), non-perturbed(2)

and at +20% precipitation and +40C temperature change(3) climate scenario.

5. Conclusions
The sensitivity of the Omo Gibe river basin to climate and land use change was

modelled using the Soil Water Assessment Tool (SWAT) model. The model was

successfully calibrated and validated at Great Gibe and Gojeb River gauges with good

agreement between observed and simulated monthly streamflow. The monthly bias

during the validation period was -14% and 7% Great Gibe and Gojeb River,

respectively, while the Nash Sutclife efficiency factor was 0.75 and 0.88, respectively.

Results indicate that modeling various changes in land use we found the change in

streamflow to generally be below 10% per 10% change in land use. Deforestation of

the entire region, through the change of the entire forest area coverage (48% of the
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basin) to bare lands, increased the annual streamflow by 19.9% compared to the

reference simulation. This result deviates from the report made by Avery (2010), where

it was stated that the streamflow may decrease by 50-60%.

Streamflow sensitivity to land use change was largest when agricultural land was

converted to either forest or bare lands.  In the AAG to BRLNDS scenario where there

is strongly reduced evapotranspiration due to less transpiration and more soil moisture

retained in the soil due to plant cover which later lead to increased streamflow. In

contrast in the case of AAG to FRST, the soil moisture contributes significantly to

reduce evaporation but there is strong transpiration due to plant cover.

The overall effect results in decreased streamflow. For many of the simulations the

relative streamflow sensitivity was largest in the dry period of JFMA because of

changes in evapotranspiration as transpiration (component of evapotranspiration) was

altered when the land use was altered. In addition, many of the simulations show the

weakest streamflow response in the period of October- December. This is because the

period is following the wet period (MJJAS) and evapotranspiration is dominated by

evaporation and the soil moisture is large. Thus, changes in transpiration due to land

use changes are less important. Sensitivity of streamflow to temperature and

precipitation (14 hypothetical climate change scenarios) show that the basin

streamflow is very sensitive to precipitation changes and moderately sensitive to

temperature changes. The annual streamflow response to a 10% change in precipitation

with no temperature change was on average 25%. While the streamflow sensitivity to

temperature was relatively low. The average annual streamflow responses to a 1°C

change in temperature and no precipitation change was -1.4%.

The highest sensitivity to precipitation change was observed during dry period from

JFMA with 31% change in streamflow from a 10% precipitation increase. This is

because of relatively decreased evapotranspiration due to minimum transpiration from

less vegetation cover during the period.

For all seasons except JFMA the combined effect of a precipitation changes and

temperature increase was linear (the sum of the changes to precipitation and

temperature individually). The non-linear behavior during JFMA was due to the

interaction among various factors which are more pronounced in this season than in



other periods of the simulation. Some of the factors are the soil physical properties (in

relation to limited soil moisture), less vegetation cover, minimum precipitation amount

and high temperatures during the period.

The JFMA season is much more sensitivity to temperature change than the other two

seasons (-3.5%/K). This is due to moisture constraint and an increased temperature to

dry out moisture from the soil via evapotranspiration in the season which in turn results

in the reduction of streamflow.

The large sensitivity of streamflow in JFMA may have serious implications for

management of water supply for domestic and industrial use, power generation and

agriculture, because a number of small streams which now are perennial may be altered

to intermittent.

Results also indicate the effect of various land use changes, even some extreme land

use changes, is secondary to plausible changes and variations in climate. These

conclusions are consistent with some previous studies for different climatic regions

around the world (e.g., Mimikou et al., 1999; Lahmer et al., 2001; Legesse et al., 2003;

Tao et al., 2003; Hu et al., 2004; Guo et al., 2008).

In addition to describing the effects of individual land use or climate change on seasonal

and annual streamflow, the effect of simultaneous changes in both land use and climate

on the water cycle was investigated. Results indicate that the combined effects differ

only slightly from the effect resulting from the sum total of individual land use and

climate change. For example, in a wet scenario, changing land use to increase bare land

areas would increase streamflow by 58.41%   which is slightly less than the 63.4% from

simple additions of the individual effects from changes of land use (16.8%) and climate

(46.6%).  However, there are exceptions to this near linear response showing that the

model simulates some effects leading to nonlinear interactions among water balance

components when simultaneous changes in land use and climate change would take

place in the same basin.

Therefore, management of the emerging cascaded hydropower development will be

daunting task given the high sensitivity of precipitation. This requires careful

consideration of implementing seasonal flow forecasting models and reservoir

operation management for sustainable upstream-downstream interaction.



Finally, we note that there are several uncertainties related to the above analysis, one

is that it assumes the current streamflow-precipitation-temperature relationship is still

valid under the future climate scenarios. As Liu et al. (2008) noted, in simulation of

hydrological systems at the regional scale, many factors, such as model structure,

parameters, and meteorological input, can lead to large uncertainty due to inherent

multi-scale space-time heterogeneity. The limited number and spatial distribution of

the meteorological and streamflow data is another big challenge. Most of the

meteorological data located in the upper catchment. In our sensitivity studies we have

multiplied the precipitation with a fraction. This means that we assume that the wet-

day frequency is unchanged and the whole precipitation change is given as a change in

intensity.  For temperature we have added a constant for the whole year and thereby

assuming that the change is not depending on season.
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Abstract
Often, we tend to spend huge amount of time and resources to setup and use complex

hydrological models for simple goal of flow estimation. Running complex models

becomes even more difficult when the amount of available data is scarce as we usually

face in many parts of Africa. The aim of this study is to evaluate and revitalize the

systems type black box model against complex hydrological models for easy flow

estimation application. Six systems type black box models, the Simple Linear Model

(SLM), Non-Parametric Simple Linear Model (NP-SLM), Linear Perturbation Model

(LPM), Non-Parametric Linear Perturbation Model (NP-LPM) and Linearly Varying

Gain Factor Model (LVGFM), a non-linear black box type artificial Neural Network

model (ANN) are compared with three complex hydrological models of those under

SMAR, HBV and SWAT. The models are compared based on daily rainfall and stream

flow data (1980–2000) on Gilgel Abbay watershed.  Event -based analysis was also

conducted using 100 selected runoff events.

In terms of the event rainfall-runoff relationship, it was indicated that the event runoff

is largely a function of the amount of rainfall. The event rainfall-runoff relationships

explained as much as 62% for the wet periods without the integration of the evaporating

demands. Although rainfall intensity, duration and catchment characteristics play a

role, in this watershed, rainfall amount affects substantial part of the runoff response

consolidating a simple rainfall-runoff relationship can describe the runoff in this

watershed.

Comparison of systems type black box and complex hydrological models in the study

area indicates that the LPM and the ANN models perform better than the complex

hydrological models such as SMARG, HBV and SWAT in terms of R2 and Nash

Sutcliffe Efficiency (NSE) criteria. This confirms that simpler models (that takes only

rainfall as input) can surpass their complex counterparts in performance for continuous

simulation and reproducing the hydrographs or flow estimation. There is a strong

justification, therefore, for the claim that increasing the model complexity, thereby

increasing the number of parameters, does not necessarily enhance the model

performance. It is suggested that, in practical hydrology, the simpler models, may still

play a significant role as effective simulation tools, and countries with scarce



hydrological data should revitalize application of such systems type black box

modelling schemes that depend only on rainfall and runoff data sets which could be

easily available.
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Introduction

Rainfall-runoff relationships are complicated processes which may be highly non-linear

and exhibits both temporal and spatial variations. Understanding their relationship is

essential for practical basin management practices. Several hydrological models have

been developed to simulate rainfall-runoff relationships across the world [1]. These can

be classified as empirical black box models, conceptual and physically based distributed

models [1]. Black box models are empirical, involving mathematical equations that have

been assessed, not from the physical processes in the catchment, but from analysis of

concurrent input and output time series. Conceptual (lumped) models treat the catchment

as a single unit, with state variables that represent average values over the catchment

area, such as storage in the saturated zone. Another approach to hydrological processes

modeling is the attempt to construct models based on the governing equations describing

all the surface and subsurface flow processes in the catchment called physically

distributed models.  Each of these types of models has their own advantages and

limitations [1]. For instance, in areas where getting sufficient hydro-meteorological data

are problematic or the purpose of hydrological modeling is limited to flow estimation,

applications of linear systems theoretic models (black box models) are inevitably

important for water related development. However, to choose between the various

available hydrological models to suit a practical demand and find the most appropriate

model for the specified basin is a big challenge. Many models are in practice simple

linear system theoretic models (black box models) [1] which do often not represent the

non-linear dynamics, which are inherent in the process of rainfall-runoff transformation.

[2] and [3] observed that the rainfall information alone is not sufficient to calculate the

runoff from a catchment as the initial state (such as amount of soil moisture and

orographic features) of the catchment plays an important role in determining the runoff

rate behavior. The rainfall-runoff relationship in mountainous regions are influenced by

the steep gradient profiles (i.e. inter flow and sheet flow) and less influenced by soil

composition [4]. Nevertheless, soil composition in less steep environment plays a major

role in runoff generation due to the presence of very to moderately drained soils [4] [5]

[6] [7].  Therefore, higher streamflows and runoff coefficients (R/P, where R is runoff



and P precipitation) are usually associated with mountainous area [8], while smaller R/P

ratios are expected for low-topographic gradient watersheds [8] - [9]. [10] argue that

runoff in lower land plain watersheds have a much larger variability than upland

watersheds because of a wider range of variable source areas, including ephemeral water

storage in depressions in a low gradient terrain.

Evapotranspiration is another factor that affects the hydrological processes of the

watershed in shallow water tables [11]. It is mainly influenced by humidity gradients,

solar energy, wind speed, soil properties and vegetation type [12] [13]. Other studies

have found that depending on the soil moisture status, lowland watersheds were highly

responsive to rainfall by producing more frequent and greater amounts of runoff, with

peak flow rates also depending on the surface depression storage [8]. Furthermore,

some rainfall-runoff simulation models have demonstrated that the degree of water

saturation in the soil prior to a precipitation event (the antecedent soil moisture

condition, AMSC) correlates with the portioning of the event rainfall into infiltration

and stream flow [14] [15] [16].

Seasonal climate variability affects both the soil moisture and the characteristics of the

storm events that in turn affect the runoff generation pattern [11]. Some of these

characteristics are rainfall intensity, frequency, duration, and direction [17]. Although

the antecedence soil moisture condition of the watershed influences water available for

runoff, evapotranspiration and infiltration via soil water storage, it is highly variable

and difficult to measure [18].

The main objective of this study is to evaluate the performance of nine rainfall-runoff

models (from simple to complex) whether model complexity is important for flow

estimation in the context of data scarce areas in Africa. There is a tendency to use

complex models such as SWAT for simple purpose of flow estimation in many African

watersheds. The amount of spatial and temporal date sets required to calibrate complex

models such as SWAT doesn't warranty the purpose if the purpose of the modeling is

simply to estimate flow for water resources development application. Therefore, this

study attempts to revitalize application of simple rainfall-runoff hydrological models



for use in water resources application. The study is conducted on Gilgel Abbay

catchment of Blue Nile basin (Ethiopia) using 21 years (1980-2000) historical data of

daily rainfall, temperature and stream flow. Finally, we compare the results from the

individual rainfall-runoff models with several methods of combining the outputs to

investigate if there is added value in making ensemble means.



The study area

The Gilgel Abbay catchment (4051km2) is one of the largest among the four main sub-

catchments in Lake Tana sub basin of the upper Blue Nile basin, Ethiopia (Figure 1),

providing about 60% of the lake inflow. It is located at 100 44'N latitude and 370 23'E

longitude. The catchment includes the two gauged sub-basins; Upper Gilgel Abbay

(1664 km2) and Koga (307 km2), See Figure 1, with elevation ranging from 1787m to

3518 The topography is rugged in the southern part of the catchment and the periphery

to the west and southeast, while the remaining part is a typical plateau with gentle

slopes. The soil is dominated by clays and clay loams (Figure 1c). The dominant land

use units are agricultural (65%) and agro-pastoral land (33%) [19], among this rainfed

agriculture is the predominant cover of the Upper Gilgel Abbay (74%) and Koga (64%)

sub-catchments (Figure 1b).

Figure 1.a) Distribution of meteorological stations and gauging station, b) land use

and c) soil map in the Gilgal Abbay catchment

a)

b)
c)



Upper Gilgel Abbay has its main rainy season between June and September, receiving

about 70 to 90% of the annual rainfall during this season [20] [21] [22]. Annual area

average rainfall (1964-2005) ranged from 834 to 2106 mm, with July representing the

wettest month (356mm) and January representing the driest month (3mm) on average.

Rainfall observations indicate significant spatial variability in rainfall following the

topography, with decreasing amounts from south to north. Long-term (1980-2000)

minimum and maximum annual air temperature values recorded at Merawi

(2020m.a.s.l.) and Dangla (2180m.a.s.l.) stations ranged from 110C to 37.7oC,

respectively with temporal temperature variations being small throughout the year [19].

Data Assessments and Method

3.1 Historical Data

We used daily rainfall and temperature data (1980-2000) from seven and four stations,

respectively (Figure 1a). Daily Stream flow data for Gilgel Abbay is taken from the

then Ministry of Water and Energy (now Ministry of Water, Irrigation and Electricity).

The meteorological data of rainfall and temperature is obtained from National

Meteorological Agency (NMA). Missing values in rainfall and temperature were

treated using the SWAT built-in weather generator developed by [23]. The daily area

representative precipitation was calculated using thiessen polygon method.

3.2 Event selection

We selected storm events based on discharge rates greater than 1.84m3/s (minimum

mean discharge separated from base flow per day), where the base flow is calculated

by using variable storage method, total mean daily area averaged rainfall values greater



than 2.3mm; and a period of 48 hours or more in between rain events (Table 1). A rain

event is defined as the rainfall amount which contributes runoff event in a period of 48

hours [11]. These criteria were selected to identify detectable single peak events and

minimize influence of prior rainfall on several peaks. Multiple peak events were

excluded from this analysis in order not to complicate the identification of storm

duration and total storm volume. The same method was used by [7] - [8] [24], [25], and

[26]. Single event peak discharge can be modeled easier as described by [27]. The start

of the runoff event is the rainfall available for runoff after infiltration and other

abstractions have been accounted for.

The antecedent precipitation index (API) was calculated as a measure of the available

soil moisture content (ASMC):

(3.1)

Where tP is the area averaged precipitation at day t, N the number of days prior to the

start of the runoff event and tK is the recession constant calculated as the product for

three individual constants, i.e.  K=Ks*Ki*Kg where Ks=1.0, Kj=0.43and Kg=1.33 are

recession constants associated with surface storage, inflow and ground water flow

respectively.

Total event runoff volume is calculated by dividing the daily runoff by the watershed

area to obtain runoff depth in mm. The runoff volume was considered to be the area

under the hydrograph from the start of the event (defined above) until it reaches base

flow level or until the next rise starts. Using the above definition of an event, the

average duration of the storm events was 12 days. Since the rainfall data was in daily

basis, there was sometimes challenge to identify an exact amount of rainfall amounts

resulting in a particular runoff event. The begin flow for each event was calculated as
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the flow at which direct runoff starts. R/P was calculated using the accumulated runoff

amount and corresponding accumulated area averaged rainfall over the runoff event.

Based on the above criteria, we selected 100 storm events with various parameters

showing the hydrologic characteristic of the study area (table 1). [11] Used 51 storms

for only a 10-year (1964-1973) period that included events with multiple peaks also. In

other studies, [25] used 75 events, [28] used 29 events, [7] used 23 events, [26] used 4-

9 events for each watershed, and [24] used 55 storm events for various study areas. We,

therefore, believe that analysis of 100 storm events is adequate for testing event based

rainfall runoff relationship.

3.3 Regression analysis

A simple linear regression analysis was used to determine the relationship between

runoff and other variables. Equations of the linear regression lines and their parameters

were tested for statistical significance at the 5% level (α=0.05) using a two-tailed t-test.

In addition, a standard stepwise regression analysis was used to examine the effects of

different factors on the runoff.

3.4 The Galway River Flow Forecasting System (GFMFS)

The Galway Flow Modeling Forecasting System (GFMFS) is software packages

developed at Department of Engineering Hydrology, National University of Ireland,

Galway [29]. A brief description of the GFMFS software package may be found in [30]

[31] [32] [33] [34] - [35] [36] - [37] [38] - [39] [40] [41] - [42] [43] [44]. The GFMFS

models may be run in updating mode or simulation mode, depending on the choice of

model. In updating mode, the models use the lagged observed discharge along with

precipitation input to simulate the streamflow simulation hydrograph to the

corresponding observed hydrograph. In contrast, non-updating (simulation) mode uses



the input of precipitation and excluding the use of the recently observed discharge as

model inputs.

The five major hydrological applications of the GFMFS packages are i) Modeling by

calibration and validation for simulation of continuous river flow, ii) Estimation of river

flow i.e. generation of synthetic flow series, using inflow data and a calibration

model.iii) Modeling by calibration and verification, for lead-time forecasting in

absence of QPF (quantitative precipitation forecasts), iv) Modeling by calibration and

verification, for lead-time forecasting using QPFs, v) Real time flow forecasting using

models and techniques chosen in step i. and/or iii or iv.

Modeling by calibration and validation for simulation of continuous river flow in step

1 was applied for this study. The models implemented in this study (from the GFMFS

package) are six rainfall runoff models that depend only on rainfall and runoff

relationships (single input) and one complex hydrological models that uses more than

one rainfall input and several conceptual parameters in the model formulation. These

models are the Simple Linear Model (SLM), Non-Parametric Simple Linear Model

(NP-SLM), Linear Perturbation Model (LPM), Non-Parametric Linear Perturbation

Model (NP-LPM) and Linearly Varying Gain Factor Model (LVGFM), a non-linear

black box type artificial Neural Network model (ANN). The complex hydrological

models accessed from GFMFS package include Soil Moisture Accounting and Routing

Model conceptual model (SMAR, we tested the three variants, namely the SMARG,

SMAR-NC1 and SMAR-NC2 versions, but only the SMARG is reported on here since

the results were similar for the two other versions) (see Table 5).

3.5 Other Complex Hydrological Models

In addition to the above hydrological models we further apply a conceptual semi

distributed (HBV) and a physically distributed (SWAT) model in the study. The HBV

model [45] - [46] - [47]- [48] is a rainfall-runoff model, which includes conceptual



numerical descriptions of hydrological processes at the catchment scale. The general

water balance can be described as:

− − = + + (3.2)

Where SW is the soil water content (mm), Rday is the daily precipitation, Qsurf is the amount of

surface runoff/streamflow, ETa is the amount of actual evapotranspiration, Wseep is the amount

of water entering the vadose zone from the soil profile and Qgw is the amount of ground flow.

The HBV model can be used as a semi-distributed model by dividing the catchment

into sub basin. Each sub basin is then divided into zones according to altitudes and the

elevation zones which are further divided into different vegetation zones (e.g. Lakes,

forested and non-forested areas).

The model is normally run on daily values of rainfall and air temperature, and daily or

monthly estimates of potential evaporation. Observed streamflow data were used for

calibration of the model through optimizing the embedded parameters.

SWAT (Soil and Water Assessment tool, version SWAT2005) is a physically based,

distributed parameter model which operates on daily time step and uses

physiographical data such as elevation, land use and soil properties as well as

meteorological data and, stream flow data for calibration. It is computationally efficient

for use in large watersheds, and is capable of simulating the impact of land management

practices [49].

The effects of spatial variations in topography, land use, soil and other characteristics

of watershed hydrology is incorporated by dividing a basin into several sub-basins

based on drainage areas of tributaries and is further divided the sub-basins into a

number of hydrological response unit (HRUs) within each sub-basin, based on land

cover and soils. Each HRU is assumed spatially uniform in terms of land use, soil,

topography and climate. The subdivision of the watershed enables the model to reflect



differences in evapotranspiration for various crops and soils. All model computations

are performed at the HRUs level [50].

The fundamental hydrology of a watershed in SWAT is based on the following water

balance equation [50].

gwseepasurfday QWETQR
t

SW





(3.3)

Where SW is the soil water content (mm), Rday is the amount of precipitation on (mm), Qsurf is

the amount of surface runoff/streamflow (mm), ETa is the amount of actual evapotranspiration

(mm), Wseep is the amount of water entering the vadose zone from the soil profile (mm), and

Qgw is the amount of ground flow (mm). Detail descriptions of the different model components

can be found in [51] [52]. Like HBV model SWAT used observed streamflow data for

calibration purpose to optimize high to very high sensitive parameters.

Table 5 rank the models according to complexity from simple to complex. SLM is the

simplest followed by the LPM in their non-parametric and parametric forms and the

LVGFM. Non-parametric and parametric assume the observations must be

independent, the observations in non- parametric forms must be drawn from normally

distributed populations, and these populations must have the same variances however

in parametric form variable distributions have been.

The three models (SLM, LPM and LVGFM) are system-linear model in structure, and

an ordinary least squares solution is used for estimation of the pulse response function

except for the parametric forms where the parameters were optimised. HBV and SWAT

models are the most complex with a complicated mathematical procedure to be

processed during simulation.

3.6 Combination of Outputs

A particular rainfall-runoff model may have been selected from among a number of

competing alternative models, based, perhaps, on its accuracy, its familiarity to the



user, its ease of use, the type of the catchment, and the available data. However, there

may be a potentially danger in relying entirely on one substantive rainfall-runoff model

(a sample of one) since it is unlikely to perform satisfactorily at all time or under all

conditions (e.g. perhaps not all of its structural assumptions are valid or the conditions

under which it is assumed to operate are not entirely fulfilled. The method of

combination of outputs from each of the model applied for the study area are carried

out in the concept that the individual model assumed to capture some physical

characteristics of the study area. We use three different methods of combining outputs

(MOCT): The Simple Average Method (SAM), the Weighted Average Method

(WAM), and the Neural Network Method (NNM).

3.6.1 The Simple Average Method (SAM)

The simple average method (SAM) is the simplest method of combining the outputs of

different individual models. Given the estimated discharges from N rainfall-runoff

models, a combined estimate of the discharge of the ith time period, using the SAM, is

given by= ∑ (3.4)

where :is the combined estimate of the discharge of the ith time period, N is the number of rainfall

runoff models and the average simulate discharge for time period I from rainfall-runoff model j.

3.6.2 The Weighted Average Method (WAM)

When some of the individual models selected for combination appear to be consistently

more accurate than others, in which case the use of the simple average method for

combination can be quite inefficient [53], the use of a weighted average would be

considered.

The weighted average method (WAM) for combining the estimated model outputs, in the

case of N rainfall-runoff models, may be expressed as [54]= ∑ + (3.5)



Where Qi is the combined discharge and am is the weight assigned to the jth model

estimated discharge.  ei is the combination error term.

The above equation may alternatively be expressed in matrix notation as

Q =PA + E (3.6)

Where P is the input matrix defined by

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡ , , , − − − , , ,, , , − − − , , ,,,,,,,, , , − − − , , ,, , , − − − − − − , , , ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤

Q = (Q1, Q2, Q3, …, Qk-1, Qk) T is the output vector,

A = (a1, a2, a3, …, ak-1, ak) is the weight vector and

E = (e1, e2, e3, …, ek-1, ek) is the combination error vector, T denotes the transpose of the vector and k is the total number

of observations.

The preceding equation can be perceived as a multiple linear regression model. Thus, it

can be readily shown that the ordinary least squares estimate of the weight vector is given

by;= ( ) (3.7)

In the WAM, the sum of the weights ai is normally constrained to be equal to unity, that is

∑ = 1 (3.8)



The main rationale behind constraining the sum of the weights to unity is that if the

models included in the weighted average are unbiased, i.e. having a zero-mean output

error term, then the weighted average combined forecast is likewise unbiased [53].

In the case where the sum of the weights is constrained to equal unity, it can be shown

using the method of constrained least squares (CLS) that the estimate of the weights

vector̅ (3.9)

is given by;

̅ = [ ] + ℎ (4.0)

where b is the unit vector (i.e. all of its scalar components are unity) having the same

dimension as the parameters vector A and  is the Lagrangian multiplier which is given

by

= 2( ( ) ) (1 − ( ) ) (3.10)

Alternative techniques, other than least squares, for estimating the weights ai have also

been used, e.g. by considering the covariance of the forecast errors of the individual

models being considered [93].

3.6.3 The Neural Network Method (NNM)

The neural network method (NNM) provides an alternative to the simple average

(SAM) and the weighted average methods (WAM) for combining outputs from

different models. Neural networks are applied, in the GFMFS package, in the context

of providing a non-linear function mapping of the simulated flows. Using a multi-layer

feed forward neural network [44].



Results and Discussion

4.1 Relationship between Precipitation and Runoff

A linear regression analysis revealed a significant (α = 0.05) correspondence between

mean event runoff and mean event rainfall (Table 2). The coefficient of determination

(R2) was 0.62 and 0.33 for the wet (69 events) or dry (31 events) (Table 3). A dry event

is defined as an event where precipitation is zero the day before the event started. Figure

3a and 3b shows the scatter plot between the mean event runoff and mean event rainfall

for the wet and dry case. The average runoff coefficient (R/P) was 0.11 and 0.05 for

the wet and dry events respectively. R/P ranged from 0.01 to 0.19 with a coefficient of

variation (CV, which is the ratio of the standard deviation to the mean) of 0.97 for the

dry events. This was almost three times higher than during the wet events. The higher

relative variability observed during the dry period may be explained by the soil being

close to saturation for the wet events, thus the relative variability between the different

events will be small. Thus, event averaged precipitation is well correlated with event

averaged runoff in the wet case, but not in the dry case. The mean monthly water

balance plot for the study period for the Gilgel Abbay watershed shows the cycle of

rainfall and runoff in relation to PET as estimated by the Penman Monteith method

(Figure 2).

Table 2: Descriptive statistics results the run off coefficient for R/P for wet and dry
events and wet and dry conditions on both 5- day prior rainfall-values correspond to
the significant difference in periods and conditions.

Parameters n. (no. Of
events

R/P ratio
ranges

Mean R/P SD (±) COV P-value

Wet period 69 0.05-0.22 0.11 0.04 0.34 0.25

Dry Period 31 0.0-0.19 0.05 0.05 0.97 0.03

Wet condition (5-day
prior)

73 0.0-0.22 0.1 0.05 0.44 0.01

Dry condition (5-day
prior)

27 0.01-0.19 0.07 0.05 0.74 0.46



Figure 2:  Mean monthly rainfall-runoff and PET for 1980-2000 period. PET was

calculated using Penman monieth method.

a) b)

Figure 3: Event rainfall-runoff relationship for a) wet (May-October=69) and b) dry

(November-April=31) periods

A seasonal cycle is also seen in PET rates which start increasing in September and

peaks during the months of March. The plot in Figure 2 suggests that the difference

between rainfall and runoff is close to the PET values during the wet periods with

unlimited soil moisture calculated for the watershed (Figure 2). Thus, it is important to

examine alternative relationships that include other important variables, such as PET
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or water table depth as a surrogate for the ASMC, and their interactions for

understanding rainfall–runoff dynamics.

4.2 Relationship between the Antecedent Precipitation Index (API)
and Runoff

Using the precipitation information only on the day before the beginning of the event

to classify the event into wet and dry may means that we are not taking into account

information about the soil moisture content prior to the event. A crude way of getting

information about this is to use the API (equation (3.1) to define wet and dry cases

instead of the precipitation the day before the start of the event.  Table 3 shows the

regression between the runoff and the 5- day API.API 5-days prior to event are

correlated with event averaged runoff both for dry (27 events) and wet (73 events)

cases. Results shows a significant (R2 = 0.38) relationship between runoff and 5-day

API (R2 = 0.38 and R2 = 0.31 for the wet and dry conditions, respectively, Table 3 and

Figure 4).

Table 3: Regression statistics results for runoff-rainfall relationships for wet and dry
periods, and wet and dry conditions based on 5 prior rainfall.

Parameters Regression equation r2 P-value Intercept(p-
value)

Slope(p-value)

Wet period Runoff=1.853P+25.265 0.62 0.0 0.16 0.0

Dry period Runoff=0.024P+0.15 0.33 0.0 0.45 0.0

Wet conditions (5-day
prior)

Runoff=0.156P+4.026 0.38 0.0 0.0 0.0

Dry conditions (5-day
prior)

Runoff=0.062P+0.463 0.31 0.0 0.0 0.0

Other factors such as rainfall intensity and its aerial variability, spatial distribution (for

watershed of this scale) of soil type and their properties, and depth to water table (i.e.

soil water storage volume) have been clearly examined through detail investigation of

eight storm events among 100 ones.



Figure 4: Rainfall-Runoff relationship for events wet (n=73) based on 5-day API.

Table 4: Results of stepwise regression analysis evaluated for all rainfall events
(n=100), and wet and dry periods.

Variable Begin flow Rainfall 5-day rainfall

All storm events(n=100)

Runoff r2=0.51, P=0.0 r2=0.76, P=0.0 r2=0.23, P=0.0

R/P r2=0.26, P=0.0 r2=0.08, P=0.0 P>0.07

Wet Period

Runoff r2=0.29, P=0.0 r2=0.62, P=0.0 r2=0.12, P=0.004

R/P r2=0.09, P=0.01 P>0.25 P>0.69

Dry period

Runoff r2=0.41, P=0.0 r2=0.33, P=0.0 P>0.57

R/P P>0.10 r2=0.13, P=0.05 P>0.30

Events selected either have very small or high R/P. For example, on day 17-Apr-80 a

rainfall amount of 37.7 mm produced a runoff response of only 0.531 mm (R/P = 0.01),

whereas for the storm event at day 2-Oct-94 17.3 mm produced 1.83 mm runoff (R/P

= 0.11). The later event occurred directly following the return to base flow condition

of the prior event and had a higher peak flow value, perhaps caused by surface runoff

and shallow subsurface flow for a larger ASMC (already saturated conditions). For the

event on day 17-Apr-80 with no previous rain 5 days prior, it is likely that the high ET

rate during the dry period caused a large decrease in stream flow. Compare this with

the event on day 2-Oct-94 where only 17.3 mm rain (5-days prior) produced a ratio of

0.11, whereas a ratio of 0.01 was generated for day 17-Apr-80 with no rain in the 5-

day prior. Apparently, the near-term soil moisture condition played a larger role in



determining the runoff response during the dry period rather than a longer-term

condition (30-day prior rainfall). The amount and rate of runoff will be dependent upon

these key controlling factors (i.e. soil hydrologic properties, soil moisture storage, and

rainfall) that vary spatially and temporarily [7]. However, we hypothesized that

additional information on rainfall intensity, water table positions, and PET would help

to more accurately determine the runoff and change in soil water storage processes.

4.3 Relationship between the Antecedent Precipitation Index (API) and

begin flow

As described in Section 4.2 above, the equation of the simple linear regression model

showed the 5-days API not significantly related to the begin flow during either the wet

or dry period. Thus the 5-days API is unrelated to the begin flow as shown in table 4.

4.4 Multilinear Relationship between Begin Flow, API, Event Precipitation

and Runoff

Results from the above analysis showed runoff was significantly related to rainfall

amount and the API the initial flow rate (begin flow) (see Table 4). The 5-day API prior

to the event had impact on runoff generation, but this was not strong. In the wet period,

the runoff was correlated with initial flow due to previous rainfall condition and event

rainfall amount. However, we did not find this was the case for the dry period at 5-day

prior rainfall.

4.5 Model Results and Performance

In the above analysis, we had seasonal relationship using event based analysis. From the

result, it has been noted a big difference in relationship of rainfall runoff which are

explained by various variables such as mean begin flow, API and soil moisture. The

importance of doing simulation of various models in this section is that to derive the

advantage of individual model outputs from their particular consideration of the study area.



GFMFS software packages and other hydrological models have been applied to simulate

rainfall- runoff relationship using observed daily rainfall and streamflow data for a period

of 1980-2000.

Table 5: List of models ranking from simple to complex in terms of increased

mathematical procedures involved in the model to be processed.

Model Type Complexi

ty

ranking

Mode Description

NP-

SLM

Empirical

black-box

9 Simulation

and non-

parametric

Non-parametric simple linear model. A linear time-

invariant relationship between the total rainfall Ri

and the total discharge

P-SLM

Empirical

black-box

8 Simulation

and

parametric

Parametric simple linear model.

The linear transfer function type representation of

the transformation process of the input series to the

output series for discrete data intervals

NP-

LPM

Empirical

black-box

7 Simulation

and non-

parametric

Non-parametric linear perturbation model. The

model uses the seasonal information of the observed

rainfall and discharge series.

P-LPM

Empirical

black-box

6 Simulation

and non-

parametric

Parametric linear perturbation model. The linear

transfer function type representation of the

transformation process of the departures of the

values of the input series from their respective

seasonal means to the departure of the values of the

output series from their respective seasonal means

for discrete data intervals

LVGFM

Empirical

black-box

5 Simulation

and non-

parametric

Linearly varying gain factor model.

The model is non-linear, can be viewed as a multiple

linear regression model



ANN

Empirical

black-box

4 Simulation Artificial neural network model.

The model is the multi-layer feed forward network

consists of an input layer, an output layer and only

one hidden layer between the input and the output

layers.

SMAR

Physically

inspired

conceptual

model

3 Simulation

and non-

parametric

Soil moisture accounting and routing model.

It is rainfall-evaporation-runoff model with three

variants; SMARG, SMAR-NC1, SMAR-NC2

HBV

Conceptual

model

2 Simulation HydrologiskaByransVattenbalans-Avedlning

(Hydrological Bureau Water balance-section). It is

considered as semi-distributed conceptual model

and possible to run the mode separately for several

sub basins and then add the contributions from all

sub basins.

SWAT

Physical

distributed

model

1 Simulation Soil and Water Assessment Tool. It is physically

based distributed parameter model which operates

on daily time step.

The comparison among each model output is made using three evaluators: The

coefficient of variation (R2), the Nash Sutcliffe Efficiency (NSE) and the bias

(simulation minus observations divided by the observations in %). The 1980-1992 data

were used for model calibration and the remaining data from 1993-2000 used for

validation.

4.5.1 Simulation Mode

The performance of the SLM is inferior to that of all other models. The LVGFM, which

is a modification of the SLM, incorporating an element of linear variation of the gain

factor (Gt, see appendix) with the catchment wetness index at each time step, performs



consistently better than the SLM where the surface storage of the catchments might

have affected the results.

As Gilgel Abbay is characterized by strong seasonality, the LPM in simulation mode,

with its inherent component of seasonal variation, outperforms the LVGFM and SLM.

From Table 6 and Figure 5(a-i), we see that in simulation mode, the performance of the

ANN model is clearly the best followed by LPM during calibration and validation with

R2 of 87.8% and 76.3%, respectively. This implicitly shows the non-linearity of

rainfall-runoff relationships can be well be handled by systems type black box models

without using complex conceptual or physically based models. The performance of the

Table 6: The model efficiencies (%) in simulation mode

Model Method Calibration Validation

R2 Bias ENS R2 Bias ENS

NP-SLM OLS 64.17 -7.81 0.65 51.00 -7.66 0.50

NP-LPM OLS 86.94 0.02 0.87 77.98 -5.70 0.78

LVGFM OLS 73.00 0.78 0.73 57.00 1.99 0.57

SMAR OLS 80.49 -3.69 0.81 70.72 -4.44 0.71

ANN OLS 89.70 2.35 0.90 85.00 3.44 0.85

HBV Parametric 86.0 12.82 0.70 87.0 10.25 0.71

SWAT Parametric 66.32 -0.02 0.62 59.4 -9.47 0.55

MOCT SAM Non-

Parametric

83.37 79.16

WAW Non-

Parametric

90.41 85.53

NNM Non-

Parametric

90.42 84.82



ANN model is R2 89% and 85% during calibration and validation period, respectively.

In the case of SMAR model, the parameter lumping applied to the study catchment

which has diverse topographic variations may have influenced the performance of the

model. Following LPM and ANN, the SMAR of SMARG variant explains the rainfall-

evaporation-runoff relationships with 80.5% and 70.7% of R2 during calibration and

validation, respectively. As Table 5, the overall performance of the systems type black

box models is comparable and in the case of ANN better than the conceptual or

physically based hydrological models. Therefore, as far as estimation flow either in

continuous or event based is concerned, systems type black box model with simple

rainfall and runoff input can be adequate for water resources development purposes.

4.5.2 Updating Mode

In updating mode, LPM consistently performed the best of all other models. It

accounted for more than 90% and 85% of the initial variance during calibration and

validation period, respectively. Even, the simple models like P-SLM and P-LPM

performs better than HBV and SWAT shown in Figure 5(a-i).

Generally, the updating models are better than the simulation mode models (with some

exceptions) and the updating mode models has a lower reduction in R2 and ENS in the

validation period compared to the calibration period (Table 7).
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g)                                                                                   h)

i)

Figure 5: Scatter plots for various models [from (a) to (i)] for Upper Gilgel Abbay

River basin

4.5.3 Combining Outputs from Different Models

The method of combined outputs was used to the results of the five substantive models

included in GFMFS software packages, both in simulation and updating mode. Three

techniques for combining the estimated outputs of different models were conducted

namely, the simple average method (SAM), the weighted average method (WAM) and

the neural network method (NNM).

SAM, WAM and NNM account with R2 values of 83.4, 90.4 and 90.42 percent during

calibration and 79, 85.5 and 84.8 percent during validation period, respectively in
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simulation mode; and in the case of updating mode the values of R2 are 90.2,91.5, and

91.4 percent during calibration and 85,85.3, and 85 percent during validation,

respectively (table 6 and table 7). Therefore, combining the outputs of the systems type

black box model has shown increased improvement in the accuracy of the results.

Table 7: The model efficiencies (%) in updating mode.

Model Method Calibration Validation

R2 Bias ENS R2 Bias ENS

P-SLM Parametric 89.81 -0.91 0.898 85.33 -0.91 0.85

P-LPM Parametric 91.35 0.00 0.91 84.90 -2.49 0.85

MOCT SAM Parametric 90.21 85.06

WAW Parametric 91.46 85.32

NNM Parametric 91.42 85.01



SUMMARY AND CONCLUSIONS

We believe application of complex conceptual or physically based models for simple

flow estimation may not be always feasible especially in scarcely gauged locations in

Africa. On that basis, we compared systems type black box rainfall-runoff models and

other complex models that require inputs beyond rainfall such as SMAR, HBV and

SWAT. The models were compared on the basis of long-term rainfall and stream flow

data (1980–2000) and for 100 selected runoff events for the Gilgel Abbay watershed

Event runoff is largely a function of rainfall amount. The event rainfall-runoff

relationships explained as much as 62% for the wet periods without incorporating the

evaporative demands. Although the relationship between runoff and rainfall was

significant (α = 0.05) for wet and dry periods, it was not as strong as expected. This

suggests that about 38% of the runoff response in this watershed is influenced by other

factors such as its intensity and duration, and to the near-term soil moisture conditions

created by accumulated evapotranspiration and precipitation balances. Event rainfall–

runoff relationships were also affected by 5- day prior rainfall under wet conditions,

suggesting that soil moisture condition is an important element dictating the hydrologic

dynamics of this watershed. However, this was not the case for the dry period indicating

that the rainfall–runoff dynamics was more complex and variable in this system with

shallow moderately drain soil. We argued that this variability is most likely related to

rainfall characteristics such as intensity and duration. We confirm that event R/P were

significantly higher during the wet period than for the dry periods. Although peak flow

rate relationships with rainfall for both wet and dry periods were also significant, the

wet period relationship was found to be stronger. It was also concluded that the rainfall

amount and ASMC represented by the initial base flow rate were the main controlling

factors for event runoff. The results of this study showed that all event variables (runoff,

R/P, and peak flow rates) were controlled by rainfall amounts and available soil water

storage. Future studies should further investigate other hydrologic indicators that affect

the runoff response, such as spatial and temporal water table dynamics determined by

balances of rainfall and ET. Information on depth to water table along with soil



drainage porosity is necessary to determine available subsurface storage and, therefore,

the ASMC at given times. Additionally, event rainfall intensity data are necessary not

only to characterize the peak flow rates but also to accurately determine the rainfall

amount responsible for event runoff regeneration and duration of storm events at

different seasons and periods.

Using Continuous simulation models described in Section 3.5 and 3.6, we compared

systems type black box and complex hydrological models in Gilgel Abbay catchment.

Though the performance of the naïve SLM is clearly inferior to that of all other models

(from systems type black box models), models such as the LPM and the ANN perform

better than the complex hydrological models such as SMARG, HBV and SWAT. For

instance, it is shown in Table 6 that the performance of LPM and ANN (both systems

type black box) models evaluated with NSE criteria gives better hydrograph response

than the complex models such as HBV and SWAT. Therefore, it confirms that simpler

models (that takes only rainfall as input) can surpass their complex counterparts in

performance for continuous simulation and reproducing of hydrographs or flow

estimation. There is a strong justification, therefore, for the claim that increasing the

model complexity, thereby increasing the number of parameters, does not necessarily

enhance the model performance. It is suggested that, in practical hydrology, the simpler

models, may still play a significant role as effective simulation tools, and countries with

scarce hydrological data should revitalize application of such systems type black box

modelling schemes that depend only on rainfall and runoff data sets which could be

easily available.

As a concluding statement, results of this study site may be of great importance for

regional water management and water quality studies, for that matter designing the

water related structures such as detention ponds and restoration efforts. These data will

also provide useful insight to explain the variability in storm runoff response observed

for the dry period, for example. Additionally, future rainfall–runoff event analysis

study at this site should take advantage of current monitoring of rainfall intensity data,

water table depths, solar radiation, and other hydro meteorological data, as well as

modeling studies for accurately estimating soil moisture and actual ET that would help

to explain the variability in runoff generation.



Table 1: Basic hydrological characteristics for analyzed runoff events (n=100) and t-
test results calculated for peak rate, runoff, rainfall, R/P, rain previous 5- and 30-days,
SD=standard Deviation

Date
Begin
flow(m3/s)

Rain in
mm Runoff(mm) R/P Q peak

Rain
5-day

Rain30
-Day

11-Feb-80 0.45 4.4 0.363 0.08 7.001 0.00 4.4

17-Apr-80 0.00 37.5 0.531 0.01 6.17 12.20 16.1

22-Jul-80 96.90 167.3 19.83 0.12 412.617 40.4 309

8-Aug-80 44.63 149.9 16.72 0.11 321.92 41.4 350.5

8-Oct-80 11.92 34 3.53 0.10 93.251 27.1 106.8

9-Jun-81 4.22 17 1.43 0.08 49.143 16 57.2

19-Aug-81 0.48 154.7 17.14 0.11 330.124 40.1 546.4

13-Sep-81 46.39 54.21 11.62 0.21 239.536 28.2 183.01

3-Oct-81 21.58 60.6 8.88 0.15 171.042 2.9 119.51

25-Nov-81 1.68 5.7 0.569 0.10 18.932 0.20 8

5-Jan-82 0.21 19.9 0.320 0.02 6.44 0.00 19.9

20-Aug-82 13.69 141.8 14.68 0.10 282.703 68.2 342.9

8-Sep-82 23.73 71.7 9.89 0.14 230.509 35.1 269.5

12-Oct-82 32.34 39 5.41 0.14 104.096 8.5 117.8

11-Mar-83 0.11 3.32 0.53 0.16 12.112 1.21 3.32

18-Jun-83 6.03 50.6 3.15 0.06 60.661 6.4 68.9

17-Jul-83 45.14 78.6 12.68 0.16 248.767 25.9 151.9

23-Aug-83 42.88 185.6 16.86 0.09 324.641 95.9 478.5

21-Mar-84 0.10 10 0.142 0.01 3.256 0.50 11.6

31-May-84 4.13 42.91 2.94 0.07 56.664 20.7 57.31

12-Jul-84 51.74 116 13.91 0.12 267.847 28.7 412.8

8-Aug-84 19.15 146.3 13.78 0.09 330.124 60.1 378.6

11-Sep-84 11.57 113.4 13.66 0.12 263 25.1 258.6

27-Mar-85 0.00 12.6 0.199 0.02 3.833 0.00 12.6

8-Sep-85 25.80 114.21 13.16 0.12 253.46 29.4 302.6

12-Nov-85 0.89 10.6 0.531 0.05 13.335 0.00 50.2

5-Apr-86 0.25 74.6 0.142 0.00 2.733 3.30 19.5

14-Jun-86 14.80 40.2 2.37 0.06 62.72 31.1 61.4

17-Jul-86 21.41 85.3 7.76 0.09 241.825 55.9 264.3

17-Aug-86 26.06 92 10.63 0.12 230.509 29.4 276.9

22-Oct-86 5.61 28.2 2.37 0.08 142.6 21.1 76.6

20-Nov-86 1.17 17.1 0.589 0.03 16.46 0.00 17.1

14-Jan-87 0.14 3.2 0.199 0.06 5.157 3.20 3.2

5-Mar-87 0.10 44.2 0.320 0.01 3.635 0.00 0

29-Apr-87 0.43 13.2 0.232 0.02 4.466 0.00 27.7

14-Jun-87 31.11 82.5 7.49 0.09 144.289 46.4 147.5



Date
Begin
flow(m3/s)

Rain in
mm Runoff(mm) R/P Q peak

Rain
5-day

Rain30
-Day

1-Jul-87 41.68 89.1 7.49 0.08 253.46 46.7 172.5

19-Aug-87 25.90 127.2 11.97 0.09 234.997 34.2 264.9

15-Sep-87 53.33 73.4 12.20 0.17 234.997 46.8 224.7

24-Feb-88 0.17 25.6 0.268 0.01 5.157 0.00 30.3

12-Apr-88 0.08 2.3 0.096 0.04 2.118 0.00 2.3

12-Aug-88 46.81 107.4 14.42 0.13 277.699 32.4 357.5

11-Sep-88 11.95 83.8 10.84 0.13 219.511 47.6 235.9

9-Oct-88 3.62 98.2 5.55 0.06 140.922 51 197.4

13-Mar-89 0.00 16.6 0.255 0.02 3.442 0.00 2.8

17-Jul-89 27.75 97.4 19.83 0.20 406.365 62.8 161.9

13-Aug-89 17.98 137.3 16.30 0.12 438.188 54.2 441.6

7-Sep-89 25.72 62.6 12.09 0.19 234.997 28.4 226.7

7-Nov-89 4.23 7.8 0.930 0.12 26.332 3.10 6.7

15-Mar-90 0.20 18.9 0.133 0.01 2.901 12.80 19.9

14-Jun-90 0.35 9.9 0.96 0.10 90.648 0.8 24.1

22-Jul-90 38.67 136.3 11.29 0.08 248.767 55.7 255.8

13-Sep-90 20.90 70.1 8.03 0.11 277.699 26.3 171

7-Oct-90 22.55 54.2 4.57 0.08 121.692 2.3 133.9

11-Aug-91 23.44 155.3 16.86 0.11 341.251 62.6 416

22-Sep-91 13.15 110.7 12.68 0.11 352.596 83 265.4

6-Oct-91 7.55 79.9 4.57 0.06 101.319 55.6 254.1

12-May-92 0.16 13.7 2.28 0.17 43.911 13.7 152.4

7-Jul-92 56.32 80 10.41 0.13 200.503 15.6 93.4

14-Oct-92 13.94 72.2 7.85 0.11 151.163 36.5 183.4

8-Nov-92 6.89 49.7 4.443 0.09 85.573 6.10 75.9

7-Dec-92 2.00 17.9 0.671 0.04 19.451 0.00 20.6

5-Sep-93 18.47 121.2 19.83 0.16 381.915 74.8 198.3

9-Oct-93 49.80 73.9 10.41 0.14 200.503 23.2 136.3

7-Nov-93 8.98 75.3 1.867 0.02 40.613 0.00 38.7

27-Feb-94 0.21 20.4 0.210 0.01 4.038 20.40 20.4

11-Aug-94 32.74 72.5 16.02 0.22 308.515 17.5 333.7

5-Oct-94 9.75 17.3 1.83 0.11 44.759 4.2 85.2

10-Dec-94 1.51 3.8 0.609 0.16 11.72 0.00 13

25-May-95 0.15 15.5 1.79 0.12 66.96 13.1 76.7

7-Jun-95 26.23 92 6.81 0.07 131.1 32.1 148.5

7-Sep-95 0.00 77.3 9.58 0.12 290.308 14.1 278

17-Oct-95 3.00 33.8 1.94 0.06 50.964 33.8 90.9

3-Nov-95 2.72 17.2 1.122 0.07 21.609 1.50 18.7

23-Jan-96 0.43 6.2 0.199 0.03 4.69 0.00 6.2

3-Feb-96 0.44 2.5 0.125 0.05 3.076 0.00 2.5

6-Jun-96 5.18 57.4 5.19 0.09 190.377 35.1 224.2



Date
Begin
flow(m3/s)

Rain in
mm Runoff(mm) R/P Q peak

Rain
5-day

Rain30
-Day

3-Aug-96 60.60 124 16.72 0.13 355.466 38.1 324.7

11-Sep-96 18.51 135.8 11.51 0.08 253.46 31.2 273.6

28-Nov-96 0.00 85.5 3.257 0.04 97.236 5.30 108.3

20-Jun-97 8.65 127.2 6.72 0.05 142.6 44.4 253.7

9-Jul-97 3.77 92 9.58 0.10 258.204 77.5 233.4

15-Aug-97 33.47 100.8 18.61 0.18 358.35 54.9 263.2

22-Sep-97 29.26 124.2 8.78 0.07 202.565 59.5 180.1

4-Aug-98 20.95 146.5 14.16 0.10 298.031 42.7 358.1

6-Sep-98 47.86 90.1 10.63 0.12 241.825 27.7 227

12-Oct-98 28.68 154.5 11.51 0.07 221.685 72.5 269.31

5-Jan-99 0.38 26.3 0.221 0.01 4.466 0.00 26.3

27-Apr-99 0.00 14.6 0.379 0.03 7.291 12.30 16.5

12-Jun-99 16.60 137.3 6.32 0.05 174.812 38.9 127.21

11-Jul-99 19.92 126.2 12.80 0.10 285.225 43.2 188.9

30-Aug-99 20.56 115.3 14.29 0.12 298.031 60.1 264.6

5-Sep-99 18.44 120.9 9.78 0.08 190.377 33.9 260.9

4-Oct-99 36.74 83.8 9.58 0.11 234.997 29.1 140.8

20-Nov-99 3.43 26.6 1.151 0.04 40.613 0.00 26.6

11-Dec-99 1.57 3.3 0.629 0.19 12.112 0.60 16.4

23-Jul-00 14.51 83.7 11.29 0.13 223.872 62.6 255.5

17-Aug-00 26.63 154.5 19.83 0.13 381.915 56.1 314.6

10-Oct-00 15.02 91.1 10.30 0.11 251.107 46.7 179.1

14-Dec-00 2.04 7.11 0.550 0.08 13.335 0.00 9.11

Mean 69.77 7.18 0.09 157.80 26.90 159.12

Median 72.95 6.77 0.09 147.73 26.70 148.00

Standard Deviation 49.76 6.21 0.05 128.55 24.00 131.89

Skewness 0.28 0.39 0.20 0.25 0.58 0.57

Range 183.30 19.73 0.22 436.07 95.90 546.40

Minimum 2.30 0.10 0.00 2.12 0.00 0.00

Maximum 185.60 19.83 0.22 438.19 95.90 546.40
Confidence interval
(95.0%) 9.87 1.23 0.01 25.51 4.76 26.17
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Appendix

Model Description

The Galway River Flow Forecasting System (GFMFS) is software packages developed

at Department of Engineering Hydrology, National University of Ireland, Galway [61].

NP-SLM (NON-PARAMETRIC SIMPLE LINEAR MODEL)

The hypothesis of the SLM is introduced by [54], is the assumption of a linear time-

invariant relationship between the total rainfall Ri and the total discharge Qi. In discrete

non-parametric form, the NP-SLM, is expressed by the convolution summation

relation [37].

= ∑ ℎ′ + (A.1)

where m is the memory length of the system and hj
’ is the jth discrete pulse response

ordinate.

The above equation can be envisaged as a multiple linear regression model of the

observed discharge on the m previous observed rainfall values. Estimates of the pulse

response ordinates can be obtained by the method of Ordinary Least Squares (OLS).

P-SLM (PARAMETRIC SIMPLE LINEAR MODEL)

In the Parametric form of the Simple Linear Model (P-SLM), the Linear Transfer

Function type representation of the transformation process of the input series x to the

output series y for discrete data intervals is given by

∑ = ∑ (A.2)



where αj are the autoregressive parameters, with α0 = 1, the ωj are the moving average

parameters and b is the pure time delay restricted to integer values only [35]. r and s

are the order of the autoregressive and the moving average parts of the model.

Writing explicitly for yt with the addition of an error term, the above expression

becomes

= ∑ + ∑ + (A.3)

where αj and ωj are the autoregressive and moving average parameters respectively

obtained after modifying the equation (A.2). In this form, the current value of y

depends linearly on previous values of y and x. The parameters of the model are

estimated by the method of Ordinary Least Squares.

It may be shown that, after estimation of the model parameters, the pulse response

ordinates can be obtained by applying the transfer function to a single pulse of unit

input. The pulse response ordinates are given by

h=0 j< b

hj = α1 hj-1 + α2 hj-2 + … + αr hj-r + ωj-b+1 j = b, b + 1, b + 2, …, b + s - 1

hj = α1 hj-1 + α2 hj-2 + … + αr hj-r j > b + s - 1

If the resulting shape of the pulse response is unsatisfactory, appropriate changes need

to be made to the model structure and the model needs to be recalibrated. In the non-

updating mode, past computed values of y are used on the right-hand side of the transfer

function equation, instead of the past observed values. However, the model provides

the facility for being used in updating mode also, in which past observed value of y are

to be used as input.

NP-LPM (NON-PARAMETRIC LINEAR PERTURBATION MODEL)

This model uses the seasonal information of the observed rainfall and discharge

series. It was originally introduced in the context of rainfall-runoff modelling

[53]. Initially known as the hybrid model, in a series of subsequent publications it



was referred to as the Linear Perturbation Model (LPM) (e.g. [38] [40] [46]), perhaps

to distinguish it from other forms of hybrid models.

In the LPM, it is presumed that, during a year, in which the rainfall is identical to its

seasonal expectation the corresponding discharge hydrograph is also identical to its

seasonal expectation. However, in all other years, when the rainfall and the discharge

values depart from their respective seasonal expectations, these departures are assumed

to be related by a linear time invariant system. Undeniably, the LPM structure reduces

the reliance on the linearity assumption and increases the reliance on the observed

seasonal behaviour of the catchment [43]. For the discrete system with recorded data

sampled at one-day interval or averaged over one-day interval, the discrete LPM may

be described by the following assumptions:

1) If the inflow (or rainfall) on each date d in a particular year is exactly the inflow (or

rainfall) seasonal mean for that date, Rd, the corresponding outflow would likewise be

the outflow seasonal mean Qd.

Denoting by notations,

Rd Qd

2) In any actual record, the series of departures of the inflow (or rainfall) and the

outflow from their seasonal means are linearly related

(R - Rd) (Q - Qd)

or R’ Q’

where R’ = R - Rd and Q' = Q - Qd.

The relationship between the input departure series, the output departure series and the

discrete pulse response relating to the departure series can then be expressed as

′ = ∑ ′ ℎ′ + (A.4)

where Ri’ and Qi’ are the input (or rainfall) departures and the corresponding discharge

departures from their seasonal expectations at the ith instant, respectively, hj’ is the jth

ordinate of the discrete pulse response relating to the departure series of input and the

output, ei is the error term and m is the memory length. As in the case of the SLM, the



Ordinary Least Squares (OLS) method can also be used to give estimates of the pulse

response ordinates of the LPM, provided that the values of these departures are known.

For a multiple input case, the equation for the discharge Qi can be generalised to the

form as given below.

′ = ∑ ∑ ′( )( ) ℎ′( ) + (A.5)

i = 1, 2, …, N

where Q’i is the output series,

K is the total number of input departure series,

R’i
(k) is the kth input departure series,

H’(k) is the pulse response ordinates corresponding to the kth input departure series,

m(k) is the memory length (defined later) of the system corresponding to the kth input

series,

ei is the disturbance term and

N is the length of the output series.

In the application of the LPM, it is necessary to obtain an estimate of the expected

values of the input (or rainfall) and discharge for each date, i.e. day of the year 1 -

365. These are referred to as the seasonal mean values. If n is the number of years of

sample data, such an estimate can be obtained for each date d by taking mean of the

values on that date among the years of record

= ∑ , (A.6)

where r indicates the year number and x denotes the sample input or discharge

value. As n increases indefinitely xd approaches the true population value

Xd. However, for small n, the population and the sample differ, not due to the errors in

the physical sense, but due to the sampling variance of xd. Expressing algebraically,

xd = Xd + ed (A.7)



While xd normally varies unsmoothly with d, Xd might be expected to vary smoothly,

reflecting the effects of smoothly and continuously varying climatic elements. Xd is

however unknown.

If one were to disregard the information provided by any value of xd concerning

neighbouring values  information which depends on the persistence of xd and which

is therefore stronger in the context of discharge than of rainfall, and stronger on more

sluggish catchments than on those which are relatively flashy  it is probable that the

best estimate of Xd would be that given by the equation,= ∑ , (A.8)

and the sample mean and estimate of the population mean would coincide. However,

it is intuitively tempting to assume a high degree of persistence in seasonal means and

indeed it would be difficult to account physically for the high frequency variation one

finds in plots of xd obtained from samples of a few year’s duration. Assuming the

absence of such components in Xd implies that those which are observed in the sample

are due to sampling variance only and standard techniques for filtering out such high

frequency components may be employed to obtain Xd from xd. The validity of such

techniques depends on:

1) the assumption that high frequency variation is absent in the population

values of xd and

2) the assumption that it is the population value of xd rather than the sample

values that are sought.

The Schematic representation of the Linear Perturbation Model (LPM) [37] is given

below.



Schematic diagram of Linear Perturbation Model (LPM)

P-LPM (PARAMETRIC LINEAR PERTURBATION MODEL)

In the Parametric form of the Linear Perturbation Model (P-LPM), the Linear Transfer

Function type representation of the transformation process of the departures of the

values of the input series from their respective seasonal means x to the departures of

the values of the output series from their respective seasonal means y for discrete data

intervals is given by

∑ = ∑ (A.9)

where αj are the autoregressive parameters, with α0 = 1, the ωj are the moving average

parameters and b is the pure time delay restricted to integer values only [37]. r and s

are the order of the autoregressive and the moving average parts of the model.

Writing explicitly for yt with the addition of an error term, the above expression

becomes

= ∑ + ∑ + (A.10)
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where αj and ωj are the autoregressive and moving average parameters respectively

obtained after modifying the equation (3). In this form, the current value of output

departure y depends linearly on previous values of output departures y and input

departures x. The parameters of the model are estimated by the method of Ordinary

Least Squares.

It may be shown that, after estimation of the model parameters, the pulse response

ordinates can be obtained by applying the transfer function to a single pulse of unit

input. The pulse response ordinates are given by

hj=0 j < b

hj = α1 hj-1 + α2 hj-2 + … + αr hj-r + ωj-b+1 j = b, b + 1, b + 2, …, b + s - 1

hj = α1 hj-1 + α2 hj-2 + … + αr hj-r j > b + s - 1

If the resulting shape of the pulse response is unsatisfactory, appropriate changes need

to be made to the model structure and the model needs to be recalibrated. In the non-

updating mode, past computed values of y are used on the right-hand side of the transfer

function equation, instead of the past observed values. However, the model provides

the facility for being used in updating mode also, in which past observed value of y are

to be used as input.

The estimated departures are finally added to the seasonal means of the output series to

obtain the estimated discharge values.

LVGFM (LINEARLY VARYING GAIN FACTOR MODEL)

The Constrained Linear System with Thresholds (CLS-T) and also the Multi-Linear

Systems of [37] and [3]- [4] addressed the constant gain factor deficiency of the SLM

by using a threshold concept to decompose the input rainfall vector into non-concurrent

component input vectors, each of which are fitted to the rainfall-runoff data using

separate linear time-invariant systems. However, an abrupt switch from one system

response function to another whenever the threshold of the selected control variable

(e.g. the antecedent precipitation or catchment wetness) is crossed, involving a

substantial change both in the shape of the response function and in the magnitude of



its gain factor G, is physically unrealistic. Although a response function which varied

gradually with the catchment wetness, both in scale G and in shape, would appear to be

much more sensible, our experience of testing many models in the Galway workshops

had indicated that getting the water balance (i.e. the volume of runoff) right is far more

important in producing high model efficiency than the actual distribution of that volume

over time. So, the Linearly Varying Gain Factor Model (LVGFM), proposed by [3] -

[4] for the single-input to single-output case, involves only the variation of the gain

factor with the selected index of the prevailing catchment wetness, without varying the

shape (i.e. the weights) of the response function. The model output has the familiar

convolution summation structure (based on the concept of a time-varying gain factor

Gi). The Schematic diagram of the Linearly Varying Gain Factor Model [3] - [4] is

given below.

Schematic diagram of Linearly Varying Gain Factor Model (LVGFM)

A multiple-input linear system model is expressed as

= ∑ ∑ ℎ( )( ) ( ) + (A.11)
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where, J is the total number of input time series (which is also equal to the total number

of discharge components in the output time series), x (j) is the jth input time series, h (j)

is the pulse response (unit hydrograph) ordinate corresponding to the jth input series,

m(j) is the memory length of the system corresponding to the jth input, yt is the output

time series and et is the disturbance (i.e. the model error) term.

Introducing G(j) as the constant gain factor for the jth input, the above equation may be

written as

= ∑ ( )∑ ( )( ) ( ) + (A.12)

where, β(j) are the standardised unit hydrograph ordinates corresponding to the jth input

defined by,

( ) = ( )( ) (A.13)

In reality, however, the gain factor for each input is expected to change with respect to

time depending on the degree of wetness of the catchment as characterised by the

current outflow. The linearly varying gain factor model considers this variability of

gain factor by assuming the gain factor G(j) as a function of the output component of an

auxiliary elementary model (e.g. Simple Linear Model, SLM) corresponding to each

input time series, i.e. a linear weighting of such outflow components having the form,

( ) = ( ) + ( ) ( ) ( )⁄ +⋯ .+ ( ) ( ) ( )⁄ (A.14)

( ) = ∑ ( ) ( ) (A.15)

where, x(t) is the mean of the jth series in the calibration period,( ) = ( ) ( )⁄



For s=1, 2, J and
( ) = 1

Substitution of the expression for Gt
(j) in the expression for yi gives,

= ∑ ∑ ( ) ( )∑ ( )( ) ( ) + (A.16)

This equation may also be written as,

= ∑ ∑ ∑ ( )( ) ( ) ( ) ( ) + (A.17)

Letting

,( ) = ( ) ( ) (A.18)

the above equation may be expressed as,

= ∑ ∑ ∑ ,( )( ) ( ) ( ) + (A.19)

ANNM (ARTIFICIAL NEURAL NETWORK MODEL)

A typical neural network consists of a number of elements (nodes) and connection

pathways linking these. The nodes are the computational elements of the network and

are usually known as neurons, thus reflecting the origin of the neural network method

in modelling the biological neural networks of the human brain. The connection

pathways transfer information between the various neurons. Each connection pathway

between any pair of neurons has an associated value called the connection weight.

A neuron usually receives an array of inputs, but it has a single output. The input

elements constituting a neuron input array can either be external inputs to the network

or outputs of other neurons. The neuron accumulates these inputs and using a

mathematical transformation formula known as a transfer function it transforms these



accumulated inputs to the neuron output. This output is generally distributed to (but

not divided up among) a number of connection pathways to provide inputs to the other

neurons, with each of these connection pathways transmitting the full value of the

contributing neuron output.

There are various types of neural networks. However, the type chosen for use in the

GFMFS package is the “multi-layer feed forward network” which is very powerful in

function modelling (Nielsen, 1991, p. 131).

The multi-layer feed forward neural network used in the GFMFS consists of an input

layer, an output layer and only one “hidden” layer between the input and the output

layers. A layer is usually a group of neurons having the same pattern of connection

pathways to the other neurons of adjacent layers. Each neuron in a particular layer has

connection pathways to all the neurons in the next adjacent layer, but none to those of

the same layer.

There is only one neuron, for the single output, in the output layer. For the input layer,

the neurons are to be from the input series. As the neural network, itself does not

incorporate storage effects, storage may either be implicitly accounted for by the use

of the output series of the naïve SLM or any other substantive model, or by considering

as many neurons of the input series as is adequate to account for the system response

(i.e. equal to the memory length of the system). Number of neurons for the input layer

is to be determined after a number of trial runs of the program for the Artificial Neural

Network (ANN) model considering different numbers of input neurons in each run, and

observing the model efficiency values each time. The schematic diagram of the

Artificial Neural Network (ANN) model is given below.



Schematic diagram of Artificial Neural Network (ANN) model

For a neuron either in the hidden or in the output layer, the received inputs yi are

transformed to its output yout by a mathematical transfer function of the form

= (∑ + ) (A.20)

where f () denotes the transfer function, wi is the input connection pathway weight, M

is the total number of inputs (which usually equals the number of neurons in the

preceding layer), and wo is the neuron threshold (or bias), i.e. a base-line value

independent of the input. The non-linear transfer function adopted for the neurons of

the hidden layer and also that of the output layer is the widely-used logistic function,

i.e. a form of sigmoid function, given by

(∑ + ) = ∑ (A.21)

which is bounded in the range [0,1]. The weights wi, the threshold wo and the σ of

different neurons can be interpreted as parameters of the selected network

configuration.



SMAR (SOIL MOISTURE ACCOUNTING & ROUTING) MODEL

The SMAR model is a simple lumped conceptual rainfall-evaporation-runoff model. It

is designed to incorporate within its structure an approximate representation of some

of those physical processes known to have an important role in the generation of stream

flow by a number of interconnected conceptual storage sub-systems. SMAR is an

abbreviation of the Soil Moisture Accounting and Routing procedure [37]. This model

was originally known as the layers model [60], its water-balance component being

based on the ‘Layers Water Balance Model’ proposed in 1969 by [53]. In the GFMFS,

a modified version of the SMAR layers model, called SMARG version, due to both

[43], is used.

Although hydrological systems, in mathematical modelling exercise, are generally

considered to be conservative, characterised by a dynamic balance between

precipitation (rainfall and/or snowfall), evapotranspiration, runoff (discharge at the

catchment outlet), and moisture storage within the system, and the SMARG variant of

the model is designed for application to catchments with conservative system

behaviour, some systems may deviate from the characteristics of conservative

systems. Examples of such catchments are those with some physiographical

peculiarities or those characterised by inconsistencies in the data sets. Physiographic

features may be i) the existence of karstic formations ― with a significant fraction of

flow being lost in sub-surface processes through fissures, solution channels, sinkholes,

underground streams and reservoirs etc., or ii) the existence of sandy deposits at the

discharge gauging site of the river ― flow through which is unaccounted for at the

gauging site, etc. Data inconsistencies are manifested in i) inadequacy of recorded data,

or ii) non-representativeness of the data record due to failure to capture information on

significant loss or gain components affecting the system under consideration. The

system response to precipitation may not be consistent with that of a conservative

system in such typical cases. The term ‘apparently non-conservative’ may be used to

denote such a system.

For use in catchments characterised by non-conservative system behaviour, two

variants called SMAR-NC1 and SMAR-NC2 are also included in the GFMFS. The



term NC in the names of these variants indicates ‘Non-Conservative’, and numbers 1

and 2 refer to minor differences in one of these model forms from the other.

For a gauged catchment, the balance between the inputs and the output may be assessed

from simple calculations based on long-term averages of precipitation, discharge,

evaporation etc. so that the appropriateness of applying a model based on the

assumption of the system being conservative may be determined a priori. However,

even for systems that do not conform to near-conservative behaviour, the usual practice

is that standard models are applied to simulate the flows. System-theoretic and

conceptual quasi-physical models designed for conservative systems fail to recognise

the dynamics of all the major flow-producing components, and the performance levels

of these models drop down to unacceptably low values. Such model structures are,

therefore, inappropriate for non-conservative systems, and they must be adapted to

incorporate an element of loss or gain in the flow functions.

In the structure of the SMAR model, two distinct complementary components can be

identified. The first is the non-linear water balance (soil moisture accounting

procedure) component that keeps account of the balance between rainfall, evaporation,

runoff and soil storage using a number of empirical and assumed functions which are

physically realistic or at least physically plausible. The second is the routing

component which simulates the attenuation and the diffusive effects of the catchment

by routing through linear time invariant storage systems the different generated runoff

components which are the outputs from the water balance part.



SMARG VERSION OF THE SMAR MODEL

The schematic diagram below shows the structure of the SMAR model incorporating

[43] - [44] modifications (the SMARG version in the GFMFS).

Schematic diagram of [43] - [44] version of the SMAR Model

The essence of the SMAR model is the concept of the soil layers. The catchment is

visualised as being composed of a set of horizontal soil layers, each of which may

contain water up to a maximum depth of 25 mm except for the last (i.e. bottom) layer

which may have a maximum depth less than 25 mm. The total combined water storage

depth of these layers is a parameter of the model, which is usually denoted by Z. In

original structures of the SMAR model, maximum number of such layers was restricted

to five with the total combined water storage depth of 125 mm. However, in the



GFMFS, value of Z other than 125 mm may also be adopted. Default maximum value

of Z is kept at 125 mm.

The evaporation input (E) to the SMAR model is either the Pan evaporation depth or

that obtained from Penman's equation, which when multiplied by a parameter T (less

than unity), is converted to an estimate of the potential evaporation depth over the

catchment.

Evaporation only occurs from the layers when there is no rainfall or when the rainfall

is not sufficient to satisfy the potential evaporation demand (T×E). Any evaporation

from the first layer occurs at the potential rate. On the depletion of the water depth in

the first layer, any evaporation from the second layer occurs at the potential rate

multiplied by a parameter C having a value less than unity. On the depletion of the

water depth of the second layer, any subsequent evaporation from the third layer occurs

at rate of C2 and so on. Hence, if the all layers were full and there was no subsequent

rainfall, then a constant potential evaporation applied to the catchment would reduce

the soil moisture storage in, approximately, an exponential manner. Such evaporation

would continue until either the storage of all the layers was depleted or the potential

evaporation demand was fully satisfied.

In rainy days, provided the rainfall exceeds the potential evaporation (T×E) depth,

runoff takes place. A fraction H’ of the excess rainfall, i.e. the rainfall less than the

potential evaporation, contributes to the generated runoff by producing the direct

generated runoff component r1. H’ is considered to be directly proportional to the ratio

of the available water depth to the maximum depth in the top five layers, or in the total

set of layers if the number of the layers is less than five, i.e. H'=H×(Wact/Wcap).

The constant of proportionality H is a parameter of the model, with H’ having a value

between zero and H.

Allowing the direct generated runoff to vary as a function of the available water in the

top five layers (or if Z < 125 mm in the whole stack of layers) is a modification, due to

Khan (1986), of the original version of the SMAR model presented by O’Connell et al.

(1970) in which the direct generated runoff occurs without any consideration of the

available soil moisture depth in the layers.



Any remainder of the excess rainfall, after the subtraction of r1, which exceeds the

maximum infiltration capacity Y mm/day, also contributes to the generated runoff as r2,

the component of runoff in excess of the infiltration capacity. The remaining rainfall,

after subtraction of both the direct runoff r1 and the runoff in excess on infiltration

capacity r2 (if any), replenishes each soil layer in turn beginning from the first (i.e. the

top) layer downwards, until either the rainfall is exhausted or all layers are full. Any

still remaining surplus is further divided into two portions, the first portion being

envisaged as a groundwater runoff component rg while the second is considered as a

subsurface runoff component r3. This r3 component is added to the direct runoff r1 and

to that in excess of infiltration capacity r2 to produce the total generated surface runoff

rs as rs= r1+r2+r3. The division of the final surplus exiting from the layers into two

parts is controlled by a weight parameter g. This division was introduced by [54] as a

further refinement to Khan's (1986) version of the SMAR model in which the whole

surplus is directly added to other generated surface runoff components to give a single

composite generated runoff.

The total generated surface runoff (i.e. rs=r1+r2+r3) is routed through a two-parameter

distribution function. In the GFMFS, three two-parameter distribution options are

available for routing the generated ‘surface runoff’ component of the SMAR model,

namely, the classic gamma distribution (Nash-cascade) model [54] having the shape

parameter n and the lag nK, its discrete counterpart, the Negative Binomial distribution

[61] having parameters n (number of linear reservoirs in the cascade) and K (storage

coefficient of each linear reservoir), and the sharp-peaked Inverse Gaussian distribution

for flashy catchments having parameters Ψ and µ.

The groundwater runoff component rg is routed through a single linear reservoir with a

storage coefficient parameter Kg.

The sum of the outputs of these two routing components is the SMAR model estimated

outflow. Thus, the SMARG version of the SMAR model has nine parameters, five of

which control the overall operation of the water-budget component, while the

remaining four parameters (including a weighting parameter which determines the

amount of generated ‘groundwater runoff’) control the operation of the routing



component. Some of the parameters may be fixed at appropriately chosen values while

the values of the rest are usually estimated empirically by optimisation to minimise the

selected measure of error between the observed and the model estimated

discharges. The parameters of the SMARG model at a glance are provided in the table

below.

Parameter Description

Z The combined water storage depth capacity of

the layers (mm)

T A parameter (less than unity) that converts the

given evaporation series to the model-

estimated potential evaporation series.

C The evaporation decay parameter, facilitating

lower evaporation rates from the deeper soil

moisture storage layers

H The generated ‘direct runoff’ coefficient

Y The maximum infiltration capacity depth

(mm)

n The shape parameter of the Nash gamma

function ‘surface runoff’ routing element; a

routing parameter

nK The scale (lag) parameter of the Nash gamma

function ‘surface runoff’ routing element; a

routing parameter

g The weighting parameter, determining the

amount of generated ‘groundwater’ used as

input to the ‘groundwater’ routing element.

Kg The storage coefficient of the ‘groundwater’

(linear reservoir) routing element; a routing

parameter



SMAR-NC1 AND SMAR-NC2 VERSIONS OF THE SMAR MODEL

The SMAR-NC1 and the SMAR-NC2 models incorporate an additional parameter F

≤ 1 to replicate, in different ways, any gain or loss component to or from a non-

conservative system. These are, therefore, 10-parameter models. The structure of the

SMAR-NC1 model is shown below.

Schematic diagram of SMAR-NC1 model

In the SMAR-NC1 model, the parameter F comes into play just in advance of the

application of the G parameter of the SMARG model. Thus, in case of the SMAR-

NC1 model, the product (F×qm) becomes the loss function L, the product {(1-F)

×qm×G} becomes the groundwater component rg, and the product (1-F) ×qm×(1-G)

becomes the 3rd surface runoff component r3, the other parameters of the model being

similar in operation to that of the SMARG model. The loss component L defines that

part of the rainfall that does not evaporate and yet does not subsequently contribute to

the estimated discharge at the outflow gauging station.



For 0 < F< 1, and for qi > 0, there is a positive loss function L from the system which

is not available as input to the routing component of the model. For F = 1 and qm > 0,

we have L = qm and hence rg = r3= 0, in which case the linear reservoir routing process

(and parameter Kg) becomes redundant and the simulated outflow Qe is produced solely

by the routing of the surface component rs, where rs=(r1+r2). For F = 0 and qm > 0, the

SMAR-NC1 version reverts to the SMARG model, the F parameter becoming

redundant, i.e. there is neither loss from nor gain to the layer-overflow depth qm before

the routing takes place. An optimised value of F < 0, for qm > 0, suggests a contribution

to the simulated discharge Qe from adjoining basins or groundwater reserves, with

(rg+r3) =[(1-F) × qm]> qm, i.e. a negative loss function L.

In the SMAR-NC1 model, only a fraction of the moisture in excess of the storage

capacity (Z) of soil layers (i.e. the overflow) can become the loss function, a scenario

that might be quite rare. As an alternative structure, suggested as a more realistic

scenario, provision is made in the SMAR-NC2 model for a continuous loss function,

regardless of whether the soil layers are full or not, by allowing a fraction of the storage

content in the layers immediately following infiltration (if any), (which content may be

>, =, or < the capacity depth Z, but may not = 0), to become the loss function. In the

structure of SMAR-NC2, the operation of the parameter F in producing a positive loss

function (for loss from the system) or a negative loss function (for gain to the system)

is similar to that in the SMAR-NC1 form.

The SMAR-NC model forms have ten parameters (Z, T, H, Y, C, F, G, N, NK and

Kg). The objective function for model calibration and the model performance

evaluation criteria for these models are the same as those for the SMARG model. The

schematic diagram of the SMAR-NC2 is given below.



Schematic diagram of SMAR-NC2 model

MOCT (MODEL OUTPUTS COMBINATION TECHNIQUES)

MODELS FOR COMBINING OUTPUTS FROM A NUMBER OF

SUBSTANTIVE MODELS

Substantive rainfall-runoff models are normally used as components in real-time river

flow forecasting systems. In such systems, a particular rainfall-runoff model may have

been selected from among a number of competing alternative models, based, perhaps,

on its accuracy, its familiarity to the user, its ease of use, the type of the catchment, and

the available data. In such a case, the forecaster, or the forecast user, may depend

exclusively on the forecasts of the selected model, although a more primitive auxiliary

model may also be used simultaneously to provide an independent back-up forecast in

the event of perceived short-term failure of the substantive model. However, there may

be a potential danger in relying entirely on one substantive rainfall-runoff model (i.e. a

sample of one) since it is unlikely to perform satisfactorily at all times or under all

conditions (e.g. perhaps not all of its structural assumptions are valid or the conditions



under which it is assumed to operate are not entirely fulfilled). As a consequence, the

failure of the model to yield consistently reasonable forecasts may undermine the

credibility of the model and the faith of the user in such systems.

Instead of relying on one individual rainfall-runoff model, or even of switching from

one to another, an alternative approach would be applied to generate discharges

simultaneously from a number of different rainfall-runoff models and to combine the

forecasts in an optimum manner. Thus, inferior models having low individual

performance may also be significant in improving the overall performance of

simulation, when included in an MOCT [71].

A combined estimate of discharge of N runoff simulation models for the ith period of

time may be defined as a function F () of the estimated discharges of the N models for

that time period, that is,= , ,… , , (A.22)

(A.23)

being the estimated discharge of the jth model for the ith time period.

The essence of the concept is that each model output captures certain important aspects

of the information available about the process being modelled, thereby providing a

source of information which may be different from that of other models. Combining

these various sources of output information may enable the user to avail of all the input

information. Furthermore, the judicious combination of the outputs of different models

has the additional merit that it may assist in understanding the underlying physical

processes involved and thus in building better individual models.

Three techniques for combining the estimated outputs of different models are included

in the GFMFS package, namely, the Simple Average Method (SAM), the Weighted

Average Method (WAM), and the Neural Network Method (NNM). In a purely

regression framework, viewing the actual observed outputs as the response (i.e.

dependent) variable and the individual outputs of the models as explanatory (i.e.

independent) variables, the assumption made in the first two methods (i.e. the SAM



and the WAM) is that the actual observed outputs are functionally related to the

estimated outputs of the individual models by linear regression relationships.

The Neural Network method (NNM), as the name implies, utilises the model structure

of a neural network, which is a very powerful computational technique for modelling

complex non-linear relationships particularly in situations where the explicit form of

the relation between the variables involved is unknown.

THE SIMPLE AVERAGE METHOD (SAM)

The simple average method (SAM), is the simplest method of combining the outputs

of different individual models. Given the estimated discharges of N rainfall-runoff

models, a combined estimate of the discharge of the ith time period, using the SAM, is

given by= ∑ (A.24)

This equation illustrates that the computation of the SAM combined output is very

trivial, requiring very little effort and without any empirical curve fitting, once the

estimated discharges of the N models have been calculated. Moreover, it highlights

that equal emphasis (i.e. weight) is assigned to the outputs of all of the models being

considered.

The SAM can produce forecasts that are better than those of the individual models and

its accuracy depends mainly on the number of the models involved and on the actual

forecasting ability of the specific models included in the simple average.

THE WEIGHTED AVERAGE METHOD (WAM)

When some of the individual models selected for combination appear to be consistently

more accurate than others, in which case the use of the simple average method for

combination can be quite inefficient), the use of a weighted average would be

considered.

The weighted average method (WAM) for combining the estimated model outputs, in

the case of N rainfall-runoff models, may be expressed as [33]



= ∑ + (A.25)

where Qi is the observed discharge of the ith time period, aj is the weight assigned to the

jth model estimated discharge

(A.26)

and ei is the combination error term.

The above equation may alternatively be expressed in matrix notation as

Q =PA + E (A.27)

where P is the input matrix defined by

, , ⋯ , ,⋮ ⋱ ⋮, , ⋯ .
Q = (Q1, Q2, Q3, …, Qk-1, Qk)T is the output vector,

A = (a1, a2, a3, …, ak-1, ak) is the weight vector and

E = (e1, e2, e3, …, ek-1, ek) is the combination error vector, T denotes the transpose of

the vector and k is the total number of observations.

The preceding equation can be perceived as a multiple linear regression model. Thus,

it can be readily shown that the ordinary least squares estimate of the weight vector is

given by= ( ) (A.28)

In the WAM, the sum of the weights ai is normally constrained to be equal to unity,

that is

∑ = 1 (A.29)



The main rationale behind constraining the sum of the weights to unity is that if the

models included in the weighted average are unbiased, i.e. having a zero-mean output

error term, then the weighted average combined forecast is likewise unbiased [33].

In the case where the sum of the weights is constrained to equal unity, it can be shown

using the method of constrained least squares (CLS) that the estimate of the weights

vector

(A.30)

is given by= ( ) + (A.31)

where b is the unit vector (i.e. all of its scalar components are unity) having the same

dimension as the parameters vector A and is the Lagrangian multiplier which is given

by

= 2( ( ) ) (1 − )( ) (A.32)

Alternative techniques, other than least squares, for estimating the weights ai have also

been used, e.g. by considering the covariances of the forecast errors of the individual

models being considered.

The main disadvantage of the weighted average method (WAM) is that it may suffer

from the problem of multi-collinearity which in turn may result in unstable estimates

of the weights [93], thereby reducing the considerable advantages obtained from

combining the different models’ outputs. This applies especially in the present

hydrological context, where the degree of multi-co linearity increases with the increase

in the forecasting ability of the individual models, or even where the outputs of the

various models used are very similar (without necessarily being good).



THE NEURAL NETWORK METHOD (NNM)

The neural network method provides an alternative to the simple average(SAM) and

the weighted average methods (WAM) for combining outputs from different models,

and indeed can be used to test whether or not a more complex relationship is needed

for such combinations. Neural networks are applied, in the GFMFS package, in the

context of providing a non-linear function mapping of a set of inputs (the inputs being

the estimated outputs of the chosen rainfall-runoff models) into the network output (i.e.

the combined discharge forecast). However, the specific mathematical form of the

relationship is unspecified (i.e. it is a non-parametric method in that sense).

A typical neural network consists of a number of elements (nodes) and connection

pathways linking these. The nodes are the computational elements of the network and

are usually known as neurons, thus reflecting the origin of the neural network method

in modelling the biological neural networks of the human brain. The connection

pathways transfer information between the various neurons. Each connection pathway

between any pair of neurons has an associated value called the connection weight.

A neuron usually receives an array of inputs, but it has a single output. The input

elements constituting a neuron input array can either be external inputs to the network

or outputs of other neurons. The neuron accumulates these inputs and using a

mathematical transformation formula known as a transfer function it transforms these

accumulated inputs to the neuron output. This output is generally distributed to (but

not divided up among) a number of connection pathways to provide inputs to the other

neurons, with each of these connection pathways transmitting the full value of the

contributing neuron output.

There are various types of neural networks. However, the type chosen for use in the

GFMFS package is the “multi-layer feed forward network” which is very powerful in

function modelling.

The multi-layer feed forward neural network used in the GFMFS consists of an input

layer, an output layer and only one “hidden” layer between the input and the output

layers. A layer is usually a group of neurons having the same pattern of connection

pathways to the other neurons of adjacent layers. Each neuron in a particular layer has



connection pathways to all the neurons in the next adjacent layer, but none to those of

the same layer. The schematic diagram of Neural Network Model (NNM) for output

combination is given below.

The input layer has a number of neurons equal to the number of the elements in the

external input array to the network. These external inputs to the neurons in the input

layer are transformed to outputs from these neurons using the identity function as a

transfer function, according to f(Xi) = Xi ; where Xi is the ith external input to the ith

neuron of the input layer.

Schematic diagram of Neural Network Method (NNM) of MOCT

In the form of the network used in the GFMFS package, the neurons of the hidden

layer have no direct connection with either the external inputs or the external output of

the network. The inclusion of hidden layers generally enhances the performance of the

network, enabling it to deal robustly and efficiently with complex non-linear problems

but, for simplicity, only one hidden layer is used in the network considered in the

GFMFS package. Each neuron of this hidden layer receives its inputs from the

pathways connecting it to the neurons of the input layer, while its output is transmitted

along connection pathways to all the neurons of the output layer.



The output-layer neurons accumulate the inputs transmitted by the hidden layer neurons

and produce the network outputs. In general, the number of the neurons in the output

layer depends on the number of outputs that the network is required to produce each

time an input array is presented to the network. In the network chosen for the GFMFS

package, the output layer consists of a single neuron, the output of which (after a

suitable linear transformation yet to be defined) corresponds to the single overall output

from the network (i.e. to the combined discharge forecast of the NNM).

For a neuron either in the hidden or in the output layer, received inputs are transformed

to an output yout by a mathematical transfer function of the form= (∑ + ) (A.33)

where f () denotes the transfer function of the neuron, wi is the input connection

pathway weight, yi is the input to the neuron, M is the total number of inputs which

usually equals the number of neurons in the preceding layer, and wo is the neuron

threshold, i.e. a base-line value independent of the input.

The various weights wi of the connection pathways between neurons and the thresholds

wo of the different neurons can be perceived as the parameters of the chosen network.

The transfer function of the neurons in the hidden and in the output layers of neural

networks is usually a non-linear function. One of most widely used transfer functions,

chosen also for the GFMFS package, is the logistic function) given by

(∑ + ) = ∑ (A.34)

The logistic function is bounded in the range [0, 1], which implies that the network

output is likewise bounded in the same range. In the context of the use in the GFMFS

package, in order to facilitate the comparison between the actual observed discharges

and the network estimated outputs, the following equation

Qsi = 0.1 + 0.75(Qi/Amax) (A.35)

for which the Qsi series is bounded between 0.1 and 0.85, is adopted for rescaling the

observed discharges for the purpose of calibration, where Qsi is the rescaled discharge



and Qmax is the maximum observed discharge of the calibration period. Thus, the linear

transformation equation of the output of the neuron of the output layer to the combined

overall network forecast is given by the inverse of preceding equation.
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