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Abstract

This dissertation focuses on the mathematical analysis and numerical solution of coupled
deformation- and flow-related processes in porous media, modeled by the theory of poro-
elasticity. It comprises contributions within three topics: the gradient flow structures of
quasi-static thermo-poro-visco-elastic processes in porous media; the numerical analysis and
fine-tuning of the fixed-stress split for Biot’s consolidation model; and the well-posedness
analysis and robust solution of unsaturated poro-elasticity.

The fluid-structure interaction of fluids and porous solid materials is of great relevance
for various applications within geotechnical, reservoir, structural, and biomedical engineer-
ing. Depending on the application different characteristics of a poro-elastic system may be
relevant. In order to correctly predict such complex systems, accurate well-posed models are
needed – as well as their robust numerical solution. As part of this thesis, a unified gradient
flow framework is established for the modelling of coupled hydro-mechanical processes in
porous media driven by the dissipation of energy. By involving thermodynamic knowledge,
it allows for instance for the modelling of non-linearly compressible single-phase flow or
non-Darcy flow within a non-linearly elastic (but geometrically linear) or visco-elastic, solid
matrix – besides classical, linear poro-elasticity. The framework lays a foundation for the
unified mathematical and numerical analysis of these models. In particular, well-posedness
is established based on the abstract theory of doubly non-linear evolution equations. Further-
more, block-partitioned iterative solvers, exploiting the inherent block structure of coupled
problems, are naturally developed by means of block-coordinate descent methods (with
optional line search) for block-separable minimization problems, arising from the discretiza-
tion of gradient flow formulations. Those are equipped with strong robustness properties
under mild conditions, and allow for exploiting tailored, individual solver technology for the
physical subproblems. On the one hand, the framework covers well-established theory for-
tifying its capability. For instance, applied to Biot’s consolidation model, the widely-used
fixed-stress split arises naturally, and guaranteed convergence rates consistent with the liter-
ature are derived. On the other hand, novel splitting schemes with guaranteed convergence
rates are determined for more involved models as, e.g., linear poro-visco-elasticity. After all,
the methodology applies equally to linear as to non-linear problems.

Biot’s quasi-static consolidation model constitutes the simplest coupled model account-
ing for single-phase flow in a linearly elastic porous medium. At the same time it represents
the prototype for any coupled poro-elasticity model. Consequently, a thorough understand-
ing of this simple model is required in order to optimally solve more involved models. In
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this thesis, we gain deeper theoretical and practical understanding of the popular fixed-stress
split for Biot’s quasi-static consolidation model. More precisely, we consider a fixed-stress
split with variable stabilization allowing for tuning the performance. Parameter-robust con-
vergence of the splitting scheme is established for fully heterogeneous media. Furthermore,
influences on the practically optimal stabilization parameter, leading to a minimal number
of iterations, are practically and theoretically identified. The studies suggest that the optimal
stabilization parameter does not only depend on mechanical and coupling material parame-
ters as found in the literature. Instead, it also depends on fluid flow parameters, the stability
of the spatial discretization, the computational domain, and boundary conditions. Alterna-
tively to tuning the performance (or in addition), relaxation can be applied as, e.g., line
search, based on the gradient flow structure of poro-elasticity.

The model for unsaturated poro-elasticity is a non-linear extension of Biot’s quasi-static
consolidation model. It results from the reduction of the general model for two-phase flow
in deformable porous media to the unsaturated zone, i.e., effectively one fluid phase is
simply neglected. Typical examples, in which this simplification is acceptable, origin from
geotechnical engineering and building engineering, e.g., the stability analysis of dikes, or
the drying shrinkage and cracking of cement. In this dissertation, unsaturated poro-elasticity
is studied from two perspectives, constituting a step towards a better mathematical and
numerical understanding ofmulti-phase flow in deformable porousmedia. First, the existence
of weak solutions is established. Second, a robust block-partitioned linearization is provided,
based in the fixed-stress split, and convergence is theoretically proved. Further acceleration
is proposed using the Anderson acceleration, complying with the block-partitioned character
of the solver. Theoretical justification is also provided for the Anderson acceleration to
both accelerate contractive fixed point iterations, and to increase the robustness of non-
contractive fixed point iterations. Thereby, the Anderson acceleration constitutes an adequate
alternative to line search techniques – in particular in the context of non-linear, block-
structured problems.



Outline

This dissertation consists of two parts. The scientific background is introduced in Part I,
followed by the scientific results in Part II.

Part I consists of five chapters. Chapter 1 serves as an introduction to the subject of the
mathematical modelling and the numerical approximation of coupled hydro-mechanical
processes in porous media – in short, poroelasticity. In Chapter 2, the mathematical model
for two-phase flow in deformable porous media is derived by means of the theory of porous
media. It serves as basis for the reduction to the model of unsaturated poroelasticity and
Biot’s quasi-static consolidation model. In addition, connection between the frameworks of
generalized and classical gradient flows is presented. Chapter 3 summarizes relevant tools
from functional analysis and convex analysis useful for establishing the well-posedness of
partial differential equations in continuous and discretized form. Chapter 4 is concerned with
the numerical solution of coupled problems. After some general words on the numerical
approximation of linear and non-linear problems by discretizations and iterative solvers, gen-
eral ideas of block-partitioned solvers for linear saddle point problems and block-separable,
convex minimization problems are presented. Finally, Chapter 5 summarizes the scientific
contributions of the articles included in Part II and presents an outlook on future research.

Part II contains the scientific papers, which are grouped as main and related works. The main
results consist of the following six scientific articles:

Paper A Both, J.W., Kumar, K., Nordbotten, J.M., and Radu, F.A. (2019), The
gradient flow structures of thermo-poro-visco-elastic processes in porous
media, In review.
arXiv:1907.03134 [math.NA]

Paper B Both, J.W, Borregales, M., Nordbotten, J.M., Kumar, K., and Radu,
F.A. (2017),Robust fixed stress splitting for Biot’s equations in heterogeneous
media, Applied Mathematics Letters 68, 101–108.
doi:10.1016/j.aml.2016.12.019
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Paper C Both, J.W., and Köcher, U. (2019), Numerical Investigation on the Fixed-
Stress Splitting Scheme for Biot’s Equations: Optimality of the Tuning Pa-
rameter. In Numerical Mathematics and Advanced Applications ENUMATH
2017, LectureNotes inComputational Science andEngineering 126, pg. 789–
797, Springer.
doi:10.1007/978-3-319-96415-7_74

Paper D Both, J.W., Pop, I.S., and Yotov, I. (2019), Global existence of a weak
solution to unsaturated poroelasticity.
arXiv:1909.06679 [math.NA]

Paper E Both, J.W., Kumar, K., Nordbotten, J.M., and Radu, F.A. (2019), An-
derson accelerated fixed-stress splitting schemes for consolidation of unsat-
urated porous media. Computers & Mathematics with Applications 77(6),
1479–1502.
doi:10.1016/j.camwa.2018.07.033

Paper F Both, J.W., Kumar, K., Nordbotten, J.M., Pop, I.S., and Radu, F.A.
(2019), Iterative Linearisation Schemes for Doubly Degenerate Parabolic
Equations. In Numerical Mathematics and Advanced Applications ENU-
MATH 2017, Lecture Notes in Computational Science and Engineering 126,
pg. 49–63, Springer.
doi:10.1007/978-3-319-96415-7_3

Additionally, the following two supplementary articles on related work are included:

Paper G Storvik, E., Both, J.W., Kumar, K., Nordbotten, J.M., and Radu, F.A.
(2019), On the optimization of the fixed-stress splitting for Biot’s equations,
International Journal for Numerical Methods in Engineering 120, 179–194.
doi:10.1002/nme.6130

Paper H Both, J.W., Kumar, K., Nordbotten, J.M., and Radu, F.A. (2017), Iter-
ative Methods for Coupled Flow and Geomechanics in Unsaturated Porous
Media, In Poromechanics VI: Proceedings of the Sixth Biot Conference on
Poromechanics, pg. 411–418, ASCE.
doi:10.1061/9780784480779.050
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Scientific Background





Chapter 1

Introduction

Poroelasticity comprises a continuum theory combining the fields of structural mechanics
and fluid mechanics in the context of porous media. It is is concerned with the macroscopic
description of the interaction between fluid flow and the mechanical deformation of porous
solids. These processes are two-way coupled. A macroscopic material deformation enforces
fluid flow, and vice versa an increase in fluid pressure leads to the compression of solid
grains on the microscale. Such a coupling is relevant in a variety of disciplines, from
reservoir engineering to biomedical applications, giving rise for the need of a thorough
understanding and accurate description.

1.1 Mathematical modeling of poroelasticity

Already early on, the relevance of the fluid-structure interaction of fluid and solid materials
in porous media has been recognized by the engineering community. The first discover-
ies of fundamental mechanical effects of liquid-saturated porous solids have been made by
Fillunger in the early 1910s [63]. Twenty years later, Fillunger founded the concept of the
modern theory of liquid-saturated porous solids [77]; Terzaghi developed the one dimen-
sional consolidation theory and introduced the concept of effective stress [149]; and Biot
extended Terzaghi’s theory to three dimensions [22]. All together founded the modern era
for the effective modeling of fluid flow in deformable porous media in the language of
continuum mechanics [63].

In the mid-twentieth century, especially the works by Biot governed the theory of poroe-
lasticity. A central contribution has been a linear model accounting for single-phase flow
in linearly elastic porous solids [22] – now called Biot’s (quasi-static linear) consolidation
model. It is based on fundamental physical laws including mass and momentum balance,
combined with constitutive laws as Darcy’s law and the effective stress concept. The model
serves as prototype for poroelasticity models.

Today, the need for accurate models is still immediate. With the theory of porous media
being applied to various fields and applications of societal relevance within, e.g., geotech-
nical, structural, and biomechanical engineering, multiple complex processes next to a
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hydro-mechanical coupling are of increased interest. This involves, for instance, thermal,
hyper-elastic, visco-elastic, plastic, and chemical effects [57]. Of particular interest are
strongly coupled hydro-mechanical processes in porous media saturated by multiple fluids.
Relevant applications include CO2 storage in depleted reservoirs [25, 88, 118], geother-
mal energy storage in naturally fractured reservoirs [134], compaction of reservoirs in the
course of hydrocarbon production [89], swelling and drying shrinkage of building materials
as concrete, potentially resulting in desiccation cracks [59], soil subsidence due to ground-
water withdrawal for drinking water supply or industrial and agricultural purposes [147],
and coupled stress and seepage analysis of dams [141] – just to mention a few. Recent mod-
els accounting for multi-phase flow in deformable porous media extend Biot’s consolidation
model to a set of highly non-linear and potentially strongly coupled partial differential equa-
tions [57, 103]. Motivated by geotechnical applications, unsaturated poroelasticity considers
the simplified setup of a porous medium filled with two fluids (e.g., water and air) of which
one phase (air) can approximately be neglected.

From a mathematical point of view, Biot’s consolidation model has been studied partic-
ularly well. The existence, uniqueness and regularity of solutions has been established under
various sorts of boundary conditions [14, 136, 161]. Recently, an increased interest has been
showed in the analysis of linear and non-linear extensions of Biot’s consolidation model, in-
volving, e.g., dynamic and viscoelastic effects, deformation-dependent permeabilities, and
fractured media, see the references within [36]. However, the analysis of various problems is
still open, e.g., unsaturated poroelasticity as modeled by the theory of porous media [103].

1.2 Numerical solution of poroelasticity
Typically, analytical solutions of coupled poroelasticity models are not at hand, and large-
scale experimental studies are impractical. On the other hand, computer simulations allow
for the investigation of various scenarios in short time and under reduced cost.

Due to limited computer power, the numerical approximation of fully coupled poroelas-
ticity models had not been feasible for decades. Instead, tailored numerical technology has
independently been developed within the two branches that constitute poroelasticity: struc-
tural mechanics and fluid mechanics. Due to different needs, different numerical methods,
as discretization methods and solver technologies, have been established.

Nowadays, computers are powerful enough. But compared to the advances within the
two subbranches, the development of the accurate and efficient numerical approximation of
poroelasticitymodels still slightly lags behind. For instance, the fundamental introductions of
the effective stress concept by Terzaghi [149] and the generalization of Darcy’s law to multi-
phase flow by Muskat [112] date back to the same year, 1936, demonstrating simultaneous
interest; yet, the technology for numerically approximating flow in non-deformable porous
media seems more mature than for flow in deformable media.

One of the major computational bottlenecks of the accurate numerical approximation of
coupled, potentially non-linear models is typically the numerical solution of large algebraic
(non-linear) systems of equations. These systems naturally inherit a block structure. Thus,
block-partitioned solvers – either as iterative solver or preconditioner for a monolithic Krylov
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subspace method – have been of increased interest. One primary advantage is that this
approach allows for flexible code design, enabling the well-developed solver technologies
established in the fields of structural and fluid mechanics.

A particularly frequently used block-partitioned solver – also continuously recurring
in this thesis – is the fixed-stress split [135]. In this method, one iterates back and forth
between updating displacement and pressure unknowns separately by solving themomentum
equations and stabilized mass balance equations, respectively, until convergence to the
solution to the coupled problem is reached. The popularity of the method originates in its
simplicity and unconditional robustness in the context of Biot’s consolidation model [98,
111], and its allowance for flexible code design.

Despite the increased interest in complex (non-linear) poroelasticity models, the devel-
opment and numerical analysis of robust block-partitioned solvers for such seem not yet fully
understood. The classical fixed-stress split often constitutes a prototype for the development
of block-partitioned solvers for more involved poroelasticity problems, cf., e.g., [34, 157].
By that, a thorough understanding of the plain fixed-stress split is vital, and insights may be
transferred to more involved problems.

1.3 Main contributions

This dissertation contributes towards the mathematical analysis of coupled poroelasticity
models, and the development and numerical analysis of iterative solvers, in particular block-
partitioned solvers. The main contributions of this thesis are as follows:

1. Identifying inherent gradient flow structures of thermo-poro-visco-elasticity.
In Paper A, a generalized gradient flow framework is established for the modeling
of quasi-static coupled thermo-poro-visco-elasticity. Specific models are derived by
identifying appropriate free energy and dissipation mechanisms driving the evolution.
The gradient flow formulation is exploited for both the analysis of the well-posedness
by employing the theory of doubly non-linear evolution equations, and the systematic
development of robust block-partitioned solvers by utilizing the theory of convex min-
imization. In view of Biot’s consolidation model, the general concepts allow for identi-
fying the undrained and fixed-stress splits as natural choices among block-partitioned
solvers, and deriving theoretical convergence rates consistent with the literature. Like-
wise, novel results are derived by the application to less-studied coupled systems, e.g.,
linear poro-visco-elasticity and non-linear extension of Biot’s consolidation model,
involving non-linear constitutive relations and non-Darcy flows.

2. Establishing robustness of the fixed-stress split for the linear Biot equations for
heterogeneous media.
By employing a problem-specific analysis in Paper B, global linear convergence is
established for the fixed-stress split solving Biot’s consolidationmodel for fully hetero-
geneous media. The derived theoretical convergence rate naturally extends previous
results in the literature for homogeneous media.
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3. Providing analytical and practical tools for improving the performance of itera-
tive solvers (for poroelasticity).
Four systematic approaches are provided for increasing the speed and robustness of
iterative solvers:
First, in Paper A, optimal relaxation is deduced for iterative solvers for poroelasticity
models, which exhibit a gradient flow structure. Based on the fact that discretized
gradient flows inherit a minimization structure, line search strategies are applicable.
Second, in Paper B, Paper G, and Section 4.3.2, theoretical convergence rates are
derived for the fixed-stress split with variable stabilization, giving rise to the a priori
optimization with respect to the stabilization parameter. This technique is applicable
to general block-partitioned solvers based on the L-scheme, cf. Section 4.3.1.
Third, based on the mesh independent behavior of the fixed-stress split predicted
by the previous convergence analysis, a sampling-based optimization is proposed. An
optimal stabilization parameter is determined for a coarsemesh and later applied on the
finer mesh of interest. This approach effectively accounts for including the influence
of material parameters, domain, and boundary conditions, observed in Paper C.
Fourth, in Paper E, Anderson acceleration is numerically demonstrated to effectively
increase the speed and robustness of splitting schemes as, e.g., the fixed-stress split
for unsaturated poroelasticity. In addition, theoretical justification is provided for this
observation by studying a variant of Anderson acceleration applied to a simple lin-
ear problem. Ultimately, Anderson acceleration is identified as a suitable acceleration
technique (in particular for non-linear problems) due to the minimal need of commu-
nication between physical subproblems.

4. Establishing existence of weak solutions to unsaturated poroelasticity.
In Paper D, the existence of weak solutions to unsaturated poroelasticity (as modeled
by the theory of porous media, cf. Section 2.1.2) is established under mild physical
assumptions. In order to treat the highly non-linear model, regularization techniques
are combined with the Galerkin method, utilizing a finite element-finite volume dis-
cretization. Compactness arguments yield the final result.

5. Development and numerical analysis of robust iterative linearization schemes for
possibly degenerate and coupled problems.
Similar concepts as for the fixed-stress split can be applied to non-linear problems –
now, resulting in iterative linearization schemes. In Paper E and Paper H, an extension
of the classical fixed-stress split is proposed for the block-partitioned linearization of
unsaturated poroelasticity. By utilizing the close connection to the L-scheme lineariza-
tion, it is proved to converge linearly under mild physical conditions. This extends the
results from Paper B to the unsaturated regime. Furthermore, the block-partitioned
solver is proposed to be coupled with Anderson acceleration for faster and more robust
computations.
The L-scheme has successfully been applied to problems involving Lipschitz contin-
uous non-linearities. In Paper F, the convergence of an L-scheme linearization of a
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doubly degenerate non-linear parabolic-elliptic problem is established, by involving
information of the stopping criterion. Moreover, in practice, the resulting scheme does
not involve any tuning parameters and provides robust behavior, compared to standard
linearization schemes applied to regularized models.
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Chapter 2

Mathematical modeling

Macroscopic, effective descriptions of coupled processes in porous media are typically
described in the form of (evolutionary) partial differential equations (PDE). In this chapter,
the main mathematical models, employed in this thesis, are presented.

First, multi-phase flow in infinitesimally deformable porous media is modeled based on
fundamental conservation principles combined with constitutive laws. This formulation is
then restricted both to the partially saturated and fully saturated regimes, ultimately resulting
in models utilized in several papers of this work: unsaturated poroelasticity and Biot’s quasi-
static consolidation model.

Secondly, the abstract modeling framework of generalized gradient flows is presented.
Combined with thermodynamic considerations, it is utilized in this thesis in order to formu-
late poroelasticity models from a gradient flow perspective.

2.1 Flow in deformable porous media

Natural porous materials as clays, rocks, and sands are microscopically highly complex. So
far, no technology is able to provide the exact geometry for field scale applications. And even
if, computational power would be quickly exceeded by resolving the geometry exactly for
the purpose of a computer simulation. For the sake of computable approximations, flow in
porous media is commonly modeled using a continuum approach, i.e., the fluid-filled porous
material is considered as a homogenized medium and an effective, macroscopic description
is used for approximating microscopic processes. The same philosophy is employed in the
context of deformable, fluid-filled porous materials.

In this section, we present the derivation of a continuum mechanical model for isother-
mal, immiscible two-phase flow in infinitesimally deformable porous media. It is based
on fundamental conservation principles coupled with constitutive laws. The presentation is
mainly based on [57, 103].

The resulting model yields a foundation for several models employed in this thesis,
including the models for unsaturated poroelasticity, and linear poroelasticity. For the de-
duction, linearizing assumptions will be required. Although stated later in fuller detail, cf.
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Section 2.1.1.6, we already mention two main hypotheses: (i) inertia is neglected; and (ii)
the skeleton experiences solely infinitesimal deformations. Those allow for a simplified
presentation of the derivation.

2.1.1 Immiscible two-phase flow in deformable porous media

In the theory of porous media, the fluid-saturated porous material is considered as a homog-
enized continuum. In this sense, at each location, both solid and fluid phases are present. In
the following, we consider two immiscible fluid phases, a wetting and non-wetting fluid. We
denote the solid, wetting fluid, and non-wetting fluid phases as s, w, and nw, respectively.

2.1.1.1 Basics of the Theory of Porous Media

In order to enable a continuous macroscopic description of a microscopically heterogeneous
medium, the concept of averaging over representative elementary volumes (REV) is utilized,
cf., e.g., [63]. TheREV concept allows for the definition of essential effective quantities as the
porosity, saturation as well as phase-averaged versions of physical variables as densities etc.
For instance, the (Eulerian) porosity, locally measuring the amount of the volume occupied
by pores (in the deformed configuration), is given by

φ(x, t) :=
1

|dΩt (x)|

ˆ
dΩt (x)

1p(r, t) dr,

where dΩt (x) denotes the REV corresponding to x ∈ Ωt , Ωt (x) denotes the deformed
medium at time t, and 1p denotes the characteristic function with respect to the pore space,
defined by

1p(x, t) :=
{

1 for x in the pore space of Ωt

0 else.

Analogously, characteristic functions for the single fluid phases can be defined, allowing
for defining saturations sα ∈ [0,1], α ∈ {w,nw}, of the wetting and non-wetting fluid phases,
quantifying the amount of the fluid occupied by the α phase at each location. Finally, we can
define relevant volume fractions

ηs := 1 − φ, ηw := φsw, ηnw := φsnw.

The same characteristic functions are utilized for defining phase-averaged quantities as
densities ρπ , π ∈ {s,w,nw}, or fluid pressures pα, α ∈ {w,nw}, based on the corresponding
microscopic quantities, cf. Fig 2.1. Also, quantities referring to the homogenized medium
may be defined, e.g., the bulk density ρ =

∑
π ηπ ρπ . An overview of the notation, introduced

so far, as well as further on in this section, is summarize for reference in Table 2.1.
In the context of deformablemedia, REVs deform in time. Thus, Eulerian and Lagrangian

variants exist for most of the relevant variables. In the following, we aim at working in
Eulerian coordinates. However, eventually, we apply the hypotheses of small perturbations,
cf. Section 2.1.1.6, to restrict ourselves to infinitesimal deformations.
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solid grain
wetting fluid

non-wetting fluid

−pwI

−pnwI

τxy
τyx

σy

σx

Figure 2.1: Schematic illustration: (left) a porous medium; (center) an REV occupied with solid grains,
a wetting, and a non-wetting fluid phase; (right) micro-mechanical stress states within the solid and
fluid materials (only hydrostatic for the latter), which are then averaged over the REV.

x spatial coordinate
t time
Ω0 reference configuration
Ωt deformed medium at time t
π material phase (s,w,nw)
α fluid phase (w, s)
Xπ material particle
xπ particle coordinate
vπ particle velocity
vαs relative particle velocity

wrt. solid phase
dπ

dt material derivative
wrt. phase π

φ porosity
ηπ volume fraction
sα fluid saturation
u solid displacement
ε(u) linearized strain
pα fluid pressure

ρπ material density
ρ bulk density
ρα,ref reference fluid density
σ Cauchy stress tensor
σeff effective stress
ppore pore pressure
α Biot-Willis constant
N Biot modulus
µ shear modulus
λ Lamé parameter
Kdr drained bulk modulus
pc capillary pressure
Kπ bulk modulus
µα fluid viscosity
κ (absolute) permeability
krα relative permeability
f external body force
g gravitational acceleration
hπ mass source

Table 2.1: Nomenclature of relevant physical variables used in Section 2.1.

2.1.1.2 Kinematics

In the theory of porous media, it is established to describe the motion of fluid phases with
respect to the actual configuration of the moving solid skeleton. For that, we describe the
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motion of particles and introduce the material derivative for multi-phasic media.

Motion of particles. We recall, the fluid saturated deformable medium is modeled as a
homogenized multi-phasic continuum. This implies, that each spatial point x in the current
configuration Ωt at time t is simultaneously occupied by three material particles Xπ , π ∈
{s,w,nw}, cf. Figure 2.2. Their individual motion is tracked by individual deformation maps
xπ = xπ(Xπ, t), π ∈ {s,w,nw}. The unique association x = xπ(Xπ, t) defines the inverse
maps Xπ = Xπ(x, t), π ∈ {s,w,nw}. Individual particle velocities are then defined by

vπ(x, t) =
∂xπ(Xπ, t)

∂t

����
Xπ=Xπ (x,t)

, x ∈ Ωt, π ∈ {s,w,nw}.

Furthermore, vπα := vπ−vα denotes the relative velocity of phase π with respect to phase α.

Ω0
Ωt

Xs

Xw

Xnw

x

xw(·, t)

xs(·, t)

xnw(·, t)

Reference configuration
at initial time.

Deformed configuration at
time t with x = xπ (Xπ, t).

Figure 2.2: Illustration of the independent movement of solid and fluid particles.

Naturally, it is assumed that two skeleton particles, juxtaposed at a given time, were
always so and will remain so. Hence, the overall deformation of the medium is described
directly by Ωt = xs(Ω0, t), where Ω0 ⊂ Rd denotes the initial, reference configuration.
Consequently, the structural displacement is then given by u(x, t) = x − Xs(x, t), x ∈ Ωt .

Changes in distances and angles due to deformation are suitable measured by the Green-
Lagrange tensor E(u) := 1

2
(
∇u + ∇u> + ∇u>∇u

)
. Under infinitesimal deformations, a

geometric linearization is sufficient, and E(u) can be approximated by the linearized strain
ε(u) := 1

2
(
∇u + ∇u>

)
.

Material derivative of a field. Thematerial derivative of a differentiable field f (x, t), given
in its spatial description and referring to a moving particle of the phase π ∈ {s,w,nw}, is

dπ f
dt

:=
∂ f
∂t
+ ∇ f · vπ . (2.1.1)

It is the time derivative of f that an observer attached to the particle Xπ(x, t) would derive.
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Material derivative of an integral quantity. Thematerial derivative also applies to integral
quantities, now referring to all particles of a single phase π ∈ {s,w,nw} within a given
volume. Let the field f be as above, and let ωπt = xπ (ω0, t) ⊂ Ωt for some ω0 ⊂ Ω0 be an
arbitrary control volume, moving with phase π. By virtue of the definition of the material
derivative (2.1.1) and the Reynolds transport theorem, cf., e.g., [86], it holds that

dπ

dt

ˆ
ωπ

t

f dx =
ˆ
ωπ

t

(
dπ f
dt
+ f∇ · vπ

)
dx =

ˆ
ωπ

t

(
∂ f
∂t
+ ∇ · ( f vπ)

)
dx. (2.1.2)

2.1.1.3 Conservation laws

Based on fundamental principles, the linear and angular momenta of the homogenized
medium, and the mass of the single phases are conserved under the deformation of a porous
medium.

Momentum balance for the homogenized medium. Momentum balance comes in two
versions: The balance of linear momentum and the balance of angular momentum. In the
context of porous media, the first stipulates that the rate of change of the linear momentum
of each single phase is equal to the creation rate of linear momentum due to external forces
acting on the medium – similar for the angular momentum. Ultimately, the balance of linear
momentum of phase π ∈ {s,w,nw} reads as follows. For any control volume ωt ⊂ Ωt there
exists ωπ0 ⊂ Ω0 such that ωt = ω

π
t := xπ(ωπ0 , t) moves with phase π, and it holds that

dπ

dt

ˆ
ωπ

t

ηπ ρπv
π dx =

ˆ
ωπ

t

ηπ ρπ f dx +
ˆ
∂ωπ

t

T π(x, t, n) ds,

where
´
ωπ

t
ηπ ρπv

π dx denotes the linear momentum relatively to the particles of phase π, f
is an external, local body force, andT π is a surface force resulting from local contact forces.

Summing over all phases, yields the linear momentum balance of the homogenizedmate-
rial. Under the assumption of negligible inertia, we obtain the quasi-static linear momentum
balance of the homogenized mediumˆ

ωt

ρ f dx +
ˆ
∂ωt

T (x, t, n) ds = 0, (2.1.3)

where ρ :=
∑
π ηπ ρπ is the bulk density, and T :=

∑
π T

π denotes the total surface force.
Similarly, based on the angular momentum balance of each phase, the quasi-static angular
momentum balance of the homogenized medium is obtainedˆ

ωt

x × ρ f dx +
ˆ
∂ωt

x ×T (x, t, n) ds = 0. (2.1.4)

Based on (2.1.3) and (2.1.4), classical elasticity theory [54] concludes the existence of
a symmetric-tensor-valued field σ = σ(x, t) on Ωt , the Cauchy stress, such that for the
arbitrary control volume ωt it holds thatˆ

ωt

∇ · σ + ρ f dx = 0.
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A careful discussion utilizing averaging theory enables the interpretation ofσ being the total
stress acting on any unit area of the homogenized medium [57]. Ultimately, in differential
form, the momentum balance reads σ = σ> in Ωt and

∇ · σ + ρ f = 0 in Ωt . (2.1.5)

We remark, in general, it is customary to phrase the linear momentum balance in a
Lagrangian framework. Since the focus of this thesis is on infinitesimally deforming porous
media, a careful discussion allows for equating Ωt with Ω0.

Conservation of mass of single phases. In integral form the conservation of mass of
phase π ∈ {s,w,nw} reads as follows. For any control volume ωπt ⊂ Ωt moving with phase
π, the change in fluid mass is balanced by the amounts of fluid produced within and flowing
into the control volume, i.e., it holds that

dπ

dt

ˆ
ωπ

t

ηπ ρπdx =
ˆ
ωπ

t

hπdx −
ˆ
∂ωπ

t ∩∂Ωt

qπ · n ds, for all ωt ⊂ Ωt, (2.1.6)

where ηπ ρπ denotes the mass density of phase π, hπ is a prescribed mass source in Ωt , qπ
is a prescribed flux on the boundary ∂tΩt , and n is the outward normal. We note, since ωπt
moves with phase π, no mass change occurs across parts of ∂ωt inside Ωt . By utilizing the
definition of the material derivative (2.1.2), the mass balance of phase π can be formulated
in differential form: For all times t it holds that

∂

∂t
(ηπ ρπ) + ∇ · (ηπ ρπvπ) = hπ in Ωt .

We note, it is common to formulate fluid mass balances in reference to the solid skeleton. In
this regard, by utilizing (2.1.1), it holds that

ds

dt
(ηπ ρπ) + ηπ ρπ∇ · vs + ∇ · (ηπ ρπvπs) = hπ in Ωt . (2.1.7)

2.1.1.4 Constitutive equations

In order to complete the description of themechanical behavior of fluid-saturated deformable
porous media, constitutive relationships are required. For systematically choosing thermo-
dynamically consistent relationships, entropy inequalities resulting from the second law of
thermodynamics may generally be utilized, cf., e.g., [57, 84]. In the following, we mostly
employ established, simple laws which depend only on quantities currently measurable in
laboratory or field experiments. These mainly correspond to linearizations or simplifications
of more general, complex laws.

Equation of state for fluids. The equation of state for fluids is idealistically assumed to
be barotropic, i.e., depend solely on the phase-averaged fluid pressure such that

ρα = ρα(pα) = ρα,ref exp
(

1
Kα

(
pα − pα,ref

) )
, α ∈ {w,nw}, (2.1.8)

where Kα is the bulk modulus of fluid phase α.
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Capillary pressure. Microscopically, fluid-fluid interfaces between wetting and non-
wetting fluids are concave minisci caused by surface tension. The curvature of a meniscus is
a result of the capillary pressure pc , which is affected by the surface tension and pore size
distribution. At equilibrium, pc is given by the pressure difference

pc = pnw − pw. (2.1.9)

It is common practice to assume that one can define a macroscopic capillary pressure,
also satisfying (2.1.9). Moreover, it is assumed to be directly related to the fluid saturations,
i.e., sw = sw(pc). Disregarding hysteresis, it is often further assumed that the relation can be
inverted in the positive pressure regime, i.e., pc = pc(sw) for sw < 1.

As common in the poroelasticity literature, in this thesis it is assumed that saturation-
pressure relations are independent of the deformation. However, it should be noted that it is
evident that the capillary pressure depends on the actual pore size distribution, which changes
under deformation. We mention two widely-used simple analytical saturation-pressure rela-
tions (neglecting residual saturations for simplicity): Brooks-Corey [42]

sw(pc) =

{ (
pc
pe

)−λ
pc ≥ pe,

1 else,
(2.1.10)

where pe > 0 is the entry pressure, and λ > 0 is the pore size distribution index; van
Genuchten [152]

sw(pc) =

{
(1 + (avGpc)

nvG )−mvG pc ≥ 0,
1 else, (2.1.11)

where avG > 0 and nvG > 1 are model parameters, and mvG := nvG−1
nvG

.

Darcy’s law for multi-phase flow. Darcy’s law, the basis of hydrology, relates fluid flow
with forces caused by fluid pressure gradients and external (mostly gravitational) body
forces acting on the fluid. Originally, it was empirically formulated for single-phase flow in
porous media by Darcy [62]. Later, the concept of relative permeability was established by
Muskat [112], allowing for a generalization to multi-phase flow. In its now most common
form, the volumetric flux of fluid phase α ∈ {w,nw} relative to the skeleton, also called
filtration vector, is described by

qα := ηαvαs = −
κkrα
µα
(∇pα − ραg) , (2.1.12)

where κ is the intrinsic permeability of the skeleton, krα = krα(sα) is the relative perme-
ability, µα is the fluid viscosity, and g is the gravitational acceleration, assuming no other
body forces are active.

Generalized Darcy’s law (2.1.12) is only valid as a first approximation for slow lam-
inar Newtonian fluid flow. For instance, inertial forces are neglected. Extensions to non-
Newtonian fluids [122], non-laminar (Darcy-Forchheimer) flow [79] or transitional (Darcy-
Brinkman) flow [41] require additional terms or non-linear dependence. In the following,
we consider generalized Darcy’s law of the form (2.1.12).
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Two relative permeability models corresponding to the retention curves (2.1.10)
and (2.1.11) are given by the Brooks-Corey relative permeability model [43]

krw(sw) = s
2+3λ
λ

w , knw(sw) = (1 − sw)
2
(
1 − s

2+λ
λ

w

)
,

and the van Genuchten-Mualem relative permeability model [106]

krw(sw) =
√

sw

(
1 −

(
1 − s

1
mvG
w

)mvG )2

, knw(sw) =
√

1 − sw

(
1 − s

1
mvG
w

)2mvG

.

Pore pressure. The pore pressure is the pressure of the homogenized, possibly multi-
phasic fluid acting on the skeleton as matric pressure or suction. For single-phasic fluids the
pore pressure is equal to the fluid pressure. Yet, despite a 60 years ongoing discussion, no
unified definition of the pore pressure has been established and fully accepted for unsaturated
media. Several modeling attempts have been made in the literature – also of theoretical kind,
cf. [114, 120] for reviews.

Bishop [24] stated one of the first generalizations for unsaturated media given by

ppore = pnw + χ(pw − pnw).

placing emphasize on the matric suction pnw− pw as a major influence. The weight χ, called
the Bishop’s parameter, quantifies the area of contact between solid and fluids. An often
utilized choice is the averaged pore pressure, which is the volume-averaged fluid pressure

pavg = swpw + snwpnw,

i.e., χ = sw. However, it is criticized for not accounting for solid-fluid interfaces [58, 59].
In this thesis, we utilize the so-called equivalent pore pressure, cf. e.g. [57]. It is justified

by a thermodynamic approach accounting also for solid-fluid interfaces via an interfacial
energy. Ultimately, it is given by the corrected average pore pressure

ppore = swpw + snwpnw −

ˆ 1

sw

pc(S) dS,

which is equivalent with the differential definition

dppore = swdpw + snwdpnw.

In the single-phasic limit case or in the absence of capillarity, the definition of the pore
pressure as the fluid pressure is recovered.

Cauchy stress tensor – The effective stress concept. Since the early stages of soil and
rock mechanics, and by now established in geotechnical engineering, the concept of effective
stress for describing the overall stress state of a homogenized porous medium has been
introduced by Terzaghi [149] and Biot [22] for saturated porous media. Bishop [24] then
naturally extended the concept to partially saturated media. All works assume that: (i) the
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effective stress σeff is assumed to be solely responsible for all major deformations of the
(drained or undrained) skeleton; and (ii) the effective stress is a linear combination of the
Cauchy stress σ and the pore pressure ppore

σeff = σ + αpporeI. (2.1.13)

Theweightα, called theBiot-Willis constant, has been determined for isotropic homogeneous
solid materials under infinitesimal deformations among others by [23, 119] as

α = 1 −
Kdr
Ks

,

where Kdr and Ks are the bulk modulus of the drained skeleton and the bulk modulus of the
solid grains, respectively.

Originally, phenomenologically stated on macroscopic level, (2.1.13) can be also theo-
retically justified utilizing, e.g., thermodynamic considerations [57], averaging theory [64],
or homogenization [45, 133].

The effective stress for a St. Venant-Kirchhoff material. Provided the solid skeleton
solely deforms under infinitesimal deformations, the hypotheses of linear elasticity allow
for modeling the effective behavior by a generalized Hooke’s laws as follows. The effective
stress stress is proportional to the linearized strain tensor

σeff = Cε(u)

where C ∈ Rd×d×d×d is a fourth-order Gassmann tensor corresponding to the drained skele-
ton. For isotropic materials, Hooke’s law is equivalent with the description of a St. Venant-
Kirchhoff material. There exist two parameters µ and λ, called shear modulus and Lamé’s
first parameter, respectively, such that

σeff = 2µε(u)+ λ∇ · u I. (2.1.14)

In this case, the bulk modulus of the drained solid skeleton as a whole is Kdr =
2µ
d + λ.

Solid density. The solid density is assumed to depend on the pore pressure and the first
invariant of the effective stress σeff,h := 1

d trσeff , i.e., its hydrostatic component, such that

1
ρs

dρs =
1
Ks

dppore +
1

ηsKs
dσeff,h.

Moreover, the following constitutive relation is assumed between the hydrostatic effective
stress and the overall volumetric strain rate, caused by structural deformation and uniform
compression of solid particles as opposed to the skeleton,

dsσeff,h

dt
= Kdr

(
∇ · vs −

1
Ks

dsppore

dt

)
.

For the solid density it follows that

1 − φ
ρs

dsρs
dt
=

1
Ks
(α − φ)

dsppore

dt
+ (α − 1)∇ · vs. (2.1.15)
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2.1.1.5 Resulting mass balance equations.

Combining the fundamental mass balance equations derived in Section 2.1.1.3 and the con-
stitutive relations from Section 2.1.1.4 results in practical mass balance equations. Those
yield the basis for the mathematical models for unsaturated poroelasticity and linear poroe-
lasticity for the rest of the thesis.

Mass balance for the solid phase. Themass balance for the solid phase is solely a helping
tool in order to derive an evolution equation for the Eulerian porosity. Assuming no solid
mass production, (2.1.7) yields after expanding ds

dt and dividing by ρs

1 − φ
ρs

dsρs
dt
−

dsφ

dt
+ (1 − φ)∇ · vs = 0.

Inserting the constitutive relation for the solid density (2.1.15) and rearranging, yields for
the porosity

dsφ

dt
=
α − φ

Ks

dsppore

dt
+ (α − φ)∇ · vs. (2.1.16)

Mass balance for the fluid phases. As for the solid phase, we consider (2.1.7), now for
α ∈ {w,nw}. After expanding ds

dt and dividing by ρα, we obtain

φ
dssα

dt
+ sα

dsφ

dt
+
φsα
ρα

dsρα
dt
+ φsα∇ · vs +

1
ρα

∇ · (ραφsαvαs) =
hα
ρα
.

Inserting (2.1.16) and the equation of state for the fluid (2.1.8), yields in Ωt

φ
dssα

dt
+
φsα
Kα

dspα
dt
+
α − φ

Ks
sα

dsppore

dt
+ αsα∇ · vs +

1
ρα

∇ · (ραφsαvαs) =
hα
ρα
. (2.1.17)

2.1.1.6 Hypotheses of small perturbations

The hypotheses of small perturbations are a set of hypotheses allowing for partial lineariza-
tion of the otherwise highly non-linear problem. In this thesis, we impose:

• Inertia can be neglected, resulting in a quasi-static approximation of poroelasticity.

• The deformation of the solid skeleton and displacements of the solid particles are
small, resulting in two particular implications: (i) infinitesimal displacements allow
for the identification xs ≈ Xs, and hence Ω := Ω0 ≈ Ωt ; and (ii) infinitesimal strains
allow for the linearization of the Green-Lagrange strain E(u) ≈ ε(u).

• The porosity is close to a reference porosity φ ≈ φ0.

• Fluid mass densities vary insignificantly, allowing for the approximations ρα ≈ ρα,ref
and ∇ρα ≈ 0.
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A direct consequence of these hypotheses is that we can define the constant Biot modulus N

1
N

:=
α − φ0

Ks
≈
α − φ

Ks
.

Moreover, the material derivative with respect to solid particles can be approximated by the
partial temporal derivative ds

dt ≈
∂
∂t , and one can identify vs = ∂u

∂t .

2.1.1.7 Summary – Governing equations under linearizing hypotheses

Applying the hypotheses of small perturbations to the equations derived in this section,
results in a partially non-linear mathematical model for multi-phase flow in deformable
porousmedia under infinitesimal deformations. Aminimal set of primary variables is chosen:
the structural displacement u and the fluid pressures pα, α ∈ {w,nw}. Quantities as the fluid
saturations sα, the relative permeabilities krα and the pore pressure ppore are assumed to be
given by constitutive relations, cf. Section 2.1.1.4.

Governing equations. Combining the fundamental momentum balance (2.1.5) with the
effective stress concept (2.1.13) and Hooke’s law for isotropic materials (2.1.14) results in
the linear momentum balance

−∇ · (2µε(u)+ λ∇ · u I) + α∇ppore = ρg in Ω. (2.1.18)

The mass balance (2.1.17) for fluid phase α ∈ {w,nw} under the hypotheses of small
perturbations becomes

φ0
∂sα
∂t
+ sα

∂

∂t

(
φ0
Kα

pα +
1
N

ppore + α∇ · u
)
− ∇ ·

(
κkrα
µα

(
∇pα − ρα,refg

) )
=

hα
ρα,ref

in Ω.

(2.1.19)

Boundary conditions and initial conditions. In order to close the system, boundary con-
ditions and initial conditions need to be imposed. Given three partitions (Γm

D ,Γ
m
N ), (Γ

fα
D ,Γfα

N ),
α ∈ {w,nw}, of ∂Ω, and prescribed displacement uD, surface stress σN, pressure pα,D,
and normal fluxes qα,N, we consider mixed essential and natural boundary conditions for
α ∈ {w,nw}

u = uD on Γm
D × (0,T),(

2µε(u)+ λ∇ · uI − αpporeI
)
n = σN on Γm

N × (0,T),
pα = pα,D on Γfα

D × (0,T),
−κkrα

(
∇pα − ρα,refg

)
· n = qα,N on Γfα

N × (0,T).

Additionally, for prescribed displacement u0 and fluid pressures pα,0, α ∈ {w,nw}, we
consider the following initial conditions

u = u0 in Ω × {0},
pα = pα,0 in Ω × {0}.
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Comparison to the thermodynamic approach by Coussy. The papers in Part II of the
thesis also refer to [57] for a thermodynamic derivation of the mathematical model. In the
aforementioned work, the existence of an energy potential for the homogenized medium is
assumed, allowing to utilize an entropy inequality and thereby resulting in constitutive equa-
tions for the Cauchy stress and the Lagrangian porosity. Balance equations are derived from
fundamental principles translated to a Lagrangian framework. Ultimately, under linearizing
hypotheses, cf. Section 2.1.1.6, the author arrives at the same governing equations as derived
here with the equivalent pore pressure as pore pressure.

2.1.2 Unsaturated poroelasticity

Modelling immiscible two-phase flow in porous media can be considerably simplified under
specific conditions occurring, e.g., for air and water in the vadose zone. For instance,
assuming the viscosity of the non-wetting fluid phase is several orders smaller than the one
of the wetting phase, it has a much greater mobility. Thereby, it can be expected that pressure
differences in the non-wetting phase are much faster equilibrated than in the wetting phase.
In addition, if the non-wetting fluid phase is assumed to be continuously connected to the
atmosphere, variations in the non-wetting fluid pressure can be neglected. Consequently, the
non-wetting fluid pressure can be assumed to be equal the atmospheric pressure, which for
convenience is often assumed to be zero, i.e., pnw = 0. Those assumptions are commonly
utilized for reducing two-phase flow models to Richards’ equation [144].

The same assumptions can be applied in the context of deformable porous media.
Consequently, the mass balance equation (2.1.19) can be neglected for the non-wetting fluid
phase (α = nw), and kept unchanged for the wetting fluid phase (α = w). Other than that,
the linear momentum balance (2.1.18) remains the same. Thereby, the model, presented in
Section 2.1.1.7, essentially reduces to Richards’ equation non-linearly coupled to the linear
elasticity equations with the mechanical displacement u and wetting fluid pressure pw as
primary variables – from now on called model for unsaturated poroelasticity.

The formal reduction also simplifies the expressions for the capillary pressure and pore
pressure. The negative capillary pressure pc is identical with the inverse of sw = sw(pw) in
the negative pressure regime, since

pc(pw) = −pw,

whereas the equivalent pore pressure can be interpreted as a function of the wetting fluid
pressure

ppore(pw) = sw(pw)pw −

ˆ 1

sw

pc(S) dS

with p′pore(pw) = sw(pw).
It has to be stressed that the reducedmodel can lead to inaccurate results. As in the context

of Richards’ equation for non-deformable media, cf. [144] and the references within, the
assumptions on themobility difference of the twofluid phases and the connectivity of the non-
wetting fluid phase are crucial. But even if those are fulfilled, the presence of obstacles in the
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medium as impermeable layers, or different highly heterogeneous structures, may disallow
for neglecting the non-wetting fluid phase. In addition, in terms of deformable media, the
pore pressure within a dry medium is equal the atmospheric pressure, according to the Biot
theory. However, an increasing pore pressure as, e.g., the equivalent pore pressure, does not
satisfy this relation. Thus, in the degenerate case of vanishing saturation, the coupled model
is also questionable (independent of the validity of Richards’ equation alone). In the attached
papers on unsaturated poroelasticity, the case of vanishing saturation will be excluded.

2.1.3 Biot’s quasi-static consolidation model

Considering the limit case of a single-phase flow in an infinitesimally deformable porous
medium, the general model for two-phase flow as presented in Section 2.1.1.7, simpli-
fies substantially. For instance, the non-wetting fluid phase can be entirely neglected, and
the structural displacement u and wetting fluid pressure pw remain as primary variables.
Moreover, non-linearities in the fluid pressure become linear.

The resulting model is the classical two-field formulation of the famous and well-studied
Biot’s (quasi-static) consolidation model, originally introduced by Biot [22],

−∇ · (2µε(u)+ λ∇ · u I) + α∇pw = ρg in Ω, (2.1.20)

∂

∂t

(
1
M
+ α∇ · u

)
− ∇ ·

(
κ

µw

(
∇pw − ρw,refg

) )
=

hw
ρw,ref

in Ω, (2.1.21)

with a constant bulk density ρ = (1 − φ0)ρs,ref + φ0ρw,ref and a constant storage coefficient
1
M := φ0

Kα
+ 1

N . It is also referred to as linear Biot equations. We mention, that the model
can also be derived by means of homogenization [45, 133] or the framework of generalized
gradient flows, cf. Paper A.

2.2 Variational modeling of dissipative systems –
from classical gradient flows in Hilbert spaces to
generalized gradient flows

The framework of classical gradient flows constitutes a modeling approach based on evo-
lutionary PDEs for describing physical systems purely driven by dissipation of energy. The
central idea is that within a physical state space, each state has an associated energy. Then
given an initial datum, trajectories of states evolve along the negative gradient of that en-
ergy, until eventually ending in a stationary state corresponding to a local minimum of the
energy landscape. This approach implicitly determines essential modeling assumptions. For
instance, in the context of mechanical systems, viscous or friction forces have to dominate
inertial forces, allowing for neglecting the latter. Many physical processes can be described
as classical gradient flows, e.g., non-linear diffusion as the porous medium equation [121],
the Cahn-Hilliard equation [146], quasi-stationary phase field models and the Stefan prob-
lem [131]. For a detailed, mathematical description of classical gradient flows, we refer to
the seminal works by Komura [100], Crandall and Pazy [60], and Brezis [38, 39].
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Classical gradient flows implicitly only allow for quadratic dissipation. Therefore (and
for other purposes), the framework of generalized gradient flows, closely related to doubly
non-linear evolution equations, has been introduced as, e.g., presented in [124]. Ultimately,
various advanced applications can be modeled by generalized gradient flows. We mention
incompressible immiscible two-phase flow in porous media [47], doubly non-linear Allen-
Cahn equations [108], rate-independent finite elasticity [108], rate-dependent visco-plasticity
at finite strain [109], and also thermo-poro-visco-elasticity including non-Darcy-type flow,
cf. Paper A, just to mention a few.

The purpose of the remaining section is to depict the connection between the frame-
work of classical gradient flows in Hilbert spaces and the framework of generalized gradient
flows. With focus on modeling, technicalities as, e.g., non-smooth orR∪{∞}-valued poten-
tials are ignored in the following. For an introduction to Hilbert spaces and corresponding
terminology, we refer to [55].

Classical gradient flows in Hilbert spaces. Let the state space H be a Hilbert space with
an inner product (·, ·). Let H? denote the dual space of H with the duality pairing 〈·, ·〉.
Furthermore, let the energy E : H → R be a functional, for which a Frechét derivative
∇E(x) ∈ H? exists in the sense of functional derivatives, for all x ∈ H; let gradHE(x) ∈ H
correspond to ∇E(x) ∈ H? via Riesz’s representation theorem.

Finally, for given initial datum x0 ∈ H, the curve t 7→ x(t), t ∈ [0,∞) is called a
(classical) gradient flow of E in H if it holds that

Ûx = −gradHE(x) in H, (2.2.1)
x(0) = x0. (2.2.2)

We mention two limitations of the framework of classical gradient flows:

1. Classical gradient flows are restricted to quadratic dissipation of energy. For instance,
for a trajectory of states defined by (2.2.1), the dissipation of energy is governed by

∂tE(x) = 〈∇E(x), Ûx〉 = −
(
gradHE(x), Ûx

)
= − ( Ûx, Ûx) .

2. It is often more convenient to describe changes of state via physical processes, which
might not stand in a 1–1 correspondence to each other. Typical examples are fluxes
associated to changes of concentration, mass, or temperature. The framework of
classical gradient flows does not feature that.

An equivalent reformulation of (2.2.1)–(2.2.2) yields the foundation for extension to
generalized gradient flows, which account for those two limitations. For instance, the change
of state solves a convex minimization problem:

Ûx = arg min
s∈H

{
1
2
(s, s) + 〈∇E(x), s〉

}
, (2.2.3)

x(0) = x0. (2.2.4)
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Generalized gradient flows in Banach spaces. Generalized gradient flows can be defined
by extending theminimization formulation (2.2.3). Addressing the first limitation of classical
gradient flows, mentioned above, the quadratic scalar product is replaced by a general convex
dissipation potential D. The second limitation is handled by the introduction of a process
space P, consisting of feasible physical processes. Those are associated to changes of state
via a transformation T : P→ H. The curve t 7→ x(t), t ∈ [0,T], is then called a generalized
gradient flow if it holds that

Ûx = T(x)q, (2.2.5)
q = arg min

w∈P(x)

{D(x;w) + 〈∇E(x),T(x)w〉} , (2.2.6)

x(0) = x0. (2.2.7)

In principle, the dissipation potential and process space could be state-dependent, allowing
for quite general scenarios. Choices for the dissipation potential in the literature range from
vanishing, 1-homogeneous, non-quadratic, to non-finite potentials.

Finally, the generalization of (2.2.5)–(2.2.7) to Banach spaces is immediate.
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Chapter 3

Establishing well-posedness of PDEs

The purpose of this section is to provide classicalmathematical tools for establishing thewell-
posedness of (evolutionary) PDEs, which are used in Part II of this thesis. We mention four
general approaches. We start with the most flexible and powerful approach: the combination
of the Galerkin method and compactness arguments. It is applicable to a wide range of
problems, and can be often utilized for analyzing the well-posedness of non-linear PDEs.
Opposing to that, provided a problem has a specific structure, high-level techniques may
be applicable instead, resulting in a more compact and elegant analysis. We mention tools
from the theory of doubly non-linear evolution equations, convex analysis, and saddle point
problems. The latter two are restricted to stationary partial differential equations.

We start with a brief overview of functional spaces used throughout this chapter.

3.1 Spaces

We make use of Hilbert, Banach, Lebesgue, Sobolev and Bochner spaces. For detailed
introductions, we refer to the textbooks [1, 55, 73]. We employ the following notation:

• For Hilbert spaces H, let (·, ·) denote the associated inner product.

• For Banach spacesV , let ‖ · ‖V denote the associated norm. Furthermore, letV? denote
the dual space of V , consisting of all continuous linear functionals on V . The duality
pairing is given by 〈·, ·〉.

• For any open domain Ω ⊂ RN , N ∈ N, let Lp(Ω), p ∈ [1,∞], denote the standard
Lebesgue space, consisting of measurable functions for which the p-th power of the
absolute value is Lebesgue integrable, if p < ∞. The limit case L∞(Ω) consist of
functions, which are essentially bounded on Ω, i.e., bounded up to a set of zero
measure.

• Let H1(Ω) denote the Sobolev space, consisting of functions in L2(Ω), such that their
weak derivatives of order 1 have finite L2(Ω) norm.
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• For any Banach space V , and T > 0, let Lp(0,T ; V), p ∈ [1,∞], denote the Bochner
space, consisting of ’time’-depending functions f with values in V , for which ‖ f ‖V
lies in Lp(0,T). Analogously, let W1,p(0,T ; V) be the subspace of Lp(0,T ; V), whose
elements have a weak derivative (in ’time’) with finite Lp(0,T ; V) norm; for p = 2,
we write H1(0,T ; V) := W1,2(0,T ; V). And C(0,T ; V) denotes the space of functions,
which are continuous in time.

3.2 Galerkin method and compactness arguments
The combination of the Galerkin method and compactness arguments is an often quite
effective method for establishing the existence of solutions to stationary or evolutionary, non-
linear PDEs, posed as a set of variational equations over an infinite dimensional, separable,
reflexive Banach space [55]. In the following, we present the key steps illustrated for an
evolutionary model problem reading as follows: Find u ∈ H1(0,T ; V?) ∩ L2(0,T ; V) such
that
ˆ T

0
〈∂tu, v〉 dt +

ˆ T

0
〈A(u), v〉 dt =

ˆ T

0
〈 f , v〉 dt for all v ∈ L2(0,T ; V), (3.2.1)

with some initial data u(0) = u0, where T > 0 denotes some final time; V is an infinite
dimensional, separable, reflexive Banach space; ∂t denotes the temporal derivative in the
sense of distributions; A : V → V? is some (non-linear) operator; f ∈ L2(0,T ; V?); and
u0 ∈ V . The presentation is mainly based on [55].

1. Step – Approximation in finite dimensions. The first step is the actual Galerkin
method (here we focus mainly on the conforming Galerkin method but stress that also
non-conforming variants can be utilized). Since V is separable, there exists a countably
infinite, independent family

(
v(i)

)∞
i=1 ⊂ V , such that the union of the finite dimensional sub-

spaces Vm := span
{
v(i)

}m
i=1 of V , m ∈ N, is dense in V . A finite dimensional approximation

of the problem (3.2.1) is then given by combining a time-discretization, e.g., the implicit
Euler method, with the Galerkin method. For each m,N ∈ N, we consider for n ∈ {1, ...,N}:
Given an approximation un−1

m ∈ Vm for the previous time step, find un
m ∈ Vm such that〈

un
m − un−1

m

∆t
, vm

〉
+

〈
A(un

m), vm
〉
= 〈 f n, vm〉 for all vm ∈ Vm, (3.2.2)

where ∆t := T
N > 0 denotes a time step size corresponding to the time-discretization, and

f n ∈ V? is an approximation of f on the time interval (tn−1, tn] with suitable approximation
quality. The initial conditions are approximated by some suitable u0

m ∈ Vm.
Next, for all m,N ∈ N, the existence of at least one discrete solution of (3.2.2) has to

be established for each time step. A helpful observation is that the discrete problem (3.2.2)
is finite dimensional. Consequently, by utilizing a basis of Vm, it can be reformulated to an
algebraic, non-linear problem: Find un

m ∈ R
m such that

F
(
un
m

)
= 0 in Rm, (3.2.3)
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for appropriate F : Rm → Rm. For proving the existence of a zero to (3.2.3), a corollary of
Brouwer’s fixed point theorem may be utilized.

Lemma 3.2.1 (Corollary of Brouwer’s fixed point theorem [55]). Let (·, ·) denote the (canon-
ical) inner product on Rm. Let F : Rm → Rm be a continuous function, satisfying

(F(x),x) ≥ 0 for all x ∈ Rm with (x,x) ≥ M, (3.2.4)

for some fixed M > 0. Then there exists an x? ∈ Rm with
(
x?,x?

)
≤ M and F

(
x?

)
= 0.

Based on the time-discrete approximation, time-continuous approximations can be de-
fined on the entire time interval (0,T). For instance, piecewise constant or piecewise linear
in time approximations ūmN and ûmN are defined by

ūmN (t) := un
m, t ∈ (tn−1, tn],

ûmN (t) := un−1
m +

t − tn−1
∆t

(un
m − un−1

m ), t ∈ (tn−1, tn],

where tn := n∆t; similarly, let f̄N denote the piecewise constant function based on f n. By
construction and (3.2.2), it holds that

ˆ T

0
〈∂t ûmN , v̄m〉 dt +

ˆ T

0
〈A (ūmN ) , v̄m〉 dt =

ˆ T

0

〈
f̄N , v̄m

〉
dt, (3.2.5)

for all v̄m such that v̄m(t) = vnm, t ∈ (tn−1, tn] with arbitrary vnm ∈ Vm.
The main idea of the following steps will be: (i) to show that {ūmN }m,N and {ûmN }m,N

converge to the same u ∈ H1(0,T ; V?) ∩ L2(0,T ; V); (ii) to conclude that the type of
convergence also allows for considering the limit of (3.2.5) for m,N → ∞; and finally (iii)
deduce that u is a solution of the model problem (3.2.1).

2. Step – Uniform stability. Next, one has to show that the finite dimensional approxi-
mations are uniformly bounded in the correct spaces. This objective may be achieved as a
byproduct of the corollary of Brouwer’s fixed point theorem, cf. Lemma 3.2.1; this is by no
means the only possibility, depending on the particular problem.

In the context of the model problem (3.2.1), it is natural to ask for uniform boundedness
of {ūmN }m,N in L2(0,T ; V) and {ûmN }m,N in H1(0,T ; V?) ∩ L2(0,T ; V), independently of
m,N ∈ N.

3. Step – Relative weak compactness. Resulting from uniform stability, compactness
arguments allow for extracting subsequences which are weakly convergent. A fundamental
result from functional analysis is the Eberlein-Šmulian theorem.

Lemma 3.2.2 (Eberlein-Šmulian theorem [55]). Assume that V is a reflexive Banach space,
and let {um}m ⊂ V be a bounded sequence in V . Then there exists a subsequence {umk

}k

that converges weakly in V .
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In the context of the model problem (3.2.1), the Eberlein-Šmulian theorem yields the exis-
tence of a u ∈ H1(0,T ; V?) ∩ L2(0,T ; V) such that for m,N →∞ it holds that

ūmN ⇀ u in L2(0,T ; V),

ûmN ⇀ u in L2(0,T ; V),

∂t ûmN ⇀ ∂tu in L2(0,T ; V?),

(up to subsequences), where⇀ denotes weak convergence.
If A in the model problem (3.2.1) allows for considering the limit of A(ūmN ) towards

A(u) (in the right sense) for m,N →∞, it is already possible to conclude that u is a solution
to the model problem. However, for non-linear problems in general, strong convergence may
often be required.

4. Step – Relative compactness and identification of a solution. For this step, we as-
sume that for considering the limit of (3.2.5) for m,N →∞, it is sufficient to establish strong
convergence ūmN → u in L2(0,T ; B) (up to a subsequence), V ⊂ B is compactly embedded.
We present three possible techniques for concluding that. The first, the famous Aubin-Lions
lemma, is specific for evolutionary problems.

Lemma 3.2.3 (Aubin-Lions lemma [13]). Let B be a Banach space. Let {vm}m ⊂
Lp(0,T ; B), 1 ≤ p < ∞. The sequence {vm}m is relatively compact in Lp(0,T ; B) if the
following two are fulfilled:

• {vm}m is uniformly bounded in Lp(0,T ; V), for someV ⊂ B with compact embedding.

• {∂tvm}m is uniformly bounded in Lp(0,T ; W), for some W ⊃ B with a continuous
embedding.

In the context of the modeling problem (3.2.1), assuming V ⊂ B ⊂ V? (= W) satisfies
the properties of Lemma 3.2.3, relative compactness of {ûmN }mN in L2(0,T ; B) can be
concluded. Since ūmN − ûmN → 0 in L2(0,T ; B) for N → ∞ by construction of the time
interpolations, also relative compactness of {ūmN }mN in L2(0,T ; B) can be concluded.
Ultimately, one can extract subsequences of {ūmN }m,N and {ûmN }m,N , converging to a
solution of the model problem (3.2.1).

For particular problems, the assumptions of the Aubin-Lions lemmamight be too strong.
A version, relaxing the condition on the time-derivatives, has been given by Simon [138].

Lemma 3.2.4 (A relaxed Aubin-Lions lemma [138]). Let B be a Banach space. Let {vm}m ⊂
Lp(0,T ; B), 1 ≤ p < ∞. The sequence {vm}m is relatively compact in Lp(0,T ; B) if the
following two are fulfilled:

• {vm}m is uniformly bounded in Lp(0,T ; V), for someV ⊂ B with compact embedding.

•
´ T
τ ‖vm(t) − vm(t − τ)‖

p
B dt ≤ O(τ), whereO denotes a function such thatO(τ) → 0

as τ → 0.



3.3 Doubly non-linear evolution equations 29

Furthermore, for problems, forwhichV is some subspace of Lp(Ω) for a domainΩ ⊂ RN ,
N ∈ N, onemore relaxationmay be helpful: the Riesz-Frechet-Kolmogorov compactness cri-
terion. It is in particular often utilized when employing non-conforming, finite dimensional,
dense subspace in the Galerkin method, based, e.g., on finite volume techniques [74].

Lemma 3.2.5 (Riesz-Frechet-Kolmogorov compactness criterion [40]). Let G be a bounded
set in Lp

(
RN

)
with 1 ≤ p < ∞, N ∈ N. Assume that

lim
|h |→0

‖g(· + h) − g(·)‖Lp (RN ) = 0 uniformly in g ∈ G.

Then the closure of G |Ω := {g : Ω→ R | g ∈ G} is compact for any measurable setΩ ⊂ RN

with finite measure.

For instationary problems, the space RN can be identified with Rd × R, i.e., N = d + 1,
with d the dimension of the physical space. The product space thereby covers the spatial and
temporal spaces. For stationary problems, it is N = d.

3.3 Doubly non-linear evolution equations
For doubly non-linear evolution equations, which are closely related to generalized gradient
flows, cf. Section 2.2, high-level abstract well-posedness results have been established in
the literature. Those allow for a relatively simple analysis of the well-posedness provided a
problem satisfies certain assumptions. We note that such high-level results are often derived
by the Galerkin method combined with compactness arguments as introduced above.

In the following, we recall two classical results for simple setups. However, we emphasize
that far more involved models can be analyzed in the context of doubly non-linear evolution
equations, including state-dependent, non-smooth dissipation potentials, as well as non-
autonomous, non-smooth energy potentials [56, 108].

We begin with a classical well-posedness result for gradient flows of convex functionals
in Hilbert spaces, i.e., for the particular case of quadratic dissipation. For basic definitions
and properties of convex functions, as the domain dom, and their subdifferentials ∂, we refer
to the textbook [68].

Lemma 3.3.1 (Well-posedness for gradient flows of convex functionals [39]). Let H be a
real Hilbert space, and let E : H → R∪ {∞} be convex and proper. Let u0 ∈ H. Then there
exists a unique function u ∈ C ([0,∞) ; H) such that

• u(0) = u0;

• ∂tu(t) exists in the classical sense for almost every t > 0;

• There exists a function ζ : [0,∞) → H? such that ζ(t) ∈ ∂E(u(t)) for every t, and

(∂tu(t),w) = − 〈ζ(t),w〉 for a.e. t > 0 and for all w ∈ H;

• At every t ≥ 0, ζ(t) is the element of minimal norm in ∂E(u(t)).
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Interestingly, regularity of solutions can be directly concluded from Lemma 3.3.1. From
the existence of ζ(t) ∈ ∂E(u(t)) it immediately follows that u(t) ∈ dom ∂E (for all times t),
which might be stronger than u(t) ∈ H.

On the foundation of the fundamental works on classical gradient flows byKomura [100],
Crandall and Pazy [60], and Brezis [38, 39], the theory of doubly non-linear evolution
equations took off. We present one basic well-posedness result for a regular case, closely
connected to generalized gradient flows as presented in Section 2.2.

Theorem 3.3.2 (Well-posedness for regular doubly evolution equations [56]). Let B be a
real, reflexive, and strictly convex Banach space. Let the subspace V ⊂ B be a reflexive
Banach space, dense and compactly embedded in B. Let p,q ∈ (1,∞) such that 1

p +
1
q = 1.

Let the dissipation potential D and the energy potential E satisfy:

• D : B → [0,∞) is differentiable, with D(0) = 0, and ∇D is coercive and continuous,
i.e., there exist constants C1,C2,C3 > 0 satisfying for all u ∈ B

〈∇D(u),u〉 ≥ C1‖u‖
p
B − C2,

‖∇D(u)‖q
B?
≤ C3

(
‖u‖pB + 1

)
.

• E : B → (−∞,∞] is proper, convex, and lower semicontinuous, such that dom E ⊂ V
and

‖u‖pB + E(u) → ∞ whenever u ∈ dom E, ‖u‖V →∞.

Ultimately, for all u0 ∈ dom E , there exists a u ∈ W1,p(0,T ; B) ∩ L∞(0,T ; V) with
∇D (∂tu) ,∇E(u) ∈ Lq(0,T ; B?) satisfying

∇D (∂tu(t)) + ∇E (u(t)) = 0 a.e. in (0,T); u(0) = u0. (3.3.1)

If ∇D or ∇E is linear and self-adjoint, the solution is unique.

A direct consequence of the characterization of doubly non-linear evolution equations as
minimization problem for the time derivative, cf. Section 2.2, is that solutions u to (3.3.1)
satisfy the regularity property

ˆ t

0
D (∂tu(s)) ds + E (u(t)) ≤ E (u(0)) for a.e. t ∈ (0,T).

3.4 Convex minimization

Time-discrete problems or stationary problems that can be formulated as a convex mini-
mization problem can be analyzed by means of convex analysis. We mention a fundamental
result from calculus of variations in the context of convex energies. In some sense, it is the
analog result to Lemma 3.3.2 for stationary (or time-discrete) problems.
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Lemma 3.4.1 (Well-posedness for convex minimization [55, 68]). Consider the problem

inf
u∈C

E(u), (3.4.1)

where V is a reflexive Banach space, the objective function E : V → R ∪ {∞} is a proper,
convex, lower semi-continuous function, and the feasible setC ⊂ V is non-empty, closed, and
convex. If C is bounded or E is coercive over C, i.e., E(u) → ∞ for x ∈ C with ‖u‖V → ∞,
then (3.4.1) has a solution. It is unique if E is strictly convex over C.

3.5 Saddle point problems
Equality-constrained minimization problems are naturally related to saddle point problems
via Lagrangian formulations. In the following, we present a classical well-posedness result
for perturbed linear saddle-point formulations. It can be for instance applied for establishing
the well-posedness of time-discretized linear Biot equations, cf. Section 2.1.3.

Lemma3.5.1 (Well-posedness of perturbed saddle-point problems [27]). LetV,Q beHilbert
spaces. Let a : V × V → R, and c : Q × Q → R be continuous symmetric positive semi-
definite bilinear forms. Moreover, let b : V × Q → R be a continuous bilinear form with
associated canonical linear operators B : V → Q? and B> : Q → V?. Assume the image
of B is closed. Abbreviate their kernels K := ker B, and H := ker B>. Finally, assume a, b,
and c satisfy:

• a is coercive on K , i.e., a(v, v) ≥ α‖v‖2V for all v ∈ K , for some α > 0;

• b satisfies an inf-sup condition, i.e., inf
q∈H⊥

sup
v∈V

b(v,q)
‖q ‖Q ‖v ‖V

= inf
v∈K⊥

sup
q∈Q

b(v,q)
‖q ‖Q ‖v ‖V

= β,

for some β > 0, where H⊥ denotes the orthogonal complement of H;

• c is coercive on H, i.e., c(q,q) ≥ γ‖q‖2Q for all q ∈ H, for some γ > 0.

Then for all f ∈ V?, g ∈ Q?, there exists a unique (u, p) ∈ V ×Q satisfying

a(u, v) − b(v, p) = 〈 f , v〉 ∀v ∈ V, (3.5.1)
b(u,q) + c(p,q) = 〈g,q〉 ∀q ∈ Q. (3.5.2)

The following result from the theory of saddle point problems is a special case of the
Banach Closed Range theorem – in certain cases also called Thomas’ lemma [150]. It
is a useful low-level tool for the analysis of both linear and non-linear coupled problems
with a skew-symmetric coupling. It will be for instance employed in the analysis of Schur-
complement based block-partitioned solvers for Biot equations.

Lemma 3.5.2 (Inf-sup argument [27]). Let V and Q be Hilbert spaces, and let B be a linear
continuous operator from V to Q?. Denote by B> : Q → V? the (canonical) transposed
operator of B. Then, the following two statements are equivalent:

• B> is bounding, i.e., ∃β > 0 such that
B>q


V? ≥ β ‖q‖Q ∀q ∈ Q.

• ∃LB : Q? → V , linear and bounded, such that B (LB (ξ)) = ξ ∀ξ ∈ Q? with
‖Lb ‖ = β

−1.
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Chapter 4

Numerical solution of coupled problems

Given a (well-posed) potentially non-linear coupled PDE, closed-form solutions are in
general not available. Instead computable numerical approximations may be employed. In
this section, the conceptual procedure undertaken in this work is presented. It starts with the
finite dimensional approximation of the problem by discretization in space and time, making
it accessible to computer codes. The resulting potentially non-linear algebraic systems are
solved using iterative solvers. This includes linearization schemes as Newton’s method or
L-scheme linearizations accounting for non-linearities, Schur-complement-based iterative
splitting schemes tailored for saddle-point problems, or iterative splitting schemes based on
block-coordinate descent methods for convex minimization problems. Finally, we comment
on DUNE, the numerics environment used for the implementation of the above numerical
method in the course of this thesis.

4.1 Discretization in space and time

In order to solve an infinitely dimensional problem utilizing a computer simulation, a finite
dimensional approximation is required. Limited to the coupling of flow and deformation,
poroelasticity models conceptually consist of two main blocks – equations from structural
mechanics and fluid dynamics. In practice, discretization schemes tailored for the sepa-
rate subproblems are combined for discretizing the coupled problem, mostly involving the
classical Finite Element Method (FEM), the Finite Volume Method (FVM), or the Mixed
Finite Element Method (MFEM), combined with an Implicit time-stepping technique, e.g.,
the Implicit Euler method. In the following, we comment on central properties of the spatial
discretization methods, and refer to the textbooks [27, 71, 74] for detailed introductions.

The FEM is traditionally used for structural analyses and elliptic problems. It is based
on the conforming Galerkin method, applied to a primal problem formulation, e.g., the
displacement-formulation of linear elasticity, or the pressure formulation of single-phase
flow in porous media. Major strengths of the FEM are a sound, mathematical foundation
including the stability and convergence analysis, and a natural extension to higher order
accurate FEMs. However, the FEM is less favored in the field of fluid dynamics due to a lack
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of conservation properties. In the context of poroelasticity, it is often utilized for discretizing
the mechanics equation, combined with a conservative scheme for the fluid flow problem,
cf., e.g., [75, 155].

The FVM is constructed to reflect the nature of conservation and balance laws. There-
fore it is traditionally used in fluid dynamics and for hyperbolic problems. Convergence
can be established; however, compared to the FEM the extension to higher order accurate
FVMs is not trivial. Guaranteeing local conservation of mass and linear momentum, the
FVM is widely-used for the discretization of flow in porous media [46, 74, 91, 92], linear
elasticity [95, 148], and poroelasticity [117].

The MFEM joins advantages of both the FEM and the FVM, being a conforming finite
element method based on mixed formulations. For this, separate equations for conservation
laws and constitutive relations, as Darcy’s law, are utilized. Thereby, it allows for a locally
conservative discretization, but simultaneously enables classical FEM theory for the analysis,
and additionally allows for a natural extension to higher order accurate MFEMs. The major
drawback is the introduction of Lagrangemultipliers, resulting in a saddle-point formulation.
Discrete function spaces therefore have to be carefully chosen fulfilling an inf-sup stability
criterion. By that the MFEM may become relatively expensive, depending on the problem.
However, we mention that hybridization or the use of inexact quadrature allows for reducing
the computational complexity without loss of accuracy. By the latter in fact, low-order
MFEMs may translate to known cell-centered FVMs [7, 8, 15, 156]. The MFEM is widely-
used for the discretization of flow in porous media [127, 160], linear elasticity [11, 12], and
poroelasticity [44, 75, 155].

Finally, a range of alternative techniques has been established in the literature for the
discretization of geomechanics and flow in porous media. We mention finite difference
schemes [81], the discontinuous Galerkin method [125], the virtual element method [9, 80],
the multiscale FEM [50], the adaptive FEM [4], and stabilized FEM [130].

4.1.1 Example: FEM-FEM discretization of Biot’s consolidation model

In this section, we introduce a conforming discretization of the two-field formulation of the
linear Biot equations (2.1.20)–(2.1.21). It will provide the foundation for later discussion of
the fixed-stress split in Section 4.3. Based on the above discussion, we stress that we do not
advocate the use of a classical FEM discretization of the fluid flow equations. Nevertheless,
we choose it for a compact presentation. For simplicity, homogeneous boundary conditions
are assumed on ∂Ω for both the displacement and fluid pressure.

For the temporal discretization, a time interval of interest (0,T) is partitioned in intervals
(tn−1, tn] of (for simplicity) fixed time step size ∆t. Given a tessellation Th = {T}T of Ω,
conforming, discrete (finite element) spaces Vh = Vh(Th) ⊂ H1

0 (Ω)
d and Qh(Th) ⊂ H1

0 (Ω)

are assumed to be given for the approximation of the structural displacement and the fluid
pressure; H1

0 (Ω) denotes the subspace of H1(Ω) with zero trace on the boundary ∂Ω.
A fully-discrete approximation of the two-field formulation of Biot’s consolidation

model (2.1.20)–(2.1.21) is then obtained by applying the (conforming) Galerkin method to-
gether with the Implicit Euler method. Given some discrete, initial data (u0

h
, p0

h
) ∈ Vh ×Qh ,
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the approximation at the n-th time step, n ≥ 1, reads: Given (un−1
h

, pn−1
h
) ∈ Vh × Qh , define

the fluid content θn−1 := 1
M pn−1

h
+ α∇ · un−1

h
, and find (un

h
, pn

h
) ∈ Vh ×Qh satisfying for all

(vh,qh) ∈ Vh ×Qh

2µ
〈
ε
(
un
h

)
,ε(vh)

〉
+ λ

〈
∇ · un

h,∇ · vh
〉
− α

〈
pnh,∇ · vh

〉
= 〈ρg, vh〉 , (4.1.1)

1
M

〈
pnh,qh

〉
+ α

〈
∇ · un

h,qh
〉
+ ∆t

〈
κ

µw

(
∇pnh − ρw,refg

)
,∇qh

〉
=

〈
θn−1 + ∆t

hw(tn)
ρw,ref

,qh

〉
.

(4.1.2)

We remark, that by virtue of the theory of saddle-point problems, Vh ×Qh are required to be
inf-sup stable with respect to the divergence operator, in order to guarantee parameter-robust
stability, cf. Lemma 3.5.1. For instance, quadratic elements or the MINI element for the
displacements, and linear elements for the pressure fulfill this requirement [27].

4.2 Iterative solution of algebraic systems
Next after discretization, an algebraic system of equations has to be solved. Provided there
exists a solution, the main focus of this section is on the description of methods for approxi-
mating these solutions. For this, we consider the following algebraic model problem:

For given F : RN → RN , find x? ∈ RN satisfying: F(x?) = 0. (4.2.1)

With (4.2.1) arising from discretizing PDEs, N may be very large, e.g., for large-scale sim-
ulations or highly accurate discretization schemes, or F may be non-linear. Both cases in
general do not allow for the use of direct methods, which attempt to solve (4.2.1) within
machine precision under fixed, computational cost. Instead, iterative solvers may be consid-
ered. Starting with an initial guess, approximations of solutions are successively improved
until the error is acceptable, where the metric and tolerance for the error is controlled by the
user.

In the following, we restrict the discussion to methods relevant to this thesis, and briefly
comment on the special case that F is actually linear, as well as on Newton’s method and
L-scheme linearizations for the general case.

4.2.1 Special case of a linear problem

If F is linear, i.e., F(x) = Mx − b, for some M ∈ RN×N and b ∈ RN , three general
approaches are most popular: direct methods, iterative solvers (for problems related to
PDEs), and preconditioned Krylov subspace methods.

Direct methods utilize a suitable factorization of the matrixM and ultimately use forward
and backward substitutions to solve (4.2.1). Those have the advantage of converging in a
’single iteration’. Furthermore, once a factorization of the matrix M has been constructed,
low online cost per iteration allow for a cheap solution for changing right hand sides. This is
in particular relevant for instationary problems. However, one has to note that the offline cost
for constructing factorizations is relatively high in terms of computational operations and
physical memory. For larger problems, the latter might prohibit the use of direct methods.
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Iterative solvers instead approximate the solution to (4.2.1) in a sequence of iterations.
Starting with an initial guess, the approximation is updated successively – favorably with
lower computational cost per iteration than required for direct methods. Thus, compared
to those, iterative solvers may either allow for making computations possible at all or
lead to improved performance. This especially holds true for larger problems if efficient
parallelization is available. Typical examples of iterative solvers for linear systems related to
PDEs are multigrid methods [87], domain decomposition methods [140], and – as a special
case of these – iterative splitting schemes for coupled problems, cf. Section 4.3. A slight
drawback of these methods is the strict need for the methods to be contractive in order to
ensure convergence, which follows directly from the fact that these methods eventually can
be identified as preconditioned Richardson iterations, cf., e.g., [158]. This substantiates the
need for theoretically studying the convergence of iterative solvers.

Krylov subspace methods are a particular class of iterative solvers specifically designed
for linear, algebraic systems. Their general idea lies in minimizing the residual over a se-
quence of finite dimensional subpaces, the Krylov subspaces. For a detailed introduction
and analysis, we refer to the textbook [132]. Most importantly, compared to the Richardson
iteration, Krylov subspace methods are much more robust, being in principle always con-
vergent. For practical convergence however, preconditioning is required, favorably resulting
in a clustered spectrum of the preconditioned system, not necessary contained in the unit
ball. The choice of suitable preconditioners is often problem-dependent and a large area of
research. For linear systems related to PDEs one can often utilize iterative solvers as those
mentioned above.

4.2.2 Newton’s method

For the numerical solution of non-linear problems (4.2.1), iterative linearization schemes are
usually required. The certainlymost popular linearizationmethod isNewton’s method (or due
to historical reasons sometimes also called the Newton-Raphson-Simpson method) [67]. It
successively determines approximations of solutions to (4.2.1) by utilizing first-order Taylor
approximations of F. Starting with an initial guess x(0) ∈ RN , the i-th iteration reads, i ≥ 1:
Given an approximation x(i−1) ∈ RN , find x(i) ∈ RN satisfying

F
(
x(i−1)

)
+ ∇F

(
x(i−1)

) (
x(i) − x(i−1)

)
= 0. (4.2.2)

Evidently, x(i) is only well-defined, if F is differentiable and its derivative ∇F is invertible.
By the Newton-Kantorovich theorem [67, 94], Newton’s method converges locally and

quadratically if ∇F is locally Lipschitz continuous and its inverse is bounded. Possible
drawbacks arise immediately from that result and may be indeed also observed in practice:
global convergence is not guaranteed if the initial guess is not well chosen. Damping strate-
gies allow for the recovery of robustness. Furthermore, problems involving, e.g., Hölder
continuous non-linearities may give rise to ill-conditioned Jacobians as, e.g., for Richards’
equation [53, 105] or unsaturated poroelasticity, cf. Paper E, such that the regularity as-
sumptions may not be satisfied. Efforts to remedy difficulties in the context of porous media
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applications include the re-parametrization of constitutive relations [37], trust-region New-
ton methods [104, 154], and reordering techniques [101, 113], just to mention a few.

4.2.3 L-scheme linearization

The L-scheme [126, 139] is an inexact Newton method. In its essence, the idea is to replace
the exact Jacobian ∇F

(
x(i−1)) in Newton’s method (4.2.2) by a constant approximation

L ∈ RN×N . Thus, starting with an initial guess x(0) ∈ RN , the i-th iteration of the resulting
scheme reads, i ≥ 1: Given an approximation x(i−1) ∈ RN , find x(i) ∈ RN such that

F
(
x(i−1)

)
+ L

(
x(i) − x(i−1)

)
= 0. (4.2.3)

The reason for applying the L-scheme is a possible increase of robustness compared to
Newton’s method – in particular in cases in which Newton’s method fails to converge. By
construction, the L-scheme can be applied to non-smooth problems as no evaluation of
derivatives is required. By that the conditioning of the problem potentially improves, and
the cost per iteration compared to Newton’s method is lowered [105]. On the other hand, at
most linear convergence can be expected. We finally remark that for linear F, the L-scheme
linearization (4.2.3) is identical with a preconditioned Richardson iteration [132].

In order to allow for better performance, the L-scheme linearization may be only applied
to (non-smooth) parts of non-linearities. For instance, assuming F decomposes as

F(x) = Flinx + Fqlin(x)x + FL(x) + Fsmooth(x)

with Flin ∈ RN×N , Fqlin : RN → RN×N , some non-smooth FL : RN → RN , and smooth
Fsmooth : RN → RN , a possible approximation of the Jacobian ∇F (x) might be given by

∇F(x) ≈ Flin + Fqlin(x) + L + F′smooth(x)

for some constant L ∈ RN×N . The resulting inexact Newton method, also sometimes
regarded asmodifiedPicardmethod, would involve iteration-dependent Jacobians, increasing
the computational cost per iteration. On the other hand, same properties as for the plain L-
scheme can be concluded regarding non-smooth problems.

A key question is, how L should be chosen. First of all, it is important to note that in gen-
eral constant linearizations can only be appropriate for non-decreasing Lipschitz continuous
non-linearities. Ultimately, in algebraic terms 0 ≤ 〈F(x) − F(y),x − y〉 ≤ 〈L (x − y) ,x − y〉
for all x,y ∈ RN is sufficient, cf. Paper E. Finally, suitable explicit choices for L are
problem-dependent. L-scheme linearizations have been shown to be robust and linearly con-
vergent with mesh-independent rates for several porousmedia applications as, e.g., Richards’
equation [105], two-phase flow in porous media [129], non-linear single-phase poroelastic-
ity [28, 29], and unsaturated poroelasticity, cf. Paper E. Moreover, extensions can be made
to Hölder continuous non-linearities by including information on stopping criteria [128], see
also Paper F.
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4.2.4 Relaxation strategies for iterative solvers

In order to increase the robustness or speed of iterative solvers, relaxation techniques can be
employed. The basic concept is to enhance each iteration by a correction step, cf. Algorithm1.

Algorithm 1: Relaxation of iterative solvers illustrated for Newton’s method

1 Prediction: Find x̂(i) satisfying, e.g., (4.2.2).
2 Relaxation: Choose ω ∈ R based on some heuristic or mathematical foundation.
3 Correction: Set x(i) := x̂(i) + ω

(
x̂(i) − x(i−1)) .

We mention three relaxation concepts frequently used in the literature:

• Line search for first-order optimality conditions [115]: Typically line search is applied
for problems which correspond to a minimization problem. For instance, let F = ∇E
for some E : RN → R. Then (4.2.1) defines the first-order optimality conditions of
minimizing E . Ultimately, ω is chosen by minimization along the search direction

ω := arg inf
w∈R

E
(
x̂(i) + w

(
x̂(i) − x(i−1)

))
,

where most often inexact minimization is sufficient.

• Residual based descent [67]: Zeros of F solve the minimization problem

inf
x∈RN

‖F(x)‖ . (4.2.4)

Thereby, the relaxation parameter ω can be chosen as (inexact) minimizer of the
residual (4.2.4) along the search direction, analogous to the above line search approach.

• Anderson acceleration [10]:Anderson acceleration is amulti-secantmethod for vector-
valued functions. Thereby, it can be utilized for correcting predictionsmade by iterative
solvers for finding zeros. The main idea is that an arbitrary amount of previous
search directions x̂(j) − x(j−1) is utilized for approximating the Jacobian of F in low
dimensions [153]. For depth m ≥ 1, the following minimization problem has to be
solved:

inf
α∈Rm+1

 m∑
j=0

αj

(
x̂(i−j) − x(i−j−1)

)
2

such that
m∑
j=0

αj = 1.

Opposing to the relaxation as in Algorithm 1, the corrected approximation is defined
by

x(i) :=
m∑
j=0

αj x̂(i−j).

Anderson acceleration can be interpreted as quasi-Newtonmethod and preconditioned
non-linear GMRES [153], and it has recently been showed to locally accelerate any
contractive fixed point iteration [72].
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A major difference of Anderson acceleration to line search and a residual based descent
is that no assembly of any objective function or Jacobian is required for setting up the
minimization problem. This is in particular beneficial for splitting schemes for coupled
problems, cf. Paper E. On the other hand, that lack of global information prevents guaranteed
robustness, especially for non-contractive fixed point iterations. Nevertheless, it may be
applied for damping Newton’s method as also the residual based descent.

4.3 Block-partitioned solvers for saddle-point problems

Discretized coupled PDEs naturally inherit a block structure of the corresponding continuous
problems. Naturally, a block structure motivates the design of block-partitioned iterative
solvers. Such may be beneficial opposing to fully-implicit monolithic solvers as smaller and
better conditioned systems are solved instead. In addition, a major advantage of a staggered
approach is that it allows for a flexible design of computer codes. Separate simulators
with solver technologies tailored to independent subproblems may be utilized, which for
instance has been a driving force in the context of industrial poroelasticity applications. On
the other hand, block-partitioned solvers are not inherently unconditionally stable, whereas
monolithic solvers are per sé robust. Thus, the numerical analysis is an essential component
of the development processes of block-partitioned solvers.

Linear saddle point problems are a particular class of block structured problems. In
the context of block-partitioned solvers, they naturally give rise to Schur-complement-based
splitting schemes.

In this section, the L-scheme, cf. Section 4.2.3, is utilized for formulating iterative split-
ting schemes for linear saddle point problems involving a feasible approximation of the exact
Schur complement. Conditions for the convergence of the resulting scheme with variable
stabilization are established. This allows for deducing feasible choices of the stabilization
introduced by the L-scheme.

With Biot’s consolidation model, cf. Section 2.1.3, falling into the class of linear (block-
structured) saddle point problems, the general, algebraic L-scheme-based framework is
applied to it. That results in an L-scheme perspective of the widely-used fixed-stress split
for the linear Biot equations, an often recurring method in this work and chosen here as
representative for iterative splitting schemes for poroelasticity problems. By that, novel
convergence results are deduced for the fixed-stress split.

Despite the focus on linear problems, we emphasize that similar concepts can be em-
ployed for non-linear problems. A short comment is also provided in Section 4.3.3.

4.3.1 Schur-complement-based splitting scheme via the L-scheme

We illustrate the essentials of Schur-complement-based iterative splitting schemes, utilizing
the following linear model problem. It is in particular representative for a wide range of



40 Numerical solution of coupled problems

poroelasticity problems as for instance discretized linear poroelasticity, cf. Section 4.1.1.

Find (u,p) ∈ Rnu ×Rnp satisfying
[
A −B>

B C

] [
u
p

]
=

[
g
h

]
, (4.3.1)

where nu,np ∈ N, A ∈ Rnu×nu , B ∈ Rnp×nu , Cnp×np , g ∈ Rnu , h ∈ Rnp . Assume the matrix
A is symmetric positive definite, B has full rank, and C is symmetric positive semi-definite.
By the theory of saddle-point problems, cf. Lemma 3.5.1, (4.3.1) has a unique solution.

The block structure of (4.3.1) allows for a systematic decoupling of solving for u and p.
For instance, (4.3.1) is equivalent with[

A −B>

0 S + C

] [
u
p

]
=

[
g

h − BA−1g

]
, (4.3.2)

where S := BA−1B> denotes the (exact) Schur complement. The formulation (4.3.2) effec-
tively allows for consecutively solving for p and u. However, the construction of S requires
the inversion of A, which is in general infeasible.

Despite its impractical and rather theoretical character, (4.3.2) yields the foundation for
the construction of efficient, iterative splitting schemes, which do not require A−1. In the
following, this is illustrated by utilizing the L-scheme, cf. Section 4.2.3. Although linear, we
treat the pressure problem as non-linear and define

F : Rnp → Rnp, F(p) := (S + C)p −
(
h − BA−1g

)
.

Let for now L ∈ Rnp×np be some symmetric positive definite matrix. Provided some p(0) ∈
Rnp , the L-scheme defines an iterative scheme with the i-th iteration reading as follows: For
i ≥ 1, given p(i−1) ∈ Rnp , find p(i) ∈ Rnp such that

F
(
p(i−1)

)
+ (L + C)

(
p(i) − p(i−1)

)
= 0. (4.3.3)

The definition of F contains the exact Schur complement S. In order to get rid of it, an
auxiliary problem is utilized. Motivated by (4.3.2), introduce u(i) for all i ≥ 0 as the solution
of the problem: Given p(i) ∈ Rnp , find u(i) ∈ Rnu such that

Au(i) = g + B>p(i). (4.3.4)

Then (4.3.3) is equivalent with

Bu(i−1) + L
(
p(i) − p(i−1)

)
+ Cp(i) = h. (4.3.5)

Finally, (4.3.4)–(4.3.5) (in reverse order) define a feasible two-step splitting scheme, assum-
ing A and L+C can be efficiently ’inverted’. In fact, various prominent splitting schemes in
the field of poroelasticity as, e.g. the fixed-stress split, cf. Section 4.3.2, are of that form.

As always for the L-scheme, a central question is, how should L be chosen. We answer
this question by a brief convergence analysis, closely related to the standard analysis of the
modified Richardson iteration [132].
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Lemma 4.3.1 (Convergence of the algebraic splitting scheme). Let (u,p) ∈ Rnu×Rnp denote
the solution to (4.3.1). Let p(i) ∈ Rnp , i ≥ 1, be defined by the iterative scheme (4.3.3). Let
e(i)p := p(i) − p denote the error at iteration i ≥ 0. For all i ≥ 1, it holds that√〈

Le(i)p ,e
(i)
p

〉
≤

max
{��1 − λmax

(
L−1/2SL−1/2) �� , ��1 − λmin

(
L−1/2SL−1/2) ��}

1 + λmin
(
L−1/2CL−1/2) √〈

Le(i−1)
p ,e(i−1)

p

〉
,

(4.3.6)

where λmax(·) and λmin(·) denote the maximum and minimum absolute eigenvalues.

Proof. Let i ≥ 1. By subtraction of (4.3.3) and the second row of (4.3.2), we obtain the
error propagation relation

(L + C) e(i)p = (L − S) e(i−1)
p .

By rearranging terms it follows that

L1/2e(i)p =
(
I + L−1/2CL−1/2

)−1 (
I − L−1/2SL−1/2

)
L1/2e(i−1)

p .

By multiplying L1/2e(i)p to both sides, using the Cauchy-Schwarz inequality, and employ
properties of matrix and vector norms, we obtain√〈

Le(i)p ,e
(i)
p

〉
≤

(I + L−1/2CL−1/2
)−1 (

I − L−1/2SL−1/2
)

L1/2e(i−1)
p


2

(4.3.7)

≤

(I + L−1/2CL−1/2
)−1

 (I − L−1/2SL−1/2
)

2

√〈
Le(i−1)

p ,e(i−1)
p

〉
.

The final result follows using standard tools from linear algebra.

Revisiting the question for a suitable choice of L, the objective is the that iterative
splitting scheme (4.3.3) – equivalently (4.3.4)–(4.3.5) – is contractive. By Lemma 4.3.1, the
optimal choice for L is L = S. But again, this is infeasible. However, it becomes evident,
that a close relation, i.e., L ≈ S, e.g., in the sense of equivalent spectra, yields a contractive
splitting scheme, similar to the concepts of norm-equivalent preconditioners [2, 107]. After
all, a suitable choice is problem-dependent, involving A,B, and C. An example discussion
in the context of the linear Biot equations is given in the subsequent section.

Remark 4.3.2 (Optimality of the convergence result). If C , ωL for some ω ∈ R, the final
convergence result (4.3.6) is not sharp. In the view of the proof, in particular (4.3.7), the use
of the sub-multiplicativity of matrix norms causes loss of information on the interaction of
the matrices. On the other hand, for the general case, (4.3.6) allows for a simple discussion
of a suitable L opposing to (4.3.7).

4.3.2 Example: Fixed-stress split for Biot’s consolidation model

The abstract considerations in the previous section allow for a slightly novel perspective
onto the widely-used fixed-stress split for Biot’s consolidation model for homogeneous
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media. The physically motivated scheme sequentially solves the fluid flow equations under
fixed (volumetric) stress conditions, and the mechanics equations with updated fluid fields,
iterating until convergence. When first introduced in [135], the main motivation lied in
the possible use of independent structural mechanics and reservoir simulators. Since its
introduction, the robustness of the fixed-stress split has been confirmed mathematically,
including unconditional stability in the sense of a von Neumann analysis [98], guaranteed
convergence for various discretizations [19, 30, 111, 143], multi-rate settings [5], two-grid
settings [61], adaptive setting [3], and an equivalence to alternating minimization for a
strongly convex energy functional, cf. Paper A. It is furthermore used as smoother for multi-
grid methods [82], preconditioner for Krylov subspacemethods [51, 52, 158], and yields also
the conceptual foundation for more involved poroelasticity models [28, 34, 83, 99, 157]. We
emphasize that also alternative schemes are utilized in the literature including the undrained
split [97], algebraically motivated, block-partitioned splitting schemes [76, 158], and norm-
equivalent preconditioners [2, 90, 102], to only mention a few.

The scheme. In terms of the fully-discretized two-field formulation of the linear Biot
equations (4.1.1)–(4.1.2), the fixed-stress split iteratively defines displacements un,i

h
and

pressures pn,i
h

as approximations of the solution
(
un
h
, pn

h

)
, where i denotes the iteration

index. The fixed volumetric stress condition allows for eliminating the unknown volumetric
deformation ∇ · un,i

h
in the flow equation. For instance, utilizing the effective stress (2.1.13)

with the pore pressure being the fluid pressure, and the generalized Hooke’s law (2.1.14),
the condition translates to

Kdr∇ ·
(
un,i
h
− un,i−1

h

)
!
= α

(
pn,i
h
− pn,i−1

h

)
. (4.3.8)

We recall it is Kdr =
2µ
d + λ. Consequently, the fixed volumetric stress condition translates

to an L2(Ω)-type pressure stabilization in the fluid flow equations.
As observed in [111], the idea of fixing an artificial volumetric stress introduces a tuning

parameter βFS. The relation (4.3.8) is then replaced by

α∇ ·
(
un,i
h
− un,i−1

h

)
!
= βFS

(
pn,i
h
− pn,i−1

h

)
.

Each iteration of the fixed-stress split is then divided into a predictor and a corrector step.
Assuming a homogeneous medium, the predictor step of iteration i ∈ N reads: Given(
un,i−1
h

, pn,i−1
h

)
∈ Vh ×Qh , find pn,i

h
∈ Qh such that for all qh ∈ Qh

βFS

〈
pn,i
h
− pn,i−1

h
,qh

〉
+

1
M

〈
pn,i
h
,qh

〉
+ α

〈
∇ · un,i−1

h
,qh

〉
+ ∆t

〈
κ

µw

(
∇pn,i

h
− ρw,refg

)
,∇qh

〉
=

〈
θn−1 + ∆t

hw(tn)
ρw,ref

,qh

〉
. (4.3.9)

The corrector step then reads: Given pn,i
h
∈ Qh , find un,i

h
∈ Vh such that for all vh ∈ Vh

2µ
〈
ε
(
un,i
h

)
,ε(vh)

〉
+ λ

〈
∇ · un,i

h
,∇ · vh

〉
− α

〈
pn,i
h
,∇ · vh

〉
= 〈ρg, vh〉 . (4.3.10)
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As, e.g., observed in Paper C, the performance of the fixed-stress split may significantly
depend on the specific choice of the tuning parameter βFS. Thus, in particular for large
scale applications, a good choice of the stabilization is crucial for good performance of
the splitting scheme. Different choices for βFS resulted from optimization attempts, e.g.,
βFS =

α2

2Kdr
[30, 111], βFS =

α2

2λ [19, 83], and a more involved choice also depending on fluid
flow parameters [143]. Also the ad-hoc proposed choice of βFS =

α2

Kdr,d
with a dimension-

based estimation of the ’exact local bulk modulus’ [98] is noteworthy. However, none of the
above choices for βFS has proved to be generally optimal in practice in the sense of yielding
the minimal amount of iterations. On the other hand, it also has to be stressed, that the
specific value of the stabilization becomes less important when treating the splitting scheme
as preconditioner to a monolithic Krylov subspace method (not considered here).

Algebraic interpretation and analysis. Using the canonical isomorphism between finite
element functions and coefficient vectors, the fully-discretized two-field formulation of the
linear Biot equations (4.1.1)–(4.1.2) translates to an algebraic saddle point problem of the
form (4.3.1). Similarly, the fixed-stress split (4.3.9)–(4.3.10) translates to an algebraic split-
ting scheme (4.3.4)–(4.3.5). In particular, u and p are the coefficient vectors corresponding
to un,i

h
and pn,i

h
, respectively; A and C correspond to the bilinear forms of linear elasticity

and single-phase flow, respectively; B is associated to the divergence operator weighted by
the Biot coefficient α; and L = βFSM with M being the pressure mass matrix. This enables
Lemma 4.3.1 for optimizing βFS and thereby the performance of the fixed-stress split. For
simplicity, the material is assumed to be homogeneous and isotropic.

Corollary 4.3.3 (Optimized convergence of the fixed-stress split). Assume a homogeneous
and isotropic material. Let e(i)ph := pn,i

h
− ph denote the pressure error for the fixed-stress

split. Then it holds

e(i)ph
2
≤

©«
max

{���βFS −
α2

K?
dr

��� , ��βFS − α
2βis

��}
βFS +

1
M +

∆tκ
µwC2

Ω

ª®®¬
2 e(i−1)

ph

2
(4.3.11)

where K?
dr := α2/λmax

(
M−1S

)
∈ [Kdr,2µ+λ], βis ≥ 0 is the inf-sup constant corresponding

to the divergence operator B, cf. Lemma 3.5.2, and CΩ > 0 is a Poincaré constant. Conse-
quently, the optimized choice is given by βFS =

α2

2

(
1
K?

dr
+ βis

)
resulting in the convergence

result

e(i)ph
2
≤

©«
α2

K?
dr
− α2βis

α2

K?
dr
+ α2βis + 2

(
1
M +

∆tκ
µwC2

Ω

) ª®®¬
2 e(i−1)

ph

2
. (4.3.12)

Proof. By Lemma 4.3.1, it holdse(i)ph
 ≤ max

{��βFS − λmax
(
M−1/2SM−1/2) �� , ��βFS − λmin

(
M−1/2SM−1/2) ��}

βFS + λmin
(
M−1/2CM−1/2) e(i−1)

ph





44 Numerical solution of coupled problems

Using some linear algebra, inf-sup stability, cf. Lemma 3.5.2, and the Poincaré inequality
(introducing the Poincaré constant CΩ), one can show that

λmax

(
M−1/2SM−1/2

)
=
α2

K?
dr
≤
α2

Kdr
,

λmin

(
M−1/2SM−1/2

)
= α2βis,

λmin

(
M−1/2CM−1/2

)
=

1
M
+
∆tκ
µwC2

Ω

,

which proves (4.3.11). Optimization of the rate with respect to βFS results directly in the
remaining assertion.

By Remark 4.3.2, if C is not a multiplicative of the pressure mass matrix, the final
optimized choice is not over all optimal. On the other hand, if the medium is low-permeable
and the fluid is slightly compressible, the resulting stabilization is expected to yield good
results – in particular since K?

dr involves information on the mechanical boundary conditions
and the effective dimension of the problem, which has been identified to have a significant
impact on the optimal choice for βFS [31, 143]. The exact values for K?

dr and βis may be, e.g.,
approximated by utilizing the Power method. The additional offline cost should be feasible
if relatively many coupled problems have to be solved, e.g., due to many time steps.

After all, the convergence result reveals potential shortcomings in previous optimization
studies, also part of this thesis. This will be discussed in more detail in Section 5.

Finally, we note that by directly involving the origin of the problem we have ultimately
been able to include relevant problem information for deriving a theoretical convergence rate
of the fixed-stress split. On the other hand, a corresponding analysis for heterogeneous media
can be more intuitively performed by a problem-close analysis compared to an algebraic
approach, see in Paper A, Paper B and Paper G.

Remark 4.3.4 (The undrained split in relation to Lemma (4.3.1)). We briefly comment, that
in an analogous way the undrained split [97] may be interpreted as L-scheme linearization
of the displacement reduced problem. However, the relevant Schur complement B>C−1B is
not invertible since B> does not have full rank. Hence, essentially it holds βis = 0 (with
abuse of notation), fortifying the potential of the fixed-stress split compared to the undrained
split.

4.3.3 Comment on non-linear coupled problems

As for linear problems, block-partitioned solvers can be beneficial for non-linear coupled
problems. Compared to the monolithic Newton method, only linear convergence can in
general be expected – however, possibly in exchange for increased robustness. In addition,
block-partitioned solvers allow for breaking up the problem in smaller subproblems, po-
tentially minimizing the overall cost, comparable to the discussion of direct solvers vs.
splitting schemes for linear coupled problems. Furthermore, since block-partitioned solvers
simultaneously account for the linearization and decoupling, the performance of the over-
all solver is essentially governed by the dominating complexity of the problem, be it strong
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non-linearities or a strong coupling strength. Consequently, for strongly coupled, non-linear
problems, block-partitioned solvers account for non-linearities almost for free in terms of
number of iterations, compared to a linear analog.

This idea has been pursued in the literature, e.g., for non-linear poroelasticity [28, 29].

4.4 Block-partitioned solvers for minimization problems

Next to saddle point problems, another important class of block-structured problems is given
by block-separable, constrained minimization problems:

Find x? ∈ X such that E (
x?

)
= inf

x∈X
E (x) , (4.4.1)

where E : RN → R denotes the objective function, and the feasible set X is a Cartesian
product of non-empty, closed sets Xj ⊂ RN j , such that

∑
j Nj = N .

Such problems naturally arise, e.g., after discretization of generalized gradient flows by
the Minimizing Movement Scheme [65], closely related to the Implicit Euler method and a
classical technique in the analysis of gradient flows. Relevant to this thesis, as explored in
Paper A, thermo-poro-visco-elasticity problems can be formulated as generalized gradient
flows and thereby as block-structured minimization problem after suitable discretization.

A natural approach to exploit the block-structured character of (4.4.1) for the development
of block-partitioned solvers is to apply a cyclic block-non-linear Gauss-Seidel method, which
frequently is also called block coordinate descent method (BCD), cf. Algorithm 2. The
method may be practically valuable, if the block-component-wise minimization is fairly
cheap. In the special case of two blocks, i.e., m = 2, BCD reduces to the fundamental
alternating minimization, which becomes relevant for two-way coupled problems.

Algorithm 2: Block Coordinate Descent (BCD) for general number of blocks m

1 Input: Initial guess x(0) =
(
x(0)1 , ...,x(0)m

)
∈ X

2 For all iteration indices i ≥ 1
3 For all components j = 1, ...,m

4 Determine x(i)j ∈ arg inf
x∈X j

E
(
x(i)1 , ...,x

(i)
j−1,x,x

(i−1)
j+1 , ...,x

(i−1)
m

)
A major strength of the BCD is guaranteed global convergence under very loose con-

ditions. For continuously differentiable objective functions E , it is sufficient that the block-
partitioned feasible set X is convex, and the block-component-wise minimization of E is
well-defined [21], i.e., ’∈’ can be replaced with ’=’ in Step 4 of Algorithm 2. Various ad-
vances have beenmade to in fact further relax the convergence result by replacing smoothness
with convexity assumptions for E , e.g., [85, 151]. For the special case of alternating mini-
mization even neither smoothness nor convexity is required [85]. Guaranteed convergence
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rates can be established under stronger convexity assumptions as showed for alternating min-
imization [20], see also Paper A; similarly for the BCD viewed as an orthogonal, successive
subspace correction method for solving non-linear elliptic PDEs [145].

It becomes evident that the BCD yields mathematically founded, reliable partitioned
solvers for non-linear coupled PDEs. Thus, a formulation of the type (4.4.1) seems very
beneficial for the development and analysis of numerical solvers. This is explored in view of
thermo-poro-visco-elasticity in Paper A.

4.5 The numerics environment DUNE
For the numerical studies in this dissertation the numerics environment DUNE (Distributed
and Unified Numerics Environment) was used [16, 17, 26]. DUNE is a modular C++
library for the solution of PDEs using mesh-based methods including the FEM, the FVM,
and the MFEM, cf. Section 4.1. Various modern C++ techniques as template and generic
programming are heavily used ensuring efficiency in scientific computations.

DUNE itself comeswith six elementary coremodules providing basic infrastructure, grid
interfaces, geometry classes, linear algebra classes, and local finite element basis functions on
reference elements. An additional discretization module is required for the actual simulation
of PDEs, taking care of managing global discrete functions, local and global assembly of
(physical) algebraic problems, enforcing essential boundary conditions, and finally solving
the resulting algebraic problems using, e.g., linearization, etc. There exist highly-developed
general discretization modules as PDELab [18] and DUNE-FEM [66], as well as problem-
specific discretization modules, e.g., DuMux [78], a module targeting various porous media
applications.

Recently, a DUNE module for defining and managing global discrete functions has
been developed: dune-functions [69, 70]. Together with the core modules, it provides all
essential tools for developing a light-weight discretization module.

In this sense, as part of this thesis, the new discretization module dune-biot has
been developed, tailored for the simulation of coupled multi-physics problems. The main
purpose of that module has been the verification of the theoretical results obtained in this
work, cf. Section 5. For that reason, it provides tools for the finite element simulation of, e.g.,
linear poroelasticity, unsaturated poroelasticity, and linear poro-visco-elasticity, solved either
monolithically or sequentially. Various conforming (mixed) finite element discretizations for
both linear elasticity, single-phase flow, and Richards’ equation for heterogeneous media
are available, utilizing primal and mixed formulations. The solver technology makes use
of methods and concepts presented in this chapter: direct solvers, Newton’s method, the
L-scheme, and fixed-stress-type block-partitioned solvers. In addition, relaxation of iterative
solvers by problem-specific line search strategies and general Anderson acceleration is
available.



Chapter 5

Summary and Outlook

This chapter provides a summary and discussion of the scientific results presented in form
of eight scientific articles in Part II.

Section 5.1.1 contains six papers comprising the main results of this thesis. In Paper A,
the gradient flow structures of thermo-poro-visco-elasticity are revealed, and implications
are presented for the well-posedness analysis, and the natural development and analysis of
block-partitioned solvers. In Paper B, guaranteed convergence of the fixed-stress split for
Biot’s consolidation model for fully heterogeneous media is established. Paper C addresses
the issue of the practical optimality of the stabilization parameter within the fixed-stress split
and can be read as motivation for Paper G. Paper D and Paper E constitute the contributions
to the mathematical discussion of unsaturated poroelasticity, as modeled in Section 2.1.2.
In particular, the existence of weak solutions is established in Paper D. Paper E addresses
the robust linearization using block-partitioned iterative solvers. Finally in Paper F, the
convergence of the L-scheme linearization for doubly degenerate parabolic problems is
established.

Section 5.1.2 contains two papers on related work. In Paper G, the convergence analysis
of the fixed-stress split from Paper B is improved under the assumption of an inf-sup stable
discretization, and a simple sampling strategy is proposed for the numerical optimization of
the performance of the solver. Paper H constitutes a proceeding work to Paper E on robust
block-partitioned iterative solvers for unsaturated poroelasticity, containing a numerical
study.

This chapter ends with concluding remarks and an outlook.
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5.1 Summary of the papers

5.1.1 Main results

Paper A [35]

Title: The gradient flow structures of thermo-poro-visco-elastic processes in
porous media

Authors: Both, J.W., Kumar, K., Nordbotten, J.M., Radu, F.A.
Journal: In review (2019).
Preprint: arXiv:1907.03134 [math.NA]

Coupled thermo-hydro-mechanical processes in porous media are commonly modeled as
quasi-static and dissipative. Motivated by that, this paper studies such processes from a
gradient flow perspective, which ultimately results in unified approaches for the modeling,
analysis, and robust numerical solution of thermo-poro-visco-elasticity.

The main contribution of this work is fivefold. First, an abstract framework for the
modeling of thermo-poro-visco-elasticity is provided, found on the notion of generalized
gradient flows, cf. Section 2.2. By this, the gradient flow structures of thermo-poro-visco-
elasticity are explicitly revealed for the first time in the literature, to our best knowledge.
Specificmodels are obtained by choosing free energy and dissipation potentials. In particular,
gradient flow formulations are derived for previously employed PDE-based models [57], as
Biot’s consolidation model, non-linear poroelasticity in the infinitesimal strain regime, linear
poro-visco-elasticity, non-Newtonian Darcy and non-Darcy flows in poro-elastic media,
and thermo-poroelasticity without thermal convection. These identifications are in itself
interesting as they determine the driving forces of the evolution of those systems.

Second, an high-level abstract well-posedness result for models arising from the above
modeling framework is established. It combines tools from the theory of doubly non-linear
evolution equations as well as convex analysis, cf. Sections 3.3–3.4. The application of the
final well-posedness result boils down to checking simple convexity and continuity properties
of the energy and dissipation potentials. Along these lines, a new concise proof for the well-
posedness of the linear Biot equations is provided. With same complexity, well-posedness
is also obtained for models not yet studied in the literature, as general poro-visco-elasticity.

Third, a unified methodology is established for the natural development of robust block-
partitioned iterative solvers for thermo-poro-visco-elasticity. Due to the coupled character
and gradient flow structure, discretized thermo-poro-visco-elasticity models inherit a con-
vex, block-separable minimization structure. Motivated by that, block-coordinate descent
methods are applied for the robust numerical solution, cf. Section 4.4; alternatively, a dual
problem is derived first. Optionally, founded on the minimization structure, (inexact) line
search is applied for relaxation of the inexact minimization. In view of two-block-structured
problems, abstract convergence theory for alternating minimization is established, providing
simple tools for deriving guaranteed convergence rates.

Fourth, the capabilities of the methodology are demonstrated by application to specific
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models. For instance, as proof of concept, various well-established block-partitioned iterative
solvers used in the literature are derived including the fixed-stress and undrained splits for
Biot’s consolidation model [97, 98], and the undrained-adiabatic and extended fixed-stress
splits recently introduced for thermo-poroelasticity [96]. Moreover, novel extensions are
provided for linear poro-visco-elasticity and non-linear poroelasticity under infinitesimal
strains. Tensorial and heterogeneous stabilizations are automatically deduced whenever
suitable. In addition, the abstract convergence theory for alternating minimization yields
theoretical convergence rates that are consistent with previous problem-dependent analyses
(if existing), e.g., for the fixed-stress and undrained splits [111].

Finally, a numerical study is provided considering a three-dimensional footing problem
governed by differing linear and non-linear physics. Two observations are made: (i) the
robustness of block-partitioned solvers derived by the above methodology is confirmed;
and (ii) a potentially significant impact on the acceleration of block-partitioned iterative
solvers by line search strategies is demonstrated. In particular, applying line search has been
identified as valid alternative to the tuning of solvers, cf. Paper B, Paper C, and Paper G –
especially, since no a priori knowledge or user-interaction is required.

The approaches in this paper have some limitations. Most prominently, physical models
describing complex coupled thermo-poro-visco-elastic processes in porous media do not
necessarily exhibit the generalized gradient flow structure considered in this work, e.g.,
general convective-dominated processes, or materials with limit behavior as incompressible
fluids or solids. However, in certain cases, non-monotone perturbations of gradient flows, as
convection, may be neglected in the construction of block-partitioned solvers. By utilizing
operator splitting techniques as, e.g., a Strang splitting, those perturbations may effectively
be accounted for. Furthermore, for materials with limit behavior, utilizing dual problems is
often more promising.

In addition, the methodology for the development of block-partitioned solvers, does not
consider non-physical predictor-corrector methods, as the optimized fixed-stress. Those are
treated separately in Paper B, Paper C, and Paper G.

Paper B [30]

Title: Robust fixed stress splitting for Biot’s equations in heterogeneous media
Authors: Both, J.W., Borregales, M., Nordbotten, J.M., Kumar, K., Radu, F.A.
Journal: Applied Mathematics Letters 68, 101–108 (2017).
DOI: 10.1016/j.aml.2016.12.019

The fixed-stress split constitutes one of the most used block-partitioned iterative solvers
for Biot’s consolidation model, cf. Section 4.3.2. One of the reasons for its popularity is
its unconditional stability [98, 111], which algorithmically is the consequence of a well-
chosen stabilization of the flow problem, explicitly approximating the Schur complement
of the linear elasticity equations. To our best knowledge, previous convergence analyses,
justifying appropriate stabilizations, solely considered homogeneousmedia [111] (apart from
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a heterogeneous permeability). A robust choice in the case of locally varying mechanical
and coupling parameters, had not been discussed.

In this paper, previous convergence results for the fixed-stress split are extended to general
fully heterogeneous media, i.e., media with locally varying mechanical and fluid material
parameters. For this, a problem-specific convergence analysis is performed.

Two conclusions are drawn. First, unconditional stability holds for the classical fixed-
stress split, i.e., iterating back and forth, solving the fluid flow problem under – we emphasize
– local fixed volumetric stress, and the mechanics problem with updated fluid fields. Thus,
algorithmically, this leads to locally varying stabilization, which solely depends on local me-
chanics parameters, despite the elliptic character of the linear elasticity equation. Numerical
examples confirm the robustness of the fixed-stress split with respect to variations in the ma-
terial parameters of different orders of magnitude (see also the supplementary material of
this paper).

Second, the theoretical convergence result naturally extends the homogeneous case. For
this, the use of weighted norms has been crucial, not requiring any worst-case-type bounds
before the end of the proof. In addition, the final result is stated in energy norms for the fluid
pressure, opposing to [111], in which the authors utilize a problem-dependent metric.

The problem-specific analysis in this paper allows for fixing an artificial volumetric
stress in the first half-step of the algorithm. This approach has been inspired by [111], see
also Section 4.3.2. By this, the introduced stabilization acts as tuning parameter (or more
precisely tuning vector). The above theoretical convergence rate becomes dependent on that
tuning vector, giving rise to minimization with respect to the tuning vector. The resulting,
optimized stabilization corresponds to half the stabilization dictated by the classical fixed-
stress ansatz. This is consistent with the optimized stabilization determined in [110, 111],
despite differing approaches. Numerical examples demonstrate superior performance for
the optimized stabilization compared to the classical choice. However, as it turns out, the
theoretically optimized stabilization is in general not practically optimal, i.e., not leading
to the minimal amount of iterations, cf. Paper C, which ultimately has given rise to the
follow-up Paper G.

To our best knowledge, this work has been the first to theoretically investigate the fixed-
stress split for fully heterogeneous media. Extending the approach in [111], similar results
to ours have been derived in the later preprint [6], but the proposed stabilization deteriorates
for vanishing Poisson’s ratio. In that view, the result is not parameter-robust. Nevertheless,
the overall drawn conclusions are consistent with our work. In hindsight, the later developed
framework provided in Paper A allows for a slightly simpler construction and improved
analysis of the fixed-stress split for heterogeneous media compared to this work (but without
optimization).
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Paper C [31]

Title: Numerical Investigation on the Fixed-Stress Splitting Scheme for Biot’s
Equations: Optimality of the Tuning Parameter

Authors: Both, J.W., Köcher, U.
Book: Numerical Mathematics and Advanced Applications ENUMATH 2017,

Lecture Notes in Computational Science and Engineering 126, pg. 789–797
(2019).

DOI: 10.1007/978-3-319-96415-7_74

The performance of the fixed-stress split (for Biot’s consolidation model) is known to may
significantly depend on the particular choice of the stabilization parameter [98]. Theoretical
investigations, see e.g., Paper B, commonly suggest that the practically optimal choice,
resulting in a minimal amount of iterations, only depends on the Lamé parameters and the
Biot coefficient – parameters associated to the Schur complement of the linear elasticity
equations. However, additional properties may have an impact as, e.g. follows from the
theoretical discussion in Section 4.3.2 and [98].

In this conference proceeding, the practical optimality of the stabilization parameter
is numerically assessed, and its sensitivity with respect to further problem properties is
investigated. A particular focus is on the boundary conditions for the mechanics problem
and flow material parameters. The numerical study consists of several test cases, all based
on the same geometry: a two-dimensional L-shaped domain under oscillating compression.
We consider various material parameters and two sets of boundary conditions, generating
either (A) an almost uniaxial compression, and (B) a true two dimensional deformation. The
practically optimal tuning parameter is simply determined by sampling.

Three major conclusions are drawn. First, the boundary conditions associated to the
mechanics equation primarily govern a real-valued effective dimension d? ∈ [1, d] of the
problem. For instance, for boundary conditions (A) and (B), the effective dimension is ap-
proximately d? = 1 and d? = 2, respectively, corresponding to the overall physical behavior.
Ultimately, using the notation from Section 4.3.2, the practically optimal stabilization pa-
rameter is close to βFS =

α2

K?
dr
, where K?

dr =
2µ
d? + λ denotes an effective bulk modulus of the

matrix. Thereby, a similar conclusion is made as in [98], in which the authors introduce the
’exact local bulk modulus’, mainly governed by boundary conditions. In hindsight, the ef-
fective bulk modulus K?

dr is expected to depend on the largest generalized eigenvalue of the
exact Schur complement with respect to the pressure matrix, consistent with Corollary 4.3.3
and Paper G.

Second, fluid flow parameters affect the optimality of the tuning parameter. Considering
a soft, strongly compressible bulk, just the permeability values are varied. A significant
sensitivity of the optimal tuning parameter can be observed despite fixed mechanical and
coupling parameters, and boundary conditions. In this part of the study, a deterioration
of the performance of the fixed-stress split is observed for low permeability values. This
is consistent with the known theoretical convergence rates. However, we note that finite



52 Summary and Outlook

elements have been used which are not inf-sup stable across the physical subproblems. This
issue will be again addressed in Paper G.

Third, the optimized tuning parameters based on a priori analyses, as presented in
Paper B or [19, 111], are generally not practically optimal. This has been recognized by
considering an almost incompressible matrix. The corresponding practically optimal tuning
parameter is βFS ≈ α

2/Kdr ≈ α
2 /λ . A factor of 1

2 , as suggested by the analyses, is lacking.
This is inconsistent with the interpretation that the lower the stabilization (as long as robust)
the faster the convergence, which is suggested by the theoretical investigations.

Altogether, there is clear evidence that the a priori analyses published so far are missing
the dependence of many significant factors and thereby do not provide sharp theoretical
convergence rates. Consequently, those have to be revisited, provided the goal is to optimally
tune the stabilization. Such an attempt is made in Paper G.

Paper D [36]

Title: Global existence of a weak solution to unsaturated poroelasticity
Authors: Both, J.W., Pop, I.S., Yotov, I.
Preprint: arXiv:1909.06679 [math.NA]

This paper focuses on the existence analysis of weak solutions to unsaturated poroelasticity
as modeled by the theory of porous media, cf. Section 2.1.2. It thereby constitutes a step
towards the analysis of the general model considering multi-phase flow, cf. Section 2.1.1.

The mathematical model for unsaturated poroelasticity is a non-linear extension of the
linear Biot equations. Non-linearities arise in various places: the coupling terms; the fluid
compressibility; and the mobility. Those make an analysis particularly difficult. Therefore, a
transformed problem is considered. By introducing a new pressure-like variable, defined by
the Kirchhoff transformation, the diffusion term is linearized. This trick is often applied in
the analysis of non-linear elliptic-parabolic PDEs, cf., e.g., [159]. Ultimately, the existence
of weak solutions for the transformed problem is established under continuity assumptions
on the non-linearities, and a non-degeneracy condition, which essentially requires a positive
minimal residual saturation. The assumptions are demonstrated to typically hold true for
geotechnical applications.

The proof utilizes the combination of regularization techniques, the Galerkin method,
and compactness arguments, cf. Section 3.2. It can be summarized in three steps. First, the
transformed problem is doubly regularized, enhancing the problem with a uniform parabolic
character. The regularization can also be physically interpreted. A viscoelastic effect is
included in the mechanics equations, and solid grains are assumed to be compressible. The
latter is only required for the case of both incompressible solid grains and fluids.

Second, in the sense of the Galerkin method, the regularized problem is discretized in
time and space. A combination of a conforming finite element method and a cell-centered
finite volume method is employed for approximating the mechanics and flow problems,
respectively. The latter is crucial for handling the non-linear coupling terms. Based on
uniform stability of the discretized solution, classical compactness arguments lead to the
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existence of a weak solution to the doubly regularized, continuous problem.
Third, the limit case of vanishing regularization is discussed under the non-degeneracy

assumption. Finally, by showing uniform stability and employing compactness arguments,
the existence of a weak solution to the original, continuous problem is established.

This paper constitutes the first advance in the literature to establish well-posedness of
the model of unsaturated poroelasticity, as modeled by the theory of porous media, cf.
Section 2.1.2. However, we stress that a decidedly simplified model has been analyzed
before [137]. That model involves non-physical linearizations of coupling terms and strict
correlations between the non-linearities, which finally allow for an elegant mathematical
proof based on the theory of maximal monotone operators.

Paper E [34]

Title: Anderson accelerated fixed-stress splitting schemes for consolidation of
unsaturated porous media

Authors: Both, J.W., Kumar, K, Nordbotten, J.M., Radu, F.A.
Journal: Computers & Mathematics with Applications 77(6), 1479–1502 (2019).
DOI: 10.1016/j.camwa.2018.07.033

In this paper, we discuss the robust linearization of the model for unsaturated poroelasticity,
cf. Section 2.1.2. Similar to the linear Biot equations, the inherent block structure of the
model motivates the development of block-partitioned solvers – here acting as simultaneous
linearization and decoupling, cf. Section 4.3.3. In this sense, based on the similarities to the
linear Biot equations, the extension of the fixed-stress split to unsaturated poroelasticity is
investigated.

The Richards’ equation constitutes a part of the model for unsaturated poroelasticity.
Frequently employed constitutive relations for the hydraulic properties are vanishing for
low saturations and may be not Lipschitz continuous, which may result in ill-conditioned
Jacobians arising from Newton’s method. Therefore, simple (more) robust alternatives to
Newton’s method have been developed in the literature as the modified Picard method [53]
and the L-scheme [105], cf. Section 4.2.

In this work, three different block-partitioned solvers are proposed, combining the fixed-
stress split and one-time applications of the three linearization schemes for Richards’ equa-
tion: Newton’s method, the modified Picard method, and the L-scheme. One iteration of
each resulting block-partitioned linearization scheme is designed as follows. First, stabilized
fluid flow equations are solved utilizing a single linearization step; afterwards, the mechan-
ics equations are solved with updated fluid fields. The three resulting schemes are referred to
as Fixed-Stress-Newton, Fixed-Stress-Modified-Picard, and Fixed-Stress-L-scheme, in the
order of increasing expected robustness.

Theoretical convergence of the Fixed-Stress-L-scheme is established under mild physical
assumptions and the use of an inf-sup stable discretization with respect to the pressure-
displacement coupling. The first is required to fully disregard the degenerate case of a
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completely dried material, similar to Paper D, whereas the latter is required for parameter-
robust convergence in the fully saturated regime, similar to Paper G. The convergence proof
is founded on the close connection between the Fixed-Stress-L-scheme and the L-scheme
applied to an equivalent pressure formulation, which is obtained by exactly inverting the
mechanics problem similarly as in Section 4.3.1. The proof in particular suggests a choice
for the stabilization parameters associated with the fixed-stress split and the L-scheme.

Despite theoretical robustness, the performance of the Fixed-Stress-L-scheme may de-
teriorate in unfavorable situations. For instance, if extensive stabilization is required by the
theory, this might result in stagnation. The less robust quasi-Newton variants may even di-
verge. Consequently, we are concerned with two issues regarding the above block-partitioned
linearization schemes: slow convergence and robustness. To remedy this situation, we pro-
pose to post-process each iteration by applying Anderson acceleration, cf. Section 4.2.4.
Compared to common line search techniques, Anderson acceleration does not require any
information on the coupled problem, and thus is conforming with the decoupling charac-
ter of the linearization schemes. Furthermore, it has been previously observed to accelerate
contractive fixed point iterations.

In the course of this work, novel theoretical insights are gained for Anderson acceleration.
For a simple linear problem solved by the Richardson iteration, the error propagation of a
restarted Anderson acceleration with depth 1 is quantified. By this, the effective acceleration
and the potential recovery of convergence can be concluded for respectively contractive and
non-contractive fixed-point iterations.

Finally, numerical investigations demonstrate a potentially significant improvement of
the performance of all proposed block-partitioned linearizations under the use of Anderson
acceleration, confirming the theoretical considerations. Three particular observations are
made: (i) robustness is observed, also in challenging situations, inwhich each non-accelerated
method including themonolithicNewtonmethod fails to converge; (ii)Anderson acceleration
with a low depth shows potential to increase the robustness of themonolithicNewtonmethod;
(iii) Anderson acceleration relaxes the need for the tuning of the stability parameter of block-
partitioned solvers. After all, in practice, the Fixed-Stress-Newton method coupled with
Anderson acceleration has showed the best performance among the splitting schemes.

Paper F [32]

Title: Iterative Linearisation Schemes for Doubly Degenerate Parabolic Equations
Authors: Both, J.W., Kumar, K., Nordbotten, J.M., Pop, I.S., and Radu, F.A.
Book: Numerical Mathematics and Advanced Applications ENUMATH 2017,

Lecture Notes in Computational Science and Engineering 126, pg. 49–63 (2019).
DOI: 10.1007/978-3-319-96415-7_3

This conference proceeding deals with the robust linearization of non-linear doubly degen-
erate parabolic problems with linear diffusion. Such a problem arises, e.g., when applying
the Kirchhoff transformation to Richards’ equation in the absence of gravity. We consider
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the general case in which the non-linear parabolic term is only non-decreasing and poten-
tially Hölder continuous. In other words, we allow for the parabolic character to locally turn
into a hyperbolic or an elliptic one. This creates the main difficulty in the development of
robust iterative solvers.

One possible fix is to solve a regularized problem. However, if accurate solutions are
required, the regularization has to be chosen sufficiently small, which may worsens the
conditioning of the problem. Consequently, linearization schemes as Newton’s and Picard’s
methods may exhibit convergence problems.

In this work, we consider the original problem linearized by the L-scheme adapted to
Hölder continuous non-linearities. For the choice of the L-scheme stabilization, the central
idea is to include not only continuity properties of the non-linearity but also the desired error
tolerance. Convergence is theoretically established for the proposed linearization. Thus, a
robust numerical solution is viable. On the other hand, the theoretical convergence rate also
predicts the following: the finer the error tolerance is chosen, the larger the stabilization has
to be chosen, and thereby the slower the convergence.

A numerical investigation confirms the theoretical robustness of the proposed L-scheme.
In comparison, a regularized problem is considered, solved by Newton’s method and the
(standard) L-scheme. For both (and especially Newton’s method) robustness issues are
observed. Both require some fine-tuning of discretization parameters in order to successfully
converge. Opposing to that, the proposed L-scheme (without regularization) does not require
any fine-tuning. In addition, reassembling Jacobians is not required. Yet, the number of
iterations required for convergence is much higher compared to the case when Newton’s
method converges.

5.1.2 Supplementary results

Paper G [143]

Title: On the optimization of the fixed-stress splitting for Biot’s equations
Authors: Storvik, E., Both, J.W., Kumar, K., Nordbotten, J.M., and Radu, F.A.
Journal: International Journal for Numerical Methods in Engineering 120, 179–194

(2019).
DOI: 10.1002/nme.6130

This paper constitutes a follow-up paper of Paper B and Paper C, aiming at the the opti-
mization of the performance of the fixed-stress split for Biot’s consolidation model. Despite
several optimization attempts in the literature [19, 98, 110, 111], an accurate, cheaply appli-
cable estimate of the practically optimal tuning parameter, resulting in a minimal amount of
iterations, has been lacking. So far, theoretically justified estimates depend only on mechani-
cal and coupling material parameters, which is known to be insufficient. This paper provides
novel theoretical and numerical results on the optimization of the tuning parameter.

The main contribution of this work is twofold. First, we revisit the problem-specific con-
vergence analysis of the fixed-stress split in Paper B under the additional assumption of an
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inf-sup stable discretizationwith respect to the displacement-pressure coupling. The previous
result is improved in two aspects: (i) the fixed-stress split exhibits parameter-robust conver-
gence, even for incompressible materials and impermeable media; (ii) the convergence rate
again gives rise for the optimization with respect to the tuning parameter, resulting in a pa-
rameter depending on both mechanical, coupling, fluid flow, and discretization parameters.
Both (i) and (ii) are theoretically concluded for the first time. Regarding (ii), in comparison
to Corollary 4.3.3, similar ingredients are utilized, e.g., K?

dr and βis, including implicit in-
formation on the boundary conditions. However, the two predicted convergence rates and
theoretically optimized stabilization parameters differ – also for the limit case of incom-
pressible materials and impermeable media. Thus, based on Remark 4.3.2, the theoretically
optimized parameter is in general not practically optimal. Same is concluded by numerical
studies (see in particular in the associated preprint [142]). A compelling reason for the dis-
crepancy is the use of too coarse estimates in the theoretical convergence analysis, similarly
as in Paper B. This has resulted in a non-sharp theoretical convergence rate.

Second, both the convergence theory and the numerical observations demonstrate es-
sentially mesh-independent convergence rates for the fixed-stress split. Motivated by that,
a simple strategy is proposed: the practically optimal stabilization parameter is numeri-
cally estimated by cheap brute force optimization on a coarse mesh. Numerical examples
demonstrate that the resulting parameter is in good agreement with the practically optimal
convergence also on finer meshes. Clearly, the approach requires the access to a coarse mesh,
which might not be available as, e.g., in industrial applications.

Paper H [33]

Title: Iterative Methods for Coupled Flow and Geomechanics in Unsaturated
Porous Media

Authors: J.W. Both, K. Kumar, J.M. Nordbotten, F.A. Radu
Book: Poromechanics VI: Proceedings of the Sixth Biot Conference on

Poromechanics, pg. 411–418, ASCE (2017).
DOI: 10.1061/9780784480779.050

This conference proceeding is a predecessor of Paper E and thereby also focuses on the robust
linearization of unsaturated poroelasticity, as modeled in Section 2.1.2. Complementing
Paper E, a combination of the two block-partitioned linearizations, the Fixed-Stress-L-
scheme and the Fixed-Stress-Newton method, is proposed. Inspired by [105, 123], the first
method is used as a warm-up for the latter for a given number of iterations. The main idea
behind this is to exploit the robustness of the L-scheme-based linearization, and to obtain a
sufficiently accurate approximation in order to trigger the faster (but local) convergence of
the Newton-type linearization.

Employing a simple numerical study, different monolithic and block-partitioned solvers
are compared. The test case involves discontinuous initial data, resulting in failing conver-
gence of the plainmonolithic Newtonmethod. The slightlymore robust Fixed-Stress-Newton
method converges only for certain mesh sizes. On the other hand, the Fixed-Stress-L-scheme
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converges robustly. This is in agreement with the theoretical convergence analysis from Pa-
per E. Yet, as expected, the Fixed-Stress-Newton method is significantly faster if it converges
successfully.

In the same numerical study, the combined Fixed-Stress-L-scheme/Fixed-Stress-Newton
method is considered. It shows superior performance over the remaining methods. A small
user-defined number of iterations of the slower L-scheme-based linearization suffices for
making the combined variant converging for all considered scenarios. In addition, the total
number of iterations is basically the same as for the plain Fixed-Stress-Newton method, if
the latter converges.

All in all, the combined variant joins the advantages of the single Fixed-Stress-L-scheme
and the Fixed-Stress-Newton method as predicted. It thereby provides an alternative to the
Fixed-Stress-Newton method accelerated by Anderson acceleration as suggested by Paper E.
However, one drawback is the need of deciding when to switch in between the two methods.
It can be resolved, e.g., by choosing a fixed number of iterations or a coarser stopping
criterion. After all, a tuning parameter is introduced.

5.2 Outlook

This thesis concerns the mathematical analysis and numerical solution of coupled
deformation- and flow-related processes in porous media. Those involve linearized single-
phase flow, unsaturated flow, or non-Darcy flow within a linearly elastic or visco-elastic,
solid matrix. Contributions are made in both the well-posedness analysis as well as the de-
velopment and numerical analysis of block-partitioned iterative solvers for coupled models
within the overarching topic of poroelasticity. In the following, we comment on possible
future efforts arising from the results of this thesis.

As the presented unified gradient flow framework for the modeling, analysis, and de-
velopment of block-partitioned solvers has led to promising results, continued investigation
on the application to more involved systems deserves future attention. So far, fairly simple
models have been considered, constituting a first step. However, it would be interesting to
investigate the applicability of the framework to, e.g., multi-phase flow systems or hyper-
elasto-plastic solids. Different results in this view have recently been published for just single
components [47, 109] – not in the context of coupled poroelasticity.

Moreover, it would be interesting to investigate to what extent the gradient flow structures
can be exploited in the development of robust or structure-preserving numerical methods.
Possible directions could be a posteriori-type methods, time and space discretization, or
improved numerical solvers, as partially already investigated for particular problems [48, 49,
93, 116].

Aiming at developing robust block-partitioned solvers for linear and non-linear cou-
pled problems in view of this thesis, Anderson acceleration has been considered as post-
processing acceleration technique. It has practically showed to be a very promising tool
for the acceleration of especially non-linear block-partitioned (potentially non-contractive)
solvers, not requiring any global Jacobian. In the course of that, first theoretical evidence
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has been provided confirming previous observations in the literature: Anderson accelera-
tion may effectively accelerate the convergence of fixed point iterations, and it may increase
the robustness of those. On the other hand, the theoretical result has been given for a fairly
simple example. A more general investigation, complementing recent results on contrac-
tive, smooth fixed point iterations [72], should be made to better understand the potential of
Anderson acceleration.

As the modeling assumptions for reducing the model for multi-phase flow in deformable
porous media to unsaturated poroelasticity are violated in various real-life applications, a
deeper study of the more general model would be of great interest. In particular, despite
additional technicalities, previous difficulties and shortcomings of our results on unsaturated
poroelasticity in the zone of vanishing fluid saturation may possibly be canceled by taking
into account all fluid phases – in particular those which are predominant. Thereby, a natural
extension of our results on unsaturated poroelasticity may be possible.
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Abstract

In this paper, the inherent gradient flow structures of thermo-poro-visco-elastic processes
in porous media are examined for the first time. In the first part, a modelling framework
is introduced aiming for describing such processes as generalized gradient flows requiring
choices of physical states, corresponding energies, dissipation potentials and external work
rates. It is demonstrated that various existing models can be in fact written within this
framework. Ultimately, the particular structure allows for a unified well-posedness analysis
performed for different classes of linear and non-linear models. In the second part, the
gradient flow structures are utilized for constructing efficient discrete approximation schemes
for thermo-poro-visco-elasticity – in particular robust, physical splitting schemes. Applying
alternating minimization to naturally arising minimization formulations of (semi-)discrete
models is proposed. For such, the energy decrease per iteration is quantified by applying
abstract convergence theory only utilizing convexity and Lipschitz continuity properties of
the problem – a fairly simple but flexible machinery. By this approach, e.g., the widely
used undrained and fixed-stress splits for the linear Biot equations are derived and analyzed.
By application of the framework to more advanced models, novel splitting schemes with
guaranteed theoretical convergence rates are naturally derived. Moreover, based on the
minimization character of the (semi-)discrete equations, relaxation of splitting schemes by
line search is proposed; numerical results show a potentially great impact on the acceleration
of splitting schemes for both linear and nonlinear problems.

1 Introduction

Gradient flows describe the evolution of purely dissipative systems. Given an initial state x0,
a state x evolves along the negative gradient of an energy E under the influence of an external
force fext, i.e.,

ẋ+ ∇E(x) = fext, a.e. in (0, T ), x(0) = x0, (1.1)

where ẋ denotes the temporal derivative of x and ∇E denotes the Gâteux-derivative of E wrt.
x.

The formal gradient flow structure (1.1) is ubiquitous in a broad set of applications and has
been therefore of great research interest since the fundamental works by Komura [1], Crandall
and Pazy [2] and Brezis [3, 4]. Meanwhile, gradient flows have been studied in Hilbert spaces
and metric spaces [5]; in particular, since the seminal work by Otto [6], much attraction has
been paid to gradient flows in probability spaces endowed with the Wasserstein metric. It is
not our intention to review the vast literature on the topic; we mention a small fragment of
the long list of applications with an inherent gradient structure: heat conduction, the Stefan

∗Department of Mathematics, University of Bergen, Bergen, Norway; {erlend.storvik@uib.no,
jakub.both@uib.no, jan.nordbotten@uib.no, florin.radu@uib.no}
†Department of Mathematics and Computer Science, Karlstad University, Karlstad, Sweden;
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problem, Hele-Shaw cell, flow in porous media, parabolic variational inequalities, degenerate
and quasi-linear parabolic PDEs, and transport.

Classical gradient flows are limited to dissipation mechanisms induced by a quadratic poten-
tial, which is quite restrictive for many practical situations. Far more systems can be modelled
using the notion of generalized gradient flows as, e.g., described by Peletier [7]. Those allow
in particular for non-quadratic dissipation potentials, including those which are vanishing, not
finite, positively homogeneous of degree 1 or state-dependent. Additionally, generalized gradi-
ent flows allow for relating the tangent space of the state space with a process space. In this
perspective, generalized gradient flows are formally defined by five components:

1. A state space X .

2. A process space PẊ together with an instruction how states change ẋ = T (x)p, where
x ∈ X , p ∈ PẊ , and T (x) a transformation operator.

3. An (internal) free energy E(x) for states x ∈ X .

4. An (external) work rate Pext(x; p) in terms of the process vectors.

5. A dissipation potential D(x; p) in terms of process vectors inducing the cost of the change
of state.

Then for given state x ∈ X , the current change of state ẋ, in terms of the corresponding process
vector p ∈ PẊ , is defined by

ẋ = T (x)p

p = arg min
q∈PẊ

{
D(x; q) + 〈∇E(x), T (x)q〉 − Pext(x; q)

}
,

(1.2)

i.e., the loss of energy is maximized along the steepest descent of the energy under minimum cost.
Again, many applications can be modelled by generalized gradient flows. We mention incom-
pressible, immiscible two-phase flow in porous media [8], doubly non-linear Allen-Cahn equa-
tions [9], rate-independent finite elasticity [9], rate-dependent visco-plasticity at finite strain [10].

Apart from the structure itself, a (generalized) gradient flow interpretation may be beneficial
in many ways. A wide range of abstract theory for gradient systems has been established
dealing, e.g., with the well-posedness analysis [3, 4, 11], a posteriori error analysis for time
discretizations [12], or a priori error analysis for numerical discretizations in time and space [13].
Furthermore, energy preserving time discretizations can be constructed [14], and optimization
algorithms can be utilized for the construction of robust numerical solvers.

In this work, for the first time, we explore the gradient structure in the consolidation of fluid-
saturated porous media, also called theory of poro-elasticity, and provide a generalized gradient
flow formulation (1.2) for various poro-elasticity models. Coupled thermo-hydro-mechanical-
chemical processes in porous media have been of great research interest recently, due to the
presence of many practical applications of societal and industrial relevance. We mention not
only classical, geotechnical applications within soil and reservoir mechanics, but also geothermal
reservoirs [15], CO2 storage [16], deformation of hydrogels [17] or biomechanical applications [18]
among others.

The theory of poro-elasticity goes back to the early seminal contributions by Terzaghi [19]
and Biot [20]; since then many mathematical models for thermo-hydro-mechanical-chemical
processes in porous media have been established utilizing, e.g., averaging processes [21], ther-
modynamic arguments [22], or homogenization [23, 24, 25, 26]. Traditionally, corresponding
models are formulated as partial differential equations (PDE). Based on those formulations,
there exists a mature literature on both analytical and numerical, rigorous mathematical theory
for specific poro-elasticity models. It is beyond the scope of this work to give a comprehensive
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review; we only point out results connected to this paper: For the linear Biot model well-
posedness has been showed using semigroup theory [27]. Recent advances on extensions of the
linear Biot equations include well-posedness for the dynamic poro-elasticity [24], thermo-poro-
elasticity with non-linear, thermal convection [28], poro-visco-elasticity with a purely visco-
elastic strain [27, 29], and linear poro-elasticity with a deformation-dependent, non-linear per-
meability [29]. We are not aware of any explicit result on the well-posedness of linear poro-visco-
elasticity models, which consider strains composed of an elastic and a visco-elastic contribution
as modelled by [22], or non-linear poro-elasticity under an infinitesimal strain assumption as
studied in a fully discretized setting by [30]. In terms of numerical discretization and solution of
the linear Biot model, stable, spatial discretizations for various choices of primary variables
have been introduced [31, 32, 33, 34]. Furthermore, physically motivated, robust operator
splittings have been of great, recent interest, allowing for either using independent, tailored
simulators for different physics or developing good block preconditioners for monolithic Krylov
subspace methods. Such have been developed and studied for in particular the linear Biot
model [35, 36, 37, 38, 39, 40, 41, 42, 43, 44], for non-linear poro-elasticity under an infinitesimal
strain assumption [30], thermo-poro-elasticity [45] and large strain poro-elasticity [46].

To our knowledge, the connection between gradient flows and poro-elasticity from a math-
ematical point of view has not yet been studied in the literature. However, we have to honor
the work by Miehe [47], which has also been an inspiration for this paper. In the aforemen-
tioned work with a focus on general modelling, isothermal flow in fully-saturated poro-elastic
media under large strains is formulated using minimization principles, which eventually can be
identified as a generalized gradient flow (1.2). The authors have furthermore noted that the
minimization structure allows arbitrary pairs of finite elements as spatial discretization of the
coupled problem.

The aim of this paper is not only to reveal a natural gradient structure of thermo-poro-visco-
elasticity, but also to discuss how to exploit this structure to study well-posedness and naturally
develop numerical methods. Serving as proof of concept, we explore thoroughly the linear Biot
equations: We highlight the gradient structure of the linear Biot equations; well-posedness
results are deduced employing abstract theory for doubly non-linear evolution equations and
convex analysis; additionally, we identify widely used splitting schemes [35, 48] as alternating
minimization, which are a priori guaranteed to converge. Utilizing abstract convergence theory,
we are able to prove the same convergence rates as previously reported in the literature [37],
in which problem-specific proofs are performed. We further apply the same workflow to more
advanced poro-elasticity models with increased complexity and derive novel robust splitting
schemes with guaranteed theoretical convergence rates. The findings are presented in two parts.

Part I (Sec. 2–7) is concerned with two aspects: (i) The modelling of coupled processes in
poro-elastic materials as generalized gradient flows, and (ii) a subsequent well-posedness analysis.
By combining the abstract generalized gradient flow formulation (1.2) with conceptual considera-
tions regarding poro-elasticity, an abstract modelling framework for thermo-poro-visco-elasticity
is established in Sec. 2. In its most general form, it allows for non-isothermal, (non-)Darcy flow
in a saturated, non-linearly poro-visco-elastic material governed by dissipation only. Specific
models are then obtained by involving common thermodynamic knowledge on free energies and
dissipation potentials: A gradient flow formulation is derived for linear poro-elasticity (Sec. 3),
linear poro-visco-elasticity (Sec. 4), non-linear poro-elasticity in the infinitesimal strain regime
(Sec. 5), non-Newtonian Darcy and non-Darcy flows in poro-elastic media (Sec. 6), and thermo-
poro-elasticity without thermal convection (Sec. 7), all consistent with previously employed
PDE-based models [22]. Regarding the well-posedness analysis for poro-elasticity models, the
main difficulty is the characteristic fact that the dissipation potential does not depend on all
process vectors, as e.g., the change in mechanical displacement; this is solved by combining
an abstract decoupling approach [49] with classical convex analysis [50] and theory on doubly
non-linear evolution equations [51, 9], tailored to our needs, cf. Appendix A. It is summarized
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in a unified well-posedness result, Thm. 2.1, the main theoretical result of Part I. Furthermore,
it is applied to practically all models listed above; in particular it gives a new concise proof for
the well-posedness of the linear Biot equations.

Part II (Sec. 8–14) deals with the robust, numerical solution of aforementioned thermo-
poro-visco-elasticity models, by exploiting the generalized gradient flow structure discussed in
Part I. More precisely, after a semi-implicit time discretization along the lines of the minimizing
movement scheme for gradient flows [52], the generalized gradient flow formulation translates
into a minimization problem. For models discussed in Sec. 3–7, the minimization problem is
convex, enabling the vast literature on convex optimization for efficient numerical solution, i.e.,
a problem non-specific machinery. Motivated by the recent advances on splitting schemes in
the community, we discuss in particular the application of the plain alternating minimization or
cyclic block coordinate descent methods [53, 54]. They allow for natural decoupling of the entire
problem into its physical subproblems. Additionally, guaranteed convergence follows directly
from abstract optimization theory, adjusted to our needs, cf. Appendix B. By this, we provide
a new perspective on widely used, physically motivated splitting schemes, as the undrained and
fixed-stress splits [35, 48] for linear poro-elasticity (Sec. 9). In particular, we provide a sim-
ple, mathematical intuition why those schemes are natural choices among predictor-corrector
methods for which physical variables are simply fixed in the predictor step – in contrast for
example to the drained and fixed-strain splits which are only conditionally stable [35, 48]. In
addition, by applying the unified approach, we derive novel, robust splitting schemes for linear
poro-visco-elasticity (Sec. 10) and nonlinear poro-elasticity under infinitesimal strains (Sec. 11),
and provide a theoretical basis for the undrained-adiabatic and extended fixed-stress splits [45]
for thermo-poro-elasticity (Sec. 12). This annexes the mathematically intuitive interpretation
of directional minimization to the physical motivation of the splitting schemes. Finally, the
minimization formulation allows for acceleration of the previously discussed splitting schemes,
using a line search relaxation strategy (Sec. 13). In the context of poro-elasticity, this has not
yet been observed in the literature. In particular, for linear problems, exact line search can be
performed cheaply using quadratic interpolation due to the quadratic nature of the time-discrete
minimization problem; the same technique is proposed as inexact line search for semi-linear mod-
els. We close the second part with a succinct numerical study (Sec. 14) aiming for answering
four questions: (i) what is the impact of the relaxation of splitting schemes by line search; (ii)
how does it relate to the optimization of tuning parameters employed within splitting schemes;
(iii) how do relaxed splitting schemes perform for poro-visco-elasticity and (iv) and non-linear
poro-elasticity? We observe that applying line search is effectively identical with optimizing
splitting schemes, but no a priori knowledge or user-interaction is required. Furthermore, split-
ting schemes for poro-visco-elasticity and non-linear poro-elasticity show similar performance as
for linear poro-elasticity.

1.1 Notation

Throughout this work, let Ω ⊂ Rd, d ∈ {2, 3}, be an open, connected domain, with Lipschitz
boundary ∂Ω and outward normal n; let [0, T ] denote a finite time interval with finite time
T > 0.

We use the following notation for standard function spaces and their norms [55]: Let Lp(Ω)
be the space of functions for which the p-th power of the absolute value is Lebesgue integrable.
For L2(Ω), let 〈·, ·〉 = 〈·, ·〉L2(Ω) denote the standard L2(Ω) scalar product, ‖ · ‖ = ‖ · ‖L2(Ω) the

associated norm. Let 〈·, ·〉Γ := 〈·, ·〉L2(Γ) for measurable boundary segments Γ ⊂ Ω. Let W 1,p(Ω),
p ≥ 1, denote the usual Sobolev space, consisting of functions in Lp(Ω) with a weak derivative in
Lp(Ω), H1(Ω) = W 1,2(Ω) and H1

0 (Ω) its subspace with zero trace on ∂Ω. Furthermore, Hp
div(Ω),

p ≥ 1, denotes vectorial functions with d components in Lp(Ω) with a weak divergence in L2(Ω);
and H(div; Ω) = H2

div(Ω).
We use bold symbols for vectors and tensors. Similarly, we use bold symbols for vector
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valued function spaces, e.g., H1(Ω). For elements of H1(Ω), let ε(u) = 1
2

(∇u+ ∇u>) denote
the symmetric gradient, also called linearized strain; ∇ denotes both the spatial gradient and
the (partial) functional derivative given by the Gâteaux-derivative, depending on the context.
For V a Banach space, let Lp(0, T ;V) and H1(0, T ;V) denote standard Bochner spaces endowed
with standard norms. Newton’s notation is used for denoting temporal derivatives of variables,
e.g., ẋ for the temporal derivative of x, whereas partial temporal derivatives of functionals are
denoted by ∂t. For V a Banach space, we denote V? its dual space and 〈·, ·〉V?×V a duality
pairing. If obvious, we omit the subscript.

Finally, let | · | denote the absolute value, the Euclidean distance and the Frobenius norm
for scalars, vectors and second-order tensors, respectively. And let tr A =

∑
iAii denote the

trace of a quadratic second-order tensor A. The inequality a . b means there exists a generic
constant C > 0 independent of a and b such that a ≤ Cb.

Let ⊗ denote the Kronecker product, and for the special case of two vectors. Moreover, let
: denote the single, double or triple (depending on the context) inner product for tensors. For
the double inner product of a fourth order and a second order tensor we often omit : as often
done in mathematical literature for linear elasticity. Finally, 〈·, ·〉 with tensorial arguments of
same order is equivalent to a Lebesgue integral over the double inner product of the arguments.

A nomenclature regarding notation for generalized gradient flows, physical fields, function
spaces etc. is provided in Appendix C.

Part I – Modelling and analyzing thermo-poro-visco-elasticity as
generalized gradient flow

The main objective of part I is to highlight the inherent gradient structure of various poro-
elasticity models. Secondary, we prove well-posedness for such models. Sec. 2 lays a foundation
for this, providing an abstract gradient flow modelling framework for poro-elasticity, and subse-
quently an abstract well-posedness result for degenerate, doubly non-linear evolution equations,
which will allow for a unified well-posedness analysis of poro-elasticity models. Based on those
tools, we discuss linear poro-elasticity (Sec. 3), linear poro-visco-elasticity (Sec. 4), non-linear
poro-elasticity in the infinitesimal strain regime (Sec. 5), non-Darcy flows in poro-elastic media
(Sec. 6), and linear thermo-poro-elasticity without thermal convection (Sec. 7).

2 Foundation for modelling and analyzing poro-elasticity as gen-
eralized gradient flow

In the following, tools are introduced which will be applied throughout Part I of the paper. First,
in Sec. 2.1, a general framework for modelling poro-elasticity based on the formal definition of
generalized gradient flows (1.2) is proposed. Additionally, in Sec. 2.3, an abstract well-posedness
result is derived, which allows for a unified analysis of poro-elasticity in the subsequent sections.

2.1 Formal modelling framework for non-isothermal flow in poro-visco-elastic
media

From a continuum mechanical perspective, it is fair to assume that fluid-saturated, deformable
porous media are purely governed by dissipation. That remains true, when allowing for ad-
ditional structural visco-elasticity or non-isothermal flow with negligible, thermal convection.
Consequently, it is natural to expect that a wide class of poro-elasticity models have an in-
herent gradient flow structure. Indeed, by incorporating thermodynamic interpretation into
the notion of generalized gradient flows (1.2), we introduce a general modelling framework for
non-isothermal flow in poro-visco-elastic media.
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To set modelling limits, we restrict the discussion to fully-saturated media which deform
under an infinitesimal strain assumption. Visco-elastic and thermal effects are allowed. But it
is implicitly assumed that the considered system can be formulated as a gradient flow. This
cannot always be true, e.g., when thermal convection or non-quasi-static mechanical behavior
are non-negligible.

In the following the single components of a generalized gradient flow are defined based on
thermodynamic knowledge:

1. As state space, we choose

X = {(u, θ, εv, S)} , (2.1)

where u is the displacement of the matrix with respect to a reference state Ω; θ is the
change of the fluid mass on Ω with respect to some reference configuration scaled by the
inverse of a reference fluid density; εv is the visco-elastic strain such that ε(u)−εv denotes
the elastic strain; and S is the total entropy. Depending on which processes are considered,
we choose only a suitable subset of X as state space.

2. Structural displacements u and visco-elastic strains εv change with rates u̇ and ε̇v, respec-
tively. Instead of using the rates θ̇ and Ṡ directly, we associate those with a volumetric
flux q and an entropy flux j, respectively. Their relations are imposed by the conservation
of mass and balance of entropy

θ̇ + ∇ · q = qθ on Ω, (2.2)

Ṡ + ∇ · j = qS on Ω, (2.3)

where qθ and qS denote given, time-dependent production terms.

Gradient flows effectively define changes of states, and boundary conditions can be imposed
for those on boundary segments Γu,Γq,Γj ⊂ ∂Ω. We define the function spaces for
t ∈ [0, T ] (without specifying regularity for now)

V̇(t) =
{
v : Ω→ Rd |v = u̇Γ(t) on Γu

}
, (2.4)

Z(t) =
{
z : Ω→ Rd | z · n = qΓ,n(t) on Γq

}
, (2.5)

Ṫ (t) =
{
t : Ω→ Rd×d

}
, (2.6)

W(t) =
{
w : Ω→ Rd |w · n = jΓ,n(t) on Γj

}
. (2.7)

associated with the change of structural displacement, volumetric flux, the change of the
visco-elastic strain and entropy flux. Function spaces associated with the states are im-
plicitly defined. Due to its internal character, no boundary conditions are imposed for the
change of the visco-elastic strain. We suppress the explicit time-dependence of function
spaces and boundary data in the rest of the article; e.g. we write V̇ instead of V̇(t).

3. For given state (u, θ, εv, S), let the energy E be given by the Helmholtz free energy of the
system. According to thermodynamic derivations [22], we can derive the total stress σ,
the fluid pressure p and the temperature T by

σ := ∂∇uE , p := ∂θE , T := ∂SE . (2.8)
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Those also act as dual variables to (u, θ, S), for which complementary boundary conditions
to (2.4)–(2.7) have to be prescribed

σn = σΓ,n on Γσ := ∂Ω \ Γu, (2.9)

p = pΓ on Γp := ∂Ω \ Γq, (2.10)

T = TΓ on ΓT := ∂Ω \ Γj . (2.11)

As common in poro-elasticity, we employ an effective stress approach. We assume therefore,
the total energy E can be decomposed into three contributions

E(u, θ, εv, S) = Eeff(∇u, εv) + Ev(εv) + Efluid(∇u, θ, εv, S), (2.12)

where the first contribution is assigned to the solid and defines the effective stress and
will finally depend only on the elastic strain; the second contribution is the energy stored
(and potentially lost) due to inelastic effects; and the third contribution corresponds to
the fluid, allowing for defining the fluid quantities. We obtain the effective stress σeff , p
and T also from

σeff := ∂∇uEeff , p = ∂θEfluid, T = ∂SEfluid. (2.13)

4. The external work rate Pext acts as a negative potential for changes of state or associated
process vectors. Throughout this work, we assume Pext is linear and state-independent,
and we allow Pext to vary in time. Furthermore, it is natural to assume the total external
work rate decomposes into separate, independent contributions

Pext(t, u̇, q, ε̇v, j) = Pext,mech(t, u̇) + Pext,fluid(t, q) + Pext,temp(t, j).

Since the visco-elastic strain is interpreted as an internal variable, no external work rate is
associated to ε̇v. In the context of poro-elasticity, external work rates integrate external
body and surface forces acting on the fluid and the matrix. In particular, surface forces
can be identified as the boundary conditions imposed on the dual variables (2.9)–(2.11).
All in all, we employ

Pext,mech(t, u̇) = 〈fext(t), u̇〉+ 〈σΓ,n(t), u̇〉Γσ ,
Pext,fluid(t, q) = 〈gext(t), q〉+ 〈pΓ(t), q · n〉Γp ,
Pext,temp(t, j) = 〈TΓ(t), j · n〉ΓT .

Here, fext and gext denote external body forces applied to the matrix and the fluid, re-
spectively. We stress that under the hypothesis of small perturbations of the Lagrangian
porosity [22], often coming along with the assumptions of linear elasticity, it is indeed fair
to assume that fext and gext are state-independent.

5. Accounting for viscous dissipation, changes of states come at cost governed by a dissipation
potential. For the poro-elasticity models considered in this work, it is adequate to assume
that the underlying dissipation mechanisms are state-independent; e.g., for large strain
poro-elasticity, this is not the case. Furthermore, we presume independent cost for each
process such that the total dissipation potential decomposes into

D(u̇, q, ε̇v, j) = Dmech(u̇) +Dfluid(q) +Dv(ε̇v) +Dth(j). (2.14)

A common feature for many poro-elasticity models is to assume that structural displace-
ments react instantaneously, which corresponds to the choice Dmech = 0. The potentials
Dfluid, Dv and Dth correspond to a (non-)Darcy-type law, some viscosity law for strain
rates and a Fourier-type law, respectively. We will essentially consider quadratic dissi-
pation potentials; besides in the context of non-Darcy flows in poro-elastic materials, cf.
Sec. 6.
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Finally, (1.2) yields an abstract model for describing the evolution of a fluid-saturated, de-
formable porous medium. The states (u, θ, εv, S) change in time t ∈ (0, T ) by

θ̇ = qθ −∇ · q, (2.15)

Ṡ = qS −∇ · j, (2.16)

(u̇, q, ε̇v, j) = arg min
(v,z,t,w)∈V̇×Z×Ṫ ×W

{
〈∂∇uE(∇u, θ, εv, S),∇v〉 − Pext,mech(t,v) (2.17)

+Dfluid(z)− 〈∂θEfluid(∇u, θ, εv, T ),∇ · z〉 − Pext,fluid(t, z)

+Dv(t) + 〈∂εvE(∇u, θ, εv, S), t〉
+Dth(w)− 〈∂SEfluid(∇u, θ, εv, T ),∇ ·w〉 − Pext,temp(t,w)

}

and are subject to initial conditions at time t = 0

u = u0, θ = θ0, εv = εv,0, S = S0 on Ω. (2.18)

Remark 2.1 (Primal and dual formulation). We distinguish between primal and dual variables.
The gradient flow formulation (2.15)–(2.17) governs primal variables. Hence, we will call this
the primal formulation. In certain situations, a dual formulation governing dual variables can
be derived from the primal formulation. This is, e.g., discussed for linear poro-elasticity, cf.
Sec. 3.2.

2.2 Poro-elasticity formulated as doubly non-linear evolution equation

The framework as described in the previous section is suitable for modelling poro-elasticity.
Yet, in the next section, we provide tools for a unified well-posedness analysis of models of
type (2.15)–(2.18), which utilize the closely related reformulation of a generalized gradient flow
as a doubly non-linear evolution equation. A natural reformulation of the general poro-elasticity
model (2.15)–(2.18) is achieved by introducing accumulated fluxes

q∫ (t) :=

∫ t

0
q(τ) dτ, (2.19)

j∫ (t) :=

∫ t

0
j(τ) dτ (2.20)

as alternative states to θ and S, respectively. Corresponding function spaces Z∫ and W∫ are

implicitly defined by Ż∫ = Z and Ẇ∫ = W, i.e., q∫ ∈ Z∫ if and only if q̇∫ ∈ Z. Analogously,

we set Qθ(t) :=
∫ t

0 qθ(s) ds and QS(t) :=
∫ t

0 qS(s) ds. By (2.15)–(2.16), the accumulated fluxes
are associated with θ and S by

θ = θ0 +Qθ −∇ · q∫ , (2.21)

S = S0 +QS −∇ · j∫ . (2.22)

By eliminating θ and S, the generalized gradient flow formulation (2.15)–(2.18) becomes a
degenerate doubly non-linear evolution equation for (u, q∫ , εv, j∫ ) ∈ V × Z∫ × T ×W∫

∇D(u̇, q̇∫ , ε̇v, j̇∫ ) + ∇Ẽ(t,u, q∫ , εv, j∫ ) = ∇Pext(u̇, q̇∫ , ε̇v, j̇∫ ), (2.23)

with reinterpreted (potentially, explicitly time-dependent) energy

Ẽ(t,u, q∫ , εv, j∫ ) := E(∇u, θ0 +Qθ(t)−∇ · q∫ , εv, S0 +QS(t)−∇ · j∫ ).

and initial conditions

u = u0, q∫ = 0, εv = εv,0, j∫ = 0 on Ω. (2.24)
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Remark 2.2 (Reformulation over linear spaces). The function spaces V×Z∫ ×T ×W∫ are given
by linear spaces translated by some essential boundary conditions, cf. (2.4)–(2.7). By explicitly
incorporating the translation into the definitions of D, Ẽ and Pext, the problem (2.23) can be
reformulated over time-independent, linear spaces; however, each functional becomes explicitly
time-dependent.

Remark 2.3 (Time-independent dissipation potential and energy functional and linear function
spaces). From a modelling perspective, imposing time-dependent, essential boundary conditions
is straightforward. However, the analysis of gradient systems under essential boundary condi-
tions is known to be a delicate topic, cf., e.g., [7]. A model-specific discussion is most often
required; e.g., for quadratic potentials and energies, boundary conditions or external sources can
be equivalently reformulated as linear contributions of the external work rates, allowing for reduc-
ing the discussion to linear, time independent spaces and time-independent energy functionals.
Non-homogeneous, time-independent boundary conditions are less of a problem, as the driving
functional remains decreasing along solutions.

2.3 Abstract well-posedness result for degenerate doubly non-linear evolu-
tion equations

In the following, we establish an abstract well-posedness result which allows for a unified dis-
cussion of poro-elasticity models arising from the gradient flow modelling framework introduced
above, cf. Sec. 3–7. For this, we first note that the problem (2.23) falls into the category of degen-
erate, doubly non-linear evolution equations on Banach spaces. More specifically, the structural
assumptions made in Sec. 2.1, and assuming solely external work rates are time-dependent, cf.
Rem. 2.3, motivates to consider the abstract evolutionary system

(ẋ1, ẋ2) = arg min
(y1,y2)∈V1×V2

{
Ψ(y2) + 〈∇E(x1, x2), (y1, y2)〉 (2.25)

− 〈P1(t), y1〉 − 〈P2(t), y2〉
}
.

In particular, we assume:

(P1) The set of primary variables can be partitioned into two sets with either vanishing or non-
vanishing dissipative character. Those can be respectively grouped in two (multi-valued)
variables x1, x2. Let x1 denote the variables that change without cost.

(P2) The function spaces V1 and V2 corresponding to x1 and x2, respectively, are assumed to
be time-independent and to have a linear structure. Thereby, they can be identified as
both state and tangent spaces. Furthermore, let Vi be Banach spaces with norms ‖ · ‖Vi ,
i = 1, 2. In particular, assume there exists a semi-norm | · |V2 on V2 such that

‖y2‖pV2
= ‖y2‖pB2

+ |y2|pV2
,

where B2 ⊃ V2 is a larger Banach space with norm ‖ · ‖B2 , and p := min{pψ, pE} ∈ (1,∞)
with pψ and pE introduced in (P3) and (P4).

(P3) The dissipation potential Ψ : B2 → [0,∞) is convex, continuously differentiable and coer-
cive wrt. to B2. In particular, there exists a constant C > 0 and pψ ∈ (1,∞) satisfying

Ψ(y2) ≥ C‖y2‖pψB2
, y2 ∈ B2.

(P4) The free energy of the system is convex, lower semi-continuous and continuously differen-
tiable. Furthermore, it can be decomposed into a strictly convex part in the variable with
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vanishing dissipation, and a convex contribution in an affine combination of the primary
variables

E(x1, x2) = E1(x1) + E2(Λ(x1, x2)), (x1, x2) ∈ V1 × V2, (2.26)

i.e., E1 : V1 → [0,∞) is strictly convex; E2 : Ṽ → [0,∞) is convex with Ṽ a (separable)
Banach space; and Λ : V1 × V2 → Ṽ is an affine operator, satisfying

Λ(x1, x2)− Λ(y1, y2) = Λ1(x1 − y1) + Λ2(x2 − y2), ∀xi, yi ∈ Vi, i = 1, 2,

for Λi : Vi → Ṽ two linear operators with adjoint operators Λ?
i , i = 1, 2. Furthermore,

there exist constants C1, C2, C3 and p1, pE ∈ (1,∞) satisfying

E1(x1) ≥ C1‖x1‖p1

V1
,

E(x1, x2) ≥ C2|x2|pEV2
− C3.

(P5) The external loads satisfy P1 ∈ C(0, T ;V?1 ) ∩ W 1,p?1(0, T ;V?1 ) and P2 ∈ C(0, T ;V?2 ) ∩
W 1,p?(0, T ;V?2 ), where 1

p1
+ 1

p?1
= 1

p + 1
p? = 1.

(P6) The initial conditions (x1(0), x2(0)) ∈ V1 × V2 have finite energy E(x1(0), x2(0)) <∞ and
satisfy the compatibility condition

x1(0) = arg min
x1∈V1

{
E(x1, x2(0))− 〈P1(0), x1〉

}
.

Quasi-static systems of type (2.25) have been studied in the literature before, cf., e.g., [49, 9];
however in the aforementioned works, energies with decompositions different than the poro-
elasticity-specific choice (2.26) are treated. And in the theory on doubly non-linear evolution
equations in general, the external loading P2 would usually be assumed to be in the dual of a
larger space (B?2 in our context). Here, the weaker regularity assumption on P2 originates from
the nature of external loadings applied in the context of flow in porous media. In order to handle
the weak, spatial regularity within the theory on doubly non-linear evolution equations, stronger
temporal regularity is required along with above growth conditions on the energy functional.
All in all, using similar ideas as [49, 9] but tailored to the above problem structure, we prove
well-posedness of (2.25) under (P1)–(P6).

Theorem 2.1 (Well-posedness for generalized gradient flow system (2.25)). Assuming (P1)–
(P6), there exists a solution (x1, x2) to (2.25) satisfying

x1 ∈ L∞(0, T ;V1),

x2 ∈W 1,p(0, T ;B2) ∩ L∞(0, T ;V2).

If ∇Ψ or ∇E is linear and self-adjoint, it is unique.

Proof. We follow ideas by [49, 9] and decouple the system into a minimization problem and
a gradient flow problem. The first is discussed using classical convex analysis (Thm. A.2, cf.
Appendix A); the discussion of the gradient flow problem utilizes theory on doubly non-linear
evolution equations (Thm. A.1, cf. Appendix A).

Decoupling. For fixed time t ∈ [0, T ], the optimality conditions for (x1(t), x2(t)), derived as
first variation, corresponding to (2.25) read

∇E1(x1(t)) + Λ?1∇E2

(
Λ(x1(t), x2(t))

)
= P1(t) in V?1 , (2.27)

∇Ψ(ẋ2(t)) + Λ?2∇E2

(
Λ(x1(t), x2(t))

)
= P2(t) in V?2 . (2.28)
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We conclude that x1 is defined as solution to a minimization problem for given x2. Hence, given
t ∈ [0, T ] and x2 ∈ V2, we denote x?1 := x?1(t, x2) ∈ V1 to be the solution of the problem

inf
y1∈V1

E(y1, x2)− 〈P1(t), y1〉 . (2.29)

Since E1 is strictly convex, x?1 is well-defined by Thm. A.2. We introduce the reduced energy

Ered(t, x2) := E
(
x?1(t, x2), x2

)
− 〈P1(t), x?1(t, x2)〉 , t ∈ [0, T ], x2 ∈ V2.

We observe, that the optimality conditions (2.27)–(2.28) can be decoupled into

∇E1(x?1(t, x2)) + Λ?1∇E2

(
Λ(x?1(t, x2), x2)

)
= P1(t) in V?1 , (2.30)

∇Ψ(ẋ2(t)) + ∇Ered(t, x2(t)) = P2(t) in V?2 . (2.31)

Existence and uniqueness for the gradient flow problem. Eq. (2.31) has the structure of
a doubly non-linear evolution equation. The existence (and uniqueness) of a solution to (2.31)
follows by employing Thm. A.1; under above assumptions, it is sufficient to check that Ered

complies with the assumptions of Thm. A.1.
First, by (P4) and (P5), it is simple to show that there exist constants C1 > 0, C2 ≥ 0,

independent of t, satisfying

Ered(t, x2) ≥ C1|x2|pEV2
− C2.

Second, Ered(t, ·) is convex on V2: This follows from the fact that ∇Ered is monotone [56].
In order to see this, we derive an explicit expression for ∇Ered. Let x2, y2 ∈ V2 be arbitrary,
and let Dx?1(t, x2)[y2] := d

dδ

∣∣
δ=0

x?1(t, x2 + δy2). Using the chain rule, the optimality condition
corresponding to (2.29), and the definitions of x?1 and E , we obtain

〈∇Ered(t, x2), y2〉
=
〈∇1E

(
x?1(t, x2), x2

)
− P1(t), Dx?1(t, x2)[y2]

〉
+
〈∇2E

(
x?1(t, x2), x2

)
, y2

〉

=
〈∇E2

(
Λ(x?1(t, x2), x2)

)
,Λ2y2

〉
.

Hence, from the definition of Λ, we obtain

〈∇Ered(t, x2)−∇Ered(t, y2), x2 − y2〉

=
〈∇E2

(
Λ(x?1(t, x2), x2)

)
−∇E2

(
Λ(x?1(t, y2), y2)

)
,Λ2(x2 − y2)

〉

=
〈∇E2

(
Λ(x?1(t, x2), x2)

)
−∇E2

(
Λ(x?1(t, y2), y2)

)
,(

Λ(x?1(t, x2), x2)− Λ(x?1(t, y2), y2)
)
− Λ1

(
x?1(t, x2)− x?1(t, y2)

)〉
.

Subtracting the optimality condition for arbitrary x2, y2 ∈ V2, yields

∇E1(x?1(t, x2))−∇E1(x?1(t, y2))

= −Λ?1
(∇E2

(
Λ(x?1(t, x2), x2)

)
−∇E2(Λ(x?1(t, y2), y2))

)
in V?1 .

Hence, together, we obtain

〈∇Ered(t, x2)−∇Ered(t, y2), x2 − y2〉
=
〈∇E2

(
Λ(x?1(t, x2), x2)

)
−∇E2

(
Λ(x?1(t, y2), y2)

)
,Λ(x?1(t, x2), x2)− Λ(x?1(t, y2), y2)

〉

+ 〈∇E1 (x?1(t, x2))−∇E1(x?1(t, x2)), x?1(t, x2)− x?1(t, y2)〉 .

From the convexity of E1 and E2, we obtain the convexity of Ered.
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By exploiting the definition of Ered, the optimality condition (2.30), (P4), and (P5), we obtain
for almost every t ∈ (0, T ) and p?1 as in (P5)

|∂tEred(t, x2)| =
∣∣ 〈∇E1(x?1(t, x2)), ẋ?1(t, x2)〉

+ 〈∇E1 (Λ (x?1(t, x2), x2)) ,Λ1ẋ
?
1(t, x2)〉 − 〈P1, ẋ

?
1(t, x2)〉

− 〈∂tP1, x
?
1(t, x2)〉

∣∣
= |〈∂tP1, x

?
1(t, x2)〉|

. ‖∂tP1‖p
?
1
V?1 + ‖x?1(t, x2)‖p1

V1
.

In addition, by employing (P4), and using that E2 is positive, it follows

‖x?1(t, x2)‖p1

V1
. E1(x?1(t, x2)) ≤ Ered(t, x2) + 〈P1, x

?
1(t, x2)〉 .

Employing (P5) and Young’s inequality, yields

‖x?1(t, x2)‖p1

V1
. Ered(t, x2) + 〈P1, x

?
1(t, x2)〉 .

Altogether, we obtain

|∂tEred(t, x2)| . ‖P1‖p
?
1
V?1 + ‖∂tP1‖p

?
1
V?1 + Ered(t, x2). (2.32)

Consequently, Ered complies with Thm. A.1, and together with (P1)–(P6), there exists a
solution x2 ∈W 1,p(0, T ;B2)∩L∞(0, T ;V2) to (2.30). It is unique in case ∇Ψ or ∇Ered are linear
and self-adjoint, cf. Thm. A.1. The latter follows for linear and self-adjoint ∇Ei, i = 1, 2.

Finite energy. By Thm. A.1, x2 satisfies the characteristic energy identity
∫ T

0
Ψ(ẋ2(t)) dt+ Ered(x2(T ))− 〈P2(T ), x2(T )〉

= Ered (x2(0))− 〈P2(0), x2(0)〉+

∫ T

0
∂tEred(t, x2(t)) dt−

∫ T

0

〈
Ṗ2(t), x2(t)

〉
dt.

Using (P4) and (2.32), we obtain
∫ T

0
Ψ(ẋ2(t)) dt+ Ered(x2(T )) . 〈P2(T ), x2(T )〉

≤ Ered (x2(0))− 〈P2(0), x2(0)〉+ ‖P1‖p
?
1

W 1,p?1 (0,T ;V?1 )

+ ‖P2(T )‖p
?
E
V?2 + ‖P2‖p

?
E
W

1,p?E (0,T ;V?2 )
+ C3 +

∫ T

0
Ered(t, x2) dt,

with 1
pE

+ 1
p?E

= 1 and C3 from (P4). The assumptions on the external data are chosen such that

the right hand side is uniformly bounded in T up to the last term. By the Grönwall inequality
it follows that Ered(t, x2(t)) is uniformly bounded in time.

Existence and uniqueness for the minimization problem. Since x2 ∈ L∞(0, T ;V2),
(2.29) is well-defined for x2 = x2(t) for a.e. t ∈ (0, T ); thereby also x1 = x?1(t, x2). Finally, by
the definition of Ered and (P4), it follows for a.e. t ∈ (0, T )

‖x1(t)‖p1

V1
. Ered(t, x2) + ‖P1(t)‖p

?
1
V1
.

Hence, by the above paragraph and (P5), x?1 ∈ L∞(0, T ;V1). Altogether, we obtain existence
(and uniqueness) of the coupled system (2.25), which concludes the proof.

Remark 2.4. Detailed stability bounds can be derived using energy identities for gradient flows,
cf., e.g., (A.3).
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3 Linear Biot equations as generalized gradient flow

The theory of linear poro-elasticity describes the continuum mechanics of coupled flow and
geomechanics in porous media under several simplifying hypotheses: in particular, the funda-
mental linearizing assumptions of linear elasticity; the hypothesis of small perturbations of the
Lagrangian porosity; and an at most slightly compressible, Newtonian fluid. Together with first
principles and Darcy’s law, the Biot’s consolidation model, also called linear Biot equations, can
be deduced, coupling elliptic and parabolic equations. For a detailed introduction, we refer to
the seminal work by Biot [20] and the comprehensive books [22, 21].

In this section, we provide a derivation of the linear Biot equations employing the modelling
framework described in Sec. 2.1. Thereby we demonstrate the inherent gradient flow structure
of the linear Biot equations. Acknowledging the fact that the linear Biot equations have been
already studied quite thoroughly in the literature, the following discussion serves mostly as proof
of concept and guide for subsequent discussions of more involved poro-elasticity models.

3.1 Generalized gradient flow formulation of linear poro-elasticity

Using the modelling approach described in Sec. 2.1, we derive Biot’s consolidation model as a
generalized gradient flow. It suffices to specify states, an associated Helmholtz free energy E
and a dissipation potential D.

As states, we choose the mechanical displacement u and the volume content θ with associated
processes u̇ and the volumetric flux q, respectively. Suitable function spaces for the latter,
incorporating essential boundary conditions are given by

V =
{
v ∈ H1(Ω) |v = uΓ on Γu

}
, (3.1)

V̇ =
{
v ∈ H1(Ω) |v = u̇Γ on Γu

}
, (3.2)

Z = {z ∈ H(div; Ω) | z · n = qΓ,n on Γq} . (3.3)

For their variations, we define correspondingly

V0 =
{
v ∈ H1(Ω) |v = 0 on Γu

}
, (3.4)

Z0 = {z ∈ H(div; Ω) | z · n = 0 on Γq} . (3.5)

The energy is chosen to be the Helmholtz free energy for linearly deformable porous media, cf.
Ch. 4.2.2, [22],

E(u, θ) = Eeff(u) + Efluid(u, θ),

Eeff(u) = 1
2 〈Cε(u) , ε(u)〉 ,

Efluid(u, θ) = M
2 ‖θ − α∇ · u‖2 ,

where C is a symmetric, uniformly positive definite, fourth-order stiffness tensor, M can be
identified as the inverse of the compressibility of the bulk and α is the Biot coefficient. In this
work, we assume isotropic materials, modelled as St. Venant Kirchhoff material, i.e., there exist
constants µ > 0 and λ ≥ 0 satisfying

Cε(u) = 2µε(u) + λ∇ · u I.

From (2.8), we recover the classical relations

θ = 1
M p+ α∇ · u, (3.6)

σ = Cε(u)− αp I, (3.7)

σeff = Cε(u) = σ + αp I. (3.8)
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A standard assumption in linear poro-elasticity is the quasi-static character of the mechanical
problem. As consequence, mechanical deformation occur instantaneously and hence changes
without any cost. Hence, allowing for viscous dissipation for the fluid, changes of displacements
and volumetric fluxes come at costs based on the dissipation potentials

Dmech(u̇) = 0,

Dfluid(q) = 1
2

〈
κ−1q, q

〉
,

where the conductivity κ is a symmetric, uniformly positive definite and uniformly bounded
second-order tensor. It can be identified as the permeability, scaled by the inverse of the fluid
viscosity.

Given the current state (u, θ), its change is then described by (2.15)–(2.17):

θ̇ = qθ −∇ · q and (3.9)

(u̇, q) = arg min
(v,z)∈V̇×Z

{
〈Cε(u) , ε(v)〉 − α 〈M(θ − α∇ · u),∇ · v〉 − Pext,mech(v)

+ 1
2

〈
κ−1z, z

〉
− 〈M(θ − α∇ · u),∇ · z〉 − Pext,fluid(z)

}
. (3.10)

The system (3.9)–(3.10) can be reduced to a compact two-field formulation using ideas from
Sec. 2.2. Recalling the definition of the accumulated flux q∫ , cf. Eq. (2.19), living in

Z∫ (t) =

{
z ∈ H(div; Ω)

∣∣∣∣ z · n =

∫ t

0
qΓ,n dt on Γq

}
, t ∈ [0, T ], (3.11)

we introduce the generalized displacement U = (u, q∫ ) and its change U̇ = (u̇, q). Energies,
external work rates and dissipation potentials can be naturally interpreted as functions of U
and U̇ , respectively. After all, the evolution of the generalized displacement U is governed by
the generalized gradient flow

U̇(t) = arg min
V ∈V̇(t)×Ż∫ (t)

{
D(V ) + 〈∇E(t,U(t)),V 〉 − Pext(t,V )

}
. (3.12)

Formulations based on the generalized displacement are in the following referred to as the primal
formulation of linear poro-elasticity.

In order to verify that (3.12) is indeed formally equivalent to the Biot equations, we derive the
corresponding optimality conditions. Written in variational form, they read: Find (u, q) ∈ V×Z
and θ with suitable regularity such that

〈Cε(u) , ε(v)〉 − α 〈M(θ − α∇ · u),∇ · v〉 = Pext,mech(v) ∀v ∈ V0, (3.13)
〈
κ−1q, z

〉
− 〈M(θ − α∇ · u),∇ · z〉 = Pext,fluid(z), ∀z ∈ Z0, (3.14)

θ̇ + ∇ · q = qθ, in L2(Ω). (3.15)

Identifying the fluid pressure from (3.6), we recover the three-field formulation of the classical
quasi-static linear Biot equations.

3.2 Dual formulation of linear poro-elasticity

For the special case of quasi-static linear poro-elasticity, a natural dual formulation can be de-
rived by applying the Legendre-Fenchel duality theory [50] to (3.12). The procedure is analogous
to the discussion of primal and dual formulations of linear elastostatics in the context of convex
analysis [57, 58]. We skip the derivation here and present directly the dual formulation. It nat-
urally employs the dual generalized stress Σ = (σ, p) as primary variable, pairing up the total
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mechanical stress and the fluid stress, i.e., fluid pressure. Suitable function spaces incorporating
essential boundary conditions are given by

Ṡ :=




σ ∈ H(div; Ω)d

∣∣∣∣∣∣∣

σn = σ̇Γ,n on Γσ,

∇ · σ + ḟext = 0 in L2(Ω),

〈σ,γ〉 = 0 ∀γ ∈ QAS




, (3.16)

QAS :=
{
γ ∈ L2(Ω)d×d |γ skew-symmetric on Ω

}
(3.17)

Q̇ :=
{
q ∈ H1(Ω) | q = ṗΓ on Γp

}
, (3.18)

Ḣ? := Ṡ × Q̇. (3.19)

We note, that the balance of linear momentum is incorporated intrinsically in Ṡ, which is char-
acteristic for the dual formulation. Imposing only weak symmetry of stress tensors however is
our choice, which is motivated by current advances in the robust discretization of the mixed for-
mulation of elasticity and poro-elasticity, cf., e.g., [59, 33, 60, 61, 32]; imposing strong symmetry
is also possible.

In between the primal and the dual formulation, the mathematical interpretation of dissi-
pation and energy essentially swaps, similarly for essential and natural boundary conditions.
Hence, utilizing (3.6)–(3.7) and Darcy’s law, we define the dual energy, dissipation and external
work rate by

E?(Σ) = D(Σ) =
1

2
〈κ(∇p− gext),∇p− gext〉 ,

D?(Σ̇) = E(Σ̇) = 1
2 〈A(σ̇ + αṗ I), σ̇ + αṗ I〉+ 1

2M ‖ṗ‖2,
P?ext(Σ̇) = 〈u̇Γ, σ̇n〉Γσ + 〈qθ, ṗ〉+ 〈qΓ,n, ṗ〉Γq .

Here, A = C−1 denotes the compliance tensor; for homogeneous, isotropic materials, it satisfies
for σ ∈ Rd×d, with deviatoric and hydrostatic components σd := σ − σh I and σh := 1

dtrσ ,
respectively,

(Aσ) : σ =
1

2µ

∣∣∣σd
∣∣∣
2

+
1

Kdr
|σh|2 (3.20)

Finally, the evolution of the generalized stress Σ is prescribed by the generalized gradient
flow

Σ̇ = arg min
T∈Ḣ?

{
D?(T ) + 〈∇E?(Σ),T 〉 − P?ext(T )

}
, (3.21)

subject to compatible, initial data Σ = Σ0 at time t = 0. Evidently one major advantage of the
dual formulation (3.21) compared to the primal formulation (3.12) is, it allows for incompressible
solids and fluids.

The corresponding optimality conditions can be shown to be identical to the four field formu-
lation of linear poro-elasticity [60], employing the total stress and the fluid pressure as primary
variables, and mechanical displacement and rotation as Lagrange multipliers.

3.3 Well-posedness of linear poro-elasticity

In the following, we establish existence and uniqueness of a weak solution to the primal for-
mulation of linear poro-elasticity and discuss its regularity. For this, we apply the abstract
well-posedness result, Thm. 2.1.
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Lemma 3.1 (Well-posedness and regularity for linear poro-elasticity). Let V,V0,Z0 and Z∫ as
defined in (3.1)–(3.5) and (3.11) with

uΓ ∈ C(0, T ;H1/2(Γu)d) ∩H1(0, T ;H1/2(Γu)d),

qΓ,n ∈ C(0, T ;H−1/2(Γq)
d).

For the external loadings, and natural boundary and initial conditions assume

σΓ,n ∈ C(0, T ;H−1/2(Γσ)d) ∩H1(0, T ;H−1/2(Γσ)d),

pΓ ∈ C(0, T ;H1/2(Γq)
d) ∩H1(0, T ;H1/2(Γq),

fext ∈ C(0, T ; (H1(Ω))?) ∩H1(0, T ; (H1(Ω))?),

gext ∈ C(0, T ;H(div,Ω)?) ∩H1(0, T ;H(div; Ω)?),

qθ ∈ L2(0, T ;V?0 ∩ Z?0 ),

θ0 ∈ V?0 ∩ Z?0
u0 ∈H1(Ω), such that u0|Γu = uΓ(0),

with the initial conditions satisfying the compatibility condition

〈Cε(u0) , ε(v)〉 − 〈M (θ0 − α∇ · u0) ,∇ · v〉 = 〈fext(0),v〉 , ∀v ∈ V0.

Then there exists a unique solution U = (u, q∫ ) of (3.12) and equivalently (3.9)–(3.10), satis-
fying

u ∈ L∞(0, T ;H1(Ω)), (3.22)

q∫ ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H(div; Ω)), (3.23)

∇ · q∫ ∈ H1(0, T ;H−1(Ω)) ∩ L∞(0, T ;L2(Ω)). (3.24)

For the volumetric flux q, fluid content θ, fluid pressure p and stress σ, associated with the
states by (2.19), (2.21), (3.6) and (3.7), respectively, it holds

q ∈ L2(0, T ;L2(Ω)), ∇ · q ∈ L2(0, T ;H−1(Ω)), (3.25)

θ ∈ H1(0, T ;H−1(Ω)) ∩ L∞(0, T ;L2(Ω)), (3.26)

p ∈ L∞(0, T ;L2(Ω)), (3.27)

σ ∈ L∞(0, T ;L2(Ω)). (3.28)

Proof. The well-posedness result is a direct consequence of Thm. 2.1, applied to poro-elasticity
written as doubly non-linear evolution equation, cf. Sec. 2.2. For this, we reformulate (3.12)
having two objectives in mind: (i) time-dependent contributions due to essential boundary
conditions and external sources are required to impact only the external work rates; (ii) the
final structure is required to match the abstract setting of Thm. 2.1.

Due to objective (i), the problem has to be formulated for homogeneous contributions of the
generalized displacement. It will be denoted by

(
uhom, q

∫
,hom

)
:=
(
u, q∫

)
−
(
ũΓ, q̃∫ ,Γ

)
∈ V0 ×Z0,

where

ũΓ ∈ C(0, T ;H1(Ω)) ∩H1(0, T ;H1(Ω)),

q̃∫ ,Γ ∈ C1(0, T ;H(div; Ω)).
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are extensions of the essential boundary conditions onto Ω, such that ũ(0) = u0, ũΓ|Γu(t) =

uΓ(t) and q̃Γ · n|Γq(t) =
∫ t

0 qΓ,n dt for a.e. t ∈ (0, T ).

Using the notation of Thm. 2.1, we define for (v, z) ∈ V0 ×Z0

Ψ(z) := Dfluid(z) E1(v) := Eeff(v),

E2(m) := M
2 ‖m‖2, Λ(v, z) := θ0 −∇ · z − α∇ · v,

E(v, z) := E1(v) + E2(Λ(v, z)),

and in order to fulfill objective (i), we set

P1(t,v) := Pext,mech(t,v)− 〈Cε(ũΓ(t)) , ε(v)〉
+M

〈
Qθ(t)−∇ · q̃∫ ,Γ(t)− α∇ · ũΓ(t), α∇ · v

〉
,

P2(t, z) := Pext,fluid(t, z)−
〈
κ−1 ˙̃q∫ ,Γ(t), z

〉

+M
〈
Qθ(t)−∇ · q̃∫ ,Γ(t)− α∇ · ũΓ(t),∇ · z

〉
.

One can simply verify that (3.12) is equivalent to

(u̇hom, q̇
∫
,hom) = arg min

(v,z)∈V0×Z0

{
Ψ(z) +

〈
∇E

(
uhom, q

∫
,hom

)
, (v, z)

〉
(3.29)

−P1(t,v)− P2(t, z)

}

together with zero initial conditions. Furthermore, it is simple to verify (P1)–(P6); we just note
that V1 = V0, V2 = Z0 and B2 = L2(Ω) using the notation of Thm. 2.1. Consequently, we obtain
existence and uniqueness of a solution to (3.29), and consequently of (3.12), satisfying (3.22)–
(3.23). Since

∫ T

0

〈
∇ · q̇∫ ,hom, φ

〉

‖∇φ‖ dt ≤ ‖q̇∫ ,hom‖2L2(0,T ;L2(Ω)),

and the regularity of q̃∫ ,Γ, it follows (3.24). Finally, (3.25)–(3.28) follow directly using (2.19), (2.21)
and (3.6)–(3.7).

4 Linear poro-visco-elasticity as generalized gradient flow

Biot’s consolidation model considers solely primary consolidation, which results in a char-
acteristic, quasi-static, mechanical response of the poro-elastic system. Modelling-wise, this
originates from neglecting viscous dissipation due to mechanical deformation. However, in
physical, deformable porous media viscous dissipation always occurs, and it leads to partially
non-instantaneous deformation, also called secondary consolidation. The theory of poro-visco-
elasticity incorporates such visco-elastic effects.

Classical models for visco-elasticity consider a separation of the total strain into an elastic
and a visco-elastic strain [22]; the elastic contribution is instantaneously recovered during an
unloading process, whereas the visco-elastic contribution is not. In the extreme case, the elastic
behavior can be neglected and the total strain can be assumed to be identical to the visco-elastic
strain [27, 29]; the corresponding model is also referred to as linear, quasi-static poro-elasticity
with secondary consolidation. Here, we treat the general case, including the elastic and visco-
elastic strains.
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Linear poro-visco-elasticity can be naturally formulated as generalized gradient flow by suit-
ably enhancing the primal model for linear poro-elasticity. As state we choose the general-
ized displacement (u, q∫ , εv), incorporating now also the visco-elastic strain εv, living for a.e.
t ∈ (0, T ) in

T := {t ∈ L2(Ω)d×d | t symmetric}.

We distinguish between the standard elastic strain energy and a stored, visco-elastic energy.
Additionally, we allow for different impacts of the elastic and visco-elastic strains on the energy
corresponding to the fluid. The associated energy functional is consistently defined as by [22]

Ev(u, q∫ , εv) =1
2〈C(ε(u)− εv), ε(u)− εv〉+ 1

2〈Cvεv, εv〉
+ M

2

∥∥∥θ0 +Qθ −∇ · q∫ − αv tr εv − α(∇ · u− tr εv)
∥∥∥

2
,

where Cv is a symmetric, uniformly positive definite, fourth-order tensor.
Taking also into account the dissipation of the stored, visco-elastic energy, the dissipation

potential is defined by

Dv(u̇, q̇∫ , ε̇v) =1
2〈κ−1q∫ , q∫ 〉+ 1

2〈C′vε̇v, ε̇v〉.

For many materials a visco-elastic effect is only encountered, e.g., for the volumetric part [22, 29].
Consequently, the symmetric, positive semi-definite, fourth-order tensor C′v may be singular.

Again, restricting to isotropic materials, the fourth-order tensors Cv, C′v can be associated
with Lamé parameters µv > 0, λv ≥ 0, µ′v ≥ 0, λ′v > 0, and corresponding bulk moduli Kdr,v =
2µv

d + λv and K ′dr,v = 2µ′v
d + λ′v, via

Cvεv = 2µvεv + λvtr εv,

C′vε̇v = 2µ′vε̇v + λ′vtr ε̇v.

Since εv is interpreted as internal variable, the external work rates can be chosen as in the
context of linear poro-elasticity

Pext(u̇, q̇∫ , ε̇v) = Pext,mech(u̇) + Pext,fluid(q̇∫ ).

Finally, within the framework introduced in Sec. 2.1, the resulting evolution equation reads
for current state (u, q∫ , εv)

(u̇, q̇∫ , ε̇v) = arg min
(v,z,t)∈V̇×Ż∫×T

{
Dv(v, z, t) +

〈
∇Ev(u, q∫ , εv), (v, z, t)

〉
(4.1)

−Pext(v, z, t)
}
.

The corresponding optimality conditions yield the model for linear poro-visco-elasticity as dis-
cussed by [22]

〈C(ε(u)− εv), ε(v)〉 − α 〈p,∇ · v〉 = Pext,mech(v) ∀v ∈ V0, (4.2)
〈
κ−1q, z

〉
− 〈p,∇ · z〉 = Pext,fluid(z), ∀z ∈ Z0, (4.3)〈

C′vε̇v + Cvεv − αvp I, t
〉

= 〈σ, t〉 ∀t ∈ T , (4.4)

θ − θ0 + ∇ · q∫ = Qθ, in L2(Ω), (4.5)

where we explicitly introduced the fluid pressure and total stress by

p = ∂mEv = M
(
θ0 +Qθ −∇ · q∫ − αv tr εv − α(∇ · u− tr εv)

)
, (4.6)

σ = ∂∇uEv = C(ε(u)− εv)− αp I. (4.7)

Well-posedness can be analyzed analogously to Lemma 3.1.
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Lemma 4.1 (Well-posedness of linear poro-visco-elasticity). Let εv,0 ∈ L2(Ω)d×d, satisfying the
compatibility condition for the deviatoric components

2µv

〈
εd

v,0, t
〉

= 2µ
〈
ε(u0)d − εd

v,0, t
〉
, ∀t ∈ T ,

in case µ′v = 0, where the deviatoric components are defined according to (4.11) and (4.12).
Then under the same regularity assumptions as in Lemma 3.1 there exists a unique solution
(u, q∫ , εv) of (4.2)–(4.5), satisfying (3.22)–(3.24) as for linear poro-elasticity. Additionally, for
µ′v > 0 it holds

εv ∈ H1(0, T ;L2(Ω)), (4.8)

whereas for µ′v = 0, λ′v > 0 it holds

εv ∈ L∞(0, T ;L2(Ω)), (4.9)

tr εv ∈ H1(0, T ;L2(Ω)). (4.10)

For the flux q, mass m, pressure p and stress σ, associated with the states by (2.19), (2.21), (4.6)
and (4.7), respectively, same regularity holds as for linear poro-elasticity, cf. (3.25)–(3.28).

Proof. Non-homogeneous boundary conditions uΓ, qΓ,n and a non-zero, external source term qθ
can be discussed as in the proof of Lemma 3.1. In the following, the focus is exclusively on the
visco-elastic contribution, and only the case of zero boundary data and source terms is discussed.

The case µ′v > 0 follows analogously to the proof of Lemma 3.1; employ Thm. 2.1 with the
partition of state variables {u} and {q∫ , εv}.

The second case, µ′v = 0, λ′v > 0, requires a problem reformulation before applying Thm. 2.1.
As C′v is singular, Dv(·) is not coercive on L2(Ω)×T . This can be fixed by decomposing strains.
We introduce an orthogonal decomposition of visco-elastic strains into their hydrostatic and
deviatoric parts. Let

εh
v := 1

dtr εv ∈ T h, εd
v := εv − εh

v I ∈ T d, (4.11)

T h :=
{
t I
∣∣ t ∈ L2(Ω)

}
,

T d :=
{
t ∈ L2(Ω)d×d

∣∣∣ tr t = 0
}
.

such that 〈Cvεv, εv〉 = 2µv‖εd
v‖2 + d2

(
2µv

d + λv

)
‖εh

v‖2. Similarly, we introduce

εh(u) := 1
dtr ε(u) , εd(u) := ε(u)− εh(u) I. (4.12)

We re-interpret the energy and dissipation potential as functions of u, q∫ , εd
v, ε

h
v and their tem-

poral changes, respectively,

Ev(u, q∫ , εd
v, ε

h
v) = 1

2

(
2µ‖εd(u)− εd

v‖2 + 2µv‖εd
v‖2
)

+ d2

2

(
Kdr‖εh(u)− εh

v‖2 +Kdr,v‖εh
v‖2
)

+ M
2

∥∥∥θ0 −∇ · q∫ − dαvε
h
v − dα

(
εh(u)− εh

v

)∥∥∥
2
,

Dv(u̇, q̇∫ , ε̇d
v, ε̇

h
v) = 1

2

〈
κ−1q̇∫ , q̇∫

〉
+ d2λ′v

2 ‖ε̇h
v‖2.

where Kdr = 2µ
d + λ and Kdr,v = 2µv

d + λv. The external work rate Pext is independent of ε̇v,
and hence, remains unaltered after re-interpretation.
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The dissipation potential Dv defines a norm for (q̇∫ , ε̇h
v) and hence is coercive on Ż∫ × T h.

In order to apply Thm. 2.1, we decompose Ev into a strictly convex part, depending only on the
complementary part, (u, εd

v), and a convex remainder. Let

Ψv(q̇∫ , εh
v) := 1

2

〈
κ−1q̇∫ , q̇∫

〉
+ d2λ′v

2 ‖ε̇h
v‖2,

Ev,1(u, εd
v) := 1

2

(
2µ‖εd(u)− εd

v‖2 + 2µv‖εd
v‖2
)
,

Ev,2(x1, x2, x3) := d2

2

(
Kdr‖x1‖2 +Kdr,v‖x2‖2

)
+ M

2 ‖x3‖2 ,
Λv(u, q∫ , εd

v, ε
h
v) :=

[
εh(u)− εh

v, ε
h
v, θ0 −∇ · q∫ − dαvε

h
v − dα

(
εh(u)− εh

v

)]
,

satisfying

Ev

(
u, q∫ , εd

v, ε
h
v

)
= Ev,1

(
u, εd

v

)
+ Ev,2

(
Λv

(
u, q∫ , εd

v, ε
h
v

))
.

Finally, (4.1) takes the form

(u̇, q̇∫ , ε̇d
v, ε̇

h
v) = arg min

(v,z,td,th)∈V0×Z0×T d×T h

{
Ψv(v, th)

+
〈
∇Ev

(
u, q∫ , εd

v, ε
h
v

)
, (v, z, td, th)

〉
− Pext,mech(u)− Pext,fluid(z)

}
.

complying with the abstract structure in Thm. 2.1. Additionally, the properties (P1)–(P6) are
satisfied. Hence, by Thm. 2.1, we obtain the existence of a unique solution to (4.1). Regularity
follows along the lines of Lemma 3.1.

Remark 4.1 (Purely visco-elastic deformation). As mentioned above, the mechanical displace-
ment may be assumed to be purely visco-elastic, i.e., εv = ε(u). This corresponds to µ, λ→∞,
while Cv and C′v remain finite, i.e., C acts as penalty parameter. In the limit, following from
Lemma 4.1, ε(u) inherits the regularity of εv. This yields an alternative approach to [27, 29]
for the analysis of quasi-static, linear poro-elasticity with secondary consolidation.

5 Non-linear poro-elasticity under infinitesimal strains as gen-
eralized gradient flow

In many applications linear constitutive laws are not sufficient in order to describe the physical
behavior of a fluid-saturated, deformable porous medium – even when restricted to the infinites-
imal strain regime [62, 63]; similar to soil mechanics [64] and solid mechanics [58]. The gradient
flow modeling framework introduced in Sec. 2.1 allows for involving a variety of non-linear re-
lationships. In the following, we consider a non-linear stress-strain relationship together with
a non-linear fluid compressibility, assuming infinitesimal strains. Based on the gradient flow
structure of the resulting models, we analyze their well-posedness along the lines of Sec. 3. This
setting has been also studied numerically by [30].

We generalize the primal formulation of linear poro-elasticity, cf. Sec. 3.1: We choose the
same state variables, (u, q∫ ), living in the same function spaces as before. In the spirit of
hyperelasticity [58], we consider energies

Enl(u, q
∫ ) := Enl,eff(u) + Enl,fluid(u, q∫ ), (5.1)

Enl,eff(u) :=

∫

Ω
W (ε(u)) dx, (5.2)

Enl,fluid(u, q∫ ) :=

∫

Ω

∫ θ0+Qθ−∇·q∫−α∇·u

0
b−1(s) ds dx, (5.3)
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for some convex strain energy density W and an invertible function b. This choice results in the
generalized, (implicit) definition of the fluid pressure and mechanical stress, cf. (3.6)–(3.7), via

m = b(p) + α∇ · u, (5.4)

σ =
∂W (ε(u))

∂ε(u)
− αp I, (5.5)

which follows directly from (2.8). Examples for strain energy densities W and the corresponding
effective stress σeff , cf. (2.13), are given in Tab. 1; in principle also non-convex potentials [58]
could be employed, but are not considered here. For b we allow arbitrary invertible, increasing,
Lipschitz continuous functions with b(0) = 0, generalizing the linear compressibility law b(p) =
1
M p, employed in linear poro-elasticity. We refer to [30] for possible choices.

Linear elasticity (cf. Sec. 3)
W (ε(u)) = 1

2

(
2µ|ε(u) |2 + λ(∇ · u)2

)

σeff = 2µε(u) + λ(∇ · u) I

Non-linear compressibility (cf. [63, 30])
W (ε(u)) = 1

2

(
2µ|ε(u) |2 +

∫∇·u
0

l(s) ds
)
, l increasing, l(0) = 0

σeff = 2µε(u) + l(∇ · u) I

Non-linear shear modulus (cf. [64, 65])
W (ε(u)) =

∫ |ε(u)|
0

sf(s) ds+ λ
2

(∇ · u)2, f unif. pos. and non-decr.

σeff = f(|ε(u) |)ε(u) + λ(∇ · u) I

Simple visco-elasto-plasticity (cf. [58])

W (ε(u)) =
∫ |εd(u)|

0
sf(s) ds+Kdr(∇ · u)2,

f(s) =





2µεd(u) , 2µ|εd(u) | < K

2µ+ K
|εd(u)|ε

d(u) , else

σeff = σd
eff +Kdr(∇ · u) I

σd
eff =





2µεd(u) , |σd
eff | = 2µ|εd(u) | < K(

2µ+ K
|εd(u)|

)
εd(u) , else, i.e., |σd

eff | ≥ K

Table 1: Examples for the strain energy density W used for the definition of Enl,eff and the
corresponding effective stress σeff .

Other than that, we employ the external work rate, the dissipation potential as for linear
poro-elasticity, cf. Sec. 3.1. Inserting all components into the gradient flow framework from
Sec. 2.1, yields the final model

(u̇, q̇∫ ) = arg min
(v,z)∈V̇×Ż∫

{
Dfluid(z) +

〈
∇Enl(u, q

∫ ), (v, z)
〉
− Pext(v, z)

}
. (5.6)

Considering, e.g., constant shear modulus and non-linear compressibility, cf. Tab. 1, and the
fluid pressure as defined by (5.4), the corresponding optimality conditions are consistent with
the model considered by [30]

2µ 〈ε(u) , ε(v)〉+ 〈l(∇ · u),∇ · v〉 − α 〈p,∇ · v〉 = Pext,mech(v) ∀v ∈ V0,〈
κ−1q̇∫ , z

〉
− 〈p,∇ · z〉 = Pext,fluid(z), ∀z ∈ Z0,

b(p) + α∇ · u+ ∇ · q∫ = θ0 +Qθ, in L2(Ω).

Well-posedness of non-linear poro-elasticity described by the generalized gradient flow (5.6)
follows directly with same argumentation as in the case of linear poro-elasticity.
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Lemma 5.1 (Well-posedness for non-linear poro-elasticity). Let Enl, W and b as in (5.1)–(5.3).
Furthermore, let W be strongly convex in ε(u) with W (ε(0)) = 0 and ∂εW (ε(0)) = 0, and let
b−1 be uniformly increasing with b−1(0) = 0. Consider homogeneous boundary conditions and
conservation of mass, i.e., uΓ = 0, qΓ,n = 0, and qθ = 0. Other than that assume regularity as
in Lemma 3.1. And assume finite energy Enl(u0,0) <∞ and the compatibility condition

〈∂uEnl(u0,0),v〉 = Pext,mech(v), ∀v ∈ V0.

Then there exists a unique solution (u, q∫ ) of (5.6). Its regularity is the same as in the case of
linear poro-elasticity, cf. (3.22)–(3.24).

Proof. The proof goes along the lines of Lemma 3.1. We choose the partition {u} and {q∫ } and
define

Ψnl(q̇
∫ ) := Dfluid(q̇∫ ) Enl,1(u) := Enl,eff(u),

Enl,2(m) :=

∫

Ω

∫ m

0
b−1(s) ds dx, Λnl(u, q

∫ ) := θ0 −∇ · q∫ − α∇ · u.

Employing this notation, (5.6) complies with the abstract structured discussed in Thm. 2.1.
Furthermore, W strongly convex and b uniformly increasing guarantee growth conditions for the
energy functionals, cf. (P4). The remaining properties (P1)–(P6) are simple to verify. Finally,
the result is a consequence of Thm. 2.1

Remark 5.1. All models, listed in Tab. 1, satisfy the assumptions from Lemma. 5.1, assuming
µ > 0.

6 Extensions of Darcy flow in poro-elastic media as generalized
gradient flow

In the presence of non-Newtonian, non-laminar or transitional flow between boundaries, the
linear Darcy law is not appropriate anymore to relate the volumetric flux with the fluid pressure
gradient. For that reason, extensions of Darcy’s law have been established in the literature.
In the following, we discuss extensions for non-Newtonian flow, Darcy-Forchheimer flow, and
Darcy-Brinkman flow. We incorporate such in the gradient flow modelling framework by an
adequate, alternative choice of a dissipation potential D?,fluid corresponding to viscous flow. By
keeping previous choices for energy functionals E , external work rates Pext etc., and preserving
the modelling ansatz

(u̇, q̇∫ ) = arg min
(v,z)∈V̇×Ż∫

{
D?,fluid(z) +

〈
∇E(u, q∫ ), (v, z)

〉
− Pext(v, z)

}
, (6.1)

the previously discussed poro-elasticity models get simply enhanced by the corresponding ex-
tension of Darcy’s law.

Non-Newtonian flow: Explicitly distinguishing between the permeability κ and the fluid
shear viscosity ν (not as in the previous sections), Darcy’s law with potentially variable viscosity
reads

ν(|q|)q = −κ(∇p− gext). (6.2)

Common, constitutive shear viscosity models employed in the literature, cf., e.g., [66], are given
in Tab. 2. For non-constant viscosity we assume an isotropic, uniformly bounded permeability
κ = κ I – a commmon assumption in modelling non-Newtonian fluid flow in porous media, cf.,
e.g., [67]. The corresponding dissipation potential to be used in (6.1) is given by

Dν,fluid(q) =

∫

Ω
κ−1

∫ |q|

0
sν(s) ds dx. (6.3)
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Newtonian fluid ν(s) = ν∞

Carreau model ν(s) = ν∞ + ν0−ν∞
(1+Kf |s|2)

2−r
2

Cross model ν(s) = ν∞ + ν0−ν∞
1+Kf |s|2−r

Power law ν(s) = 1
Kf |s|2−r

Table 2: Constitutive models for the fluid shear viscosity ν [66]; let 0 < ν∞ < ν0, r ∈ (1, 2) and
Kf > 0.

Darcy-Forchheimer flow: For flow in porous media with an elevated Reynolds number,
Darcy’s law is enhanced by the so-called Forchheimer term, accounting for inertial effects. The
resulting non-linear, constitutive relation reads

νq + κF |q|q = −κ(∇p− gext), (6.4)

where F ≥ 0 denotes the Forchheimer number [68]. The corresponding dissipation potential to
be used in (6.1) is given by

DF,fluid(q) =
ν

2

∫

Ω
κ−1q · q dx+

F

2

∫

Ω
|q|3 dx. (6.5)

Darcy-Brinkman flow: For transitional flow between boundaries, Darcy’s law may be en-
hanced by the so-called Brinkman term. The resulting linear extension of Darcy’s law reads

νq − κ∇ · (νeff∇q) = −κ(∇p− gext), (6.6)

where νeff ≥ 0 denotes the effective viscosity related to the viscous drag effects [69]. The
corresponding dissipation potential to be used in (6.1) is given by

DB,fluid(q) =
ν

2

∫

Ω
κ−1q · q dx+

νeff

2

∫

Ω
|∇q|2 dx. (6.7)

Independent of the specific choices of the energy functionals etc., well-posedness can be again
discussed employing the abstract well-posedness result, cf. Thm. 2.1.

Lemma 6.1 (Well-posedness for extensions of linear Darcy flow in poro-elastic media). For
p ≥ 1, let Hp

div(Ω) :=
{
z ∈ Lp(Ω)d

∣∣ ∇ · z ∈ L2(Ω)
}

. Let the energy functional E be as in (5.1)
with W and b as in Lemma 5.1. And assume finite energy E(u0,0) < ∞ and the compatibility
condition

〈∂uE(u0,0),v〉 = Pext,mech(v), ∀v ∈ V0.

Consider homogeneous boundary conditions and conservation of mass, i.e., uΓ = 0, qΓ,n = 0,
and qθ = 0. Other than that assume regularity as in Lemma 3.1.

(1) Non-Newtonian fluid flow: Let ν = ν(s) denote the fluid shear viscosity model. Let s 7→
sν(s) be non-decreasing, and assume there exists a p ∈ (1,∞) satisfying ν(s) & sp−2,
s > 0. Then there exists a solution (u, q∫ ) to (6.1) with the dissipation potential (6.3),
satisfying

u ∈ L∞(0, T ;H1(Ω)),

q∫ ∈ H1(0, T ;Lp(Ω)d) ∩ L∞
(
0, T ;Hp

div(Ω)
)
.
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In case the energy E is quadratic, the solution is unique.

(2) Darcy-Forchheimer flow: There exists a solution (u, q∫ ) to (6.1) with the dissipation po-
tential (6.4), satisfying

u ∈ L∞(0, T ;H1(Ω)),

q∫ ∈ H1(0, T ;L3(Ω)d) ∩ L∞
(
0, T ;H3

div(Ω)
)
.

In case the energy E is quadratic, the solution is unique.

(3) Darcy-Brinkman flow: There exists a unique solution (u, q∫ ) to (6.1) with the dissipation
potential (6.6), satisfying

u ∈ L∞(0, T ;H1(Ω)),

q∫ ∈ H1(0, T ;H1(Ω)).

Proof. The result is a direct consequence of Thm. 2.1, and the proof is analogous to the proofs
of Lemma 3.1 and Lemma 5.1. It suffices to verify (P3) for the different dissipation potentials
D?,fluid.

Non-Newtonian fluid flow: The dissipation potential Dν,fluid is coercive wrt. Lp(Ω)d since
it holds

Dν,fluid(q) &
∫

Ω

∫ |q|

0
sν(s) ds dx &

∫

Ω

∫ |q|

0
sp−1 ds dx & ‖q‖pLp(Ω).

Furthermore, Dν,fluid is convex as composition of two convex maps; indeed, q 7→ |q| is convex,
and x 7→

∫ x
0 sν(s) ds is convex, since s 7→ sν(s) is increasing. All in all, (P3) is fulfilled.

Darcy-Forchheimer flow: The dissipation potential DF,fluid is by construction coercive wrt.
L3(Ω)d. As sum of convex functions, it is convex. Hence, (P3) is fulfilled.

Darcy-Brinkman flow: The dissipation potential DB,fluid defines a norm on H1(Ω). Hence,
(P3) is fulfilled. Furthermore, DB,fluid is quadratic, and uniqueness of solutions to (6.1) is
guaranteed.

Remark 6.1 (Well-posedness for different viscosity models from Tab. 2). All models mentioned
in Tab. 2 satisfy the assumptions of Lemma 6.1. For fluid shear viscosities modelled by the
Carreau model, the Cross model, as well as for Newtonian fluids, one can choose p = 2, since
it holds ν(s) ≥ ν∞, s > 0. For the power law, it holds ν(s) & sr−2, s > 0. Hence, only reduced
regularity is obtained with p = r ∈ (1, 2).

7 Thermo-poro-elasticity as generalized gradient flow

Non-isothermal fluid flow in deformable porous media has in general a strongly non-linear,
coupled character, compared to linear poro-elasticity. Even under the hypothesis of infinitesimal
strains, three non-linearities may occur, cf., e.g. [22]: (i) thermal convection, coupled to the
fluid problem; (ii) non-linear viscous dissipation, associated with Darcy’s law, acting as a heat
source; (iii) and a temperature weighted time derivative of the total entropy in the energy
equation. In certain situations, those non-linearities can be neglected [22]: (i) for a small Péclet

24



number, which quantifies the heat convectively transported by the fluid in comparison with the
heat supplied by diffusion through the porous medium; (ii) for small Brinkman number, which
quantifies the order of magnitude of the heat source due to viscous dissipation in comparison with
heat supplied by conduction; and (iii) small variations of temperature. Under assumptions (ii)
and (iii), the model for linear thermo-poro-elasticity with non-linear convection has been derived
using homogenization [25, 26]. For a discussion of the general, fully non-linear model we refer
to [22].

Assuming all three non-linear effects (i)–(iii) can be neglected, allows for linearizing the
general thermo-poro-elasticity model. Using mechanical displacement u, fluid pressure p and
temperature T as primary variables, the linear, reduced thermo-poro-elasticity model including
linearized fluid state equations reads

−∇ · [Cε(u)− αp I− 3αTKdrT I] = fext, (7.1)

1
M ṗ+ α∇ · u̇− 3αφṪ −∇ · (κ(∇p− gext)) = qθ, (7.2)

CdṪ + 3αTT0Kdr∇ · u̇− 3αφT0ṗ−∇ · (κF∇T ) = T0qS , (7.3)

subject to suitable boundary and initial conditions, cf., e.g., [22]. Here, Kdr denotes the bulk
modulus, αT is the Biot coefficient associated with thermal effects, αφ governs the pressure-
temperature coupling of the fluid, Cd is the total volumetric heat capacity, T0 is a constant
reference temperature, and κF denotes the thermal conductivity. Other than that, same notation
is used as in the previous sections.

The linearized thermo-poro-elasticity model (7.1)–(7.3) has a similar structure as Biot’s con-
solidation model. In the following, we provide a generalized gradient flow formulation of (7.1)–
(7.3), which will be later exploited in the context of robust splitting schemes, cf. Sec. 12.

In the context of the abstract gradient flow modelling framework introduced in Sec. 2.1, we
choose (u, θ, S) as state variables, i.e., the mechanical displacement, the fluid content and the
total entropy. Motivated by (7.2)–(7.3), the latter two will be related to (u, p, T ) by

θ = 1
M p+ α∇ · u− 3αφT, (7.4)

S = Cd
T0
T + 3αTKdr∇ · u− 3αφp. (7.5)

Changes of states are associated to (u̇, q, j), i.e., the rate of mechanical displacement, the
volumetric flux and the entropy flux, by conservation of volume and balance of entropy

θ̇ + ∇ · q = qθ,

Ṡ + ∇ · j = qS .

Under above, linearizing assumptions, the entropy flux can be identified with the heat flux scaled
by T−1

0 such that due to Darcy’s law and Fourier’s law, we obtain

q = −κ(∇p− gext), (7.6)

j = −κF

T0
∇T. (7.7)

Focussing on the inherent gradient flow structure of linearized thermo-poro-elasticity, we omit
specifying the regularity of all variables; we refer to the formal function spaces including essential
boundary conditions as defined in Sec. 2.1. Generalizing linear poro-elasticity, a natural choice
for the dissipation potential is

Dth(q, j) =
1

2

〈
κ−1q, q

〉
+

1

2

〈
T0κ

−1
F j, j

〉
.

The Helmholtz free energy associated to linearized thermo-poro-elasticity for given state is
defined by

Eth(u, θ, S) := Eeff(u) + Eth,fluid(u, θ, S)
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with Eeff defined as for linear poro-elasticity and the fluid contribution

Eth,fluid(u, θ, S) :=
1

2

〈[
[c] 1

M −3αφ
−3αφ

Cd
T0

]−1 [
[l]θ − α∇ · u

S − 3αTKdr∇ · u
]
,

[
[l]θ − α∇ · u

S − 3αTKdr∇ · u
]〉

.

Using (7.4)–(7.5), Eth,fluid can be also written as function of the primary variables

Eth,fluid(u, p, T ) =
1

2

〈[ 1
M −3αφ
−3αφ

Cd
T0

] [
p
T

]
,

[
p
T

]〉
.

Finally, we formulate the linearized thermo-poro-elasticity model as generalized gradient
flow: Given the current state (u, θ, S), its change is described by

θ̇ = qθ −∇ · q, (7.8)

Ṡ = qS −∇ · j, (7.9)

(u̇, q, j) = arg min
(v,z,w)∈V̇×Z×W

{
Dth(z,w) + 〈∇Eth(u, θ, S), [v,−∇ · z,−∇ ·w]〉
− Pext,th(v, z,w)

}
. (7.10)

Using simple calculations, one can verify that the corresponding optimality conditions are equiv-
alent to the original problem formulation (7.1)–(7.3). Well-posedness can be established analo-
gously to linear poro-elasticity, exploiting that linearized thermo-poro-elasticity is essentially a
vectorized version of linear poro-elasticity.

Remark 7.1 (Including non-monotone perturbations). For larger Péclet and Brinkman num-
bers, the contributions

W(i)(q, j) = −c
〈
κ−1

F j, q
〉
, (for some c ∈ R) , (7.11)

W(ii)(q) =
(

1
T0
− 3αφ

) 〈
κ−1q, q

〉
, (7.12)

corresponding to thermal convection and the heat production due to viscous dissipation, respec-
tively, are non-negligible and have to be incorporated in the energy equation (7.3), which then
becomes

Cd
T0
Ṫ + 3αTKdr∇ · u̇− 3αφṗ+W(i)(q, j) + ∇ · j = qS +W(ii)(q).

Eq. (7.1)–(7.2) remain unchanged. Based on the above discussion, the resulting equations can
be interpreted as perturbed gradient flow (or doubly non-linear evolution equation with non-
monotone perturbations). In the context of operator splitting schemes, we will discuss possibilities
to still exploit the part containing a gradient flow structure for deriving robust splitting schemes
for the general problem, cf. Sec. 12.3.

Part II – Efficient discrete approximation schemes for thermo-
poro-visco-elasticity

The gradient flow structure of thermo-poro-visco-elasticity revealed in Part I allows for a unified
framework for deriving stable temporal and spatial discretizations, as well as the development
and analysis of robust operator splitting schemes. The abstract workflow taken in this paper
is visualized in Fig. 1 can be summarized as follows: Given a time-continuous gradient flow
formulation, a time-discrete approximation is introduced by applying the minimizing movement
scheme, resulting in a (convex and hence well-posed) minimization problem for each time step.
A corresponding dual problem is derived by applying the Legendre-Fenchel duality theory [50].
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Provided that the resulting minimization problems are block-separable, alternating minimiza-
tion is utilized, decoupling physical subproblems – it comes with strong robustness under fairly
weak assumptions and allows for an abstract convergence analysis [70, 71]. Furthermore, the un-
derlying minimization structure of the coupled problems enables simple acceleration of iterative
solvers via cheap line search strategies.

Although based on semi-discrete approximations, the results also immediately translate to
fully-discrete approximations obtained by the Galerkin method, i.e., the well-posedness as con-
vex minimization problems, and the efficient numerical solution by block-coordinate descent
methods.

Duality theory

Line search Line search

Minimizing
movement
scheme

+
Conforming
Galerkin
method

Alternating
minimization

Alternating
minimization

Generalized gradient
flow formulation

ẋ+ ∇E(x) = fext

Primal semi-discrete

approximation

xn = arg min
x

E∆t
tot(x)

Dual semi-discrete

approximation

(x?)n = arg min
x?

E?,∆ttot (x?)

Undrained-type split

xi1 = arg min
x1

E∆t
tot

(
x1, x

i−1
2

)

xi2 = arg min
x2

E∆t
tot

(
xi1, x2

)

Fixed-stress-type split

(x?1)i = arg min
x?1

E?,∆ttot

(
x?1, (x

?
2)i−1

)

(x?2)i = arg min
x?2

E?,∆ttot

(
(x?1)i, x?2

)

Figure 1: Workflow for the derivation of splitting schemes for linear thermo-poro-visco-elasticity,
illustrated for simplicity for classical gradient flows.

By applying the workflow in particular to linear poro-elasticity, we derive the well-known
undrained and fixed-stress splits. Thereby, we provide a novel interpretation of the widely
used splitting schemes as inexact minimization. Motivated by that, the abstract approach is
further applied to distinct representatives of three generalizations of linear poro-elasticity: poro-
visco-elasticity, non-linear poro-elasticity under infinitesimal strains, and thermo-poro-elasticity.
Ultimately, novel splitting schemes are derived for poro-visco-elasticity and nonlinear poro-
elasticity, structurally similar to the undrained and fixed-stress splits. In the context of thermo-
poro-elasticity, the recently proposed undrained-adiabatic and extended fixed-stress splits [45]
are derived and by that justified mathematically.

8 Energy-driven time discretization via minimizing movements

Gradient flows allow for stable time discretization. Throughout this part of the paper, we apply
the so-called minimizing movement scheme [52], which is energy dissipating and closely related
to the implicit Euler method, most often the first choice time discretization for poro-elasticity
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models. Utilizing a minimization formulation, the minimizing movement scheme retains the
structure and possible convexity properties of the problem. However, we note, it does not pre-
serve a discrete energy identity analogous to (A.3); for structure-preserving time-discretizations
we refer, e.g., to [14] and the references within.

For simplicity, we consider an equidistant partition 0 = t0 < t1 < ... < tN = T of the
time interval [0, T ] with time step size ∆t. Fields, functionals and function spaces evaluated
at discrete time tn are enhanced by an exponent n, e.g., xn := x(tn, ·) ∈ X n := X (tn) and
Pnext(·) := Pext(tn).

The minimizing movement scheme applied to the abstract, generalized gradient flow (1.2)
is identical with a semi-implicit Euler method, where state-dependent functions are lagged in
time. For time step n, it reads: Given xn−1 ∈ X n−1, find xn ∈ X n and pn ∈ Pn satisfying

xn − xn−1

∆t
+ T

(
xn−1

)
pn = 0 (8.1)

pn = arg min
p∈Pn

{
∆tD

(
xn−1; p

)
+ E(xn)−∆tPnext

(
xn−1; p

)}
. (8.2)

As the structure of the original problem is retained, solvability of the time-discrete problem is
automatically inherited from the continuous problem. In this work, all dissipation potentials,
external work rates and process operators are state-independent. Thus, we omit the explicit
dependence from now on.

The coupled problem (8.1)–(8.2) can be obviously decoupled by reducing (8.2) to a mini-
mization problem for process vectors

xn − xn−1

∆t
+ T pn = 0 (8.3)

pn = arg min
p∈Pn

{
∆tD (p) + E

(
xn−1 − T p

)
−∆tPnext (p)

}
. (8.4)

Alternatively, provided that the change of state is directly associated to its rate, it is T = −Id;
in the context of poro-elasticity, this particular case occurs, e.g., for mechanical deformation.
Consequently, (8.3)–(8.4) becomes a minimization problem for the state itself

xn = arg min
x∈Xn

{
∆tD

(
x− xn−1

∆t

)
+ E(x)−∆tPnext

(
x− xn−1

∆t

)}
. (8.5)

The Euler-Lagrange equation is indeed equivalent to the implicit Euler scheme

∇D
(
xn − xn−1

∆t

)
+ ∇E(xn) = ∇Pnext

(
xn − xn−1

∆t

)
, in X ?0 ,

where X0 is the linear tangent space to X n.
For the thermo-poro-visco-elasticity models discussed in this paper, we employ a combination

of (8.3)–(8.4) and (8.5), depending on the nature of the particular variables and available process
vectors. A fully-discrete approximation may then be obtained by the conforming Galerkin
method; see Sec. 9.3 for an exemplary discussion in the context of linear poro-elasticity.

9 Minimization formulations of discrete linear poro-elasticity
and robust splitting schemes via alternating minimization

In the literature, various formulations of linear poro-elasticity are employed, differing in the
choice of primal variables. In this spirit, we present various minimization formulations of time-
discrete, linear poro-elasticity, after applying the minimizing movement scheme (Sec. 8). In
particular, we discuss the widely used two-, three-, and five-field formulations, as well as the
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primal and the dual formulations naturally arising from Part I. The specific minimization for-
mulation is relevant when applying a line search strategy for the acceleration of iterative solvers
as splitting schemes, cf. Sec. 13. Fully-discrete approximations with same properties are ob-
tained by the conforming Galerkin method. We also note that minimization formulations can
be derived in the context of the least-squares finite element method, cf., e.g., [34]; however, such
usually do not stem naturally from a physical, gradient flow formulation but build directly on
classical PDE-based models.

Following the workflow visualized in Fig. 1, we derive the widely used undrained split and
fixed-stress split as alternating minimization applied to the primal and dual formulations, re-
spectively. Splitting schemes for linear poro-elasticity have been well studied in recent literature,
and as such, much of the material in this section represents a new perspective, and indeed also
new proofs, of known results. However, even in this case the discussion in this section lays the
foundation for the more advanced applications in the subsequent sections, wherein the gradient
flow framework leads to new schemes not previously reported.

9.1 Minimization formulations of time-discrete linear poro-elasticity

In the following, we introduce various minimization formulations of time-discrete, linear poro-
elasticity differing in the choice of the primary variables. We present the primal and dual
formulations, as well as the more widely used two-, three-, and five-field formulations.

9.1.1 Primal formulation of time-discrete linear poro-elasticity

Time discretization of the continuous, primal formulation of linear poro-elasticity (3.12) via
the minimizing movement scheme, yields the primal formulation of time-discrete, linear poro-
elasticity. It is formulated as a series of minimization problems: At time step n ≥ 1, let

Vn :=
{
v ∈ H1(Ω)

∣∣ v = unΓ on Γu
}
, (9.1)

Zn :=
{
z ∈ H(div; Ω)

∣∣ z · n = qnΓ,n on Γq
}
. (9.2)

Then given θn−1, define (un, qn) ∈ Vn ×Zn by

(un, qn) := arg min
(u,q)∈Vn×Zn

E∆t
tot(θ

n−1;u, q), where (9.3)

E∆t
tot(θ

n−1;u, q) :=1
2 〈Cε(u) , ε(u)〉+ ∆t

2

〈
κ−1q, q

〉

+ M
2

∥∥θn−1 + ∆t qnθ −∆t∇ · q − α∇ · u
∥∥2

− Pnext,mech(u)−∆tPnext,fluid(q),

and set θn := θn−1 + ∆t qnθ −∆t∇ · qn. Since the energy E∆t
tot is strictly convex, existence and

uniqueness of a solution to (9.3) follow by classical results from convex analysis, cf. Thm. A.2.

9.1.2 Dual formulation of time-discrete linear poro-elasticity

We introduce a dual formulation of (9.3). It can be derived using tools from convex analy-
sis; or equivalently, by employing the minimizing movement scheme to the continuous, dual
formulation (3.21): At time step n ≥ 1, let

Sn :=




τ ∈ H(div; Ω)d

∣∣∣∣∣∣∣

τn = σnΓ,n on Γσ,

∇ · τ + fnext = 0 in L2(Ω),

〈τ ,γ〉 = 0 ∀γ ∈ QAS




,

Qn :=
{
q ∈ H1(Ω)

∣∣ q = pnΓ on Γp
}
,
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where QAS as defined in (3.17). Then given (σn−1, pn−1) ∈ Sn−1 ×Qn−1, set θn−1 := 1
M p

n−1 +
α tr

(
A(σn−1 + αpn−1I)

)
, and define (σn, pn) ∈ Sn × Qn to be the solution of the dual mini-

mization problem

(σn, pn) := arg min
(σ,p)∈Sn×Qn

E?,∆ttot (θn−1;σ, p), where (9.4)

E?,∆ttot (θn−1;σ, p) := 1
2 〈A(σ + αpI),σ + αpI〉
+ 1

2M ‖p‖
2 + ∆t

2 〈κ(∇p− gnext),∇p− gnext〉
− 〈unΓ,σn〉Γu −

〈
θn−1 + ∆t qnθ , p

〉
−∆t

〈
qnΓ,n, p

〉
Γq
.

Since the energy E?,∆ttot is strictly convex, and the feasible set Sn×Qn is non-empty and convex,
existence and uniqueness of a solution to (9.4) follow by classical results from convex analysis,
cf. Thm. A.2.

9.1.3 Two-field saddle point formulation of time-discrete linear poro-elasticity

In the literature, linear poro-elasticity is often studied both numerically and analytically based
on a two-field saddle point formulation of the linear Biot equations. It employs the mechanical
displacement u and the fluid pressure p as primary variables, cf., e.g., [27, 37, 35, 48, 72].
Employing the implicit Euler method for time-discretization, time step n ≥ 1 reads: Given
θn−1 := 1

M p
n−1 + α∇ · un−1, find (un, pn) ∈ Vn ×Qn satisfying for all (v, q) ∈ V0 ×Q0

〈Cε(un) , ε(v)〉 − α 〈pn,∇ · v〉 = 〈fnext,v〉+
〈
σnΓ,n,v

〉
Γσ
,

1

M
〈pn, q〉+ α 〈∇ · un, q〉+ ∆t 〈κ(∇pn − gnext),∇q〉 =

〈
θn−1 + ∆t qnθ , q

〉
+ ∆t

〈
qnΓ,n, q

〉
Γq
,

where Q0 := {q ∈ H1(Ω) | q = 0 on Γp}.
Saddle point formulations can be in general transformed to a constrained minimization prob-

lem [61]. In the context of linear poro-elasticity, the constraint has to explicitly impose one of
the physical subproblems. In the following, we choose to impose the balance of linear momentum
and define a suitable product space for each time step n

H̃n :=

{
(u, p) ∈ Vn ×Qn

∣∣∣∣∣
〈Cε(u) , ε(v)〉 − α 〈p,∇ · v〉

= 〈fnext,v〉+
〈
σnΓ,n,v

〉
Γσ

∀v ∈ V0

}
.

The time-discrete, linear Biot equations at fixed time step n, formulated as constrained mini-
mization problem, read: Given (un−1, pn−1) ∈ H̃n−1, set θn−1 := 1

M p
n−1 + α∇ · un−1, and find

(un, pn) ∈ H̃n, satisfying

(un, pn) :=arg min
(u,p)∈H̃n

E∆t
tot(θ

n−1;u, p), where (9.5)

E∆t
tot(θ

n−1;u, p) :=1
2 〈Cε(u) , ε(u)〉+ 1

2M ‖p‖
2

+ ∆t
2 〈κ(∇p− gnext),∇p− gnext〉

−
〈
θn−1 + ∆t qnθ , p

〉
−∆t

〈
qnΓ,n, p

〉
Γq
.

Since the energy E∆t
tot is strictly convex and the feasible set H̃n is non-empty and convex, existence

and uniqueness of a solution to (9.4) follow by classical results from convex analysis, cf. Thm. A.2.
We emphasize, that well-posedness also follows in the extreme case of an incompressible fluid
and impermeable medium, as long as V0 × Q0 is inf-sup stable such that H̃n is essentially
constrained by a one-dimensional relation. Finally, we note, compared to the primal and dual
formulations, (9.5) is not block-separable.
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Remark 9.1 (Mass conservation as constraint). Alternatively, mass conservation can imposed
as constraint resulting in an alternative minimization formulation of the time-discrete, linear
Biot equations. However, having splitting schemes accelerated by relaxation in mind, cf. Sec. 13,
the particular choice matters. The constraint has to be satisfied after each splitting iteration;
consequently, the above formulation (9.5) suits the fixed-stress split, whereas the use of mass
conservation as constraint contrarily suits the undrained splitting scheme, cf. Sec. 9.4.

9.1.4 Three-field formulation of time-discrete linear poro-elasticity

A conforming Galerkin finite element discretization of the classical two-field saddle point formu-
lation is not locally mass conservative. Therefore, in the literature, often a mixed formulation
of the fluid flow problem is employed, cf., e.g., [41, 73, 30, 39, 74, 42]; this results in a three-field
formulation employing the mechanical displacement u, the fluid pressure p and the volumetric
flux q as primary variables. Based on the primal two-field minimization formulation of linear
poro-elasticity (Sec. 9.1.1), we state an unconstrained minimization formulation corresponding
to the three-field formulation of linear poro-elasticity. For this, we essentially modify slightly the
energy used in (9.3) and define the pressure as a post-processed quantity. Consistent with (3.6),
we define for given u and θ by

p := ΠQ̃
(
M(θ − α∇ · u)

)
, (9.6)

where ΠQ̃ denotes the orthogonal projection onto Q̃ := L2(Ω); the particular choice for the

pressure space Q̃ originates from the expected regularity, cf. Lemma 3.1.
Finally, we define the minimization formulation for time step n: Given (un−1, qn−1, pn−1) ∈

Vn−1 × Zn−1 × Q̃, set θn−1 := 1
M p

n−1 + α∇ · un−1, and define (un, qn, pn) ∈ Vn × Zn × Q̃ as
solution to

(un, qn) := arg min
(u,q)∈Vn×Zn

E∆t
tot(θ

n−1;u, q), (9.7)

pn := ΠQ̃
(
M(θn−1 + ∆t qnθ −∆t∇ · qn − α∇ · un)

)
, (9.8)

where

E∆t
tot(θ

n−1;u, q) := 1
2 〈Cε(u) , ε(u)〉+ ∆t

2

〈
κ−1q, q

〉

+ M
2

∥∥ΠQ̃(θn−1 + ∆t qnθ −∆t∇ · q − α∇ · u)
∥∥2

− Pnext,mech(u)−∆tPnext,fluid(q).

The minimization problem is strictly convex and the projection is well-defined; existence and
uniqueness of a solution to (11.1)–(11.2) follow by classical results from convex analysis, cf.
Thm. A.2. Furthermore, it is simple to verify that the corresponding optimality conditions yield
the classical three-field formulation of time-discrete, linear poro-elasticity, cf. Sec. 9.2.1.

Remark 9.2 (Constrained minimization formulation). Based on the inherent double saddle
point structure of the three-field formulation, alternatively a non-block-separable minimization
formulation, constrained by mass conservation, could be utilized, similar to Sec. 9.1.3. This
would allow in particular for the discussion of the incompressible case M =∞. However, unlike
for M ∈ (0,∞), it becomes evident that inf-sup stability is required for the uniqueness of weak
solutions.

9.1.5 Five-field formulation of time-discrete linear poro-elasticity

So far, no minimization formulation presented above lays a foundation for a fully structure-
preserving, conforming Galerkin finite element discretization, which is conserving locally both
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mass and linear momentum. In order to achieve this, a fully mixed five-field formulation can
be used, i.e., mixed formulations for both the mechanical and the fluid flow subproblems, cf.,
e.g., [59, 33, 32]. Consequently, both independent subproblems incorporate themselves a saddle
point structure; however, different to the two- and three-field formulations, the coupling of the
two subproblems is symmetric.

After all, we combine ideas from previous sections and state a minimization formulation cor-
responding to the five-field formulation. In particular, starting from the dual formulation (9.1.2),
we add the volumetric flux q as variable and impose Darcy’s law as constraint. For fixed each
time step n, we define a suitable product space for the fluid flow variables

Fn :=

{
(q, p) ∈ Zn × Q̃

∣∣∣∣
〈
κ−1q, z

〉
− 〈p,∇ · z〉

= 〈gnext, z〉 − 〈pnΓ, z · n〉Γp ∀z ∈ Z0

}
.

Finally, the minimization formulation reads: Given (σn−1, qn−1, pn−1) ∈ Sn−1 × Fn−1, set
θn−1 := 1

M p
n−1 +α tr

(
A(σn−1 + αpn−1I)

)
, and define (σn, qn, pn) ∈ Sn×Fn to be the solution

of the minimization problem

(σn, qn, pn) := arg min
(σ,q,p)∈Sn×Fn

E?,∆ttot (θn−1;σ, q, p), where (9.9)

E?,∆ttot (θn−1;σ, q, p) :=1
2 〈A(σ + αpI),σ + αpI〉+ 1

2M ‖p‖
2

+ ∆t
2

〈
κ−1q, q

〉
−
〈
θn−1 + ∆t qnθ , p

〉
− 〈unΓ,σn〉Γu .

Since the energy E?,∆ttot is strictly convex and the feasible set Sn ×Fn is non-empty and convex,
existence and uniqueness of a solution to (9.9) follow by classical results from convex analysis, cf.
Thm. A.2. We refer to Sec. 9.2.2 for the derivation of the corresponding optimality conditions.
We emphasize, that well-posedness also follows in the extreme case of an incompressible fluid,
as long as Z0 × Q̃ is inf-sup stable such that Fn is essentially constrained by a one-dimensional
relation.

9.2 Optimality conditions

For each of the minimization formulations of the linear Biot equations presented in Sec. 9.1.1–
9.1.5, the corresponding optimality conditions can be derived as the first variation. Constraints
are handled via the method of Lagrange multipliers. For better illustration of the undrained
and fixed-stress split in the following section, we derive the three-field and five-field formulation
of the linear Biot equations below.

9.2.1 Three-field formulation of the linear Biot equations derived from minimiza-
tion

We consider the minimization formulation of the linear Biot equations from Sec. 9.1.4. We recall
that the mechanical displacement and volumetric flux (un, qn) are determined by minimization
and the pressure pn is defined using a post-processing. Hence, by definition of pn ∈ Q̃ and the
orthogonal projection ΠQ̃, it holds

〈
MΠQ̃(θn−1 + ∆t qnθ −∆t∇ · qn − α∇ · un) , ΠQ̃(α∇ · v)

〉
= α 〈pn,∇ · v〉 ,

〈
MΠQ̃(θn−1 + ∆t qnθ −∆t∇ · qn − α∇ · un) , ΠQ̃(∆t∇ · z)

〉
= ∆t 〈pn,∇ · z〉

for all (v, z) ∈ V0 × Z0. From that, the optimality conditions for (un, qn) and the definition of
pn read for all (v, z, q) ∈ V0 ×Z0 × Q̃

〈Cε(un) , ε(v)〉 − α 〈pn,∇ · v〉 = Pnext,mech(v), (9.10)
〈
κ−1qn, z

〉
− 〈pn,∇ · z〉 = Pnext,fluid(z), (9.11)

1
M 〈pn, q〉+ α 〈∇ · un, q〉+ ∆t 〈∇ · qn, q〉 =

〈
θn−1 + ∆t qnθ , q

〉
, (9.12)
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which yields the classical three-field formulation of the linear Biot equations.

9.2.2 Five-field formulation of the linear Biot equations derived as optimality con-
ditions

We consider the minimization formulation of the linear Biot equations from Sec. 9.1.5. First,
we define function spaces for the stress variable

S̃n =
{
σ ∈ H(div; Ω)d

∣∣σn = σnΓ,n on Γσ

}
,

S̃0 =
{
σ ∈ H(div; Ω)d |σn = 0 on Γσ

}
.

Additionally, we introduce the mechanical displacement u ∈ L2(Ω), the rotation ζ ∈ QAS and
an artificial fluid flux q̃ ∈ Zn as Lagrange multipliers. A suitable Lagrangian, incorporating the
balance of linear momentum, weak symmetry of the stress tensor and Darcy’s law, is given by

L(θn−1;σ, q, p,u, ζ, q̃) := E?,∆ttot (θn−1;σ, q, p) + 〈∇ · σ + fnext,u〉+ 〈σ, ζ〉
−∆t

(〈
κ−1q, q̃

〉
− 〈p,∇ · q̃〉 − 〈gnext, q̃〉+ 〈pnΓ, q̃ · n〉Γp

)
.

For the isotropic case, the corresponding saddle point (σ,u, ζ, p, q̃, q) ∈ S̃n ××L2(Ω)×QAS ×
Q̃ × Zn ×Zn (omitting the index n) is characterized by

〈Aσ, τ 〉+ 〈u,∇ · τ 〉+ 〈ζ, τ 〉+ α
dKdr

〈p, tr τ 〉 = 〈unΓ, τn〉Γu , (9.13)

〈∇ · σ,v〉 = −〈fnext,v〉 , (9.14)

〈σ,γ〉 = 0, (9.15)
(

1
M + α2

Kdr

)
〈p, q〉+ α

dKdr
〈trσ, q〉+ ∆t 〈∇ · q̃, q〉 =

〈
θn−1 + ∆t qnθ , q

〉
, (9.16)

〈
κ−1q, z̃

〉
−
〈
κ−1q̃, z̃

〉
= 0, (9.17)

〈
κ−1q, z

〉
− 〈p,∇ · z〉 = 〈gnext, z〉 − 〈pnΓ, z · n〉Γp . (9.18)

for all variations (τ ,v,γ, q, z̃, z) ∈ S̃0 ×L2(Ω)×QAS × Q̃ × Z0 ×Z0. The artificial volumetric
flux q̃ can be identified with the actual volumetric flux q, which finally yields the five-field
formulation of the linear Biot equations.

9.3 Consequences for fully-discrete approximations

Exemplarily for all sections in Part II, we comment: The various minimization formulations
of semi-discrete linear poro-(visco-thermo-)elasticity can be discretized in space by the finite
element method using the conforming Galerkin method. Well-posedness of the different fully-
discrete formulations follows then by the same arguments as for their semi-discrete versions. For
variants described by constrained minimization, the need for inf-sup stable finite element pairs
immediately translates from the continuous to the discrete setting in order to ensure non-empty
feasible sets subject to one-dimensional constraints, and thereby strict convexity of the energies.

We note, the discussion on efficient splitting schemes for linear poro-(visco-thermo-)elasticity
can be equally based on the semi- as well as the corresponding fully-discrete approximations.

9.4 Classical splitting schemes derived as alternating minimization

Summarizing the previous subsections: Time-discrete, linear poro-elasticity can be formulated as
strictly convex, quadratic minimization problem, possibly subject to affine constraints depending
on the choice of primary variables. By applying the conforming Galerkin method, the same
translates to corresponding fully-discrete approximations. Various strategies can be applied to
solve the resulting fully-discrete minimization problem numerically. We mention three:
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(i) The corresponding optimality conditions are derived as in Sec. 9.2 and are solved in a
monolithic fashion.

(ii) Popular in the poro-elasticity community, the coupled optimality conditions are solved
using an iterative splitting scheme, decoupling the mechanics and fluid flow subproblems,
cf., e.g., [35, 48, 37, 39, 41].

(iii) Based on the minimization formulation, some (inexact) minimization algorithm from the
vast convex optimization literature, cf., e.g., [53, 58] is applied. In the poro-elasticity
literature, such an approach has not yet been pursued.

Conforming simultaneously with options (ii) and (iii), we propose applying classical (exact)
alternating minimization for solving linear poro-elasticity. Alternating minimization is equiva-
lent to a two-block coordinate descent method as well as a successive two-subspace correction
method for orthogonal space decompositions, alternating between minimizing the energy wrt.
two different blocks of variables while constantly updating the complementary block. Partition-
ing the set of primal variables into a block of mechanical variables and a block of flow variables,
yields a splitting scheme conforming with (ii).

As resulting schemes, we in fact obtain the previously introduced and now widely used
undrained split and fixed-stress split, cf., e.g., [35, 48]. Originally, they have been physically
motivated as predictor-corrector methods: For the undrained split, in the predictor step, the
mechanical subproblem is solved under undrained conditions; in the corrector step, the unaltered
fluid flow problem is solved with updated mechanical variables. Instead, for the fixed-stress
split, in the predictor step, the fluid flow subproblem is solved under fixed volumetric stress;
in the corrector step, the unaltered mechanics subproblem is solved. In order to explain their
robustness and convergence properties, so far problem-specific analyses have been required, cf.,
e.g., [37, 41, 30, 72].

Originally, physically motivated, they are now endowed with a simple, mathematical intu-
ition, providing an immediate understanding on their robust convergence properties. Alternating
minimization exhibits guaranteed robustness under fairly weak assumptions; cf. [54, 75, 70, 71]
from the perspective of block coordinate descent methods, or [76, 77, 78] from the perspective
of successive subspace correction methods. Furthermore, under stronger convexity and conti-
nuity assumptions on the energy, theoretical convergence rates can be analyzed using abstract
theory [79]. By improving the abstract result from the aforementioned work to constrained min-
imization problems in infinite dimensions, cf. Appendix B, we establish theoretical convergence
rates for the undrained split and fixed-stress split consistent with problem-specific analyses in
the literature, cf., e.g., [37, 41, 30, 72].

9.4.1 Derivation and analysis of the undrained split as alternating minimization

In this section, we identify the widely used undrained split [35] as alternating minimization ap-
plied to the primal two-field formulation of time-discrete, linear poro-elasticity, cf. Sec. 9.1.1. As
the primal formulation is less frequently used in the literature, we illustrate the resulting scheme
in the following with reference to the closely related three-field formulation, cf. Sec. 9.1.4. We
note the undrained split can be in fact equivalently derived based on the three-field formulation,
but the analysis requires unnecessarily more involved notation.

Alternating minimization is applied respecting the natural block structure of the problem,
cf. Alg.1 for a single iteration. The first step is equivalent to solving a stabilized mechanics
problem, cf. (9.10): For given (un,i−1, qn,i−1) ∈ Vn×Zn, find un,i ∈ Vn satisfying for all v ∈ V0

〈
Cε
(
un,i

)
, ε(v)

〉
+
〈
Mα2 tr ε

(
un,i − un,i−1

)
, tr ε(v)

〉

−α
〈
pn,i−1,∇ · v〉 = Pnext,mech(v),
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Algorithm 1: Single iteration of the undrained split

1 Input: (un,i−1, qn,i−1) ∈ Vn ×Zn

2 Determine un,i := arg min
u∈Vn

E∆t
tot(θ

n−1;u, qn,i−1)

3 Determine qn,i := arg min
q∈Zn

E∆t
tot(θ

n−1;un,i, q)

where the pressure pn,i−1 is formally defined, consistent with (4.6),

pn,i−1 := M
(
θn−1 + ∆t qnθ −∆t∇ · qn,i−1 − α∇ · un,i−1

)
.

The second step is equivalent to solving the fluid flow problem (9.11)–(9.12) with updated
mechanical variables.

We highlight that the final iterative scheme is equivalent to the undrained split for linear poro-
elasticity. We establish convergence employing an abstract convergence result for alternating
minimization leading to consistent previous problem-specific discussions [37, 30].

Lemma 9.1 (Linear convergence of the undrained split). The undrained split converges lin-
early, independent of the initial guess. Let Un := (un, qn) denote the solution of the coupled
problem (9.3) and let Un,i := (un,i, qn,i) denote the iterates defined by the undrained split, cf.
Alg. 1. For i ∈ N, define the errors en,iu := un,i − un, en,iq := qn,i − qn. Let ||| · ||| denote the
norm induced by the quadratic part of E∆t

tot

|||(u, q)|||2 := 1
2 〈Cε(u) , ε(u)〉+ ∆t

2

〈
κ−1q, q

〉
+ M

2 ‖∆t∇ · q + α∇ · u‖2 .

And let K?
dr ≥ Kdr be largest constant such that

K?
dr‖tr ε(v)‖2 ≤ 〈Cε(v) , ε(v)〉 , ∀v ∈ V0. (9.19)

It holds the a priori result

∣∣∣∣∣∣(en,iu , en,iq )
∣∣∣∣∣∣ ≤




α2

K?
dr

1
M + α2

K?
dr



i

(
En,0 − En

)1/2
, (9.20)

and the a posteriori result

∣∣∣∣∣∣(en,iu , en,iq )
∣∣∣∣∣∣ ≤

(
1 +

α2

K?
dr

M

) (
En,i−1 − En,i

)1/2
, (9.21)

where En := E∆t
tot(θ

n−1;Un), and En,j := E∆t
tot(θ

n−1;Un,j), j ∈ N.

Proof. We apply Lemma B.1. For this, we introduce two semi-norms

‖U‖21,∆t := 〈Cε(u) , ε(u)〉 ,

‖U‖22,∆t := ∆t
〈
κ−1q, q

〉
+ ∆t2

(
1
M + α2

K?
dr

)−1
‖∇ · q‖2 .

We show that E∆t
tot is (i) strongly convex wrt. ‖ · ‖1,∆t and ‖ · ‖2,∆t, (ii) ∇uE∆t

tot is Lipschitz
continuous wrt. ‖ ·‖1,∆t, and (iii) ∇qE∆t

tot is Lipschitz continuous ‖ ·‖2,∆t. Throughout the proof,
for lighter notation, we omit the explicit dependence of E∆t

tot on θn−1.
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(i) Strong convexity of E∆t
tot. Let Ui = (vi, zi) ∈ Vn × Zn, i = 1, 2. As E∆t

tot is quadratic, it
holds

〈∇E∆t
tot(U1)−∇E∆t

tot(U2),U1 −U2

〉
= 2 |||U1 −U2|||2 .

Clearly, 2 |||U |||2 ≥ ‖U‖21,∆t. By applying Young’s inequality with optimally balanced weights
and using (9.19), one can show for all (u, q) ∈ V0 ×Z0

〈Cε(u) , ε(u)〉+M ‖∆t∇ · q + α∇ · u‖2 ≥ −
α2

K?
dr

1
M + α2

K?
dr

‖∆t∇ · q‖2 . (9.22)

Hence, 2 |||U1 − U2|||2 ≥ ‖U1 −U2‖22,∆t. All in all, E∆t
tot is strongly convex wrt. ‖ · ‖i,∆t with

constant σi = 1, i = 1, 2.

(ii) Lipschitz continuity of ∇uE∆t
tot. Let U = (v, z) ∈ Vn ×Zn. It holds

sup
h∈V0

〈∇uE∆t
tot (U + (h,0))−∇uE∆t

tot(U), (h,0)
〉

‖(h,0)‖21,∆t

= sup
h∈V0

〈Cε(h) , ε(h)〉+Mα2‖∇ · h‖2
〈Cε(h) , ε(h)〉

≤ 1 +
Mα2

K?
dr

,

where we used (9.19). All in all, ∇uE∆t
tot is Lipschitz continuous wrt. ‖ · ‖1,∆t with Lipschitz

constant L1 = 1 + Mα2

K?
dr

.

(iii) Lipschitz continuity of ∇qE∆t
tot. Let U = (v, z) ∈ Vn ×Zn. It holds

sup
h∈Z0

〈∇qE∆t
tot (U + (0,h))−∇qE∆t

tot(U), (0,h)
〉

‖(0,h)‖22,∆t

= sup
h∈Z0

∆t
〈
κ−1h,h

〉
+ ∆t2M‖∇ · h‖2

∆t 〈κ−1h,h〉+ ∆t2
(

1
M + α2

K?
dr

)−1
‖∇ · h‖2

≤ 1 +
Mα2

K?
dr

.

All in all, ∇qE∆t
tot is Lipschitz continuous wrt. ‖ · ‖2,∆t with Lipschitz constant L2 = 1 + Mα2

K?
dr

.

Consequences. By Lemma B.1, it follows

E∆t
tot(U

n,i)− E∆t
tot(U

n) ≤
(

1− 1
L1

)(
1− 1

L2

) (
E∆t

tot(U
n,i−1)− E∆t

tot(U
n)
)
,

E∆t
tot(U

n,i)− E∆t
tot(U

n) ≤ L1L2

(
E∆t

tot(U
n,i−1)− E∆t

tot(U
n,i)
)
.

Moreover, as E∆t
tot is quadratic and ∇E∆t

tot(U
n) = 0, it holds

E∆t
tot(U

n,i)− E∆t
tot(U

n) =
∣∣∣∣∣∣(en,iu , en,iq )

∣∣∣∣∣∣2 .

The results (9.20) and (9.21) follow directly.

Remark 9.3. We emphasize that K?
dr in (9.19) enters only the theoretical result, and exact

knowledge is not required for practical use of the splitting scheme.
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9.4.2 Derivation and analysis of the fixed-stress split as alternating minimization

In this section, we identify the widely used fixed-stress split [35] as alternating minimization
applied to the dual formulation of time-discrete, linear poro-elasticity, cf. Sec. 9.1.2. In the
following, the resulting scheme is illustrated with reference to the closely related five-field for-
mulation, cf. Sec. 9.1.5; in fact the five-field formulation (Sec. 9.1.5) can be equally used as basis
leading to the same scheme.

Algorithm 2: Single iteration of the fixed-stress split

1 Input: (σn,i−1, pn,i−1) ∈ Sn ×Qn

2 Determine pn,i := arg min
p∈Qn

E?,∆ttot (θn−1;σn,i−1, p)

3 Determine σn,i := arg min
σ∈Sn

E?,∆ttot (θn−1;σ, pn,i)

Alternating minimization is applied respecting the natural block structure of the dual prob-
lem, cf. Alg. 2 for a single iteration. It is important to note that the problem is block separable;
constraints decouple into purely mechanical and fluid flow constraints. Hence, alternating min-
imization can be applied without violating constraints. The first step is equivalent to solving a
stabilized flow problem, cf. (9.16) –(9.18): For given (σn,i−1, pn,i−1) ∈ Sn ×Qn, find pn,i ∈ Qn
satisfying for all q ∈ Q0

1
M

〈
pn,i, q

〉
+
〈
α2 (I : A : I)

(
pn,i − pn,i−1

)
, q
〉

(9.23)

+ α
〈
tr εn,i−1

u , q
〉

+ ∆t
〈∇ · qn,i, q〉 =

〈
θn−1 + ∆t qnθ , q

〉
, (9.24)

where we have formally abbreviated the mechanical strain and the volumetric flux, consistent
with (3.7) and Darcy’s law

εn,iu := A(σn,i + αpn,i I),

qn,i := −κ
(∇pn,i − gnext

)
.

For an isotropic, homogeneous material, the stabilization term equals

α2

Kdr

〈
pn,i − pn,i−1, q

〉
.

The second step is equivalent to solving the mechanics problem with updated fluid flow variables,
cf. (9.13)–(9.15).

We highlight that the resulting scheme is equivalent to the fixed-stress split for linear poro-
elasticity. As for the undrained split, we establish convergence based on an abstract convergence
result for alternating minimization. After all, the following convergence result is consistent with
results based on previous problem-specific a priori error analyses [37, 41, 72] and an a posteriori
error analysis based on Ostrowski-type estimates for contraction mappings [80].

Lemma 9.2 (Linear convergence of the fixed-stress split). The fixed-stress split converges lin-
early, independent of the initial guess. Let Σn := (σn, pn) denote the solution of the coupled
problem (9.4) and let Σn,i := (σn,i, pn,i) denote the iterates defined by the fixed-stress split, cf.
Alg. 2. For i ∈ N, define the errors en,iσ := σn,i − σn, en,ip := pn,i − pn. Let ||| · |||? denote the

norm induced by the quadratic part of E?,∆ttot

|||(σ, p)|||2? := 1
2 〈A(σ + αpI),σ + αpI〉+ 1

2M ‖p‖2 + ∆t
2 〈κ∇p,∇p〉 .
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It holds the a priori result

∣∣∣∣∣∣(en,iσ , en,ip )
∣∣∣∣∣∣
?
≤




α2

Kdr

1
M + ∆t κm

C2
Ω

+ α2

Kdr



i

(
En,0 − En

)1/2
, (9.25)

and the a posteriori result

∣∣∣∣∣∣(en,iσ , en,ip )
∣∣∣∣∣∣
?
≤
(

1 +
α2

Kdr

(
1
M + ∆tκm

C2
Ω

)−1
)(
En,i−1 − En,i

)1/2
(9.26)

where En := E?,∆ttot (θn−1; Σn) and En,j := E?,∆ttot (θn−1; Σn,j), j ∈ N, and CΩ and κm denote the
Poincaré constant and the smallest eigenvalue of κ, respectively.

Proof. We apply Lemma B.1. For this, we introduce two semi-norms

‖Σ‖21,?,∆t := 1
M ‖p‖2 + ∆t 〈κ∇p,∇p〉 ,

‖Σ‖22,?,∆t := 〈Aσ,σ〉 −
α2

Kdr

1
M + ∆tκm

C2
Ω

+ α2

Kdr

1

Kdr
‖σh‖2,

where σh denotes the hydrostatic component of σ. Positive semi-definiteness of ‖ ·‖2,?,∆t follows

from (3.20). We show that E?,∆ttot is (i) strongly convex wrt. ‖ · ‖1,?,∆t and ‖ · ‖2,?,∆t, (ii) ∇pE?,∆ttot

is Lipschitz continuous wrt. ‖ · ‖1,?,∆t, and (iii) ∇σE?,∆ttot is Lipschitz continuous ‖ · ‖2,?,∆t.
Throughout the proof, for lighter notation, we omit the explicit dependence of E?,∆ttot on θn−1.

(i) Strong convexity of E?,∆ttot . Let Σi = (σi, pi) ∈ Sn ×Qn, i = 1, 2. As E?,∆ttot is quadratic,
it holds

〈
∇E?,∆ttot (Σ1)−∇E?,∆ttot (Σ2),Σ1 −Σ2

〉
= 2 |||Σ1 −Σ2|||2? .

It follows directly, that 2 |||Σ1 −Σ2|||2? ≥ ‖Σ1 −Σ2‖21,?,∆t. Furthermore, utilizing the Poincaré
inequality and decomposing the stress into its deviatoric and hydrostatic components, we obtain
for all (σ, p) ∈ S̃0 ×Q0

2 |||Σ|||2? ≥ 〈A(σ + αp I),σ + αp I〉+
(

1
M + ∆tκm

C2
Ω

)
‖p‖2 (9.27)

= 〈Aσ,σ〉+ 2 α
Kdr
〈σh, p〉+

(
1
M + ∆tκm

C2
Ω

+ α2

Kdr

)
‖p‖2

≥ ‖Σ‖22,?,∆t.

By applying Young’s inequality adequately and rearranging terms, we obtain 2 |||Σ1 −Σ2|||2? ≥
‖Σ1−Σ2‖22,?,∆t. All in all, E?,∆ttot is strongly convex wrt. ‖ · ‖i,?,∆t with constant σi = 1, i = 1, 2.

(ii) Lipschitz continuity of ∇pE?,∆ttot . Let Σ = (σ, p) ∈ Sn ×Qn. It holds

sup
h∈Q0

〈
∇pE?,∆ttot (Σ + (0, h))−∇pE?,∆ttot (Σ), (0, h)

〉

‖(0, h)‖21,?,∆

= sup
h∈Q0

α2

Kdr
‖h‖2 + ‖(0, h)‖21,?,∆
‖(0, h)‖21,?,∆

.
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Decomposing and bounding ‖h‖ optimally by ‖h‖ and ‖∇h‖, using the Poincaré inequality, we
obtain

‖h‖2 ≤
(

1

M
+

∆tκm

C2
Ω

)−1

‖(0, h)‖21,?,∆t.

All in all, ∇pE?,∆ttot is Lipschitz continuous wrt. ‖ · ‖1,?,∆t with Lipschitz constant L1 = 1 +

α2

Kdr

(
1
M + ∆tκm

C2
Ω

)−1
.

(iii) Lipschitz continuity of ∇σE?,∆ttot . Let Σ = (σ, p) ∈ Sn ×Qn. It holds

sup
h∈S̃0

〈
∇σE?,∆ttot (Σ + (h, 0))−∇σE?,∆ttot (Σ), (h, 0)

〉

‖(h, 0)‖22,?,∆

= sup
h∈S̃0

1
2µ‖hd‖2 + 1

Kdr
‖hh‖2

1
2µ‖hd‖2 + 1

Kdr


1−

α2

Kdr

1
M +

∆tκm

C2
Ω

+
α2

Kdr


 ‖hh‖2

.

We conclude, that ∇σE?,∆ttot is Lipschitz continuous wrt. ‖ · ‖2,?,∆t with Lipschitz constant L2 =

1 + α2

Kdr

(
1
M + ∆tκm

C2
Ω

)−1
.

Consequences. By Lemma B.1, it follows

E?,∆ttot (Σn,i)− E?,∆ttot (Σn) ≤
(

1− 1
L1

)(
1− 1

L2

)(
E?,∆ttot (Σn,i−1)− E?,∆ttot (Σn)

)
,

E?,∆ttot (Σn,i)− E?,∆ttot (Σn) ≤ L1L2

(
E?,∆ttot (Σn,i−1)− E?,∆ttot (Σn,i)

)
.

Moreover, since E?,∆ttot is quadratic and
〈
∇E?,∆ttot (Σn),Σ−Σn

〉
≥ 0 for all Σ ∈ S̃n×Qn, it holds

E?,∆ttot (Σn,i)− E?,∆ttot (Σn) ≥
∣∣∣∣∣∣(en,iσ , en,ip )

∣∣∣∣∣∣2
?
.

The results (9.25) and (9.26) follow directly.

9.4.3 General remarks and implications

We close the section on splitting schemes for linear poro-elasticity with general remarks. Most
remain true for the subsequent sections.

(i) Order of minimization steps: The order of the steps within the alternating minimization
algorithm is not relevant for robust convergence; however, we have chosen the specific
orders as above to demonstrate the closer connection to the undrained and the fixed-stress
splits.

(ii) Splitting schemes for particular formulation of the semi-discrete Biot equations: The dif-
ferent, presented minimization formulations in Sec. 9.1.1–9.1.5 are all equivalent. Hence,
for each specific formulation a splitting scheme can be constructed by equivalent reformu-
lation of the splitting schemes presented above.

(iii) Splitting schemes for fully-discrete linear Biot equations: Fully-discrete Biot equations can
be constructed by applying the conforming Galerkin method to the different minimization
formulations from Sec. 9.1.1–9.1.5. In contrast to (ii), they are not equivalent. Hence, for a
particular fully-discrete formulation, splitting schemes are derived from their corresponding
semi-discrete versions, cf. (ii).
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(iv) Stable spatial discretization under splitting: In practice it has been observed for the two-
field saddle point formulation that inf-sup unstable pairs of finite elements are actually
robust under the fixed-stress split [81]. Given that the fixed-stress split is equivalent
to a two-block coordinate descent method, which converges already provided that each
of the subproblems is uniquely solvable [70], this observation can now be theoretically
explained. After all, it is nevertheless noteworthy that inf-sup stability can be beneficial
for the performance of the fixed-stress split when applied to problems with a saddle point
structure; e.g., for the two-field saddle point formulation, inf-sup stability adds artificial
compressibility [72].

(v) Different meshes for different subproblems: The discussion in (v) also explains intuitively
why splitting schemes allow the use of different meshes for different subproblems, with-
out losing robustness [82]. In particular, the minimization structure allows for a natural
development of specific two-mesh formulations retaining the symmetric character of the
problem.

(vi) Heterogeneous, anisotropic media: The minimization structure of time-discrete poro-elasticity
remains inherent for heterogeneous, anisotropic media. Consequently, alternating mini-
mization can be again employed for constructing robust splitting schemes. In particular,
convergence properties of the undrained split and fixed-stress split are retained, consistent
with problem-specific analyses [41, 83].

(vii) Inexact alternating minimization: Clearly, instead of employing exact alternating mini-
mization, each step may be also solved inexactly. As long as the energy is sufficiently
decreased, convergence is still guaranteed. This allows for a more efficient implementation
of splitting schemes employing, e.g., iterative solvers with coarse stopping criteria for each
subproblem.

We will return to points (ii), (iii), and (vii) in the numerical examples in Sec. 14.

10 Robust splitting schemes for discrete linear poro-visco-elasticity

In the previous section, popular splitting schemes for linear poro-elasticity have been identified
as alternating minimization applied to suitable minimization formulations of semi-discrete, linear
poro-elasticity. In this section, we apply the same workflow, cf. Fig 1, and analogously derive
novel extensions of the undrained and fixed-stress splits, now applicable to semi-discrete, linear
poro-visco-elasticity. In this regard, we additionally establish for the first time guaranteed, linear
convergence rates utilizing abstract optimization theory. After all, the key observation for the
following efforts is the fact that semi-discrete, linear poro-visco-elasticity is a vectorized version
of semi-discrete, linear poro-elasticity. Consequently, the subsequent discussion appears as a
natural extension of Sec. 9. To highlight the analogy, we attempt to employ visually related
notation.

10.1 Minimization formulations of time-discrete linear poro-visco-elasticity

We introduce two minimization formulations of time-discrete, linear poro-visco-elasticity. We
obtain the primal formulation by applying the minimizing movement scheme to the primal for-
mulation of time-continuous, linear poro-visco-elasticity (Sec. 4). A dual formulation is then pro-
posed based on the close, structural connection between poro-visco-elasticity and poro-elasticity.
Both formulations will serve as bases for the development of robust splitting schemes.
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10.1.1 Primal formulation of time-discrete linear poro-visco-elasticity

The primal formulation of time-discrete, linear poro-visco-elasticity is directly obtained by apply-
ing the minimizing movement scheme to linear poro-visco-elasticity (4.1). By gathering terms,
the resulting formulation can be interpreted as vectorized version of the primal formulation of
time-discrete, linear poro-elasticity with a tensorial stiffness matrix (of sixth order) and Biot
coefficient

Cv :=

[
[r]1 −1
−1 1

]
⊗ C +

[
0 0
0 1

]
⊗
(
Cv + 1

∆tC
′
v

)
, αv :=

[
α

αv − α

]
,

such that for arbitrary ε1, ε2 ∈ Rd×d,
[
ε1

ε2

]
is a third-order tensor and it holds

Cv :

[
ε1

ε2

]
=

[
C (ε1 − ε2)

−C (ε1 − ε2) +
(
Cv + 1

∆tC
′
v

)
ε2

]
,

(αv ⊗ I) :

[
ε1

ε2

]
= α>v

[
tr ε1

tr ε2

]
.

Let the spaces Vn and Zn be as defined in (9.1)–(9.2), and define additionally T n := T . We
obtain the time-discrete, primal formulation: For time step n ≥ 1, given θn−1, εn−1

v , define
(un, εnv , q

n) ∈ Vn × T n ×Zn to be the solution of the minimization problem

(un, εnv , q
n) := arg min

(u,εv,q)∈Vn×T n×Zn
E∆t

v,tot(θ
n−1, εn−1

v ;u, εv, q), (10.1)

where

E∆t
v,tot(θ

n−1, εn−1
v ;u, εv, q)

:= 1
2

〈
Cv :

[
ε(u)
εv

]
,

[
ε(u)
εv

]〉
+ ∆t

2

〈
κ−1q, q

〉

+ M
2

∥∥∥∥θn−1 + ∆t qnθ −∆t∇ · q − (αv ⊗ I) :

[
ε(u)
εv

]∥∥∥∥
2

− Pnext,mech(u)−
〈

1
∆tC

′
vε
n−1
v , εv

〉
−∆tPnext,fluid(q),

and set θn := θn−1 + ∆t qnθ −∆t∇ · qn. Since the minimization problem is strictly convex and
coercive, existence and uniqueness of a solution to (10.1) follow by classical results from convex
analysis, cf. Thm. A.2.

Remark 10.1 (Explicit reduction to linear poro-elasticity). The first variation of E∆t
v,tot(θ

n−1, εn−1
v ;u, εv, q)

wrt. εv can be locally inverted for εv. Consequently, the coupled problem (10.1) can be easily
reduced to a problem for (u, q). This allows in particular for reusing code written for linear
poro-elasticity.

10.1.2 Dual formulation of time-discrete linear poro-visco-elasticity

By adopting the analogy between the primal and dual formulations of time-discrete, linear poro-
elasticity (Sec. 9) to its vectorized form, we introduce a natural dual minimization formulation
of time-discrete, linear poro-visco-elasticity. Based on the corresponding primal formulation
written as vectorized Biot equations (Sec. 10.1.1), we introduce natural dual variables (σ,σv, p):
a pair of stresses (σ,σv), consisting of the total stress σ and a stress-type field σv enforcing the
visco-elastic strain, and a fluid pressure p, formally related to the primal variables by

[
σ
σv

]
= Cv :

([
ε(u)
εv

]
− (αv ⊗ I) p

)
, (10.2)

p = M

(
θn−1 + ∆t qnθ −∆t∇ · q − (αv ⊗ I) :

[
ε(u)
εv

])
. (10.3)
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Analogous to linear poro-elasticity, constrained function spaces for the stress variables are
used, with the constraints dictated by the primal formulation. Formally, it holds σv = 1

∆tC
′
vε
n−1
v .

Hence, given εn−1
v , we set

Snv :=
{

1
∆tC

′
vε
n−1
v

}
. (10.4)

Then Sn × Snv ×Qn is a suitable function space for the dual variables (σ,σv, p).
Let Av := C−1

v denote the generalized compliance tensor. It satisfies for all σ,σv with
deviatoric components σd,σd

v and hydrostatic components σh, σh
v

〈
Av :

[
σ
σv

]
,

[
σ
σv

]〉
=

〈
(2M)−1 :

[
σd

σd
v

]
,

[
σd

σd
v

]〉
+

〈
K−1

[
σh

σh
v

]
,

[
σh

σh
v

]〉
(10.5)

analogous to (3.20), where 1 is the fourth-order identity tensor, and

M := µ

[
[r]1 −1
−1 1

]
⊗ 1 +

(
µv + 1

∆tµ
′
v

) [0 0
0 1

]
⊗ 1,

K := Kdr

[
[r]1 −1
−1 1

]
+
(
Kdr,v + 1

∆tK
′
dr,v

) [0 0
0 1

]
.

Then the dual formulation of time-discrete, linear poro-visco-elasticity for time step n ≥ 1
reads: Given (σn−1,σn−1

v , pn−1) ∈ Sn−1 × Sn−1
v ×Qn−1, set

θn−1 := 1
M p

n−1 + (αv ⊗ I) : Av :

([
σn−1

σn−1
v

]
+ (αv ⊗ I) pn−1

)
,

εn−1
v :=

[
0, I

] (Av :

([
σn−1

σn−1
v

]
+ (αv ⊗ I) pn−1

))
, (10.6)

and define (σn,σnv , p
n) ∈ Sn × Snv × Qn to be the solution of the block-separable, constrained

minimization problem

(σn,σnv , p
n) := arg min

(σ,σv,p)∈Sn×Snv×Qn
E?,∆tv,tot(θ

n−1;σ,σv, p), (10.7)

where

E?,∆tv,tot(θ
n−1;σ,σv, p) :=1

2

〈
Av :

([
σ
σv

]
+ (αv ⊗ I) p

)
,

[
σ
σv

]
+ (αv ⊗ I) p

〉

+ 1
2M ‖p‖2 + ∆t

2 〈κ (∇p− gnext) ,∇p− gnext〉
− 〈unΓ,σn〉Γu −

〈
θn−1 + ∆t qnθ , p

〉
− 〈qΓ,n, p〉Γq .

The minimization problem is strictly convex and the feasible set is non-empty and convex;
existence and uniqueness of a solution to (10.7) follow by classical results from convex analysis,
cf. Thm. A.2.

Remark 10.2 (Relations to previous formulations). Similar to the primal formulation, we
highlight the vectorized character of (10.7) compared to the dual formulation of time-discrete,
linear poro-elasticity (9.4). Furthermore, it is evident, that including σv as variable is redundant
as it is determined beforehand. Hence, in practice, an equivalent formulation can be obtained
by simple modification of the dual formulation of time-discrete poro-elasticity. Finally, along
the lines of the five-field formulation of time-discrete, linear poro-elasticity (Sec. 9.1.5), a fully
structure-preserving formulation can be also obtained for poro-visco-elasticity; for this essentially
a flux variable has to be included as primary variable, and Darcy’s law has to be enforced.
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10.2 Physical splitting schemes for time-discrete linear poro-visco-elasticity

Since time-discrete, linear poro-visco-elasticity is simply a vectorized generalization of time-
discrete, linear poro-elasticity, the robust undrained split and fixed-stress split for poro-elasticity
can be generalized to poro-visco-elasticity in a natural fashion. Again the detailed construction
and analysis of the splitting schemes utilizes the natural interpretation as alternating minimiza-
tion.

10.2.1 Undrained split for poro-visco-elasticity

We derive a robust splitting scheme by applying alternating minimization to the primal formu-
lation of time-discrete poro-visco-elasticity (10.1). As before, we choose to minimize successively
in the directions of the mechanical and fluid flow variables, cf. Alg. 3. The resulting scheme can
be identified as undrained split for poro-visco-elasticity.

Algorithm 3: Single iteration of the undrained split for poro-visco-elasticity

1 Input: (un,i−1, εn,i−1
v , qn,i−1) ∈ Vn × T n ×Zn

2 Determine (un,i, εn,iv ) := arg min
(u,εv)∈Vn×T n

E∆t
v,tot(θ

n−1, εn−1
v ;u, εv, q

n,i−1)

3 Determine qn,i := arg min
q∈Zn

E∆t
v,tot(θ

n−1, εn−1
v ;un,i, εn,iv , q)

As for linear poro-elasticity, the first step is equivalent to solving a stabilized mechanics
problem: For given (un,i−1, εn,i−1

v , qn,i−1) ∈ Vn×T n×Zn, find (un,i, εn,iv ) ∈ Vn×T n satisfying
for all (v, t) ∈ V0 × T

〈
Cv :

[
ε
(
un,i

)

εn,iv

]
,

[
ε(v)
t

]〉
+

〈
Mαvα

>
v

[
tr ε
(
un,i − un,i−1

)

tr
(
εn,iv − εn,i−1

v

)
]
,

[
tr ε(v)

tr t

]〉

−
〈

(αv ⊗ I) pn,i−1,

[
ε(v)
t

]〉
= Pnext,mech(v) +

〈
1

∆tC
′
vε
n−1
v , t

〉

where the pressure pn,i−1 is formally defined, consistent with (4.6),

pn,i−1 := M

(
θn−1 + ∆t qnθ −∆t∇ · qn,i−1 − (αv ⊗ I) :

[
ε
(
un,i−1

)

εn,i−1
v

])
.

We highlight a characteristic property: Tensorial stabilization is applied naturally. For instance,
the stabilization term equals

〈
M

[
α2 α(αv − α)

α(αv − α) (αv − α)2

] [
tr ε
(
un,i − un,i−1

)

tr
(
εn,iv − εn,i−1

v

)
]
,

[
tr ε(v)

tr t

]〉
.

The second step is equivalent to solving the corresponding fluid flow problem with updated
mechanical variables.

Global convergence follows immediately by abstract analysis on the two-block coordinate
descent method. Furthermore, theoretical convergence rates can be derived as for linear poro-
elasticity.

Lemma 10.1 (Linear convergence of the undrained split for poro-visco-elasticity). The undrained
split converges linearly, independent of the initial guess. Let (un, εnv , q

n) denote the solution of
the coupled problem (10.1) and let (un,i, εn,iv , qn,i) denote the iterates defined by the undrained
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split, cf. Alg. 3. For all i ∈ N, define the errors en,iu := un,i−un, en,iεv := εn,iv −εnv , en,iq := qn,i−qn.
Let ||| · ||| denote the norm induced by the quadratic part of E∆t

v,tot

|||(u, εv, q)|||2 := 1
2

〈
Cv :

[
ε(u)
εv

]
,

[
ε(u)
εv

]〉
+ ∆t

2

〈
κ−1q, q

〉

+ M
2

∥∥∥∥∆t∇ · q + (αv ⊗ I) :

[
ε(u)
εv

]∥∥∥∥
2

.

Let K?
dr as in (9.19), and A2

K,? := α2
v

Kdr,v+∆t−1K′dr,v
+ α2

K?
dr

. It holds the a priori result

∣∣∣∣∣∣(en,iu , en,iεv
, en,iq )

∣∣∣∣∣∣ ≤
(

A2
K,?

1
M +A2

K,?

)i (
En,0 − En

)1/2
, (10.8)

and the a posteriori result

∣∣∣∣∣∣(en,iu , en,iεv
, en,iq )

∣∣∣∣∣∣ ≤
(
1 +A2

K,?M
) (
En,i−1 − En,i

)1/2
, (10.9)

where

En := E∆t
v,tot(θ

n−1, εn−1
v ;un, εn,jv , qn),

En,j := E∆t
v,tot(θ

n−1, εn−1
v ;un,j , εn,jv , qn,j), j ∈ N.

Proof. We follow the same strategy as in the proof of Lemma 9.1. Due to the similarities,
we present only the main steps; we stress notation is attempted to look alike. We define two
semi-norms

‖(u, εv, q)‖2v,1,∆t :=

〈
Cv :

[
ε(u)
εv

]
,

[
ε(u)
εv

]〉
,

‖(u, εv, q)‖2v,2,∆t := ∆t
〈
κ−1q, q

〉
+ ∆t2

(
1
M +A2

K,?

)−1 ‖∇ · q‖2 .

(i) Strong convexity of E∆t
v,tot. The semi-norms ‖·‖v,i,∆t are chosen such that E∆t

v,tot is strongly
convex with constant σi = 1, i = 1, 2. This is trivial for ‖ · ‖v,1,∆t. For ‖ · ‖v,2,∆t, one has to
apply Young’s inequality and balance weights optimally, similar to (9.22); for this, (9.19) has to
be generalized: It holds

∥∥∥∥(αv ⊗ I) :

[
ε(u)
εv

]∥∥∥∥
2

= ‖αv tr εv + α tr(ε(u)− εv)‖2 (10.10)

≤ A2
K,?

(〈(
1

∆tC
′
v + Cv

)
εv, εv

〉
+ 〈C(ε(u)− εv), ε(u)− εv〉

)

= A2
K,?

〈
Cv :

[
ε(u)
εv

]
,

[
ε(u)
εv

]〉
, ∀(u, εv) ∈ V0 × T .

(ii) Lipschitz continuity of ∇(u,εv)E∆t
v,tot and ∇qE∆t

v,tot. By applying analogous steps as in

the proof of Lemma 9.1, one can show that ∇(u,εv)E∆t
v,tot and ∇qE∆t

v,tot are Lipschitz continuous
wrt. ‖ · ‖v,1,∆t and ‖ · ‖v,2,∆t, respectively, with Lipschitz constants L1 = L2 = 1 +MA2

K,?. For
the first, utilize (10.10).

Consequences. The final thesis follows from the abstract convergence result Lemma B.1, and
the fact that E∆t

v,tot is quadratic.

44



Algorithm 4: Single iteration of the fixed-stress split for poro-visco-elasticity

1 Input: (σn,i−1,σn,i−1
v , pn,i−1) ∈ Sn × Snv ×Qn

2 Determine pn,i := arg min
p∈Qn

E?,∆tv,tot(θ
n−1;σn,i−1,σn,i−1

v , p)

3 Determine (σn,i,σn,iv ) = arg min
(σ,σv)∈Sn×Snv

E?,∆tv,tot(θ
n−1;σ,σv, p

n,i)

10.2.2 Fixed-stress split for poro-visco-elasticity

We derive a second, robust splitting scheme by applying alternating minimization to the dual
formulation of time-discrete, linear poro-visco-elasticity (10.7). As before, we choose to minimize
successively in the directions of mechanical and fluid flow variables, cf. Alg. 4. The resulting
scheme can be interpreted as an fixed-stress split for poro-visco-elasticity.

The first step is equivalent to solving a stabilized flow problem: For given (σn,i−1,σn,i−1
v , pn,i−1) ∈

Sn × S̃n ×Qn, find pn,i ∈ Qn satisfying for all q ∈ Q0

1
M

〈
pn,i, q

〉
+
〈
(αv ⊗ I) : Av : (αv ⊗ I)

(
pn,i − pn,i−1

)
, q
〉

+

〈
(αv ⊗ I) :

[
εn,i−1

v

εn,i−1
u

]
, q

〉
+ ∆t

〈
κ
(∇pn,i − gnext

)
,∇q

〉
=
〈
θn−1 + ∆t qnθ , q

〉
,

where we formally abbreviate the total and visco-elastic strains at the previous iteration
[
εn,i−1
u

εn,i−1
v

]
:= Av :

([
σn,i−1

σn,i−1
v

]
+ (αv ⊗ I) pn,i−1

)
.

For homogeneous, isotropic materials, the stabilization term equals
〈
α>v K−1αv

(
pn,i − pn,i−1

)
, q
〉

=
(
α2

Kdr
+ α2

v
Kdr,v+∆t−1K′dr,v

) 〈
pn,i − pn,i−1, q

〉
.

The second step is equivalent to solving the mechanics problem with updated fluid flow variables.
Linear convergence can be established based on an abstract convergence result for alternating

minimization. Due to the structural similarities of semi-discrete, linear poro-visco-elasticity and
poro-elasticity, the following lemma reads as corollary of Lemma 9.2.

Lemma 10.2 (Linear convergence of the fixed-stress split for poro-visco-elasticity). The fixed-
stress split for poro-visco-elasticity converges linearly, independent of the initial guess. Let
(σn,σnv , p

n) denote the solution of the coupled problem (10.7) and let (σn,i,σn,iv , pn,i) denote the
iterates defined by the fixed-stress split, cf. Alg. 4. For i ∈ N, define the errors en,iσ := σn,i−σn,
en,iσv := σn,iv − σnv , en,ip := pn,i − pn. Let ||| · ||| denote the norm induced by the quadratic part of

E?,∆tv,tot

|||(σ,σv, p)|||2? := 1
2

〈
Av :

([
σ
σv

]
+ (αv ⊗ I) p

)
,

[
σ
σv

]
+ (αv ⊗ I) p

〉

+ 1
2M ‖p‖2 + ∆t

2 〈κ∇p,∇p〉 .

Let A2
K := α2

v
Kdr,v+∆t−1K′dr,v

+ α2

Kdr
. It holds the a priori result

∣∣∣∣∣∣(en,iσ , en,iσv
, en,ip )

∣∣∣∣∣∣
?
≤


 A2

K
1
M + ∆tκm

C2
Ω

+A2
K



i

(
En,0 − En

)1/2
,

45



and the a posteriori result

∣∣∣∣∣∣(en,iσ , en,iσv
, en,ip )

∣∣∣∣∣∣
?
≤
(

1 +A2
K

(
1
M + ∆tκm

C2
Ω

)−1
)(
En,i−1 − En,i

)1/2
,

where

En := E?,∆tv,tot(θ
n−1;σn,σnv , p

n),

En,j := E?,∆tv,tot(θ
n−1;σn,j ,σn,jv , pn,j), j ∈ N,

and CΩ denotes a Poincaré-like constant and κm is the smallest eigenvalue of κ.

Proof. We follow the same strategy as in the proof of Lemma 9.2. Due to the similarities,
we present only the main steps; we stress notation is attempted to like alike. We define two
semi-norms

‖(σ,σv, p)‖21,v,?,∆t := 1
M ‖p‖2 + ∆t 〈κ∇p,∇p〉 ,

‖(σ,σv, p)‖22,v,?,∆t :=

〈
Av :

[
σ
σv

]
,

[
σ
σv

]〉
− A2

K
1
M + ∆tκm

C2
Ω

+A2
K

〈
K−1

[
σd

σd
v

]
,

[
σd

σd
v

]〉
.

Positive semi-definiteness of ‖ · ‖2,v,?,∆t holds due to (10.5).

(i) Strong convexity of E?,∆tv,tot. The semi-norms ‖ · ‖i,v,?,∆t are chosen such that E?,∆tv,tot is
strongly convex with constant σi = 1, i = 1, 2. This is trivial for ‖ · ‖1,v,?,∆t. For ‖ · ‖2,v,?,∆t,
we employ an argument analogous to (9.27). Employing the Poincaré inequality, expanding
the quadratic terms, and applying the Cauchy inequality and Young’s inequality, yields for all
(σ, stressv, p)

2 |||(σ,σv, p)|||2?
≥
〈
Av :

[
σ
σv

]
,

[
σ
σv

]〉
+ 2

〈
α>v (dK)−1

[
σh

σh
v

]
, p

〉
+
(

1
M + ∆tκm

C2
Ω

+A2
K

)
‖p‖2

≥
〈
Av :

[
σ
σv

]
,

[
σ
σv

]〉
− α>v K−1αv

1
M + ∆tκm

C2
Ω

+A2
K

〈
K−1

[
σh

σh
v

]
,

[
σh

σh
v

]〉

= ‖(σ,σv, p)‖22,v,?,∆t .

(ii) Lipschitz continuity of ∇pE?,∆tv,tot and ∇(σ,σv)E?,∆ttot . Analogously to the proof of Lemma 9.2

it can be showed that ∇pE?,∆tv,tot and ∇(σ,σv)E?,∆ttot are Lipschitz continuous wrt. ‖ · ‖1,v,?,∆t and

‖ · ‖2,v,?,∆t, respectively, with Lipschitz constants L1 = L2 = 1 +A2
K

(
1
M + κm∆t

C2
Ω

)−1
.

Consequences. The thesis follows by Lemma B.1 and the fact that E?,∆tv,tot is quadratic.

11 Robust splitting schemes for discrete non-linear poro-elasticity
under infinitesimal strains

So far, part II dealt with quadratic minimization problems related to linear thermo-poro-visco-
elasticity. In the following, we briefly demonstrate that the workflow illustrated in Fig. 1 can
be likewise utilized for discussing non-linear poro-elasticity originating from convex minimiza-
tion. As an example for non-quadratic, convex minimization problems, we consider non-linear

46



poro-elasticity under infinitesimal strain (Sec. 5), and provide the first mathematically justified
derivation of a fixed-stress split. Contrary to the previous sections, the coupled problem is de-
coupled into non-linear subproblems. Therefore, considering inexact solutions of those, different
linearization techniques effectively lead to different splitting schemes. In the course of this work,
we mention Newton’s method and the so-called L-scheme, employing constant approximations
of derivatives.

We just remark, a corresponding undrained split can be easily derived within the general
framework, based on the primal formulation in Sec. 5. Employing inexact solution of the resulting
non-linear subproblems by single L-scheme iterations, yields essentially a specific splitting scheme
recently derived and analyzed by [30].

11.1 Minimization formulation for the three-field formulation

We recall the primal formulation (5.6) of non-linear poro-elasticity under infinitesimal strains,
allowing for non-linear mechanics and fluid compressibility

(u̇, q̇∫ ) = arg min
(v,z)∈V̇×Ż∫

{
Dfluid(z) +

〈
∇Enl(u, q

∫ ), (v, z)
〉
− Pext(v, z)

}
.

A semi-discrete approximation is directly obtained by applying the minimizing movement schemes
(Sec. 8). By explicit introduction of the fluid pressure consistent with (2.8), we consider the
more common three-field saddle point formulation, incorporating the structural displacement,
volumetric flux and fluid pressure as primary variables. All in all, we obtain a generalization of
the three-field formulation of linear poro-elasticity (Sec. 9.1.4).

Reusing notation, we define the minimization formulation for time step n: Given (un−1, qn−1, pn−1) ∈
Vn−1 × Zn−1 × Q̃, set θn−1 := b(pn−1) + α∇ · un−1, and define (un, qn, pn) ∈ Vn × Zn × Q̃ as
solution to

(un, qn) := arg min
(u,q)∈Vn×Zn

E∆t
nl,tot(θ

n−1;u, q), (11.1)

pn := ΠQ̃
(
b−1

(
ΠQ̃(θn−1 + ∆t qnθ −∆t∇ · qn − α∇ · un)

))
, (11.2)

where

E∆t
tot(θ

n−1;u, q) :=

∫

Ω
W (ε(u)) dx+ ∆t

2

〈
κ−1q, q

〉

+

∫

Ω

∫ ΠQ̃(θn−1+∆t qnθ−∆t∇·q−α∇·u)

0
b−1(s) ds dx

− Pnext,mech(u)−∆tPnext,fluid(q).

Provided that W is strictly convex and b is Lipschitz continuous, the minimization problem is
strictly convex. Since also the projection is well-defined; existence and uniqueness of a solu-
tion to (11.1)–(11.2) follow by classical results from convex analysis, cf. Thm. A.2. Following
Sec. 9.2.1, the corresponding optimality conditions are given by

〈∇W (ε(un)), ε(v)〉 − α 〈pn,∇ · v〉 = Pnext,mech(v) ∀v ∈ V0, (11.3)
〈
κ−1qn, z

〉
− 〈pn,∇ · z〉 = Pnext,fluid(z), ∀z ∈ Z0, (11.4)

〈b(pn) + α∇ · u+ ∆t∇ · qn, q〉 =
〈
θn−1 + ∆tqnθ , q

〉
, ∀q ∈ Q̃. (11.5)

11.2 Foundation for an exact fixed-stress split for the dual formulation

For the derivation of a fixed-stress split for the three-field formulation (11.3)–(11.5), we utilize a
natural dual formulation, generalizing the dual formulation for linear poro-elasticity (Sec. 9.1.2).
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For this, we first note that ∇W is invertible for strictly convex W , and there exists a dual scalar
potential U : Rd×d → R, which by the inverse function theorem satisfies for all σ ∈ Rd×d

∇U(σ) = (∇W )−1(σ),

∇2U(σ) = ∇2W
(

(∇W )−1 (σ)
)−1

.

Similarly, let B : R→ R a primitive of b, satisfying B′ = b.
Then the dual minimization formulation reads: Given (σn−1, pn−1) ∈ Sn−1 × Qn−1, set

θn−1 := b(pn−1) + α tr∇U
(
σn−1 + αpn−1I

)
, and define (σn, pn) ∈ Sn ×Qn to be the solution

of the dual minimization problem

(σn, pn) := arg min
(σ,p)∈Sn×Qn

E?,∆tnl,tot(θ
n−1;σ, p), where (11.6)

E?,∆ttot (θn−1;σ, p) :=

∫

Ω
U(σ + αpI) dx

+

∫

Ω
B(p) dx+ ∆t

2 〈κ(∇p− gnext),∇p− gnext〉

− 〈unΓ,σn〉Γu −
〈
θn−1 + ∆t qnθ , p

〉
−∆t

〈
qnΓ,n, p

〉
Γq
.

The exact fixed-stress split is then defined as (exact) alternating minimization applied to (11.6),
cf. Alg. 5. Convergence follows directly, and theoretical convergence rates can be studied as pre-
viously. When employing inexact minimization in one of the steps, we refer to an inexact
fixed-stress split.

Algorithm 5: Single iteration of the exact fixed-stress split for non-linear poro-
elasticity under infinitesimal strain

1 Input: (σn,i−1, pn,i−1) ∈ Sn ×Qn

2 Determine pn,i := arg min
p∈Qn

E?,∆tnl,tot(θ
n−1;σn,i−1, p)

3 Determine σn,i := arg min
σ∈Sn

E?,∆tnl,tot(θ
n−1;σ, pn,i)

11.3 Fixed-stress splits for the three-field formulation of non-linear poro-
elasticity under infinitesimal strains

Pursuing the previous philosophy, the fixed stress split for the three-three field formulation (11.3)–
(11.5) is equivalent with solving first a pressure-stabilized version of the flow problem (11.4)–
(11.5), and second the mechanics problem (11.3) with updated fluid flow variables. The stabi-
lization term can be concluded from the discussion in Sec. 11.2. In particular, the first step of
the exact fixed-stress split for the dual problem, cf. Alg. 5, reads: Find pn,i ∈ Qn, satisfying

〈
b(pn,i), q

〉
+ α

〈
I : ∇U(σn,i−1 + αpn,iI), q

〉
(11.7)

+ ∆t
〈
κ∇(pn,i − gext),∇q

〉
=
〈
θn−1 + ∆t qnθ , q

〉
∀q ∈ Q0.
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Utilizing the natural linearization of the non-linear coupling term

α
〈
I : ∇U(σn,i−1 + αpn,iI), q

〉

≈ α
〈

I : ∇U(σn,i−1 + αpn,i−1I)︸ ︷︷ ︸
=̂tr ε(un,i−1)

, q

〉

+ α2

〈
(
I : ∇2U(σn,i−1 + αpn,i−1I) : I

)
︸ ︷︷ ︸

=̂I:∇2W (ε(un,i−1))−1:I=:Kdr(ε(un,i−1))−1

(pn,i − pn,i−1), q

〉
(11.8)

combined with different linearization techniques, we propose, two versions of the exact fixed-
stress split for the three-field formulation (11.3)–(11.5). For direct comparison, we define natural
residuals; for (v, q) ∈ V0 × Q̃, let

Rnu(u, q, p;v) := 〈∇W (ε(u)), ε(v)〉 − α 〈p,∇ · v〉 − Pnext,mech(v),

Rnp (u, q, p; q) :=
〈
b(p) + α∇ · u+ ∆t∇ · q − θn−1 −∆tqnθ , q

〉
.

Newton-based fixed-stress split. In the first step, set (qn,i,0, pn,i,0) = (qn,i−1, pn,i−1), and
iterate over j ≥ 1 until convergence: Given un,i−1 ∈ Vn and (qn,i,j−1, pn,i,j−1) ∈ Zn × Q̃, find
(qn,i,j , pn,i,j) ∈ Zn × Q̃, satisfying for all (z, q) ∈ Z0 × Q̃

〈
κ−1qn,i,j , z

〉
−
〈
pn,i,j ,∇ · z〉 = Pnext,fluid(z),

〈[
b′(pn,i,j−1) +

α2

Kdr(ε(un,i−1))

]
(pn,i,j − pn,i,j−1), q

〉

+ ∆t
〈∇ · (qn,i,j − qn,i,j−1), q

〉
= Rnp (un,i−1, qn,i,j−1, pn,i,j−1; q).

In the second step, set un,i,0 = un,i−1, and iterate over k ≥ 1 until convergence: Given un,i,k−1 ∈
Vn and (qn,i, pn,i) ∈ Zn × Q̃, find un,i,k ∈ Vn, satisfying for all v ∈ V0

〈
∇2W (ε

(
un,i,k−1

)
)ε
(
un,i,k − un,i,k−1

)
, ε(v)

〉
= Rnu(un,i,k−1, qn,i, pn,i;v).

L-scheme-based fixed-stress split. Having in mind the inexact solution of non-linear sub-
problems, and motivated by the fact, that any fixed-stress split at most is linearly convergent,
we disregard Newton’s method and choose a very simple linearization instead – the so-called
L-scheme, which employs a constant Jacobian. Let Lb, LFS ≥ 0 and L ∈ Rd×d×d×d symmetric
positive definite (in the same sense as C). In the first step, set (qn,i,0, pn,i,0) = (qn,i−1, pn,i−1),
and iterate over j ≥ 1 until convergence: Given un,i−1 ∈ Vn and (qn,i,j−1, pn,i,j−1) ∈ Zn × Q̃,
find (qn,i,j , pn,i,j) ∈ Zn × Q̃, satisfying for all (z, q) ∈ Z0 × Q̃

〈
κ−1qn,i,j , z

〉
−
〈
pn,i,j ,∇ · z〉 = Pnext,fluid(z),

〈
(Lb + LFS)(pn,i,j − pn,i,j−1), q

〉
+ ∆t

〈∇ · (qn,i,j − qn,i,j−1), q
〉

= Rnp (un,i−1, qn,i,j−1, pn,i,j−1; q).

In the second step, set un,i,0 = un,i−1, and iterate over k ≥ 1 until convergence: Given un,i,k−1 ∈
Vn and (qn,i, pn,i) ∈ Zn × Q̃, find un,i,k ∈ Vn, satisfying for all v ∈ V0

〈
Lε
(
un,i,k − un,i,k−1

)
, ε(v)

〉
= Rnu(un,i,k−1, qn,i, pn,i;v).

Following previous studies on the L-scheme, cf., e.g. [30, 84], choosing Lb, LFS,L sufficiently
large may be expected to yield robust convergence. For instance, for Lipschitz continuous non-
linearities, the Lipschitz constants are suitable candidates; or solution-dependent choices as
Lb = max

x,t
|b′(p(x, t))| and LFS = α2

min
x,t

Kdr(ε(u(x,t))) .
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Remark 11.1 (Inexact fixed-stress splits). By choosing coarse tolerances or applying only a
fixed amount of non-linear iterations in each of the two steps yields an inexact version of the
fixed-stress split. In particular, for strongly coupled problems, one can expect that inexact fixed-
stress splits are potentially more efficient than the exact fixed-stress split.

12 Robust splitting schemes for discrete thermo-poro-elasticity

As a result of the gradient flow structure of linear thermo-poro-elasticity, cf. Sec. 7, robust itera-
tive splitting schemes can be derived for the implicit Euler time-discrete approximation employ-
ing the workflow visualized in Fig. 1. We in particular observe that semi-discrete, linear thermo-
poro-elasticity can be formulated as vectorized, semi-discrete, linear poro-elasticity, similar to
linear poro-visco-elasticity (Sec. 10). Thus, technicalities can be immediately adopted from linear
poro-elasticity including the construction of a dual problem, the derivation of two-stage split-
ting schemes and their analyses. After all, we identify the recently proposed undrained-adiabatic
and extended fixed-stress splits proposed for non-linear thermo-poro-elasticity [45] as alternating
minimization. This new perspective endows the originally physically motivated schemes with
mathematical justification. Motivated by the three-way coupling of thermo-poro-elasticity, we
also derive a novel, robust three-stage splitting scheme by applying a cyclic three-block coordi-
nate descent method. Finally, we close the section, commenting on possible applications of the
splitting schemes to non-linear thermo-poro-elasticity including for instance thermal convection.

12.1 Minimization formulations for time-discrete linear thermo-poro-elasticity

Following the abstract workflow visualized in Fig. 1, we introduce a primal and a dual formu-
lation for time-discrete linear thermo-poro-elasticity. In the second part of this section, both
formulations will serve as bases for the derivation of practical operator splitting schemes.

12.1.1 Primal formulation of time-discrete linear thermo-poro-elasticity

The primal formulation of time-discrete, linear thermo-poro-elasticity is obtained by applying
the minimizing movement scheme to the time-continuous model (7.8)–(7.10). Similar to the case
of semi-discrete poro-visco-elasticity, the resulting formulation can be interpreted as vectorized
version of the primal formulation of time-discrete, linear poro-elasticity, but now with a vector-
ized flow problem – a key characteristic which will be utilized throughout the entire section. For
this, we introduce a tensorial diffusion, compressibility and Biot coefficient, respectively, by

KT :=

[
κ 0
0 κF

T0

]
, M−1

T :=

[
[c] 1

M −3αφ
−3αφ

Cd
T0

]
, αT :=

[
α

3αTKdr

]
.

Let the spaces Vn and Zn be as defined in (9.1)–(9.2), and define additionally

Wn := {w ∈ H(div; Ω) |w · n = jnΓ on Γj } .

Finally, we state the time-discrete, primal formulation for time step n ≥ 1: Given θn−1 and
Sn−1, define (un, qn, jn) ∈ Vn ×Zn ×Wn to be the solution of the minimization problem

(un, qn, jn) := arg min
(u,q,j)∈Vn×Zn×Wn

E∆t
th,tot(θ

n−1, Sn−1;u, q, j), (12.1)
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where

E∆t
th,tot(θ

n−1, Sn−1;u, q, j)

:=
1

2
〈Cε(u) , ε(u)〉+

∆t

2

〈
K−1

T

[
q
j

]
,

[
q
j

]〉

+
1

2

〈
MT

([
[l]θn−1+∆t qnθ
Sn−1 +∆t qnS

]
−∆t

[∇ · q
∇ · j

]
− (αT ⊗ I) : ε(u)

)
,

[
[l]θn−1+∆t qnθ
Sn−1 +∆t qnS

]
−∆t

[∇ · q
∇ · j

]
− (αT ⊗ I) : ε(u)

〉

− Pnext,mech(u)−∆tPnext,fluid(q)−∆tPnext,temp(j),

and set
[
θn

Sn

]
:=

[
θn−1 +∆t qnθ
Sn−1+∆t qnS

]
−∆t

[∇ · qn
∇ · jn

]
.

For KT and MT positive definite, the resulting minimization problem is strictly convex and
coercive; existence and uniqueness of a solution to (12.1) follow by classical results from convex
analysis, cf. Thm. A.2.

12.1.2 Dual formulation of time-discrete linear thermo-poro-elasticity

Given the primal formulation of time-discrete, linear thermo-poro-elasticity in vectorized form,
we utilize the insights gained from linear poro-elasticity and poro-visco-elasticity and impose a
corresponding dual formulation. First, we introduce natural dual variables: the total stress σ,
the fluid pressure p and the temperature of the bulk T , formally related to the primal variables
by

σ = C
(
ε(u)− (I⊗αT) :

[
p
T

])
,

[
p
T

]
= MT

([
θn−1 +∆t qnθ
Sn−1+∆t qnS

]
−∆t

[∇ · q
∇ · j

]
− (αT ⊗ I) : ε(u)

)
.

For fixed time step n, we introduce suitable trial and test function spaces

Rn :=
{
r ∈ H1(Ω) | r = TnΓ on ΓT

}
,

R0 :=
{
r ∈ H1(Ω) | r = 0 on ΓT

}
,

corresponding to the temperature variable. Then Sn×Qn×Rn yields a suitable function space
for the dual variables (σ, p, T ).

Finally, the dual formulation of time-discrete, linear thermo-poro-elasticity for time step
n ≥ 1 reads: Given (σn−1, pn−1, Tn−1) ∈ Sn−1 ×Qn−1 ×Rn−1, set

εn−1
u := A

(
σn−1 + (I⊗αT) :

[
pn−1

Tn−1

])
,

[
θn−1

Sn−1

]
:= M−1

T

[
pn−1

Tn−1

]
+ (αT ⊗ I) : ε

(
un−1

)
,

and define (σn, pn, Tn) ∈ Sn × Qn ×Rn to be the solution of the block-separable, constrained

51



minimization problem

(σn, pn, Tn) := arg min
(σ,p,T )∈Sn×Qn×Rn

E?,∆tth,tot(θ
n−1, Sn−1;σ, p, T ), where (12.2)

E?,∆tth,tot(θ
n−1, Sn−1;σ, p, T )

:=
1

2

〈
A
(
σ + (I⊗αT) :

[
p
T

])
,σ + (I⊗αT) :

[
p
T

]〉

+
1

2

〈
M−1

T

[
p
T

]
,

[
p
T

]〉
+

∆t

2

〈
KT

[
[l]∇p− gnext

∇T

]
,

[
[l]∇p− gnext

∇T

]〉

− 〈unΓ,σn〉Γu −
〈[

θn−1 +∆t qnθ
Sn−1+∆t qnS

]
,

[
p
T

]〉
−∆t

〈
qnΓ,n, p

〉
Γq
−∆t

〈
jnF,Γ, T

〉
Γj
.

The minimization problem is strictly convex and the feasible set is non-empty and convex;
existence and uniqueness of a solution to (12.2) follow by classical results from convex analysis,
cf. Thm. A.2.

12.2 Splitting schemes for linear thermo-poro-elasticity derived as alternat-
ing minimization

Due to the convexity properties, any cyclic block coordinate descent method applied to ei-
ther the primal or the dual formulation, which respects the block structure of the problem,
is globally convergent [70, 71]; in particular two- and three-block coordinate descent methods,
decoupling the fully-coupled problem into its physical subproblems. Based on that fact, we
derive the undrained-adiabatic and extended fixed-stress splits [45] as two-block coordinate de-
scent methods, following the abstract workflow, cf. Fig. 1, and additionally propose a robust
three-block coordinate descent method for linear thermo-poro-elasticity. Theoretical conver-
gence can be showed by adjusting the proofs for the corresponding results in the context of
linear poro-elasticity.

12.2.1 Undrained-adiabatic split based on primal thermo-poro-elasticity

Applying alternating minimization to the primal formulation of semi-discrete thermo-poro-
elasticity yields a generalized undrained split, decoupling the mechanics problem from the rest.
For this, the primal variables corresponding to the fluid flow and thermal subproblems are
considered a single block, cf. Alg. 6 for a single iteration of the resulting scheme.

Algorithm 6: Single iteration of undrained-adiabatic split

1 Input: (un,i−1, qn,i−1, jn,i−1) ∈ Vn ×Zn ×Wn

2 Determine un,i := arg min
u∈Vn

E∆t
th,tot(θ

n−1, Sn−1;u, qn,i−1, jn,i−1)

3 Determine (qn,i, jn,i) := arg min
(q,j)∈Zn×Wn

E∆t
th,tot(θ

n−1, Sn−1;un,i, q, j)

By construction, the resulting splitting scheme is equivalent to a predictor-corrector method,
solving the mechanics problem under undrained and adiabatic conditions in the predictor step.
This is equivalent to the stabilized mechanics problem: Find un,i ∈ Vn satisfying for all v ∈ V0

〈
Cε
(
un,i

)
, ε(v)

〉
+
〈
α>TMTαT tr ε

(
un,i − un,i−1

)
, tr ε(v)

〉

−
〈
α>T

[
pn,i−1

Tn,i−1

]
,∇ · v

〉
= Pnext,mech(v),
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where we formally abbreviated the fluid pressure and temperature by
[
pn,i−1

Tn,i−1

]
:= MT

([
θn−1 +∆t qnθ
Sn−1+∆t qnS

]
−∆t

[∇ · qn,i−1

∇ · jn,i−1

]
− (αT ⊗ I) : ε

(
un,i−1

))
.

For homogeneous, isotropic materials, the stabilization equals
(
Mα2 + 9

(αTKdr+Mααφ)
2

Cd
T0
−9Mα2

φ

)
〈∇ · (un,i − un,i−1),∇ · v〉 .

The second step of Alg. 6 (the corrector step) is equivalent to solving the unmodified, coupled
fluid flow and thermal subproblems with updated displacement. After all, the resulting stabi-
lization term is identical with that employed within the undrained-adiabatic split for thermo-
poro-elasticity including thermal convection [45].

By adopting the ideas of the proof for the undrained split for poro-elasticity, cf. Lemma 9.1,
to vectorized poro-elasticity, analogous convergence results can be deduced for the undrained-
adiabatic split for linear thermo-poro-elasticity.

Corollary 12.1 (Linear convergence of the undrained-adiabatic split). The undrained-adiabatic
split for linear thermo-poro-elasticity converges linearly, independent of the initial guess . Let
en,ij := jn,i− jn, n, i ∈ N, and let ||| · ||| denote the norm induced by the quadratic part of E∆t

th,tot.
Let K?

dr as in (9.19). It holds the a priori result

∣∣∣
∣∣∣
∣∣∣(en,iu , en,iq , en,ij )

∣∣∣
∣∣∣
∣∣∣ ≤




|αT|2
K?

dr

|αT|2
α>TMTαT

+ |αT|2
K?

dr



i

(
En,0 − En

)1/2
,

where En,0 and En are the energies of the initial iterate and the solution, resp.

12.2.2 Extended fixed-stress split based on dual thermo-poro-elasticity

A generalized fixed-stress split for thermo-poro-elasticity is derived by applying alternating
minimization to the dual formulation of time-discrete thermo-poro-elasticity (12.2). For this,
the energy is successively minimized for fixed total stress, and simultaneously fixed fluid pressure
and temperature variables; cf. Alg. 7 for a single iteration of the resulting scheme.

Algorithm 7: Single iteration of the extended fixed-stress split

1 Input: (σn,i−1, pn,i−1, Tn,i−1) ∈ Sn ×Qn ×Rn

2 Determine (pn,i, Tn,i) := arg min
(p,T )∈Qn×Rn

E?,∆tth,tot(θ
n−1, Sn−1;σn,i−1, p, T )

3 Determine σn,i := arg min
σ∈Sn

E?,∆tth,tot(θ
n−1, Sn−1;σ, pn,i, Tn,i)

By construction the generalized fixed-stress split is equivalent to a predictor-corrector method,
simultaneously solving the coupled fluid flow and thermal subproblems under fixed stress con-
ditions in the predictor step. This is equivalent to the stabilized problem: Find (pn,i, Tn,i) ∈
Qn ×Rn satisfying for all (q, r) ∈ Q0 ×R0

〈
M−1

T

[
pn,i

Tn,i

]
,

[
q
r

]〉
+

〈
αTα

>
T (I : A : I)

[
pn,i − pn,i−1

Tn,i − Tn,i−1

]
,

[
q
r

]〉

+

〈
(αT ⊗ I) : εn,i−1

u ,

[
q
r

]〉
+ ∆t

〈
KT

[
[l]∇pn,i − gnext

∇Tn,i

]
,

[∇q
∇r

]〉

=

〈[
θn−1 +∆t qnθ
Sn−1+∆t qnS

]
,

[
q
r

]〉
+ ∆t

〈
qnΓ,n, q

〉
Γq

+ ∆t
〈
jnΓ,n, r

〉
Γj
,
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where we used the formal abbreviation of the mechanical strain

εn,i−1
u := A

(
σn,i−1 + (I⊗αT) :

[
pn,i−1

Tn,i−1

])
.

A characteristic property: Tensorial stabilization is applied. For instance, for a homogeneous,
isotropic material, the stabilization term equals

〈[
α2

Kdr
3ααT

3ααT 9α2
TKdr

] [
pn,i − pn,i−1

Tn,i − Tn,i−1

]
,

[
q
r

]〉
.

The second step of Alg. 7 (the corrector step) is equivalent to solving the unmodified, mechanical
problem with updated pressure and temperature. The resulting stabilization terms are identi-
cal with those employed within the extended fixed-stress split for thermo-poro-elasticity with
thermal convection [45].

By adopting the ideas of the proof for the undrained split for poro-elasticity, cf. Lemma 9.1,
to vectorized poro-elasticity, analogous convergence results can be deduced for the undrained-
adiabatic split for linear thermo-poro-elasticity.

As for the undrained-adiabatic split, the structural similarities to poro-elasticity allows for
adopting the convergence results for the standard fixed-stress split, cf. Lemma 9.2, and de-
duce analogous results for the extended fixed-stress split. For instance, without presenting the
analogous proof, we state the generalized a priori convergence result.

Corollary 12.2 (Linear convergence of the extended fixed-stress split). The extended fixed-
stress split for linear thermo-poro-elasticity converges linearly, independent of the initial guess.
Let en,iT := Tn,i − Tn, n, i ∈ N, and let ||| · |||? denote the norm induced by the quadratic part of

E?,∆tth,tot. Assume for brevity, κ = κI and κF = κFI constant in space. It holds the a priori result

∣∣∣
∣∣∣
∣∣∣(en,iσ , en,ip , en,iT )

∣∣∣
∣∣∣
∣∣∣
?
≤




|αT|2
Kdr

α>T

(
M−1

T +∆t C−2
Ω

[
κ 0
0 κF

T0

])
αT

|αT|2 + |αT|2
Kdr




i

(
En,0 − En

)1/2
,

where En,0 and En are the energies of the initial iterate and the solution, resp.

By the Cauchy-Schwarz inequality, the convergence rate of the extended fixed-stress split is
lower than for the undrained-adiabatic split – even for KT = 0.

12.2.3 Three-block coordinate descent for thermo-poro-elasticity

By definition thermo-hydro-mechanical models couple three processes. Thus, in the context of
splitting schemes, it is a natural ambition to decouple all three subproblems from each other
– with a potential benefit increase of the same kind as two-stage decoupling methods. Three-
stage decoupling methods for thermo-poro-elasticity with thermal convection have been recently
proposed by [85], including a rigorous convergence analysis. In the following, we briefly demon-
strate that similar methods can be derived by applying three-block coordinate descent methods,
a natural generalization of alternating minimization.

Since both the primal and the dual formulations of linear thermo-poro-elasticity are block-
separable and convex, any cyclic three-block coordinate descent is globally convergent which
respects the block structure of the coupled problem, cf. [70, 71]. We exemplarily state one
candidate of six possible combinations based on the dual problem – we solve successively for
pressure, temperature and stress, cf. Alg. 8 for a single iteration. Similarly, the primal problem
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Algorithm 8: Single iteration of the three-block coordinate descent for dual thermo-
poro-elasticity

1 Input: (σn,i−1, pn,i−1, Tn,i−1) ∈ Sn ×Qn ×Rn

2 Determine pn,i := arg min
p∈Qn

E?,∆tth,tot(θ
n−1, Sn−1;σn,i−1, p, T n,i−1)

3 Determine Tn,i := arg min
T∈Rn

E?,∆tth,tot(θ
n−1, Sn−1;σn,i−1, pn,i, T )

4 Determine σn,i := arg min
σ∈Sn

E?,∆tth,tot(θ
n−1, Sn−1;σ, pn,i, Tn,i)

can serve as basis; we choose an algorithm closer to the extended fixed-stress split expecting
better performance.

The first step of Alg. 8 is equivalent to solving a fluid flow problem with fixed-stress type
pressure stabilization: Find pn,i ∈ Qn satisfying for all q ∈ Q0

1
M

〈
pn,i, q

〉
− 3αφ

〈
Tn,i−1, q

〉
+ α2

Kdr

〈
pn,i − pn,i−1, q

〉
+ α

〈
tr εn,i−1

u , q
〉

+∆t
〈
κ(∇pn,i − gnext),∇q

〉
=
〈
θn−1 + ∆t qnθ , q

〉
+ ∆t

〈
qnΓ,n, q

〉
Γq
.

The second step of Alg. 8 is equivalent to solving a thermal problem with fixed-stress type
temperature stabilization: Find Tn,i ∈ Rn satisfying

Cd
T0

〈
Tn,i, r

〉
− 3αφ

〈
pn,i, r

〉
+ 9α2

TKdr

〈
Tn,i − Tn,i−1, r

〉
+ 3αTKdr

〈
tr ε

n,i−1/2
u , r

〉

+∆t
〈
κF
T0

∇Tn,i,∇r
〉

=
〈
Sn−1 + ∆t qnS , r

〉
+ ∆t

〈
jnF,Γ, r

〉
Γj
,

for all r ∈ R0, where we formally abbreviated the updated mechanical strain

ε
n,i−1/2
u := A

(
σn,i−1 + (I⊗αT) :

[
[l]pn,i

Tn,i−1

])
.

The final step of Alg. 8 is identical with solving the pure mechanical problem for updated pressure
and temperature. All in all, the main difference of the resulting scheme to the extended fixed-
stress split is the diagonal instead of tensorial stabilization due to further decoupling.

12.3 Comments on splitting schemes for non-linear thermo-poro-elasticity

The splitting schemes derived in this section are in first place only guaranteed to be robust for
semi-discrete thermo-poro-elasticity models with an underlying convex minimization structure.
As discussed in the modelling section, general thermo-poro-elasticity models do only satisfy a
perturbed gradient flow structure, cf. Remark 7.1. Therefore the minimizing movement scheme
does not apply immediately, and implicit semi-discrete thermo-poro-elasticity models do gener-
ally not stem from convex minimization. Evidently, by explicitly lagging the perturbations in
time, the symmetric character of linear thermo-poro-elasticity can be retained, and the above
splitting schemes are robust.

Nonetheless, the splitting schemes derived for the simplified, linear case above may as well
assist in the construction of splitting schemes for the fully non-linear problem. We mention two
possible strategies:

(i) After decomposing the time-continuous, coupled problem into a sum of a linear and
parabolic, and a convective problem, an operator splitting [86], e.g., Strang splitting, is
utilized. Then the parabolic problem, essentially identical to linear thermo-poro-elasticity,
may be solved efficiently using the above splitting schemes, and the convective problem
may be solved by a separate, tailored scheme.
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(ii) Consider the semi-discrete problem obtained after applying the implicit Euler method.
Provided that the perturbations and the time step size are sufficiently small, the semi-
discrete problem exhibits a non-symmetric but elliptic character. Under that assumptions
iterative two- and three-stage splitting schemes with sufficient diagonal stabilization have
been rigorously showed to be linearly convergent [85]. Consequently, robust convergence
may be also expected for stabilization terms replaced by those resulting from the above
discussions, i.e., effectively by applying the undrained-adiabatic and extended fixed-stress
split as recently proposed by [45]. Numerically, this has been demonstrated by the afore-
mentioned work.

13 Acceleration of splitting schemes by optimal relaxation

Due to the minimization character of the fully coupled, semi-discrete thermo-poro-visco-elasticity
equations, the convergence of splitting schemes for such can be effectively improved by relaxation.
Alg. 9 formulates relaxation by exact line search for a general, inexact minimization algorithm
for solving semi-discrete generalized gradient flows discretized by the minimizing movement
scheme (Sec. 8). For quadratic minimization problems with affine constraints (i.e., e.g., linear
thermo-poro-visco-elasticity), optimal relaxation in the sense of a classical, exact line search
strategy is feasible; minimizing the quadratic interpolation of three energy values is sufficient
for computing the optimal weight. However, also for nonlinear thermo-poro-visco-elasticity
stemming from non-quadratic, but convex minimization under affine constraints, we propose
the same simple (now inexact) line search strategy.

Algorithm 9: Relaxation of inexact minimization IM by exact line search for solving
time-discrete generalized gradient flows (8.5)

1 Given X n affine, xn−1 ∈ X n−1, define E∆(x) := ∆tD
(
x−xn−1

∆t

)
+ E(x)− Pnext(x)

2 Let IM : X n → X n such that E∆(IM(x)) < E∆(x), where wlog. x is not the minimizer

3 xn,0 ← xn−1, i← 1

4 while ’stopping criterion not satisfied’ do

5 Compute xn,i−1/2 ← IM(xn,i−1) ∈ X n

6 Obtain descent direction ∆xn,i ← xn,i−1/2 − xn,i−1

7 Solve αn,i ← arg min
α

E∆
(
xn,i−1/2 + α∆xn,i

)

8 Update xn,i ← xn,i−1/2 + αn,i∆xn,i ∈ X n

9 i← i+ 1

10 end while

14 Numerical examples – Performance of the relaxed fixed-
stress split for a 3D footing problem

Splitting schemes for solving thermo-hydro-mechanical processes have been numerically studied
from various angles in the literature. In the following, we focus on three of the main new
contributions obtained from the gradient flow analysis, not previously reported in literature,
and study: (i) the impact of relaxation of splitting schemes by exact line search also put in
context to the optimization of splitting schemes, (ii) the performance of splitting schemes for
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σΓ,n

(a) Geometry (b) Simulation result for test case I

Figure 2: Initial configuration incl. boundary conditions for the 3D footing problem; deformed,
poro-elastic configuration after 5 time steps for E = 1011 [Pa], incl. pressure profile and outflow;
the deformation is scaled by factor 15.

poro-visco-elasticity, and (iii) the performance of splitting schemes for nonlinear poro-elasticity.
Due to its larger popularity, we restrict the study to fixed-stress-type splits.

All in all, we consider four test cases based on the same geometry but with slightly differing
mechanical material behavior – a unit cube, cf. Fig. 2a, fixed at the bottom and subject to a
ramped up, normal force at the top, i.e.,

uΓ = 0 on [0, 1]2 × {0}, σΓ,n(t) = 109t [N/m2s] e3, on [0.25, 0.75]2 × {1}.

No-flow is imposed on the same parts of the boundary. No-stress and zero-pressure boundary
conditions are applied on the remaining boundary. Body forces are absent. Similar setups have
been considered by [87, 72, 88].

If not mentioned otherwise, the geometry is discretized by a structured 16×16×16 hexahedral
mesh, and 5 time steps of constant time step size ∆t = 0.1 [s] are simulated. For the numerical
solution the plain and the relaxed fixed-stress splits are applied. The performance of those is
measured in terms of the average number of iterations per time step required for convergence
and run times, where as stopping criterion a relative L2(Ω) error with tolerance εr = 10−6 is
employed. For the implementation of the numerical examples, we use the DUNE project [89],
with extensive use of the DUNE-functions module [90, 91].

14.1 Poro-elastic test case I – Line search under varying coupling strength

The material is assumed to be poro-elastic, homogeneous and isotropic with material parameters
as in Tab. 3. In this first part, we study the impact of the relaxation by line search of the fixed-
stress split under varying coupling strength. For this, we vary the Young’s modulus E, which
is inversely proportional to the coupling strength. A simulation result for E = 1011 [Pa] is
visualized in Fig. 2b.

By applying the Galerkin method to the five-field formulation of the semi-discrete, linear
Biot equations, cf. Sec. 9.1.5, a fully structure-preserving spatial discretization is employed. As
conforming finite element spaces for the mechanical problem, we utilize lowest order Brezzi-
Douglas-Marini elements, cf., e.g., [61], for the (unsymmetric) stress tensor, piecewise constants
for the mechanical displacements and piecewise constant, skew-symmetric tensors for the ro-
tation. For the fluid flow problem, we employ lowest order Brezzi-Douglas-Marini elements
for the volumetric flux and piecewise constant elements for the fluid pressure. However, we
note, the subsequent results are not strongly depending on the particular formulation or spatial
discretization.
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Name Symbol Value Value Unit

(Test case I–III) (Test case IV)

Young’s modulus E 109..1012 1010 Pa

Poisson’s ratio ν 0.2 0.2, 0.495 –

Biot-Willis constant α 1 1 –

Compressibility coefficient M 1011 1011 Pa

Permeability κ 10−13 10−11 m2

Table 3: Poro-elasticity-specific material parameters for the 3D footing problem, used in test
cases I–IV.

The performance of the plain and the relaxed fixed-stress splits is displayed in Fig. 3a. We
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(b) Test case II

Figure 3: Number of (poro-elasticity) fixed-stress split iterations for varying coupling strength
(Test case I) and varying stabilization parameter (Test case II).

observe that the relaxation by line search allows for reducing the number of iterations up to a
factor of 30%. A greater impact can be observed for more strongly coupled problems. On the
other hand, only small improvement is observed for weakly coupled problems. This is related to
the result of the following test case.

14.2 Poro-elastic test case II – Line search vs. stabilization tuning

It has been previously emphasized [48, 37] that the fixed-stress split can be tuned by appropriate

weighting of the stabilization parameter α2

Kdr
in the fluid flow problem, cf. (9.23). A priori

knowledge on optimal tuning however is lacking due to a strong dependence on the specific
geometry, material parameters and applied boundary conditions [92]. It has been numerically
demonstrated that optimal weighting may differ substantially from test case to test case [73].
Hence, in general, it is difficult to tune the parameter in practice; in [72] the authors discuss a
brute-force optimization strategy utilizing a coarse mesh.

In the following, we demonstrate that the application of exact line search yields a flexible,
black box-type alternative to tuning the stabilization parameter. For this, we replace the stabi-
lization parameter by γ α2

Kdr
with γ ∈ [0, 1] and apply again both plain and relaxed fixed-stress

splits in order to solve the 3D footing problem. Here, we choose the same parameters as in test
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case I, but with fixed E = 1010 [Pa]. The number of iterations required for convergence for
varying γ are displayed in Fig. 3b. We make two observations:

• For the plain fixed-stress split we observe practical convergence only for γ ∈ [0.5, 1]. This is
consistent with theoretical considerations, cf., e.g., [37, 41, 72]. The line-search enhanced
fixed-stress split however shows very robust behavior wrt. γ; despite the strong coupling,
convergence is even observed for lacking stabilization (γ = 0).

• For optimally chosen weighting (γ ≈ 0.7) there is no difference in the number of iterations
between the plain and the relaxed fixed-stress splits.

Altogether, line search acts here as black-box tuning of the stabilization parameter. However, we
note, there is no theoretical guarantee for the optimality of relaxed splitting schemes compared
to optimized splitting schemes.

14.3 Poro-visco-elastic test case III – Line search under varying coupling
strength

In the following test case, we demonstrate the convergence of the fixed-stress split for poro-visco-
elasticity. For this, we re-consider test case I now for a poro-visco-elastic material, and enhance
the poro-elastic material parameters (Tab. 3) by visco-elasticity-specific parameters displayed
in Tab. 4. A simulation result for E = 1011 [Pa] is visualized in Fig. 4a.

Name Symbol Value Unit

Young’s modulus Ev 1010 Pa

Poisson’s ratio νv 0.3 –

Shear modulus µ′v 0 Pa

Lamé constant λ′v 109 Pa

Biot-Willis constant αv 0.8 –

Table 4: Poro-visco-elasticity-specific material parameters for the 3D footing problem.

For the spatial discretization, we again utilize a fully-structure preserving formulation based
on the dual formulation, cf. Remark 10.2. In particular, the visco-elastic stress σv is explicitly
introduced, cf. (10.4), with the visco-elastic strain computed from (10.6) by projection onto
piecewise constant, symmetric tensors. Hence, the resulting, spatial discretization has the same
complexity as in the case of poro-elasticity.

The number of iterations for the plain and relaxed fixed-stress splits required for conver-
gence is displayed in Fig. 4b. At first glance, the performances of both splitting schemes look
qualitatively differently. The relaxed fixed-stress split exhibits a monotone relation between its
performance and the coupling strength, consistent with the theoretical convergence result, cf.
Lemma 10.2. In contrast, the plain fixed-stress split reveals a worsening of the performance for
weaker coupling. This can be explained by the findings from test case II. For varying Young’s
modulus, the overall, structural behavior of the material alters due to ν 6= νv. As a consequence,
considering the optimized fixed-stress split, the optimal tuning parameter changes with E. For
smaller and larger E, it is further off the natural stabilization parameter employed within the
plain fixed-stress split; for intermediate Young’s modulus (E ≈ 5 · 1011 [Pa]), both parameters
are relatively close. This can be justified by the fact that for that configuration line search
relaxation does not yield any improvement of the convergence.

After all, if the optimal tuning parameter had been employed for each Young’s modulus, the
plain fixed-stress split would exhibit the same monotone behavior as under relaxation. Again,
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(a) Simulation result
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(b) Performance result

Figure 4: Test case III: The deformed, poro-visco-elastic configuration after 5 time steps for
E = 1011 [Pa], incl. pressure profile and outflow. And the number of (poro-visco-elasticity)
fixed-stress split iterations for varying coupling strength.

line search relaxation proves successful as black box tuning without a priori knowledge of the
physical behavior of the medium.

14.4 Non-linear poro-elastic test case IV – Acceleration and robustness in-
crease of splitting schemes by line search relaxation

In the final numerical test case, we demonstrate the convergence of the fixed-stress split for
nonlinear poro-elasticity under infinitesimal strains (Sec. 5). In particular, we study the impact
of line search relaxation for various, inexact fixed-stress splits (Sec. 11.3) in comparison to the
exact fixed-stress split.

For this, we re-consider test case I now for a nonlinearly elastic material. Differently from
before, for the spatial discretization, we consider a structured 32 × 32 × 32 hexahedral mesh,
inducing a greater challange to the nonlinear and liner solvers. Furthermore, a three-field for-
mulation, consistent with Sec. 11, is considered. We employ linear elements for the structural
displacement, lowest order Raviart-Thomas elements for the volumetric flux and piecewise con-
stant elements for the fluid pressure.

In order to pinpoint the impact of the non-linear character of the equations, we introduce only
a single non-linearity compared to test case I – a non-linear (effective) stress-strain relationship
corresponding to the non-quadratic p-Laplacian-type energy [63, 65]

Enl,eff(u) =

∫

Ω
W (ε(u)) dx =

∫

Ω

(
µ|ε(u) |2 +

λ

3
|∇ · u|3

)
dx.

Apart from that we choose the same model as in test case I, with material parameters from
Tab. 3. We consider two setups with two different Poisson ratios: Setup A with ν = 0.2, and
Setup B with ν = 0.495, inducing a comparatively stronger coupling strength and stronger non-
linearity, respectively. The simulation result for ν = 0.2 is illustrated in Fig. 5; the qualitative
difference in the flow field compared to test case I, cf. Fig 2b, originates from significantly
different permeability fields.

The agenda is similar as before. We apply the fixed-stress split in order to solve the cou-
pled problem, and study the impact of line search relaxation. The non-linear character of the
problem allows for choosing various exact or inexact non-linear solvers for solving the mechanics
subproblems. In addition, we point out, that the exact fixed-stress split (Sec. 11.3) introduces
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a displacement-dependent pressure stabilization of the flow equation via the solution-dependent
bulk modulus Kdr(ε(u)) = 2µ

d + 2λ|∇ · u|, cf. (11.8). Hence, despite the linear character of the
flow equation, the exact Jacobian of the stabilized pressure equation alters with each fixed-stress
iteration.

In the following, we apply Newton- and L-scheme-based fixed-stress splits, as introduced in
Sec. 11.3, with the latter chosen due to the low computational cost per iteration; however, the
L-scheme requires choosing Lb, LFS and L. Given user-defined parameters 0 ≤ |∇ · u|min ≤
|∇ · u|max <∞, we set

Lb =
1

M
, LFS =

α2

2µ
d + 2λ|∇ · u|min

, L = 2µI + 2λ|∇ · u|max I⊗ I. (14.1)

Detailed descriptions of the non-linear solvers used in this section are given in Tab. 5. In addition,
we apply three relaxation techniques, cf. Table 6. In particular, we also consider applying line
search after each non-linear iteration.

Abbreviation Description

Nmax Newton’s method until convergence, i.e., ‖ri‖/‖r0‖ < 10−5,

where ri is the residual of the subproblem in the i-th Newton

iteration; the Jacobian of the flow equation is reassembled.

N1 As Nmax but employing only a single Newton iteration.

Lex
m m L-scheme iterations if convergence is not met before (see Nmax),

with Lb, LFS and L as in (14.1) with |∇ · u|min = min
x,t
|∇ · u|

and |∇ · u|max = max
x,t
|∇ · u|

Lopt
m As Lex

m but with |∇ · u|min = |∇ · u|max = 1
10

max
x,t
|∇ · u|

Table 5: Non-linear solvers employed in test case IV.

Abbr. Description of the relaxation strategy

LS− Plain splitting scheme and non-linear solver without any relaxation.

LSs Line search based on quadratic interpolation applied for the splitting solver.

LSs/m Same as LSs, but with the same strategy also applied on the inner non-linear

solver for the mechanics subproblem.

Table 6: Relaxation strategies employed in test case IV.

The solver performances of various relevant combinations of non-linear solvers and relaxation
strategies for Setup A and Setup B are displayed in Fig. 5. Those include the plain number
of outer fixed-stress iterations and potential inner extra non-linear iterations if more than one
iteration has been applied; in addition, total run times are displayed for Setup B, including run
times for assembling matrices and right hand sides, as well as the application of linear solvers. We
stress, we use serial, direct solvers. Hence, the Jacobian employed for L-scheme-based splittings
is factorized only once, but not for Newton-based splits. Moreover, we mention observations not
indicated in the figures:

• For Setup A, the number of fixed-stress iterations per time step is approximately the same
for all schemes, indicating a dominant coupling strength.
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Figure 5: Test case IV: (a) Deformed, poro-elastic configuration after 5 time steps for ν = 0.2,
incl. pressure profile and outflow; the deformation is scaled by factor 5. (b) and (c): Performance
of different non-linear solvers (Tab. 5) combined with different relaxation strategies (Tab. 6),
measured in average number of fixed-stress (FS) iterations and extra non-linear (NL) iterations
per time step used for solving the mechanics problem, if more than one non-linear iterations per
fixed-stress iteration is utilized; they are displayed on top of each other, illustrating the total
amount of non-linear iterations required. (d) Total run times (incl. assembly and solver) for five
time steps corresponding to (c).
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• For Setup B, the number of fixed-stress iterations per time step decreases for the Newton-
and Lex-type methods; it increases for the more optimistic choice Lopt. Under relaxation
on both levels, the iteration counts are practically constant for all methods.

We conclude, most importantly, inexact alternating minimization can outperform exact alter-
nating minimization. The number of outer fixed-stress iterations might decrease the more accu-
rately the non-linear problems are solved, but on the other hand, the total amount of required
inner non-linear iterations increases much more. This makes relaxation by (inexact) line search
attractive, which allows for improved solution of the non-linear subproblems and the overall
performance of the splitting scheme without requiring to solve a linear system. We observe,
relaxation does not only accelerate convergence but it also increases the robustness; similar ef-
fects have been previously observed for relaxation by Anderson acceleration for the fixed-stress
split [93].

Finally, if applicable, simple linearizations as the L-scheme might outperform Newton-based
linearization techniques. In particular, when combining them with relaxation. The main draw-
back of the L-scheme is that it includes tuning parameters. Optimal choices may lead to good
performance, whereas bad choices might even lead to no convergence. Suitable choices being
solution-dependent, makes the final choice rather difficult; however, line search may allow con-
vergence for a wide range of parameters, potentially even faster than more conservative choices
of the tuning parameters, for which the plain scheme converges. In the present example, by
choosing an L-scheme-based fixed-stress split with optimistic tuning parameters and full line
search relaxation, run times 1/8 of those for the non-relaxed, exact Newton-based fixed-stress
split have been achieved. The finer the mesh the more drastic the difference as direct solvers
are employed in this study.

15 Concluding remarks and discussion

The aim of the present work was to examine the inherent gradient flow structures of thermo-
hydro-mechanical processes in porous media with focus on consequences for the well-posedness
analysis and construction of numerical approximations and solvers. A major finding was that
various, existing PDE models from the literature can be formulated as generalized gradient flows
utilizing thermodynamic interpretation of energies and dissipation potentials – for instance,
linear poro-elasticity, linear poro-visco-elasticity, non-linear poro-elasticity in the infinitesimal
strain regime, non-Newtonian Darcy and non-Darcy flows in poro-elastic media, and thermo-
poro-elasticity without thermal convection. Moreover, well-posedness has been established for
those models utilizing a unified framework introduced for doubly non-linear evolution equations.

One further significant finding to emerge from this work is that robust, physically based op-
erator splitting schemes for time-discrete approximations are a consequence of a suitable choice
of primary variables (in fact dictated by the gradient flow structure) and a simple applica-
tion of plain alternating minimization. Robustness is then an immediate consequence of the
naturally underlying minimization structure of the semi-discrete problem arising from suitable
time-discretization of gradient flows; in that light, e.g., the undrained and the fixed-stress splits
appear to be the natural splitting schemes for linear poro-elasticity. Moreover, abstract conver-
gence theory allows to quantify the energy decrease for each iteration of the splitting schemes
only utilizing convexity and Lipschitz continuity properties of the problem – a fairly simple
machinery compared to previous analyses in the literature and also immediately applicable to
heterogeneous, anisotropic materials. We derive novel splitting schemes and establish a priori
and a posteriori convergence results in the context of linear poro-elasticity, linear poro-visco-
elasticity and linear thermo-poro-elasticity.

The results of this work support the idea that splitting schemes for models with a vector
structure ought to utilize tensorial stabilization instead of diagonal stabilization; such has been
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previously proposed either based on physical intuition or rather more ad hoc, cf., e.g., [45] in the
context of thermo-poro-elasticity or [94] in the context of multiple-network poro-elastic theory.
The latter has not been covered in this work, but it is essentially a generalization of linear
thermo-poro-elasticity; our results can be immediately extrapolated.

Additionally, we highlight the known and simple fact that a minimization formulation enables
relaxation of iterative solvers by line search strategies. Such have not been utilized before in the
field of poro-elasticity. Our numerical experiments suggest that line search acts as black box
optimization of the stabilization and possibly linearization in the context of optimized splitting
schemes [72], which is especially practical for problems with changing geometries or boundary
conditions.

Throughout the entire work, we utilize linear poro-elasticity as proof of concept and ver-
ify that the provided framework yields consistent results with the literature, but from a new
perspective. After all, it seems promising for handling further models as also demonstrated for
various extensions of linear poro-elasticity.

The most important limitation lies in the fact that, evidently, not all thermo-hydro-mechanical
processes are suitably modelled by gradient flows, e.g., convective-dominated processes, or ma-
terials with limit behavior as incompressible fluids or solids. However, at least in the context of
the numerical solution, non-monotone perturbations of gradient flows may be discussed using
operator splitting techniques as Strang’s splitting or semi-implicit time-discretization, and limit
cases may be handled employing duality theory. After all, the provided theory may still assist in
various situations – to what extent is topic of future research. Moreover, in this sense, interesting
areas of applications and model extensions include finite strain poro-elasticity, poro-elasticity
for fractured media, poroplasticity, and compositional and multi-phase flow in poro-elastic me-
dia. In terms of numerical solvers, for strongly non-linear and possibly non-convex problems, a
further study could assess the need for more advanced optimization algorithms as primal-dual
methods, alternating direction method of multipliers, or proximal alternating minimization for
deriving robust linearization or non-linear preconditioners. This would be a fruitful area for
further work.

A Abstract well-posedness results

The theoretical results in this work are mostly deduced by application of abstract results from
literature; we recall two results for doubly non-linear evolution equations and convex optimiza-
tion.

The following well-posedness result for doubly non-linear evolution equation can be under-
stood as a corollary or refined discussion of previous classical results, e.g., [11]. The main
improvement to previous results is a weaker regularity assumption on the external loading.
This is compensated with stronger, structural assumptions on the functions spaces, as well as
the dissipation potential and energy functional. Here, we consider an energy functional which
does not explicitly depend on time. In order to incorporate time-dependent energy functionals,
assumptions and proof techniques as, e.g., by [9], can be additionally applied.

Theorem A.1 (Well-posedness for doubly evolution equations with weakly regular load). Con-
sider the doubly non-linear evolution equation

∇Ψ(ẋ(t)) + ∇E(t, x(t)) = f(t) in V? a.e. in (0, T ); x(0) = x0. (A.1)

where

• pψ, pE ∈ (1,∞); p := min {pψ, pE}; p? ∈ (1,∞) such that 1
p + 1

p? = 1.

• B is a separable, reflexive Banach space with norm ‖ · ‖B.
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• V is a separable, reflexive Banach space with a semi-norm | · |V , such that

‖x‖V :=
(
‖x‖pB + |x|pV

)1/p
, x ∈ V . (A.2)

defines a norm on V. Furthermore, V is dense and compactly embedded in B.

• Ψ : B → [0,∞) is convex and continuously differentiable. There exists a constant C > 0
such that

Ψ(x) ≥ C‖x‖pψB , x ∈ B.

• E : [0, T ]× V → [0,∞), such that there exist constants C1 > 0, C2 ≥ 0, satisfying

E(t, x) ≥ C1|x|pEV − C2 for all (t, x) ∈ [0, T ]× V .

Furthermore, E(t, ·) : V → (−∞,∞) is convex, lower-semicontinuous, and continuously
differentiable for all t ∈ [0, T ]; and E(·, x) : [0, T ] → (−∞,∞) is differentiable a.e. for all
x ∈ V such that there exists a constant C > 0, satisfying for a.e. t ∈ (0, T )

|∂tE(t, x)| ≤ C(1 + E(t, x)) for all x ∈ V .

• f ∈ C(0, T ;V?) ∩W 1,p?(0, T ;V?).

• x0 ∈ V such that E(0, x0) <∞.

Then there exists a solution x ∈W 1,p(0, T ;B)∩L∞(0, T ;V) of (A.1), satisfying E(x) ∈ L∞(0, T )
and the energy identity

∫ T

0
Ψ(ẋ(t)) dt+ E(x(T ))− 〈f(T ), x(T )〉 (A.3)

= E(x0)− 〈f(0), x(0)〉+

∫ T

0
∂tE(t, x(t)) dt−

∫ T

0

〈
ḟ(t), x(t)

〉
dt.

If ∇Ψ or E are linear and self-adjoint, it is unique.

Proof. The proof is analogous to the proof of Thm. 1 by [11], enhanced by discussions of the
time-dependence of the energy functional by [95]: First, the doubly non-linear evolution equa-
tion (A.1) is discretized in time by consecutive convex minimization problems, and second,
stability bounds are derived, and finally, compactness arguments are employed in order to pass
to the limit, obtaining a solution to the time-continuous problem. Due to the weaker regularity
assumptions on the load term, the second step of [11] is not applicable here. In the following,
we derive stability for the time-discrete approximation under the above assumptions.

As in [11, 95], we use the minimizing movement scheme to discretize (A.1) in time. Let
0 = t0 < t1 < ... < tN = T of [0, T ] denote a partition of [0, T ] with constant time step size ∆t.
Set x0 = x(0) and define consecutively

xn := arg min
x∈B

{
∆tΨ

(
x− xn−1

∆t

)
+ Ẽn(x)

}

where fn := 1
∆t

∫ tn
tn−1

f(t) dt, and Ẽn : B → (−∞,∞] defined by

Ẽn(x) =

{
E(tn, x)− 〈fn, x〉 x ∈ V ,
∞, otherwise,
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is a proper, convex, lower-semicontinuous function. By Thm. A.2, xn is well-defined. Further-
more, for all n, it holds

∆tΨ

(
xn − xn−1

∆t

)
+ Ẽn(xn) ≤ Ẽn

(
xn−1

)

and hence, by induction xn ∈ V for all n, since x0 ∈ V . Summing over all time steps, employing
the definition of Ẽ and manipulating the sum over the load terms, yields

∑

n

∆tΨ

(
xn − xn−1

∆t

)
+ E(tN , x

N ) (A.4)

≤ E(0, x(0)) +
∑

n

∫ tn

tn−1

∂tE(t, xn−1) dt

+
〈
f0, x(0)

〉
−
〈
fN , xN

〉
−
∑

n

∆t

〈
fn − fn−1

∆t
, xn−1

〉
.

As in [95], we employ the bound on ∂tE together with a Grönwall inequality and obtain

∑

n

∫ tn

tn−1

∂tE(t, xn−1) dt ≤ C
(

1 +
∑

n

∆t E(tn−1, x
n−1)

)
,

where C > 0 depends on T and the stability bound on ∂tE . Inserting into (A.4), and, further-
more, utilizing the assumptions on Ψ, E and f yields for arbitrary δ > 0

∑

n

∆t

∥∥∥∥
xn − xn−1

∆t

∥∥∥∥
pψ

B
+
∣∣xN

∣∣pE
V + E(tN , x

N )

≤ C
(

1 +
∑

n

∆t E(tn−1, x
n−1)

)
+ δ

(
∥∥xN

∥∥p
V +

∑

n

∆t
∥∥xn−1

∥∥p
V

)
.

where C > 0 depends on T , δ, the initial data, and regularity of the loading. Using Young’s
inequality and the definition of ‖ · ‖V , it holds

∑

n

∆t

∥∥∥∥
xn − xn−1

∆t

∥∥∥∥
pψ

B
+
∣∣xN

∣∣pE
V + E(tN , x

N )

≤ C
(

1 +
∑

n

∆t E(tn−1, x
n−1)

)

+ δ

(
∥∥xN

∥∥pψ
B +

∑

n

∆t
∥∥xn−1

∥∥pψ
B +

∣∣xN
∣∣pE
V +

∑

n

∆t
∣∣xn−1

∣∣pE
V

)
.

By constructing a telescope sum, exploiting the convexity of x 7→ xpψ and applying Hölder
inequalities, we obtain

∥∥xN
∥∥pψ
B +

∑

n

∆t
∥∥xn−1

∥∥pψ
B ≤ C

(
1 +

∑

n

∆t

∥∥∥∥
xn − xn−1

∆t

∥∥∥∥
pψ

B

)

for C > 0 depending on pψ, x0 and T . Hence, for δ sufficiently small it holds

∑

n

∆t

∥∥∥∥
xn − xn−1

∆t

∥∥∥∥
pψ

B
+
∣∣xN

∣∣pE
V + E(tN , x

N )

≤ C
(

1 +
∑

n

∆t E(tn−1, x
n−1) +

∑

n

∆t
∣∣xn−1

∣∣pE
V

)
.
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Finally, by employing a Grönwall inequality, we obtain uniform stability for the left hand side.
Based on that, the proof can be continued along the lines of [11, 95], utilizing compactness
arguments in order to pass to the limit ∆t → 0 and obtain a solution to the time-continuous
doubly non-linear evolution equation, that in particular satisfies the energy identity (A.3).

Theorem A.2 (Well-posedness for convex minimization [50]). Consider the problem

minimize f(x) (A.5)

subject to x ∈ C,

where f : X → R is a proper, convex, lower semi-continuous function, and C ⊂ X is non-empty,
closed, convex subset of X , a reflexive Banach space. If C is bounded or f is coercive over C,
i.e., f(x)→∞ for x ∈ C with ‖x‖ → ∞, then (A.5) has a solution. It is unique if f is strictly
convex.

B Alternating minimization for block-separable constrained con-
vex minimization in infinitely dimensional Hilbert spaces

In [79], the authors establish an abstract convergence result for alternating minimization, applied
to a constrained, strongly convex minimization problem in finite dimensions. Furthermore,
convexity and Lipschitz continuity are solely considered wrt. Euclidean norms. We generalize
the abstract result, allowing for a constrained minimization problem in infinitely dimensional
Hilbert spaces. Convexity and Lipschitz continuity are considered wrt. the semi-norms.

Hilbert space structure. Let X = X1 × X2 be a product of Hilbert spaces, equipped with
an inner product 〈·, ·〉. Assume it is induced by separate inner products 〈·, ·〉1 and 〈·, ·〉2 on X1

and X2, respectively, such that

〈(x1, x2), (y1, y2)〉 = 〈x1, y1〉1 + 〈x2, y2〉2 , (x1, x2), (y1, y2) ∈ X1 ×X2.

The inner product 〈·, ·〉 acts naturally also as duality pairing on X ? × X . Additionally, let | · |?
on X denote some semi-norm on X .

Function properties. Let f : X → R be differentiable. We introduce two properties:

(i) We call f strongly convex wrt. | · |? if there exists a constant σ > 0 such that

f(y) ≥ f(x) + 〈∇f(x),y − x〉+
σ

2
|y − x|2?, ∀x,y ∈ X . (B.1)

which is equivalent to (see, e.g., [96])

〈∇f(y)−∇f(x),y − x〉 ≥ σ|y − x|2?, ∀x,y ∈ X .

(ii) We call the k-th block ∇kf of the gradient of f Lipschitz continuous wrt. | · |? if there
exists a constant Lk <∞ such that for all x ∈ X and hk ∈ X , it holds

〈∇kf(x+ hk)−∇kf(x),hk〉 ≤ Lk|hk|2?,1, (B.2)

where h1 = (h̃1, 0) and h2 = (0, h̃2) for some h̃k ∈ Xk, k = 1, 2. The condition (B.2) is
equivalent to (see, e.g., [96])

f(x+ hk) ≤ f(x) + 〈∇kf(x),hk〉+
Lk
2
|hk|2?,1. (B.3)
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Alternating minimization. Let X as above and f : X → R. Furthermore, let X̃1 ⊂ X1 and
X̃2 ⊂ X2 be non-empty, convex subsets. We consider the constrained minimization problem

inf
(x1,x2)∈X̃1×X̃2

f(x1, x2). (B.4)

Under certain assumptions on f and | · |?, we can show global, linear convergence for alternating
minimization, cf. Alg. 10.

Algorithm 10: Single iteration of alternating minimization

1 Input: xi−1 = (xi−1
1 , xi−1

2 ) ∈ X̃1 × X̃2

2 Determine xi1 := arg min
x1∈X̃1

f(x1, x
i−1
2 )

3 Determine xi2 := arg min
x2∈X̃2

f(xi1, x2)

Lemma B.1 (Linear convergence for alternating minimization). Let X̃ := X̃1 × X̃2 ⊂ X as
above, and let f : X → R be a differentiable function. Furthermore, let | · |?,1 denote semi-norm
on X satisfying:

• |(x1, x2)|?,1 ≥ |(x1, 0)|?,1 for all (x1, x2) ∈ X ,

• f is strongly convex wrt. | · |?,1 with constant σ1,

• ∇1f is Lipschitz continuous wrt. | · |?,1 with Lipschitz constant L1.

Then the alternating minimization Alg. 10 is globally, linearly convergent. In particular, let
(xi)i ⊂ X̃1 × X̃2 be the sequence generated by the alternating minimization Alg. 10 for given
initial value x0 ∈ X . And let x? ∈ X denotes the unique solution of (B.4). It holds for all i ∈ N

f(xi)− f(x?) ≤
(

1− σ1

L1

) (
f(xi−1)− f(x?)

)
≤
(

1− σ1

L1

)i (
f(x0)− f(x?)

)
,

f(xi)− f(x?) ≤ L1

σ1

(
f(xi−1)− f(xi)

)
.

Assume there additionally exists a second semi-norm | · |?,2 on X satisfying:

• |(x1, x2)|?,2 ≥ |(0, x2)|?,2 for all (x1, x2) ∈ X ,

• f is strongly convex wrt. | · |?,2 with constant σ2,

• ∇2f is Lipschitz continuous wrt. | · |?,2 with Lipschitz constant L2.

Then it holds for all i ∈ N

f(xi)− f(x?) ≤
2∏

j=1

(
1− σj

Lj

) (
f(xi−1)− f(x?)

)
≤

2∏

j=1

(
1− σj

Lj

)i (
f(x0)− f(x?)

)
,

f(xi)− f(x?) ≤
2∏

j=1

Lj
σj

(
f(xi−1)− f(xi)

)
.

Proof. The proof follows the same line of argumentation as the proof of Theorem 5.2 [79], but
carefully tailored to the more general setting used above.
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Consequence from strong convexity. Consider (B.1) for x = xi. Minimizing both sides
wrt. y ∈ X̃ yields

f(xi)− f(x?) ≤ − inf
y∈X̃

(〈∇f(xi),y − xi
〉

+
σ1

2
|y − xi|2?,1

)
. (B.5)

By definition of alternating minimization it holds

〈∇2f(xi), y2 − xi2〉2 ≥ 0 ∀y2 ∈ X̃2.

Hence, together with (A1), (B.5) becomes

f(xi)− f(x?) ≤ − inf
y1∈X̃1

(〈∇1f(xi), y1 − xi1
〉

1
+
σ1

2

∣∣(y1 − xi1, 0)
∣∣2
?,1

)
. (B.6)

Since X̃1 is convex and 0 < σ1 ≤ L1 by definition, it holds for all x1 ∈ X̃1

BL1/σ1
(x1) :=

{
h ∈ X1

∣∣∣∣x1 +
L1

σ1
h ∈ X̃1

}
⊂
{
h ∈ X1

∣∣∣x1 + h ∈ X̃1

}
=: B1(x1)

Hence, we obtain

inf
y1∈X̃1

(〈∇1f(xi), y1 − xi1
〉

1
+
σ1

2

∣∣(y1 − xi1, 0)
∣∣2
?,1

)

= inf
h∈BL1/σ1

(xi1)

(〈
∇1f(xi),

L1

σ1
h

〉

1

+
σ1

2

∣∣∣∣
(
L1

σ1
h, 0

)∣∣∣∣
2

?,1

)

≥ L1

σ1
inf

h∈B1(xi1)

(〈∇1f(xi), h
〉

1
+
σ1

2
|(h, 0)|2?,1

)
.

Altogether, it holds

f(xi)− f(x?) ≤− L1

σ1
inf

xi1+h∈X̃1

(〈∇1f(xi), h
〉

1
+
L1

2
|(h, 0)|2?,1

)
. (B.7)

Consequence from Lipschitz continuity. Consider (B.3) for x = xi. Minimizing both
sides wrt. h1 = (h1, 0) such that xi1 + h1 ∈ X̃1 yields

f(xi)− f(xi+1
1 , xi2) ≥ − inf

xi1+h1∈X̃1

(〈∇1f(xi), h1

〉
1

+
L1

2
|(h1, 0)|2?,1

)
. (B.8)

Consequences for alternating minimization. By putting together (B.7) and (B.8), and
exploiting the definition of alternating minimization, we obtain the a posteriori estimate

f(xi)− f(x?)

≤ L1

σ1

(
f(xi)− f(xi+1

1 , xi2)
)

≤ L1

σ1

(
f(xi)− f(xi+1)

)
.

Adding and subtracting f(x?) on the right hand side and reordering terms, yields

f(xi+1)− f(x?) ≤
(

1− σ1

L1

)(
f(xi)− f(x?)

)
.

The a priori result follows immediately. The second part of the thesis is proved analogously
with focus on the second step of the alternating minimization.
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C Nomenclature

Space and time
x Spatial coordinate
t Time
d Space dimension
Ω Domain
Γ Boundary of Ω
CΩ Poincaré constant
T Final time
∆t Time increment
tn n-th time step

Generalized gradient flows
X State space
PẊ Process space
E Free energy
D Dissipation potential
Pext External work rate

Physical fields
u Structural displacement
ε(u) Linear strain / symmetric gradient of u
σ Total stress
σd Deviatoric stress
σh Hydrostatic stress
σeff Effective stress
ζ Rotation
θ Fluid content
p Fluid pressure
q Volumetric flux
S Entropy
j Entropy flux
εv Visco-elastic strain
q∫ , j∫ Accumulated volumetric and entropy fluxes
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External sources
qθ Source for mass conservation
qS Entropy source
Qθ, QS Accumulated mass and entropy sources
fext External body force acting on the bulk
gext External body force acting on the fluid
uΓ Prescribed displacement
σΓ,n Prescribed surface force onto boundary
pΓ Prescribed pressure
qΓ,n Prescribed normal volumetric flux
TΓ prescribed temperature
jΓ,n Prescribed normal entropy flux

Function spaces
Ω Porous medium
d Spatial dimension
X ? Dual space of some function space X
X n Space X evaluated at time tn
X0 Tangent space of some function space X
V Space for structural displacement
S Space for total stress including the balance of momentum

S̃ Space for total stress without the balance of momentum
QAS Space of skew-symmetric tensors in Rd×d
Q, Q̃ Space for fluid pressure

ΠQ̃ Orthogonal projection onto Q̃
Z Space for volumetric flux
Z∫ Space for accumulated flux

W Space for entropy flux
W∫ Space for accumulated entropy flux

T Space for visco-elastic strains

Material parameters
C, Cv, C′v Stiffness tensors
A Compliance tensor
Cv Generalized stiffness tensor
Av Generalized compliance tensor
µ, λ Lamé parameters
µv, λv, µ′v, λ

′
v Visco-elasticity-specific Lamé parameters

E Young’s modulus
ν Poisson’s ratio
Kdr Drained bulk modulus
W (ε(u)) Strain energy density
1
M Storage coefficient
b(p) Nonlinear compressibility
α, αv, αT Biot coefficients
αϕ Thermo-hydro coupling coefficient
κ Hydraulic conductivity / permeability
κF Thermal conductivity
ν(|q|) Fluid viscosity
Cd Total volumetric heat capacity
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We study the iterative solution of coupled flow and geomechanics in heterogeneous
porous media, modeled by a three-field formulation of the linearized Biot’s
equations. We propose and analyze a variant of the widely used Fixed Stress
Splitting method applied to heterogeneous media. As spatial discretization, we
employ linear Galerkin finite elements for mechanics and mixed finite elements
(lowest order Raviart–Thomas elements) for flow. Additionally, we use implicit Euler
time discretization. The proposed scheme is shown to be globally convergent with
optimal theoretical convergence rates. The convergence is rigorously shown in energy
norms employing a new technique. Furthermore, numerical results demonstrate
robust iteration counts with respect to the full range of Lamé parameters for
homogeneous and heterogeneous media. Being in accordance with the theoretical
results, the iteration count is hardly influenced by the degree of heterogeneities.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The coupling of mechanics and flow in porous media is relevant for many applications ranging from
environmental engineering to biomedical engineering. The simplest model of real applied importance is the
quasi-static linearized Biot system, applicable for infinitesimally deforming, fully saturated porous media.
Existence, uniqueness and regularity for Biot’s equations have been investigated first by Showalter [1].

There are two approaches currently employed for solving Biot’s equations. They are referred to as fully-
implicit and iterative coupling [2]. The fully-implicit approach involves solving the fully coupled system of
governing equations simultaneously, providing the benefit of unconditional stability. It requires advanced
and efficient preconditioners. For this purpose, (Schur complement based) block preconditioners appear to
be a sound choice [3–6]. The iterative coupling approach involves the sequential-implicit solution of flow and
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mechanics using the latest solution information, iterating the procedure at each time step until convergence.
The sequential-implicit approach offers greater flexibility in code design than the fully-implicit approach. On
the other hand, being equivalent to a preconditioned Richardson method [7], sequential-implicit approaches
also provide a basis to design efficient block preconditioners for the fully-implicit approach [8,9]. Among
iterative coupling schemes, the widely used Fixed Stress Splitting method has been rigorously shown to
be unconditionally stable in the sense of a Von Neumann analysis [10] and globally convergent [11], when
considering slightly compressible flow in a homogeneous porous medium.

The new contributions of this work are:

• We prove global, linear convergence in energy norms of the Fixed Stress Splitting method applied to the
fully discretized three-field formulation of Biot’s equations for heterogeneous media, where linear finite
elements are employed for mechanics, mixed finite elements (lowest order Raviart–Thomas elements)
are employed for flow, and backward Euler time discretization is applied.

• We propose a new, optimized tuning parameter for heterogeneous media.

In the case of homogeneous media, the results are in consistency with previous numerical studies, cf., e.g., [12].
To the best of our knowledge, this is the first time the convergence of the Fixed Stress Splitting method is
rigorously shown for energy norms and considering heterogeneous media.

2. Mathematical model — Biot’s equations

We consider the quasi-static Biot’s equations [13,14], modeling a linearly elastic porous medium Ω ⊂ Rd,
d ∈ {2, 3}, saturated with a slightly compressible fluid. On the space–time domain Ω × (0, T ), the governing
equations read

− ∇ · [2µε(u) + λ∇ · u] + α∇p = f , ∂t

( p

M
+ α∇ · u

)
+ ∇ · w = Sf , K−1w + ∇p = ρf g. (1)

Here, u is the displacement, p is the fluid pressure, w is the Darcy flux, ε(u) = 0.5(∇u + ∇u⊤) is the
linearized strain tensor, µ, λ are the Lamé parameters, α is the Biot coefficient, M is the Biot modulus, ρf

is the fluid density, K is the permeability tensor divided by fluid viscosity, g is the gravity vector, and Sf

is a volume source term. For simplicity, we assume homogeneous boundary u = 0, p = 0 on ∂Ω × [0, T ] and
initial conditions u = u0, p = p0 in Ω ×{0}. We make the following assumptions on the effective coefficients:

(A1) Let ρf ∈ R, g ∈ Rd be constant.
(A2) Let M, α, µ, λ ∈ L∞(Ω) be positive, uniformly bounded, with the lower bound strictly positive.
(A3) Let K ∈ L∞(Ω)d×d be a symmetric matrix, which is constant in time and has uniformly bounded

eigenvalues, i.e., there exist constants km, kM ∈ R, satisfying for all x ∈ Ω and for all z ∈ Rd \ {0}

0 < kmz⊤z ≤ z⊤K(x)z ≤ kM z⊤z < ∞.

Below, we consider a numerical approximation of the weak solution of Biot’s equations as described above.

3. Fixed stress splitting for the fully discretized system

Let Th be a regular decomposition of mesh size h of the domain Ω . Furthermore, let 0 = t0 < t1 < · · · <

tN = T , N ∈ N, define a partition of the time interval (0, T ) with constant time step size τ = tk+1−tk, k ≥ 0.
In order to discretize Biot’s equations in space, we use linear, constant and lowest order Raviart–Thomas
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elements to approximate the displacement, pressure and flux, respectively. The corresponding discrete spaces
are given by

Vh =
{

vh ∈ [H1
0 (Ω)]d

⏐⏐ ∀T ∈ Th, vh|T ∈ [P1]d
}

, Qh =
{

qh ∈ L2(Ω)
⏐⏐ ∀T ∈ Th, qh|T ∈ P0

}
,

Zh =
{

zh ∈ H(div;Ω)
⏐⏐ ∀T ∈ Th, zh|T (x) = a + bx, a ∈ Rd, b ∈ R

}
,

where P0 and P1 denote the spaces of scalar piecewise constant and piecewise linear functions, respectively.
Additionally, we use backward Euler time discretization in order to discretize Biot’s equations in time.

Let ⟨·, ·⟩ denote the standard L2(Ω) scalar product. Then for given initial values (u0
h, v0

h, w0
h) ∈ Vh ×Qh ×

Zh, the fully-implicit discretization reads: For all n ∈ N, n ≥ 1, given (un−1
h , pn−1

h , wn−1
h ) ∈ Vh × Qh × Zh,

find the current displacement, pressure and flux fields (un
h , pn

h, wn
h ) ∈ Vh × Qh × Zh, satisfying for all

(vh, qh, zh) ∈ Vh × Qh × Zh

⟨2µε(un
h ) , ε(vh)⟩ + ⟨λ∇ · un

h , ∇ · vh⟩ − ⟨αpn
h, ∇ · vh⟩ = ⟨f , vh⟩, (2)⟨

1
M

pn
h, qh

⟩
+ ⟨α∇ · un

h , qh⟩ + τ⟨∇ · wn
h , qh⟩ = τ⟨Sf , qh⟩ +

⟨
1

M
pn−1

h , qh

⟩
+ ⟨α∇ · un−1

h , qh⟩, (3)

⟨K−1wn
h , zh⟩ − ⟨pn

h, ∇ · zh⟩ = ⟨ρf g, zh⟩. (4)

Instead of solving system (2)–(4) in a fully coupled manner, a popular alternative is to use iterative
methods, which decouple mechanics and flow problems and allow for an efficient solution of the separate
subproblems. Here, we limit our considerations to the widely used Fixed Stress Splitting method and adapt
the idea by Mikelić and Wheeler [11], which considers keeping an artificial volumetric stress constant.
Nevertheless, the same ideas can be also used to prove the convergence of the optimized Undrained Splitting
scheme.

The iterative scheme defines a sequence (un,i
h , pn,i

h , wn,i
h ), i ≥ 0. After initialization un,0

h = un−1
h ,

pn,0
h = pn−1

h , and wn,0
h = wn−1

h , each iterate is defined in two steps. First, the flow problem is solved
independently, keeping the artificial volumetric stress σβ = σ0 + Kdr∇ · u − αp constant, which introduces a
tuning parameter Kdr ∈ L∞(Ω) (classically the drained bulk modulus). Equivalently, we consider the tuning
parameter βF S = α2/Kdr. Second, the mechanics problem is solved using updated pressure and flux. For
fixed n, i ∈ N, the detailed splitting scheme reads as follows:
Step 1: Given (un,i−1

h , pn,i−1
h , wn,i−1

h ) ∈ Vh × Qh × Zh, find (pn,i
h , wn,i

h ) ∈ Qh × Zh s.t. for all (qh, zh) ∈
Qh × Zh it holds

⟨(
1

M
+ βF S

)
pn,i

h , qh

⟩
+ τ⟨∇ · wn,i

h , qh⟩ = τ⟨Sf , qh⟩ +
⟨

1
M

pn−1
h , qh

⟩
+ ⟨α∇ · un−1

h , qh⟩

+ ⟨βF Spn,i−1
h , qh⟩ − ⟨α∇ · un,i−1

h , qh⟩, (5)
⟨K−1wn,i

h , zh⟩ − ⟨pn,i
h , ∇ · zh⟩ = ⟨ρf g, zh⟩. (6)

Step 2: Given pn,i
h ∈ Qh, find un,i

h ∈ Vh such that for all vh ∈ Vh it holds

⟨2µε
(

un,i
h

)
, ε(vh)⟩ + ⟨λ∇ · un,i

h , ∇ · vh⟩ = ⟨f , vh⟩ + ⟨αpn,i
h , ∇ · vh⟩. (7)

In the following, we consider three tuning parameters — the classical, physically motivated choice βcl
F S , cf.,

e.g., [10], and the parameters βλ
F S , βopt

F S , revealed by the analysis of Mikelić and Wheeler [11,12], which is
valid for homogeneous Lamé parameters. The latter parameter is also revealed by the present convergence
analysis, valid for heterogeneous Lamé parameters. More precisely, the parameters are given by

βcl
F S = α2

2µ
d + λ

, βλ
F S = α2

2λ
, βopt

F S = α2

2
( 2µ

d + λ
) . (8)
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4. Convergence analysis

We prove linear convergence of the Fixed Stress Splitting method, when applied to Biot’s equations in
heterogeneous media. For this purpose, we show a contraction with respect to energy norms, making use
of the following lemma and remark. We refer to the Supplementary material (see Appendix A) for further
standard lemmas used in the proof. Furthermore, in the Supplementary material, the proof is repeated for
homogeneous media in a simpler, but a more detailed form.

Lemma 1 (Thomas’ Lemma, [15]). There exists a constant CΩ,d > 0 not depending on the mesh size h,
such that given an arbitrary qh ∈ Qh there exists zh ∈ Zh, satisfying ∇ · zh = qh and ∥zh∥ ≤ CΩ,d∥qh∥.

Remark 1 (Weighted L2(Ω)d Norms). Let k ∈ {1, d}. Let further A ∈ [L∞(Ω)]k×k be a symmetric,
uniformly positive definite matrix and let its eigenvalues be uniformly bounded, i.e., there exist constants
am, aM ∈ R such that for all eigenvalues λ(x) of matrix A(x), x ∈ Ω , it holds 0 < am ≤ λ(x) ≤ aM ≤ ∞.
Then, we define a weighted scalar product ⟨·, ·⟩A on L2(Ω)d by ⟨f , g⟩A = ⟨Af , g⟩, f , g ∈ L2(Ω)d. Let ∥ · ∥A
denote the corresponding norm. Then it holds ∀f , g ∈ L2(Ω)d

am∥f ∥2 ≤ ∥f ∥2
A ≤ aM ∥f ∥2, ⟨f , g⟩ ≤ ∥f ∥A∥g∥A−1 .

Theorem 2 (Linear Convergence for Fixed Stress Splitting). Assume (A1)–(A3). Let (un
h , pn

h, wn
h ) and

(un,i
h , pn,i

h , wn,i
h ) be the solutions of Eqs. (2)–(4) and Eqs. (5)–(7), respectively. Let ei

u = un,i
h − un

h ,
ei

p = pn,i
h − pn

h and ei
w = wn,i

h − wn
h denote the errors at current iteration. Then for all βF S ∈ L∞(Ω),

satisfying

βF S ≥ α2

2( 2µ
d + λ)

on Ω , (9)

for all i ≥ 1, it holds

∥ei
p∥2

βF S
≤



βF S
2

1
M + βF S

2 + τkm
C2
Ω,d


∞

∥ei−1
p ∥2

βF S
, (10)

∥ε
(
ei

u
)

∥2
2µ + ∥∇ · ei

u∥2
λ ≤ ∥ei

p∥2
α2

2µ
d

+λ

. (11)

Optimal convergence rates are obtained in case of equality in Eq. (9).

Proof. Due to Assumptions (A1)–(A3), all effective coefficients fulfill the requirements for defining weighted
L2(Ω)-norms, cf. Remark 1. Throughout the proof we make use of weighted norms without further comment.
Step 1: Flow and mechanics. By taking the differences of corresponding Eqs. (5)–(7) and Eqs. (2)–(4), testing
with vh = ei−1

u ∈ Vh, qh = ei
p ∈ Qh and zh = τei

w ∈ Zh and adding all together, we obtain

⟨ε
(
ei

u
)

, ε
(
ei−1

u
)
⟩2µ + ⟨∇ · ei

u , ∇ · ei−1
u ⟩λ + ∥ei

p∥2
1

M
+ τ∥ei

w∥2
K−1 + ⟨ei

p − ei−1
p , ei

p⟩βF S
= 0.

Using a polarization and binomial identity yields

1
4∥ε

(
ei

u + ei−1
u

)
∥2

2µ + 1
4∥∇ · (ei

u + ei−1
u )∥2

λ − 1
4∥ε

(
ei

u − ei−1
u

)
∥2

2µ − 1
4∥∇ · (ei

u − ei−1
u )∥2

λ

+ ∥ei
p∥2

1
M

+ τ∥ei
w∥2

K−1 + ∥ei
p∥2

βF S
2

+ ∥ei
p − ei−1

p ∥2
βF S

2
− ∥ei−1

p ∥2
βF S

2
= 0. (12)
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Step 2: Mechanics. Evaluating Eq. (7) at iteration i and i − 1, taking the difference and testing with
vh = ei

u − ei−1
u yields

∥ε
(
ei

u − ei−1
u

)
∥2

2µ + ∥∇ · (ei
u − ei−1

u )∥2
λ = ⟨ei

p − ei−1
p , ∇ · (ei

u − ei−1
u )⟩α.

Let γ ∈ L∞(Ω) with γ(Ω) ⊂ [0, 1] and fµ, fλ ∈ L∞(Ω), satisfying the assumptions of Remark 1. Then by
applying weighted Cauchy–Schwarz inequalities, cf. Remark 1, and an arithmetic mean-root mean square
inequality (AM-QM inequality), we obtain

∥ε
(
ei

u − ei−1
u

)
∥2

2µ + ∥∇ · (ei
u − ei−1

u )∥2
λ

= ⟨ei
p − ei−1

p , ∇ · (ei
u − ei−1

u )⟩γα + ⟨ei
p − ei−1

p , ∇ · (ei
u − ei−1

u )⟩(1−γ)α

≤ ∥ei
p − ei−1

p ∥
γα2f−1

µ
∥∇ · (ei

u − ei−1
u )∥γfµ + ∥ei

p − ei−1
p ∥(1−γ)α2f−1

λ
∥∇ · (ei

u − ei−1
u )∥(1−γ)fλ

≤ ∥ei
p − ei−1

p ∥
γα2f−1

µ
∥ε

(
ei

u − ei−1
u

)
∥γdfµ + ∥ei

p − ei−1
p ∥(1−γ)α2f−1

λ
∥∇ · (ei

u − ei−1
u )∥(1−γ)fλ

.

By applying Young’s inequality, rearranging terms and scaling, it holds for c ∈ (0, ∞) and γ, fµ, fλ as above

∥ε
(
ei

u − ei−1
u

)
∥2

c(2µ− 1
2 γdfµ) + ∥∇ · (ei

u − ei−1
u )∥2

c(λ− 1
2 (1−γ)fλ) ≤ ∥ei

p − ei−1
p ∥2

α2
2 c(γf−1

µ +(1−γ)f−1
λ

)
.

By choosing c, γ, fµ, fλ optimally, we finally obtain

1
4∥ε

(
ei

u − ei−1
u

)
∥2

2µ + 1
4∥∇ · (ei

u − ei−1
u )∥2

λ ≤ ∥ei
p − ei−1

p ∥2
α2

4
( 2µ

d
+λ

) . (13)

Step 3: Darcy. Taking the difference of Eqs. (6) and (4) yields for any zh ∈ Zh

⟨K−1ei
w , zh⟩ − ⟨ei

p, ∇ · zh⟩ = 0. (14)

Using Thomas’ Lemma, there exists a constant CΩ,d > 0 and a function z̃h ∈ Zh satisfying ∇ · z̃h = ei
p and

∥z̃h∥ ≤ CΩ,d∥ei
p∥. Then, together with Eq. (14) and Assumption (A3), after some rearranging, we obtain

km

C2
Ω,d

∥ei
p∥2 ≤ ⟨K−1ei

w , ei
w⟩. (15)

Step 4: Combining Step 1–3. Discarding the first two terms in Eq. (12), using Assumption (9), Eq. (13) and
inserting Eq. (15) yields

∥ei
p∥2

1
M + βF S

2 + τkm
C2
Ω,d

≤ ∥ei−1
p ∥2

βF S
2

.

By employing Remark 1, we obtain Eq. (10).
Step 5: Mechanics revisited. Taking the difference of Eqs. (7) and (2), tested with vh = ei

u yields

∥ε
(
ei

u
)

∥2
2µ + ∥∇ · ei

u∥2
λ = ⟨ei

p, ∇ · ei
u⟩α.

We repeat all steps from Step 2. Due to linearity, we obtain Eq. (11) analogously. □

Remark 2 (Discussion). The above analysis covers global convergence in energy norms for all considered
tuning parameters βcl

F S , βλ
F S and βopt

F S , where the first two only yield sub-optimal convergence rates in the
energy norms and the latter yields optimal rates, as shown by our proof. The parameter βλ

F S recovers
optimality in the limit of µ

λ ≪ 1. For soft materials, i.e., in the limit of µ
λ ≫ 1, we expect deteriorating

convergence rates due to lack of dependence on µ.
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Table 1
Problem parameters, chosen identically to [12].

Symb. Quantity Values [Unit]

E Bulk modulus 0.594 [GPa]
α Biot’s coefficient 1
M Biot’s modulus 1.65e10 [Pa]
K Permeability tensor 100I [mD/cP]

divided by fluid viscosity
g Gravity vector 0 [m/s2]
∆x, ∆y Grid spacing in x and y 0.025 [m]
τ Time step size 1 [s]
δa Absolute error tolerance 1e−6
δr Relative error tolerance 1e−6

5. Numerical results

We analyze the robustness of the Fixed Stress Splitting scheme with respect to different Lamé parameters
and compare the convergence behavior for the tuning parameters βcl

F S , βλ
F S and βopt

F S . For further test
cases with d ∈ {2, 3}, we refer to the Supplementary material (see Appendix A). Note, that convergence
has been already demonstrated by Mikelić et al. [12]. Focusing on the performance of the splitting
scheme, we employ direct solvers for all occurring subproblems. Furthermore, let (ui, pi, wi) denote the
solution coefficient vector in step i. Then given tolerances δa, δr > 0, we employ the stopping criterion
∥(ui, pi, wi) − (ui−1, pi−1, wi−1)∥ ≤ δa + δr∥(ui, pi, wi)∥. For the implementation we used the Dune
libraries [16].

5.1. Two-dimensional homogeneous medium — Constant Poisson’s ratio

Let Ω = (0, 1) × (0, 1) ⊂ R2. For given ξ ∈ R, we prescribe displacement, pressure and flux fields

u(x, y, t) = tx(1 − x)y(1 − y)
[
1 1

]⊤
, p(x, y, t) = ξ · tx(1 − x)y(1 − y), w = −K∇p (16)

and choose source terms, initial and Dirichlet boundary conditions such that Eq. (16) is the solution of
problem (1). We choose the same set of physical parameters as [12] apart from varying mechanical parameters
(see Table 1). Instead of considering the full range of Lamé parameters, it is equivalent to consider the range
ν ∈ (0, 0.5) for the Poisson’s ratio as ν = (2(1 + µ/λ))−1. For the rather realistic parameters, we choose
ξ = 1e8 to achieve convergence of the discretization.

The iteration count for different Poisson’s ratios and different tuning parameters is illustrated in Fig. 1.
Both βcl

F S and βopt
F S are robust with respect to the full range of Poisson’s ratios, whereas the parameter

βλ
F S shows deteriorating convergence rates for soft materials, demonstrating the general necessity of the

dependence of the tuning parameter on both Lamé parameters. As expected, in the limit, i.e., for ν → 0.5,
both parameters βλ

F S and βopt
F S yield identical iteration counts.

5.2. Three-dimensional heterogeneous medium — Jumping Poisson’s ratio

We compare Fixed Stress Splitting iteration counts for three-dimensional, heterogeneous media with
constant and non-constant Poisson’s ratios. We consider a cube Ω = (0, 1) × (0, 1) × (0, 1) ⊂ R3 discretized
by 20 × 20 × 20 hexahedra. For given ξ ∈ R, we prescribe displacement and pressure fields

u(x, y, z, t) = tx(1 − x)y(1 − y)z(1 − z)
[
1 1 1

]⊤
, p(x, y, z, t) = ξ · tx(1 − x)y(1 − y)z(1 − z) (17)

and a corresponding flux field w = −K∇p. Further, we proceed analogously to Section 5.1, also considering
the same physical parameters besides a locally varying Poisson’s ratio. For chosen ∆ν ∈ {0.0, 0.05, 0.1, 0.2}
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Fig. 1. Left and Center: Number of Fixed Stress iterations against Poisson’s ratio for the first time step for (left) the homogeneous
(Section 5.1) and (center) the heterogeneous (Section 5.2) test case. Right: Example for Poisson’s ratio distribution in the interval
[0.1, 0.4] (Section 5.2).

and ν ∈ (∆ν, 0.5 − ∆ν), we consider uniformly distributed Poisson’s ratios in the interval [ν − ∆ν, ν + ∆ν].
An example distribution is shown in Fig. 1. We note, that for ∆ν = 0 the medium is homogeneous.

The iteration counts for different values for ν and ∆ν are visualized in Fig. 1. We make two observations.
For homogeneous media, the iteration count is robust with respect to different Poisson’s ratios as it remains
almost constant, as already seen for the two-dimensional test case in Section 5.1. Furthermore, we note
that for heterogeneous media, the iteration count is bounded by the maximum of numbers of iterations
obtained for homogeneous media over all Poisson’s ratio values taken in the heterogeneous medium. This is
in accordance with the theoretical convergence result, as the theoretical convergence rate includes a infinity
norm, evaluating the worst case.

6. Conclusion

We have proposed an optimized Fixed Stress Splitting method for heterogeneous media. Its global
convergence has been shown in weighted energy norms. The optimized tuning parameter depends on all
mechanical parameters and shows stable iteration counts on the full range of Poisson’s ratios. Numerical
test cases show no significant increase of iterations when switching from a homogeneous to a heterogeneous
medium or from two to three dimensions, demonstrating the robustness of the splitting scheme with respect
to heterogeneities.
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Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.aml.
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The supplementary material contains

• a review of the fully discretized problem and the Fixed Stress Splitting method for reference in Section 3,

• a review of lemmas used in the convergence analysis,

• convergence analysis of the Fixed Stress Splitting method for homogeneous media,

• additional numerical test cases.

1 Review – Fixed Stress Splitting method for the fully discretized
problem

Let 〈·, ·〉 denote the standard L2(Ω) scalar product. For homogeneous media, the fully implicit discretization
then reads: Given (un−1

h , pn−1
h ,wn−1

h ) ∈ Vh ×Qh ×Zh, find (unh, p
n
h,w

n
h) ∈ Vh ×Qh ×Zh, satisfying for all

(vh, qh, zh) ∈ Vh ×Qh ×Zh

2µ〈ε(unh) , ε(vh)〉+ λ〈∇ · unh,∇ · vh〉 − α〈pnh,∇ · vh〉 = 〈f ,vh〉, (1)

1

M
〈pnh, qh〉+ α〈∇ · unh, qh〉+ τ〈∇ ·wn

h , qh〉 = τ〈Sf , qh〉+
1

M
〈pn−1
h , qh〉+ α〈∇ · un−1

h , qh〉, (2)

〈K−1wn
h , zh〉 − 〈pnh,∇ · zh〉 = 〈ρfg, zh〉. (3)

The Fixed Stress Splitting method reads:
Step 1: Given (un,i−1

h , pn,i−1
h , qn,i−1

h ) ∈ Vh × Qh × Zh, find (pn,ih ,wn,i
h ) ∈ Qh × Zh such that for all

(qh, zh) ∈ Qh ×Zh it holds
(

1

M
+ βFS

)
〈pn,ih , qh〉+ τ〈∇ ·wn,i

h , qh〉 = τ〈Sf , qh〉+
1

M
〈pn−1
h , qh〉+ α〈∇ · un−1

h , qh〉 (4)

+ βFS〈pn,i−1
h , qh〉 − α〈∇ · un,i−1

h , qh〉,
〈K−1wn,i

h , zh〉 − 〈pn,ih ,∇ · zh〉 = 〈ρfg, zh〉. (5)

Step 2: Given pn,ih ∈ Qh, find un,ih ∈ Vh such that for all vh ∈ Vh it holds

2µ〈ε
(
un,ih

)
, ε(vh)〉+ λ〈∇ · un,ih ,∇ · vh〉 = 〈f ,vh〉+ α〈pn,ih ,∇ · vh〉. (6)

1



2 Preliminaries

For the convergence analysis in Section 3, we make use of the following lemmas.

Lemma 1 (Polarization identity). Let (X, 〈·, ·〉X) be a Hilbert space and x, y ∈ X. Then it holds

〈x, y〉X =
1

4
‖x+ y‖2X −

1

4
‖x− y‖2X .

Lemma 2 (Binomial identity). Let (X, 〈·, ·〉X) be a Hilbert space and x, y ∈ X. Then it holds

〈x− y, x〉X =
1

2
‖x‖2X +

1

2
‖x− y‖2X −

1

2
‖y‖2X .

Lemma 3 (Cauchy-Schwarz inequality). Let (X, 〈·, ·〉X) be a Hilbert space and x, y ∈ X. Then it holds

|〈x, y〉X | ≤ ‖x‖X‖y‖X .

Lemma 4 (Young’s inequality). Let a, b, δ ∈ R, δ > 0. Then it holds

|ab| ≤ 1

2δ
a2 +

δ

2
b2.

Lemma 5 (Arithmetic mean-root mean square inequality, AM-QM inequality). Let n ∈ N and {xj}nj=1 ⊂ R.
Then it holds

1

n

n∑

j=1

xj ≤

√√√√ 1

n

n∑

j=1

x2
j .

3 Convergence analysis for constant Lamé parameters

We prove global convergence of the Fixed Stress Splitting method applied to Biot’s equations in a homogeneous
porous medium. The proof has the same character as for heterogeneous media, but simpler notation is used.
Furthermore, slightly more details are presented.

Theorem 6 (Linear convergence for Fixed Stress Splitting). Assume spatially constant effective coefficients,
satisfying Assumptions (A1)–(A3). Let (unh, p

n
h,w

n
h) and (un,ih , pn,ih ,wn,i

h ) be the solutions of Eq. (1)–(3) and

Eq. (4)–(6), respectively. Let eiu = un,ih −unh, eip = pn,ih − pnh and eiw = wn,i
h −wn

h denote the errors at current
iteration. Then for all

βFS ≥
α2

2
(

2
dµ+ λ

) (7)

it holds

‖eip‖2 ≤
βFS

2
1
M + βFS

2 + τkm
CΩ,d

‖ei−1
p ‖2

and

2µ‖ε
(
eiu
)
‖2 + λ‖∇ · eiu‖2 ≤

α2

(
2
dµ+ λ

)‖eip‖2.

Optimal convergence rates are obtained when equality holds in Eq. (7).

2



Proof. Step 1: Flow and mechanics

By taking the differences of corresponding Eq. (4)–(6) and Eq. (1)–(3), testing with vh = ei−1
u ∈ Vh,

qh = eip ∈ Qh and zh = τeiw ∈ Zh and adding all together, we obtain

2µ〈ε
(
eiu
)
, ε
(
ei−1
u

)
〉+ λ〈∇ · eiu,∇ · ei−1

u 〉+
1

M
‖eip‖2 + τ〈K−1eiw, e

i
w〉+ βFS〈eip − ei−1

p , eip〉 = 0.

Using the polarization and binomial identities (cf. Lemma 1 and 2) yields

µ

2
‖ε
(
eiu + ei−1

u

)
‖2 +

λ

4
‖∇ · (eiu + ei−1

u )‖2 − µ

2
‖ε
(
eiu − ei−1

u

)
‖2 − λ

4
‖∇ · (eiu − ei−1

u )‖2 (8)

+
1

M
‖eip‖2 + τ〈K−1eiw, e

i
w〉+

βFS
2

(
‖eip‖2 + ‖eip − ei−1

p ‖2 − ‖ei−1
p ‖2

)
= 0.

Step 2: Mechanics

Taking the difference of Eq. (6) evaluated at iteration i and i− 1, tested with vh = eiu − ei−1
u yields

2µ‖ε
(
eiu − ei−1

u

)
‖2 + λ‖∇ · (eiu − ei−1

u )‖2 = α〈eip − ei−1
p ,∇ · (eiu − ei−1

u )〉. (9)

Applying the Cauchy-Schwarz inequality and the AM-QM inequality (cf. Lemma 3 and 5) to the right hand
side, yields for any γ ∈ (0, 1)

2µ‖ε
(
eiu − ei−1

u

)
‖2 + λ‖∇ · (eiu − ei−1

u )‖2

≤α‖eip − ei−1
p ‖ ‖∇ · (eiu − ei−1

u )‖

≤α‖eip − ei−1
p ‖

(
γ
√
d‖ε
(
eiu − ei−1

u

)
‖+ (1− γ)‖∇ · (eiu − ei−1

u )‖
)
.

By applying Young’s inequality (cf. Lemma 4), rearranging terms and scaling, for any δ1, δ2, c > 0 and
γ ∈ (0, 1), it holds

c(2− δ1γ)µ‖ε
(
eiu − ei−1

u

)
‖2 + c(1− δ2(1− γ))λ‖∇ · (eiu − ei−1

u )‖2 (10)

≤ α2c

4

(
γd

δ1µ
+

1− γ
δ2λ

)
‖eip − ei−1

p ‖2.

Now we choose the parameters optimally. We consider the minimization problem

min
γ,c,δ1,δ2

α2c

4

(
γd

δ1µ
+

1− γ
δ2λ

)

s.t. c, δ1, δ2 > 0
γ ∈ (0, 1)
c(2− δ1γ) = 1

2
c(1− δ2(1− γ)) = 1

4

By substituting both equality constraints and rearranging terms, we obtain a reduced problem

min
γ,c

α2

4

c

1− 1
4c

(
d

2µ
γ2 +

1

λ
(1− γ)2

)

s.t. c >
1

4
, γ ∈ (0, 1)

which can be separated into two independent problems yielding optimal

c? =
1

2
, γ? =

2µ

2µ+ dλ
,

3



and hence

δ?1 =
2µ+ dλ

2µ
, δ?2 =

2µ+ dλ

2dλ
.

Inserting the optimal values into Eq. (10) yields

µ

2
‖ε
(
ei+1
u − eiu

)
‖2 +

λ

4
‖∇ · (ei+1

u − eiu)‖2 ≤ α2

4
(

2
dµ+ λ

)‖eip − ei−1
p ‖2. (11)

Step 3: Darcy

Taking the difference of Eq. (5) and Eq. (3) yields

〈K−1eiw, zh〉 − 〈eip,∇ · zh〉 = 0 (12)

for any zh ∈ Zh. Using Thomas’ Lemma, there exists a constant CΩ,d > 0 and a function z̃h ∈ Zh satisfying

∇ · z̃h = eip, ‖z̃h‖ ≤ CΩ,d‖eip‖.

Hence, together with Eq. (12), Assumption (A3) and by applying the Cauchy-Schwarz inequality, we obtain

‖eip‖2 = 〈eip,∇ · z̃h〉
= 〈K−1eiw, z̃h〉
≤ 〈K−1eiw, e

i
w〉

1
2 〈K−1z̃h, z̃h〉

1
2

≤ 1√
km
〈K−1eiw, e

i
w〉

1
2 ‖z̃h‖

≤ CΩ,d√
km
〈K−1eiw, e

i
w〉

1
2 ‖eip‖.

After cancellation and rearranging, we obtain

km
C2

Ω,d

‖eip‖2 ≤ 〈K−1eiw, e
i
w〉. (13)

Step 4: Combining Step 1–3

Discarding the first two positive terms in Eq. (8), inserting Eq. (13) and Eq. (11) yields

(
1

M
+
βFS

2
+
τkm
C2

Ω,d

)
‖eip‖2 +

βFS
2
‖eip − ei−1

p ‖2 (14)

≤ βFS
2
‖ei−1
p ‖2 +

α2

4
(

2
dµ+ λ

)‖eip − ei−1
p ‖2.

By setting βFS ≥ α2

2( 2
dµ+λ)

, we obtain

(
1

M
+
βFS

2
+
τkm
C2

Ω,d

)
‖eip‖2 ≤

βFS
2
‖ei−1
p ‖2.

4



Step 5: Mechanics revisited

Taking the difference of Eq. (6) and Eq. (1), tested with vh = eiu yields

2µ‖ε
(
eiu
)
‖2 + λ‖∇ · eiu‖2 = α〈eip,∇ · eiu〉.

We repeat all steps from Step 2. Due to linearity, we obtain analogously

µ

2
‖ε
(
eiu
)
‖2 +

λ

4
‖∇ · eiu‖2 ≤

α2

4
(

2
dµ+ λ

)‖eip‖2.

Remark 1 (Alternative proof). Using previous calculations, we give an alternative proof to obtain Eq. (14)
in Step 4 of the previous proof. Applying the AM-QM inequality to the left hand side, and the Cauchy-Schwarz
inequality and Young’s inequality to the right hand side of Eq. (9), it follows after some algebraic manipulation

‖∇ · (eiu − ei−1
u )‖ ≤ α(

2µ
d + λ

)‖eip − ei−1
p ‖. (15)

Inserting Eq. (9) and Eq. (15) into Eq. (8), yields

µ

2
‖ε
(
eiu + ei−1

u

)
‖2 +

λ

4
‖∇ · (eiu + ei−1

u )‖2 +

(
1

M
+
βFS

2

)
‖eip‖2 + τ〈K−1eiw, e

i
w〉+

βFS
2
‖eip − ei−1

p ‖2

=
βFS

2
‖ei−1
p ‖2 +

α

4
〈eip − ei−1

p ,∇ · (eiu − ei−1
u )〉

≤ βFS
2
‖ei−1
p ‖2 +

α

4
‖eip − ei−1

p ‖ ‖∇ · (eiu − ei−1
u )‖

≤ βFS
2
‖ei−1
p ‖2 +

α2

4
(

2µ
d + λ

)‖eip − ei−1
p ‖2

By dropping some positive terms and inserting Eq. (13) on the left hand side, we finally obtain Eq. (14).

4 Numerical results

In the following section, we present additional test cases demonstrating the performance of the Fixed Stress
Splitting method. We consider the classical Mandel’s problem, a modification, a three-dimensional version
of the test case shown in the original work and a two- and three-dimensional medium with highly jumping
mechanical parameters.

4.1 Mandel’s problem

Mandel’s problem is a classical benchmark for linearized Biot’s equations, for which an analytical solution is
known. See, e.g., Coussy [1] for details. Briefly, Mandel’s problem considers a two-dimensional, rectangular,
fully saturated poroelastic material, loaded by a constant compressive force, which is applied instantaneously.
Gravity is neglected. Due to symmetry, only the top right quarter is considered, discretized by a regular
quadrilateral grid (cf. Fig. 1). The top, left and bottom boundary is treated as impermeable, while zero
pressure is implied at the right boundary. For the simplicity of numerical implementation, a displacement
in y-direction is prescribed on the top. The type of the remaining boundary conditions for the mechanical
problem is illustrated in Fig. 1.

We consider the domain Ω = (0, 100)× (0, 10) ⊂ R2 and choose the same set of parameters as chosen by
Mikelić et al. [2] apart from varying Poisson’s ratio, cf. Table 1.
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Symb. Quantity Values [Unit]

E bulk modulus 0.594 [GPa]
ν Poisson’s ratio [0.05, ..., 0.45]
α Biot’s coefficient 1
M Biot’s modulus 1.65e10 [Pa]
K permeability tensor 100I [mD/cP]

divided by fluid viscosity
g gravity vector 0 [m/s2]
∆x,∆y grid spacing in x and y 2.5 [m]
∆x,∆y grid spacing in x and y 0.25 [m]
τ time step size 10 [s]
δa absolute error tolerance 1e-6
δr relative error tolerance 1e-6

Table 1: Problem parameters, chosen identically to [2].

The number of iterations for the first time step is shown in Figure 2. The tuning parameter βλFS shows
large iteration counts for small Poisson’s ratios, i.e., large µ/λ, which is due to the lack of dependence of the
tuning parameter on µ. On the other side, if we choose the tuning parameter βoptFS , we obtain stable iteration
counts with respect to different Poisson’s ratios. However, in the range of ν ∈ [0.3, 0.45] the parameter βλFS
yields slightly fewer iterations than βoptFS .

Due to the oedometric character of Mandel’s problem, there exists an optimal tuning parameter yielding
nonlinear convergence on the full range of Lamé parameters. Employing the vertical uniaxial bulk modulus

yields the tuning parameter βvFS = α2

2µ+λ , for which the Fixed Stress Splitting method converges within three
iterations independent of the mechanical parameters. Due to its specific character, Mandel’s problem is
unsuitable for analyzing the general performance of different tuning parameters for the Fixed Stress Splitting
method applied to two-dimensional problems.

2a

2b

2F

2F

x

y
p = 0

w · n = 0

w · n = 0

w · n = 0

Figure 1: Reduced domain for Mandel’s problem. Red boundary condition only valid for test case in
Section 4.2.

4.2 Modified Mandel’s problem

The performance of the Fixed Stress Splitting scheme for Mandel’s problem is biased by the existence of an
optimal tuning parameter βvFS (cf. Section 4.1). Therefore, we repeat the simulation of Mandel’s problem
with a modified boundary condition on the right boundary of the domain. We consider a zero Dirichlet
boundary condition in x-direction for the displacement, illustrated by the red element in Fig. 1. Apart from
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Figure 2: Left: Number of Fixed Stress iterations against Poisson’s ratio for the first time step of Mandel’s
problem (left) and modified Mandel’s problem (right).

that, we use the same setting as in Section 4.1. The number of iterations for the first time step is shown in
Figure 2.

In this test case, we observe a better performance for the new tuning parameter βoptFS compared to the
value βλFS on the full range for the Poisson’s ratio. However, the number of iterations depends weakly on the
Poisson’s ratio, as it decreases by a factor of three over the interval [0.05, 0.45]. Furthermore, the previously
empirically chosen tuning parameter βvFS does not yield better performance than the tuning parameter βoptFS ,
demonstrating the extraordinary character of the classical Mandel’s problem.

4.3 Revisit three-dimensional heterogeneous medium – Jumping Poisson’s ratio

We revisit the test case from Sec. 5.2 of our original work, which considers a three-dimensional medium
with a spatially-varying, randomly distributed Poisson’s ratio, cf. Fig. 3. We consider the same settings
and compare number of iterations needed for convergence for the tuning parameters βclFS , βλFS , βoptFS and for
different Poisson’s ratio distributions. We use same notation as in Sec. 5.2 of our original work.

The iteration counts for different values for ν and ∆ν are visualized in Fig. 3. We make two observations.
For homogeneous media, i.e., ∆ν = 0.0, we observe the same convergence behavior as for the two-dimensional
test case in Sec. 5.1 of our original work. Both βclFS and βoptFS show stable iteration counts with respect to the
full range of Poisson’s ratios, whereas βλFS shows deteriorating convergence rates for soft materials. When
switching to heterogeneous media, ∆ν = 0.1, βoptFS shows iteration counts almost not deviating from the
iteration counts for the homogeneous analogon. However, both non-optimal parameters βclFS and βλFS show
slightly worse convergence behavior for heterogeneous media than for homogeneous media. Again, all in all,
the choice βoptFS outperforms βclFS and βλFS for homogeneous and heterogeneous media.

4.4 Two- and three-dimensional test cases with jumping mechanical parameters

In the following, we enhance two mechanics test cases from [3], a two-dimensional test case (2D) and a
three-dimensional test case (3D).

(2D) We consider a heterogeneous medium Ω = (0, 1) × (0, 1) ⊂ R2 discretized by 40 × 40 quadrilaterals.
Further, we prescribe a discontinuous solution which yields a differentiable stress field and hence a
computable mechanical driving force. Let

χ2D(x, y) =

{
1, min(x, y) > 1

2
0, otherwise.

be a characteristic function and define discontinuous parameters
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Figure 3: Left: Number of Fixed Stress iterations against Poisson’s ratio for the first time step for the
heterogeneous test case (Sec. 4.3). Right: Example for Poisson’s ratio distribution in the interval [0.1, 0.4]
(Sec. 4.3).

• ν = (1− χ2D)ν1 + χ2Dν2, for given ν1, ν2, see, e.g., Figure 4,

• E = (1− χ2D)E1 + χ2DE2, for given E1, E2,

• M = (1 − χ2D)M1 + χ2DM2, where for given coupling strength τ we choose Mi s.t. τ = α2Mi

Kdr,i
,

where Kdr,i = µi + λi is the bulk modulus, i ∈ {1, 2}.

Apart from that, we choose the parameters as before. Then, with ξ = 1e9, we prescribe a solution:

u(x, y, t) = ξ · t

µ(x, y)

[
(x− 0.5)2(y − 0.5)2

− 2
3 (x− 0.5)(y − 0.5)3

]

p(x, y, t) = ξ · tx(1− x)y(1− y)

w(x, y, t) = −K∇p(x, y, t)

(3D) We consider a heterogeneous medium Ω = (0, 1) × (0, 1) × (0, 1) ⊂ R3 discretized by 10 × 10 × 10
hexahedra. Further, we prescribe a discontinuous solution which yields a differentiable stress field and
hence a computable mechanical driving force. Let

χ3D(x, y, z) =

{
1, min(x, y, z) > 1

2
0, otherwise.

be a characteristic function and define discontinuous parameters

• ν = (1− χ3D)ν1 + χ3Dν2, for given ν1, ν2, see, e.g., Figure 4,

• E = (1− χ3D)E1 + χ3DE2, for given E1, E2,

• M = (1 − χ3D)M1 + χ3DM2, where for given coupling strength τ we choose Mi s.t. τ = α2Mi

Kdr,i
,

where Kdr,i = 2µi

3 + λi is the bulk modulus, i ∈ {1, 2}.

Apart from that, we choose the parameters as before. Then, with ξ = 1e9, we prescribe a solution:

u(x, y, z, t) = ξ · t

µ(x, y, z)




(x− 0.5)2(y − 0.5)2(z − 0.5)2

(x− 0.5)2(y − 0.5)2(z − 0.5)2

− 2
3

(
(x− 0.5)(y − 0.5)2 + (x− 0.5)2(y − 0.5)

)
(z − 0.5)3




p(x, y, z, t) = ξ · tx(1− x)y(1− y)z(1− z)

w(x, y, z, t) = −K∇p(x, y, z, t)
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Figure 4: Heterogeneous medium: Poisson’s ratio distribution. Left: (2D). Right: (3D).

ν1 ν2 E1 E2 τ #It. (2D) #It. (3D)

0.01 0.01 5.94e9 5.94e9 5 6 6
0.25 0.25 5.94e9 5.94e9 5 6 5
0.49 0.49 5.94e9 5.94e9 5 4 3
0.01 0.01 5.94e10 5.94e10 5 4 4
0.25 0.25 5.94e10 5.94e10 5 4 4
0.49 0.49 5.94e10 5.94e10 5 3 3
0.01 0.01 5.94e9 5.94e10 5 6 6
0.25 0.25 5.94e9 5.94e10 5 5 5
0.49 0.49 5.94e9 5.94e10 5 4 3
0.01 0.49 5.94e9 5.94e9 5 6 6
0.01 0.49 5.94e10 5.94e10 5 4 4
0.01 0.49 5.94e9 5.94e10 5 6 6

Table 2: Number of Fixed Stress iterations (#It.) using βoptFS for test cases (2D) and (3D) with jumping
mechanical parameters.

For both test cases, we only consider the tuning parameter βoptFS , analyzing the performance for different
heterogeneities. The resulting iteration counts for various combinations of parameters is presented in Table 2.
It can be observed, that the number of iterations counts is robust with respect to jumping mechanical
parameters. Almost equal results are obtained for two dimensions (2D) and three dimensions (3D). We note,
that poor approximations are given for E1, E2 of smaller order. Hence, no big jumps for the Young’s modulus
have been tested.
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Abstract

In this paper, we consider unsaturated poroelasticity, i.e., coupled hydro-mechanical
processes in unsaturated porous media, modeled by a non-linear extension of Biot’s quasi-
static consolidation model. The coupled, elliptic-parabolic system of partial differential
equations is a simplified version of the general model for multi-phase flow in deformable
porous media obtained under similar assumptions as usually considered for Richards’ equation.
In this work, the existence of a weak solution is established using regularization techniques, the
Galerkin method, and compactness arguments. The final result holds under non-degeneracy
conditions and natural continuity properties for the non-linearities. The assumptions are
demonstrated to be reasonable in view of geotechnical applications.

1 Introduction

Strongly coupled hydro-mechanical processes in porous media are occurring in various applica-
tions of societal relevance within, e.g., geotechnical, structural, and biomechanical engineering.
Examples for instance are soil subsidence due to groundwater withdrawal, geothermal energy
storage in fractured rocks, swelling and drying shrinkage of concrete, and deformation of soft,
biological tissue components.

In the field of porous media, such microscopically complex processes are typically modeled
by a continuum mechanics approach [1]. The multi-phasic solid-fluid mixture is considered a
homogenized continuum, and both geometry, skeleton, and fluid properties are averaged over
representative elementary volumes, consisting of a mixture of solid and fluid particles. Ultimately,
the microscopic interaction of the different constituents is described by macroscopic, effective
equations. The simplest, macroscopic model accounting for the coupling of single-phase flow and
elastic deformation in a porous medium is Biot’s linear, quasi-static consolidation model. Its
phenomenological derivation dates back to the seminal works by Terzaghi [2] and Biot [3]. In the
course of the last century, many more advanced models have been developed, accounting, e.g.,
for the presence of different interacting fluids, thermal effects, or chemical reactions. We refer to
the textbooks [4, 5] for an introduction and their derivation.

In this paper, we consider a non-linear, coupled system of partial differential equations,
modelling the quasi-static consolidation of variably saturated porous media, also called unsaturated
poroelasticity – in particular relevant in soil mechanics. The model can be obtained by simplifying
the more general model for two-phase flow in deformable porous media, founded on macroscopic
momentum and mass balances combined with constitutive relations [4]. It is assumed that one
fluid phase can be simply neglected. This is a common practice for fluids with high viscosity
ratios if the negligible fluid phase is continuous and connected to the atmosphere, i.e., the same
hypotheses as for Richards’ equation [6, 7]. Finally, the resulting model generalizes Biot’s quasi-
static, linear consolidation model, combining Richards’ equation and linear elasticity equations
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with non-linear coupling. It is highly non-linear, potentially strongly coupled, and potentially
degenerate, which makes its analysis complicated.

Regarding the mathematical theory of poroelasticity, in particular Biot’s quasi-static, linear
consolidation model has been well-studied. Well-posedness including the existence, uniqueness,
and regularity of solutions, has been established [8–10]; recent advances in the numerical analysis
include, e.g., stable finite discretizations [11–18], efficient numerical iterative solvers [19–24], and
a posteriori error estimates [25–27]. Lately, linear and non-linear extensions have become of
increased interest. Well-posedness and the efficient numerical solution have been analyzed for the
dynamic Biot-Allard system [28], Biot-Stokes systems [29–31], the Biot model with deformation
dependent permeability [32,33], poroelasticity in fractured media [34–37], poroelasticity with non-
linear solid and fluid compressibility [38,39], general non-linear single-phase poroelasticity [40],
poro-visco-elasticity [33, 38], thermoporoelasticity [38, 41–44], poroelasticity from a gradient flow
perspective [38], and multiple-permeability poroelasticity systems [45–47], among others. In all
problems, the coupling is linear.

Despite the large interest, rather few theoretical results have been established for unsaturated
or multi-phase poroelasticity. We highlight [48], in which the first ever mathematical analysis of the
consolidation of a variably saturated, porous medium has been presented. In the aforementioned
work, the existence of a weak solution is established under two strict model assumptions: (i)
the coupling term in the fluid flow equation is linear; and (ii) after introducing a new pressure
variable by applying the Kirchhoff transformation the coupling and the diffusion terms in the
mass balance simultaneously become linear. The second assumption implies a specific, artificial
form of the so-called pore pressure, a non-linearity arising in the linear momentum balance.
Ultimately, the result does not apply to the general model for unsaturated poroelasticity. On the
other hand, the analysis accounts for non-linearly variable densities and porosities, and allows
for degenerate situations. In addition, we mention efforts on studying the efficient numerical
solution for unsaturated poroelasticity [49] and multi-phase poroelasticity [50–52].

In this paper, the existence of weak solutions for the general model of unsaturated poroelastic-
ity is established. In order to deal with the non-linear character, the problem is first transformed
utilizing the Kirchhoff transformation, a technique commonly used for the analysis of non-linear
diffusion problems [53]. By this, the diffusion component of the mass balance becomes linear –
a fully non-linear coupling and a non-linear storage coefficient are still present. The analysis
then employs regularization techniques and compactness arguments in six steps and goes as
follows. First, a physically motivated double regularization is introduced, adding a non-degenerate
parabolic character to both balance equations. Regularization is required in order to allow the
discussion of the non-linear coupling terms. Ultimately, the regularized model accounts for
primary and secondary consolidation of variably saturated, porous media with compressible
grains. Second, the problem is discretized combining an implicit time stepping, the finite element
method (FEM) for the mechanics equation, and the finite volume method involving a two-point
flux approximation (TPFA) for the flow equation. The motivation for the chosen discretization
is two-fold: (i) it is a common discretization in the field of poroelasticity [13, 54], also closely
related to mixed finite element discretizations [11]; moreover, finite volume methods [55–58] and
mixed finite element methods [59,60] are widely used for discretizing Richards’ equation. Even
more importantly, (ii) the specific choice of the discretization becomes crucial for the subsequent
step of the proof, allowing for straightforward cancelling of the coupling terms. In the third
step of the proof, stability of the discrete solution is showed, and compactness arguments are
utilized for deriving a weak solution of the doubly regularized problem. For this, on the one
hand the Legendre transformation is exploited as in [53] and specific finite volume techniques are
employed for discussing the limit of the spatial discretization parameters, inspired by [61, 62].
Fourth, improved regularity is showed for the weak solution of the doubly regularized problem.
Fifth and finally sixth, the limit of vanishing regularization in the momentum and mass balances
are discussed, respectively.
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Difficulties arise in the last steps of the proof due to a possible degenerate character of the
problem for vanishing saturation. Our analysis requires an overall parabolic character of the
coupled problem and natural continuity properties for the non-linearities. Those are ensured
under specific material assumptions and a non-vanishing, minimal amount of fluid saturation. In
the appendix, the assumptions are demonstrated to be satisfied for constitutive relations typically
utilized in real-life applications. Furthermore, for simplicity, the porous material is assumed to
be isotropic, gravity has been neglected and homogeneous, essential boundary conditions have
been considered. The focus of this work is on the involved, non-linear, coupled character of the
governing equations.

The rest of the paper is organized as follows. In Section 2, the model is introduced as derived
in the engineering literature, and the model is transformed using the Kirchhoff transformation.
In Section 3, the notion of a weak solution to the transformed problem is introduced, and the
main result is stated: existence of a weak solution to the transformed problem under certain
model assumptions and non-degeneracy conditions. The idea of the proof, consisting of six steps,
is presented. The details of those six steps are the subject of the remaining Sections 4–9. In the
appendix, the feasibility of the required assumptions for the main result are discussed for widely
used constitutive models from the literature. In addition, technical results from the literature
used in the proof of the main result are recalled for a comprehensive presentation.

2 Mathematical model for unsaturated poroelasticity

We consider a continuum mechanics model for unsaturated poroelasticity, a particular simplifi-
cation of general multi-phase poroelasticity [4,5]. It is based on the fundamental principles of
momentum and mass balance combined with constitutive relations. The model is valid under the
assumptions of infinitesimal strains and the presence of two fluid phases, an active and a passive
phase; the displacement of the passive phase does not impede the advance of the active phase
and can be therefore neglected. Finally, the model couples non-linearly the Richards equation
and the linear elasticity equations utilizing an effective stress approach.

In the following, we recall the mathematical model employing the mechanical displacement
and fluid pressure as primary variables. Additionally, the problem is transformed by the Kirchhoff
transformation, a standard tool for the analysis of non-linear diffusion problems, cf., e.g., [53].
The latter will be subject of the subsequent analysis.

2.1 The original formulation

We consider a poroelastic medium occupying the open, connected, and bounded domain Ω ⊂ Rd,
d ∈ {1, 2, 3}. Let T > 0 denote the final time and (0, T ) denote the time interval of interest. Let
QT := Ω× (0, T ) denote the space-time domain.

The balance equations as derived in [4] (note, we use an arbitrary pore pressure, whereas the
specific average pore pressure has been used in the aforementioned work) reads on QT :

−∇ · [2µε(u) + λ∇ · uI− αppore(pw)I] = f , (2.1)

φ∂tsw(pw) + φcw∂tpw +
1

N
sw(pw)∂tppore(pw) + αsw(pw)∂t∇ · u+ ∇ · q = h, (2.2)

where u is the mechanical displacement and pw is the fluid pressure (of the active phase).
Furthermore, q is the volumetric flux described by the generalized Darcy law

q = −κabs κrel(sw(pw)) (∇pw − ρwg) . (2.3)

Constitutive laws are given for the pore pressure ppore, the fluid saturation sw and the relative
permeability κrel; the latter two are assumed to be homogeneous, i.e., they do not vary explicitly
in space. Furthermore, f and h are external load and source terms; µ, λ are the Lamé parameters;
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α ∈ [0, 1] is the Biot constant; cw ∈ [0,∞) is the storage coefficient associated to fluid compress-
ibility; N ∈ (0,∞] is the Biot modulus associated to the compressibility of solid grains; κabs is
the absolute permeability; ρw is a reference fluid density and g is the gravitational acceleration.
Finally, φ is the porosity. Under the hypothesis of small perturbations of the porosity [5], often
applied along with the assumptions of linear elasticity, we can assume that the porosity φ acting
as weight is constant in time, equal to some reference porosity field φ0.

From now on, we consider a compact form of (2.1)–(2.3). Specifically, we seek (u, pw) such
that on QT

−∇ · [2µε(u) + λ∇ · uI− αppore(pw)I] = f , (2.4)

∂tb(pw) + αsw(pw)∂t∇ · u−∇ · (κabsκrel(sw(pw)) (∇pw − ρwg)) = h, (2.5)

where the function b is defined as

b(pw) = φ0sw(pw) + cwφ0

∫ pw

0
sw(p) dp+

1

N

∫ pw

0
sw(p)p′pore(p) dp. (2.6)

We note that the subsequent analysis is not dependent on specific choices for b, sw, ppore and κrel.
In order to close the system (2.4)–(2.5), we impose: boundary conditions

u = uD on Γm
D × (0, T ), (2.7)

(2µε(u) + λ∇ · uI− αppore(pw)I)n = σN on Γm
N × (0, T ), (2.8)

pw = pw,D on Γf
D × (0, T ), (2.9)

−κabs κrel(sw (pw)) (∇pw − ρwg) · n = qN on Γf
N × (0, T ), (2.10)

for the partitions {Γm
D ,Γ

m
N} and {Γf

D,Γ
f
N} of the boundary ∂Ω, where Γm

D and Γf
D have positive

measure; as well as initial conditions

u = u0 in Ω× {0}, (2.11)

pw = pw,0, in Ω× {0}. (2.12)

Putting the focus on the non-linear and coupled character of the balance equations, in the
subsequent, mathematical analysis, we consider a simplified setting. We neglect gravity and
non-homogeneous, essential boundary conditions, which in particular simplifies notation.

2.2 The mathematical model under the Kirchhoff transformation

The Kirchhoff transformation defines a new pressure-like variable

χ(pw) =

∫ pw

0
κrel(sw(p̃)) dp̃. (2.13)

Assuming the constitutive laws satisfy κrel(sw(p)) > 0, for all p ∈ R, (2.13) can be inverted. We
redefine all functions in pw as functions in χ

p̂w := χ−1, b̂ := b ◦ χ−1, ŝw := sw ◦ χ−1, p̂pore := ppore ◦ χ−1, κ̂rel := κrel ◦ ŝw. (2.14)

Then under the assumption of a homogeneous relative permeability and saturation, the non-linear
Biot equations (2.4)–(2.5) reduces to finding (u, χ), satisfying

−∇ · (2µε(u) + λ∇ · uI− αp̂pore(χ)I) = f , (2.15)

∂tb̂(χ) + αŝw(χ)∂t∇ · u−∇ · (κabs∇χ) = h, (2.16)
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on QT , and subject to the adapted boundary conditions

u = 0 on Γm
D × (0, T ), (2.17)

(2µε(u) + λ∇ · uI− αp̂pore(χ)I)n = σN on Γm
N × (0, T ), (2.18)

χ = 0 on Γf
D × (0, T ), (2.19)

−κabs∇χ · n = wN on Γf
N × (0, T ), (2.20)

and the initial conditions

u = u0 in Ω× {0}, (2.21)

χ = χ0, in Ω× {0}. (2.22)

3 Main result – existence of a weak solution for the unsaturated
poroelasticity model

The main result of this work is the existence result of a weak solution for the unsaturated
poroelasticity model under the Kirchhoff transformation, cf. Section 2.2. In this section, we state
the main result. This includes the notion of a weak solution, required assumptions and the idea
of the proof. The details of the proof are the subject of the remainder of this paper.

3.1 Definition of a weak solution

Let QT := Ω × (0, T ) denote the space-time domain. We use the standard notation for Lp,
Sobolev and Bochner spaces, together with their inherent norms and scalar products. Let 〈·, ·〉
denote the standard L2(Ω) scalar product for scalars, vectors and tensors. For shorter notation,
we use ‖ · ‖ := ‖ · ‖L2(Ω). Let

V =
{
v ∈ H1(Ω)d

∣∣∣v|Γm
D

= 0
}
,

Q =
{
q ∈ H1(Ω)

∣∣∣ q|Γf
D

= 0
}
,

denote the function spaces corresponding to mechanical displacement and fluid pressure, respec-
tively, incorporating essential boundary conditions. We abbreviate the bilinear form associated
to linear elasticity

a(u,v) = 2µ

∫

Ω
ε(u) : ε(u) dx+ λ

∫

Ω
∇ · u∇ · v dx, u,v ∈ V ,

and define ‖ · ‖V := a(·, ·)1/2, which induces a norm on V due to Korn’s inequality. Moreover,
we combine the external body and surface sources as elements in V ? and Q?, the duals of V and
Q, respectively. Let fext = (f ,σN) and hext = (h,wN) be defined by

〈fext,v〉 =

∫

Ω
f · v dx+

∫

Γm
N

σN · v ds, v ∈ V ,

〈hext, q〉 =

∫

Ω
h q dx+

∫

Γf
N

wN q ds, q ∈ Q.

Definition 3.1 (Weak solution of the unsaturated poroelasticity model). A weak solution
to (2.15)–(2.22) is a pair (u, χ) ∈ L2(0, T ;V )× L2(0, T ;Q) satisfying the following:

(W1) p̂pore(χ) ∈ L2(QT ), ŝw(χ) ∈ L∞(QT ).
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(W2) b̂(χ) ∈ L∞(0, T ;L1(Ω)) and ∂tb̂(χ) ∈ L2(0, T ;Q?) such that

∫ T

0

〈
∂tb̂(χ), q

〉
dt+

∫ T

0

〈
b̂(χ)− b̂(χ0), ∂tq

〉
dt = 0,

for all q ∈ L2(0, T ;Q) with ∂tq ∈ L1(0, T ;L∞(Ω)) and q(T ) = 0.

(W3) ∂t∇ · u ∈ L2(QT ) such that

∫ T

0
〈∂t∇ · u, q〉 dt+

∫ T

0
〈∇ · u−∇ · u0, ∂tq〉 dt = 0,

for all q ∈ H1(0, T ;L2(Ω)) with q(T ) = 0.

(W4) (u, χ) satisfies the variational equations

∫ T

0
[a(u,v)− α 〈p̂pore(χ),∇ · v〉] dt =

∫ T

0
〈fext,v〉 dt, (3.1)

∫ T

0

[〈
∂tb̂(χ), q

〉
+ α 〈ŝw(χ)∂t∇ · u, q〉+ 〈κabs∇χ,∇q〉

]
dt =

∫ T

0
〈hext, q〉 dt, (3.2)

for all (v, q) ∈ L2(0, T ;V )× L2(0, T ;Q).

We note that the weak formulation of the initial conditions (W3) of the mechanical displace-
ment immediately allow for a stronger formulation. See Lemma 9.6 for more information.

3.2 Assumptions on model and data

For proving the existence of a weak solution, we require several assumptions on the model,
including the constitutive laws, model parameters, source terms and initial conditions:

(A0) sw : R→ [0, 1] and κrel : [0, 1]→ [0, 1] such that κrel(sw(p)) > 0, for all p ∈ R allowing for
defining p̂w, b̂, ŝw, p̂pore, and κ̂rel as in (2.14).

(A1) b̂ : R→ R is continuous and non-decreasing, and it holds that b̂(0) = 0.

(A2) ŝw : R→ (0, 1] continuous and differentiable a.e., and ŝw(χ) = 1 for χ ≥ 0.

(A3) p̂pore : R→ R is continuously differentiable, non-decreasing, and it holds that p̂pore(0) = 0.

(A4)
p̂pore
ŝw

: R→ R is invertible and uniformly increasing, i.e., there exists a constant cp̂pore/ŝw > 0

satisfying
(
p̂pore
ŝw

)′
(x) ≥ cp̂pore/ŝw for all x ∈ R.

Assumptions (A0)–(A4) are valid for standard constitutive laws, cf. Appendix A. The assumptions
on the model parameters read:

(A5) µ > 0, λ ≥ 0, α ≥ 0 are constant, and define the bulk modulus Kdr := 2µ
d + λ.

(A6) κabs is uniformly bounded from below and above, such that there exist constants 0 <
κm,abs ≤ κM,abs <∞ with κabs ∈ [κm,abs, κM,abs] on Ω.

We note, (A5) is stated only for simplicity. The assumptions on the external load and source
terms read:
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(A7) fext ∈ H1(0, T ;V ?) ∩ C(0, T ;V ?) and hext ∈ H1(0, T ;Q?) ∩ C(0, T ;Q?), where

‖fext‖2Lp(0,T ;V ?) := ‖f‖2Lp(0,T ;V ?) + ‖σN‖2Lp(0,T ;V ?), p ∈ {2,∞},
‖hext‖2Lp(0,T ;Q?) := ‖h‖2Lp(0,T ;L2(Ω)) + ‖wN‖2Lp(0,T ;L2(Γf

N))
, p ∈ {2,∞},

and analogously ‖fext‖V ? , ‖∂tfext‖L2(0,T ;V ?), ‖fext‖H1(0,T ;V ?), and ‖hext‖Q? , ‖∂thext‖L2(0,T ;Q?),
‖hext‖H1(0,T ;Q?).

The assumptions on the initial data read:

(A8) The initial data (u0, χ0) ∈ V ×Q is sufficient regular such that there exists a constant C0

satisfying

‖u0‖2V + ‖∇χ0‖2 +
∥∥∥b̂ (χ0)

∥∥∥
L1(Ω)

+
∥∥∥B̂ (χ0))

∥∥∥
L1(Ω)

+

∥∥∥∥B̄
(
p̂pore(χ0)

ŝw(χ0)

)∥∥∥∥
L1(Ω)

+ ‖p̂pore(χ0)‖2 ≤ C0,

where B̂ and B̄ are the Legendre transformations of b̂ and b̄ := b̂ ◦
(
p̂pore
ŝw

)−1
, respectively:

B̂(z) :=

∫ z

0
(b̂(z)− b̂(s)) ds ≥ 0, (3.3)

B̄(z) :=

∫ z

0
(b̄(z)− b̄(s)) ds ≥ 0. (3.4)

(A9) The initial data (u0, χ0) satisfies the compatibility condition: p̂pore(χ0) ∈ Q and

a(u0,v)− α 〈p̂pore(χ0),∇ · v〉 = 〈fext(0),v〉 , for all v ∈ V ,

i.e., the mechanics equation at initial time.

Additionally, the following non-degeneracy conditions are required:

(ND1) There exists a constant CND,1 > 0 such that
∣∣∣∣
p̂pore(χ)

ŝw(χ)χ

∣∣∣∣ ≤ CND,1, for all χ ∈ R.

(ND2) There exists a constant CND,2 > 0 such that

C−1
ND,2 ≤ p̂′pore(χ) ≤ CND,2, for all χ ∈ R.

(ND3) There exists a constant CND,3 ∈ (0, 1) such that

Kdr −
α2

4

(
ŝw(χ)

p̂′pore(χ)
− 1

)2
(
p̂′pore(χ)

)2

b̂′(χ)
≥ CND,3Kdr, for all χ ∈ R.

In Appendix A, it is demonstrated that for the van Genuchten model for sw and κrel [63], and
the equivalent pore pressure model for ppore [5], (ND1) and (ND2) follow if the saturation takes
values above a residual saturation. Thus, (ND1) and (ND2) may be implicitly satisfied assuming
(ND3) holds true. Furthermore, the calculations in Appendix A illustrate that for materials
typically present in geotechnical application, the condition (ND3) is satisfied in saturation regimes
above 1 to 10 percent (depending on the material parameters). Thereby, the practical saturation
regime is covered for a wide range of applications. After all, (ND3) is the most restrictive
assumption of all assumptions. It essentially requires the mechanical system to be sufficiently
stiff in relation to the saturation profile. The lower the minimal saturation value, the stiffer the
system has to be.
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3.3 Existence of solutions for the unsaturated poroelasticity model

This section is presenting the main result together with the main steps of the proof.

Theorem 3.2 (Existence of a weak solution to the unsaturated poroelasticity model). Under
the model assumptions (A0)–(A9) and the non-degeneracy conditions (ND1)–(ND3), there exists
a weak solution of (2.15)–(2.22) in the sense of Definition 3.1.

The main idea of the proof of Theorem 3.2 is to use the Galerkin method in combination
with compactness arguments. The main difficulty here is the control over the non-linear coupling
terms. For this a regularization approach is used. After all, the proof consists of six steps. In the
following, we present the idea of each step. Details are subject of the remainder of the article
and will be presented in the six, subsequent sections.

Step 1: Double physical regularization. Applying the Galerkin method along with com-
pactness arguments for the original problem (3.1)–(3.2) is challenging due to the coupling terms.
A simple way to control the term ∂t∇ ·u is to add a suitable regularization term in the mechanics
equation (3.1). As the coupling terms also involve non-linearities in the Kirchhoff pressure, strong
compactness is required. Therefore, we add a coercive term in the flow equation, which allows
for controlling the term ∂tχ. In this way, one can control the coupling terms, and eventually
leading to convergence.

From a physical point of view, the regularized model accounts for secondary consolidation and
compressible solid grains. In mathematical terms, it reads as follows. For given regularization
parameters ζ, η > 0, find (uεη, χεη) to be the solution to the variational equations

∫ T

0

[
ζa(∂tuεη,v) + a(uεη,v)− α 〈p̂pore(χεη),∇ · v〉

]
dt =

∫ T

0
〈fext,v〉 dt, (3.5)

∫ T

0

[〈
∂tb̂η(χεη), q

〉
+ α 〈ŝw(χεη)∂t∇ · uεη, q〉+ 〈κabs∇χεη,∇q〉

]
dt =

∫ T

0
〈hext, q〉 dt, (3.6)

for all (v, q) ∈ L2(0, T ;V )× L2(0, T ;Q), where b̂η is a strictly increasing regularization of b̂ (see
(A1?) for further properties). The next two steps prove that the regularized problem has a weak
solution in an analogous sense to Definition 3.1.

Step 2: Discretization in space and time. We employ the implicit Euler scheme and a
Galerkin method based on an inf-sup stable finite element/finite volume method to obtain a
fully discrete counterpart of (3.5)–(3.6). In particular, the pressure variables are discretized
by piecewise constant elements, and for the diffusion term a discrete gradient ∇h is employed
corresponding to a two-point flux approximation of the volumetric fluxes [62,64].

Given an admissible mesh T , cf. Definition 5.1, the conforming and non-conforming, discrete
spaces Vh ⊂ V and Qh 6⊂ Q, respectively, and a partition {tn}n of the interval (0, T ), the
discretization for time steps n reads: given the solution at the previous time step (un−1

h , χn−1
h ) ∈

Vh ×Qh, find (unh, χ
n
h) ∈ Vh ×Qh satisfying for all (vh, qh) ∈ Vh ×Qh
ζτ−1a(unh − un−1

h ,vh) + a(unh,vh)− α〈p̂pore(χ
n
h),∇ · vh〉 = 〈fnext,vh〉,

(3.7)

〈b̂η(χnh)− b̂η(χn−1
h ), qh〉+ α〈ŝw(χnh)∇ · (unh − un−1

h ), qh〉+ τ〈∇hχ
n
h,∇hqh〉κabs = τ〈hnext, qh〉.

(3.8)

The reason for this particular choice of a discretization is two-fold: (i) the piecewise constant
approximation of the pressure allows for the simple handling of non-linearities; (ii) the discrete
gradients ∇h retain the local character of the differential operator. This together allows for
simultaneously cancelling the coupling terms and utilizing the coercivity of the diffusion term.
This is required, e.g., for proving the existence of a discrete solution employing a corollary of
Brouwer’s fixed point theorem, or in Step 3.
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Step 3: Existence of a weak solution to the regularized model. Based on the discrete
values {(unh, χnh)}n, we define suitable interpolations in time, (uhτ , χhτ ), yielding approximations
of (uεη, χεη). We remark that various interpolations are in fact introduced in the course of step 3
and 4. To avoid an excess in notations and for the ease of the presentation, we use the same
notation, (uhτ , χhτ ), for all interpolations.

The goal is to show convergence (in a certain sense) of {(uhτ , χhτ )}h,τ along a monotonically
decreasing sequence of pairs (h, τ)→ (0, 0) (from now on denoted h, τ → 0) towards a solution
of (3.5)–(3.6). This is achieved using compactness arguments; however, given the coupled and
non-linear nature of (3.5)–(3.6), several terms require careful discussion:

• Non-linearities as p̂pore(χεη) or products of independent variables as ŝw(χεη)∂t∇ · uεη
require partially strong convergence.

• Since b̂η is not necessarily Lipschitz continuous, it is not sufficient to show uniform stability

for {∂tχhτ} to conclude weak convergence of {∂tb̂η(χhτ )}h,τ towards ∂tb̂η(χεη). Instead,

we apply techniques by [53] utilizing the Legendre transformation, B̂η, of b̂η, analogously
defined as in (3.3).

• The diffusion term is discretized using discrete gradients. Thus, weak convergence ∇hχhτ →
∇χεη is not an obvious consequence of uniform stability for {∇hχh,τ}h,τ . For this, we
apply techniques from finite volume literature [61,62].

Motivated by that, we first derive stability estimates that are uniform wrt. the discretization
parameters

‖uhτ‖H1(0,T ;V ) + ess sup
t∈(0,T )

‖χhτ (t)‖1,T + ‖p̂pore(χhτ )‖L2(QT )

+
∥∥∥B̂η(χhτ )

∥∥∥
L∞(0,T ;L1(Ω))

+
∥∥∥∂tb̂η(χhτ )

∥∥∥
L2(0,T ;H−1(Ω))

+ ‖∂tχhτ‖L2(QT ) ≤ Cζη

for some constant Cζη > 0 independent of h, τ . Therefore, one obtains weak convergence for
subsequences (denoted the same as before) for h, τ → 0

uhτ ⇀ uεη in L2(0, T ;V ),

∂tuhτ ⇀ ∂tuεη in L2(0, T ;V ),

p̂pore(χhτ ) ⇀ p̂pore(χεη) in L2(QT ),

∂tb̂η(χhτ ) ⇀ ∂tb̂η(χεη) in L2(0, T ;Q?),

ŝw(χhτ )∂t∇ · uhτ ⇀ ŝw(χεη)∂t∇ · uεη in L2(QT ),

∇hχhτ ⇀∇χεη in L2(QT ).

Moreover, by employing finite volume techniques the following convergence of the discrete
diffusion term can be showed

∫ T

0
〈∇hχhτ ,∇hqh〉κabs dt→

∫ T

0
〈∇χεη,∇q〉κabs dt,

for arbitrary discrete test functions qh, which strongly converge towards continuous functions q.
Finally, the limit, (uεη, χεη), can be identified as weak solution of the regularized problem (3.5)–
(3.6).

Step 4: Increased regularity for the weak solution of the regularized model. When
discussing the limit ζ → 0 in step 5, it will be beneficial to have access to the derivative in time
of the mechanics equation (3.5) . Under the additional non-degeneracy condition (ND2), i.e.,
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that p̂pore is Lipschitz continuous, an increased regularity can be showed for the weak solution of
the regularized model, (uεη, χεη). For instance, for all v ∈ L2(0, T ;V ) it holds that

∫ T

0
[ζa(∂ttuεη,v) + a(∂tuεη,v)− α 〈∂tp̂pore(χεη),∇ · v〉] dt =

∫ T

0
〈∂tfext,v〉 dt. (3.9)

The proof follows the same line of argumentation as step 3. First a fully discrete counterpart
of (3.9) is constructed by considering differences of (3.7) between subsequent time steps

ζτ−1a(unh − 2un−1
h + un−2

h ,vh) + a(unh − un−1
h ,vh)

− α
〈
p̂pore(χ

n
h)− p̂pore(χ

n−1
h ),∇ · vh

〉
=
〈
fnext − fn−1

ext ,vh
〉

for all vh ∈ Vh.

In addition, suitable interpolations ût,hτ and p̂pore,hτ of the discrete values {τ−1(unh − un−1
h )}n

and {p̂pore(χ
n
h)}n, respectively, define approximations of ∂tuεη and p̂pore(χεη). The uniform

stability estimate

‖∂tût,hτ‖2L2(0,T ;V ) + ‖∂tuhτ‖2L2(0,T ;V ) + ‖∂tp̂pore,hτ‖2L2(QT ) ≤ Cζη
guarantee the weak convergences

∂tût,hτ ⇀ ∂ttuεη, in L2(0, T ;V ),

∂tuhτ ⇀ ∂tuεη, in L2(0, T ;V ),

∂tp̂pore(χ)hτ ⇀ ∂tp̂pore(χεη), in L2(QT )

up to subsequences, for h, τ → 0. Finally, one can identify (3.9) in the limit.

Step 5: Vanishing regularization in the mechanics equation. For each ζ, η > 0, there
exists a solution (uεη, χεη) to (3.5)–(3.6). For the limit ζ → 0, we employ compactness arguments
similar to step 3. However, now the stability estimates ought to be independent of ζ. We show

‖uεη‖2H1(0,T ;V ) + ‖χεη‖2L∞(0,T ;Q) + ‖ppore(χεη)‖2L2(QT ) (3.10)

+
∥∥∥B̂η(χεη)

∥∥∥
L∞(0,T ;L1(Ω))

+
∥∥∥∂tb̂η(χεη)

∥∥∥
L2(0,T ;H−1(Ω))

≤ C,

and

‖∂tχεη‖2L2(QT ) ≤ Cη. (3.11)

For (3.10), one can use v = ∂tuεη and q = ∂tχεη as test functions in (3.6) and (3.9). The coupling
terms obviously do not match; but by using a binomial identity and the non-degeneracy condition
(ND3), one can show that

‖∂tuεη‖2L2(0,T ;V ) +

∫ T

0

〈
∂tb̂η(χεη), ∂tχεη

〉
+ α

∫ T

0
〈ŝw∂tχεη − ∂tp̂pore, ∂t∇ · uεη〉 ≥ 0, (3.12)

which effectively allows for dropping the coupling terms. With this, letting ζ → 0, one obtains
for subsequences (denoted the same as before)

uεη ⇀ uη in L2(0, T ;V ),

∂tuεη ⇀ ∂tuη in L2(0, T ;V ),

ζ∂tuεη → 0 in L2(0, T ;V ),

χεη ⇀ χη in L∞(0, T ;Q),

p̂pore(χεη) ⇀ p̂pore(χη) in L2(QT ),

ŝw(χεη)∂t∇ · uεη ⇀ ŝw(χη)∂t∇ · uη in L2(QT ),

∂tb̂η(χεη) ⇀ ∂tb̂η(χη) in L2(0, T ;Q?).
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Finally, it is straightforward to see that the limit (uη, χη) is weak solution of (3.5)–(3.6) for
ζ = 0.

We underline, that for showing (3.12), the time-continuous character of the variational
problem is required. It is not obvious how to use a similar strategy on time-discrete level.
Therefore, step 5 has been performed separately from step 3 and 4.

Step 6: Vanishing regularization in the flow equation. In the presence of fluid or solid
grain compressibility in the original formulation, i.e., cw > 0 or 1

N > 0, respectively, this final
step is obsolete. Otherwise, we consider the limit process η → 0 for the sequence of solutions
{(uη, χη)}η, derived in step 5. The overall idea is the same as in step 5, namely to obtain
estimates that are uniform wrt. η and to use compactness arguments. Referring to (3.10), the
following estimate is uniform in η

‖uη‖H1(0,T ;V ) + ‖χη‖L∞(0,T ;H1
0 (Ω)) + ‖p̂pore(χη)‖L2(QT ) (3.13)

+
∥∥∥B̂η(χη)

∥∥∥
L∞(0,T ;L1(Ω))

+
∥∥∥∂tb̂η(χη)

∥∥∥
L2(0,T ;H−1(Ω))

≤ C.

For estimating ∂tχη, we first show that the time derivative of the mechanics equation (3.7) is
well-defined for ζ = 0, i.e., it holds for all v ∈ L2(0, T ;V ) that

∫ T

0
a(∂tuη,v) dt−

∫ T

0
α 〈∂tp̂pore(χη),∇ · v〉 dt =

∫ T

0
〈∂tfext,v〉 dt. (3.14)

Since ‖∂tχη‖ . ‖∂tp̂pore(χη)‖, the uniform stability for ∂tχη follows by an inf-sup argument, (3.14),
and the stability bound (3.13). Due to the lack of a suitable bound on ∂ttuεη in step 5,
this approach only works for ζ = 0. Standard compactness arguments allow for extracting
subsequences (again denotes as before) such that for η → 0 it holds that

uη ⇀ u in L2(0, T ;V ),

χη ⇀ χ in L∞(0, T ;Q),

p̂pore(χη) ⇀ p̂pore(χ) in L2(QT ),

ŝw(χη)∂t∇ · uη ⇀ ŝw(χ)∂t∇ · u in L2(QT ),

∂tb̂η(χη) ⇀ ∂tb̂(χ) in L2(0, T ;Q?).

Ultimately, (u, χ) can be identified as a weak solution to the unsaturated poroelasticity model in
the sense of Definition 3.1. This finishes the proof of Theorem 3.2.

4 Step 1: Physical regularization – secondary consolidation and
enhanced grain compressibility

We introduce a physical regularization of the weak formulation (3.1)–(3.2) by enhancing both
the mechanics and the flow equations. We allow for secondary consolidation, which effectively
incorporates a linear visco-elasticity contribution in the mechanics equations of the form a(∂tu,v).
Additionally, we assume non-vanishing grain compressibility by regularizing b̂. Specifically, we
let ζ > 0 and η > 0 be two regularization parameters and analyze the behavior of the solution
when passing them to zero.

Motivated by the physical example (2.6), for η > 0, define the regularization b̂η of b̂ by

b̂η(χ) := b̂(χ) + η

∫ p̂w(χ)

0
sw(p)p′pore(p) dp,

i.e., b̂η has the same structure as b̂, but with 1
N + η replacing 1

N . Refering to Section 3.2, the

function b̂η still satisfies (A1). Additionally, a uniform growth condition holds
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(A1?) There exists a b̂χ,m > 0 s.t. b̂χ,m‖χ1 − χ2‖2 ≤
〈
b̂η(χ1)− b̂η(χ2), χ1 − χ2

〉
for all χ1, χ2 ∈

L2(QT ),

cf. also Section A. In the subsequent discussion, a growth condition for b̂η (or b̂) of type (A1?)
will be required in order to to utilize strong compactness arguments. If min

{
cw,

1
N

}
> 0 in (2.6)

holds, the growth condition (A1?) is fulfilled even for η = 0, and the regularization of the
flow equation actually is not necessary, cf. Step 6 in Section 9. In this context, we emphasize
that (ND3) also holds for b̂η as b̂′η ≥ b̂′.

Also (A8) can be adapted for the regularization b̂η. With b̄η := b̂η ◦
(
p̂pore
ŝw

)−1
, we let B̂η and

B̄η be the Legendre transformations of b̂η and b̄η, respectively, defined by

B̂η(z) :=

∫ z

0
(b̂η(z)− b̂η(s)) ds ≥ 0, (4.1)

B̄η(z) :=

∫ z

0
(b̄η(z)− b̄η(s)) ds ≥ 0. (4.2)

(A8?) There exists a η0 > 0 and C0 > 0, not depending on η0, such that

‖u0‖2V + ‖∇χ0‖2 +
∥∥∥B̂η (χ0))

∥∥∥
L1(Ω)

+

∥∥∥∥B̄η
(
p̂pore(χ0)

ŝw(χ0)

)∥∥∥∥
L1(Ω)

≤ C0

for all η ∈ (0, η0). Without loss of generality, we assume C0 in (A8) and (A8?) to be the
same.

For a non-degenerate initial condition χ0, the additional terms in B̂η and B̄η can be essentially
bounded by η‖χ0‖2, which itself is bounded by (A8).

We introduce the notion of a weak solution of the doubly regularized unsaturated poroelasticity
model.

Definition 4.1 (Weak solution of the doubly regularized model). For ζ > 0 and η > 0, we
call (uεη, χεη) ∈ L2(0, T ;V )× L2(0, T ;Q) a weak solution of the doubly regularized unsaturated
poroelasticity model if it satisfies:

(W1)ζη p̂pore(χεη) ∈ L2(QT ), ŝw(χεη) ∈ L∞(QT ).

(W2)ζη b̂η(χεη) ∈ L∞(0, T ;L1(Ω)) and ∂tb̂η(χεη) ∈ L2(0, T ;Q?) such that
∫ T

0

〈
∂tb̂η(χεη), q

〉
dt+

∫ T

0

〈
b̂η(χεη)− b̂η(χ0), ∂tq

〉
dt = 0,

for all q ∈ L2(0, T ;Q) with ∂tq ∈ L1(0, T ;L∞(Ω)) and q(T ) = 0.

(W3)ζη ∂tuεη ∈ L2(0, T ;V ) such that
∫ T

0
a(∂tuεη,v) dt+

∫ T

0
a(uεη − u0, ∂tv) dt = 0,

for all v ∈ H1(0, T ;V ) with v(T ) = 0.

(W4)ζη (uεη, χεη) satisfies the variational equations
∫ T

0

[
ζa(∂tuεη,v) + a(uεη,v)− α 〈p̂pore(χεη),∇ · v〉

]
dt =

∫ T

0
〈fext,v〉 dt,

(4.3)
∫ T

0

[〈
∂tb̂η(χεη), q

〉
+ α 〈ŝw(χεη)∂t∇ · uεη, q〉+ 〈κabs∇χεη,∇q〉

]
dt =

∫ T

0
〈hext, q〉 dt,

(4.4)

for all (v, q) ∈ L2(0, T ;V )× L2(0, T ;Q).
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Furthermore, we call (uεη, χεη) a weak solution with increased regularity for the doubly regularized
unsaturated poroelasticity model if it satisfies (W1)ζη–(W4)ζη and:

(W5)ζη uεη ∈ H2(0, T ;V ) and ∂tp̂pore(χεη) ∈ L2(QT ).

(W6)ζη It holds

∫ T

0

[
ζa(∂ttuεη,v) + a(∂tuεη,v)− α 〈∂tp̂pore(χεη),∇ · v〉

]
dt =

∫ T

0
〈∂tfext,v〉 dt, (4.5)

for all v ∈ L2(0, T ;V ), given that fext ∈ H1(0, T ;V ?).

We will later separately consider ζ → 0 and η → 0. Therefore, we give the definition of a weak
solution for the simply regularized unsaturated poroelasticity model, obtained for η > 0 and
ζ = 0.

Definition 4.2 (Weak solution of the simply regularized model). For η > 0, we call (uη, χη)
a weak solution of the simply regularized unsaturated poroelasticity model if it satisfies (W1)ζη–
(W4)ζη for ζ = 0.

To distinguish between the equations satisfied by the weak solution of a doubly regularized
model and the one of the simply regularized one, where εv = 0, we use the notations (W1)η–(W4)η.

Lemma 4.3 (Existence of a weak solution to the doubly regularized model). Let ζ > 0 and
η > 0 be given. Under the assumptions (A0)–(A9) and (ND1) there exists a weak solution to the
doubly regularized unsaturated poroelasticity model, in the sense of Definition 4.1.

Proof. The assertion follows from steps 2–3.

Lemma 4.4 (Existence of a weak solution with increased regularity for the doubly regularized
model). Let ζ > 0 and η > 0 be given. Under the assumptions (A0)–(A9) and the non-degeneracy
conditions (ND1)–(ND2), the doubly regularized unsaturated poroelasticity model has a weak
solution with increased regularity, in the sense of Definition 4.1.

Proof. The assertion follows from steps 2–4.

Lemma 4.5 (Existence of a weak solution for the simply regularized model). Let η > 0 be given.
Under the assumptions (A0)–(A9) and the non-degeneracy conditions (ND1)–(ND3), the doubly
regularized unsaturated poroelasticity model has a weak solution with increased regularity, in the
sense of Definition 4.2.

Proof. The assertion follows from step 5.

5 Step 2: Implicit Euler non-linear FEM-TPFA discretization

The next two sections, identified with steps 2 and 3, are providing the proof of Lemma 4.3. To this
aim, we employ the implicit Euler time stepping method, whereas for the spatial discretization of
the mechanics equation (4.3) a conforming Galerkin finite element method is used. For the flow
equation (4.4), the spatial discretization can be interpreted in various ways. It can be viewed
as cell-centered finite volume method utilizing a two point flux approximation (TPFA), the
simplest approximation one can consider, but it can also be interpreted as lowest order mixed
finite element method with inexact quadrature allowing for lumping [65]. In this section, we
show the existence of a fully discrete solution. We start with introducing the notations used in
the discretization.
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5.1 Finite volume and finite element notation

We use standard notations in the finite volume literature, see e.g. [61, 62]. In particular, we
introduce notation for elements, faces, their measures, transmissibilities etc. We assume that
the domain Ω is polygonal such that it can be discretized by an admissible mesh, as introduced
by [64].

Definition 5.1 (Admissible mesh T ). Let T be a regular mesh of Ω with mesh size h, consisting of
simplices in 2D or 3D, or convex quadrilaterals in 2D and convex hexahedrals in 3D. Furthermore,
we introduce the following terminology:

• K ∈ T denotes a single element.

• N (K) :=
{
L ∈ T |L 6= K, L̄ ∩ K̄ 6= ∅

}
denotes the set of neighboring elements of K ∈ T .

• E denotes the set of all faces, i.e., boundaries of all elements; let EK denote the faces of a
single element K ∈ T ; let Eext denote the faces lying on the boundary ∂Ω.

• K|L ∈ E denotes the face between two neighboring elements K,L ∈ T .

• {xK}K∈T is such that for all K ∈ T , L ∈ N (K) the connecting line between xK and xL is
perpendicular to K|L .

• dK,σ denotes the distance between center of K and σ ∈ EK ;

dσ =

{
dK,σ + dL,σ, K ∈ T , L ∈ N (K), σ = K|L,
dK,σ, σ ∈ Eext ∩ EK .

• τσ = |σ|/dσ denotes the transmissibility through σ ∈ E.

Assume there holds the regularity property: there exists a constant C > 0 such that

∑

L∈N (K)
σ=K|L

|σ|dσ ≤ C|K| for all K ∈ T .

We introduce a dual grid T ? with diamonds as elements. It will be used for the approximation
of heterogeneous permeability fields. Additionally, it will be utilized within the proof.

Definition 5.2 (Dual grid to T ). Let T be an admissible mesh, cf. Definition 5.1. For each face
K|L ∈ E, K ∈ T , L ∈ N (K), define a prism PK|L ⊂ Ω with xK , xL and the vertices of K|L as
vertices. For all σ ∈ Eext ∩ EK , K ∈ T define Pσ ⊂ Ω to be the prism with xK and the vertices
of σ as vertices. By construction, T ? := {Pσ}σ∈E defines a partition of Ω.

Figure 1 displays a two-dimensional, admissible mesh and its auxiliary, dual grid.
The final discrete scheme is written in variational form. Given an admissible mesh T , we

introduce the discrete function spaces and implicitly their bases

Vh = span {vh,i}i∈{1,...,dV},
Qh = span {qh,j}j∈{1,...,dQ},

providing spaces for the discrete displacement and pressure, respectively. For the analysis below,
we assume that the discrete function spaces to satisfy the following conditions:

(D1) Qh is the space of all piecewise constant functions (P0) on T and the basis {qh,j}j is equal
to the indicator functions of all single elements. Note Qh 6⊂ Q.
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diamond ∈ T ?

element ∈ T

xK

K

xL

L

PK|L

K|L

σ ∈ Eext

M

xM

Pσ

Figure 1: Admissible mesh T (consisting of elements) in two dimensions, together with the
corresponding dual grid T ? (consisting of diamonds).

(D2) Vh ⊂ V such that Vh ×Qh is inf-sup stable regarding the bilinear form

Vh ×Qh → R, (vh, qh) 7→ 〈qh,∇ · vh〉.

In more detail, there exists a constant γis = C−1
Ω,is > 0 (independent of h), such that

inf
0 6=qh∈Qh

sup
vh∈Vh

〈qh,∇ · vh〉
‖qh‖ ‖vh‖V

≥ γis. (5.1)

In the analysis, (D1) will allow for intuitively handling non-linearities in the pressure variable
easily. Assumption (D2) will allow for using standard inf-sup arguments. In two dimensions,
one can use piecewise quadratic elements for Vh. In three dimensions, a practical choice is less
trivial, cf. [66] for a thorough discussion.

In the analysis, we require the notion of a discrete H1(Ω) norm for piecewise constant
functions in Qh, see also [62].

Definition 5.3 (Discrete H1(Ω) norms on Qh). Let qh ∈ Qh. We define

‖qh‖1,T :=

(∑

σ∈E
τσ δσ(qh)2

)1
2

,

where

δσqh :=





∣∣∣qh|K − qh|L
∣∣∣ , K ∈ T , L ∈ N (K), σ = K|L,

∣∣∣qh|K
∣∣∣ , σ ∈ Eext ∩ EK .

In the same sense, given a uniformly positive field ω ∈ C(Ω), a scaled inner product of discrete
gradients is defined by

〈∇hχh,∇hqh〉ω :=
∑

K∈T

∑

L∈N (K)

τK|L {ω}K|L δK|L(χh) δK|L(qh) +
∑

σ∈Eext∩EK
τK,σ {ω}σ χh|K qh|K .
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where the the weight ω evaluated at faces is approximated as weighted average incorporating the
neighboring elements, i.e., utilizing the dual mesh T ? to T it is

{ω}σ :=
1

|Pσ|

∫

Pσ

ω(x) dx, σ ∈ E .

A norm ‖ · ‖1,T ,ω := 〈∇h·,∇h·〉1/2ω is naturally induced.

A discrete Poincaré inequality can be showed for ‖ · ‖1,T , introducing a discrete Poincaré
constant CΩ,DP > 0 such that

‖qh‖ ≤ CΩ,DP‖qh‖1,T for all qh ∈ Qh,

cf. Lemma B.1; similarly also for ‖ · ‖1,T ,ω.

5.2 Approximation of source terms and initial conditions

Let 0 = t0 < t1 < ... < tN = T define a partition of the time interval (0, T ) with constant time
step size τ = tn − tn−1 = T/N , n,N ∈ N. We interpolate the source terms at discrete time steps.
Let

fnext :=
1

τ

∫ tn

tn−1

fext(t) dt,

hnext :=
1

τ

∫ tn

tn−1

hext(t) dt.

Discrete initial conditions are chosen to imitate the compatibility assumption (A9). Let χ0
h ∈ Qh

be defined by the piecewise constant projection of χ0, i.e., on K ∈ T , we define

χ0
h|K :=

1

|K|

∫

K
χ0 dx.

As χ0 ∈ L2(Ω), cf. (A8?), it follows by classical approximation theory for h→ 0

χ0
h → χ0 in L2(Ω),

and it holds that ‖χ0
h‖1,T ,κabs ≤ C‖χ0‖1 for some constant C > 0, cf., e.g., [64]. Furthermore,

since p̂pore ∈ C(R), cf. (A3), and p̂pore(χ0) ∈ L2(Ω), cf. (A8?), it follows for h→ 0

p̂pore(χ
0
h)→ p̂pore(χ0) in L2(Ω),

similarly for {B̂η
(
χ0
h

)
}h and

{
B̄η

(
p̂pore(χ0

h)

ŝw(χ0
h)

)}
h
. Then in order to satisfy (A9) in a discrete sense,

we define u0
h ∈ Vh to be the unique element in Vh, satisfying

a(u0
h,vh)− α

〈
p̂pore(χ

0
h),∇ · vh

〉
= 〈fext(0),vh〉 , for all vh ∈ Vh. (5.2)

Using standard finite element techniques and (A9), it holds that

‖u0 − u0
h‖V ≤ 2 inf

vh∈Vh
‖u0 − vh‖V +

α

Kdr
‖p̂pore(χ0)− p̂pore(χ

0
h)‖.

Hence, by classical approximation theory and the imposed regularity (A8?) it follows for h→ 0

u0
h → u0 in V .

All in all, due to the convergence, (A8?) also applies on discrete level.

(A8?)h For bounded η > 0, there exists a constant C0 > 0 (wlog. the same as in (A8)) such that

‖u0
h‖2V +

∥∥χ0
h

∥∥2

1,T ,κabs +
∥∥∥B̂η

(
χ0
h

)∥∥∥
L1(Ω)

+

∥∥∥∥B̄η
(
p̂pore(χ

0
h)

ŝw(χ0
h)

)∥∥∥∥
L1(Ω)

. ≤ C0
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5.3 Approximation of the evolutionary problem

The discretization of (4.3)–(4.4) is defined by the Galerkin method combined with the standard
implicit Euler time discretization: for n ≥ 1, given (un−1

h , χn−1
h ) ∈ Vh × Qh, find (unh, χ

n
h) ∈

Vh ×Qh satisfying for all (vh, qh) ∈ Vh ×Qh
ζτ−1a(unh − un−1

h ,vh) + a(unh,vh)− α〈p̂pore(χ
n
h),∇ · vh〉 = 〈fnext,vh〉, (5.3)

〈b̂η(χnh)− b̂η(χn−1
h ), qh〉+ α〈ŝw(χnh)∇ · (unh − un−1

h ), qh〉 (5.4)

+ τ〈∇hχ
n
h,∇hqh〉κabs = τ〈hnext, qh〉.

Lemma 5.4 (Existence of a discrete solution). Let n ≥ 1. (A0)–(A9), (ND1), and (D1)–(D2)
hold true. Then there exists a discrete solution (unh, χ

n
h) ∈ Vh ×Qh satisfying (5.3)–(5.4), and

∥∥∥∥∥B̄η
(
p̂pore(χ

n
h)

ŝw

(
χnh
)
)∥∥∥∥∥

L1(Ω)

+ ‖unh‖2V <∞ for all n ≥ 1. (5.5)

Proof. The proof is by induction. We present only the general step, since the proof for n = 1 is
similar. We employ a corollary of Brouwer’s fixed point theorem, cf. Lemma B.4, to show the
existence of a solution of a non-linear algebraic system, which is equivalent to (5.3)–(5.4).

Introduction of a pressure-reduced algebraic problem. We introduce an isomorphism
between the discrete function space corresponding to the fluid pressure χ and a suitable coefficient
vector space

χh : RdQ → Qh, β 7→
∑

j

(
p̂pore
ŝw

)−1
(βj) qh,j .

Due to (A4), χh is well-defined. Similarly, let

uh : RdV → Vh, α 7→
∑

i

αivh,i.

For given β ∈ RdQ , define α = α(β) ∈ RdV to be the unique solution to: find α ∈ RdV such that

ζτ−1a(uh(α)− un−1
h ,vh) + a(uh(α),vh)

= 〈fn,vh〉+ α 〈p̂pore(χh(β)),∇ · vh〉 , for all vh ∈ Vh.

Finally, we define F : RdQ → RdQ by

Fj(β) =
〈
b̂η(χh(β))− b̂η(χn−1

h ), qh,j

〉
+ α

〈
ŝw(χh(β))∇ · (uh(α(β))− un−1

h ), qh,j
〉

+ τ 〈∇hχh(β),∇hqh,j〉κabs − τ 〈h
n
ext, qh,j〉 , j ∈ {1, ..., dQ}.

We note, the existence of a discrete solution of Eq. (5.3)–(5.4) is equivalent to the existence of
β ∈ RdQ , satisfying F (β) = 0. To prove the existence of a zero of F , we employ Lemma B.4; we
consider the expression

〈F (β),β〉 =

〈
b̂η(χh(β))− b̂η(χn−1

h ),
p̂pore(χh(β))

ŝw(χh(β))

〉
(5.6)

+ α
〈∇ · (uh(α)− un−1

h ), p̂pore(χh(β))
〉

+ τ
〈
∇hχ(β),∇h

p̂pore(χh(β))
ŝw(χh(β))

〉

− τ
〈
hnext,

p̂pore(χh(β))
ŝw(χh(β))

〉

=: T1 + T2 + T3 + T4.
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where we used

dQ∑

j=1

βjqh,j =
p̂pore(χh(β))

ŝw(χh(β))
.

and dropped the explicit dependence of α on β. We discuss the terms T1, ..., T4 separately.

Discussion of T1. Using (A4), we define b̄η := b̂η ◦
(
p̂pore
ŝw

)−1
: R → R and its Legendre

transformation, cf. (4.2). Finally, using standard properties of the Legendre transformation of
non-decreasing functions, cf. Lemma B.12, we obtain for term T1

T1 ≥
∥∥∥∥B̄η

(
p̂pore(χh(β))

ŝw(χh(β))

)∥∥∥∥
L1(Ω)

−
∥∥∥∥B̄η

(
p̂pore(χh(βn−1))

ŝw(χh(βn−1))

)∥∥∥∥
L1(Ω)

,

where βn−1 ∈ RdQ such that χn−1
h = χh(βn−1).

Discussion of T2. From the definition of α, under the use of a binomial identity, the Cauchy-
Schwarz inequality and Young’s inequality, the coupling term T2 becomes

T2 = α
〈∇ · (uh(α)− un−1

h ), p̂pore(χh(β))
〉

= ζτ−1
∥∥uh(α)− un−1

h

∥∥2

V
+ 1

2 ‖uh(α)‖2V + 1
2

∥∥uh(α)− un−1
h

∥∥2

V

− 1
2

∥∥un−1
h

∥∥2

V
−
〈
fn,uh(α)− un−1

h

〉

≥ ζτ−1
∥∥uh(α)− un−1

h

∥∥2

V
+ 1

2 ‖uh(α)‖2V + 1
4

∥∥uh(α)− un−1
h

∥∥2

V

− 1
2

∥∥un−1
h

∥∥2

V
− ‖fn‖2V ? .

Discussion of T3. By the mean value theorem and (A4), the diffusion term T3 can be estimated
from below

T3 ≥ cp̂pore/ŝwτ‖χh(β)‖21,T ,κabs .

Discussion of T4. Employing the definition of hext = (h,wN), the non-degeneracy condition
(ND1), a discrete trace inequality, cf. Lemma B.2, together with a discrete Poincaré inequality
(introducing CΩ,DP), cf. Lemma B.1, we obtain

〈
hnext,

p̂pore(χh(β))
ŝw(χh(β))

〉

≤
∥∥∥ p̂pore(χh(β))
ŝw(χh(β))χh(β)

∥∥∥
∞

(
‖hn‖ ‖χh(β)‖+ ‖wnN‖L2(Γf

N) ‖χh(β)‖L2(Γf
N)

)

≤ C (CND,1, Ctr, CΩ,DP) ‖hnext‖L2(Ω)×L2(Γf
N) ‖χh(β)‖1,T

for a constant C (CND,1, Ctr, CΩ,DP) > 0 Hence, by (A6) and Young’s inequality, for the term T4

it holds that

T4 ≤
C (CND,1, Ctr, CΩ,DP)2

2cp̂pore/ŝwκm,abs
τ ‖hnext‖2L2(Ω)×L2(Γf

N) +
cp̂pore/ŝw

2
τ‖χh(β)‖21,T ,κabs .
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Combination of all results. By inserting the estimates for T1, T2, T3, and T4, (5.6) becomes

〈F (β),β〉 ≥
(∥∥∥∥B̄η

(
p̂pore(χh(β))

ŝw(χh(β))

)∥∥∥∥
L1(Ω)

+
cp̂pore/ŝw

2 τ‖χh(β)‖21,T ,κabs (5.7)

+
1

4
‖uh(α)‖2V +

1

2
ζτ−1

∥∥uh(α)− un−1
h

∥∥2

V
+

1

4

∥∥uh(α)− un−1
h

∥∥2

V

)

−
(∥∥∥∥∥B̄η

(
p̂pore(χ

n−1
h )

ŝw(χn−1
h )

)∥∥∥∥∥
L1(Ω)

+
1

2

∥∥un−1
h

∥∥2

V
+

5

4
‖fn‖2V ?

+
C (CND,1, Ctr, CΩ,DP)2

2cp̂pore/ŝwκm,abs
τ ‖hnext‖L2(Ω)×L2(Γf

N)

)
.

Finally, since ‖ · ‖1,T ,κabs defines a norm on Qh and (5.5) holds by induction for n− 1 if n ≥ 2 or
from (A8?) for n = 1, by a corollary of Brouwer’s fixed point theorem, cf. Lemma B.4, there
exists a β ∈ RdQ such that F (β) = 0, which implies existence of a solution. The bound (5.5) for
n follows immediately from (5.7).

6 Step 3: Limit h, τ → 0

In the following, we show that the fully-discrete FEM-TPFA discretization, introduced in the
previous section, converges to a weak solution of the doubly regularized unsaturated poroelasticity
model, i.e., we prove Lemma 4.3. The proof follows the steps: 1) derive stability results for the
fully discrete approximation; 2) define suitable approximations a.e. in time using interpolation;
3) deduce stability for those as well; 4) relative compactness arguments are performed yielding
a well-defined limit for h, τ → 0; 5) the limit is showed to be a weak solution of the doubly
regularized model. Throughout the entire section, we assume (A0)–(A9) and (ND1) hold true.

6.1 Stability estimates for the fully-discrete approximation

Lemma 6.1 (Stability estimate for the primary variables). Let τ < 1
8 . There exists a constant

C(1) > 0 (independent of h, τ, ζ, η), such that

ζ
∑

n

τ−1
∥∥unh − un−1

h

∥∥2

V
+ sup

n
‖unh‖2V +

∑

n

‖unh − un−1
h ‖2V +

N∑

n=1

τ‖χnh‖21,T

≤ C(1)

(
C0, CND,1‖hext‖L2(0,T ;Q?), ‖fext‖H1(0,T ;V ?)

)
,

where C0 and CND,1 are defined in (A8?)h and (ND1), respectively.

Proof. The proof follows essentially the same steps as in the proof of Lemma 5.4. Therefore, we
are quick on similar steps. We consider the reduced displacement-pressure formulation (5.3)–(5.4).

We choose vh = unh − un−1
h and qh =

p̂pore(χnh)

ŝw(χnh) as test functions and sum the two equations; note

that the second is well-defined as ŝw(χ) > 0 for all χ ∈ R, by (A2). We obtain

ζτ−1
∥∥unh − un−1

h

∥∥2

V
+ a(unh,u

n
h − un−1

h )

+

〈
b̂η(χ

n
h)− b̂η(χn−1

h ),
p̂pore(χ

n
h)

ŝw(χnh)

〉
+ τ

〈
∇hχ

n
h,∇h

p̂pore(χ
n
h)

ŝw(χnh)

〉

κabs

=
〈
fnext,u

n
h − un−1

h

〉
+ τ

〈
hnext,

p̂pore(χ
n
h)

ŝw(χnh)

〉
.
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On the left hand side, we employ the binomial identity (B.2), the Legendre transformation, B̄η,

of b̄η = b̂η ◦
(
p̂pore
ŝw

)−1
, cf. (4.2) and Lemma B.12, and the uniform increase of

p̂pore
ŝw

, cf., (A4). It

holds that

ζτ−1
∥∥unh − un−1

h

∥∥2

V
+

1

2

(
‖unh‖2V − ‖un−1

h ‖2V + ‖unh − un−1
h ‖2V

)

+

∥∥∥∥B̄η
(
p̂pore(χ

n
h)

ŝw(χnh)

)∥∥∥∥
L1(Ω)

−
∥∥∥∥∥B̄η

(
p̂pore(χ

n−1
h )

ŝw(χn−1
h )

)∥∥∥∥∥
L1(Ω)

+ cp̂pore/ŝwτ‖χnh‖21,T ,κabs

≤
〈
fnext,u

n
h − un−1

h

〉
+

〈
hnext,

p̂pore(χ
n
h)

ŝw(χnh)

〉
.

Summing over the time steps 1 to N and rearranging terms, yields

ζ
∑

n

τ−1
∥∥unh − un−1

h

∥∥2

V
+

1

2
‖uNh ‖2V +

1

2

N∑

n=1

‖unh − un−1
h ‖2V

+

∥∥∥∥B̄η
(
p̂pore(χ

N
h )

ŝw(χNh )

)∥∥∥∥
L1(Ω)

+ cp̂pore/ŝw

N∑

n=1

τ‖χnh‖21,T ,κabs

≤ 1

2
‖u0

h‖2V +

∥∥∥∥B̄η
(
p̂pore(χ

0
h)

ŝw(χ0
h)

)∥∥∥∥
L1(Ω)

+

N∑

n=1

〈
fnext,u

n
h − un−1

h

〉
+

N∑

n=1

τ

〈
hnext,

p̂pore(χ
n
h)

ŝw(χnh)

〉
.

It remains to discuss the last two terms on the right hand side. For the first of them, we employ
summation by parts, cf. Lemma B.6, as well as the Cauchy-Schwarz inequality and Young’s
inequality:

N∑

n=1

〈
fnext,u

n
h − un−1

h

〉

=
〈
fNext,u

N
h

〉
−
〈
f1

ext,u
0
h

〉
−
N−1∑

n=1

〈
fn+1

ext − fnext,u
n
h

〉

≤ ‖fNext‖2V ? +
1

4
‖uNh ‖2V +

1

2
‖f1

ext‖2V ? +
1

2
‖u0

h‖2V +

N∑

n=1

τ−1
∥∥fnext − fn−1

ext

∥∥2

V ? +

N∑

n=1

τ‖unh‖2V .

The second term is estimated as in the discussion of T4 within the proof of Lemma 5.4. We
obtain

N∑

n=1

τ

〈
hnext,

p̂pore(χ
n
h)

ŝw(χnh)

〉

≤ C (CND,1, Ctr, CΩ,DP)2

2cp̂pore/ŝwκm,abs

N∑

n=1

τ ‖hnext‖L2(Ω)2×L2(Γf
N) +

cp̂pore/ŝw
2

N∑

n=1

τ‖χnh‖21,T ,κabs .
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Altogether, after rearranging terms, we obtain

ζ

2

∑

n

τ−1
∥∥unh − un−1

h

∥∥2

V
+

1

4
‖uNh ‖2V +

1

4

N∑

n=1

‖unh − un−1
h ‖2V

+

∥∥∥∥B̄η
(
p̂pore(χ

N
h )

ŝw(χNh )

)∥∥∥∥
L1(Ω)

+
cp̂pore/ŝw

2

N∑

n=1

τ‖χnh‖21,T ,κabs

≤ ‖u0
h‖2V +

∥∥∥∥B̄η
(
p̂pore(χ

0
h)

ŝw(χ0
h)

)∥∥∥∥
L1(Ω)

+
C (CND,1, Ctr, CΩ,DP)2

2cp̂pore/ŝwκm,abs

N∑

n=1

τ ‖hnext‖2L2(Ω)×L2(Γf
N)

+ ‖fNext‖2V ? + ‖f1
ext‖2V ? +

N∑

n=1

τ−1
∥∥fnext − fn−1

ext

∥∥2

V ? +
N∑

n=1

τ‖fnext‖2V ? + 2
N∑

n=1

τ‖unh‖2V .

Finally, the last term on the right hand side can be controlled after applying a discrete Grönwall
inequality, cf. Lemma B.7, using that 2τ < 1

4 . The thesis follows from the assumptions on the
regularity of the source terms (A7) (together with a Sobolev embedding) and initial data (A8?).

Lemma 6.2 (Stability for the Kirchhoff pressure). There exists a constant C
(2)
ζη > 0 (independent

of h, τ) such that

bχ,m

N∑

n=1

τ−1
∥∥χnh − χn−1

h

∥∥2
+
∥∥χNh

∥∥2

1,T +
N∑

n=1

∥∥χnh − χn−1
h

∥∥2

1,T ≤ C
(2)
ζη

(
C0,

1 + ζ−1

bχ,m
C(1)

)
,

where C(1) is the stability constant from Lemma 6.1, bχ,m is from the growing condition (A1?),
and C0 is the bound in (A8?)h.

Proof. We choose qh = χnh − χn−1
h in (5.4). By using the binomial identity (B.2) for the diffusion

term, we obtain
〈
b̂η(χ

n
h)− b̂η(χn−1

h ), χnh − χn−1
h

〉
+ α

〈
ŝw(χnh)∇ · (unh − un−1

h ), χnh − χn−1
h

〉

+
τ

2

(
‖χnh‖21,T ,κabs −

∥∥χn−1
h

∥∥2

1,T ,κabs +
∥∥χnh − χn−1

h

∥∥2

1,T ,κabs

)

= τ
〈
hnext, χ

n
h − χn−1

h

〉
.

Dividing by τ and summing over time steps 1 to N , yields

N∑

n=1

τ−1
〈
b̂η(χ

n
h)− b̂η(χn−1

h ), χnh − χn−1
h

〉
+

1

2

∥∥χNh
∥∥2

1,T ,κabs +
1

2

N∑

n=1

∥∥χnh − χn−1
h

∥∥2

1,T ,κabs (6.1)

=
1

2

∥∥χ0
h

∥∥2

1,T ,κabs +

N∑

n=1

〈
hnext, χ

n
h − χn−1

h

〉
− α

N∑

n=1

τ−1
〈
ŝw(χnh)∇ · (unh − un−1

h ), χnh − χn−1
h

〉
.

We discuss some of the terms above separately. Employing the growth condition (A1?), yields
for the first term on the left hand side of (6.1)

N∑

n=1

τ−1
〈
b̂η(χ

n
h)− b̂η(χn−1

h ), χnh − χn−1
h

〉
≥ bχ,m

N∑

n=1

τ−1
∥∥χnh − χn−1

h

∥∥2
.

By employing the Cauchy-Schwarz inequality and Young’s inequality, we get for the second term
on the right hand side of (6.1)

N∑

n=1

〈
hnext, χ

n
h − χn−1

h

〉
≤ bχ,m

2

N∑

n=1

τ−1
∥∥χnh − χn−1

h

∥∥2
+

1

2bχ,m

N∑

n=1

τ ‖hnext‖2Q? .
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Similarly, for the last term on the right hand side of (6.1), we get

α
N∑

n=1

τ−1〈ŝw(χnh)∇ · (unh − un−1
h ), χnh − χn−1

h 〉

≤ bχ,m
4

N∑

n=1

τ−1‖χnh − χn−1
h ‖2 +

α2

bχ,m

N∑

n=1

τ−1‖∇ · (unh − un−1
h )‖2.

All in all, (6.1) becomes

bχ,m
4

N∑

n=1

τ−1‖χnh − χn−1
h ‖2 +

1

2
‖χNh ‖21,T ,κabs +

1

2

N∑

n=1

‖χnh − χn−1
h ‖21,T ,κabs

≤ 1

2
‖χ0

h‖21,T ,κabs +
1

2bχ,m

N∑

n=1

τ‖hnext‖2Q? +
α2

bχ,m

N∑

n=1

τ−1‖∇ · (unh − un−1
h )‖2.

Finally, the first term on the right hand side is bounded by (A8?)h, whereas the last term can be
bounded by employing Lemma 6.1. On the left hand side, we employ (A6).

Lemma 6.3 (Stability for the Legendre transformation B̂η of b̂η). Let B̂η(z) denote the Legendre

transformation of b̂, cf. (4.1). There exists a constant C
(3)
ζ > 0 (independent of h, τ, η), such that

sup
n

∥∥∥B̂η(χnh)
∥∥∥
L1(Ω)

≤ C(3)
ζ

(
C0, C

(1)
(
1 + ζ−1

))
,

where C(1) is the stability constant from Lemma 6.1, and C0 is the bound in (A8?)h.

Proof. Testing (5.4) with qh = χnh and employing the properties of the Legendre transformation

B̂η, cf. Lemma B.12, yields for all n

∥∥∥B̂η(χnh)
∥∥∥
L1(Ω)

−
∥∥∥B̂η(χn−1

h )
∥∥∥
L1(Ω)

+ τ ‖χnh‖21,T ,κabs
≤ τ 〈hnext, χ

n
h〉 − α

〈
ŝw(χnh)∇ · (unh − un−1

h ), χnh
〉
.

For the first term on the right hand side, we employ a similar bound as in the discussion of T4

within the proof of Lemma 5.4; for the second term, we employ the Cauchy-Schwarz inequality, a
discrete Poincaré inequality (introducing CΩ,DP), and (A6). We obtain

∥∥∥B̂η(χnh)
∥∥∥
L1(Ω)

−
∥∥∥B̂η(χn−1

h )
∥∥∥
L1(Ω)

+
τ

2
‖χnh‖21,T ,κabs

≤ C (CND,1, Ctr, CΩ,DP)2

κm,abs
τ‖hnext‖2Q? +

CΩ,DP

κm,abs

α2

Kdr
τ−1

∥∥unh − un−1
h

∥∥2

V
.

Finally, summing over time steps 1 to N and employing Lemma 6.1 and (A7) proves the
assertion.

Lemma 6.4 (Stability for the pore pressure). There exists a constant C(4) > 0 (independent of
h, τ, ζ, η), such that

N∑

n=1

τ‖p̂pore(χ
n
h)‖2 ≤ C(4)

(
C(1)

)
,

where C(1) is the stability constant from Lemma 6.1.
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Proof. We utilize a standard inf-sup argument (introducing CΩ,is), cf. Lemma B.11. Due to (D2),
there exists a vh ∈ Vh such that

‖p̂pore(χh(β))‖2 = α 〈p̂pore(χh(β)),∇ · vh〉 , ‖vh‖V ≤ CΩ,is‖p̂pore(χh(β))‖,

Employing the mechanics equation (4.3), we obtain

‖p̂pore(χh(β))‖ ≤ CΩ,is

(
ζτ−1

∥∥unh − un−1
h

∥∥
V

+ ‖unh‖V + ‖fnext‖V ?

)
,

and hence,

N∑

n=1

τ‖p̂pore(χ
n
h)‖2 ≤ 3C2

Ω,is

(
ζ2

N∑

n=1

τ−1
∥∥unh − un−1

h

∥∥2

V
+

N∑

n=1

τ‖unh‖2V +

N∑

n=1

τ‖fnext‖2V ?

)
.

Finally, the assertion follows from Lemma 6.1, assuming wlog. ζ is bounded from above.

Lemma 6.5 (Stability for the temporal change of b̂). There exists a constant C
(5)
ζ > 0 (indepen-

dent of h, τ, η), such that

sup
{qnh}n⊂Qh\{0}

∑N
n=1 τ

〈
b̂η(χnh)−b̂η(χn−1

h )

τ , qnh

〉

(∑N
n=1 τ‖qnh‖21,T

)1/2
≤ C(5)

ζ

(
C(1)

(
1 + ζ−1

))
,

where C(1) is the stability constant from Lemma 6.1.

Proof. Let {qnh}n ⊂ Qh \ {0} be an arbitrary sequence of test functions. Employ qnh as test
function for (5.4). Summing over time steps 1 to N and applying the Cauchy-Schwarz inequality,
yields

N∑

n=1

τ

〈
b̂η(χ

n
h)− b̂η(χn−1

h )

τ
, qnh

〉

≤
(
α2

Kdr

N∑

n=1

τ−1
∥∥unh − un−1

h

∥∥2

V

)1/2( N∑

n=1

τ‖qnh‖2
)1/2

+

(
N∑

n=1

τ‖χnh‖21,T ,κabs

)1/2( N∑

n=1

τ‖qnh‖21,T ,κabs

)1/2

+ (1 + Ctr)CΩ,DP

(
N∑

n=1

τ‖hnext‖2Q?
)1/2( N∑

n=1

τ‖qnh‖21,T

)1/2

.

For the last term, we employed a discrete trace inequality, cf. Lemma B.2, and a discrete
Poincaré inequality, cf. Lemma B.1. Finally, utilizing a discrete Poincaré inequality for the
first term on the right hand side, (A6), and employing Lemma 6.1, we prove the assertion with

C
(5)
ζ := 3

√
C(1)

(
CΩ,DP

α

ζ1/2K
1/2
dr

+ κ
1/2
M,abs + (1 + Ctr)CΩ,DP

)
.

6.2 Stability estimates for interpolants in time

Utilizing the discrete-in-time approximations (unh, χ
n
h)n, defined by (5.3)–(5.4), we define continuous-

in-time approximations on (0, T ] by piecewise constant interpolation

ūhτ (t) := unh, t ∈ (tn−1, tn],

χ̄hτ (t) := χnh, t ∈ (tn−1, tn],
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and by piecewise linear interpolation

ûhτ (t) := un−1
h +

t− tn−1

τ
(unh − un−1

h ), t ∈ (tn−1, tn], (6.2)

χ̂hτ (t) := χn−1
h +

t− tn−1

τ
(χnh − χn−1

h ), t ∈ (tn−1, tn]. (6.3)

We deduce stability for the interpolants from the stability of the fully discrete approximation.

Lemma 6.6 (Stability estimate for time interpolants of the mechanical displacement). For all
h, τ > 0 and τ̂ ∈ [0, τ) it holds that

ζ

∫ T

0
‖∂tûhτ‖2V dt+ ‖ūhτ‖2L∞(0,T ;V ) ≤ C(1), (6.4)

∫ T−τ̂

0
‖ūhτ (t+ τ̂)− ūhτ (t)‖2V dt ≤ C(1)τ̂ , (6.5)

‖ūhτ − ûhτ‖2L2(QT ) ≤ C(1)τ, (6.6)

where C(1) is the stability constant from Lemma 6.1.

Proof. The assertion (6.4) follows directly from Lemma 6.1 by definition of the interpolants.
Similarly, by definition of the piecewise constant in time interpolation, it holds that

∫ T−τ̂

0
‖ūhτ (t+ τ̂)− ūhτ (t)‖2V dt

=

N−1∑

n=1

∫ tn

tn−1

‖ūhτ (t+ τ̂)− ūhτ (t)‖2V dt+

∫ tN−τ̂

tN−1

‖ūhτ (t+ τ̂)− ūhτ (t)‖2V dt

=

N−1∑

n=1

∫ tn

tn−τ̂
‖un+1

h − unh‖2V dt

= τ̂
N∑

n=1

‖un+1
h − unh‖2V .

We obtain (6.5) from Lemma 6.1. By definition of the piecewise constant and piecewise linear
interpolation, it holds that

‖ūhτ − ûhτ‖2L2(QT ) =

N∑

n=1

∫ tn

tn−1

∥∥∥unh − un−1
h − t−tn−1

τ

(
unh − un−1

h

)∥∥∥
2

=
1

3
τ

N∑

n=1

∥∥unh − un−1
h

∥∥2
.

We conclude (6.6).

Analogously, we conclude stability for the interpolants of the Kirchhoff pressure.

Lemma 6.7 (Stability estimate for time interpolants of the Kirchhoff pressure). For all h, τ > 0
and τ̂ ∈ [0, τ) it holds that

∫ T

0
‖χ̄hτ (t)‖21,T dt ≤ C(1),

bχ,m‖∂tχ̂hτ‖2L2(QT ) + ‖χ̄hτ‖2L∞(0,T ;L2(Ω)) ≤ C
(2)
ζη ,∫ T−τ̂

0
‖χ̄hτ (t+ τ̂)− χ̄hτ (t)‖2 dt ≤ C2

Ω,DPC
(2)
ζη τ̂ ,

‖χ̄hτ − χ̂hτ‖2L2(QT ) ≤ C2
Ω,DPC

(2)
ζη τ,
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where C(1) and C
(2)
ζη are the stability constants from Lemma 6.1 and Lemma 6.2, respectively,

and CΩ,DP is the discrete Poincaré constant, cf. Lemma B.1.

Proof. The proof is analogous to the proof Lemma 6.6. For the last two estimates in the assertion,
a discrete Poincaré inequality, cf. Lemma B.1, has to be applied before utilizing the stability
bound on

∑N
n=1 ‖χnh − χn−1

h ‖21,T from Lemma 6.2.

Similarly, by definition of the piecewise constant interpolation, we deduce stability for some
of the non-linearities used in the model.

Lemma 6.8 (Stability estimates for non-linearities evaluated in interpolants). It holds that
∥∥∥B̂η(χ̄hτ )

∥∥∥
L∞(0,T ;L1(Ω))

≤ C(3)
ζ ,

‖p̂pore(χ̄hτ )‖2L2(QT ) ≤ C(4),

where C
(3)
ζ and C(4) are the stability constants from Lemma 6.3 and Lemma 6.4, respectively.

Lemma 6.9 (Stability estimate for the temporal change of b̂). For

λ̄hτ (t) :=
b̂η(χ

n
h)− b̂η(χn−1

h )

τ
t ∈ (tn−1, tn]

it holds that

‖λ̄hτ‖L2(0,T ;H−1(Ω) ≤ C1/2
Ω,PC

(5)
ζ ,

where C
(5)
ζ is the stability constant from Lemma 6.5, and CΩ,P is a Poincaré constant.

Proof. Let q ∈ L2(0, T ;Q). We define a piecewise constant interpolation in both space and time,
and only time by

qnh(x, t) := 1
τ

∫ tn

tn−1

1

|K|

∫

K
q dx dt, (x, t) ∈ K × (tn−1, tn], K ∈ T ,

qn(x, t) := 1
τ

∫ tn

tn−1

q dt, (x, t) ∈ Ω× (tn−1, tn].

Then by Lemma 6.5 it holds that

∫ T

0

〈
λ̄hτ , q

〉
=

N∑

n=1

τ

〈
b̂η(χ

n
h)− b̂η(χn−1

h )

τ
, qnh

〉
≤ C(5)

ζ

(
N∑

n=1

τ‖qnh‖21,T

)1/2

.

By Lemma B.3, a (continuous) Poincaré inequality (introducing CΩ,P), analogous to Lemma B.1,
the triangle inequality and the Cauchy-Schwarz inequality, it holds that

N∑

n=1

τ‖qnh‖21,T ≤ CΩ,P

N∑

n=1

τ‖∇qn‖2

= CΩ,P

N∑

n=1

τ

∥∥∥∥∥τ
−1

∫ tn

tn−1

∇q dt

∥∥∥∥∥

2

≤ CΩ,P

N∑

n=1

τ−1

(∫ tn

tn−1

‖∇q‖ dt
)2

≤ CΩ,P

N∑

n=1

∫ tn

tn−1

‖∇q‖2 dt

= CΩ,P‖q‖2L2(0,T ;H1
0 (Ω)),

which concludes the proof.
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6.3 Relative (weak) compactness for the limit h, τ → 0

We utilize the stability results from the previous section to conclude relative compactness. We
deduce limits for the interpolants which eventually converge towards a weak solution of the
doubly regularized unsaturated poroelasticity model, i.e., it fulfils (W1)ζη–(W4)ζη.

Lemma 6.10 (Convergence of the mechanical displacement). We can extract subsequences
of {ūhτ}h,τ and {ûhτ}h,τ (still denoted like the original sequences), and there exists uεη ∈
L∞(0, T ;V ) with ∂tuεη ∈ L2(0, T ;V ) such that for h, τ → 0

ūhτ ⇀ uεη in L∞(0, T ;V ), (6.7)

ūhτ → uεη in L2(QT ), (6.8)

ûhτ ⇀ uεη in L2(0, T ;V ), (6.9)

∂tûhτ ⇀ ∂tuεη in L2(0, T ;V ). (6.10)

Proof. By the Eberlein-Šmulian theorem, cf. Lemma B.8, and Lemma 6.6, we obtain directly (6.7).
For (6.8), we employ a relaxed Aubin-Lions-Simon type compactness result for Bochner spaces,
cf. Lemma B.9, together with Lemma 6.6. Furthermore, by the Eberlein-Šmulian theorem, cf.
Lemma B.8, and Lemma 6.6, there exists a û ∈ L2(0, T,V ) such that up to a subsequence

ûhτ ⇀ û in L2(0, T ;V ),

∂tûhτ ⇀ ∂tû in L2(0, T ;V ).

We can identify û = uεη as follows. Employing the triangle inequality and Lemma 6.6, yields

‖ûhτ − uεη‖L2(QT ) ≤ ‖ûhτ − ūhτ‖L2(QT ) + ‖ūhτ − uεη‖L2(QT )

≤ C(1)τ + ‖ūhτ − uεη‖L2(QT ),

which converges to zero for h, τ → 0. This concludes the proof.

In order to discuss the limit of the pressure, we utilize techniques employed in the finite
volume literature [61]. We define a piecewise constant discrete gradient of χ̄hτ utilizing the dual
grid T ?, cf. Definition 5.2,

(∇χ
)
hτ

:=





d
χnh |L

−χnh |K
dK|L

nK|L, (x, t) ∈ Pσ × (tn−1, tn], K ∈ T , L ∈ N (L), σ = K|L,
d
χnh |K
dσ,K

nσ,K , (x, t) ∈ Pσ × (tn−1, tn], σ ∈ Eext ∩ EK ,

where nK|L denotes the outward normal on K|L ∈ E , pointing towards L; and nσ,K denotes the
outward normal on σ ∈ Eext ∩ EK , pointing towards K.

Lemma 6.11 (Convergence of the Kirchhoff pressure). We can extract a subsequence of {χ̄hτ}h,τ
(still denoted like the original sequences), and there exists χεη ∈ H1(0, T ;Q) such that

χ̄hτ → χεη in L2(QT ), (6.11)
(∇χ

)
hτ
⇀∇χεη in L2(QT ), (6.12)

∂tχ̂hτ ⇀ ∂tχεη in L2(QT ). (6.13)

Proof. Let ĥ ∈ Rd and Ωĥ := {x ∈ Ω |x+ ĥ ∈ Ω}. Using Lemma 4 from [62], for all qh ∈ Qh it
holds that

∫

Ωĥ

∥∥∥qh(x+ ĥ)− qh(x)
∥∥∥

2
dx ≤ C ‖qh‖21,T |ĥ|

(
|ĥ|+ |Ω|

)
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for some C > 0. Hence, we obtain

∫ T

0

∫

Ωĥ

∥∥∥χ̄hτ (x+ ĥ)− χ̄hτ (x)
∥∥∥

2
dx dt =

N∑

n=1

τ

∫

Ωĥ

∥∥∥χnh(x+ ĥ)− χnh(x)
∥∥∥

2
dx

≤ |ĥ|
(
|ĥ|+ |Ω|

) N∑

n=1

τ ‖χnh‖21,T .

Consequently, by Lemma 6.7, χ̄hτ satisfies a translation property in space and time wrt. L2(QT ).
We conclude by the Riesz-Frechet-Kolmogorov compactness criterion, cf. Lemma B.10, that there
exists a χεη ∈ L2(QT ) satisfying (6.11).

By definition of
(∇χ

)
hτ

and the geometrical identity |Pσ| = d−1|σ|dσ, it holds that

∥∥(∇χ
)
hτ

∥∥2

L2(QT )

=
N∑

n=1

τ
∑

σ∈E

∫

Pσ

∣∣(∇χ
)
hτ

∣∣2 dx

=
N∑

n=1

τ
∑

K∈T

∑

L∈N (K)

|PK|L|d2

∣∣∣χnh |K − χ
n
h |L

∣∣∣
2

d2
K|L

+
N∑

n=1

τ
∑

σ∈Eext∩EK
|Pσ|d2

∣∣∣χnh |K
∣∣∣
2

d2
σ,K

= d

N∑

n=1

τ
∑

σ∈E
τσ |δσ(χnh)|2

= d

∫ T

0
‖χ̄hτ‖21,T dt,

which is uniformly bounded by Lemma 6.7. Hence, by the Eberlein-Šmulian theorem, cf.
Lemma B.8, there exist a gχ ∈ L2(QT ) such that (up to a subsequence)

(∇χ
)
hτ
⇀ gχ in L2(QT ).

It remains to show that gχ = ∇χεη in the sense of distributions, i.e.,

∫ T

0
〈gχ,ϕ〉 dt+

∫ T

0
〈χεη,∇ ·ϕ〉 dt = 0 for all ϕ ∈ C∞(QT )d.

For that, we follow an argument in [61]. Let ϕ ∈ C∞(QT )d. As

∫ T

0
〈
(∇χ

)
hτ
,ϕ〉 dt→

∫ T

0
〈gχ,ϕ〉 dt, and

∫ T

0
〈χ̄hτ ,∇ ·ϕ〉 dt→

∫ T

0
〈χεη,∇ ·ϕ〉 dt

for h, τ → 0, it suffices to show that

∫ T

0
〈
(∇χ

)
hτ
,ϕ〉 dt+

∫ T

0
〈χ̄hτ ,∇ ·ϕ〉 dt→ 0.
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By definition of
(∇χ

)
hτ

and the construction of T ? with d
dσ

= |σ|
|Pσ | for all σ ∈ E , it holds that

∫ T

0
〈
(∇χ

)
hτ
,ϕ〉 dt =

N∑

n=1

∫ tn

tn−1

∑

σ∈E

∫

Pσ

(∇χ
)
hτ
·ϕ dx dt

=

N∑

n=1

∫ tn

tn−1

∑

K∈T

∑

L∈N (K)

d
χnh |L

− χnh |K
dK|L

∫

PK|L
ϕ · nK|L dx dt

+

N∑

n=1

∫ tn

tn−1

∑

σ∈Eext∩EK
d
χnh |K
dσ,K

∫

Pσ

ϕ · nσ,K dx dt

=
N∑

n=1

∫ tn

tn−1

∑

K∈T

∑

L∈N (K)

|σ|
(
χnh |L − χ

n
h |K

) 1

|PK|L|

∫

PK|L
ϕ · nK|L dx dt

+
N∑

n=1

∫ tn

tn−1

∑

σ∈Eext∩EK
|σ|χnh |K

1

|Pσ|

∫

Pσ

ϕ · nσ,K dx dt.

On the other hand, since χ̄hτ is constant and hence continuous within each K ∈ T , it holds that

∫ T

0
〈χ̄hτ ,∇ ·ϕ〉 dt

=

N∑

n=1

∫ tn

tn−1

∑

σ∈E

∫

Pσ

χ̄hτ∇ ·ϕ dx dt

=

N∑

n=1

∫ tn

tn−1

[ ∑

K∈T

∑

L∈N (K)

(
χnh |K

∫

PK|L∩K
∇ ·ϕ dx+ χnh |L

∫

PK|L∩L
∇ ·ϕ dx

)

+
∑

σ∈Eext∩EK
χnh |K

∫

Pσ∩K
∇ ·ϕ dx

]
dt

= −
N∑

n=1

∫ tn

tn−1

[ ∑

K∈T

∑

L∈N (K)

(
χnh |L − χ

n
h |K

)∫

K|L
ϕ · nK|L ds

+
∑

σ∈Eext∩EK
χnh |K

∫

σ
ϕ · nσ,K ds

]
dt.

As ϕ ∈ C∞(QT )d is smooth, there exists a constant C > 0 such that
∣∣∣∣∣
1

τ

∫ tn

tn−1

1

|Pσ|

∫

Pσ

ϕ · nσ dx dt−
1

τ

∫ tn

tn−1

1

|σ|

∫

σ
ϕ · nσ ds dt

∣∣∣∣∣ ≤ Ch.

By abuse of notation, we used nσ for both nK|L and nσ,K . After all, together with the Cauchy-
Schwarz inequality, it holds that

∣∣∣∣
∫ T

0
〈
(∇χ

)
hτ
,ϕ〉 dt+

∫ T

0

∫

Ω
χ̄hτ∇ ·ϕ dx dt

∣∣∣∣

≤ Ch
N∑

n=1

τ


∑

K∈T

∑

L∈N (K)

|σ|
∣∣∣χnh |L − χ

n
h |K

∣∣∣+
∑

σ∈Eext∩EK
|σ|
∣∣∣χnh |K

∣∣∣




≤ Ch
(

N∑

n=1

τ ‖χnh‖21,T

)1/2( N∑

n=1

τ
∑

σ∈E
|σ|dσ

)1/2

.
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By Lemma 6.7 and the regularity assumption on T , convergence towards 0 follows for h, τ → 0.
This concludes the proof of (6.12).

The proof of (6.13) is standard and follows mainly from the stability results in Lemma 6.7
and the Eberlein-Šmulian theorem, cf. Lemma B.8. This concludes the proof.

The main purpose of the double regularization has been the aim to get control over the
non-linear coupling terms, and eventually establish convergence.

Lemma 6.12 (Convergence of the coupling terms). We can extract a subsequence of {χ̄hτ}h,τ
(still denoted like the original sequences) such that

p̂pore(χ̄hτ ) ⇀ p̂pore(χεη) in L2(QT ), (6.14)

ŝw(χ̄hτ )∂t∇ · ûhτ ⇀ ŝw(χεη)∂t∇ · uεη in L2(QT ). (6.15)

Proof. By the Eberlein-Šmulian theorem, cf. Lemma B.8, and Lemma 6.8, we can extract a
subsequence of {χ̄hτ}h,τ (still denoted {χ̄hτ}h,τ ), and there exists a p̂ ∈ L2(QT ) such that

p̂pore(χ̄hτ ) ⇀ p̂ in L2(QT ).

We can identify p̂ = p̂pore(χεη) as follows. From Lemma 6.11, we have χ̄hτ → χεη a.e. on
QT for a subsequence (still denoted {χ̄hτ}h,τ ). As p̂pore is continuous by (A3), it holds that
p̂pore(χ̄hτ )→ p̂pore(χεη) a.e. on QT . This concludes (6.14).

The convergence property (6.15) follows from the convergence properties of the single contri-
butions. Let q ∈ L2(QT ); it holds that ŝw(χ̄hτ )q → ŝw(χεη)q in L2(QT ) (up to a subsequence).
Indeed, by Lemma 6.11, we have χ̄hτ → χεη a.e. on QT (up to a subsequence); due to (A2), it holds
that ŝw(χ̄hτ )q → ŝw(χεη)q a.e. on QT and |ŝw(χ̄hτ )q| ≤ |q| a.e.; hence, by the dominated conver-
gence theorem ŝw(χ̄hτ )q → ŝw(χεη)q in L2(QT ). In particular, it holds that ŝw(χεη)q ∈ L2(Ω).
Moreover from Lemma 6.10, we have ∂t∇ · ûhτ ⇀ ∂t∇ · uεη in L2(QT ). Altogether, we obtain

|〈ŝw(χ̄hτ )∂t∇ · ûhτ − ŝw(χεη)∂t∇ · uεη, q〉|
≤ |〈(ŝw(χ̄hτ )− ŝw(χεη)) ∂t∇ · ûhτ , q〉|+ |〈ŝw(χεη) (∂t∇ · ûhτ − ∂t∇ · uεη) , q〉|
≤ ‖ŝw(χ̄hτ )q − ŝw(χεη)q‖ ‖∂t∇ · ûhτ‖+ |〈∂t∇ · ûhτ − ∂t∇ · uεη, ŝw(χεη)q〉| ,

which converges towards 0 for h, τ → 0, due to strong and weak convergence of the single
components.

Lemma 6.13 (Initial conditions for the fluid flow). It holds that

λ̄hτ ⇀ ∂tb̂η(χεη) in L2(0, T ;Q?) (6.16)

(up to a subsequence), where ∂tb̂η(χεη) ∈ L2(0, T ;Q?) is understood in the sense of (W2)ζη.

Proof. By definition of the Legendre transformation B̂ and its properties, cf. Lemma B.12, it
holds that

|b̂η(x)| ≤ δB̂η(x) + sup
|y|≤δ−1

|b̂η(y)|,

for all δ > 0. Since B̂η(χ̄hτ ) ∈ L∞(0, T ;L1(Ω)) is uniformly bounded by Lemma 6.8, and b̂η
is continuous by (A1)?, it holds that ‖b̂η(χ̄hτ )‖L∞(0,T ;L1(Ω)) is uniformly bounded. Hence, by

the Eberlein-Šmulian theorem, cf. Lemma B.8, we can extract a subsequence of {χ̄hτ}h,τ (still

denoted {χ̄hτ}h,τ ), and there exists a b̂χ ∈ L∞(0, T ;L1(Ω)) such that

b̂η(χ̄hτ ) ⇀ b̂χ in L∞(0, T ;L1(Ω)).
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As b̂ is continuous by (A1), and χ̄hτ → χεη in L2(QT ) (up to a subsequence) by Lemma 6.11,

it holds that b̂η(χ̄hτ ) → b̂η(χεη) a.e. on QT (up to a subsequence). We conclude b̂χ = b̂η(χεη),
which proves

b̂η(χ̄hτ ) ⇀ b̂η(χεη) in L∞(0, T ;L1(Ω)). (6.17)

By the Eberlein-Šmulian theorem, cf. Lemma B.8, and Lemma 6.9, we can extract a subse-
quence of {χ̄hτ}h,τ (still denoted {χ̄hτ}h,τ ), and there exists a b̂t ∈ L2(0, T ;Q?) such that

λ̄hτ ⇀ b̂t in L2(0, T ;Q?).

It remains to show that b̂t = ∂tb̂η(χεη) in the sense of (W2)ζη. For this, we follow arguments
by [53] as follows. Let q ∈ L2(0, T ;Q) with ∂tq ∈ L1(0, T ;L∞(Ω)) and q(T ) = 0. Due to (6.17)
it holds that

∫ T

0

〈
b̂η(χ

0
h)− b̂η(χ0), ∂tq

〉
dt→ 0,

for h, τ → 0. Thus, it suffices to show that

∫ T

0

〈
λ̄hτ , q

〉
dt+

∫ T

0

〈
b̂η(χ̄hτ )− b̂η(χ0

h), ∂tq
〉
dt→ 0,

for h, τ → 0. By definition of λ̄hτ , after applying summation by parts, cf. Lemma B.6, we obtain

∫ T

0

〈
λ̄hτ , q

〉
dt

=

N∑

n=1

〈
b̂η(χ

n
h)− b̂η(χn−1

h ), τ−1

∫ tn

tn−1

q dt

〉

=

〈
b̂η(χ

N
h ), τ−1

∫ T

T−τ
q dt

〉
−
〈
b̂η(χ

0
h), τ−1

∫ τ

0
q dt

〉

−
N−1∑

n=1

〈
b̂η(χ

n
h), τ−1

∫ tn+1

tn

q dt− τ−1

∫ tn

tn−1

q dt

〉

=

〈
b̂η(χ

N
h )− b̂η(χ0

h), τ−1

∫ T

T−τ
q dt

〉

−
N−1∑

n=1

∫ tn

tn−1

〈
b̂η(χ

n
h)− b̂η(χ0

h),
τ−1

∫ tn+1

tn
q dt− τ−1

∫ tn
tn−1

q dt

τ

〉
dt̃

→ 0−
∫ T

0

〈
b̂η(χεη)− b̂η(χ0), ∂tq

〉
dt,

for h, τ → 0, due to the smoothness of q and the convergence properties of b̂η(χ̄hτ ). This
concludes the proof.

Lemma 6.14 (Initial conditions for the mechanical displacement). The limit uεη ∈ H1(0, T ;V )
from Lemma 6.10 satisfies (W3)ζη.

Proof. Let v ∈ H1(0, T ;V ) with v(T ) = 0. We obtain, using the same calculations as in the
proof of Lemma 6.13,

∫ T

0
a(∂tûhτ ,v) dt = a

(
uNh − u0

h, τ
−1

∫ T

T−τ
v dt

)
−
∫ T−τ

0
a
(
ūhτ − u0

h, ∂tv̂hτ
)
,
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where

v̂hτ (t) = τ−1

∫ tn−1

tn−2

v dt+
t− tn−1

τ

(
τ−1

∫ tn

tn−1

v dt− τ−1

∫ tn−1

tn−2

v dt

)
, t ∈ (tn−1, tn].

By construction of u0
h it holds that u0

h ⇀ u0 in L2(0, T ;V ). Furthermore, by Lemma 6.10, it
holds that ūhτ ⇀ uεη in L2(0, T ;V ) and ∂tûhτ ⇀ ∂tuεη in L2(0, T ;V ) (up to subsequences).
Hence, for h, τ → 0, we obtain

∫ T

0
a(∂tuεη,v) dt = −

∫ T

0
a (uεη − u0, ∂tv) ,

and thereby (W3)ζη.

6.4 Identifying a weak solution for h, τ → 0

Finally, we show the limit (uεη, χεη), introduced in the previous section, is a weak solution of
the doubly regularized unsaturated poroelasticity model, cf. Definition 4.1.

Lemma 6.15 (Limit satisfies (W1)ζη–(W4)ζη). The limit (uεη, χεη) introduced in the previ-
ous section is a weak solution to the doubly regularized unsaturated poroelasticity model, cf.
Definition 4.1.

Proof. The limit (uεη, χεη) satisfies (W1)ζη–(W3)ζη by Lemma 6.10, Lemma 6.11 Lemma 6.12,
and Lemma 6.14. It remains to show (W4)ζη, i.e., that (uεη, χεη) satisfies the balance equa-
tions (4.3)–(4.4). We first consider sufficiently smooth test functions and then use a density
argument. Let (v, q) ∈ L2(0, T ;V ∩ C∞(Ω)d) × L2(0, T ;Q ∩ C∞(Ω)). For given mesh T , we
define spatial projection and interpolation operators, respectively, by

ΠVh : V ∩ C∞(Ω)→ Vh, s.t. 〈ΠVhv,vh〉 = 〈v,vh〉 for all vh ∈ Vh, (6.18)

IQh : Q ∩ C∞(Ω)→ Qh, s.t. IQhq|K = q(xK) for all K ∈ T . (6.19)

Using those, we define piecewise-constant-in-time interpolants of (v, q)

v̄hτ (t) := vnh , t ∈ (tn−1, tn], vnh := ΠVhv
n, vn := τ−1

∫ tn

tn−1

v dt, (6.20)

q̄hτ (t) := qnh , t ∈ (tn−1, tn], qnh := IQhqn, qn := τ−1

∫ tn

tn−1

q dt. (6.21)

Similarly, let

f̄ext,τ (t) := fnext, t ∈ (tn−1, tn],

h̄ext,τ (t) := hnext, t ∈ (tn−1, tn].

Combining classical results, based on the assumed regularity (A7), for h, τ → 0 it holds that

v̄hτ → v in L2(0, T ;V ),

q̄hτ → q in L2(0, T ;Q),

f̄ext,τ → fext in L2(0, T ;V ?),

h̄ext,τ → hext in L2(0, T ;Q?).
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We choose vh = vnh and qh = qnh as test functions in (5.3)–(5.4), multiply both equations with τ
and sum over all time steps 1 to N ; we obtain

∫ T

0

[
λv 〈∂t∇ · ûhτ ,∇ · v̄hτ 〉+ a(ūhτ , v̄hτ )− α 〈p̂pore(χ̄hτ ),∇ · v̄hτ 〉

]
dt =

∫ T

0

〈
f̄ext,τ , v̄hτ

〉
dt,

(6.22)
∫ T

0

[ 〈
λ̄hτ , q̄hτ

〉
+ α 〈ŝw(χ̄hτ )∂t∇ · ûhτ , q̄hτ 〉+ 〈∇hχ̄hτ ,∇hq̄hτ 〉κabs

]
dt =

∫ T

0

〈
h̄ext,τ , q̄hτ

〉
dt.

(6.23)

For most terms we can apply the fact that the product of weakly and strongly convergent
sequences converge to the product of their limits. The only term needing discussion is the
diffusion term in the flow equation. For this, we follow an argument by [61].

By definition of the continuous extension of the discrete gradient
(∇χ

)
hτ

, it holds that

∫ T

0
〈∇hχ̄hτ ,∇hq̄hτ 〉κabs dt

=
N∑

n=1

τ
∑

K∈T

∑

L∈N (K)

τK|L{κabs}K|L
(
χnh |K − χ

n
h |L

)
(qn(xK)− qn(xL))

+
N∑

n=1

τ
∑

σ∈Eext∩EK
τσ{κabs}σχnh |K q

n(xK)

=
N∑

n=1

τ
∑

K∈T

∑

L∈N (K)

|PK|L|{κabs}K|L
(∇χ

)
hτ |PK|L×(tn−1,tn]

· nL|K 1
dK|L

(qn(xK)− qn(xL))

+
N∑

n=1

τ
∑

σ∈Eext∩EK
|Pσ|{κabs}σ

(∇χ
)
hτ |Pσ×(tn−1,tn]

· (−nσ,K) 1
dσ,K

qn(xK).

By the mean value theorem, there exists an xK|L ∈ PK|L on the line between xK and xL, and an
xσ ∈ Pσ on the line between xK and the closest point of xK on σ such that

1
dK|L

(qn(xK)− qn(xL)) = ∇qn(xK|L) · nL|K ,
1

dσ,K
qn(xK) = ∇qn(xσ) · (−nσ,K) .

Due to identical alignment of the discrete gradients, it holds that

∫ T

0
〈∇hχ̄hτ ,∇hq̄hτ 〉κabs dt

=

N∑

n=1

τ
∑

K∈T

∑

L∈N (K)

|PK|L|{κabs}K|L
(∇χ

)
hτ |PK|L×(tn−1,tn]

·∇qn(xK|L)

+

N∑

n=1

τ
∑

σ∈Eext∩EK
|Pσ|{κabs}σ

(∇χ
)
hτ |Pσ×(tn−1,tn]

·∇q(xσ).

We define the piecewise constant functions

(∇q
)
hτ

(x, t) = ∇qn(xσ), (x, t) ∈ Pσ × (tn−1, tn], σ ∈ E ,

{κabs}T (x) = {κabs}σ, x ∈ Pσ, σ ∈ E .

32



We obtain for h, τ → 0

∫ T

0
〈∇hχ̄hτ ,∇hq̄hτ 〉κabs dt

=

∫ T

0

∫

Ω
{κabs}T

(∇χ
)
hτ
·
(∇q

)
hτ
dx dt→

∫ T

0

∫

Ω
κabs∇χεη ·∇q dx dt.

Indeed, due to sufficient regularity, it holds that
(∇q

)
hτ
→∇q a.e., and also in L2(QT ) by the

dominated convergence theorem. Furthermore, it holds that {κabs}T → κabs in L∞(QT ), and by
Lemma 6.11, it holds that

(∇χ
)
hτ
⇀∇χεη in L2(QT ). That suffices to discuss the product.

All in all, together with the convergence properties of the test functions v̄hτ , q̄hτ , the source
terms f̄ext,τ , h̄ext,τ , and the interpolants for the fully discrete approximations (cf. Lemma 6.10,
Lemma 6.11, Lemma 6.12 and Lemma 6.13), we conclude that (6.22)–(6.23) converges to (4.3)–
(4.4), evaluated in (uεη, χεη) and tested with (v, q) ∈ L2(0, T ;V ∩C∞(Ω)d)×L2(0, T ;Q∩C∞(Ω)).
Finally, a density argument yields the final result.

7 Step 4: Increased regularity in a non-degenerate case

In the following, further stability estimates for the fully-discrete problem are derived, allowing
for showing that the limit (uεη, χεη) introduced in the previous section also satisfies (W5)ζη
and (W6)ζη, i.e., we prove Lemma 4.4. For this, non-degeneracy assumptions are required. For
compact presentation throughout the entire section, we assume (A0)–(A9) and (ND1)–(ND2)
hold true, and we define u−1

h := u0
h.

7.1 Improved stability estimates for fully-discrete approximation

Lemma 7.1 (Improved stability estimate for the structural velocity). There exists a constant

C
(6)
ζη > 0 (independent of h, τ), satisfying

ζ sup
n

∥∥τ−1(unh − un−1
h )

∥∥2

V
+

N∑

n=1

τ−1‖unh − un−1
h ‖2V

+ ζ
N∑

n=1

∥∥τ−1(unh − un−1
h )− τ−1(un−1

h − un−2
h )

∥∥2

V

+
N∑

n=1

τ−1‖p̂pore(χ
n
h)− p̂pore(χ

n−1
h )‖2

≤ C(6)
ζη

(
‖∂tfext‖2L2(QT ),

CND,2

bχ,m
C

(2)
ζη

)
,

where C
(2)
ζη is the stability constant from Lemma 6.2, CND,2 comes from the non-degeneracy

condition (ND2), and bχ,m comes from the growth condition (A1?).

Proof. First we observe, that the compatibility condition for the initial conditions (5.2) is
equivalent to the mechanics equation (5.3) for n = 0, since u0

h − u−1
h = 0. This allows for

considering the difference of the mechanics equation (5.3) at time steps n and n− 1, n ≥ 1,

ζa
(
τ−1(unh − un−1

h )− (un−1
h − un−2

h ),vh
)

+ a(unh − un−1
h ,vh)

− α〈p̂pore(χ
n
h)− p̂pore(χ

n−1
h ),∇ · vh〉 = 〈fnext − fn−1

ext ,vh〉 for all vh ∈ Vh.
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By testing with vh = τ−1(unh − un−1
h ) and using the binomial identity (B.2), we obtain

ζ

2

(∥∥τ−1(unh − un−1
h )

∥∥2

V
−
∥∥τ−1(un−1

h − un−2
h )

∥∥2

V

+
∥∥τ−1(unh − un−1

h )− τ−1(un−1
h − un−2

h )
∥∥2

V

)
+ τ−1‖unh − un−1

h ‖2V
= τ−1

〈
fnext − fn−1

ext ,u
n
h − un−1

h

〉
+ ατ−1

〈
p̂pore(χ

n
h)− p̂pore(χ

n−1
h ),unh − un−1

h

〉
.

Summing over n ∈ {1, ..., N}, yields after applying the Cauchy-Schwarz inequality and Young’s
inequality for the right hand side terms

ζ

2

∥∥τ−1(unh − un−1
h )

∥∥2

V
+

1

2

N∑

n=1

τ−1‖unh − un−1
h ‖2V

+
1

2

N∑

n=1

∥∥τ−1(unh − un−1
h )− τ−1(un−1

h − un−2
h )

∥∥2

V

≤
N∑

n=1

τ−1
∥∥fnext − fn−1

ext

∥∥2

V ? +
α2

Kdr

N∑

n=1

τ−1
∥∥p̂pore(χ

n
h)− p̂pore(χ

n−1
h )

∥∥2
. (7.1)

Due to (ND2), p̂pore = p̂pore(χ) is Lipschitz continuous. Therefore, by Lemma 6.2 it holds that

N∑

n=1

τ−1‖p̂pore(χ
n
h)− p̂pore(χ

n−1
h )‖2 ≤ C2

ND,2

C
(2)
ζη

bχ,m
,

which together with (7.1) concludes the proof.

Lemma 7.2 (Consequence for the structural acceleration). There exists a constant C
(7)
ζη > 0

(independent of h, τ), such that

N∑

n=1

τ

∥∥∥∥∥
unh − 2un−1

h + un−2
h

τ2

∥∥∥∥∥

2

V

≤ C(7)
ζη

(
ζ−2C

(6)
ζη

)
,

where C
(6)
ζη is the stability constant from Lemma 7.1.

Proof. Let {vnh}n ⊂ Vh \ {0} be an arbitrary sequence of test functions. Consider the difference
of (5.3) at n and n− 1, n ≥ 1; it holds that

τ−1 ζa
(
unh − 2un−1

h + un−2
h ,vnh

)

=
〈
fnext − fn−1

ext ,v
n
h

〉
− a

(
unh − un−1

h ,vnh
)

+ α
〈
p̂pore(χ

n
h)− p̂pore(χ

n−1
h ),∇ · vnh

〉
.

Summing over n ∈ {1, ..., N}, applying the Cauchy-Schwarz inequality and Lemma 7.1, yields

sup
{vnh}n⊂Vh\{0}

ζ
∑N

n=1 τ
−1a(unh − 2un−1

h + un−2
h ,vnh)

(∑N
n=1 τ‖vnh‖2V

)1/2
≤ 3

√
C

(6)
ζη .

As ‖ · ‖2V = a(·, ·), we obtain equivalence of norms, which concludes the proof.
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7.2 Improved stability estimates for interpolants in time

We define piecewise linear interpolations of the discrete structural velocities and the pore pressure.
For t ∈ (tn−1, tn], n ≥ 1, let

ût,hτ (t) :=
un−1
h − un−2

h

τ
+
t− tn−1

τ

unh − 2un−1
h + un−2

h

τ
, (7.2)

p̂pore,hτ (t) := p̂pore(χ
n−1
h ) +

t− tn−1

τ

(
p̂pore(χ

n
h)− p̂pore(χ

n−1
h )

)
. (7.3)

Note that ∂tûhτ defines the piecewise constant analog of ût,hτ . Stability bounds are obtained as
direct consequence of Lemma 7.1 and Lemma 7.2.

Lemma 7.3 (Stability estimate for interpolations of the structural velocity). Let ûhτ and ût,hτ ,
as defined by (6.2) and (7.2). For all h, τ > 0 and τ̂ ∈ (0, τ), it holds that

‖∂tûhτ‖2L2(0,T ;V ) ≤ C
(6)
ζη , (7.4)

∫ T−τ̂

0
‖∂tûhτ (t+ τ̂)− ∂tûhτ (t)‖2 dt ≤ C2

Ω,PKC
(6)
ζη τ̂ , (7.5)

‖ût,hτ‖2L2(0,T ;V ) ≤ 2C
(6)
ζη , (7.6)

‖ût,hτ − ∂tûhτ‖2L2(QT ) ≤
C2

Ω,PKC
(7)
ζη

ζ
τ2, (7.7)

‖∂tût,hτ‖2L2(0,T ;V ) ≤
C

(7)
ζη

ζ
, (7.8)

where C
(6)
ζη and C

(7)
ζη are the stability constants from Lemma 7.1 and Lemma 7.2, respectively,

and CΩ,PK is the product of the Poincaré and the Korn constants.

Proof. By construction, it holds that

‖∂tûhτ‖2L2(0,T ;V ) =
N∑

n=1

τ−1
∥∥unh − un−1

h

∥∥2

V
.

Hence, (7.4) follows directly from Lemma 7.1. The time-translation property (7.5) follows from
the fact that ∂tûhτ is piecewise constant. Analogous to the proof of Lemma 6.6, one can show

∫ T−τ

0
‖∂tûhτ (t+ τ)− ∂tûhτ (t)‖2 dt = τ̂

N∑

n=1

∥∥τ−1
(
unh − un−1

h

)
− τ−1

(
un−1
h − un−2

h

)∥∥2
.

Finally, after using a Poincaré inequality and Korn’s inequality, (7.5) follows from Lemma 7.1.
In order to show (7.6), we expand the integral over the time interval. By definition of ût,hτ ,

it holds that

‖ût,hτ‖2L2(0,T ;V )

=
N∑

n=1

τ−2

∫ tn

tn−1

∥∥∥∥
(
un−1
h − un−2

h

)
+
t− tn−1

τ

(
unh − 2un−1

h + un−2
h

)∥∥∥∥
2

V

dt

≤ 2
N∑

n=2

τ−2

∫ tn

tn−1

(
t− tn
τ

)2 ∥∥un−1
h − un−2

h

∥∥2

V
dt

+ 2
N∑

n=2

τ−2

∫ tn

tn−1

(
t− tn−1

τ

)2 ∥∥unh − un−1
h

∥∥2

V
dt

≤ 4

3

N∑

n=1

τ−1
∥∥unh − un−1

h

∥∥2

V
.
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Hence, (7.6) follows by Lemma 7.1. In order to show (7.7), we again expand the integral over
the time interval. By definition of ût,hτ and ûhτ , it holds that

‖ût,hτ − ∂tûhτ‖2L2(QT )

=
N∑

1=2

∫ tn

tn−1

(
1− t− tn−1

τ

)2

τ−2
∥∥unh − 2un−1

h + un−2
h

∥∥2
dt

=
1

3

N∑

n=1

τ−1
∥∥unh − 2un−1

h + un−2
h

∥∥2
.

Hence, after employing a Poincaré inequality and Korn’s inequality, (7.7) follows from Lemma 7.2.
Finally, (7.8) follows directly from Lemma 7.2, since

‖∂tût,hτ‖2L2(0,T ;V ) =
N∑

n=1

τ

∥∥∥∥∥
unh − 2un−1

h + un−2
h

τ2

∥∥∥∥∥

2

V

.

Lemma 7.4 (Stability result for the interpolation of the pore pressure). For p̂pore,hτ defined
in (7.3). It holds that

‖∂tp̂pore,hτ‖2L2(QT ) ≤ C
(6)
ζη ,

‖p̂pore,hτ − p̂pore(χ̄hτ )‖2L2(QT ) ≤ C
(6)
ζη τ

2,

where C
(6)
ζη is the stability constant from Lemma 7.1.

Proof. By construction, it holds that

‖∂tp̂pore,hτ‖2L2(QT ) =

N∑

n=1

τ−1‖p̂pore(χ
n
h)− p̂pore(χ

n−1
h )‖2, and

‖p̂pore,hτ − p̂pore(χ̄hτ )‖2L2(QT ) =

N∑

n=1

τ

3
‖p̂pore(χ

n
h)− p̂pore(χ

n−1
h )‖2,

where the second result follows by expanding time integration. Hence, the assertion follows directly
from the stability result for the discrete time derivative of the pore pressure, cf. Lemma 7.1.

7.3 More relative (weak) compactness for h, τ → 0

The previous stability results allow for analyzing the limit in relation to (uεη, χεη).

Lemma 7.5 (Convergence of the structural velocity and acceleration). We can extract subse-
quences of {ûhτ}h,τ and {ût,hτ}h,τ (still denoted like the original sequences) such that ∂tuεη, ∂ttuεη ∈
L2(0, T ;V ) and

∂tûhτ ⇀ ∂tuεη, in L2(0, T ;V ), (7.9)

∂tût,hτ ⇀ ∂ttuεη, in L2(0, T ;V ). (7.10)

Proof. The convergence result (7.9) follows from the stability result (7.4), the Eberlein-Šmulian
theorem, cf. Lemma B.8, and the fact that ûhτ ⇀ uεη in L2(0, T ;V ), cf. Lemma 6.10. Further-
more, due to the additional translation property (7.5), by employing a relaxed Aubin-Lions-Simon
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type compactness result for Bochner spaces, cf. Lemma B.9, we can extract a further subsequence
(still denoted the same)

∂tûhτ → ∂tuεη, in L2(QT ). (7.11)

Using the stability result (7.8), by the Eberlein-Šmulian theorem, cf. Lemma B.8, we can
extract a subsequence (still denoted the same) such that ∂tût,hτ ⇀ utt in L2(0, T ;V ) for some
utt ∈ L2(0, T ;V ). It holds that utt = ∂ttuεη if also ût,hτ ⇀ ∂tuεη in L2(0, T ;V ). From
the stability result (7.6), and the Eberlein-Šmulian theorem, cf. Lemma B.8, there exists a
ut ∈ L2(0, T ;V ) such that ût,hτ ⇀ ut in L2(0, T ;V ) (up to a subsequence). Employing the
triangle inequality, yields

‖ût,hτ − ∂tuεη‖L2(QT ) ≤ ‖ût,hτ − ∂tûhτ‖L2(QT ) + ‖∂tûhτ − ∂tuεη‖L2(QT ).

Hence, due to (7.7) and (7.11), it holds that ut = ∂tuεη, and consequently utt = ∂ttuεη,
concluding the proof.

Lemma 7.6 (Convergence of the time derivative of the pore pressure). There exists a subsequence
of {p̂pore,hτ}h,τ (still denoted {p̂pore,hτ}h,τ ) satisfying

∂tp̂pore,hτ ⇀ ∂tp̂pore(χεη), in L2(QT ).

Proof. By Lemma 6.11, we have χ̄hτ → χεη in L2(QT ) (up to a subsequence). Hence, also
p̂pore(χ̄hτ )→ p̂pore(χεη) in L2(QT ) (up to a subsequence). From Lemma 7.4, it follows p̂pore,hτ →
p̂pore(χεη) and ∂tp̂pore,hτ ⇀ pt for some pt ∈ L2(QT ) (up to a subsequence). Consequently,
pt = ∂tp̂pore(χεη), which concludes the proof.

7.4 Identifying a weak solution with increased regularity for h, τ → 0

Finally, we show the limit (uεη, χ), derived in Section 6.3, also satisfies (W5)ζη–(W6)ζη, i.e.,
(uεη, χεη) is a weak solution with increased regularity for the doubly regularized unsaturated
poroelasticity model, cf. Definition 4.1.

Lemma 7.7 (Limit satisfies (W1)ζη–(W6)ζη). The limit (uεη, χεη), derived in Section 6.3, is a
weak solution with increased regularity for the doubly regularized unsaturated poroelasticity model,
cf. Definition 4.1.

Proof. The limit (uεη, χεη) satisfies (W1)ζη–(W4)ζη by Lemma 9.7. Furthermore, (W5)ζη follows
directly from Lemma 7.5 and Lemma 7.6. In order to show (W6)ζη, let v ∈ L2(0, T ;V ∩C∞(Ω)d).
We utilize v̄hτ and vnh , as introduced in (6.18) and (6.20), respectively; again it holds that

v̄hτ → v in L2(0, T ;V ). (7.12)

We consider the difference of the mechanics equation (5.3) at time steps n and n − 1, n ≥ 1,
tested with vh = vnh ; we obtain

ζτ−1a(unh − 2un−1
h + un−2

h ,vnh) + a(unh − un−1
h ,vnh)

− α
〈
p̂pore(χ

n
h)− p̂pore(χ

n−1
h ),∇ · vnh

〉
=
〈
fnext − fn−1

ext ,v
n
h

〉
.

Summing over n ∈ {1, ..., N}, and employing the definitions of v̄hτ , ût,hτ , ûhτ , and p̂pore,hτ ,
yields

∫ T

0

[
ζa(∂tût,hτ , v̄hτ ) + a(∂tûhτ , v̄hτ )− α 〈∂tp̂pore,hτ ,∇ · v̄hτ 〉

]
dt =

∫ T

0

〈
∂tf̂τ , v̄hτ

〉
dt, (7.13)
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where f̂τ denotes the piecewise linear interpolation of the discrete values {fnext}n

f̂ext,τ (t) := fn−1
ext +

t− tn−1

τ

(
fnext − fn−1

ext

)
, t ∈ (tn−1, tn].

It holds f̂ext,τ → fext in L2(0, T ;V ?) and also ∂tf̂ext,τ ⇀ ∂tfext in L2(0, T ;V ?), for τ → 0.
Hence, together with the weak convergence properties of ût,hτ , ûhτ and p̂pore,hτ , cf. Lemma 7.5
and Lemma 7.6, and the strong convergence properties of the test function v̄hτ , cf. (7.12), we
conclude that

∫ T

0

[
ζa(∂ttuεη,v) + a(∂tuεη,v)− α 〈∂tp̂pore(χεη),∇ · v〉

]
dt =

∫ T

0
〈∂tfext,v〉 dt,

for all v ∈ L2(0, T ;V ∩ C∞(Ω)d). A density argument yields the final result.

8 Step 5: Limit ζ → 0

In this section, we prove Lemma 4.5, i.e., the existence of weak solution to the simply regularized
unsaturated poroelasticity model, cf. Definition 4.2. For this we utilize the fact that under
the assumptions of Lemma 4.5, there exists weak solution, (uεη, χεη), with increased regularity
for the doubly regularized unsaturated poroelasticity model, cf. Definition 4.1. We show that
{(uεη, χεη)}ζ has a limit for ζ → 0, which is a weak solution to the simply regularized unsaturated
poroelasticity model, i.e., it satisfies (W1)η–(W4)η for ζ = 0. For this, we employ compactness
arguments. The central uniform stability bound is derived utilizing (W6)ζη and the non-
degeneracy condition (ND3). Throughout the entire section, we assume (A0)–(A9) and (ND1)–
(ND3) hold true.

8.1 Stability estimates independent of ζ

The key ingredients for the subsequent discussion are stability estimates, which are independent
of ζ. In Section 6.2, some derived stability results are independent of ζ; they remain true for
weak limits. In particular, there exists a constant C = C

(
C(1), C(4)

)
> 0 (independent of ζ > 0

and η > 0), such that

‖uεη‖2L∞(0,T ;V ) + ‖ppore(χεη)‖2L2(QT ) ≤ C, (8.1)

where Lemma 6.6 and Lemma 6.10 yield stability for the displacement, and Lemma 6.8 and
Lemma 6.12 yield stability for the pore pressure. Further stability bounds can be obtained
by exploiting the continuous nature of the balance equations and the time derivative of the
mechanics equation. The following stability estimate is the essential step.

Lemma 8.1 (Stability for the primal variables). There exists a constant C(8) > 0 (independent
of ζ and η), such that

ζ ‖∂tuεη‖2L∞(0,T ;V ) + ‖∂tuεη‖2L2(0,T ;V ) + ‖∇χεη‖2L∞(0,T ;L2(Ω))

≤ C(8)
(
C0, ‖∂tfext‖2L2(0,T ;V ?) , ‖hext‖2H1(0,T ;Q?)

)
,

where C0 comes from (A8?).

Proof. Consider the flow equation (4.4) and the mechanics equation differentiated in time (4.5),
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tested with q = ∂tχεη and v = ∂tuεη, respectively. Summing both equation yields

ζ

∫ T

0
a(∂ttuεη, ∂tuεη) dt+

∫ T

0
〈κabs∇χεη,∇∂tχεη〉 dt

+ ‖∂tuεη‖2L2(0,T ;V ) +

∫ T

0

〈
∂tb̂η(χεη), ∂tχεη

〉
+ α

∫ T

0
〈ŝw∂tχεη − ∂tp̂pore, ∂t∇ · uεη〉

=

∫ T

0
〈∂tfext, ∂tuεη〉 dt+

∫ T

0
〈hext, ∂tχεη〉 dt. (8.2)

We discuss the individual terms separately. For the first two terms on the left hand side of (8.2),
we employ the fundamental theorem of calculus

ζ

∫ T

0
a(∂ttuεη, ∂tuεη) dt+

∫ T

0
〈κabs∇χεη,∇∂tχεη〉 dt

=
ζ

2
‖∂tuεη(T )‖2L2(0,T ;V ) +

1

2
(〈κabs∇χεη(T ),∇χεη(T )〉 − 〈κabs∇χεη(0),∇χεη(0)〉) ,

where we used that ∂tuεη(0) = 0, following from the temporal derivative of the mechanics
equations (4.5) and the compatibility condition for the initial conditions (A9).

For the remaining terms on the left hand side of (8.2), we employ the fact that b̂η is increasing

with b̂′η ≥ b̂′, that a(v,v) ≥ Kdr‖∇ · v‖2 for all v ∈ V with Kdr = 2µ
d + λ, and (ND3). Starting

with a binomial identity, we obtain

‖∂tuεη‖2L2(0,T ;V ) +

∫ T

0

〈
∂tb̂η(χεη), ∂tχεη

〉
+ α

∫ T

0
〈ŝw∂tχεη − ∂tp̂pore, ∂t∇ · uεη〉

= ‖∂tuεη‖2L2(0,T ;V ) −
α2

4

∫ T

0

∫

Ω

(
sw(χεη)

p̂′pore(χεη)
− 1

)2
(
p̂′pore(χεη)

)2

b̂′η(χεη)
|∂t∇ · uεη|2 dx dt

+

∫ T

0

∫

Ω

[(
∂tb̂η∂tχεη

)1/2
+
α

2
(ŝw∂tχεη − ∂tp̂pore)

(
∂tb̂η∂tχεη

)−1/2
∂t∇ · uεη

]2

dx dt

≥ (1− CND,3) ‖∂tuεη‖2L2(0,T ;V ) .

For the first term on the right hand side of (8.2), we apply the Cauchy-Schwarz inequality and
Young’s inequality

∫ T

0
〈∂tfext, ∂tuεη〉 dt ≤

1

2(1− CND,3)
‖∂tfext‖2L2(0,T ;V ?) +

1− CND,3

2
‖∂tuεη‖2L2(0,T ;V ) .

For the second term on the right hand side of (8.2), we apply integration by parts, a Cauchy-
Schwarz inequality and Young’s inequality, a Poincaré inequality (introducing the Poincaré
constant CΩ,P) and a Sobolev embedding (introducing the constant CT,Sob), as well as (A6). All
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in all, we obtain
∫ T

0
〈hext, ∂tχεη〉 dt

= 〈hext(T ), χεη(T )〉 − 〈hext(0), χ(0)〉 −
∫ T

0
〈∂thext, χεη〉 dt

≤
C2

Ω,P

κm,abs

(
‖hext(T )‖2 + ‖hext(0)‖2 + ‖∂thext‖2L2(QT )

)

+
κm,abs

4C2
Ω,P

(
‖χεη(T )‖2 + ‖χεη(0)‖2 + ‖χεη‖2L2(QT )

)

≤ 3 (CT,SobCΩ,P)2

κm,abs
‖hext‖2H1(0,T ;Q?)

+
1

4

(
〈κabs∇χεη(T ),∇χεη(T )〉+ 〈κabs∇χεη(0),∇χεη(0)〉+

∫ T

0
〈κabs∇χεη,∇χεη〉 dt

)
.

Altogether, (8.2) becomes

ζ

2
‖∂tuεη(T )‖2L2(0,T ;V ) +

1

4
〈κabs∇χεη(T ),∇χεη(T )〉+

1− CND,3

2
‖∂tuεη‖2L2(0,T ;V )

≤ 3

4
〈κabs∇χεη(0),∇χεη(0)〉+

1

2(1− CND,3)
‖∂tfext‖2L2(0,T ;V ?)

+
3 (CT,SobCΩ,P)2

κm,abs
‖hext‖2H1(0,T ;Q?) +

1

4

∫ T

0
〈κabs∇χεη,∇χεη〉 dt.

Applying a Grönwall inequality proves the assertion under the given assumptions.

The last stability estimate allows for deriving further stability estimates.

Lemma 8.2 (Stability for the Legendre transformation of b̂η). There exists a constant C(9) > 0
(independent of ζ, η), such that

∥∥∥B̂η(χεη)
∥∥∥
L∞(0,T ;L1(Ω))

≤ C(9)
(
C0, C

(8)
)
,

where C(8) is the stability constant from Lemma 8.1, and C0 is the stability constant from (A8?).

Proof. Testing the flow equation (4.4) with q = χεη, yields

∫ T

0

〈
∂tb̂η(χεη), χεη

〉
dt+

∫ T

0
‖∇χεη‖2κabs dt =

∫ T

0
〈hext, χεη〉 dt− α

∫ T

0
〈sw∂t∇ · uεη, χεη〉 dt.

For the first term on the left hand side, we apply an identity for Legendre transformations,
cf. [53],

∫ T

0

〈
∂tb̂η(χεη), χεη

〉
dt =

∥∥∥B̂η(χεη(T ))
∥∥∥
L1(Ω)

−
∥∥∥B̂η(χ0)

∥∥∥
L1(Ω)

,

where B̂η is the Legendre transformation for b̂η. On the right hand side, we apply the Cauchy-
Schwarz inequality, Young’s inequality, a Poincaré inequality (introducing CΩ,P) and (A6), and
obtain

∥∥∥B̂η(χεη(T ))
∥∥∥
L1(Ω)

+
1

2

∫ T

0
‖∇χεη‖2κabs dt

≤
∥∥∥B̂η(χ0)

∥∥∥
L1(Ω)

+
C2

Ω,P

κm,abs

(
‖hext‖2L2(0,T ;Q?) + α2 ‖∂t∇ · uεη‖2L2(QT )

)
.

Finally, the thesis follows from Lemma 8.1.
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Lemma 8.3 (Stability for the temporal change of b̂η). There exists a constant C(10) > 0
(independent of ζ, η), such that

sup
0 6=q∈L2(0,T ;Q)

∫ T
0

〈
∂tb̂η(χεη), q

〉
dt

‖∇q‖L2(QT )
≤ C(10)

(
C(8)

)
,

where C(8) is the stability constant from Lemma 8.1.

Proof. The proof is analog to the proof of Lemma 6.5. However, this time, we exploit

‖∂t∇ · uεη‖L2(QT ) ≤
1

K
1/2
dr

‖∂tuεη‖L2(0,T ;V ) ≤
C(8)

K
1/2
dr

by Lemma 8.1. Thus, we drop the dependence on ζ.

We will require to show strong convergence of the Kirchhoff pressure. Having that in mind,
we conclude with a stability estimate for ∂tχεη. We note, this is the only stability estimate in
this section, requiring the regularizing growth condition (A1?).

Lemma 8.4 (Stability estimate for the temporal change of the Kirchhoff pressure). There exists

a constant C
(11)
η > 0 (independent of ζ), such that

‖∂tχεη‖2L2(QT ) ≤ C(11)
η

(
b−1
χ,mC0, b

−2
χ,mC

(8)
)
,

where C(8) is the stability constant from Lemma 8.1, bχ,m is from (A1?), and C0 is from (A8?).

Proof. We repeat parts of the proof of Lemma 8.1. We test the flow equation (4.4) with q = ∂tχεη
and apply (A1?) and the Cauchy-Schwarz inequality; we obtain

bχ,m‖∂tχεη‖2L2(QT ) +
1

2
〈κabs∇χεη(T ),∇χεη(T )〉

≤
∫ T

0

〈
∂tb̂η(χεη), ∂tχεη

〉
dt+

1

2
〈κabs∇χεη(T ),∇χεη(T )〉

=
1

2
〈κabs∇χεη(0),∇χεη(0)〉+

∫ T

0
(〈hext, ∂tχεη〉 − α 〈ŝw∂t∇ · uεη, ∂tχεη〉) dt

≤ 1

2
〈κabs∇χεη(0),∇χεη(0)〉+

1

bχ,m

(
‖hext‖2L2(0,T ;Q?) + α2‖∂t∇ · uεη‖2L2(QT )

)

+
bχ,m

2
‖∂tχεη‖2L2(QT ).

After rearranging terms, applying the regularity of the data, and applying from Lemma 8.1, the
assertion follows.

8.2 Relative (weak) compactness for ζ → 0

We utilize the stability results from the previous section to conclude relative compactness.

Lemma 8.5 (Convergence of the primary variables). We can extract subsequences of {uεη}ζ
and {χεη}ζ (still denoted like the original sequences), and there exist uη ∈ H1(0, T ;V ) and
χη ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;Q) such that for ζ → 0

uεη ⇀ uη in H1(0, T ;V ), (8.3)

ζ∂tuεη → 0 in L2(0, T ;V ), (8.4)

χεη → χη in L2(QT ), (8.5)

χεη ⇀ χη in L∞(0, T ;Q), (8.6)

∂tχεη ⇀ ∂tχη in L2(QT ). (8.7)
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Proof. The proof follows standard arguments based on the Eberlein-Šmulian theorem, cf.
Lemma B.8, the Aubin-Lions lemma, cf. Lemma B.9, and the stability results for uεη, cf.
Lemma 8.1 and (8.1), as well as the stability results for χεη, cf. Lemma 8.1 and Lemma 8.4.
In particular, for (8.4), we employ the uniform stability result from Lemma 8.1; for all fixed
v ∈ L2(0, T ;V ) it holds that

∣∣∣∣
∫ T

0
ζa(∂tuεη,v) dt

∣∣∣∣ ≤ ζC(8)‖v‖L2(0,T ;V ) → 0 for ζ → 0.

Lemma 8.6 (Convergence of the coupling terms). Up to subsequences it holds for ζ → 0

p̂pore(χεη) ⇀ p̂pore(χη) in L2(QT ), (8.8)

ŝw(χεη)∂t∇ · uεη ⇀ ŝw(χη)∂t∇ · uη in L2(QT ). (8.9)

Proof. The proof is analogous to the proof of Lemma 6.12. Essentially, first, one has to utilize
stability estimates together with the Eberlein-Šmulian theorem, cf. Lemma B.8; second, continuity
properties of the non-linearities have to be employed together with the convergence of {uεη}ζ and
{χεη}ζ , cf. Lemma 8.5. We note that for (8.8) the stability result (8.1) has to be utilized.

Lemma 8.7 (Initial conditions for the fluid flow). Up to subsequences it holds for ζ → 0

∂tb̂η(χεη) ⇀ ∂tb̂η(χη) in L2(0, T ;Q?), (8.10)

where ∂tb̂η(χη) ∈ L2(0, T ;Q?) is understood in the sense of (W2)η.

Proof. The proof is analogous to the proof of Lemma 6.13. By Lemma 8.3 and the Eberlein-
Šmulian theorem, cf. Lemma B.8, there exists a bt ∈ L2(0, T ;Q?) such that ∂tb̂η(χεη) ⇀ bt in
L2(0, T ;Q?) (up to a subsequence). We can identify bt = ∂tb(χη) by showing (W2)η. For this we
utilize (W2)ζη. For q ∈ L2(0, T ;Q) with ∂tq ∈ L1(0, T : L∞(Ω)) and q(T ) = 0, it holds that

∫ T

0

〈
∂tb̂η(χεη), q

〉
dt =

∫ T

0

〈
b̂η(χ0)− b̂η(χεη), ∂tq

〉
dt.

The assertion follows immediately if

b̂η(χεη)→ b̂η(χη) in L∞(0, T ;L1(Ω)) (8.11)

(up to a subsequence). And indeed, by the uniform boundedness of the Legendre transfor-
mation, ‖B̂η(χη)‖L∞(0,T ;L1(Ω)), there exists bχ ∈ L∞(0, T ;L1(Ω)) such that b̂η(χεη) ⇀ bχ in
L∞(0, T ;L1(Ω)). Using the strong convergence of {χη}η and the dominated convergence theorem,

we can identify bχ = b̂η(χη), and thus (8.11).

Lemma 8.8 (Initial conditions of the mechanical displacement). ∂tuη ∈ L2(0, T ;V ) satis-
fies (W3)η.

Proof. Using the uniform stability bound for {∂tuεη}ζ by Lemma 8.1 and the weak convergence
uεη ⇀ uη in L2(0, T ;V ) (up to a subsequence) by Lemma 8.5, standard compactness arguments
yield ∂tuεη ⇀ ∂tuη in L2(0, T ;V ) (up to a subsequence). Hence, ζ → 0 of (W3)ζη yields (W3)η
immediately.
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8.3 Identifying a weak solution for ζ → 0

Finally, we show the limit (uη, χη), introduced above, is a weak solution of the simply regularized
unsaturated poroelasticity model.

Lemma 8.9 (Limit satisfies (W1)η–(W4)η). The limit (uη, χη), derived in Section 8.2, is a weak
solution of the simply regularized unsaturated poroelasticity model, cf. Definition 4.2.

Proof. The limit (uη, χη) satisfies (W1)η–(W3)η by Lemma 8.5, Lemma 8.6, Lemma 8.7, and
Lemma 8.8. It remains to show (W4)η, i.e., that (uη, χη) satisfies the balance equations (4.3)–
(4.4) for ζ = 0. By definition, the sequence (uεη, χεη) satisfies (W4)ζη for ζ > 0, i.e., it holds for
all (v, q) ∈ L2(0, T ;V ) ∩ L2(0, T ;Q)

∫ T

0
[ζa(∂tuεη,v) + a(uεη,v)− α 〈p̂pore(χεη),∇ · v〉] dt =

∫ T

0
〈fext,v〉 dt,

∫ T

0

[〈
∂tb̂η(χεη), q

〉
+ α 〈ŝw(χεη)∂t∇ · uεη, q〉+ 〈κabs∇χεη,∇q〉

]
dt =

∫ T

0
〈hext, q〉 dt.

Utilizing the weak convergence results, cf. Lemma 8.5 and Lemma 8.6, (W4)η follows directly for
ζ → 0.

Remark 8.10 (Existence of a weak solution for compressible system). If compressibility is
present either for the fluid or the solid grains, the regularizing property (A1?) is fulfilled for η = 0.
For instance, for b as in (2.6), the equivalent pore pressure and the van Genuchten-Mualem model,
it holds that bχ,m = φ0cw + 1

N , cf. Appendix A. Consequently, the limit (uη, χη) in Lemma 8.9 is
also well-defined for η = 0. In particular, it is a weak solution of (2.15)–(2.22), cf. Definition 3.1.

9 Step 6: Limit η → 0 in the incompressible case

In this section, we show the main result, Theorem 3.2, for the more demanding case of an
incompressible fluid and incompressible solid grains. Otherwise, by Remark 8.10 the main result
of this paper follows already. In the incompressible case, b as in (2.6) is monotone but with b̂′ = 0
on a part of the domain with non-zero measure. Under the use of regularization with η > 0, it
holds that bχ,m = η. In the following, we prove that the limit of {(uη, χη)}η for η → 0 exists,
and that it is a weak solution of (2.15)–(2.22) according to Definition 3.1. Throughout the entire
section, we assume (A0)–(A9) and (ND1)–(ND3) hold true.

9.1 Stability estimates independent of η

In Section 8, almost all stability bounds have been independent of η. To summarize, there exists
a constant C > 0 (independent of η) such that

‖uη‖H1(0,T ;V ) + ‖χη‖L∞(0,T ;H1
0 (Ω)) + ‖p̂pore(χη)‖L2(QT ) (9.1)

+
∥∥∥B̂η(χη)

∥∥∥
L∞(0,T ;L1(Ω))

+
∥∥∥∂tb̂η(χη)

∥∥∥
L2(0,T ;H−1(Ω))

≤ C.

The only bound depending on η is the stability of ∂tχη, cf. Lemma 8.4. We recall, there exists a
constant Cη > 0, depending on η, satisfying

‖∂tχη‖L2(QT ) ≤ Cη. (9.2)

In order to conclude that (uη, χη) converges towards a weak solution of the unsaturated poroe-
lasticity model, it will be sufficient to replace the stability result (9.2) by a uniform stability
estimate. The remaining discussion for η → 0 can be done along the lines of Section 8.2–8.3.

In the following, we prove a uniform stability bound replacing (9.2) in two steps. We show
that the temporal derivative of the mechanics equation, i.e., (W5)ζη for ζ = 0, is well-defined;
and then we use an inf-sup argument and the uniform stability estimate (9.1).
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Lemma 9.1 (Temporal derivative of the mechanics equation). It holds for all v ∈ L2(0, T ;V )

∫ T

0
a(∂tuη,v) dt−

∫ T

0
α 〈∂tp̂pore(χη),∇ · v〉 dt =

∫ T

0
〈∂tfext,v〉 dt. (9.3)

Proof. First, we argue that the mechanics equation (3.1) holds pointwise on [0, T ]. Let v ∈
L2(0, T ;V ) ∩ C∞(0, T ;V ). By Lemma 8.9, it holds that

∫ T

0
a(uη,v) dt−

∫ T

0
α 〈p̂pore(χη),∇ · v〉 dt =

∫ T

0
〈fext,v〉 dt.

By the fundamental lemma of calculus of variations it follows a.e. on [0, T ]

a(uη,v)− α 〈p̂pore(χη),∇ · v〉 = 〈fext,v〉 , for all v ∈ V . (9.4)

Applying a standard embedding for Bochner spaces [67], we can assume wlog. that uη ∈ C(0, T ;V )
and p̂pore(χη) ∈ C(0, T ;L2(Ω)), as ∂tuη ∈ L2(0, T ;V ) and ∂tp̂pore(χη) ∈ L2(QT ) by (9.2) and
assumption (ND2). Hence, (9.4) holds pointwise on [0, T ].

Now we show (9.3). Let v ∈ L2(0, T ;V ) ∩ C∞(0, T ;V ). By Lemma 8.9, it holds that

∫ T

0
a(uη, ∂tv) dt− α

∫ T

0
〈p̂pore(χη),∇ · ∂tv〉 dt =

∫ T

0
〈fext, ∂tv〉 dt.

Since ∂tuη ∈ L2(0, T ;V ), ∂tp̂pore(χη) ∈ L2(QT ) and ∂tfext ∈ L2(0, T ;V ?), integration by parts
is well-defined. Together with (9.4), we obtain

∫ T

0
a(∂tuη,v) dt− α

∫ T

0
〈∂tp̂pore(χη),∇ · v〉 dt =

∫ T

0
〈∂tfext,v〉 dt.

The assertion follows after applying a density argument allowing for arbitrary test functions in
L2(0, T ;V ) in (9.3).

Lemma 9.2 (Stability estimate for the temporal derivative of the Kirchhoff pressure). There
exists a constant C(12) > 0 (independent of η) such that

‖∂tχη‖L2(QT ) ≤ C(12).

Proof. We show that ‖∂tp̂pore(χη)‖L2(QT ) is uniformly bounded. The assertion follows then from
assumption (ND2), as

‖∂tχη‖L2(QT ) ≤ CND,2 ‖∂tp̂pore(χη)‖L2(QT ) .

By Lemma 9.1, the time derivative of the mechanics equations is well-defined, cf. (9.3). Using a
standard inf-sup argument (introducing the constant CΩ,is), cf. Lemma B.11, it follows from (9.3)
that

‖∂tp̂pore(χη)‖L2(QT ) ≤ CΩ,is

(
‖∂tuη‖L2(0,T ;V ) + ‖∂tfext‖L2(0,T ;V ?)

)
.

Since ‖∂tuη‖L2(0,T ;V ) is uniformly bounded by (9.1), ‖∂tp̂pore(χη)‖L2(QT ) is uniformly bounded,
which concludes the proof.
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9.2 Relative (weak) compactness for η → 0

Using the same line of argumentation used in Section 8.2, we can discuss the limit process η → 0.

Lemma 9.3 (Convergence of the primary variables). We can extract subsequences of {uη}η
and {χη}η (still denoted like the original sequences), and there exist u ∈ H1(0, T ;V ) and
χ ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;Q) such that for η → 0

uη ⇀ u in H1(0, T ;V ),

χη → χ in L2(QT ),

χη ⇀ χ in L∞(0, T ;Q),

∂tχη ⇀ ∂tχ in L2(QT ).

Proof. The proof is analog to the proofs of Lemma 8.5.

Lemma 9.4 (Convergence of the coupling terms). Up to subsequences it holds for η → 0 that

p̂pore(χη) ⇀ p̂pore(χ) in L2(QT ),

ŝw(χη)∂t∇ · uη ⇀ ŝw(χ)∂t∇ · u in L2(QT ).

Proof. The proof is analog to the proof of Lemma 8.6.

Lemma 9.5 (Initial conditions for the fluid flow). Up to subsequences it holds that

∂tb̂η(χη) ⇀ ∂tb̂(χ) in L2(0, T ;Q?),

where ∂tb̂(χ) ∈ L2(0, T ;Q?) is understood in the sense of (W2).

Proof. The proof is analog to the proof of Lemma 8.7. We only stress that due to construction
of b̂η, one can show that if χη → χ in L2(QT ), it also holds

b̂η(χ0) ⇀ b̂(χ0) in L∞(0, T ;L1(Ω)),

b̂η(χη) ⇀ b̂(χ) in L∞(0, T ;L1(Ω)),

for η → 0. Hence, (W2) can be deduced from (W2)η for η → 0.

Lemma 9.6 (Initial conditions of the mechanical displacement). ∂t∇·u ∈ L2(QT ) satisfies (W3).

Proof. The proof is almost identical to the proof of Lemma 8.8. Standard compactness arguments
and (W3)η yield

∫ T

0
a(∂tu,v) dt+

∫ T

0
a(u− u0, ∂tv) dt = 0

for all v ∈ H1(0, T ;V ) with v(T ) = 0. Hence, u(0) = u0 in V ; note that u ∈ C(0, T ;V ) by a
Sobolev embedding. Therefore also ∇ · u(0) = ∇ · u0 in L2(Ω), which yields (W3).

9.3 Identifying a weak solution for η → 0

Finally, we prove the existence of a weak solution to the unsaturated poroelasticity model.

Lemma 9.7 (Limit satisfies (W1)–(W4)). The limit (u, χ) is a weak solution of (2.15)–(2.22),
cf. Definition 3.1.

Proof. The proof follows directly from the convergence results in Lemma 9.5 and Lemma 9.6
together with the validity of the regularized problem (4.3)–(4.4) for ζ = 0.
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A Feasibility of assumptions

The analysis of this paper allows for arbitrary constitutive laws for b, ppore, sw and κrel, as
long as they satisfy the conditions (A0)–(A4), (ND1)–(ND3) and (A1?). In the following, we
demonstrate the feasibility of those conditions for a prominent choice of models. Let b as derived
by [4]

b(pw) = φ0sw(pw) + cwφ0

∫ pw

0
sw(p) dp+

1

N

∫ pw

0
sw(p)p′pore(p) dp,

with ppore chosen as equivalent pore pressure [5]

ppore(pw) =

∫ pw

0
sw(p) dp,

and the hydraulic properties sw and κrel given by the van Genuchten-Mualem relations [63,68]

sw(pw) =

{
[1 + (−αvGpw)nvG ]−mvG , pw ≤ 0,
1, pw ≥ 0,

κrel(sw) =
√
sw

[
1−

(
1− s

1
mvG
w

)mvG
]2

.

where mvG ∈ (0, 1), nvG = (1−mvG)−1, and αvG > 0 are constant fitting parameters.

A.1 Checking (A0)

By definition, it holds that sw(pw) > 0 for all pw ∈ R and κrel(sw) > 0 for all sw > 0. Hence, (A0)
is satisfied for the van Genuchten-Mualem relations.

A.2 Checking (A1)–(A4) and (A1?)

By definition, it follows directly, that sw is differentiable with a non-negative and uniformly
bounded derivative s′w, i.e., sw satisfies (A2). Furthermore, p′pore(pw) = sw(pw), and hence, ppore

satisfies (A3). We therefore only focus on (A1), (A1?) and (A4).

(A1) Monotonicity of b̂. The function b̂ = b̂(χ) is non-decreasing since

b̂′(χ) = cwφ0
ŝw(χ)

κ̂rel(χ)
+ φ0

s′w(p̂w(χ))

κ̂rel(χ)
+

1

N

ŝw(χ)2

κ̂rel(χ)
≥ 0. (A.1)

(A1?) Regularizing property of b̂η. As b̂η is essentially equal to b̂ but with enhanced Biot

Modulus, b̂η essentially satisfies (A1) with

b̂′η(χ) = cwφ0
ŝw(χ)

κ̂rel(χ)
+ φ0

s′w(p̂w(χ))

κ̂rel(χ)
+

(
1

N
+ η

)
ŝw(χ)2

κ̂rel(χ)
≥ 0.

In particular, it holds that

〈b̂(χ1)− b̂(χ2), χ1 − χ2〉 ≥
(
cwφ0

∥∥∥κrelsw

∥∥∥
−1

∞
+

(
1

N
+ η

)∥∥∥κrels2w

∥∥∥
−1

∞

)
‖χ1 − χ2‖2.

By l’Hôspital’s rule (note 0 < mvG < 1) it holds that

lim
sw→0

(
κrel(sw)

sw

)2

= lim
sw→0

4

[
1−

(
1− s

1
mvG
w

)mvG
]3(

1− s
1

mvG
w

)mvG−1

s1/mvG−1
w = 0.
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and

lim
sw→0

(
κrel(sw)

s2
w

)2/3

= lim
sw→0

4

3

[
1− (1− s

1
mvG
w )mvG

]1/3(
1− s

1
mvG
w

)mvG−1

s1/mvG−1
w = 0.

Hence, there exists a generic constant c > 0, such that

κrel(pw)

sw(pw)
∈ (0, c], (A.2)

κrel(pw)

sw(pw)2
∈ (0, c]. (A.3)

After all, it follows, for η > 0, b̂η satisfies (A1?). Furthermore, in the compressible case

max{cw,
1
N } > 0, also b̂ satisfies (A1?), cf. Remark 8.10.

(A4) Uniform growth of
p̂pore
ŝw

. For all pw ∈ R, it holds that

d

dpw

(
ppore

sw

)
= 1− ppore(pw)s′w(pw)

sw(pw)2
≥ 1,

χ′(pw) = κrel(sw(pw)) ≤ 1.

Hence, by using the chain rule,
p̂pore
ŝw

satisfies the uniform growth condition (A4) with

d

dχ

(
p̂pore

ŝw

)
≥ 1.

A.3 Checking (ND1)–(ND2)

We demonstrate, that (ND1)–(ND2) hold assuming sw ≥ smin for some minimal saturation value
smin > 0. It holds that

p̂pore

ŝwχ
∼ 1

κ̂rel
for χ→ −∞.

Under above assumption, one can assume that κ̂rel ≥ κmin > 0, such that (ND1) holds. Further-
more,

p̂′pore(χ) =
ŝw

κ̂rel
.

By (A.2), p̂′pore(χ) is bounded from below by a constant independent of χ. Assuming sw ≥ smin

for some minimal saturation value, also an upper bound is given. After all, (ND2) holds.

A.4 Discussion of (ND3)

The condition (ND3) is equivalent with

(
ŝw(χ)

p̂′pore(χ)
− 1

)−2 b̂′(χ)
(
p̂′pore(χ)

)2 >
α2

4Kdr
for all χ ∈ R. (A.4)

First, we note that in the fully saturated regime condition, (ND3) is fulfilled since

ŝw(χ)

p̂′pore(χ)
= 1, for all χ ≥ 0.
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For the combination of the specific choices of b, sw and κrel condition (A.4) becomes

(κrel(sw)− 1)−2

(
φ0cw

κrel(sw)

sw
+ φ0s

′
w

κrel(sw)

s2
w

+
1

N
κrel(sw)

)
>

α2

4Kdr
for all sw < 1.

We consider the more demanding case, the incompressible case with cw = 1
N = 0. The expression

s′wκrel(sw)

s2w(1−κrel(sw))2
is increasing in pw, see Figure 2 for two examples. Hence, there exists a minimal

saturation value smin such that (A.4) holds in the regime sw ∈ [smin, 1]. This value will depend
on φ0, αvG, nvG, α and Kdr. Assuming φ0 = 0.1 and α = 1, we compute smin for a set of realistic
parameters, see Table 1. We observe, that the range of admissible saturation values becomes
larger, the stiffer the system. Furthermore, for all parameters, smin is relatively small. Hence, we
can expect (ND3) to hold for geotechnical applications, for which Kdr is typically large.

(a) nvG = 1.5, αvG = 0.1 (b) nvG = 2.5, αvG = 2

Figure 2: Increasing behavior of s′wκrel(sw)

s2w(1−κrel(sw))2
in the unsaturated regime.

αvG nvG smin for Kdr = 105 smin for Kdr = 108 smin for Kdr = 1011

0.1 1.5 0.26 0.10 0.04

2 1.5 0.17 0.07 0.03

0.1 2 0.08 0.02 0.004

2 2 0.04 0.009 0.002

0.1 2.5 0.03 0.004 0.0006

2 2.5 0.01 0.002 0.0003

Table 1: Minimal allowed saturation values for a set of realistic model parameters, assuming
α = 1.

B Useful results from literature

Lemma B.1 (Discrete Poincaré inequality [62]). Let T be an admissible mesh, cf. Definition 5.1,
and u a piecewise constant function. Then there exists a constant CΩ,DP ∈ (0, diam(Ω)] such that

‖u‖L2(Ω) ≤ CΩ,DP‖u‖1,T ,

where ‖ · ‖1,T denotes the discrete H1
0 (Ω) norm, cf. Definition 5.3.
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Lemma B.2 (Discrete trace inequality [64]). Let T be an admissible mesh, cf. Definition 5.1,
and u a piecewise constant function. Let γ(u) denote the trace of u, defined by γ(u) = uK on
σ ∈ Eext ∩ EK , K ∈ T . Then there exists a constant Ctr > 0 such that

‖γ(u)‖L2(∂Ω) ≤ Ctr

(
‖u‖1,T + ‖u‖L2(Ω)

)
,

where ‖ · ‖1,T denotes the discrete H1
0 (Ω) norm, cf. Definition 5.3.

Lemma B.3 (Stability of discrete gradients [62]). Let T be an admissible mesh of some domain
Ω, cf. Definition 5.1, and u ∈ H1

0 (Ω). Define a piecewise constant function ũ by

ũ(x) :=
1

|K|

∫

K
u(x) dx, x ∈ K ∈ T .

Then there exists a constant C > 0 (independent of h for regular meshes) such that

‖ũ‖1,T ≤ C‖u‖H1(Ω).

Lemma B.4 (Corollary of Brouwer’s fixed point theorem [69]). Let 〈·, ·〉 denote the standard Rd
scalar product and let F : Rd → Rd be a continuous function, satisfying

〈F (x),x〉 ≥ 0 (B.1)

for all x ∈ Rd with 〈x,x〉 ≥ M for some fixed M ∈ R+. Then there exists a x? ∈ Rd with
〈x?,x?〉 ≤M and F (x?) = 0.

Lemma B.5 (Binomial identity). For a, b ∈ R it holds that

a(a− b) =
1

2

(
a2 + (a− b)2 − b2

)
. (B.2)

Lemma B.6 (Summation by parts). Given two sequences (ak)k∈N0 , (bk)k∈N0 ⊂ R, for all N ∈ N
it holds that

N∑

n=1

an(bn − bn−1) = aNbN − a1b0 −
N−1∑

n=1

bn(an+1 − an).

Lemma B.7 (Discrete Grönwall inequality [70]). Let (an)n ⊂ R+, (λn)n ⊂ R+, B ≥ 0. Assume
for all n ∈ N it holds that

an ≤ B +
n−1∑

k=0

λkak.

Then it follows

an ≤ B
n−1∏

k=0

(1 + λk).

In particular, if λk = λT
N for all k ∈ N for some λ, T ∈ R+ and N ∈ N, it holds that

aN ≤ B exp(λT ).

Lemma B.8 (Eberlein-Šmulian theorem [69]). Assume that B is a reflexive Banach space and
let {xn}n ⊂ B be a bounded sequence in B. Then there exists a subsequence {xnk}k that converges
weakly in B.

49



Lemma B.9 (Relaxed Aubin-Lions lemma [71]). Let {fn}n ⊂ Lp(0, T ;B), 1 ≤ p < ∞, B a
Banach space. {fn}n is relatively compact in Lp(0, T ;B) if the following two are fulfilled:

• {fn}n is uniformly bounded in Lp(0, T ;X), for X ⊂ B with compact embedding.

•
∫ T
τ ‖fn(t)− fn(t− τ)‖pB dt ≤ O(τ), as τ → 0.

For the second property it is sufficient that {∂tfn}n is uniformly bounded in Lp(0, T ;B).

Lemma B.10 (Riesz-Frechet-Kolmogorov compactness criterion [72]). Let F be a bounded set
in Lp(RN ) with 1 ≤ p <∞, N ∈ N. Assume that

lim
|h|→0

‖f(·+ h)− f(·)‖Lp(RN ) = 0 uniformly in f ∈ F.

Then the closure of F |Ω := {f : Ω→ R | f ∈ F} is compact for any measurable set Ω ⊂ RN with
finite measure.

Lemma B.11 (Standard inf-sup argument [66]). Let V and Q be Hilbert spaces, and let B be a
linear continuous operator from V to Q′. Denote by Bt the transposed operator of B. Then, the
following two statements are equivalent:

• Bt is bounding, i.e., there exists a γ > 0 such that
∥∥Btq

∥∥
V ′ ≥ γ ‖q‖Q for all q ∈ Q.

• There exists a LB ∈ L (Q′, V ) such that B (LB (ξ)) = ξ for all ξ ∈ Q′ with ‖Lb‖ =
1

γ
=:

CΩ,is.

Lemma B.12 (Properties of the Legendre transformation [53]). Given b : R→ R continuous
and non-decreasing , we define its Legendre transformation

B(z) :=

∫ z

0
(b(z)− b(s)) ds ≥ 0.

It holds for all x, y ∈ R and for all δ > 0

0 ≤ B(x),

B(x)−B(y) ≤ (b(x)− b(y))x,

|b(x)| ≤ δ B(x) + sup
|y|≤δ−1

|b(y)| .
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a b s t r a c t

In this paper, we study the robust linearization of nonlinear poromechanics of unsaturated
materials. The model of interest couples the Richards equation with linear elasticity
equations, generalizing the classical Biot equations. In practice a monolithic solver is not
always available, defining the requirement for a linearization scheme to allow the use
of separate simulators. It is not met by the classical Newton method. We propose three
different linearization schemes incorporating the fixed-stress splitting scheme, coupled
with an L-scheme, Modified Picard and Newton linearization of the flow equations. All
schemes allow the efficient and robust decoupling of mechanics and flow equations.
In particular, the simplest scheme, the Fixed-Stress-L-scheme, employs solely constant
diagonal stabilization, has low cost per iteration, and is very robust. Under mild, physical
assumptions, it is theoretically shown to be a contraction. Due to possible break-down or
slow convergence of all considered splitting schemes, Anderson acceleration is applied as
post-processing. Based on a special case, we justify theoretically the general ability of the
Anderson acceleration to effectively accelerate convergence and stabilize the underlying
scheme, allowing even non-contractive fixed-point iterations to converge. To our knowl-
edge, this is the first theoretical indication of this kind. Theoretical findings are confirmed
bynumerical results. In particular, Anderson acceleration has beendemonstrated to be very
effective for the considered Picard-typemethods. Finally, the Fixed-Stress-Newton scheme
combined with Anderson acceleration shows the best performance among the splitting
schemes.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The coupling of fluid flow and mechanical deformation in unsaturated porous media is relevant for many applications,
ranging frommodeling rainfall-induced land subsidence or levee failure to understanding the swelling and drying-shrinkage
ofwooden or cement-basedmaterials. Assuming linear elastic behavior, the process can bemodeled by coupling the Richards
equation with quasi-static linear elasticity equations, generalizing the classical Biot equations [1]. In this work, we consider
the equivalent pore pressure [2], which allows a thermodynamically stable formulation [3].

For the numerical simulation of large scale applications, the solution of linear problems is typically the computationally
most expensive component. For nonlinear problems, the dominating cost is determined by both the linearization scheme
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and the solver technology. Commonly, Newton’s method is the first choice linearization scheme. However, for the nonlinear
Biot equations, the monolithic Newton method requires the solver technology to solve saddle point problems coupling
mechanics and flow equations. Additionally, in practice, constitutive laws employed in the model might be not Lipschitz
continuous [4]. Thus, the arising systems are possibly ill-conditioned and require an advanced, monolithic simulator. As the
latter might be not available, the goal of this work is to develop a linearization scheme, which is robust and allows the use
of decoupled simulators for mechanics and flow equations. For this purpose, we adopt closely related concepts for the linear
Biot equations and the Richards equation.

For the numerical solution of the linear Biot equations, splitting schemes are widely used; either as iterative solvers [5]
or as preconditioners [6]. In particular, the fixed-stress splitting scheme has aroused much interest, being unconditionally
stable in the sense of a von Neumann analysis [7] and being a global contraction [8–10]. As iterative solver, the scheme
has been extended in various ways; e.g., it can be rewritten to a parallel-in-time solver [11], a multi-scale version allowing
separate grids for themechanics and flow problem has been developed [12], and the concept has been extended to nonlinear
multi-phase flow coupled with linear elasticity [3]. In the context of monolithic solvers, the scheme has been applied as
preconditioner for Krylov subspace methods [13–16] and as smoother for multigrid methods [17]. All in all, the scheme
defines a promising strategy to decouple mechanics and flow equations.

For the linearization of the Richards equation, the standard Newton method has to be used with care, since the Richards
equation is a degenerate elliptic–parabolic equation, modeling saturated/unsaturated flow, and additionally material laws
might be only Hölder continuous. Various problem-specific alternatives have been developed in the literature. We want to
point out two particular, simple linearization schemes; the L-scheme and the Modified Picard method. The L-scheme [18],
employs diagonal stabilization for monotone, Lipschitz continuous nonlinearities. Global convergence has been rigorously
proven for several porous media applications [19–21]; in particular also for the Richards equation [22]. The L-scheme can
be also applied for Hölder continuous problems [21,23]. Furthermore, for the Richards equation it can be used to define
a robust, linear domain decomposition method [24]. The L-scheme linearization has been coupled with the fixed-stress
splitting scheme for nonlinear Biot equations with linear coupling [25]. Less robust, but in some cases more efficient is
the Modified Picard method [26], which is a linearization scheme of the Richards equation, employing a first order Taylor
approximation for the saturation and still allowing a Hölder continuous permeability.

In this paper, we combine the fixed-stress splitting scheme separately with the L-scheme, the Modified Picard method
and Newton’s method. The resulting schemes decouple and linearize simultaneously the mechanics and flow equations,
utilizing only a single loop and allowing separate simulators. We show theoretically linear convergence of the Fixed-Stress-
L-scheme, assuming non-vanishing residual saturation, permeability and porosity and an inf–sup stable discretization.
However, the theoretical convergence rate might deteriorate in unfavorable situations, leading to either slow convergence
or even stagnation in practice. As remedy for this, we apply Anderson acceleration.

Anderson acceleration has been originally introduced by [27] in order to accelerate fixed point iterations in electronic
structure computation. It has been successfully applied in various other fields; in particular, we would like to highlight its
use for themodified Picard iteration [28]. Reusing previous iterations to approximate directional derivatives, it can be related
to amulti-secant quasi-Newtonmethod [29] and to preconditioned GMRES for linear problems [30]. For nonlinear problems,
it can be interpreted as a preconditioned nonlinear GMRES. Being a post-processing, it can be combined with splitting
methods, still allowing separate simulators unlike preconditioned monolithic solvers. So far, theoretical results in the
literature guarantee only convergence for contractive fixed-point iterations [31]. Furthermore, those results donot guarantee
actual acceleration. However, in practice, Anderson acceleration may be observed to even possibly recover convergence for
diverging methods. In this work, based on a special case, we justify theoretically the ability of the Anderson acceleration to
effectively accelerate convergence of contractive fixed-point iterations and moreover stabilize non-contractive fixed-point
iterations. To our knowledge, this is the first theoretical indication of this kind. Instead of Anderson acceleration, other
stabilization techniques could be applied as, e.g., adaptive step size control, adaptive time stepping or the combination of a
Picard-type method with a Newton-type method, following ideas by [32]. These concepts have not been considered in the
scope of this work.

We present numerical results confirming the theoretical findings of this work. Indeed, the Fixed-Stress-L-scheme is
more robust than the modifications employing Newton’s method and the Modified Picard method. Moreover, convergence
of the Picard-type methods can be accelerated significantly by the Anderson acceleration. When applied to initially
diverging methods, convergence can be reliably recovered. These results are shown for two discretizations (i) the lowest-
order discretization, employing constant, lowest-order Raviart–Thomas and linear finite elements for pressure, flux and
displacement, respectively, and (ii) an unconditionally inf–sup stable discretization, equal to the previous one, besides using
quadratic finite elements for the displacement. The first discretization is only conditionally stable and does not satisfy the
assumptions of the theoretical convergence result for the Fixed-Stress-L-scheme. Nevertheless, in our numerical examples,
the choice of the lowest-order discretization or the unconditionally stable discretization does not influence the performance
of the linearization schemes.

The main, new contributions of this work are:

• We propose three linearization schemes incorporating the fixed-stress splitting scheme, coupled with an L-scheme,
Modified Picard and Newton linearization of the flow. All schemes allow the efficient and robust decoupling of
mechanics and flow equations. For the simplest scheme, the Fixed-Stress-L-scheme, we show theoretical conver-
gence, assuming non-vanishing residual saturation, permeability and porosity and an inf–sup stable discretization,
cf. Theorem 3.
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• Based on a special case,we justify theoretically the general ability of theAnderson acceleration to effectively accelerate
convergence and stabilize the underlying scheme, allowing even non-contractive fixed-point iterations to converge,
cf. Section 7.3.

• The combination of the proposed linearization schemes and Anderson acceleration is demonstrated numerically to
be robust and efficient. In particular, Anderson acceleration allows the schemes to converge in challenging situations
even if the plain linearization schemes diverge. The Fixed-Stress-Newtonmethod coupledwith Anderson acceleration
shows best performance among the splitting schemes, cf. Section 8.

The paper is organized as follows. In Section 2, themathematical model is explained. In Section 3, a three-field discretization
is introduced, employing conforming finite elements and mixed finite element for the mechanics and flow equations, re-
spectively. In Section 4, we recall the monolithic Newtonmethod and introduce the three splitting schemes, simultaneously
linearizing and decoupling the mechanics and flow equations. In Section 5, convergence is proved for the Fixed-Stress-L-
scheme. In Section 6, Anderson acceleration is recalled, and in Section 7, the ability of the Anderson acceleration to effectively
accelerate convergence and increase robustness is discussed theoretically. In Section 8, numerical results are presented,
illustrating in particular the increase of robustness via Anderson acceleration. The work is closed with concluding remarks
in Section 9.

2. Mathematical model — Nonlinear Biot’s equations coupling Richards equation and linear elasticity

Weconsider a nonlinear extension of the classical, linear Biot equationsmodeling flow in deformable porousmedia under
possibly both fully and partially saturated conditions. For this, we assume:

(A1) The bulk material is linearly elastic and deforms solely under infinitesimal deformations.
(A2) There exists two fluid phases — one active and one passive phase (standard assumption for the Richards equation).
(A3) The active fluid phase is incompressible and corresponding fluxes are described by Darcy’s law.
(A4) Mechanical inertia effects are negligible allowing to consider the quasi-static balance of linear momentum.

We model the medium at initial conditions by a reference configuration Ω ⊂ Rd, d ∈ {2, 3}. Due to the limitation to
infinitesimal deformations, the domain of the primary fields is approximated by Ω on the entire time interval of interest
(0, T ), with final time T > 0.

Finally, the governing equations describing coupled fluid flow and mechanical deformation of a porous medium with
mechanical displacement u, fluid pressure pw and volumetric flux qw as primary variables are given by

∂t (φsw) + ∇ · qw = 0, (1)
qw + kw(sw) (∇pw − ρwg) = 0, (2)

− ∇ · [2µε(u) + λ∇ · uI − αpE(pw)I] = ρbg, (3)

where φ denotes variable porosity, sw denotes fluid saturation, kw denotes fluid-dependent mobility, ρw and ρb denote fluid
and bulk density, respectively, g is the gravitational acceleration, ε(u) and∇·udenote the linear strain and the volumetric de-
formation, respectively,µ andλ denote the Laméparameters,α is the Biot coefficient and pE denotes the pore pressure. In the
following,we comment briefly on the single components of themathematicalmodel and refer to [2] for a detailed derivation.

Eq. (1): For the fluid flow, an active and a passive fluid phase are assumed, cf. (A2). In other words, the passive phase
responds instantaneously to the active phase and therefore has a constant pressure. The behavior of the active fluid
phase is governed by mass conservation, equivalent to volume conservation for an incompressible fluid. The volume is
given by the product of porosity φ and saturation sw. As in linear poroelasticity, the porosity is assumed to change linearly
with volumetric deformation ∇ · u and pore pressure pE by

φ(u, pw) = φ0 + α∇ · (u − u0) +
1
N
(pE(pw) − pE(pw,0)), (4)

where φ0, u0 and pw,0 are the initial porosity, displacement and pressure, respectively, and α is the Biot coefficient and
N is the Biot modulus. Eq. (4) is a byproduct of the thermodynamic derivation of the effective stress by Coussy [2].
Furthermore, the saturation sw = sw(p) is assumed to be described by amaterial law sw : R → (0, 1], satisfying sw(p) = 1,
p ≥ 0, and having a negative inverse pc : (0, 1] → R+, such that sw(−pc(s)) = s, s ∈ (0, 1]. In the literature, the function
pc is often referred to as capillary pressure.

Eq. (2): The volumetric flux qw is assumed to be described byDarcy’s law formultiphase flow. Here, the permeability scaled
by the inverse of the viscosity is given by a material law kw = kw(sw). In practice, the material law can become Hölder
continuous.

Eq. (3): The mechanical behavior is governed by balance of linear momentum under quasi-static conditions, combined
with an effective stress formulation. Allowing only for small deformations, we employ the St. Venant Kirchhoff model
for the effective stress, determining the total, poroelastic stress as σpor(u, pw) = 2µε(u) + λ∇ · uI − αpE(pw)I . As pore
pressure, we use the equivalent pore pressure [2]

pE(p) = sw(p)p −

∫ 1

sw(p)
pc(s) ds, (5)
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which takes into account interfacial effects. By construction it satisfies dpE = sw(p) dp. As body force we assume solely
gravity, where for the sake of simplicity the bulk density ρb is assumed to be constant. In general it is a function of porosity
and saturation. All in all, Eq. (3) acts as compatibility condition to be satisfied at each time.

Introducing two partitions Γ
f
D ∪ Γ

f
N = Γ m

D ∪ Γ m
N = ∂Ω of the boundary of Ω and the outer normal n on ∂Ω , we assume

boundary conditions and initial conditions

pw = pw,D on Γ
f
D × (0, T ), u = uD on Γ m

D × (0, T ),

qw · n = qw,N on Γ
f
N × (0, T ), σpor(u, pw)n = σpor

n on Γ m
N × (0, T ),

pw = pw,0 in Ω × {0}, u = u0 in Ω × {0}.

All in all, the nonlinear Biot equations (1)–(3) couple nonlinearly the Richards equation and linear elasticity equations. In
the fully saturated regime (pw ≥ 0), the model reduces locally to the classical, linear Biot equations for an incompressible
fluid and compressible rock. We note, as long as the fluid saturation is not vanishing, the nonlinear Biot equations (1)–(3)
are parabolic, unlike the degenerate elliptic–parabolic Richards equation, cf. Remark 5.

3. Finite element discretization

We discretize the Biot equations (1)–(3) in space by the finite element method. More precisely, given a regular
triangulation Th of the domain Ω , we employ linear/quadratic, constant and lowest-order Raviart–Thomas finite elements
to approximate displacement, pressure and volumetric flux, respectively. For the sake of simplicity, in the following, we
assume homogeneous boundary conditions on ∂Ω = Γ m

D = Γ
f
D . The corresponding discrete function spaces are then given

by

Wh =

{
wh ∈ L2(Ω)

⏐⏐⏐∀T ∈ Th, wh|T ∈ P0

}
,

Zh =

{
zh ∈ H(div; Ω)

⏐⏐⏐∀T ∈ Th, zh|T ∈ RT0

}
,

Vh =

{
vh ∈ [H1

0 (Ω)]d
⏐⏐⏐∀T ∈ Th, vh|T ∈ [Pk]

d
}
, k ∈ {1, 2},

where Pl denotes the space of scalar piecewise polynomial functions with polynomial degree l ∈ {0, 1, 2}, and RT0 = {x ↦→

a + bx | a ∈ Rd, b ∈ R} denotes the space of lowest-order Raviart–Thomas elements. We note, the elements of Vh are zero
on the boundary. For better distinction, in the remaining work, let P0 ×RT0 ×P1 and P0 ×RT0 ×P2 denoteWh ×Zh ×Vh for
k = 1 and k = 2, respectively.We refer also to them as lowest-order discretization and unconditionally stable discretization.

Furthermore, for the temporal discretization, we use the implicit Euler method. For this, let a partition {tn}n of the time
interval (0, T ) with (constant) time step size τ = tn − tn−1 > 0 be given.

Then given initial data (p, u)0h ∈ Wh × Vh, at each time step n ≥ 1, the discrete problem reads: Given (p, q, u)n−1
h ∈

Wh × Zh × Vh, find (p, q, u)nh ∈ Wh × Zh × Vh, satisfying for all (w, z, v)h ∈ Wh × Zh × Vh⟨
φn−1(snw − sn−1

w ), wh
⟩
+ α

⟨
snw∇ · (un

h − un−1
h ), wh

⟩
+

1
N

⟨
snw(p

n
E − pn−1

E ), wh
⟩
+ τ

⟨
∇ · qn

h, wh
⟩

= 0, (6)⟨
kw(snw)

−1qn
h, zh

⟩
−
⟨
pnh, ∇ · zh

⟩
= ⟨ρwg, zh⟩ , (7)

2µ
⟨
ε(un

h), ε(vh)
⟩
+ λ

⟨
∇ · un

h, ∇ · vh
⟩
− α

⟨
pnE, ∇ · vh

⟩
= ⟨ρbg, vh⟩ , (8)

where skw = sw(pkh) and pkE = pE(pkh), k ∈ {n − 1, n} and φn−1
= φ(un−1

h , pn−1
h ). Here, ⟨·, ·⟩ denotes the standard L2(Ω) scalar

product.

Remark 1 (Volume Conservation). The discretization (6)–(8) is volume-conservative as by Eq. (4) it holds

φnsnw − φn−1sn−1
w = φn−1(snw − sn−1

w ) + snw

(
α∇ · (un

− un−1) +
1
N
(pnE − pn−1

E )
)

.

Remark 2 (Stability). For the linear Biot equations, the discretization P0 × RT0 × P1 is only conditionally stable [33]. It
does not satisfy an inf–sup condition uniformly with respect to the physical parameters. In particular for small permeability,
volumetric lockingmay occur. However, the discretizationP0×RT0×P2 is unconditionally stable [34], satisfying the inf–sup
condition uniformly for the physical parameters. As the linear Biot equations are only a special case of the nonlinear Biot
equations (1)–(3), obtained for pw ≥ 0 in Ω , stability properties of P0 × RT0 × P1 and P0 × RT0 × P2 also translate to the
nonlinear Biot equations.

4. Monolithic and decoupled linearization schemes

In the following,we consider four linearization schemes. First, we apply themonolithic Newtonmethod, being commonly
the first choice when linearizing a nonlinear problem. Second, we propose a linearization scheme, which employs constant
diagonal stabilization in order to linearize and decouple simultaneously the mechanics and flow equations. Furthermore,
we introduce two modifications of the latter method, utilizing both decoupling and first order Taylor approximations. For
direct comparison, we formulate all schemes in incremental form.
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Monolithic schemes vs. iterative operator splitting schemes for saddle point problems. Containingmore information on coupling
terms, amonolithic scheme for solving Biot’s equations is per semore stable,whereas for iterative operator splitting schemes,
stability is always an issue necessary to be checked. However, in contrast to robust splitting schemes, for a monolithic
scheme, a fully coupled simulatorwith advanced solver technology is often required, able to handle the saddle point structure
of the problem. For that, one possibility is to apply an iterative splitting scheme as preconditioner for a Krylov subspace
method. In fact, this is more efficient and robust than applying the iterative solver itself, cf. e.g. [13] for the linear Biot
equations. In case only separate simulators are available, the concept of preconditioning the coupled problem cannot be
applied in the same sense. But we note that acceleration techniques as Anderson acceleration can be applied as post-
processing to the iterative splitting schemes, acting as a preconditioned nonlinear GMRES solver applied to the coupled
problem, cf. Section 6.

4.1. Notation of residuals

For the incremental formulation of the linearization schemes, we introduce naturally defined residuals of the coupled,
discrete problem (6)–(8). Given data (p, q, u)n−1

h ∈ Wh × Zh × Vh for time step n − 1, the residuals at time step n evaluated
at some state (p, q, u)h ∈ Wh × Zh × Vh and tested with (w, z, v)h ∈ Wh × Zh × Vh are defined by

rnp ((p, q, u)h; wh) = −

(⟨
φn−1(sw(ph) − sn−1

w ), wh
⟩
+ α

⟨
sw(ph)∇ · (uh − un−1

h ), wh
⟩

+
1
N

⟨
sw(ph)(pE(ph) − pn−1

E ), wh
⟩
+ τ ⟨∇ · qh, wh⟩

)
,

rnq ((p, q, u)h; zh) = ⟨ρwg, zh⟩ −

(⟨
kw(sw(ph))−1qh, zh

⟩
− ⟨ph, ∇ · zh⟩

)
,

rnu ((p, q, u)h; vh) = ⟨ρbg, vh⟩ −

(
2µ ⟨ε(uh), ε(vh)⟩ + λ ⟨∇ · uh, ∇ · vh⟩ − α ⟨pE(ph), ∇ · vh⟩

)
.

Shorter, given a sequence of approximations (p, q, u)n,ih ∈ Wh × Zh × Vh of (p, q, u)nh ∈ Wh × Zh × Vh, for time steps n and
iterations i ∈ N, we define

rn,ip (wh) = rnp ((p, q, u)
n,i
h ; wh),

rn,iq (zh) = rnq ((p, q, u)
n,i
h ; zh),

rn,iu (vh) = rnu ((p, q, u)
n,i
h ; vh),

rn,i/i−1
u (vh) = rnu ((p, q)

n,i
h , un,i−1

h ; vh).

4.2. Monolithic Newton’s method

We apply the standard Newton method, linearizing the coupled, discrete problem (6)–(8) in a monolithic fashion.

Scheme. The monolithic Newton method reads: For each time step n, given the initial guess (p, q, u)n,0h = (p, q, u)n−1
h , loop

over the iterations i ∈ N until convergence is reached. Given data at the previous time step n− 1 and iteration i− 1, find the
increments ∆(p, q, u)n,ih ∈ Wh × Zh × Vh, satisfying the coupled, linear problem, for all (w, z, v)h ∈ Wh × Zh × Vh,⟨(

φn,i−1 ∂sw
∂pw

(pn,i−1
h ) +

1
N
(sn,i−1

w )2
)

∆pn,ih , wh

⟩
+ α

⟨
sn,i−1
w ∇ · ∆un,i

h , wh

⟩
+ τ

⟨
∇ · ∆qn,i

h , wh

⟩
= rn,i−1

p (wh), (9)

⟨
kw(sn,i−1

w )−1∆qn,i
h , zh

⟩
+

⟨(
∂

∂pw
kw(sw)

⏐⏐⏐⏐
pn,i−1
h

)−1

qn,i−1
h ∆pn,ih , zh

⟩
−

⟨
∆pn,ih , ∇ · zh

⟩
= rn,i−1

q (zh), (10)

2µ
⟨
ε(∆un,i

h ), ε(vh)
⟩
+ λ

⟨
∇ · ∆un,i

h , ∇ · vh
⟩
− α

⟨
sn,i−1
w ∆pn,ih , ∇ · vh

⟩
= rn,i−1

u (vh), (11)

and set

(p, q, u)n,ih = (p, q, u)n,i−1
h + ∆(p, q, u)n,ih .

After convergence is reached at iteration N , set (p, q, u)nh = (p, q, u)n,Nh .

Properties. Newton’s method is known to be locally, quadratically convergent, whichmakes themethod commonly the first
choice linearization method. However, in general it is not robust and has the following drawbacks:

• In order to ensure convergence, the time step size has to be chosen sufficiently small depending on the mesh size.
Then the initial guess is sufficiently close to the unknown solution.

• The need for a good initial guess can be relaxed by using step size control, allowing a bigger time step size. Anderson
acceleration applied as post-processing can be interpreted as such, for more details, cf. Section 6.
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• Boundedderivatives of constitutive laws have to be available. In practice, nonlinearities employed in themodel (1)–(3)
are not necessarily Lipschitz continuous; e.g., the relative permeability for soils. In particular, in the transition from
the partially to the fully saturated regime, the derivative of the relative permeability modeled by the van Genuchten
model [4] can be unbounded. Consequently, the Jacobian might become ill-conditioned.

• The coupled problem (9)–(11) has a saddle point structure. Hence, an advanced solver architecture is required, in
particular when considering preconditioned Krylov subspace methods. In the context of Biot’s equations, e.g., the
application of a fixed-stress type solver or preconditioner [13] fixes this issue.

4.3. Fixed-Stress-L-scheme — A Picard-type simultaneous linearization and splitting

We propose a novel, robust linearization scheme for Eqs. (6)–(8). It is essentially a simultaneous application of the
L-scheme linearization for the Richards equation, cf. e.g. [22], and the fixed-stress splitting scheme for the linear Biot
equations, cf. e.g. [7]. Both follow the same concept, utilizing diagonal stabilization. In the following, we refer to the scheme
as Fixed-Stress-L-scheme (FSL). As derived in Section 5, it can be interpreted as L-scheme linearization of the nonlinear
Biot equations reduced to a pure pressure formulation or alternatively as nonlinear Gauss–Seidel-type solver, consisting of
cheap iterations allowing separate, sophisticated simulators for themechanical and flow subproblems. In Section 5, we show
convergence of the Fixed-Stress-L-scheme under physical assumptions. Before defining the Fixed-Stress-L-scheme,we recall
main ideas of both the L-scheme and the fixed-stress splitting scheme.

Main ideas of the L-scheme. The L-scheme is an inexact Newton’s method, employing constant linearization for monotone
and Lipschitz continuous terms. For remaining contributions Picard-type linearization is applied. Effectively, this approach is
identical with applying a standard Picard iterationwith additional diagonal stabilization. All in all, no explicit derivatives are
required, easing the cost of the assembly at the price that only linear convergence can be expected. Under mild conditions,
this concept has been rigorously proven to be globally convergent for various porous media applications, e.g., [20–22,25].
Moreover, as pointed out by [22], the resulting linear problem is expected to be significantly better conditioned than the
corresponding linear problem obtained by Newton’s method.

Regarding the nonlinear Biot equations,models for the saturation sw = sw(p) are commonly non-decreasing and Lipschitz
continuous. Hence, assuming that φn,i−1

≥ 0 on Ω , the above criteria apply to the saturation contribution in Eq. (9). The
approximation of the saturation at iteration i is then given by

snw = sw(pnh) ≈ sw(p
n,i
h ) ≈ sw(p

n,i−1
h ) + L(pn,ih − pn,i−1

h ) = sw(p
n,i−1
h ) + L∆pn,ih , (12)

where L ∈ R+ is a sufficiently large tuning parameter, usually set equal to the Lipschitz constant Ls of sw. As coupling terms
are not monotone, Picard-type linearization is applied to the remaining contributions of Eqs. (6)–(8).

Main ideas of the fixed-stress splitting scheme. Considering the linear Biot equations, their linearization results in a saddle
point problem, thus, requiring an advanced solver technology for efficient solution. For this purpose, physically motivated,
robust, iterative splitting schemes are widely-used as, e.g., the fixed-stress splitting scheme, originally introduced by [5].
As it decouples mechanics and flow equations, separate simulators can be utilized for both subproblems, reducing the total
complexity to solving simpler, better conditioned problems. The robust decoupling is accomplished via sufficient diagonal
stabilization, introducing a tuning parameter βFS, for which several values are suggested in the literature. Commonly, it
is chosen as βFS =

α2

Kdr
with Kdr the effective bulk modulus. A physically motivated choice is K phy

dr =
2µ
d + λ, yielding

β
phy
FS =

α2

Kphy
dr

, which is not necessarily optimal. An optimal, theoretical choice is still an open research question [8,9,35].

Theoretical approaches suggest choosing only the half of βphy
FS . However, also the domain and the boundary conditions seem

to have an influence which has not been quantified in the literature, yet.

Scheme. We observe that applying the monolithic L-scheme, as just explained to the nonlinear, discrete Biot equations
(6)–(8), results in a linear problem equivalent with that for single phase flow in heterogeneous media, for which the fixed-
stress splitting scheme is an attractive solver [9]. Both schemes are realized via diagonal stabilization. Anticipating the
dynamics to be mainly governed by the flow problem, cf. Assumption (A4), and the mechanics problem to be much simpler,
a simultaneous application of the L-scheme and the fixed-stress splitting scheme yields an attractive linearization scheme
incorporating the decoupling of flow and mechanics equations.

Written as iterative scheme in incremental form, the resulting Fixed-Stress-L-scheme reads: For each time step n, given
the initial guess (p, q, u)n,0h = (p, q, u)n−1

h , loop over the iterations i ∈ N until convergence is reached. For each iteration i,
perform two steps:

1. Step: Set L = Ls, the Lipschitz constant of sw, and βFS = α2/
( 2µ

d + λ
)
. Given (p, q, u)n,i−1

h , (p, q, u)n−1
h ∈ Wh × Zh × Vh,

find the increments ∆(p, q)n,ih ∈ Wh × Zh, satisfying, for all (w, z)h ∈ Wh × Zh,⟨(
L +

1
N + βFS

)
∆pn,ih , wh

⟩
+ τ

⟨
∇ · ∆qn,i

h , wh

⟩
= rn,i−1

p (wh), (13)⟨
kw(sn,i−1

w )−1∆qn,i
h , zh

⟩
−

⟨
∆pn,ih , ∇ · zh

⟩
= rn,i−1

q (zh), (14)
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and set

(p, q)n,ih = (p, q)n,i−1
h + ∆(p, q)n,ih .

2. Step: Given ((p, q)n,ih , un,i−1
h ) ∈ Wh × Zh × Vh, find the increment ∆un,i

h ∈ Vh, satisfying, for all vh ∈ Vh,

2µ
⟨
ε(∆un,i

h ), ε(vh)
⟩
+ λ

⟨
∇ · ∆un,i

h , ∇ · vh
⟩

= rn,i/i−1
u (vh), (15)

and set

un,i
h = un,i−1

h + ∆un,i
h .

After convergence is reached at iteration N , set (p, q, u)nh = (p, q, u)n,Nh .

Properties. The Fixed-Stress-L-scheme inherits its properties from the underlying methods. It does not require the eval-
uation of any derivatives, increasing the speed of the assembly process. It is very robust but guarantees only linear
convergence, cf. Theorem 3. Furthermore, the Fixed-Stress-L-scheme requires the independent solution of the mechanical
and flow equations, allowing to use separate simulators. In particular, the overall method utilizes a single loop in contrast
to the Newton’s method combined with a fixed-stress splitting scheme as iterative solver. Inheriting the block structure of
the linear Biot equations, the implementation of the Fixed-Stress-L-scheme and its subsequent modifications follows the
structure of splitting schemes for Biot equations in general, cf. e.g. [15,36].

4.4. Quasi-Newton modifications of the Fixed-Stress-L-scheme

The Fixed-Stress-L-scheme employs constant linearization for the fluid volume φsw with respect to fluid pressure,
utilizing an upper bound for the Lipschitz constant. In many practical situations, this approach is quite pessimistic. Recalling
the assumption that the flow problem dominates the dynamics of the system, we expect the simultaneous application of the
fixed-stress splitting scheme andmore sophisticated flow linearizations to be only slightly less robust than the Fixed-Stress-
L-scheme. Independent of the flow linearization, diagonal stabilization is added by the splitting scheme anyhow increasing
the robustness. In the following, based on the derivation of the Fixed-Stress-L-scheme in Section 5, cf. Remark 3, we couple
simultaneously a modified Picard method [26] and Newton’s method with the fixed-stress splitting scheme yielding the
Fixed-Stress-Modified-Picard method and the Fixed-Stress-Newton method, respectively. The modified Picard method, in
particular, is a widely-used linearization scheme for the Richards equation and hence rises also interest for its use for the
linearization of the discrete, nonlinear Biot equations (6)–(8).

Fixed-Stress-Modified-Picard method. Applied to the Richards equation, the modified Picard method employs a first order
Taylor approximation as linearization for the saturation and a Picard-type linearization for the possibly Hölder continuous
permeability. By employing a first order approximation of the fluid volume φsw with respect to fluid pressure instead, and
by coupling simultaneously with the fixed-stress splitting scheme, we obtain a linearization scheme for Eqs. (6)–(8). For
later reference, we denote the resulting scheme by Fixed-Stress-Modified-Picard-scheme. It is essentially identical with the
Fixed-Stress-L-scheme but with an iteration dependent L parameter and hence modified first fixed-stress step (1. Step). We
exchange Eqs. (13)–(14) with⟨(

φn,i−1 ∂sw
∂pw

(pn,i−1
h ) +

( 1
N + βFS

)
(sn,i−1

w )2
)

∆pn,ih , wh

⟩
+ τ

⟨
∇ · ∆qn,i

h , wh

⟩
= rn,i−1

p (wh), (16)⟨
kw(sn,i−1

w )−1∆qn,i
h , zh

⟩
−

⟨
∆pn,ih , ∇ · zh

⟩
= rn,i−1

q (zh). (17)

Fixed-Stress-Newton method. In case the permeability is Lipschitz continuous, the simultaneous application of the fixed-
stress splitting scheme and linearization of the flow equations via Newton’smethod yields an attractive linearization scheme
for Eqs. (6)–(8). For later reference, we denote the scheme by Fixed-Stress-Newtonmethod. It is essentially identical with the
Fixed-Stress-L-scheme but with an iteration dependent L parameter and additional contribution in Darcy’s law and hence
modified first fixed-stress step (1. Step). We exchange Eqs. (13)–(14) with⟨(

φn,i−1 ∂sw
∂pw

(pn,i−1
h ) +

( 1
N + βFS

)
(sn,i−1

w )2
)

∆pn,ih , wh

⟩
+ τ

⟨
∇ · ∆qn,i

h , wh

⟩
= rn,i−1

p (wh), (18)

⟨
kw(sn,i−1

w )−1∆qn,i
h , zh

⟩
+

⟨(
∂

∂pw
kw(sw)

⏐⏐⏐⏐
pn,i−1
h

)−1

qn,i−1
h ∆pn,ih , zh

⟩
−

⟨
∆pn,ih , ∇ · zh

⟩
= rn,i−1

q (zh). (19)

We note that the Fixed-Stress-Newton method is also closely related to applying a single fixed-stress iteration as inexact
solver for the linear problem (9)–(11) arising from Newton’s method.

4.5. L2(Ω)-type stopping criterion

For the numerical examples in Section 8, we employ a combination of an absolute and a relative L2(Ω)-type stopping
criterion, closely related to the standard algebraic l2(R)-type criterion. Given tolerances εa, εr ∈ R+, we denote an iteration
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as converged if it holds

∥∆pn,ih ∥L2(Ω) + ∥∆qn,i
h ∥L2(Ω) + ∥∆un,i

h ∥L2(Ω) < εa, and
∥∆pn,ih ∥L2(Ω)

∥pn,ih ∥L2(Ω)

+
∥∆qn,i

h ∥L2(Ω)

∥qn,i
h ∥L2(Ω)

+
∥∆un,i

h ∥L2(Ω)

∥un,i
h ∥L2(Ω)

< εr.

5. Convergence theory for simultaneous linearization and splitting via the L-scheme

In the following, we show convergence of the Fixed-Stress-L-scheme (13)–(15) under mild, physical assumptions. For
this purpose, we first formulate the nonlinear discrete problem (6)–(8) as an algebraic problem, reduce the problem to a
pure pressure problem by exact inversion and apply the L-scheme as linearization identical to the Fixed-Stress-L-scheme
(13)–(15). Convergence follows then from an abstract convergence result for the L-scheme. For simplicity, we assume
vanishing initial data and a homogeneous and isotropic material.

Notation . Let Rnp , Rnq and Rnu denote the coefficient vector spaces corresponding to the functional spaces Wh, Zh and
Vh, respectively, given standard bases. Let ⟨·, ·⟩ denote the classical l2 vector scalar product on Rn, n ∈ N. Furthermore, for
symmetric, positive definite matricesM ∈ Rn×n, let the vector norm ∥ · ∥M be defined by ∥v∥2

M = ⟨Mv, v⟩, v ∈ Rn.

Algebraic formulation of the nonlinear, discrete Biot equations. Given finite element bases for Wh × Zh × Vh, the nonlinear,
discrete Biot equations (6)–(8) translate to the algebraic equations

Spp(p)
(
Mppφ0 + αDpuu +

1
NMpppE(p)

)
+ τDpqq = fp (20)

Kqq(p)−1q − D⊤

pqp = fq (21)

Auuu − αD⊤

pupE(p) = fu. (22)

We omit the detailed definition of the finite element matrices and vectors used in Eqs. (20)–(22), as they are assembled in a
standard way. We comment solely on their origin and their properties relevant for further discussion. For this purpose, let
(p′, q′,u′) ∈ Rnp × Rnq × Rnu , (q⋆,u⋆) ∈ Rnq × Rnu be arbitrary coefficient vectors corresponding to some (p′

h, q
′

h, u
′

h) ∈

Wh × Zh × Vh, (q⋆
h, u

⋆
h) ∈ Zh × Vh.

• Let p ∈ Rnp , q ∈ Rnq , u ∈ Rnu denote the algebraic pressure, volumetric flux and displacement coefficient vectors
corresponding to (p, q, u)nh ∈ Wh × Zh × Vh with respect to the chosen bases.

• Let Mpp ∈ Rnp×np be the natural mass matrix for the pressure variable incorporating local mesh information for Th
such that ∥p′

∥Mpp = ∥p′

h∥L2(Ω).
• Let Spp : Rnp → Rnp×np denote a diagonal matrix with element-wise saturation sw on the diagonal, i.e., Spp(p′)kk =

sw(p′

k) for k ∈ {1, . . . , np}.
• Let Dpu ∈ Rnp×nu and Dpq ∈ Rnp×nq denote the matrices corresponding to the divergence operating on displacement

and volumetric flux spaces, respectively, mapping into the pressure space, such that ⟨p′,Dpuu′
⟩ = ⟨p′

h, ∇ · u′

h⟩ and
⟨p′,Dpqq′

⟩ = ⟨p′

h, ∇ · q′

h⟩.
• Let pE : Rnp → Rnp correspond to the element-wise equivalent pore pressure pE, i.e., pE(p′)k = pE(p′

k) for
k ∈ {1, . . . , np}.

• Let φ0 ∈ Rnp correspond to the element-wise porosity, such that the components of Mppφ0 + αDpuu +
1
NMpppE(p)

correspond to the element-wise porosity of the deformed material scaled by the element size.
• LetK−1

qq : Rnp → Rnq×nq denote the volumetric fluxmassmatrix, weighted by the nonlinear permeability contribution
k−1
w (sw) in Darcy’s law, such that ⟨K−1

qq (p′)q′, q⋆
⟩ = ⟨k−1

w (sw(p′

h))q
′

h, q
⋆
h⟩.

• Let Auu ∈ Rnu×nu denote the stiffness matrix, corresponding to the linear elasticity equations, such that ⟨Auuu′,u⋆
⟩ =

2µ⟨ε(u′

h), ε(u
⋆
h)⟩ + λ⟨∇ · u′

h, ∇ · u⋆
h⟩.

• fp ∈ Rnp , fq ∈ Rnq and fu ∈ Rnu incorporate solution independent contributions as volume effects and Neumann
boundary conditions and data at the previous time step. Furthermore, let local mesh information be incorporated.

Compact formulation of the algebraic problem. First, we define the porosity of the deformed material

φ(p,u) = Mppφ0 + αDpuu +
1
NMpppE(p).

Then given data at the previous time step and the corresponding coefficient vectors (pn−1,un−1) ∈ Rnp × Rnp , it holds

φ(p,u) = φ(pn−1,un−1) + αDpu(u − un−1) +
1
NMpp(pE(p) − pE(pn−1)) (23)

We rewrite the displacement contribution by inverting the mechanics equation (22). The equation holds for each time step
n and fu is constant in time, as only Dirichlet boundary conditions are applied, cf. Section 3. Hence, it holds

Auu(u − un−1) − αD⊤

pu(pE(p) − pE(pn−1)) = 0.
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Inverting and inserting in Eq. (23), allows us to write the porosity as function of pressure only

φ(p) = φ(p,u) = φ(pn−1) +
(
α2DpuA−1

uu D
⊤

pu +
1
NMpp

)
(pE(p) − pE(pn−1)). (24)

Next, we define the abbreviations

b(p) = Spp(p)φ(p), D = Dpq, K(p) = Kqq(p). (25)

Finally, by inverting exactly Eq. (21) with respect to q, and inserting that together with above abbreviations into Eq. (20), we
obtain an equivalent, reduced problem for p in compact form

b(p) + τDK(p)
(
fq + D⊤p

)
= fp. (26)

L-scheme linearization. We linearize the abstract problem (26) using the L-scheme, introducing a sequence {pi
}i ⊂ Rnp

approximating the exact solution p ∈ Rnp . Given a user-defined parameter L ∈ R+, we set Lpp = LMpp. Then given an initial
guess p0

∈ Rnp , the scheme is defined as follows: Loop over the iterations i ∈ N until convergence is reached. At iteration i,
given data pi−1

∈ Rnp , find pi
∈ Rnp solving the linear problem

Lpp(pi
− pi−1) + b(pi−1) + τDK(pi−1)

(
fq + D⊤pi)

= fp. (27)

Lemma 1 (Convergence of the L-Scheme). Assume (26) and (27) both have unique solutions p ∈ Rnp and pi
∈ Rnp , respectively.

Furthermore, let the following assumptions be satisfied:

(L1) There exists a constant Lb ∈ R+ satisfying ∥b(p) − b(p̃)∥2
M−1

pp
≤ Lb⟨b(p)− b(p̃), p − p̃⟩ for all p, p̃ ∈ Rnp , i.e., b is in some

sense monotonically increasing and Lipschitz continuous.
(L2) There exist constants km, kM ∈ R+ satisfying km∥q∥

2
M−1

qq
≤ ⟨K(p)q, q⟩ ≤ kM∥q∥

2
M−1

qq
for all p ∈ Rnp , q ∈ Rnq .

Furthermore, there exists a constant LK satisfying ∥(K(p) − K(p̃))Mqq∥Mqq,∞ ≤ LK∥b(p) − b(p̃)∥M−1
pp

for all p, p̃ ∈ Rnp ,
i.e. K is in some sense Lipschitz continuous. Here, Mqq ∈ Rnq×nq is the natural mass matrix for the flux variable satisfying
∥q∥Mqq = ∥qh∥L2(Ω) for qh ∈ Zh and corresponding coefficient vector q ∈ Rnq . Furthermore, the subordinate matrix norm
∥ · ∥Mqq,∞ is defined by ∥K∥Mqq,∞ = sup

q ̸=0
∥Kq∥Mqq/∥q∥∞, K ∈ Rnq×nq .

(L3) There exists a constant q∞ ∈ R+ satisfying ∥M−1
qq fq + D⊤p∥∞ ≤ q∞ for the solution of problem (26).

If the parameter L and the time step size τ are chosen such that 2
Lb

−
1
L − τ

q2∞L2K
2km

≥ 0, for a Poincaré constant CΩ > 0, it holds

∥pi
− p∥

2
Mpp

≤
L

L + τkmC2
Ω

∥pi−1
− p∥

2
Mpp

.

The proof of Lemma 1 is given in Appendix A. The proof is essentially the same as for the Richards equation by [22] but
formulated in a slightly more general framework. Assumptions (L1)–(L2) are generalized versions of assumptions made
in [22], adapted to the possible global dependence of each component of b = b(p) on p.

Consequence for the Fixed-Stress-L-scheme. In the context of the poroelasticity problem (26), the L-scheme (27) is equivalent
with the Fixed-Stress-L-scheme (13)–(15), revealing the close connection between the fixed-stress splitting scheme and the
L-scheme. Therefore, we check Assumptions (L1)–(L3) of Lemma 1 particularly for Eq. (26) in order to analyze the Fixed-
Stress-L-scheme. We make the following physical assumptions:

(F1) With the varying porosity φ = φ(p) as defined in Eq. (24), let Pφ≥0 = {p ∈ Rnp |φ(p) ∈ [0, 1] component-wise }

denote the space of all pressures leading to physical deformations.
(F2) Let the saturation model sw : R → [0, 1] have a bounded derivative and assume a non-vanishing residual saturation

0 < sw,res = inf
p∈Pφ≥0, i∈{1,...,np}

s(pi).

(F3) Let the material law kw = kw(sw) : [0, 1] → R be Lipschitz continuous and assume there exist constants
kw,m, kw,M ∈ R+ satisfying kw,m ≤ kw(sw(pi)) ≤ kw,M for all p ∈ Pφ≥0, i ∈ {1, . . . , np}.

(F4) There exists a constant q∞ ∈ R+ satisfying ∥M−1
qq fq + D⊤p∥∞ ≤ q∞ for the solution of problem (26), i.e., fluxes are

essentially bounded.

Assumption (F1) is physical. Assumptions (F2)–(F4) are standard assumptions generally accepted for the numerical analysis
of the Richards equation, cf. e.g. [37–40]. In particular, if the latter assumptions are not satisfied, the Richards equation as
model for flow in partially saturated porous media has to be questioned. Under these physical assumptions, (L1)–(L3) are
satisfied.

Lemma 2 (Assumptions for L-Scheme satisfied). Let Assumptions (F1)–(F2) be satisfied. Furthermore, assumeWh ×Zh ×Vh yields
an inf–sup stable discretization. Then Assumption (L1) is satisfied, in the sense, that there exists a constant Lb ∈ R+, satisfying for
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all p, p̃ ∈ Pφ≥0

∥b(p) − b(p̃)∥2
M−1

pp
≤ Lb⟨b(p) − b(p̃), p − p̃⟩. (28)

Furthermore, let Assumptions (F1)–(F3) be satisfied. Then, Assumption (L2) is satisfied, in the sense, that there exists a constant
LK ∈ R+, satisfying for all p, p̃ ∈ Pφ≥0,

∥(K(p) − K(p̃))Mqq∥Mqq,∞ ≤ LK∥b(p) − b(p̃)∥M−1
pp

. (29)

Moreover, there exist constants km, kM ∈ R+, satisfying for all p ∈ Rnp , q ∈ Rnq

km∥q∥
2
M−1

qq
≤ ⟨K(p)q, q⟩ ≤ kM∥q∥

2
M−1

qq
. (30)

The proof of Lemma 2 is given in Appendix B. All in all, under the assumptions of non-vanishing residual saturation,
permeability, and porosity, the L-scheme (27) converges, which follows from Lemma 1. Hence, also the Fixed-Stress-L-
scheme (13)–(15) converges.

Theorem 3. Let Assumptions (F1)–(F4) be satisfied. Furthermore, assumeWh ×Zh ×Vh yields an inf–sup stable discretization. Let
p ∈ Rnp and pi

∈ Rnp be the solutions of the nonlinear problem (26) and the L-scheme (27), respectively. Assume they are unique.
Let the initial guess p0

∈ Rnp satisfy Bp (∥p0
− p∥Mpp ) ⊂ Pφ≥0, where Bp (r) ⊂ Rnp denotes the sphere with center p and radius

r > 0. Let L and τ be chosen such that 1
Lb

−
1
2L − τ

q2∞L2K
2km

≥ 0. Then the L-scheme (27) converges linearly with mesh-independent

convergence rate
√

L
L+τkmC2

Ω

. Furthermore, by induction, each iterate is a physical solution {pi
}i ⊂ Pφ≥0.

Remark 3 (Choice of L). The Jacobian of b

Db(p) =

⎡⎢⎣s′(p1)φ1(p)
. . .

s′(pnp )φnp (p)

⎤⎥⎦+ α2Spp(p)DpuA−1
uu D

⊤

puSpp(p)
⊤

+
1
N
Spp(p)MppSpp(p)

⊤ (31)

justifies the choice of the tuning parameters L and βFS for the Fixed-Stress-L-scheme, cf. Section 4.3, being an approximation
of the Jacobian. Assuming the worst case scenario, the eigenvalues of all three contributions are maximized yielding
an a priori choice. This pessimistic choice slows down potential convergence but increases robustness. From the proof
of Theorem 3, it follows that local optimization would be sufficient, yielding an optimal but solution-dependent tuning
parameter. In this spirit, Eq. (31) also provides the basis for the modification of the tuning parameter used for both the
Fixed-Stress-Modified-Picard method and the Fixed-Stress-Newton method, cf. Section 4.4.

Remark 4 (Limitations of the Fixed-Stress-L-Scheme). Based on Theorem 3, we expect the convergence of the Fixed-Stress-L-
scheme (13)–(15) to deteriorate for either too large time steps or too large Lipschitz constants for the constitutive laws sw
and kw. This applies in particular if the constitutive laws are only Hölder continuous. Furthermore, given the parameter
L is sufficiently large and the time step size sufficiently small, theoretical convergence of the Fixed-Stress-L-scheme is
guaranteed. However, in practice, numerical round-off errors might lead to stagnation.

Remark 5 (Parabolic Character of the Nonlinear Biot Equations). The Richards equation itself is a degenerate elliptic–parabolic
equation due to possible development of fully saturated regions. However, from Eq. (31) it follows, that this type of
degeneracy is not adopted by the nonlinear Biot equations (1)–(3) and by corresponding stable discretizations (6)–(8).
Independent of the mesh size, the derivative of the fluid volume φsw with respect to fluid pressure is not vanishing, as
long as the fluid saturation is not vanishing. This observation is consistent with considerations by [41] on the classical, linear
Biot equations. We note for weak coupling of mechanics and flow equations, numerically the parabolic character might be
effectively lost, making the original two-way coupled problem essentially equivalent to the Richards equation, one-way
coupled with the linear elasticity equations.

6. Acceleration and stabilization by Anderson acceleration

The Fixed-Stress-L-scheme is expected to be a linearly convergent fixed-point iteration with the convergence rate
depending on the tuning parameter. Its Quasi-Newtonmodifications, cf. Section 4.4, employ a less conservative choice for the
tuning parameter with the risk of failing convergence. Consequently, we are concerned with two issues — slow convergence
and robustness with respect to the tuning parameter.

All presented linearization schemes in Section 4 can be interpreted as fixed-point iterations xi = FP(xi−1) = xi−1
+

∆FP(xi−1), where xi denotes the algebraic vector associated with (p, q, u)n,ih and ∆FP(xi−1) is the actual, computed
increment within the linearization scheme. For fixed-point iterations in general, Anderson acceleration [27] has been



J.W. Both, K. Kumar, J.M. Nordbotten et al. / Computers and Mathematics with Applications 77 (2019) 1479–1502 1489

demonstrated on several occasions to be a suitable method to accelerate convergence. Furthermore, due to its relation to
preconditioned, nonlinear GMRES [30], we also expect Anderson acceleration to increase robustness with respect to the
tuning parameter for the considered linearization schemes. Both properties are justified by theoretical considerations in
Section 7 and demonstrated numerically in Section 8.

Scheme. The main idea of the Anderson acceleration applied to a fixed-point iteration is to utilize previous iterates and
mix their contributions in order to obtain a new iterate. The method is applied as post-processing, not interacting with
the underlying fixed-point iteration. In the following, we denote AA(m) the Anderson acceleration reusing m + 1 previous
iterations, such that AA(0) is identical to the original fixed point iteration.We can apply AA(m) to post-process the presented
linearization schemes. In compact notation, the scheme reads:

Algorithm 1 (AA(m) accelerated FP)
Given: FP , x0
for i=1,2, . . . , until convergence do

Define depth mi = min{i − 1,m}

Define matrix of increments Fi =
[
∆FP(xi−mi−1), . . . , ∆FP(xi−1)

]
Minimize ∥Fiα∥2 wrt. α ∈ Rmi+1 s.t.

∑
kαk = 1

Define next iterate xi =
∑mi

k=0 αkFP(xk+i−mi−1)
end for

Properties. For the implementation, we follow Walker and Peng [30], using an equivalent, unconstrained minimization
problem formulation in Step 3 of the loop. The resulting problem becomes better conditioned, relatively small and cheap.
It is solved via a QR decomposition employing Householder transformations and subsequent inversion, using a matrix–
vector multiplication and backward substitution. Given the depth m and problem size n (m ≪ n), the total, algorithmic
complexity of one Anderson acceleration iteration (without the evaluation of the fixed-point iteration) is of orderO(2nm2

+

2nm + m2) = O(nm2), dominated by the cost of the QR decomposition. Additionally, the price for the storage of the
vectors [∆FP(xi−m−1), . . . , ∆FP(xi−1)] and [FP(xi−m−1), . . . ,FP(xi−1)]has to be paid, similar to GMRES. For the numerical
examples in Section 8, we employ direct solvers. Hence, compared to the application of the plain linearization schemes, the
additional cost for Anderson acceleration with small depth is insignificant.

Moreover, as post-processing Anderson acceleration does not modify the character of the underlying method, i.e., a
decoupled character remains unchanged. In particular, in contrast to classical preconditioning, no monolithic simulator is
required. Hence, all in all, Anderson acceleration is an attractive method in order to accelerate splitting schemes.

In many practical applications, effective acceleration can be observed. Though, there is no general, theoretical guarantee
for the Anderson acceleration to accelerate convergence of an underlying, convergent fixed-point iteration. Theoretically,
even divergence is possible [30]. In the literature, so far, theoretical convergence results are solely known for contractive
fixed-point iterations [31]. For nonlinear problems, AA(m) is guaranteed locally r-linearly convergent with theoretical
convergence rate not larger than the original contraction constant if the coefficientsα remain bounded.Without assumptions
on α, AA(1) converges globally, q-linearly in case the contraction constant is sufficiently small. After all, both results only
guarantee the lack of deterioration but not actual acceleration.

For a special, linear case, in Section 7, we show global convergence and theoretical acceleration for a variant of AA(1),
fortifying the potential of Anderson acceleration. In particular, Corollary 5 predicts the ability of the Anderson acceleration
to increase robustness, allowing non-contractive fixed-point iterations to converge. Although the structure of the considered
linearization schemes does not satisfy the structure of the special linear case (symmetric and linear), this motivates to apply
AA(m) also to accelerate possibly diverging Newton-like methods with the risk of losing potential, quadratic convergence,
as well as slow Picard type methods.

7. Theoretical contraction and acceleration for the restarted Anderson acceleration

For a special linear case, we prove global convergence of a restarted version of the Anderson acceleration. In particular,
convergence for non-contractive fixed-point iterations and effective acceleration for a class of contractive fixed-point
iterations is shown.Wenote that the results cannot be transferred to the application of Anderson acceleration for fixed-stress
type linearization schemes, but they indicate theoretically the benefit of its application.

7.1. Restarted Anderson acceleration

The original Anderson acceleration AA(m) constantly utilizes the full set of m previous iterates. By defining the depth
m⋆

i = min{i− 1 modm+ 1,m} in the first step of Algorithm 1 and apart from that following the remaining steps, we define
a restarted version AA⋆(m) of AA(m), closer related to GMRES(m). In words, in each iteration we update the set of considered
iterates by the most current iterate. And in case the number of iterates becomes m + 1, we flush the memory and restart
filling it again. In particular, form = 1, the algorithm reads:
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Algorithm 2 (AA⋆(1) accelerated FP)
Given: FP , x0
for i=0,2,4,..., until convergence do

Set xi+1
= FP(xi)

Minimize
∆FP(xi+1) + αi+1(∆FP(xi) − ∆FP(xi+1))


2 wrt. α(i+1)

∈ R
Set xi+2

= FP(xi+1) + α(i+1)(FP(xi) − FP(xi+1))
end for

From [31], it follows directly, that for FP , a linear contraction, AA⋆(1) converges globally with convergence rate at most
equal the contraction constant of FP . In the following, we extend the result to a special class of non-contractive fixed-point
iterations.

7.2. Convergence results

For the convergence results, cf. Lemma 4 and Corollaries 5, 6, we make the following assumptions:

(C1) FP(x) = Ax + b defines the Richardson iteration for (I − A)x = b, A ∈ Rn×n, n > 1, b ∈ Rn.
(C2) A is symmetric, and hence, A is orthogonally diagonalizable and there exists an orthogonal basis of eigenvectors {vj}j

and a corresponding set of eigenvalues {λj}j satisfying Avj = λjvj.
(C3) There exists a unique x⋆ such that FP(x⋆) = x⋆, i.e., I − A is invertible.
(C4) The initial iterate x0 is chosen such that the initial error x0 − x⋆

∈ span{v1, v2}, where v1, v2 are two orthogonal
eigenvectors of A. To avoid a trivial case, we assume λ1, λ2 ̸= 0.

Then we are able to relate the errors between iterations of AA⋆(1), allowing to prove further convergence and acceleration
results, cf. Corollaries 5 and 6. All in all, the proof employs solely elementary calculations. However, as we are not aware of
a general result of same type in the literature, we present the proof.

Lemma 4 (Error Propagation). Let the Assumptions (C1)–(C4) be satisfied and let {xi}i define the sequence defined by AA⋆(1)
applied to FP . Furthermore, let ei = xi − x⋆ denote the error. Then it holds

∥ei+4
∥ ≤ r(λ1, λ2)∥ei∥, i = 0, 4, 8, 12, . . .

for

r(λ1, λ2) =
λ2
1λ

2
2(λ2 − λ1)2

(|λ1(λ1 − 1)| + |λ2(λ2 − 1)|)2
.

The proof of Lemma 4 is given in Appendix C. Based on the contraction result, we are finally able to show convergence and
actual acceleration of AA⋆(1).

Corollary 5 (AA⋆(1) Converges for Non-ContractiveFP). Let the Assumptions (C1)–(C4) be satisfied. Let A be positive definitewith
atmost one eigenvalue among {λ1, λ2} larger than1 andnone equal to1. ThenAA⋆(1) converges for the underlying non-contractive
fixed-point iteration, cf. Assumption (C1).

Proof. Due to symmetry, it is sufficient, to consider solely (λ1, λ2) ∈ (R+ \ {1}) × (0, 1). For λ1 < 1, the result
follows immediately from Corollary 6. Let λ1 > 1. It holds r(1, λ2) = 1 for all λ2 ∈ (0, 1) and ∂1r(λ1, λ2) < 0 for all
(λ1, λ2) ∈ (1, ∞) × (0, 1). Thus, it follows directly that r(λ1, λ2) < 1 for all (λ1, λ2) ∈ (1, ∞) × (0, 1). □

Corollary 6 (AA⋆(1) Accelerates Contractive FP). Let the Assumptions (C1)–(C4) be satisfied. Let ρ(A) < 1, where ρ(A) denotes
the spectral radius of A. Then it holds r(λ1, λ2) < ρ(A)4 if λ1 ̸= −λ2, and r(λ1, λ2) = ρ(A)4 otherwise . Consequently, AA⋆(1)
is effectively accelerating the underlying fixed-point iteration, cf. Assumption (C1).

Proof. By plotting r(λ1, λ2)/max
{
|λ1|

4, |λ2|
4}, we demonstrate r(λ1, λ2) ≤ max

{
|λ1|

4, |λ2|
4}

= ρ(A)4 for (λ1, λ2) ∈

[−1, 1] × [−1, 1], cf. Fig. 1(a). □

7.3. Discussion

Wemake the following comments:

• The convergence result in Corollary 5 deals onlywith positive definitematrices. In Fig. 1(b), eigenvalue pairs (λ1, λ2) ∈

R × R are displayed satisfying r(λ1, λ2) < 1 and therefore guaranteeing AA⋆(1) to converge. In particular, AA⋆(1)
converges also for matrices with two eigenvalues larger than 1 with relatively close distance to each other.
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Fig. 1. Acceleration and convergence factor for the restarted AA⋆(1).

• In practice, we do not experience AA⋆(1) or AA(1) to fail as long as Assumption (C4) is valid and |λ1| < 1 or |λ2| < 1.
This observation extends also to arbitrarily large decompositions of e0 as long as at most one eigenvalue of A satisfies
|λj| > 1. Based on similar observations, we state the following claim: If |λj| > 1 for exactly m eigenvalues {λj}j, then
AA(m) converges for arbitrary e0. We note that the worst case approach used in order to prove Lemma 4 cannot
be applied to prove the general claim. It can be verified numerically that in general the eigenvalues of the error
propagation matrix (C.10) can be larger than 1 even if ρ(A) < 1.

• From Fig. 1(b), it follows, the closer the eigenvalues to 1, the slower the convergence of AA⋆(1). This is consistent
with the interpretation of Anderson acceleration as secant method. The Richardson iteration does only damp slowly
directions corresponding to eigenvalues close to 1. Hence, a directional derivative in these directions cannot be
approximatedwell, purely based on the iterations of fixed-point iterations. Quite contrary to directions corresponding
to small or large eigenvalues relative to 1.

• The theoretical convergence result has been obtained from a worst case analysis. Practical convergence rates might
be lower than predicted, depending on the weights of the initial error.

• Convergence of AA(m) is not guaranteed to be monotone, when applied for non-contractive fixed-point iterations.

8. Numerical results — Performance study

In this section, we consider three numerical examples with increasing complexity. In all examples, we compare the
linearization schemes, presented in Section 4, coupled with Anderson acceleration. In particular, we confirm numerically
the parabolic character of the nonlinear Biot equations, cf. Remark 5, the convergence result for the Fixed-Stress-L-scheme,
cf. Theorem3, aswell as the acceleration and stabilization properties of the Anderson acceleration, cf. Section 7. All numerical
results have been obtained using the software environment DUNE [42–44], where linear systems are solved with a direct
solver.

8.1. Test case I — Injection in a 2D homogeneous medium with Lipschitz continuous constitutive laws

We consider a two-dimensional, homogeneous, unsaturated porous medium (−1, 1) × (0, 1) ⊂ R2, in which a fluid
is injected at the top (−0.2, 0.2) × {1}, cf. Fig. 2. Due to the symmetry of the problem, we consider only the right half
Ω = (0, 1) × (0, 1), discretized by 50 × 50 regular quadrilaterals. As initial condition, we choose a constant displacement
u(0) = 0 and pressure field pw(0) = p0, satisfying the stationary version of the continuous problem (1)–(3). In order to avoid
inconsistent initial data, we ramp the injection at the top with inflow rate qinflow(t) = q⋆

× min{t2, 1.0} for given q⋆
∈ R.

Apart from the inflow at the top, we consider no flow at the remaining boundaries, no normal displacement at left, right and
bottom boundary and no stress on the top. The boundary conditions are displayed in Fig. 2.

For the spatial discretization, we consider both variants ofWh × Zh × Vh, the lowest-order discretization P0 × RT0 × P1
and the unconditionally stable discretization P0 × RT0 × P2.
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Fig. 2. Domain Ω and boundary conditions for test cases I and II.

Table 1
Parameters employed for test cases I, II and III. Top: Physical model parameters. Bottom: Numerical parameters.

Parameter Variable Test case I Test case II Test case III
[unit] (Section 8.1) (Section 8.2) (Section 8.3)

Young’s modulus E [Pa] 3e1 3e1 1e6
Poisson’s ratio ν [–] 0.2 0.2 0.3
Initial pressure p0 [Pa] −7.78 −15.3 hydrostatic
Initial porosity φ0 [–] 0.2 0.2 0.2
Inverse of air suction avG [Pa−1] 0.1844 0.627 1e−4
Pore size distribution nvG [–] 3.0 1.4 0.7−1

Abs. permeability kabs [m2] 3e−2 3e−2 5e−13
Fluid viscosity µw [Pa·s] 1.0 1.0 1e−3
Fluid density ρw [kg/m3] 1e3 1e3 1e3
Bulk density ρb [kg/m3] [–] [–] 1.8e3
Gravitational acc. g [m/s2] 0.0 0.0 9.81
Biot coefficient α [–] 0.1 |0.5| 1.0 0.1 |0.5| 1.0 1.0
Biot modulus N [Pa] ∞ ∞ ∞

Maximal inflow rate q⋆ [m2/s] −1.25 −0.175 [–]
Final time T [s] 1.0 1.0 86400 (= 10 [days])

Time step size τ [s] 1e−1 1e−1 3600 (= 1 [hours])
Absolute tolerance εa 1e−8 1e−8 1e−3
Relative tolerance εr 1e−8 1e−8 1e−6

Physical and numerical parameters. For the constitutive laws, governing saturation and permeability, we use the van
Genuchten–Mualem model [4], defining

sw(pw) =

{
(1 + (−avGpw)nvG )

−
nvG−1
nvG , pw ≤ 0,

1 , else,
kw(sw) =

kabs
µw

√
sw

⎛⎝1 −

(
1 − s

nvG
nvG−1
w

) nvG−1
nvG

⎞⎠2

, sw ∈ [0, 1],

where avG and nvG are model parameters associated to the inverse of the air suction value and pore size distribution,
respectively, kabs is the intrinsic absolute permeability and µw is the dynamic fluid viscosity.

Values chosen formodel parameters andnumerical parameters are displayed in Table 1. The parameters have been chosen
such that the initial saturation is sw,0 = 0.4 in Ω and a region of full saturation (sw = 1) is developed after seven time
steps. Furthermore, the constitutive laws for saturation and permeability are Lipschitz continuous with respect to pressure
(with Ls = 0.12). We consider three different, realistic values for the Biot coefficient α, all relevant for applications with
unsaturated, deformable materials [2]. They control the coupling strength and thereby whether the Richards equation or
the nonlinear coupling terms determine the character of the numerical difficulties. The simulation result at final time t = 1
for strong coupling (α = 1.0) and P0 × RT0 × P1 is illustrated exemplarily in Fig. 3.
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Fig. 3. Simulation results for test case I (Lipschitz continuous permeability) solved with P0 × RT0 × P1 for α = 1.0: Saturation, normal stresses σx , σy and
shear stress τxy at time t = 1.

Table 2
Abbreviations for methods (top) and additional stabilizations (bottom).

Abbreviation Explanation

Newton Monolithic Newton’s method
FS-Newton Fixed-Stress-Newton method
FS-MP Fixed-Stress-Modified-Picard method
FSL Fixed-Stress-L-scheme with L = Ls , βFS = β

phy
FS

FSL/2 Fixed-Stress-L-scheme with L =
1
2 Ls , βFS =

1
2β

phy
FS

AA(m) Anderson acceleration with m + 1 reused iterations

Table 3
Performance for test case I with different coupling strengths (α = 0.1, 0.5, 1.0), for P0 × RT0 × P1 and P0 × RT0 × P2 . Average number of (nonlinear)
iterations per time step for Newton’s method, the Fixed-Stress-Newtonmethod, the Fixed-Stress-Modified-Picard method and the Fixed-Stress-L-scheme;
both plain and coupled with Anderson acceleration for different depths (m = 1, 3, 5, 10). Minimal numbers per linearization type and Biot coefficient
are in bold. Numbers of iterations equal for P0 × RT0 × P1 and P0 × RT0 × P2 , if not noted differently.

P0 × RT0 × P1 / P0 × RT0 × P2

Linearization Newton FS-Newton FS-MP FSL FSL/2

Biot coeff. α 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0

AA(0) 5.3 5.1 5.0 6.0 8.3 10.6 18.2 18.2 16.7 23.2 21.2 18.9 46.8 41.4 41.1
AA(1) 6.1 6.0 6.0 6.2 7.6 8.9 15.8 15.5 15.7 21.2 19.7 17.7 17.4 17.3 17.3
AA(3) 7.4 7.4 7.5 7.4 7.7 8.5 13.4 13.6 13.5 16.1 15.3 15.0 14.3 14.5 14.7
AA(5) 8.3 8.1 8.2 7.9 7.9a 8.4 13.1 12.8 12.5 14.9 14.6 14.3 13.3 13.5 13.6
AA(10) – – – – – – 12.8 12.5 12.3 14.4 14.3 14.1 13.3 13.1 13.4

a 8.0 for P0 × RT0 × P2 .

Performance of linearization schemes. We consider the four linearization schemes introduced in Section 4, coupled with
Anderson acceleration as post-processing. Furthermore, motivated by the theoretical convergence result, cf. Theorem 3, we
employ the Fixed-Stress-L-schemewith half sized stabilization parameter. Abbreviations used in this section are introduced
in Table 2.

We use the average number of iterations per time step as measure for performance, cf. Table 3, which is a reasonable
measure due to the insignificant, additional cost for the application of Anderson acceleration for small depth. In particular,
we disregard the use of CPU time as performance measure due to a not finely-tuned implementation. We just note, that a
single iteration of a splitting method is significantly faster than a single monolithic Newton iteration.

First of all, despite the requirement of Theorem 3 for an inf–sup stable discretization, the number of iterations per time
step for P0 ×RT0 ×P1 and P0 ×RT0 ×P2 is virtually the same. Only for a single setting a slight, but not significant difference
can be observed. Next, all plain linearization schemes (AA(0)) succeed to converge for all three coupling strengths. This is
consistent with Remark 5, demonstrating that the nonlinear Biot equations do not adopt the degeneracy of the Richards
equation and remain parabolic in a fully saturated regime. Not surprisingly, the monolithic Newton method requires fewest
iterations. So at first impression, it seems to be the preferred method. However, as stressed above, on larger scale, a fixed-
stress type iterative solver or another advanced monolithic solver is required for efficient solution independent of the
coupling strength, i.e., additional costs are hidden. On the other hand, the remaining linearization schemes allow separate
simulators from the beginning. As the Fixed-Stress-L-scheme does not utilize an exact evaluation of derivatives, the Fixed-
Stress-Newton method and the Fixed-Stress-Modified-Picard method perform better for all three coupling strengths. Solely
the performance of the Fixed-Stress-Newtonmethod showsweak dependence on the coupling strength, having the character
of Newton’s method and a Picard-type method for weak and strong coupling, respectively. The remaining methods show
improved convergence behavior for increasing coupling strength, due to the decreasing numerical complexity of the problem
itself following from Remark 5.

When applying Anderson acceleration, we observe that Anderson acceleration slows down the convergence of the
monolithic Newton method, which is consistent with considerations in Section 6. In contrast, Anderson acceleration speeds
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Fig. 4. Simulation results for test case II (Hölder continuous permeability) solved with P0 × RT0 × P1 for α = 1.0: Saturation, normal stresses σx , σy and
shear stress τxy at time t = 1.

up significantly the convergence of the Picard-type methods (Fixed-Stress-L-scheme and the variation FSL/2, and Fixed-
Stress-Modified-Picard). We recall the insignificant, additional cost for the application of Anderson acceleration for small
depth. Largest acceleration effect can be seen for largest considered depth. For the Fixed-Stress-Newton method, the effect
of Anderson acceleration depends on the numerical character of the problem. This is due to the fact, that for weak coupling,
the method is essentially identical with Newton’s method.

Regarding the Fixed-Stress-L-scheme, according to Theorem 3, optimally, the diagonal stabilization parameter has to
be chosen as small as possible. However, smaller values do not necessarily lead to faster convergence, as can be observed
by comparing the plain Fixed-Stress-L-scheme and the plain FSL/2-scheme. Yet when utilizing Anderson acceleration,
robustness with respect to the tuning parameter is increased, and eventually the FSL/2-scheme converges faster than the
Fixed-Stress-L-scheme. In particular, it performs as good as the Fixed-Stress-Modified-Picard method.

Without presenting any detailed numerical results, when repeating the test case with lower time step size, we observe a
small quantitative change for the average number of iterations (e.g., on the order of 20% savings in iterations per time step
for τ = 0.01). Though the total number of iterations might increase. The qualitative discussion of the merits of the different
nonlinear solvers remains largely unchanged.

All in all, the theory has been confirmed. The Fixed-Stress-L-scheme converges despite the simple linearization approach
even for the lowest-order discretization P0 ×RT0 ×P1 and Anderson acceleration is able to accelerate Picard-type schemes.
Moreover, the latter has been shown to stabilize the Fixed-Stress-L-scheme. It allows to choose a smaller tuning parameter,
leading to improved convergence behavior. Considering the cost per iteration, despite some additional iterations, we finally
recommend the use of the Fixed-Stress-Newton method with Anderson acceleration with low depth. It is cheap and allows
separate simulators. For strongly coupled problems or in the absence of exact derivatives, the Fixed-Stress-L-scheme with
small tuning parameters is an attractive alternative to the Fixed-Stress-Newton method.

8.2. Test case II — Injection in homogeneous 2D medium with Hölder continuous permeability

In the following, we reveal limitations of the considered linearization schemes. Moreover, we demonstrate the stabiliza-
tion property of Anderson acceleration, allowing non-convergentmethods to converge. For this purpose,we repeat test case I
with modified physical parameters. In particular, we choose the saturation to be Lipschitz continuous with same Lipschitz
constant as in test case I. In contrast, the permeability is chosen to be only Hölder continuous. Hence, the derivative becomes
unbounded in the transition between partial and full saturation, causing potential trouble for the Newton-type methods.
Again, we choose the initial pressure and the maximal inflow rate such that sw,0 = 0.4 and a region of full saturation
(sw = 1) is developed after seven time steps. The simulation result at final time t = 1 for strong coupling (α = 1.0) and
P0 × RT0 × P1 is illustrated in Fig. 4.

Asmentioned in Remark 4, due to lack of regularity for the permeability, each of the consideredmethods faces difficulties.
For Newton-type methods (Newton, Fixed-Stress-Newton), the derivative of the permeability is evaluated, which might
be unbounded. Effectively, for the Fixed-Stress-L-scheme, this also means that LK → ∞ or in practice LK becomes very
large. Hence, by Theorem 3, the time step size has to be chosen sufficiently small or possibly L has to be chosen larger to
guarantee convergence. We note that for chosen initial saturation the permeability is significantly lower than for test case I.
Consequently, the theoretical convergence rate for the plain Fixed-Stress-L-scheme (13)–(15) deteriorates. Due to round off
errors stagnation is possible.

Performance of linearization schemes. The average number of iterations per time step is presented in Table 4, both for
P0 ×RT0 ×P1 and P0 ×RT0 ×P2. This timewe observe slightly different results for the different discretizations. But overall,
for both discretizations, the results follow same trends. Again, the lack of inf–sup stability does not show to be a serious
issue, cf. Theorem 3. In contrast to test case I, not all plain linearization schemes (AA(0)) converge. For weak coupling, all
Newton-like methods (Newton, Fixed-Stress-Newton) diverge with the Fixed-Stress-Newton method being slightly more
robust due to added fixed-stress stabilization. The Fixed-Stress-L-scheme stagnates and shows to be slightly more robust
than the Newton-type methods. The Fixed-Stress-Modified-Picard method is least robust and stagnates already after three
time steps. For strong coupling, all methods converge, which is consistent with Remark 5. If convergent, the schemes sorted
by required number of iterations are the monolithic Newton method, the Fixed-Stress-Newton method, the Fixed-Stress-
Modified-Picard and the Fixed-Stress-L-scheme, meeting our expectations.
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Table 4
Performance for test case II with different coupling strengths (α = 0.1, 0.5, 1.0), for P0 ×RT0 × P1 and P0 ×RT0 × P2 . Average number of (nonlinear)
iterations per time step for Newton’s method, the Fixed-Stress-Newtonmethod, the Fixed-Stress-Modified-Picard method and the Fixed-Stress-L-scheme;
both plain and coupled with Anderson acceleration for different depths (m = 1, 3, 5, 10). Minimal numbers per linearization type and Biot coefficient
are in bold. Failing linearization due to stagnation at time step n is marked by → [n]. Failing linearization due to divergence at time step n is marked by
↗ [n].

Linearization Newton FS-Newton FS-MP FSL FSL/2

Biot coeff. α 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0

P0 × RT0 × P1

AA(0) ↗ [8] 8.5 8.1 ↗ [9] 13.2 19.1 → [3] 36.9 55.0 → [9] 126.9 134.9 → [8] → [9] → [10]
AA(1) 10.7 9.4 → [8] 11.0 11.8 14.6 45.2 34.2 33.8 133.6 84.0 83.2 → [9] 68.5 65.1
AA(3) 17.2 11.7 → [8] 15.6 12.1 13.0 30.5 26.9 28.1 68.3 54.3 56.9 48.4 37.9 35.5
AA(5) 24.8 13.9 → [8] 23.3 13.1 13.2 29.2 24.7 23.5 62.4 48.7 44.9 43.4 34.8 32.7
AA(10) 33.3 18.4 → [8] 43.0 14.7 13.8 29.8 23.5 23.5 52.6 42.6 42.5 39.3 31.8 29.2

P0 × RT0 × P2

AA(0) ↗ [8] 8.4 8.7 ↗ [9] 13.2 18.9 → [3] 36.8 53.9 → [9] 126.9 133.1 → [8] → [9] → [10]
AA(1) 10.7 9.4 12.9 11.1 11.7 14.5 45.2 34.2 33.9 133.6 84.4 85.2 → [9] 65.6 64.3
AA(3) 16.2 11.8 → [8] 15.2 12.2 12.9 30.5 27.0 27.7 68.3 55.3 53.6 48.4 37.8 35.5
AA(5) 18.5 14.0 → [8] 45.6 13.2 13.1 29.1 24.7 25.2 61.5 49.2 46.4 43.4 35.0 32.4
AA(10) 36.7 17.8 → [8] ↗ [9] 14.8 13.9 30.1 23.7 23.4 52.3 42.7 41.9 39.3 32.1 28.8

By utilizing Anderson acceleration, convergence can be observed for all coupling strengths and all linearization schemes
besidesNewton’smethod forα = 1. In particular, all previously failing schemes converge. This confirms the possible increase
of robustness by Anderson acceleration, postulated in Section 7. Similar observations as before are made for the splitting
schemes under Anderson acceleration. All in all, the theory has been confirmed.

As before, for increasing depth, the performance of Newton’s method deteriorates. For strong coupling stagnation is
observed. For weak coupling, for several time steps practical stagnation is observed with eventual convergence after a
very large number of iterations. This is consistent with the fact that Anderson acceleration can also lead to divergence for
increasing depth [30]. Hence, Anderson acceleration has to be applied carefully for the monolithic Newton method.

Motivated by test case I, we apply the Fixed-Stress-L-scheme with a decreased tuning parameter. For this test case, the
plain FSL/2-scheme fails for all coupling strengths. As the FSL/2-scheme is a priori less robust as the Fixed-Stress-L-scheme,
this has been expected. Utilizing Anderson acceleration, the FSL/2-scheme eventually converges. In particular, convergence
is always faster than for the corresponding Fixed-Stress-L-scheme. This again demonstrates the ability of the Anderson
acceleration to increase robustness and to relax assumptions for practical convergence.

According to the theory for the Fixed-Stress-L-scheme, a larger tuning parameter or a lower time step size could enable
convergence, e.g., for α = 0.1, AA(0). However, we do not consider those strategies here, as they lead to worse convergence
rates and utilizing Anderson acceleration should be anyhow preferred.

Concerning the best splitting method, we again recommend the use of the Fixed-Stress-Newton method combined with
Anderson acceleration with low depth. It is cheap, robust and allows separate simulators.

8.3. Test case III — Unsteady seepage flow through a 2D homogeneous levee

Finally, we consider a test case challenging all linearization schemes, in particular Newton’s method. The purpose of this
example is again the demonstration of the ability of Anderson acceleration to recover reliably convergence for the splitting
methods. We consider unsteady seepage flow through a simple, two-dimensional, homogeneous levee, enforced by a flood.
The levee consists of a lower and an upper part (lower 5 [m] and upper 10 [m], respectively), cf. Fig. 5. Initially, the water
table lies at the interface between lower and upper parts. The initial fluid pressure is a hydrostatic pressure with p = 0 at
the water table. The reference configuration, defined by the domain, is initially already consolidated under the influence of
gravity. As u is the deviation of the reference configuration, effectively, no gravity is applied in the mechanics equation, but
only in the flow equations.

Over time, on the left hand side of the levee, the water table rises with constant speed for four days and remains constant
for the next six days, defining h(t) = 2t [m/days], t ≤ 4 [days], and h(t) = 8 [m], 4 [days] ≤ t ≤ 10 [days]. Below h(t) on the
left, a hydrostatic pressure boundary condition is applied. On the right side, we apply approximate seepage face boundary
conditions, based on the previous time step; i.e., given a fully saturated cell at the previous time step, a pressure boundary
condition p = 0 is applied on corresponding boundary for the next time step, otherwise a no-flow boundary condition is
applied for the volumetric flux. On the remaining boundary, no-flow boundary conditions are applied for all time. For the
mechanics, no displacement in normal direction is assumed on the boundary of the lower part of the levee. On the boundary
of the upper part and the interface, zero effective stress is applied. The boundary conditions are visualized in Fig. 5.

Physical and numerical parameters. The domain is discretized by a regular, unstructured, simplicialmeshwith approximately
67,000 elements and 201,000 nodes. The test cases in Sections 8.1 and 8.2 have shown that the choice of the discretizations
P0 × RT0 × P1 or P0 × RT0 × P2 does not influence the performance of the linearization schemes. Hence, for this test case,
for computational reasons, we present the results only for the lowest-order discretization P0 × RT0 × P1.
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Fig. 5. Domain, boundary and initial conditions for test case III.

Fig. 6. Simulation result for test case III. Saturation for the deformed material at time t = 0 [days], 2.5 [days], 5 [days], 10 [days]. Direction and intensity
of deformation also indicated by arrows.

Compared to the previous test cases, we employmore realistic material parameters. Values chosen for model parameters
and numerical parameters are displayed in Table 1. We note, the resulting permeability is only Hölder continuous. The
saturation history and deformation at four times is displayed in Fig. 6. We observe steep saturation gradients during the
flooding. Furthermore, both consolidation and swelling can be observed. All in all, the levee is pushed to the right.

Performance of linearization schemes. We consider the same linearization schemes as in the previous test cases, all but FSL,
i.e., the Fixed-Stress-L-scheme with L = Ls and βFS = β

phy
FS . Based on previous observations, we expect FSL/2 coupled with

Anderson acceleration to be more efficient than FSL. The average number of iterations per time step is presented in Table 5.
First of all, we observe that all plain linearization schemes fail in the same phase of the simulation (after around 50 time
steps). The reason for that lies mainly in the steep saturation gradients. As before, Anderson acceleration can remedy the
failure of convergence. However, for this test case, the simple combination of Newton’s method and Anderson acceleration
does not converge for any considered depth. Indeed, Newton’s method combined with AA(1) is not convergent, and for
increasing depth the robustness decreases again, which is consistent with observations from the previous test cases. For the
remaining linearization schemes convergence can be recovered. In particular, the Fixed-Stress-Newton method combined
with AA(1) converges with the least amount of iterations. The Picard-type methods are slower, but show again more
robustness with respect to increasing depth, whereas the Fixed-Stress-Newton method diverges eventually for m = 10.
Here, the Picard type methods require at least depth m = 3 for successful convergence. After all, we conclude that the
diagonal stabilization is essential for the success of the linearization schemes. The stabilization is added via both the fixed-
stress splitting scheme and the L-scheme. Consequently, we expect also the monolithic Newton method to be convergent
when adding sufficient diagonal stabilization.

9. Concluding remarks

In this paper, we have proposed three different linearization schemes for nonlinear poromechanics of unsaturated
materials. All schemes incorporate the fixed-stress splitting scheme and allow the efficient and robust decoupling of
mechanics and flow equations. In particular, the simplest scheme, the Fixed-Stress-L-scheme, employs solely constant
diagonal stabilization. It has been derived as L-scheme linearization of the Biot equations reduced to a pure pressure
formulation. Under mild, physical assumptions, also needed for the mathematical model to be valid, it has been rigorously
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Table 5
Performance for test case III. Average number of (nonlinear) iterations per time step for Newton’s method, the Fixed-Stress-Newton method, the Fixed-
Stress-Modified-Picard method and the Fixed-Stress-L-scheme; both plain and coupled with Anderson acceleration for different depths (m = 1, 3, 5, 10).
Minimal numbers per linearization type are in bold. Failing linearization due to stagnation at time step n is marked by → [n]. Failing linearization due to
divergence at time step n is marked by ↗ [n].

P0 × RT0 × P1

Linearization Newton FS-Newton FS-MP FSL/2

AA(0) ↗ [56] → [57] → [48] → [48]
AA(1) → [165] 10.2 → [86] → [73]
AA(3) → [90] 11.4 18.1 33.2
AA(5) → [87] 10.6 16.9 30.2
AA(10) → [87] → [87] 16.0 28.3

shown to be a contraction. This has been also verified numerically. In particular, the numerical examples have shown that the
choice of the discretizations P0×RT0×P1 or P0×RT0×P2, and by inference, the inf–sup properties of the discretizations, do
not influence the performance of the linearization schemes. Exploiting the derivation of the Fixed-Stress-L-scheme allows
modifications including first order Taylor approximations. In this way, we have introduced the Fixed-Stress-Modified-Picard
and the Fixed-Stress-Newton method.

The derivation of the Fixed-Stress-L-scheme provides two particular side products. First, it reveals the close relation of
the L-scheme and the fixed-stress splitting scheme. Second, the nonlinear Biot equations can be shown to be parabolic in
the pressure variable. This holds in particular in the fully saturated regime unlike for the Richards equation.

The theoretical convergence rate of the Fixed-Stress-L-scheme might deteriorate for unfavorable situations, leading
to slow convergence or even stagnation in practice. Similarly, the Fixed-Stress-Modified-Picard and Fixed-Stress-Newton
methods are prone to diverge for Hölder continuous nonlinearities. In order to accelerate or recover convergence, we
apply Anderson acceleration, which is a post-processing, maintaining the decoupled character of the underlying splitting
methods. The general increase of robustness and acceleration of convergence via the Anderson acceleration has been
justified theoretically considering a special linear case. To our knowledge, this is the first theoretical indication of this kind,
considering non-contractive fixed-point iterations.

In practice, Anderson acceleration has shown to be very effective for the considered Picard-type methods, confirming
the theoretical considerations. We note also that Anderson acceleration can possibly be used to recover convergence for a
diverging Newton method. However, no increase in speed can be expected with increasing depth, but rather performance
deterioration. Hence, Anderson acceleration should not be used per se, but an adaptive choice should be made. After all
the standard Newton method has to be used with care. Instead, we recommend to use splitting schemes with Anderson
acceleration as they have been demonstrated to be very robust, even for Hölder continuous nonlinearities. In particular, the
Fixed-Stress-Newton method together with the Anderson acceleration showed best performance. However, it also requires
the most fine tuning regarding the depth for the Anderson acceleration. If derivatives are not available, we recommend the
combination of the Fixed-Stress-L-schemewith a decreased tuning parameter.Without Anderson acceleration, convergence
might not be guaranteed. Including it, does not only recover but it also significantly accelerates convergence. This is
interesting, as the optimal tuning parameter is not necessarily known a priori and can be more safely approached under
the use of Anderson acceleration.

As outlook, with focus on large scale applications, the performance of the linearization schemes should be analyzed under
the use of parallel, iterative solvers; in particular, as due to added stabilization, the arising linear systems are expected to be
better conditioned than for the monolithic Newton method. Additionally, Anderson acceleration should be further studied
in the context of possibly non-contractive fixed point iterations. Examples are (i) the linearization of degenerate problems
including Hölder continuities, which are known to be difficult to solve [23], and (ii) numerical schemes employing a tuning
parameter. Based on the numerical results in this paper, the approach seems very promising.
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Appendix A. Convergence proof of abstract L-scheme

We present the proof of Lemma 1 showing convergence of the L-scheme (27) as linearization for Eq. (26). The proof is
essentially the same as given by [22], but now written for an algebraic problem.

Proof of Lemma 1. Let eip = pi
− p, i ∈ N. Then taking the difference of Eqs. (27) and (26) yields

Lpp
(
eip − ei−1

p
)
+
(
b(pi−1) − b(p)

)
+ τDK(pi−1)D⊤eip + τD

(
K(pi−1) − K(p)

) (
fq + D⊤p

)
= 0.
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Multiplying with eip and applying elementary algebraic manipulations, yields

L
2

eip2Mpp
+

L
2

eip − ei−1
p

2
Mpp

−
L
2

ei−1
p

2
Mpp

(A.1)

+
⟨
b(pi−1) − b(p), ei−1

p
⟩

(A.2)

+
⟨
b(pi−1) − b(p), eip − ei−1

p
⟩

(A.3)

+ τ
⟨
K(pi−1)D⊤eip ,D

⊤eip
⟩

(A.4)

+ τ
⟨(
K(pi−1) − K(p)

) (
fq + D⊤p

)
,D⊤eip

⟩
= 0. (A.5)

By employing (L1), we obtain for the term (A.2)⟨
b(pi−1) − b(p), ei−1

p
⟩
≥

1
Lb

b(pi−1) − b(p)
2
M−1

pp
. (A.6)

By employing the Cauchy–Schwarz inequality and Young’s inequality, we obtain for the term (A.3)⟨
b(pi−1) − b(p), eip − ei−1

p
⟩
≥ −

1
2L

b(pi−1) − b(p)
2
M−1

pp
−

L
2

eip − ei−1
p

2
Mpp

. (A.7)

By employing Assumption (L2), we obtain for the term (A.4)⟨
K(pi−1)D⊤eip ,D

⊤eip
⟩
≥ km

D⊤eip
2
M−1

qq
. (A.8)

By employing Cauchy–Schwarz, Young’s inequality, Assumptions (L2)–(L3), we obtain for the term (A.5)⟨(
K(pi−1) − K(p)

) (
fq + D⊤p

)
,D⊤eip

⟩
≥ −

1
2km

M−1
qq (fq + D⊤p)

2
∞

(K(pi−1) − K(p))Mqq

2
Mqq,∞

−
km
2

D⊤eip
2
M−1

qq

≥ −
1

2km
q2

∞
L2K
b(pi−1) − b(p)

2
M−1

qq
−

km
2

D⊤eip
2
M−1

qq
. (A.9)

Inserting Eqs. (A.6)–(A.9) into Eqs. (A.1)–(A.5), yields(
1
Lb

−
1
2L

− τ
q2

∞
L2K

2km

)b(pi−1) − b(p)
2
M−1

pp
+

L
2

eip2Mpp
+ τ

km
2

D⊤eip
2
M−1

qq
≤

L
2

ei−1
p

2
Mpp

. (A.10)

Assuming 1
Lb

−
1
2L − τ

q2∞L2K
2km

≥ 0 and applying an algebraic Poincaré inequality, introducing a Poincaré constant CΩ , yields
the final result. □

Appendix B. Auxiliary lemmas for convergence of Fixed-Stress-L-scheme

Before proving Lemma 2, we show that b is in some sense bi-Lipschitz continuous.

Lemma 7. Let Assumptions (F1)–(F2) be satisfied. Furthermore, assumeWh ×Zh ×Vh yields an inf–sup stable discretization. Then
for b as defined in Eq. (25), there exist mesh-independent constants lb, Lb ∈ R+ satisfying for all p, p̃ ∈ Pφ≥0

lb∥p − p̃∥
2
Mpp

≤
⟨
b(p) − b(p̃), p − p̃

⟩
≤ Lb∥p − p̃∥

2
Mpp

.

Proof. As b ∈ C1(Rnp;Rnp ), with Jacobian Db(p) ∈ Rnp×np , p ∈ Rnp , andMpp is a diagonal matrix, it holds

sup
p,p̃∈Pφ≥0

p ̸=p̃

⟨
b(p) − b(p̃), p − p̃

⟩
∥p − p̃∥

2
Mpp

= sup
p∈Pφ≥0,h∈Rnp \{0}

p+h∈Pφ≥0

⟨Db(p)h,h⟩

∥h∥
2
Mpp

= sup
p∈Pφ≥0,h∈Rnp \{0}

p+h∈Pφ≥0

⟨
M−1/2

pp Db(p)M
−1/2
pp h,h

⟩
∥h∥2 . (B.1)

Employing the properties of b, and making use of the specific choice of the equivalent pore pressure (5), the Jacobian of b is
given by

Db(p) =

⎡⎢⎣s′(p1)φ1(p)
. . .

s′(pnp )φnp (p)

⎤⎥⎦+ α2Spp(p)DpuA−1
uu D

⊤

puSpp(p)
⊤

+
1
N
Spp(p)MppSpp(p)

⊤. (B.2)

Hence, Db(p) = Db(p)⊤ for all p ∈ Pφ≥0 with eigenvalues greater than or equal to zero. After all, the largest value for the
Rayleigh quotient (B.1) is given by the largest eigenvalue ofM−1/2

pp Db(p)M
−1/2
pp maximized over p ∈ Pφ≥0. The components of

the porosity vectorφ are by assumption positive. Additionally, due to stability ofWh×Zh×Vh,DpuA−1
uu D⊤

pu is norm equivalent
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with Mpp. Hence, also Db(p) is norm equivalent with the standard mass matrix with mesh-independent bounds. Together
with employing the assumptions, we see there exists a largest eigenvalue Lb ∈ R+ of M−1/2

pp DbM
−1/2
pp independent of the

mesh. Analogously, it holds

inf
p,p̃∈Pφ≥0

p ̸=p̃

⟨
b(p) − b(p̃), p − p̃

⟩
∥p − p̃∥

2
Mpp

= inf
p∈Pφ≥0,h∈Rnp \{0}

p+h∈Pφ≥0

⟨
M−1/2

pp Db(p)M
−1/2
pp h,h

⟩
∥h∥2

with the value given by the smallest eigenvalue lb of M
−1/2
pp Db(p)M

−1/2
pp minimized over p ∈ Pφ≥0. From above discussion it

follows that lb ∈ R+ is mesh-independent. All in all, the proposed thesis follows. □

Proof of Lemma 2. First, we show (28). From Lemma 7, it follows, b is invertible and Db is symmetric. Using the Inverse
Function theorem, it holds

sup
p,p̃∈Pφ≥0

p ̸=p̃

∥b(p) − b(p̃)∥2
M−1

pp⟨
b(p) − b(p̃), p − p̃

⟩ = sup
b−1(p),b−1(p̃)∈Pφ≥0

p ̸=p̃

∥p − p̃∥
2
M−1

pp⟨
b−1(p) − b−1(p̃), p − p̃

⟩

=

⎡⎢⎣ inf
b−1(p),b−1(p̃)∈Pφ≥0

p ̸=p̃

⟨
b−1(p) − b−1(p̃), p − p̃

⟩
∥p − p̃∥

2
M−1

pp

⎤⎥⎦
−1

= sup
p,p̃∈Pφ≥0

p ̸=p̃

⟨
b(p) − b(p̃), p − p̃

⟩
∥p − p̃∥

2
Mpp

.

Analogously for the infimum. By Lemma 7, (L1) holds. Indeed, it follows for all p, p̃ ∈ Pφ≥0

lb
⟨
b(p) − b(p̃), p − p̃

⟩
≤ ∥b(p) − b(p̃)∥2

M−1
pp

≤ Lb
⟨
b(p) − b(p̃), p − p̃

⟩
. (B.3)

Next, we show (29). As the underlying permeability kw = kw(sw) is Lipschitz continuous, together with a scaling argument,
it follows, there exists a constant L̃K ∈ R+ satisfying

∥(K(p) − K(p̃))Mqq∥Mqq,∞ ≤ L̃K∥Spp(p) − Spp(p̃)∥Mpp,∞.

Furthermore, as sw = sw(p) is Lipschitz continuous, and Spp is a diagonal matrix, there exists a constant Ls ∈ R+ satisfying

∥Spp(p) − Spp(p̃)∥Mpp,∞ ≤ Ls∥p − p̃∥Mpp .

All in all, with Lemma7 and inequality (B.3), Eq. (29) followswith LK = L̃KLsl−2
b . Eq. (30) follows directly fromAssumption (F3)

together with a scaling argument. □

Appendix C. Proof for contraction of AA⋆(1)

Proof of Lemma 4. First, an iteration-dependent error propagation matrix is derived, and second, an upper bound for its
spectral radius is computed. For this purpose, we ignore Assumption (C4) for a moment.

Iterative error propagation. As we intend to relate ei+4 with ei, we explicitly write out the first four iterates and the
corresponding errors. Given xi, by using b = x⋆

− Ax⋆ and xi − xi+1
= ei − ei+1, we obtain

xi+1
= Axi + b, ei+1

= Aei, (C.1)

xi+2
= Axi+1

+ b + α(i+1)A(xi − xi+1), ei+2
= Aei+1

+ α(i+1)A(ei − ei+1), (C.2)

xi+3
= Axi+2

+ b, ei+3
= Aei+2, (C.3)

xi+4
= Axi+3

+ b + α(i+3)A(xi+3
− xi+2), ei+4

= Aei+3
+ α(i+3)A(ei+2

− ei+3). (C.4)

By plugging all together, we obtain

ei+4
= A(A + α(i+3)(I − A))A(A + α(i+1)(I − A))ei.

It suffices to bound the largest eigenvalue of the error propagation matrix A(A + α(i+3)(I − A))A(A + α(i+1)(I − A)). From
Assumption (C2) it follows that {vj}j defines an orthogonal basis of eigenvectors for the error propagation matrix with
corresponding eigenvalues {λ̃j}j defined by

λ̃j = λ2
j (λj + α(i+1)(1 − λj))(λj + α(i+3)(1 − λj)). (C.5)
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Explicit definition of α(i+1) and α(i+3). Theminimization problem in Algorithm 2 can be solved explicitly, by solving adequate
normal equations. It follows, that

α(i+1)
=

(∆FP(xi+1) − ∆FP(xi)) · ∆FP(xi+1)
(∆FP(xi+1) − ∆FP(xi)) · (∆FP(xi+1) − ∆FP(xi))

.

After employing simple arithmetics and using Eq. (C.1), we obtain

∆FP(xi+1) = (A − I)xi+1
+ b = (A − I)ei+1

= (A − I)Aei = A(A − I)ei,
∆FP(xi+1) − ∆FP(xi) = (A − I)(xi+1

− xi) = (A − I)(ei+1
− ei) = (A − I)2ei.

Consequently, it holds

α(i+1)
=

((A − I)2ei) · (A(A − I)ei)
∥(A − I)2ei∥2 = êi · A(A − I)−1êi, (C.6)

where we define êi = (A − I)2ei/∥(A − I)2ei∥, satisfying ∥êi∥ = 1. Analogously, using Eqs. (C.1)–(C.4), we obtain

α(i+3)
=

((A − I)2ei+2) · (A(A − I)ei+2)
∥(A − I)2ei+2∥2 =

êi · A3(A − I)−1(A + α(i+1)(I − A))2êi

∥A(A + α(i+1)(I − A))êi∥2 . (C.7)

Decomposition of êi and useful computations. Employing the orthogonal eigenvector basis {vj}j, we can decompose êi =∑
jβjvj. As ∥êi∥ = 1 it holds

∑
jβ

2
j = 1. By inserting the decomposition into Eq. (C.6), we obtain

α(i+1)
=

∑
j

β2
j

λj

λj − 1
.

Hence, for the eigenvalues of A + α(i+1)(I − A) and also the second factor of Eq. (C.5), it follows

ηj(β) := λj + α(i+1)(1 − λj) =

∑
k̸=j

β2
k
λk − λj

λk − 1
, (C.8)

where β =
[
β1, . . . , βn

]⊤
∈ Rn. Hence, for the contribution in the denominator of Eq. (C.7), we obtain

A(A + α(i+1)(I − A))êi =

∑
j

βjλjηj(β)vj.

By plugging into Eq. (C.7) and using the orthogonality of {vj}j, we obtain for α(i+3)

α(i+3)
=

⎡⎣∑
j

β2
j λ

2
j ηj(β)2

⎤⎦−1 ⎡⎣∑
j

β2
j

λ3
j

λj − 1
ηj(β)2

⎤⎦ .

By employing some arithmetics, for the third factor of Eq. (C.5), it follows

λj + α(i+3)(1 − λj) =

[∑
k

β2
kλ

2
kηk(β)2

]−1
⎡⎣∑

k̸=j

β2
kλ

2
k
λk − λj

λk − 1
ηk(β)2

⎤⎦ . (C.9)

Resulting eigenvalues. By inserting Eqs. (C.8)–(C.9) into Eq. (C.5), we obtain for the eigenvalues of the iteration-dependent
error propagation matrix A(A + α(i+3)(A − I))A(A + α(i+1)(A − I))

λ̃j =

[∑
k

β2
kλ

2
kηk(β)2

]−1
⎡⎣λ2

j ηj(β)
∑
k̸=j

β2
kλ

2
kηk(β)2

λk − λj

λk − 1

⎤⎦ . (C.10)

Analysis for special decomposition. By Assumption (C4), the initial error is spanned by two orthogonal eigenvectors. Without
loss of generality let e0 ∈ span{v1, v2}. Then also êi ∈ span{v1, v2} and there exist β1, β2 ∈ R satisfying êi = β1v1 + β2v2
and β2

1 + β2
2 = 1. Consequently, Eq. (C.10) for j = 1 reduces to

λ̃1 = λ2
1λ

2
2(λ2 − λ1)2

(1 − γ )γ
(1 − γ )λ2

1(λ1 − 1)2 + γ λ2
2(λ2 − 1)2

,
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where γ = β2
1 ∈ [0, 1]. Maximizing the second factor with respect to γ ∈ [0, 1], results in the upper bound

|λ̃1| ≤
λ2
1λ

2
2(λ2 − λ1)2

(|λ1(λ1 − 1)| + |λ2(λ2 − 1)|)2
=: r(λ1, λ2).

Due to symmetry it holds |λ̃j| ≤ r(λ1, λ2), j = 1,2. Consequently, we obtain the result. □

References

[1] M. Biot, General theory of three-dimensional consolidation, J. Appl. Phys. 12 (2) (1941) 155–164.
[2] O. Coussy, Poromechanics, Wiley, 2004.
[3] J. Kim, H.A. Tchelepi, R. Juanes, Rigorous coupling of geomechanics and multiphase flow with strong capillarity, Soc. Pet. Eng. (2013).
[4] van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Am. J. 44 (5) (1980) 892–898.
[5] A. Settari, F. Mourits, A coupled reservoir and geomechanical simulation system, Soc. Pet. Eng. 3 (1998) 219–226.
[6] J.A. White, R.I. Borja, Block-preconditioned Newton–Krylov solvers for fully coupled flow and geomechanics, Comput. Geosci. 15 (4) (2011) 647.
[7] J. Kim, H.A. Tchelepi, R. Juanes, Stability, accuracy, and efficiency of sequential methods for coupled flow and geomechanics, Soc. Pet. Eng. (2011).
[8] A. Mikelić, M.F. Wheeler, Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci. 17 (3) (2013) 455–461.
[9] J.W. Both, M. Borregales, J.M. Nordbotten, K. Kumar, F.A. Radu, Robust fixed stress splitting for Biot’s equations in heterogeneous media, Appl. Math.

Lett. 68 (2017) 101–108.
[10] M. Bause, F.A. Radu, U. Köcher, Space–time finite element approximation of the Biot poroelasticity system with iterative coupling, Comput. Methods

Appl. Mech. Engrg. 320 (2017) 745–768.
[11] M. Borregales, K. Kumar, F.A. Radu, C. Rodrigo, F. José Gaspar, A parallel-in-time fixed-stress splitting method for Biot’s consolidation model, 2018.

arXiv:1802.00949 [math.NA].
[12] S. Dana, B. Ganis, M.F. Wheeler, A multiscale fixed stress split iterative scheme for coupled flow and poromechanics in deep subsurface reservoirs, J.

Comput. Phys. 352 (2018) 1–22.
[13] N. Castelletto, J.A.White, H.A. Tchelepi, Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics,

Int. J. Numer. Anal. Methods Geomech. 39 (14) (2015) 1593–1618.
[14] N. Castelletto, J.A. White, M. Ferronato, Scalable algorithms for three-field mixed finite element coupled poromechanics, J. Comput. Phys. 327 (2016)

894–918.
[15] J.A. White, N. Castelletto, H.A. Tchelepi, Block-partitioned solvers for coupled poromechanics: A unified framework, Comput. Methods Appl. Mech.

Engrg. 303 (2016) 55–74.
[16] J.H. Adler, F.J. Gaspar, X. Hu, C. Rodrigo, L.T. Zikatanov, Robust block preconditioners for Biot’s model, 2017. arXiv:1705.08842 [math.NA].
[17] F.J. Gaspar, C. Rodrigo, On the fixed-stress split scheme as smoother inmultigridmethods for coupling flow and geomechanics, Comput. Methods Appl.

Mech. Engrg. 326 (2017) 526–540.
[18] M. Slodicka, A robust and efficient linearization scheme for doubly nonlinear and degenerate parabolic problems arising in flow in porousmedia, SIAM

J. Sci. Comput. 23 (5) (2002) 1593–1614 https://doi.org/10.1137/S1064827500381860.
[19] I.S. Pop, F.A. Radu, P. Knabner,Mixed finite elements for the Richards’ equation: Linearization procedure, J. Comput. Appl.Math. 168 (1) (2004) 365–373.
[20] F.A. Radu, J.M. Nordbotten, I.S. Pop, K. Kumar, A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow

in porous media, J. Comput. Appl. Math. 289 (2015) 134–141.
[21] F.A. Radu, K. Kumar, J.M. Nordbotten, I.S. Pop, A robust, mass conservative scheme for two-phase flow in porous media including Hölder continuous

nonlinearities, IMA J. Numer. Anal. 38 (2) (2018) 884–920.
[22] F. List, F.A. Radu, A study on iterative methods for solving Richards’ equation, Comput. Geosci. 20 (2) (2016) 341–353.
[23] J.W. Both, K. Kumar, J.M. Nordbotten, I. Sorin Pop, F.A. Radu, Linear iterative schemes for doubly degenerate parabolic equations, 2018. arXiv:

1801.00846 [math.NA].
[24] D. Seus, K. Mitra, I.S. Pop, F.A. Radu, C. Rohde, A linear domain decomposition method for partially saturated flow in porous media, Comput. Methods

Appl. Mech. Engrg. 333 (2018) 331–355.
[25] M. Borregales, F.A. Radu, K. Kumar, J.M. Nordbotten, Robust iterative schemes for non-linear poromechanics, Comput. Geosci. (2018).
[26] M.A. Celia, E.T. Bouloutas, R.L. Zarba, A general mass-conservative numerical solution for the unsaturated flow equation, Water Resour. Res. 26 (7)

(1990) 1483–1496.
[27] D.G. Anderson, Iterative procedures for nonlinear integral equations, J. Assoc. Comput. Mach. 12 (4) (1965) 547–560.
[28] P. Lott, H. Walker, C. Woodward, U. Yang, An accelerated Picard method for nonlinear systems related to variably saturated flow, Adv. Water Resour.

38 (2012) 92–101.
[29] H. Fang, Y. Saad, Two classes of multisecant methods for nonlinear acceleration, Numer. Linear Algebra Appl. 16 (3) (2009) 197–221.
[30] H.F. Walker, P. Ni, Anderson acceleration for fixed-point iterations, SIAM J. Numer. Anal. 49 (4) (2011) 1715–1735.
[31] A. Toth, C.T. Kelley, Convergence analysis for Anderson acceleration, SIAM J. Numer. Anal. 53 (2) (2015) 805–819.
[32] C. Paniconi, M. Putti, A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems,

Water Resour. Res. 30 (12) (1994) 3357–3374.
[33] C. Rodrigo, X. Hu, P. Ohm, J.H. Adler, F.J. Gaspar, L. Zikatanov, New stabilized discretizations for poroelasticity and the Stokes’ equations, 2017.

arXiv:1706.05169 [math.NA].
[34] J.B. Haga, H. Osnes, H.P. Langtangen, On the causes of pressure oscillations in low-permeable and low-compressible porous media, Int. J. Numer. Anal.

Methods Geomech. 36 (12) (2012) 1507–1522.
[35] J. Both, U. Köcher, Numerical investigation on the fixed-stress splitting scheme for Biot’s equations: Optimality of the tuning parameter, 2018.

arXiv:1801.08352 [math.NA].
[36] J.B. Haga, H. Osnes, H.P. Langtangen, A parallel block preconditioner for large-scale poroelasticity with highly heterogeneous material parameters,

Comput. Geosci. 16 (3) (2012) 723–734.
[37] T. Arbogast, M. Obeyesekere, M.F. Wheeler, Numerical methods for the simulation of flow in root-soil systems, SIAM J. Numer. Anal. 30 (6) (1993)

1677–1702.
[38] T. Arbogast, M.F. Wheeler, N.-Y. Zhang, A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media,

SIAM J. Numer. Anal. (33) (1996) 1669–1687.
[39] F. Radu, I.S. Pop, P. Knabner, Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards’ equation, SIAM J.

Numer. Anal. 42 (4) (2004) 1452–1478.
[40] F.A. Radu, W. Wang, Convergence analysis for a mixed finite element scheme for flow in strictly unsaturated porous media, Nonlinear Anal. RWA 15

(2014) 266–275.



1502 J.W. Both, K. Kumar, J.M. Nordbotten et al. / Computers and Mathematics with Applications 77 (2019) 1479–1502

[41] R. Showalter, N. Su, Partially saturated flow in a poroelastic medium, Discrete Contin. Dyn. Syst. Ser. B 1 (4) (2001) 403–420.
[42] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger, O. Sander, A generic grid interface for parallel and adaptive scientific computing.

Part I: Abstract framework, Computing 82 (2) (2008) 103–119.
[43] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger, O. Sander, A generic grid interface for parallel and adaptive scientific

computing. Part II: Implementation and tests in DUNE, Computing 82 (2) (2008) 121–138.
[44] M. Blatt, A. Burchardt, A. Dedner, C. Engwer, J. Fahlke, B. Flemisch, C. Gersbacher, C. Gräser, F. Gruber, C. Grüninger, D. Kempf, R. Klöfkorn, T. Malkmus,

S. Müthing, M. Nolte, M. Piatkowski, O. Sander, The distributed and unified numerics environment, version 2.4, Arch. Numer. Softw. 4 (100) (2016)
13–29.



Paper G

On the optimization of the fixed-stress
splitting for Biot’s equations

Storvik, E., Both, J.W., Kumar, K., Nordbotten, J.M., and Radu, F.A.

International Journal for Numerical Methods in Engineering 120 (2019), pg. 179–194.

doi:10.1002/nme.6130





Received: 6 November 2018 Revised: 6 April 2019 Accepted: 23 May 2019

DOI: 10.1002/nme.6130

RE S EARCH ART I C L E

On the optimization of the fixed-stress splitting
for Biot's equations

Erlend Storvik1 JakubW. Both1 Kundan Kumar1,2 Jan M. Nordbotten1,3

Florin A. Radu1

1Department of Mathematics, University
of Bergen, Bergen, Norway
2Department of Mathematics and
Computer Science, Karlstad University,
Karlstad, Sweden
3Department of Civil and Environmental
Engineering, Princeton University,
Princeton, New Jersey

Correspondence
Florin A. Radu, Department of
Mathematics, University of Bergen,
Allégaten 41, 5007 Bergen, Norway.
Email: florin.radu@uib.no

Funding information
Norges Forskningsrád, Grant/Award
Number: 250223

Summary
In this work, we are interested in efficiently solving the quasi-static, linear Biot
model for poroelasticity. We consider the fixed-stress splitting scheme, which is
a popular method for iteratively solving Biot's equations. It is well known that
the convergence properties of the method strongly depend on the applied stabi-
lization/tuning parameter. We show theoretically that, in addition to depending
on the mechanical properties of the porous medium and the coupling coeffi-
cient, they also depend on the fluid flow and spatial discretization properties.
The type of analysis presented in this paper is not restricted to a particular spa-
tial discretization, although it is required to be inf-sup stable with respect to the
displacement-pressure formulation. Furthermore, we propose a way to optimize
this parameter that relies on the mesh independence of the scheme's opti-
mal stabilization parameter. Illustrative numerical examples show that using
the optimized stabilization parameter can significantly reduce the number of
iterations.

KEYWORDS

Biot model, convergence analysis, fixed-stress splitting, geomechanics, poroelasticity

1 INTRODUCTION

There is currently a strong interest in the numerical simulation of poroelasticity, ie, fully coupled porous media flow and
mechanics. This is due to its high number of societal relevant applications, such as geothermal energy extraction, life sci-
ences, or CO2 storage, to name a few. The most commonly used mathematical model for poroelasticity is the quasi-static,
linear Biot model. It is the coupled problem arising when considering the balance of linear momentum for the porous
medium allowing for only small deformations (1) and mass conservation and Darcy's law for the fluid flow (2) (see, eg,
the work of Coussy1): find (u, p) such that

−∇ · (2𝜇𝜺 (u) + 𝜆∇ · uI) + 𝛼∇p = f , (1)

𝜕
𝜕t

( p
M + 𝛼∇ · u

)
− ∇ · (𝜅 (∇p − g𝜌)) = S𝑓 , (2)

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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where u is the displacement; 𝜀 (u) ∶= 1
2

(
∇u + ∇u⊤) is the (linear) strain tensor; 𝜇 and 𝜆 are the Lamé parameters; 𝛼 is

the Biot-Willis constant; p and 𝜌 are the fluid's pressure and density, respectively; 1∕M is the compressibility constant; g is
the gravitational vector; and 𝜅 is the permeability. The source terms f and Sf represent the density of applied body forces
and a forced fluid extraction or injection process, respectively.
A lot of work has been done concerning the discretization of Biot's equations (1) and (2). Various spatial discretizations,

combined with the backward Euler method as temporal discretization, have been proposed and analyzed. We mention
cell-centered finite volumes,2 continuous Galerkin for the mechanics and mixed finite elements for the flow,3-6 mixed
finite elements for flow and mechanics,4,7 nonconforming finite elements,8 the MINI element,9 continuous or discon-
tinuous Galerkin,10-12 or multiscale methods.13-15 Continuous and discontinuous higher-order Galerkin space-time finite
elements were proposed in the work of Bause et al.16 Adaptive computations were considered, for example, in the work
of Ern andMeunier.17 AMonte Carlo approach was proposed in the work of Rahrah and Vermolen.18 For a discussion on
the stability of different spatial discretizations, we refer to the recent papers.19,20
Independently of the chosen discretization, there are two popular alternatives for solving Biot's equations: monolithi-

cally or by using an iterative splitting algorithm. The former has the advantage of being unconditionally stable, whereas
a splitting method is much easier to implement, typically building on already available, tailored, separate numerical
codes for porous media flow and for mechanics. However, a naive splitting of Biot's equations will lead to an unstable
scheme.21 To overcome this, one adds a stabilization term in either themechanics equation (the so-called undrained split-
ting scheme22) or the flow equation (the fixed-stress splitting scheme).23 The splitting methods have very good convergence
properties, making them a valuable alternative to monolithic solvers for simulation of the linear Biot model (see, eg, the
works of Both et al,5 Kim et al,21 Settari and Mourits,23 and Mikelić and Wheeler24). In the present work, we will discuss
the fixed-stress splitting scheme. For other splitting schemes, see, for example, the works of Turska and Schrefler25 and
Turska et al.26
After applying the backward Eulermethod in time to (1) and (2) and discretizing in space (using finite elements or finite

volumes), one has to solve a fully coupled, discrete systemat each time step. The fixed-stress splitting scheme is an iterative
splitting scheme to solve this system. Let i denote the iteration index, and look for a pair (ui, pi) to converge to the solution
(u, p), when i → +∞. Algorithmically, one first solves the flow equation (2) using the displacement from the previous
iteration, and then, one solves the mechanics equation (1) with the updated pressure and iterates until convergence is
achieved. To ensure convergence,5,21,24 one needs to add a stabilizing term L(pi − pi−1) to the flow equation (2). The
free-to-be-chosen parameter L ≥ 0 is called the stabilization or tuning parameter. Choosing the value of this parameter is
of major importance to the performance of the algorithm, because the number of iterations strongly depends on its value
(see the works of Both et al,5 Bause et al,16 Both and Köcher,27 Mikelić et al,28 and Dana et al29). Moreover, a too small or
too big L will lead to slow or no convergence.
The initial derivation of the fixed-stress splitting scheme had a physical motivation21,23: one “fixes the (volumetric)

stress,” ie, imposes Kdr∇ · ui − 𝛼pi = Kdr∇ · ui−1 − 𝛼pi−1 and uses this to replace 𝛼∇ · ui in the flow equation. Here, Kdr is
the physical drained bulk modulus. The resulting stabilization parameter L, called from now on the physical stabilization
parameter, is Lphys = 𝛼2

Kdr
(depending on the mechanical properties and the Biot coefficient). In 2013, a rigorous mathe-

matical analysis of the fixed-stress splitting schemewas performed for the first time in the work ofMikelić andWheeler.24
The authors show that the scheme is a contraction for any stabilization parameter L ≥ Lphys

2 . This analysis was confirmed
in the work of Both et al5 for heterogeneous media using a simpler technique, and the same result was obtained for both
continuous and discontinuous Galerkin higher-order space-time finite elements in theworks of Bause et al16 and Bause,30
implying that the value of the stabilization parameter does not depend on the order of the spatial discretization. The ques-
tion of which stabilization parameter is the optimal one (in the sense that it requires the least number of iterations to
converge) arises, and the aim of this paper is to answer this open question.
In a recent study,27 the authors studied the convergence of the fixed-stress splitting scheme for different test cases with

varying material parameters. They determined numerically the optimal stabilization parameter for each considered case.
This study, together with the previous results presented in the works of Mikelić et al28 and Both et al,5 suggests that
the optimal parameter actually is a value in the interval [ Lphys2 ,Lphys], depending on the data. In particular, the optimal
parameter depends on the problem's boundary conditions and flow parameters, and not only on its mechanical properties
and coupling coefficient. Nevertheless, to the best of our knowledge, there exists no theoretical evidence for this in the
literature so far.
In this paper, we propose for the first time that the optimal stabilization parameter for the fixed-stress splitting scheme

lies in the interval [ 𝛼2

4𝜇+2𝜆 ,
𝛼2

Kdr
) ⊇ [ Lphys2 ,Lphys) and depends also on the fluid flow properties and stability properties of
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the spatial discretization. This is achieved through refining the proof techniques in the work of Both et al5 to obtain an
improved linear rate of convergence; minimizing this rate with respect to the stabilization parameter gives the “theoreti-
cal” optimal choice. Although the trends for the practical and the proposed theoretically optimal stabilization parameter
are sound for varyingmaterial parameters, the theoretically calculated one does not show great practical promise in terms
of being optimal (see the work of Storvik et al31 for a supplementary numerical study). This is due to harsh bounds that
have been used in the proof. Therefore, we propose a brute-force approach for optimizing the stabilization parameter,
utilizing the newly found interval [ 𝛼2

4𝜇+2𝜆 ,
𝛼2

Kdr
).

In contrast to previous works, the spatial discretization is required to be inf-sup stable, which essentially allows for
the control of errors in the pressure by those in the stress. A novel consequence of our theoretical result is that under
the use of an inf-sup–stable discretization, the fixed-stress splitting scheme also converges robustly in the limit case of
incompressible fluids and impermeable porous media.
In Section 4, numerical experiments are performed, which show the soundness and efficiency of the proposed optimiza-

tion technique. In particular, we show that the optimized stabilization parameter can be far superior to a naive choice
among the classical stabilization parameters, Lphys or

Lphys
2 .

To summarize, the main contributions of this work are as follows:

• an improved, theoretical convergence result for the fixed-stress splitting scheme under the assumption of an
inf-sup–stable discretization;

• the derivation of an explicit interval for the optimal stabilization parameter, depending solely on the material
parameters;

• a brute-force approach for optimizing the stabilization parameter, relying on a nearly mesh-independent performance
of the fixed-stress splitting.

Wemention that the fixed-stress splitting scheme also can be applied tomore involved extensions of Biot's equations, for
example, including nonlinear water compressibility,32 unsaturated poroelasticity,33,34 themultiple-network poroelasticity
theory,35,36 finite-strain poroplasticity,37 fractured porous media,38 and fracture propagation.39,40 For nonlinear problems,
one combines a linearization technique, eg, the L-scheme,41,42 with the splitting algorithm; the convergence of the result-
ing scheme can be proved rigorously.32,33 Finally, we would like to mention some valuable variants of the fixed-stress
splitting scheme: the multirate fixed-stress method,43 the multiscale fixed-stress method,29 and the parallel-in-time
fixed-stress method.44
This paper is structured as follows. The notation, the discretization, and the fixed-stress splitting scheme are presented

in Section 2. The theoretical analysis of the convergence and the optimization technique are the subject of Section 3.
In Section 4, numerical experiments that test the optimization technique are presented. Finally, conclusions are given
in Section 5.

2 THE NUMERICAL SCHEME FOR SOLVING BIOT'S MODEL

In this paper, we use common notations in functional analysis. Let Ω ⊂ ℝd be a Lipschitz domain where d is the spatial
dimension. The space L2(Ω) is the Hilbert space of Lebesgue-measurable, square-integrable functions onΩ, andH1(Ω) is
the Hilbert space of functions in L2(Ω)with derivatives (in the weak sense) in L2(Ω). The inner product and its associated
norm in L2(Ω) are denoted by ⟨·, ·⟩ and || · ||, respectively, and || · ||H1(Ω) is the standardH1(Ω)-norm. Vectors and tensors are
written bold, and, sometimes, the scalar product and the norm will be taken for vectors and tensors. Vectorial functions
are written bold-italic. T will denote the final time.
Biot equations (1) and (2) are solved in the domain Ω × (0,T) together with (for simplicity) homogeneous Dirichlet

boundary conditions and a given initial condition. In time, the backwardEulermethod is appliedwith a constant time-step
size 𝜏 ∶= T

N ,N ∈ ℕ. Throughout this work, the index nwill refer to the time level. For the spatial discretization, a two-field
Galerkin finite element formulation is considered, and two generic discrete spaces Vh and Qh, associated with displace-
ments and pressures, are introduced. Later, we requireVh×Qh to be inf-sup stable with respect to the divergence operator;
the most prominent inf-sup–stable example is the Taylor-Hood element, ie, P2-P1 for displacement and pressure.45 Nev-
ertheless, the analysis below can be extendedwithout difficulties to a three-field formulation as, for example, in the works
of Phillips and Wheeler,3 Both et al,5 and Berger et al.6
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In this way, the fully discrete, weak problem reads: let n ≥ 1 and assume (un−1
h , pn−1h ) ∈ Vh × Qh are given. Find

(un
h, p

n
h) ∈ Vh × Qh such that

2𝜇
⟨
𝜺
(
un
h
)
, 𝜺 (vh)

⟩
+ 𝜆

⟨
∇ · un

h,∇ · vh
⟩
− 𝛼

⟨
pnh,∇ · vh

⟩
=
⟨
f n, vh

⟩
, (3)

1
M

⟨
pnh − pn−1h , qh

⟩
+ 𝛼

⟨
∇ ·

(
un
h − un−1

h
)
, qh

⟩
+ 𝜏

⟨
𝜅∇pnh,∇qh

⟩
− 𝜏 ⟨𝜅g𝜌,∇qh⟩ = 𝜏

⟨
Sn𝑓 , qh

⟩
(4)

for all vh ∈ Vh, qh ∈ Qh. For n = 1, the functions (un−1
h , pn−1h ) are obtained by using the initial condition.

The fixed-stress splitting scheme5,21,23,28 is now introduced. Denote by i the iteration index. Iterate until convergence.
For i ≥ 1, given a stabilization parameter L ≥ 0 and (un−1

h , pn−1h ), (un,i−1
h , pn,i−1h ) ∈ Vh × Qh, find (un,i

h , pn,ih ) ∈ Vh × Qh
such that

2𝜇
⟨
𝜺
(
un,i
h

)
, 𝜺 (vh)

⟩
+ 𝜆

⟨
∇ · un,i

h ,∇ · vh
⟩
− 𝛼

⟨
pn,ih ,∇ · vh

⟩
=
⟨
f n, vh

⟩
, (5)

1
M

⟨
pn,ih − pn−1h , qh

⟩
+ 𝛼

⟨
∇ ·

(
un,i−1
h − un−1

h

)
, qh

⟩
+ L

⟨
pn,ih − pn,i−1h , qh

⟩

+ 𝜏
⟨
𝜅∇pn,ih ,∇qh

⟩
− 𝜏 ⟨𝜅g𝜌,∇qh⟩ = 𝜏

⟨
Sn𝑓 , qh

⟩
(6)

for all vh ∈ Vh, qh ∈ Qh. The initial guess for the iterations is chosen to be the solution at the last time step, ie, (un,0
h , pn,0h ) ∶=

(un−1
h , pn−1h ). Notice that the mechanics and flow problems decouple, allowing for the use of separate simulators for both

subproblems.

3 CONVERGENCE ANALYSIS AND OPTIMIZATION

In this section, the convergence of the scheme (5)-(6) is analyzed. We are particularly interested in finding an optimal
stabilization parameter L, in the sense that the scheme requires the least amount of iterations, ie, has the smallest possible
convergence rate. Before we proceed with the main result, we need some preliminaries.

Definition 1. The mathematical bulk modulus, K⋆
dr > 0, is defined as the largest constant such that

2𝜇‖𝜺 (uh)‖2 + 𝜆‖∇ · uh‖2 ≥ K⋆
dr‖∇ · uh‖2 for all uh ∈ Vh. (7)

By the Cauchy-Schwarz inequality, we get that the physical drained bulk modulus Kdr = 2𝜇
d + 𝜆 is a lower bound for

K⋆
dr. However, for effectively lower-dimensional situations, eg, a one-dimensional–like compression, d can be replaced by

a value closer to 1. Lemma 1 below guarantees an upper bound for K⋆
dr. Nevertheless, there is a strong indication (based

on numerical experiments; see, eg, Section 4 and the work of Both and Köcher27) that K⋆
dr ∈ [Kdr = 2𝜇

d + 𝜆, 2𝜇 + 𝜆]. We
remark that the exact value, depending on the physical situation, can be computed as a generalized eigenvalue.
Throughout this paper, we make use of the following two assumptions.

Assumption 1. The constants 𝜇, 𝜆, 𝛼, and 𝜌 are strictly positive, the constants 1∕M and 𝜅 are nonnegative, and the
vector g is constant.

Assumption 2. The discretization Vh × Qh is inf-sup stable with respect to the bilinear form b(vh, qh) = ⟨∇ · vh, qh⟩.
From Assumption 2 follows Lemma 1 by applying corollary 4.1.1 in the work of Boffi et al,45 which states as follows.

Corollary 1. Let V and Q be Hilbert spaces, and let B be a linear continuous operator from V to Q′; here, Q′ denotes the
dual space of Q. Denote by Bt the transposed operator of B. Then, the following two statements are equivalent.

• Bt is bounding: ∃𝛾 > 0 such that ||Btq||V ′ ≥ 𝛾||q||Q ∀q ∈ Q.
• ∃LB ∈ (Q′,V) such that B(LB(𝜉)) = 𝜉 ∀𝜉 ∈ Q′ with ||Lb|| = 1

𝛾
.

Lemma 1. Assume Assumption 2. There exists 𝛽 > 0 such that, for any ph ∈ Qh, there exists uh ∈ Vh satisfying
⟨∇ · uh, qh⟩ = ⟨ph, qh⟩ for all qh ∈ Qh and

2𝜇‖𝜺(uh)‖2 + 𝜆‖∇ · uh‖2 ≤ 𝛽‖ph‖2. (8)
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Proof. Consider Corollary 1. Let the continuous linear function B ∶ Vh → Q′
h be defined by B(uh)(qh) = ⟨∇ · uh, qh⟩.

The first statement of Corollary 1 is a characterization of an inf-sup–stable discretization Assumption 2, with inf-sup
constant 𝛾 . Hence, the second statement of Corollary 1 holds; there exists a linear function LB ∈ (Q′

h,Vh) such that
B(LB(⟨ph, ·⟩)) = ⟨ph, ·⟩ for all ph ∈ Qh with ||LB|| = 1∕𝛾 . In particular, LB is mapping ph ∈ Qh to the corresponding
uh ∈ Vh such that

⟨∇ · uh, qh⟩ = B (LB (⟨ph, ·⟩)) (qh) = ⟨ph, qh⟩
for all qh ∈ Qh. Additionally, the following chain of inequalities holds true:

2𝜇‖𝜺(uh)‖2 + 𝜆‖∇ · uh‖2 ≤ C ‖uh‖2H1(Ω) ≤ C‖LB‖2‖ph‖2,

where the first inequality follows from Young's inequality with C depending only on the Lamé parameters, and the
second inequality results from the operator norm, ie,

‖LB‖ = sup
0≠ph∈Qh

‖LB (⟨ph, ·⟩)‖H1(Ω)

‖⟨ph, ·⟩‖L2(Ω)′ = sup
0≠ph∈Qh

uh=LB(⟨ph,·⟩)

‖uh‖H1(Ω)

‖ph‖ .

We obtain our desired inequality, as follows:

2𝜇‖𝜺(uh)‖2 + 𝜆‖∇ · uh‖2 ≤ C
𝛾2

‖ph‖2 = 𝛽‖ph‖2.

Remark 1. The constant 𝛽 above depends on 𝜇, 𝜆, and the domain Ω and on the choice of the finite-dimensional
spaces Vh and Qh. Similar to K⋆

dr, 𝛽 can be computed as a generalized eigenvalue.

We can now give our main convergence result.

Theorem1. Assume that Assumptions 1 and 2 hold true, and let 𝛿 ∈ (0, 2]. Define the iteration errors as en,iu ∶= un,i
h −un

h
and en,ip ∶= pn,ih − pnh, where (u

n,i
h , pn,ih ) is a solution to (5) and (6), and (un

h, p
n
h) is a solution to (3) and (4). The fixed-stress

splitting scheme (5)-(6) converges linearly for any L ≥ 𝛼2

𝛿K⋆
dr
, with a convergence rate given by

rate (L, 𝛿) = L
L + 2

M + 2𝜏𝜅
C2
Ω
+ (2 − 𝛿) 𝛼2

𝛽

, (9)

through the error inequalities
‖‖‖e

n,i
p
‖‖‖
2 ≤ rate (L, 𝛿) ‖‖‖e

n,i−1
p

‖‖‖
2
, (10)

2𝜇
‖‖‖‖𝜺

(
en,iu

)‖‖‖‖
2
+ 𝜆‖‖‖∇ · en,iu

‖‖‖
2 ≤ 𝛼2

K⋆
dr

‖‖‖e
n,i
p
‖‖‖
2
, (11)

where CΩ is the Poincaré constant and 𝛽 is the constant from (8).

Proof. Subtract (5) and (6) from (3) and (4), respectively, to obtain the error equations

⎧
⎪⎨⎪⎩

(i) 2𝜇
⟨
𝜺
(
en,iu

)
, 𝜺 (vh)

⟩
+ 𝜆

⟨
∇ · en,iu ,∇ · vh

⟩
− 𝛼

⟨
en,ip ,∇ · vh

⟩
= 0,

(ii) 1
M

⟨
en,ip , qh

⟩
+ 𝛼

⟨
∇ · en,i−1u , qh

⟩
+ L

⟨
en,ip − en,i−1p , qh

⟩
+ 𝜏

⟨
𝜅∇en,ip ,∇qh

⟩
= 0,

(12)

holding for all (vh, qh) ∈ Vh × Qh. To prove (11), test (12)(i) with vh = en,iu , and apply the Cauchy-Schwarz inequality
and Young's inequality to the pressure term to obtain

2𝜇
‖‖‖‖𝜺

(
en,iu

)‖‖‖‖
2
+ 𝜆‖‖‖∇ · en,iu

‖‖‖
2 ≤ 𝛼2

2K⋆
dr

‖‖‖e
n,i
p
‖‖‖
2
+

K⋆
dr
2

‖‖‖∇ · en,iu
‖‖‖
2
. (13)
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We now get (11) by applying (7).
In order to prove (10), test (12) with qh = en,ip and vh = en,iu , add the resulting equations, and use the algebraic identity

⟨
en,ip − en,i−1p , en,ip

⟩
= 1

2

(‖‖‖e
n,i
p − en,i−1p

‖‖‖
2
+ ‖‖‖e

n,i
p
‖‖‖
2
− ‖‖‖e

n,i−1
p

‖‖‖
2)

to get

2𝜇
‖‖‖‖𝜺

(
en,iu

)‖‖‖‖
2
+ 𝜆‖‖‖∇ · en,iu

‖‖‖
2
+ 1

M
‖‖‖e

n,i
p
‖‖‖
2
− 𝛼

⟨
en,ip ,∇ ·

(
en,iu − en,i−1u

)⟩
+ 𝜏𝜅‖‖‖∇e

n,i
p
‖‖‖
2
+ L

2
‖‖‖e

n,i
p − en,i−1p

‖‖‖
2
+ L

2
‖‖‖e

n,i
p
‖‖‖
2

= L
2
‖‖‖e

n,i−1
p

‖‖‖
2
.

Using now Equation (12)(i), tested with vh = en,iu − en,i−1u in the above, yields

2𝜇
‖‖‖‖𝜺

(
en,iu

)‖‖‖‖
2
+ 𝜆‖‖‖∇ · en,iu

‖‖‖
2
+ 1

M
‖‖‖e

n,i
p
‖‖‖
2
+ 𝜏𝜅‖‖‖∇e

n,i
p
‖‖‖
2
+ L

2
‖‖‖e

n,i
p
‖‖‖
2
+ L

2
‖‖‖e

n,i
p − en,i−1p

‖‖‖
2

= L
2
‖‖‖e

n,i−1
p

‖‖‖
2
+ 2𝜇

⟨
𝜺
(
en,iu

)
, 𝜺

(
en,iu − en,i−1u

)⟩
+ 𝜆

⟨
∇ · en,iu ,∇ ·

(
en,iu − en,i−1u

)⟩
. (14)

By applying Young's inequality in (14), we obtain that, for any 𝛿 > 0, there holds

2𝜇
‖‖‖‖𝜺

(
en,iu

)‖‖‖‖
2
+ 𝜆‖‖‖∇ · en,iu

‖‖‖
2
+ 1

M
‖‖‖e

n,i
p
‖‖‖
2
+ 𝜏𝜅‖‖‖∇e

n,i
p
‖‖‖
2
+ L

2
‖‖‖e

n,i
p
‖‖‖
2
+ L

2
‖‖‖e

n,i
p − en,i−1p

‖‖‖
2

= L
2
‖‖‖e

n,i−1
p

‖‖‖
2
+ 𝛿

2

(
2𝜇

‖‖‖‖𝜺
(
en,iu

)‖‖‖‖
2
+ 𝜆‖‖‖∇ · en,iu

‖‖‖
2
)
+ 1

2𝛿

(
2𝜇

‖‖‖‖𝜺
(
en,iu − en,i−1u

)‖‖‖‖
2
+ 𝜆

‖‖‖‖∇ ·
(
en,iu − en,i−1u

)‖‖‖‖
2)

. (15)

To take care of the last term in (15), consider Equation (12)(i), subtract iteration i − 1 from iteration i, let vh =
en,iu − en,i−1u in the result, and apply the Cauchy-Schwarz inequality to get

2𝜇
‖‖‖‖𝜺

(
en,iu

)
− 𝜺

(
en,i−1u

)‖‖‖‖
2
+ 𝜆

‖‖‖‖∇ ·
(
en,iu − en,i−1u

)‖‖‖‖
2 ≤ 𝛼 ‖‖‖e

n,i
p − en,i−1p

‖‖‖
‖‖‖‖∇ ·

(
en,iu − en,i−1u

)‖‖‖‖ . (16)

By using (7), (16) implies

K⋆
dr
‖‖‖‖∇ ·

(
en,iu − en,i−1u

)‖‖‖‖ ≤ 𝛼 ‖‖‖e
n,i
p − en,i−1p

‖‖‖ . (17)

Inserting (17) into (16) yields

2𝜇
‖‖‖‖𝜺

(
en,iu

)
− 𝜺

(
en,i−1u

)‖‖‖‖
2
+ 𝜆

‖‖‖‖∇ ·
(
en,iu − en,i−1u

)‖‖‖‖
2 ≤ 𝛼2

K⋆
dr

‖‖‖e
n,i
p − en,i−1p

‖‖‖
2
. (18)

By rearranging terms and inserting (18) into (15), we immediately get

(
1 − 𝛿

2

)(
2𝜇

‖‖‖‖𝜺
(
en,iu

)‖‖‖‖
2
+ 𝜆‖‖‖∇ · en,iu

‖‖‖
2
)
+ 1

M
‖‖‖e

n,i
p
‖‖‖
2
+ 𝜏𝜅‖‖‖∇e

n,i
p
‖‖‖
2
+ L

2
‖‖‖e

n,i
p
‖‖‖
2
+ L

2
‖‖‖e

n,i
p − en,i−1p

‖‖‖
2

≤ L
2
‖‖‖e

n,i−1
p

‖‖‖
2
+ 𝛼2

2𝛿K⋆
dr

‖‖‖e
n,i
p − en,i−1p

‖‖‖
2
.

Using that L ≥ 𝛼2

𝛿K⋆
dr
and the Poincaré inequality, we obtain from the above

(
1 − 𝛿

2

)(
2𝜇

‖‖‖‖𝜺
(
en,iu

)‖‖‖‖
2
+ 𝜆‖‖‖∇ · en,iu

‖‖‖
2
)
+

(
1
M + L

2 + 𝜏𝜅
C2
Ω

)
‖‖‖e

n,i
p
‖‖‖
2 ≤ L

2
‖‖‖e

n,i−1
p

‖‖‖
2
. (19)
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The result, (19), already implies that we have convergence of the scheme. In previous works, particularly that of
Both et al5 (where the proof so far is very similar), the conclusion at this point is that L = 𝛼2

2K⋆
dr
is the optimal parameter.

However, this does not consider the influence of the first term in (19). By Lemma 1, we get that there exists vh ∈ Vh
such that en,ip = ∇ · vh in a weak sense and

2𝜇‖𝜺(vh)‖2 + 𝜆‖∇ · vh‖2 ≤ 𝛽‖‖‖e
n,i
p
‖‖‖
2
. (20)

By testing now (12)(i) with this vh, we get

𝛼‖‖‖e
n,i
p
‖‖‖
2
= 2𝜇

⟨
𝜺
(
en,iu

)
, 𝜺(vh)

⟩
+ 𝜆

⟨
∇ · en,iu ,∇ · vh

⟩
. (21)

From (20) and (21) and the Cauchy-Schwarz inequality, we immediately obtain

𝛼2

𝛽
‖‖‖e

n,i
p
‖‖‖
2 ≤ 2𝜇

‖‖‖‖𝜺
(
en,iu

)‖‖‖‖
2
+ 𝜆‖‖‖∇ · en,iu

‖‖‖
2
, (22)

which, together with (19), implies
(

1
M + L

2 + 𝜏𝜅
C2
Ω
+
(
1 − 𝛿

2

) 𝛼2

𝛽

)
‖‖‖e

n,i
p
‖‖‖
2 ≤ L

2
‖‖‖e

n,i−1
p

‖‖‖
2
.

This gives the following rate of convergence, for 𝛿 ∈ (0, 2] and L ≥ 𝛼2

𝛿K⋆
dr
:

rate(L, 𝛿) = L
L + 2

M + 2𝜏𝜅
C2
Ω
+ (2 − 𝛿) 𝛼2

𝛽

.

Remark 2. Assumptions 1 and 2 are valid in various relevant physical situations. Therefore, our analysis has a wide
range of applications. One can easily extend the result to heterogeneous media, ie, 𝜅 = 𝜅(x) as long as 𝜅 is bounded
from below by 𝜅m ≥ 0. Moreover, any of the other parameters can be chosen spatially dependent as long as they are
bounded from below by appropriate constants satisfying Assumption 1.

3.1 Optimality
Consider the rate obtained in (9). As rate(L, 𝛿) is an increasing function of L, it follows that, for all 𝛿 ∈ (0, 2], its minimum
is obtained at L = 𝛼2

𝛿K⋆
dr
, giving the rate

rate(𝛿) =
𝛼2

K⋆
dr

𝛼2

K⋆
dr
+ 𝛿

(
2
M + 2𝜏𝜅

C2
Ω
+ (2 − 𝛿) 𝛼2

𝛽

) . (23)

Minimizing (23) with respect to 𝛿 corresponds to maximizing

𝛿

(
2
M + 2𝜏𝜅

C2
Ω

+ (2 − 𝛿) 𝛼
2

𝛽

)
.

Let A ∶= 2
M + 2𝜏𝜅

C2
Ω
+ 2 𝛼2

𝛽
and B ∶= 𝛼2

𝛽
. It is easily seen that the maximum of 𝛿(A− 𝛿B) is attained at 𝛿 = A

2B . Therefore, the
minimizer of rate(𝛿) is

𝛿 = min
{ A
2B , 2

}
∈ (1, 2] , (24)
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since A ≥ 2B. This suggests that the theoretical optimal choice of L is

L = 𝛼2

K⋆
dr min

{
A
2B , 2

} ∈

[
𝛼2

2K⋆
dr
, 𝛼

2

K⋆
dr

)
⊂

[
𝛼2

4𝜇 + 2𝜆 ,
𝛼2

2𝜇
d + 𝜆

)
. (25)

Remark 3 (Consequence for low-compressible fluids and low-permeable porous media).
Previous convergence results in the literature for the fixed-stress splitting scheme have not predicted or guaranteed
any robust convergence in the limit cases M → ∞ and 𝜅 → 0 (for a fixed time-step size 𝜏). Now, by Theorem 1, for
inf-sup–stable discretizations, robust convergence of the fixed-stress splitting scheme is guaranteed, even in the limit
case. This was studied numerically in the work of Storvik et al.31 Convergence was showed to be robust with respect
to material parameters for P2-P1 elements and deteriorating for P1-P1.

3.2 Brute-force optimization of the stabilization parameter
The rate obtained in Theorem 1 is not necessarily sharp, and it is rather viewed as theoretical evidence that the opti-
mal stabilization parameter resides in the interval [ 𝛼2

4𝜇+2𝜆 ,
𝛼2

2𝜇
d +𝜆

). Additionally, convergence is predicted to be robust with
respect to the mesh size. It can be, indeed, verified numerically that the performance of the fixed-stress splitting scheme
is nearly mesh independent (see, for instance, the numerical examples in Section 4 or in the work of Adler et al46). Based
on that, we propose the following brute-force search for optimizing the stabilization parameter for a fixed test case: test
the fixed-stress splitting scheme using different stabilization parameters in the interval [ 𝛼2

4𝜇+2𝜆 ,
𝛼2

2𝜇
d +𝜆

) for a coarse mesh
and a single time step. Choose the parameter that gives the fewest number of iterations, and employ it for any arbitrary
mesh. Section 4 shows the effectiveness of the proposed method.

4 NUMERICAL EXAMPLES

In this section, we demonstrate the effectiveness of the proposed brute-force method for optimizing the stabilization
parameter for the fixed-stress splitting scheme. In particular, we show for several numerical test cases that the optimal
stabilization parameter is close to being mesh independent and that the method for choosing it optimally, as described in
Section 3.2, indeed yields a preferable alternative to the classical choices of L = 𝛼2

2Kdr
and L = 𝛼2

Kdr
.

We consider four different test cases, as follows:

1. a unit square domain;
2. an L-shaped domain;
3. Mandel's problem;
4. three-dimensional (3D) footing problem on the unit cube.

For the implementation of the numerical examples, we use modules from the DUNE project,47 particularly
dune-functions.48,49 If notmentioned otherwise, the inf-sup–stable Taylor-Hood pair P2-P1 is utilized as spatial discretiza-
tion. As stopping criteria, we have applied relative L2-norms for the pressure, ie, iterations stop when ||pih − pi−1h || ≤
𝜖r||pi−1h ||, consistent with Theorem 1. Constant material and fluid parameters are applied and given for each individual
test case.

4.1 Notations
During the numerical experiments,we apply some specific choices of stabilization parameters several times. Therefore,we
give them names here. Recall the definition of the physical drained bulk modulus Kdr = 2𝜇

d + 𝜆. The original stabilization
parameterwill be called the physical one due to the fixed-stress splitting scheme's physical origin, ie, Lphys = 𝛼2

Kdr
. The other

classical choice of stabilization parameter will be named after Mikelić andWheeler due to their paper,24 ie, LMW = Lphys
2 =

𝛼2

2Kdr
. The stabilization parameter obtained by the brute-force method described in Section 3.2 will be called Lopt. The final

parameter is the one that is proposed to be the smallest possible choice in Section 3.1, ie, Lmin = 𝛼2

4𝜇+2𝜆 (see Table 1).



STORVIK ET AL. 9

Name Lphys LMW Lopt Lmin

Value 𝛼2

Kdr

𝛼2

2Kdr
Section 3.2 𝛼2

4𝜇+2𝜆

TABLE 1 Names of specific stabilization parameters

Name Symbol Value Unit
Shear modulus 𝜇 41.667 · 109 Pa
First Lamé parameter 𝜆 27.778 · 109 Pa
Permeability 𝜅 10−13 m2

Compressibility 1
M 10−11 Pa−1

Initial time t0 0 s
Time-step size 𝜏 0.1 s
Stop time T 1 s
Biot-Willis coefficient 𝛼 1 –
Relative error tolerance 𝜖r 10−6 –
Inverse of mesh size a 1∕h 16, 32, 64, 128, 512 m−1

a Mesh sizes are only used in Section 4.2.

TABLE 2 Parameters used in Sections 4.2 and 4.5

4.2 Dependence on boundary conditions—the unit square
We consider two test cases differing solely in the applied boundary conditions. Common for both, the domain is the unit
square discretized by structured triangles, and the constant material parameters from Table 2 are considered. Moreover,
we employ source terms corresponding to the analytical solution

u1(x, 𝑦, t) = u2(x, 𝑦, t) =
1
pref

p(x, 𝑦, t) = tx𝑦(1 − x)(1 − 𝑦), (x, 𝑦) ∈ (0, 1)2, t ∈ (0, 1),

of the continuous problem (1)-(2). The pressure, p, is scaled by pref = 1011 Pa in order to balance the magnitude of the
mechanical and fluid stresses for the chosen physical parameters. Regarding the different sets of boundary conditions,
we consider the following.

• BC1: homogeneous Dirichlet data on the entire boundary for displacement and pressure.
• BC2: homogeneous Dirichlet data for the pressure; homogeneous Neumann data on top in the mechanics equation

and homogeneous Dirichlet data everywhere else for the displacement.

Solutions after 10 time steps using a mesh size of h = 1∕128 are displayed in Figures 1 and 2.
To motivate the brute-force approach from Section 3.2, the performance of the fixed-stress splitting scheme has been

measured for a variety of stabilization parameters and mesh sizes (see Figure 3). We observe that the numbers of itera-
tions vary significantly for different stabilization parameters but that the optimal choice is within our proposed interval
[Lmin,Lphys). Additionally, for fixed stabilization parameters, we observe that the numbers of iterations are close to
constant with respect to the mesh size.
Now, we test the brute-force approach of Section 3.2. In order to calculate Lopt, we start by applying the fixed-stress

splitting scheme for 11 equidistant stabilization parameters in [Lmin,Lphys]while only computing one time step for amesh

FIGURE 1 Unit square test case:
solution—BC1. A, Pressure;
B, Displacement(|uh|) [Colour
figure can be viewed at
wileyonlinelibrary.com]



10 STORVIK ET AL.

FIGURE 2 Unit square test case:
solution—BC2. A, Pressure;
B, Displacement(|uh|) [Colour
figure can be viewed at
wileyonlinelibrary.com]

(A) (B)

FIGURE 3 Unit square test case: average number of iterations per time step for different stabilization parameters, L = 𝛼2

 , using
parameters from Table 2. The largest value of corresponds to Lmin, whereas the smallest value of corresponds to Lphys. Recall that Lopt is
calculated using only one time step, and therefore, there is a slight deviation between Lopt and the actual optimal choice. A, BC1; B, BC2
[Colour figure can be viewed at wileyonlinelibrary.com]

size of h = 1∕16. Then, using the stabilization parameter that needed the least amount of iterations to converge, we apply
the fixed-stress splitting scheme for the full problem using a mesh size of h = 1∕512. In Figure 3, the average numbers
of iterations over 10 time steps are displayed for this “optimal” stabilization parameter, for the two classical choices Lphys
and LMW, and for the stabilization parameter that we consider to be the smallest possible choice, ie, Lmin. We see that the
optimized stabilization parameter requires the least amount of iterations for both boundary conditions. It is also worth
noticing that the optimal choice differs considerably for the two sets of boundary conditions.

4.3 Dependence on Poisson's ratio—L-shaped domain
To further analyze the proposed brute-force optimization of the stabilization parameter for the fixed-stress splitting
scheme, we test it on an L-shaped domain as well. The L-shaped domain is considered as a subdomain of the unit square
domain where the top-right quarter square has been removed, ie, L = [0, 1]2∖(0.5, 1]2. The material and implementa-
tion parameters from Table 3 are applied, whereas the right-hand side is the same as for the unit square test case. Zero
Dirichlet boundary conditions are applied everywhere, but at the top boundary ([0, 0.5]×{1}) for the mechanics equation
where zero Neumann conditions are considered. A solution to this problem after 10 time steps with 𝜈 = 0 and mesh size
1∕h = 128 is given in Figure 4.
Given Young's modulus E and Poisson's ratio 𝜈, the corresponding Lamé parameters have been determined by

𝜇 = E
2(1 + 𝜈)

and 𝜆 = E𝜈
(1 + 𝜈)(1 − 2𝜈) . (26)
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Name Symbol Value Unit
Young's modulus E 1011 Pa
Poisson's ratio 𝜈 0, 0.2, 0.4 –
Permeability 𝜅 10−13 m2

Compressibility 1
M 10−11 m−1

Initial time t0 0 s
Time-step size 𝜏 0.1 s
Stop time T 1 s
Biot-Willis coefficient 𝛼 1 –
Relative error tolerance 𝜖r 10−6 –
Inverse of mesh size 1∕h 16, 32, 64, 128, 512 m−1

TABLE 3 Parameters used in Section 4.3

FIGURE 4 L-shaped domain
test case: solution for 𝜈 = 0.
A, Pressure; B, Displacement(|uh|)
[Colour figure can be viewed at
wileyonlinelibrary.com]

(A) (B) (C)

FIGURE 5 L-shaped domain test case: number of iterations for different stabilization parameters, L = 𝛼2

 , using parameters from Table 3.
The largest value of corresponds to Lmin, whereas the smallest value of corresponds to Lphys. Notice that the axes are different. A, 𝜈 = 0;
B, 𝜈 = 0.2; C, 𝜈 = 0.4 [Colour figure can be viewed at wileyonlinelibrary.com]

Again, as for the unit square test case, we test the brute-force optimization technique that is described in Section 3.2,
but now for three different Poisson's ratios. In Figure 5, the fixed-stress splitting scheme is applied to a variety of mesh
sizes and with a variety of stabilization parameters to three problems with different Poisson's ratios. There are several key
observations to make. First, the scheme is close to being mesh independent for all mesh sizes, stabilization parameters,
and Poisson's ratios. Second, we see that the optimal stabilization parameter is in the proposed interval [Lmin,Lphys) for
all Poisson's ratios and all mesh sizes. The final observation is that when the Poisson's ratio increases, the choice of stabi-
lization parameter becomes less important. This is due to the fact that an increase in the Poisson's ratio can be seen as an
effective decrease in the coupling strength.
To calculate the optimal stabilization parameter, we follow the recipe of Section 3.2. We apply 11 equidistant stabiliza-

tion parameters in the interval [Lmin,Lphys] for the fixed-stress splitting scheme on a coarse mesh (1∕h = 16) for only one
time step. Counting the numbers of iterations it takes to reach convergence, we choose the parameter that corresponds
to the smallest number and use this for the finer mesh (1∕h = 512) and more time steps (10). We see that the parameter
that is the optimal choice for the coarse mesh is also the optimal one for the finer mesh for all Poisson's ratios.
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4.4 Mandel's problem
Here, we consider Mandel's problem, a relevant two-dimensional problem with a known analytical solution that is
often used as a benchmark problem for discretizations. The analytical solution is derived in the works of Coussy1 and
Abousleiman et al,50 and its expressions for pressure and displacement are given by

p = 2FB (1 + 𝜈u)
3a

∑∞

n=1
sin (𝛼n)

𝛼n − sin (𝛼n) cos (𝛼n)

(
cos

(𝛼nx
a

)
− cos (𝛼n)

)
e−

𝛼2nc𝑓 t
a2 , (27)

ux =
[
F𝜈
2𝜇a − F𝜈u

𝜇a
∑∞

n=1
sin (𝛼n) cos (𝛼n)

𝛼n − sin (𝛼n) cos (𝛼n)
e−

𝛼2nc𝑓 t
a2

]
x

+ F
𝜇
∑∞

n=1
cos (𝛼n)

𝛼n − sin (𝛼n) cos (𝛼n)
sin

(𝛼nx
a

)
e−

𝛼2nc𝑓 t
a2 , (28)

u𝑦 =
[
−F (1 − 𝜈)

2𝜇a + F (1 − 𝜈u)
𝜇a

∑∞

n=1
sin (𝛼n) cos (𝛼n)

𝛼n − sin (𝛼n) cos (𝛼n)
e−

𝛼2nc𝑓 t
a2

]
𝑦, (29)

where 𝛼n, n ∈ ℕ, correspond to the positive solutions of the equation

tan (𝛼n) =
1 − 𝜈
𝜈u − 𝜈

𝛼n,

and 𝜈u, F, B, cf, and a are input parameters, partially depending on the physical problem parameters. Here, we apply the
values listed in Table 4. For a thorough explanation of the problem and the coefficients in (27)-(29), we refer to the works
of Coussy1 and Phillips and Wheeler.3
We consider the domain,Ω = (0, 100) × (0, 10), discretized by a regular triangular mesh. An equidistant partition of the

time interval is applied with time-step size 𝜏 = 10 from t0 = 0 to T = 100. Initial conditions are inherited from the analytic
solutions (27)-(29). As boundary conditions, we apply exact Dirichlet boundary conditions for the normal displacement
on the top, left, and bottom boundaries. For pressure, we apply homogeneous boundary conditions on the right boundary.
On the remaining boundaries, homogeneous natural boundary conditions are applied. The tolerance 𝜖r is set to 10−6. The
solution after 10 time steps with 80 vertical and horizontal nodes is displayed in Figure 6.
Similar to the unit square and L-shaped domain test cases, we test the mesh independence and the brute-force opti-

mization technique for Mandel's problem. This time, the parameters from Table 4 are applied. In Figure 7, the mesh
dependence of the fixed-stress splitting scheme is tested, and it is clear that the performance of the scheme is indepen-
dent of this choice. At the same time, we confirm that the optimal stabilization parameters actually are in the proposed
interval [Lmin,Lphys).

TABLE 4 Parameters for Mandel's problem Name Symbol Value Unit
Young's modulus E 5.94 · 109 Pa
Poisson's ratio 𝜈 0.2 –
Skempton coefficient B 0.833 –
Undrained Poisson's ratio 𝜈u 0.44 –
Applied force F 6 · 108 N
Biot-Willis constant 𝛼 1 –
Compressibility coefficient M 1.650 · 1010 Pa
Fluid diffusivity constant cf 0.47 m2∕s
Permeability 𝜅 10−10 m2

Width of domain a 100 m
Height of domain b 10 m
Horizontal number of nodes Nx 10, 20, 40, 80, 320 –
Vertical number of nodes Ny 10, 20, 40, 80, 320 –
Time-step size 𝜏 10 s
Initial time t0 0 s
Final time T 100 s
Relative error tolerance 𝜖r 10−9 –
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FIGURE 6 Mandel's problem: solution
after 10 time steps with Nx = Ny = 80.
A, Pressure; B, Displacement(|uh|) [Colour
figure can be viewed at
wileyonlinelibrary.com]

FIGURE 7 Mandel's problem: number of iterations for different stabilization
parameters, L = 𝛼2

 , using parameters from Table 4. The largest value of
corresponds to Lmin, whereas the smallest value of corresponds to Lphys
[Colour figure can be viewed at wileyonlinelibrary.com]

To calculate the optimal stabilization parameter, we have applied the optimization technique of Section 3.2. First, the
fixed-stress splitting scheme is applied for one time step using a coarse mesh with 10 horizontal and 10 vertical nodes for
11 different stabilization parameters in the interval [Lmin,Lphys]. Choosing the parameter that yields the lowest number
of iterations, we apply the scheme for finer meshes and count the number of iterations. As for the other test cases, we
see that the optimal parameter indeed is optimal. Moreover, a poor choice of stabilization parameter can result in a huge
number of iterations.

4.5 3D footing problem
The numerical section is concluded with a three-dimensional example, ie, a footing problem similar to a test case studied
in thework of Adler et al.46 We consider a unit cube subject to normal compression, ramped in time 𝜎n(t) = t·1010 N·m2∕s,
applied to a part of the top boundary ΓN ∶= [0.25, 0.75] × [0.25, 0.75] × {1}. The bottom is fixed in all directions, and
the remaining boundary is considered to be stress free. A no-flow boundary condition is applied at the compression zone
ΓN, and zero pressure is enforced on the remaining boundary. Furthermore, zero body forces are applied. The medium is
considered isotropic with the same material parameters as used in Section 4.2 (cf Table 2). For the numerical discretiza-
tion, we consider a set of four meshes with mesh size h ∈ {1∕8, 1∕16, 1∕32, 1∕64} and employ the inf-sup–stable MINI
element.51 The simulation result for the final time step is visualized in Figure 8.
Due to high computational cost, optimizing the stabilization parameter of the fixed-stress splitting becomes tedious for

fine meshes in 3D. Motivated by the previous results, the optimal stabilization parameter is assumed to be nearly mesh
independent. This allows for a brute-force search for the optimal, practical stabilization parameter utilizing the coarsest
grid (cf Section 3.2). For validation of the optimization strategy, the performance of the splitting scheme is measured in
the range [Lmin,Lphys] suggested by Theorem 1; for the finest mesh, we restrict the validation only to a neighborhood of
the optimized stabilization parameter. The performance measured in terms of the number of iterations is presented in
Figure 9. A large contrast in the performance can be observed for different stabilization parameters, emphasizing the
need for a suitable stabilization parameter. Finally, as before, we observe that, indeed, the optimal, practical stabilization
parameter is only slightly mesh dependent; it is close to the physical bulk modulus Kdr = 2𝜇

d +𝜆. All in all, the brute-force



14 STORVIK ET AL.

FIGURE 8 Three-dimensional footing problem: solution with a deformed configuration magnified by a factor of 2 at the final time T = 1.
Notice that the figure only displays half of the domain but that the other half is symmetric. A, Pressure; B, Displacement(|uh|) [Colour figure
can be viewed at wileyonlinelibrary.com]

FIGURE 9 Three-dimensional footing problem: average number of iterations
per time step for different stabilization parameters, L = 𝛼2

 , using parameters from
Table 2. The largest value of corresponds to Lmin, whereas the smallest value of
 corresponds to Lphys [Colour figure can be viewed at wileyonlinelibrary.com]

search strategy from Section 3.2 has, again, been confirmed to be a suitable method to obtain a satisfactory stabilization
parameter for finer meshes.

5 CONCLUSIONS

In this work, we have considered the quasi-static, linear Biot model for poroelasticity and studied theoretically and
numerically the convergence of the fixed-stress splitting scheme. An improved convergence result has been proved, indi-
cating the nontrivial dependence of the optimal stabilization parameters on not only mechanical properties but also fluid
flow properties and discretization properties. We observe numerically that the fixed-stress splitting scheme is close to
being mesh independent and determine a novel domain in which the optimal stabilization/tuning parameter is found,
ie, [ 𝛼2

4𝜇+2𝜆 ,
𝛼2

2𝜇
d +𝜆

). On the basis of these observations, we propose a brute-force method with low cost for choosing the opti-
mal stabilization parameter, ie, the parameter that corresponds to the smallest amount of fixed-stress iterations. Through
numerical experiments, we have showed that this optimization method results in a much faster fixed-stress splitting
scheme than those obtained by choosing the classical stabilization parameters L = 𝛼2

Kdr
and L = 𝛼2

2Kdr
.
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