

Comparison of Iterative Solvers for Non-Symmetric

Linear Systems in Porous Media Problems

Master of Science Thesis in Applied Mathematics

Terje Haugen Lie

Department of Mathematics

University of Bergen

September, 2014

Acknowledgements

First and foremost I would like to thank my supervisors Jan Martin Nordbotten and Eirik

Keilegavlen. I thank you both for giving me the opportunity to work under your supervision,

it has been both cheerful and educational. Your knowledge and creative minds are highly

motivational. I will be forever thankful for your assistance.

I thank my parents and siblings for pushing and motivating me to stay on track when times

were rough. I thank you for taking an interest in my education, and for all your support.

I also thank all of my friends for making my days as a student this memorable. I will cherish

these years for the rest of my life, and you are all a great part of it.

Finally, I would like dedicate all my hours of work at the University of Bergen to my late

friend Alexander. He taught me a lot about the joys in life, but also made sure I had enough

focus on my education. This one is for you, Captain!

Terje

August, 2014

List of content

Abstract . 1

Motivation . 2

Chapter 1 – Challenges of modelling flow in porous media

1.1 A Porous media . 4

1.2 The Darcy Law . 5

1.2.1 Hydraulic conductivity and permeability. 6

1.3 Mass Conservation Law . 8

1.4 A Complete model . 9

Chapter 2 - Discretizing our model of flow in porous media

2.1 Cartesian Grids system. 10

2.2 Finite Volume method . 11

2.3 Two point flux approximation scheme . 12

Chapter 3 - Preconditioning

3.1 Condition number . 15

3.2 Preconditioning . 16

3.3 Incomplete Lower Upper Preconditioner . 16

3.4 Multi-Level Preconditioner . 17

Chapter 4 – IDR(s) and GMRES

 4.1 Krylov Subspace Methods . 19

 4.2 The IDR(s) Method . 20

 4.2.1 The IDR Theorem . 20

4.2.2 The IDR(s) algorithm . 21

4.2.3 Cost of IDR(s) . 23

4.2.4 Convergence behavior . 24

4.3 The Generalized Minimal RESidual method . 25

4.3.1 Finding a suitable basis . 25

4.3.2 Minimizing the residual norm . 26

4.3.3 GMRES(m): A restarted version . 28

4.3.4 Cost of GMRES . 29

4.3.5 Convergence Behavior . 29

4.4 A short summary . 30

Chapter 5 Numerical Results

5.1 Preconditioned with ILU . 32

5.1.1 General behavior IDR(s) . 33

5.1.2 Stagnation . 35

5.1.3 Summary . 36

5.2 Preconditioned with Multi Level preconditioner 37

5.2.1 A successful Multi-Level preconditioner 37

5.2.2 A less successful Multi-Level preconditioner 39

5.2.3 Cases with stagnation . 40

5.2.4 Short summary . 42

Chapter 6 Concluding Remarks . 43

Bibliography 45

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

1

Abstract

We investigate the performance of the IDR(s)-algorithms when solving nonsymmetric

systems in porous media problems. We derive a mathematical model for the flow in porous

media, and discretized this with the method known as Two-Point Flux-Approximation. By

altering the permeability distribution and the grid size we design a series of systems with

different sizes and properties. These systems have then been solved with IDR(s), using two

different preconditioners, and the results have been compared against the popular GMRES.

We shall see that the short recurrence algorithm of IDR(s) appears in our cases to be an

attractive alternative, compared to GMRES. Especially in the cases where both methods

require a large number of iterations to solve the system shall we see the IDR(s) algorithm

excel. However, we also encounter badly conditioned systems where the stability of the

IDR(s) is not as good as GMRES.

This study is however not exhaustive, and more studies are need to identify under which

conditions IDR(s) loses its stability. When this is identified, IDR(s) should after my

consideration be considered as an attractive method for solving non-symmetric systems of

linear equations in porous media problems.

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

2

Motivation

The need for solving linear systems with a large number of unknowns arises in many different

fields; engineering, medical, environmental, etc. This thesis considers solving such systems,

in the case where they describe the flow of some fluid in a porous media. Solving these large

systems exactly is usually not attractive, due to the size of the problem. Instead, we search for

good approximations to the solution with the use of an iterative method. Iterative methods all

have in common that they generate a sequence of estimates that improves for each step. The

idea is to start the sequence with an initial guess to the solution and by each step approximate

a new and better solution. Once the approximation is sufficiently close to the true solution, it

is taken as the solution to the system.

There exist a large number of iterative methods for solving large systems of linear

equations. One of the classes of iterative methods for solving these systems is the Krylov

subspace methods. These methods attempt to generate better approximations from the Krylov

subspace. The choice of methods depends on the property on the system. For symmetric

systems, the usual choice is the method of Conjugate Gradients. For nonsymmetric systems,

the choice is not so clear. In general there is no superior method for solving nonsymmetric

system. GMRES, proposed in 1986 by Saad and Shultz, is one of the most popular methods.

However, it is quite expensive in terms of memory requirements. The other methods are not

as robust, but are less expensive with respect to computational operations and memory

requirements. The choice is therefore usually based on testing multiple methods on a specific

problem.

The challenge lies in finding new and better algorithms for the iterative methods. The

search for faster and more robust algorithms that require less computer memory and less CPU

time is active field of research. In 2008 Sonneveld presented a new family of iterative

methods, the IDR(s). IDR(s) was based on the nearly forgotten induced dimension reduction

method. As we shall see further on in this thesis there is a clear relation between the methods,

yet the ideas a completely different.

The aim of this thesis is to investigate the performance of the induced dimension

reduction method, or IDR(s), presented by Sonneveld (2008) when solving systems that arise

from discretizing a mathematical model for flow in porous media. To investigate the

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

3

performance of IDR(s) we will solve several different systems, and the results will be

evaluated and related to one of the most popular and frequently used Krylov methods; the

generalized minimal residual method (GMRES). Each system will be solved twice, with two

different preconditioners, one algebraic and one geometric.

Chapter 1 is devoted to the mathematical model describing the flow of fluid in porous media.

A discussion on the challenges of assembling the model is given, as well as important

characteristics of the porous media and the equations describing the flow of the fluid. At the

end of the chapter we end up with a complete model describing flow in porous media.

Chapter 2 focuses on the task of discretizing our model assembled in Chapter 1, and making

it suitable for numerical evaluations. We derive the two-point flux-approximation scheme,

based on the finite volume method and a Cartesian grid-system.

In Chapter 3 we look at the concept of the condition number and how the idea of

preconditioning affects this. A short discussion on the two preconditioners used in this thesis,

ILU and ML, will be given.

In Chapter 4 we introduce the iterative methods used in this thesis. We present their

algorithms, and give a short discussion on the theoretical convergence and computational cost

of the methods.

The presentation of the numerical results from our test cases will be given in Chapter 5.

Chapter 6 will be devoted to concluding remarks for the discussion given in the previous

chapter.

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

4

Chapter 1

Challenges of modelling

flow in porous media

Before we derive a complete model for describing the flow in porous media, we present the

challenges that arise when assembling the equations that make up this model. Necessary

properties and definitions of a porous media and fluids that flow in these will be given, and

the challenges these present to our continuous model of flow will be discussed. We then

introduce the equations that describe the flow in porous media, and the important

characteristics of these. By the end of this chapter we will have a complete model flow of

fluids in porous media.

 For simplicity we will focus on single phase flow, which can be expanded for two of

more fluids present in the porous media. Most of the following presentation is based upon [5].

For more details I refer to this book.

1.1 A Porous media

A porous media is a solid medium that contains pores. These pores can be described as

“holes” or voids, and are randomly distributed throughout the media. For the fluids to flow

through the media the pores have to be interconnected. These connected pores make up

continuous pathways where the fluid can flow from one area of the material to another. These

pathways in which the fluids flow are complex and complicated, and their length-scale are so

small that they cannot easily be resolved, neither observationally of computationally. To

describe these complex pathways mathematically we therefore introduce the notion of

representative elementary volume (REV) [5]. The REV-method consists of giving a

mathematical point the properties of a certain volume of material surrounding the point. The

volume of REV should be large enough to give a representative average, but small enough to

allow the properties to be approximated by continuous functions.

After introducing the notion of REV we can define the measurable property porosity, φ, of the

rock. It is the scalar quantity that represents the volume of pores over the total volume within

the REV,

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

5

From our approach of representative elementary volume, the actual porous media has been

replaced with a fictitious continuum. In this fictitious media we have assigned an averaged

value of porosity with respect to a surrounding volume to a mathematical point. The porosity

is therefore assumed to be well defined and smooth. It can be differentiated or integrated, and

is suitable for mathematical modeling [3].

1.2 The Darcy Law

One of the most important equations for describing flow of fluids through porous media is the

Darcy law, named after Henry Darcy. He did several experiments on water treatment with

different sand filters, and from this he made some observations that led him to predict how the

water would flow through these filters. He found that the volumetric flow rate, , could be

written

 (1.2.1)

Where is a proportionality coefficient, is the cross-section area of the filter, are the

respective hydraulic heads, and is the length between the measuring points.

The hydraulic head is a measure of the pressure, , (scaled by) plus the elevation of the

point, and is defined as

 . Where is the gravitational acceleration, and is the

elevation of the measuring point relative to a set datum.

To express the volumetric flux, equation (1.2.1) is divided with on both sides, and we get

 (1.2.2)

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

6

From Darcy’s original linear equation we can now extend (1.2.2) into differential form. We

let the fluid flow in three dimensions, assume the hydraulic head to be a sufficiently smooth

function, and take the limit as goes to zero. The Darcy law then takes the following

differential form,

One of Darcy’s key observations was that the fluid flows from regions of higher hydraulic

head to regions with lower. This explains the negative sign in front of the coefficient of

proportionality, , which we refer to as hydraulic conductivity.

1.2.1 Hydraulic conductivity and permeability

Hydraulic conductivity is an important property when describing flow in porous media. It is

defined as

and is dependent on properties of both the fluid and the porous media. When a fluid flows in

the interconnected pores it continuously deforms, and this deformation is referred to as flow.

The fluid viscosity, , is the fluid’s ability to resists this deformation. The fluid density, , is

simply defined as the mass of the fluid per unit volume of fluid. As for the effect of the

property of the porous media on the hydraulic coefficient, permeability, , is an average

measure of the ability for fluid to flow through the porous media. Together with gravitational

acceleration, , these properties of the fluid and porous media define the hydraulic

coefficient. In words, we can say the hydraulic conductivity indicates the ease of which a fluid

flows through a porous media.

 One of the challenging aspects of modelling flow in porous media is that the

permeability of the medium may allow the fluid to flow more easily in one direction than

another. When the hydraulic conductivity has no directional differences (isotropic), is a

constant scalar that indicates the ease of which the fluid flows through the porous media. Our

volumetric flux vector, , is then related to the product of a constant scalar times the vector,

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

7

 . On the contrary, if the hydraulic conductivity is anisotropic we need to assign values to

that are dependent on the direction of flow. To preserve the vector form of our volumetric

flux, , we need to take the form of a conductivity matrix, . In this case, the Darcy law

can be written

From the previous mentioned definition of the hydraulic head, we see that there are two

driving forces in porous media: gravity and the pressure gradient. Substituting in our defined

hydraulic head, we then write

Where is the gravitational acceleration vector. This form of the Darcy law is a more general

statement of the relationship between fluid flow and the driving forces for that flow [5]. Since

gravitational forces are approximately constant with a reservoir domain we can neglect the

effect of gravity, and we only use pressure as the unknown.

 (1.2.3)

Where

.

It is worth stating that Darcy’s law is only valid when the flow of fluid is so slow that the

kinetic energy can be neglected (Laminar flow). When the fluid flows through the small

complex pathways that define the porous media, the friction forces between the fluid and the

pore walls will dominate and the flow tends to be very slow. Also, the influence of

temperature and dissolved substances are neglected by assumption.

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

8

1.3 Mass Conservation Law

While the Darcy law describes how the fluid flows in a porous media, it is not sufficient for a

complete model of the flow. To make it possible to obtain a unique solution to a general

problem, a second equation has to be added to the model and we therefore look to mass

conservation for a second equation. The mass conservation law is based on a simple and

intuitive principle: any change of mass within a volume, , must be a result of either mass

flow through the boundary, , or added mass to the volume that is not associated with the

boundary. In mathematical terms we write

 ∫

 ∮

 ∫

 (1.3.1)

Where is the mass per total volume of porous media, is the mass flux vector, is the

outer normal to the surface and is any sink or source terms within the volume. This

equation states the above mentioned principle that the total change in mass over time (left

side) is equal to the transfer of mass over the boundary (first term on right side) and the

addition or removal of mass not associated with the boundary (second term on right side). To

apply this equation to our model of flow, we express the variables above with respect to the

known properties of the fluid and porous media. We write

 , , and (1.3.2)

where ψ represent sink of source terms of mass. Substituting the variables and with the use of

Gauss theorem on the surface integral, the mass conservation can be written,

 ∫ (

)

Since the volume Ω is arbitrary and the integrand is assumed continuous we set the integrand

itself to zero, and obtain the mass conservation law on a differential form, also known as the

transport law,

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

9

For our simplified model, we assume the fluid to have constant density, and for the media to

have constant porosity. The first term on the left side will then equal zero, and we arrive at

our extension of the mass conservation law, which writes

 1.3.3

1.4 Complete model

Together, equation (1.2.3) and (1.3.4) now make up a complete model for single phase flow in

porous media. It reads, for our case:

These two equations can be combined with each other, and we arrive at the so called pressure

equation

 1.4.1

Together with boundary conditions we now have a complete and closed model. A common

practice in setting boundary conditions is to assume that no fluid can enter or exit through the

boundary of the domain. Such a boundary condition is known as no-flow boundary condition,

and usually the most common.

This model is based upon single phase flow under ideal conditions, and is therefore only valid

under such conditions. However, this model can be generalized for two or more fluid by

deriving one Darcy law and one transport law for each of the fluids present in the porous

media. For such a case we need additional equations to close the system. For simplicity we

have omitted the model for two- or multiphase flow. The latter discussion and mathematical

operations are equally valid for the two- and multiphase, and can be done by extending the

single phase model.

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

10

Chapter 2

Discretizing our model

of flow in porous media

After dealing with the challenges of deriving a complete model for the flow in porous media

we ended up with a complete model for describing the flow. This chapter will deal with the

process of discretizing and making the continuous model suitable for numerical evaluations.

Due to the memory capacity of the computer we cannot solve a continuous model

numerically. Where an analytical solution solves our variables continuously throughout the

domain, a numerical solution can only give approximate solutions to discrete points.

The following discretization will transform our continuous model into a sequence of

discrete values for the domain. There are numerous ways of discretizing a domain, and in this

thesis we are going to use a finite volume method of discretization. Our approach uses a

Cartesian grid system with the gridlines aligned with the principal axes, and where each cell is

represented by a cell centered average of the fluid pressure. This method is sometimes

referred to as the two-point flux-approximation (TPFA) scheme [1].

2.1 Cartesian Grid system

Grids are generated by dividing our domain into smaller subdomains. We consider the

situation where a domain Ω is divided into subdomains , and refer to each of the

subdomains as a cell. We let the subdomains be non-overlapping, and the union of all

subdomains combine to Ω. We refer to the edges between two neighboring cells i and j as a

face, denoted , and the cell center of as . For a three dimensional problem these

subdomains would represent volumes, where as in two dimension they would represent areas.

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

11

Figure 2.1 – A Cartesian grid system, with cell centers. Bold line around indicates the full domain, Ω, and the

fine lines indicates the subdomains. All cell centers have been marked, and one has been labeled.

The Cartesian grid, which is used in this thesis, is a structured grid. The geometry of cells is

arranged by letting the subdomains have faces that are aligned with the principal axes. This

structure defines our grid, which we in the next will use to construct the finite volume

method.

2.2 Finite Volume method

The finite volume method is family of numerical methods that discretely represents

conservation laws [6]. It is based on the assumption that the conservation law holds for our

domain, but also is valid for each cell in our discretized domain. As the name finite volume

method implies, our domain is divided into a finite number of volumes. After dividing our

domain into smaller subdomains, we return to the conservation law and generalize (1.3.1) for

each subdomain. We then write

 ∫

 ∮

 ∫

 (2.2.1)

where the outward normal vector from one cell to the neighboring cells is denoted . Using

the same assumptions as in the previous chapter, the integral on the left hand side is still equal

to zero. For the first term on the right hand side, we let the flux over the boundary from cell i

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

12

go to any neighboring cell j. By summing over all the faces to the neighboring cells j, the

equation for mass conservation for each cell can then be written as

 ∑ ∮

 ∫

 (2.2.2)

Keeping in mind that the density is assumed constant, and that the volumetric flux over a face

can be and we write

 ∮

 (2.2.3)

The conservation of mass in each cell then takes the following form

 ∑

 ∫

 (2.2.4)

For this equation the flux is the unknown, and two solve this we use the Two-Point Flux-

approximation to approximate the flux.

2.3 Two-Point Flux Approximation

The Two-Point Flux Approximation scheme is a discretization of the Darcy law. As the name

states, it approximates the flux between two cells. In our case it uses the average pressure,

assigned the cell centers, in two adjacent cells to approximate the flux over the face between

the two cells. When this is done for all cells in our grid the scheme yields a complete mapping

of the fluxes. This scheme was pioneered in [2].

The volumetric flux over a face, given by (2.2.3), and can be expanded using the Darcy law

(1.2.5). The total flux from one cell over the faces between the adjacent cells is then given by

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

13

 ∫

 (2.3.1)

The pressure potential is assigned to the cell center, and to approximate the pressure gradient

at the cell face we use central differences. The permeability is also defined as a cell wise

constant, and is not defined at the edges. We must therefore also approximate on the faces

between the cells. This can be done by taking a weighted harmonic average of the respective

directional cell permeability.

After this has been done we end up with these approximations for the pressure gradient and .

 (

)

Where and are the respective distances from the face, , to the cell centers. This can

be used to rewrite (2.3.1), and the total flux over the face then takes the form

 | | (

)

 (2.3.3)

To express the flux on a more compact form, and this is done by gathering the terms that do

not involve the pressure into what is defined as face transmissibility .

 | | (

)

 (2.3.4)

By summing the fluxes over all faces to adjacent cells, we get an approximation to the total

flux over the faces, and we can rewrite (2.2.4)

 ∑ ()

∫

 (2.3.4)

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

14

This can also be written as

∑ ()

 ()

We have now reached a system of equations where the local fluxes can be explicitly

represented as a combination of the pressure in adjacent cells. (2.3.4) is a linear system on the

form

 (2.3.5)

In this thesis we use periodic boundary conditions, and therefore have to make this system

positive definite. To do this we add a positive constant to the first diagonal of the matrix

Remark: This system is clearly a symmetric system, since the conservation law predicts flux

to be the same magnitude, but with negative value, if we evaluate the flux from to instead.

The goal of this thesis is however to investigating convergence behavior of IDR(s) when

solving nonsymmetric systems. As we shall see in the latter, we will precondition our system

using nonsymmetric preconditioners which will transform our system to being nonsymmetric

and therefore suitable for our thesis.

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

15

Chapter 3

Preconditioning

After discretizing our mathematical model we ended the previous chapter with a system of

linear equations. Before we look at the methods for solving this system, we will in this

chapter briefly discuss the concept of condition number, preconditioning, and at the end we

give a short description of the two preconditioners that will be used when solving our

systems.

For this chapter, and the next, we consider a linear system on the same form as the one we

derived in the previous chapter. We write it on a more general form, and for the remainder of

this thesis we will refer to the non-symmetric systems in porous media problems as

 (3.1.1)

where , and is unknown.

Before we present our preconditioner we shortly introduce the notion of condition number

3.1 Condition number

If a small perturbations of input data leads to a small change in output we say that the problem

is well condition. On the contrary, we say that the problem is ill-conditioned if small

perturbations of input data lead to large changes in output data. The meaning of “small” and

“large” is related to the application. The condition number is used to measure the sensitivity

of the solution to our system, with regards to small perturbations of input data. The problem

of computing , given , has condition number

 ‖ ‖
‖ ‖

‖ ‖
 ‖ ‖‖ ‖

with respect to perturbations of [12]. The product ‖ ‖‖ ‖ is the condition number of ,

denoted :

 ‖ ‖‖ ‖

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

16

The condition number therefore only is attached to the coefficient matrix , and not the

system. In the next chapter we will see that this is of practical important to us, since the

convergence rate of iterative methods, such as GMRES and IDR(s), are indirectly linked to

the convergence number. The convergence rate tends to decay as the condition number rises.

To obtain the approximate solution to our system in a fast and accurate way, the condition

number of our coefficient matrix is required to be as small as possible. If the condition

number is not small enough, we can modify our system with the use of a preconditioner.

3.2 Preconditioning

The main idea of preconditioning is to design an effective matrix, the so-called

preconditioner, in order to obtain a numerical solution with more accuracy or in less time [4].

If we consider system (3.1.1), the preconditioned system takes the following form

 (3.2.1)

The trick is to find some matrix , sufficiently close to , so that has a better

properties and condition number. This is based on the observation that for , we would

have the ideal system and all subspace methods would deliver the true

solution in one single step [13]. The cost and time of constructing the preconditioner should

be as low as possible. The bigger the difference between the costs saved by applying the

preconditioner to the iterative method and the cost of constructing it, the more attractive the

preconditioner is.

For this thesis, the choice has been made to use two different preconditioners. One is the well-

known Incomplete Lower Upper (ILU) preconditioner, and the other is a Multi-Level

preconditioner as described in [7]. A short description of these preconditioners will now

follow.

3.3 Incomplete Lower Upper Preconditioner

The Incomplete Lower Upper (ILU) preconditioner has its name from Standard Gaussian

elimination. Standard Gaussian elimination is the same as factoring the coefficient matrix, ,

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

17

into a lower and an upper triangular matrix, respectively denoted and . After steps

of Gaussian elimination, we end up with and upper triangular matrix, , defined as:

From this we define the lower matrix as the elimination matrix

This leads to a factorization of our coefficient matrix, defined as

The main problem in such factoring of a sparse matrix, as the once that arises from our

discretizing techniques, is that the factors tends to be much less sparse than the original matrix

A. In order to amend this problem, which causes the computation to be more expensive, the

basic idea in the preconditioner is to set restrictions to the “fill in's” that occurs in the

factorization. To preserve the sparsity of the system, the only non-zero entries in the factors

 are restricted to be the corresponding non-zero entries of . We then consider the

factorization of as

 ̃ ̃

The incomplete factors of , ̃ ̃, then defines the Incomplete Lower Upper preconditioner.

For further use, we will only refer to this preconditioner as ILU.

Remark: ILU-preconditioners where proposed for positive and definite matrices with special

structures. Due to this, it has been shown that this preconditioner has some difficulties

providing robustness for a general matrix. Though this is the case, there has been a lot of

theory developed proving that ILU-preconditioners are suitable for special classes of matrices,

such as the once that arises from our discretization. Therefore, this is a suitable preconditioner

for our system.

3.4 Multi-Level preconditioner

The other preconditioner we shall use in this thesis is Multi-Level preconditioner. This is a

geometric multi-level preconditioner and is tailored to the give an approximation of the fine

scale discretization on the coarse scale, and is based on conservation laws. A general

description of the preconditioner will be given, but for details the reader is referred to [7]

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

18

To show how these preconditioners are constructed the notion of a ‘coarse grid’ needs to be

explained. This can be done by recalling the grid system that was introduced in section 2.1,

and defining this as the primal coarse grid. Each cell is then referred to as a primal coarse cell.

These primal coarse cells consist of a set of interior cells from a finer grid, where the middle

cell is defined as the ‘vertex’, see Figure 3.4.1.

Figure 3.4.1: A Cartesian grid with fine and coarse (thick lines) cells; a finer grid is also indicated. The dual coarse grid is

indicated by grey cells. The basis function centered in the black cell has support in all four surrounding dual coarse cells, and

thus contribute to the flux expressions of all coarse edges shown in the figure. (Both figure and text are borrowed with

curtesy from [7])

From the dual coarse grid shown in Figure 3.4.1, for each vertex a basis functions can be

constructed with a one-dimensional version of the pressure equation (1.4.1). A matrix, ψ, can

then be assembled by adding each basis function to its columns. Together with a matrix, φ,

with piecewise constant test functions associated with the primal cells, the coarse

discretization matrix takes the form

This coarse linear system is then applied as our preconditioner.

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

19

Chapter 4

IDR(s) and GMRES

This chapter is devoted to our two iterative methods for solving non-symmetric systems. First,

a general introduction to Krylov Subspace Methods is given. We thereafter present the

mathematical ideas behind the IDR(s)-algorithm and look at the computational cost and

theoretical convergence behavior, before we present GMRES and its properties. At the end of

the chapter we make a short summary of the two methods and compare them to one another.

4.1 Krylov Subspace Methods

The Krylov subspace methods attempts to generate better approximations to the solution from

what is known as the Krylov subspace, which is defined as

where is the iteration number, and is the initial residual defined as , where

 is the initial guess to our solution. We search for an approximate solution, , for which

the residual is within some desired tolerance. The residual, , can due to (4.1.1) also be

given as a polynomial on the form

 (4.1.1)

where is a -th degree polynomial.

There exists a number of different Krylov Methods. One of the most popular methods is the

generalized minimal residual approach, or GMRES. GMRES has the property of minimizing

at every step the norm of residual vector over a Krylov Subspace [8]. As we shall see later,

GMRES comes at the cost of having to compute and store new orthogonal basis vectors for

the Krylov subspace at every iterations. If many iterations have to be performed in order to

achieve the desired precision, the cost of memory and computations become prohibitive.

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

20

In the search for new and efficient Krylov methods, Sonneveld presented IDR(s) in 2008.

This is a revised version of the induced dimension reduction (IDR) algorithm, presented by

Sonneveld in 1980. As Sonneveld showed in his article describing the method, it has many

desirable features. In the next section we present this method.

4.2 The IDR(s)-method

IDR(s) is a family of efficient, short recurrence methods for solving large nonsymmetric

systems of linear equations. This algorithm, presented in [9], was based on a previous method

introduced by Sonneveld in 1980, the Induced Dimension Reduction (IDR) method. IDR

introduced a new way of solving these types of systems, as the underlying idea was

completely different from the “usual” way of solving nonsymmetric systems. In contrast to

many other methods, including GMRES, the IDR and IDR(s) methods generates residuals that

are forced to be in subspaces of decreasing dimension. Though the IDR(s) method is built

around this completely different idea, its features has clear relations to other Krylov-type

solvers.

Before we look at the algorithm behind the iterative solver, we present the theorem that it is

based on. The proof will not be given, for that I refer to [9] from where this section is based

upon.

4.2.1 The IDR(s) theorem

As mentioned, IDR(s) is based on the IDR theorem from 1980. The theorem states

Theorem 4.2.1: The IDR theorem: Let be any matrix in , let be any nonzero

vector in , and let be the full Krylov subspace . Let denote any proper

subspace of such that and do not share a nontrivial invariant subspace of , and

define the sequence , as

Where the are nonzero scalars. Then the following hold:

(i)

(ii) { } for some

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

21

According to the theorem it is possible to generate a sequence of nested subspaces of

decreasing dimension, where the smallest possible subspace is { }. The IDR(s) algorithm, as

we shall see next, consists of generating residual that are forced to be in these nested

subspaces, . Applying this theorem to the algorithm then assures us that the problem will be

solved after steps of dimension reduction, at most.

What follows next is based on [9]. It is presented not intended as a practical, but instead a

mathematical algorithm, and serves only as a justification for the algorithm used in this thesis.

4.2.2 The IDR(s) algorithm

At the end of Chapter 2 we ended up with a system of linear equations. This system was on

the same form as (3.1.1), and for the rest of this chapter we will consider these types of

systems. To solve the system (3.1.1) we start the algorithm with an initial guess, , to the

solution to the system. This initial guess generates the initial residual, which is defined as

 . For each step we look for a new and better approximate solution, , which

again generates a residual defined as .

A trivial observation is that if we are able to produce a recursion for the residual, , then we

will also be able to produce a corresponding recursion for the approximate solution, . As

mentioned in Section 4.1, the general Krylov Solver produces solutions for which the residual

is forced to be the Krylov subspace. If the residuals and approximate solutions up to the -th

step has been calculated, then we will also be able to calculate from

 []

We can then express the general form of a Krylov-type solver as

 ∑

 ̂

 ∑

 ̂

(4.2.1)

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

22

where is any computable vector in
 , is the forward difference

operator , and ̂ is the depth of the recurrsion.

After generalizing the Krylov-type solver we can now revisit the IDR-theorem. This theorem

can be used to generate residual that are forced to be the subspaces, . The residual will

be in the subspace , if

 ()

where . With this restriction for the vector, , we choose

 ∑

 (4.2.2)

This leads us to (4.2.3) which describes the recursion of the IDR(s) family

 ∑

 ∑

(4.2.3)

After deriving a recursion for the IDR(s) algorithm, we see that (4.2.3) is on the same form as

the general Krylov-type solver given by (4.2.1).

In (4.2.3), defines the depth of recursion. Since the usual choices of is range from 1 to 16

(default value is 4), we have that and an algorithm that uses short recurrence, which is

attractive with respect to computational and memory requirements.

The recursions for the solution and the residual are now defined, but are dependent on

computing the coefficients . These coefficients can be computed in the following manner.

We first assume that the space to be the left null space of some matrix of full

column rank, defined as

 ,

Note that , known as the shadow vectors, is the codimension of the subspace .

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

23

Since is in , the relation holds. Combining this with (4.2.4), we end

up with a system for the coefficients , which has to be solved in order to determine

and . In [9] Sonneveld proposed to compute the residual in the following way.

Define the matrices

After defining these matrices, the computation is then carried out by the following

algorithm

 Calculate: from the relation

When residuals have been computed in the next residual will be in . In the

generic case, the decrease in dimension for the next subspace is then equal to .

The scalar can be chosen freely when computing the first residual in , though the

best choice is the value that minimizes the norm of the residual. This value must be kept the

same during the calculations of all the residuals in the same subspace. In the section

about convergence, the choice of is discussed. Once the residual is within the desired

tolerance, we can update the approximate solution which yields our solution to the system.

4.2.3 Cost of IDR(s)

The cost of the IDR(s) algorithm is related to the choice of . The computational cost and

memory requirements increase for increasing . To perform one full cycle of IDR(s)

steps, we can divide the cost into three parts. We need matrix-vector products,

 inner products and

 vector updates. This gives us that IDR(s) only needs one

matrix-vector multiplication, which is the most costly operation, per iteration. The total cost

for solving a system can then calculated from this.

Note that the cost per iteration is the same, regardless of which number is it.

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

24

4.2.4 Convergence behavior

Through what has been shown in the mathematical algorithm in section (4.2.2), after every

 iterations the residuals will be in a new subspace. This new subspace is of a lower

dimension than the previous, and in most practical problems this dimension reduction has

been shown to equal . If this is the case, then in exact arithmetic it will require at most

iterations to arrive at the exact solution.

As for the convergence rate, Sonneveld showed in [10] that the convergence behavior was

dependent on two factors. By expressing the residual as the so-called residual polynomial,

 , this can be rewritten as a product of two polynomials

Here, the are called the damping or stability factors, and is called the Lanczos

factor. These two factors have an independent influence the convergence rate of IDR(s).

The damping factors have their names because the factors , as mentioned earlier, are

chosen minimize the norm of the residual that computed by the algorithm. The choice of ’s

are therefore partially responsible for the convergence of the algorithm.

The Lanczos Factors is usually related to , i.e. the rate of convergence will usually increase

with increasing . Though the value of plays a role in the convergence behavior, it has also

been shown that the choice of shadow vectors also plays a role. The best results are obtained

if the vectors has as little to with the problem as possible.

As for the convergence rates, there is no way of telling the exact rate. This is due to the fact

that no system exhibits the same properties, and this will lead to different rates for the

convergence. What are shown above are factors that influence the convergence rate, but there

is no way of explicitly telling how fast it will converge, other than practical examples.

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

25

4.3 The Generalized Minimal RESidual method

In this section we will cover the basic steps of the algorithm that builds up GMRES. This

section is based upon [8] and [13], and for some of the terms used, the reader is referred to

[12] for more information.

GMRES is a part of the class of Krylov methods that are known as the “minimal norm

residual approach”. In general we can say that the algorithm, at iteration step , tries so

identify the approximate solution for which the norm of the residual, ‖ ‖, is

minimal over the Krylov subspace .

4.3.1 Finding a suitable basis

Due to the fact that for each iterations the vectors points more and more in the direction

of the dominant eigenvectors causes the basis {
 } to be an unattractive

basis for the Krylov subspace. Before we start computing the approximate solution we need a

suitable basis. This is done by the Arnoldi process, which orthonormalizes the basis for the

Krylov subspace. There are many ways of doing this, but the most used is the modified Gram

Schmidt procedure.

The process of making a suitable basis starts with normalizing the initial residual, which then

is defined as

‖ ‖
. Using this normalized residual we can now compute . This is then

orthogonalized with respect to and the result is again normalized, which yields . This

process is repeated for each step to create the basis for the Krylov subspace. Given that we

already have an orthonormal basis for the Krylov subspace , this basis

is expanded by computing and orthonormalizing this vector with respect to the

basis.

From the Arnoldi process we also initiate a by upper Hessenberg matrix, ̂ , with

entries defined by the process. For more information on the Hessenberg matrix, see [12]. This

matrix is in direct relation to coefficient matrix, . If the last row of ̂ is removed, then

relation between the two would be a similarity transformation. The eigenvalues of the

coefficient matrix will then be preserved.

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

26

From this, the following relations are true

 ̂ (4.3.1)

where is the matrix with columns to .

4.3.2 Minimizing the residual norm

The last step of the GMRES algorithm is the step that minimizes the residual norm over the

Krylov subspace, and then gives the approximate solution. We then look for an approximate

solution on the form , for which the residual norm over in is minimal. This

gives us a least square problem to solve, represented by

 ‖ []‖ ‖ ‖ (4.3.2)

The vector can be represented as , where is a k-dimensional vector. We define

 ‖ ‖ and the function ‖ ‖ and use the above stated relation to rewrite

(4.3.2)

 ‖ ‖ (4.3.3)

Using the relation stated (4.3.1) we obtain

 ‖ ̂ ‖

which can be factorized into

 ‖ [̂]‖

Where is the first column of the identity matrix. Remember that is composed of

vectors that are orthonormal to each other, and that the norm such matrices are one, this gives

us that

 ‖ ̂ ‖ (4.3.4)

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

27

The solution to the least square problem is then given by

 (4.3.5)

Where minimizes the function (4.3.4) over

The final norm can then be minimized by solving the minimum norm least square problem for

the by upper Hessenberg matrix, ̂ , and the right hand side . This result can then

be given as

 ̂

This least square problem is then solved by realizing that ̂ has a decomposition. For

more information on the QR decomposition see [12]. Due to the upper Hessenberg structure

of the ̂ matrix, this can efficiently be done with plane rotations, also known as Givens

rotation. The Givens rotation annihilates the sub diagonal elements of ̂ . This results in a

by upper triangular matrix which is denoted , whose last row is zero. This results in

the relation

 ̂

Where is a by matrix and the product of the successive Givens eliminations of the sub

diagonal elements of ̂ . After this transformation the minimizes the least square problem

which can be rewritten as

 ‖ ̂ ‖ ‖

 ‖

 ‖ ‖

This leads us to the final least square problem to the minimum norm solution

Which leads us to our approximate solution, , given as

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

28

Note that from minimizing function the residual norm is nothing but which is equal to

‖ ‖. By the construction of , this norm is the absolute value of the last

component of . The residual norm of the approximate solution, , is therefore

calculated at the end of each iterate. This prevents us from having to specifically calculate the

residual norm at each step. The algorithm will therefore keep iterating until the residual norm

is within the desired tolerance, and we do not have to calculate the approximate solution at

every step.

To summarize the algorithm, we can easily generalize the algorithm into four important

steps:

1. With the Arnoldi process, generate a suitable basis for the subspace, and initiate the

upper Hessenberg matrix.

2. Minimize the norm of the residual, ‖ ‖

3. Repeat until the residual is within the desired tolerance

4. Compute the approximate solution

4.3.3 GMRES(m): A restarted version

One of the most obvious challenges with GMRES is the cost of storing and calculating the

basis for the Krylov subspace. As increases, so does the number of vectors requiring

storage. To remedy this challenge, there exist a version of GMRES which is known as

GMRES(), or restarted GMRES. In this version, the algorithm is restarted at every step,

where is some fixed integrer much smaller than . If the residual norm is not within the

desired tolerance after iterations we set and restart the algorithm, which allows us

to clear the storage.

There is no rule for determining a suitable . Restarting at some may work better for some

matrices than other. Since the speed of convergence may vary drastically for different , even

for those close to one another. The only way to determine a suitable is by trial and error.

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

29

4.3.4 Cost of GMRES

The cost of computing the approximate solution, , is for GMRES increasing for each

iteration. As we have seen, a new basis for the Krylov subspace has to be computed and

stored for each iteration. For a low number of iterations this is not a problem, but as the

number of iteration grows, this becomes quite significant. For each iteration the algorithm

performs one matrix-vector multiplication. To account for the other computational operations

we divide the GMRES algorithm into two parts, the Arnoldi process and the formation of the

solution, we can easier account the number. The Arnoldi process requires approximately

 multiplications, and the formation of our solution . The total cost of

calculating our solution comes at multiplications, where denotes the

number of nonzero entries in our coefficient matrix . In addition to this, as mentioned above,

the computation also requires storage of vectors. As increases the number of vectors to be

stored increases like , which can become quite prohibiting as grows.

 For the restarted algorithm, GMRES(m), the total cost is (

) . But

we only have to store the orthonormalize vectors, the ’s, the approximate solution , and

the vector for . The storage is then reduced to

4.3.5 Convergence Behavior

In exact arithmetic GMRES will converge to the true solution within the -th step. At the -

th step the Krylov subspace spans and therefore the minimizing step will find the exact

solution, but as mentioned before, this is very inefficient for large systems since the storage

increases drastically as grows. On a more general basis, we say that the convergence of the

algorithm is monotonic. This is true due to the fact that the residual is minimized over the

Krylov subspace, and since the minimization over a larger subspace will yield a

smaller residual, or at worst a residual equal to that of the previous subspace.

 Though it is easy to show that the convergence of the algorithm is monotonic, the e

rate of convergence is more difficult to predict. To establish some useful insight we can use

the fact that the nonsymmetric nature of the coefficient matrix may have eigenvalues that

are complex. These eigenvalues appear in the complex plane, and are within circle, and can

be bounded by an ellipse. The size of this ellipse can be used to determine the convergence

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

30

rate of GMRES , i.e the closer the eigenvalues are to one another, the faster GMRES

converges.

4.4 A short summary

The obvious difference between the two methods is the subspace from which they generate

the residual. IDR(s) starts out with the full Krylov subspace and there after uses a series of

nested subspace of decreasing dimension, where GMRES uses a subspace of increasing

dimension. We have also seen that GMRES has a standard algorithm without free parameters;

after choosing an initial guess the algorithm computes the solution by minimizing the residual

at each step. IDR(s) has three free parameters, , , and , that can impact efficiency of the

algorithm. The choice of the shadow space, , affects the dimension reduction per full cycle,

and therefore the total number iterations. defines the subspace , and is chosen to

minimize the residual. The differences mentioned above are the most obvious differences

between the two, but as we also have seen the IDR(s) algorithm can be expressed as a general

Krylov solver and there are therefore many common features between the two methods.

We also say that GMRES is the optimal method with regards to iterations. In exact arithmetic

GMRES solves the system in iterations, whereas IDR(s) solves it in

 iterations. For

each iteration, both of the methods preform one matrix-vector multiplication. This matrix-

vector multiplication is the most costly of all the computational operations, but the same for

both methods. The big difference between the two is that the memory requirement and

computational operation for IDR(s) is constant, independent of the number of iterations. On

the contrary, GMRES needs to compute and store a new basis for the Krylov Subspace for

each iteration. This becomes quite prohibiting as the number of iteration.

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

31

Chapter 5

Numerical Results

To investigate how IDR(s) performs when solving our discretized model of flow in porous

media, a series of test cases will now follow. All of the test cases have been done with

MATLAB R2014A programed on a standard stationary computer. The performance of IDR(s)

will be evaluated and discussed, and the results are compared to GMRES. These test cases are

all examples of systems of linear equations that arise from discretizing the model of flow in

porous media.

To test IDR(s) on different systems, a series of linear systems have been constructed. These

systems have been assembled accordingly to the first two chapters, and their properties have

been altered by changing the permeability distribution. Six different permeabilities have been

tested. One of each one listed below.

- Homogeneous

- Randomly distributed heterogeneous permeability

- Randomly distributed binary heterogeneous permeability

- Log-normal permeability

- The SPE10 dataset. This dataset consist of 85 layer, where the top 35 layers have a

relatively smooth permeability and the bottom 50 layers have well defined long

channels with high permeability. The methods will be tested on two layers. One from

the top, layer 27, and one from the bottom, layer 51.

In addition to changing the permeability, the discretized has been done with 5 different grid

sizes. The finest grid size we have used is

 in each direction. The other 4 grids are the same

structure, but doubles in size at each step. The biggest grid size we will use is then

. For

each permeability the methods will then be tested on five different linear systems, with

ranging from 324 to 82 944.

For each case we have solved the system with two versions of preconditioned IDR(s) and

GMRES each, using the two preconditioners described in the Chapter 3. When solving with

IDR(s), we have chosen four values of ; 1, 2, 4, and 8. The default choice of and has

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

32

been used, with and . IDR(s) has be implemented in MATLAB

with Sonneveld’s own algorithm, and GMRES with a special memory saving code. Instead of

full GMRES, a version called “reduced memory” has been used. This is not the restarted

version, but a version where the matrix used to store the representation of the Krylov

subspace is not preallocated. In this case, the size of the matrix grows dynamically instead of

be the full size from the start.

The focus of our investigation that follows will be on the convergence behavior of IDR(s) on

these types of systems. Important features are the total number of iterations, the memory

usage to reach the approximate solution within the desired tolerance. The tolerance is set to

 in all cases. As an indication on how the computational operations and memory

requirements are balanced in each case, the run time for the total process of computing the

solution will also be given. The only change made in the GMRES algorithm is that what has

mentioned, we therefore include its run time for comparison. Together with the iteration

count, run time can give us a good indication of the performance of IDR(s) compared to

GMRES, and conclusions can be drawn from this.

The results are divided into three sections. First we look at the cases where our methods

where preconditioned with ILU. Not all of the results from every case are given, but the

general behavior will be explained and a representative example will follow. In the cases

where some of the IDR(s)-versions were not able to compute a solution within the specified

tolerance, the test cases will be highlighted and discussed. Secondly, we repeat the above

mentioned for the cases where we used the Multi-Level preconditioner. Concluding remarks

will be given in the next chapter.

5.1 Preconditioned with ILU

As mentioned above, this section will discuss the cases where the methods were

preconditioned with ILU. We first focus on the cases where the desired solution was

computed and section 5.1.1 will generalize these results. In section 5.1.2, the cases where

IDR(s) did not compute the desired solution will be covered. Finally, in section 5.1.3, we

make some remarks and make a short summary of the previous two sections.

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

33

5.1.1 General behavior of IDR(s)

In general, solving larger systems needs more iterations than smaller systems, and as the

permeability gets rougher and exhibits large variations within close range the iteration number

goes further up. The total number of iterations is also dependent on the value of . As the

theory in chapter 4 predicted, the total number of needed iterations is decreasing for an

increasing value of . When we compare IDR(s) and GMRES, IDR(8) uses between 10 and

30 percent more iterations than GMRES. Except for this general behavior the results from

each test case was fairly similar. We will therefore generalize the result, and this will be

discussed with a representative example. This example will together with some extra

comments be representative for all, only excluding cases that will be covered in section 5.1.2.

The representative example is from a case where the media has a homogenous permeability

distribution. We have discretized our continuous model according to Chapter 2, using square

grids with length

, and end up with a linear system of 82 944 equations. We precondition

our system with the ILU-preconditioner and the system is solved with IDR(s) and GMRES.

When solving this system with the two iterative methods the residual can be plotted against

the number of iterations, and we end up with a convergence plot, see figure 5.1.1.

Figure 5.1.1 - Convergence plot of our representative example

0 50 100 150 200 250 300 350 400 450
-8

-7

-6

-5

-4

-3

-2

-1

0

1

Iterations

R
e

la
ti
v
e

 R
e

s
id

u
a

l
(L

o
g

1
0

)

Convergence Plot

GMRES

IDR(1)

IDR(2)

IDR(4)

IDR(8)

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

34

As we can see from figure 5.1.1 the curve of IDR(8) is fairly close to the curve of GMRES.

We clearly see that the convergence of IDR(s) is dependent on the value of , and converges

faster when increase. For a precise number of iterations and run time needed to compute the

desired solution by each method see table 5.1.1.

In this specific example, the difference in number of iterations between IDR(8) and GMRES

is only 23. Table 5.1.1 shows us the number of iterations performed by each method. Even

though the number of iterations goes down for increasing values of , the computation

operations and memory requirements of IDR(s) increases as increases. This cost is as we

have seen constant for each iteration. GMRES, on the other hand, has to store and compute a

new orthogonal basis for every iteration. This becomes quite costly when the iteration number

increases. To get an indication on the cost of the two methods, table 5.1.1 also presents the

run time for reaching the approximate solution for each method.

As we can see, GMRES uses approximately twenty times more run time than what is used by

IDR(2). This is a major difference, and reflects how attractive a short recurrence method like

IDR(s) is when is large. Also notice that IDR(2) only uses 65 percent of the time that

IDR(8) uses on the same problem. Though the difference between the two versions is 50

iterations, the number of inner products and vector updates per iteration goes up, as well as

the memory requirement, when increases. The decrease in iterations is in this case not large

enough, compared to the increase in computational operations.

In this specific case IDR(2) was the fastest of the tested methods, which indicates that the

combination of number of iterations, computational operations, and memory requirement was

well balanced. This was not only the case for this example, but also for more than 50 percent

Table 5.1.1 – Number of iterations and elapsed time for our representative example

Method Number of iterations Elapsed time (s)

GMRES 267 122.71

IDR(1) 447 5.23

IDR(2) 340 4.49

IDR(4) 308 5.37

IDR(8) 290 6.90

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

35

of the test cases. Even though the total number of iterations need to compute a solution goes

down when increases, both memory and computational requirements goes up per iteration.

An important feature of IDR(s) is that when gets bigger and bigger, the convergence curves

of IDR(4) and IDR(8) looks more and more like GMRES. However, the cost of GMRES

become more expensive with respect to memory requirements as the iteration count goes up.

The low memory requirements of IDR(s) compared to GMRES causes IDR(s) to use

significantly less time to reach a solution. This difference in run time therefore grows

drastically as gets bigger, and for some our biggest systems the fastest IDR(s) versions only

used approximately 3 percent of what GMRES used to solve the same system.

5.1.2 Stagnation of IDR(s)

In this section we take a closer look at the cases where some of the IDR(s)-versions were not

able to compute a desired solution. This occurred in three cases, one with IDR(4) and two

with IDR(8). All of these three cases happened when using permeability fields from the

SPE10 dataset, and only when we used the finer grid systems.

In a case where we used Layer 27 and grid size

, both IDR(4) and IDR(8) returned a

solution that was not within the tolerance. Table 5.1.2 shows total number of iterations, run

time, and relative residual for all methods. Remember that the tolerance was set to 1.00e-7.

Figure 5.1.2 – Total number of iterations, run time, and relative residual for case with stagnation

Method Number of iterations Elapsed time (s) Relative Residual

GMRES 728 850.63 9.8397e-8

IDR(1) 2455 26.89 9.2222e-8

IDR(2) 1456 18.39 6.4038e-8

IDR(4) 857 13.83 1.3947e-7

IDR(8) 956 24.08 1.2834e-7

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

36

When IDR(4) and IDR(8) returned the residual, it also returned a so called “Flag 2” indicating

that this is the lowest residual that this algorithm possibly can produce. There could be some

ways of working around this, and in [11] some steps for remedying this problem is discussed.

In this thesis this has not been done, so for more information on the remedy I refer to this

manual. However, a notice should be made about possible explanations. The condition

number of our coefficient matrix gets higher as the grid gets finer and the contrast in

permeability gets larger. We also know that the number of computational operation grows

with increasing , which again increases the round-off errors in MATLAB. Since the

stagnation happened with IDR(4) and IDR(8), this could be an explanation. This is strengthen

by the fact that when considering layer 51 described in SPE10, and grid size

, IDR(8)

stagnated with a relative residual equal to 2.4761e-7, after 670 iterations.

In these cases when IDR(s) do not return the desired solution, we see in Table 5.1.2 that due

to the high number of iterations, the run time for IDR(4) and IDR(8) is significantly lower

than the that of GMRES. However, IDR(1) and IDR(2) compute the solution and their run

time is also significantly lower than GMRES. In these cases, where our system is badly

conditioned, IDR(s) seems to perform better when is low.

5.1.3 Summary

In all cases GMRES solved the systems with fewest iterations, and IDR(8) was the runner up.

This result in not very surprising, and reflects the theory discussed in chapter 5. GMRES is

theoretical optimal with respect to iterations, since it in exact arithmetic uses at most

iterations to compute the exact solution. In exact arithmetic IDR(8) solves the system in

 total iterations, which is 12.5 percent more than GMRES. In our results this was in

some cases as low as 10 percent, but sometimes as high as 30.

Though GMRES solves the system with the least iterations, it comes with a cost of storing

and computing a new orthonormal basis for the Krylov subspace at each step. This becomes

prohibiting as the iteration count grows. The cost of IDR(s) is constant for each iteration.

Because of this, all IDR(s)-versions use significantly less time to solve the system than

GMRES when the iterations count is high. In our results we have also seen that IDR(s) is

faster than GMRES when the iteration number is low, but this difference is not as large.

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

37

When solving some of the larger systems, arising from the different layers in SPE10, we saw

IDR(4) and IDR(8) stagnate at a relative residual larger than what we set as our tolerance. In

these cases we expect the system to be badly conditioned, and they therefore required a large

number of computational operations. Since IDR(4) and IDR(8) were the only versions to

stagnate above the tolerance, it is plausible that this could be caused by a build-up of round-

off errors.

This gives us an indication that the ILU preconditioned IDR(s) can be a good alternative when

solving systems that arise from discretizing equations that describes flow in porous media. To

prevent stagnation of the residual should be kept small (1 or 2) for larger problems where

the permeability field exhibits large variations. In the cases where IDR(s) did stagnate the

algorithm returned the lowest possible residual within 10 percent of the time used by GMRES

to compute the solution, and the loss of time is therefore not severe. The possibility to save

this amount of run time makes IDR(s) a good alternative.

5.2 Preconditioned with Multi Level preconditioner

We now look at the cases where the Multi-Level preconditioner was used. The structure of

this section will be the same as the previous section.

The performance of IDR(s) is looks to be more dependent on the performance of the

preconditioner. In general we can say that when the Multi-Level preconditioner successfully

approximates the geometry of the permeability on the coarse scale, IDR(s) works better than

when an algebraic preconditioner is used. On the other hand, when the Multi-Level

preconditioner is used on the binary permeability distribution and the lower levels of the

dataset SPE10, it is not predicted that the preconditioner is quite as successful. In these cases

we will that IDR(s) performs less efficiently than when preconditioned with ILU, compared to

GMRES.

This section will cover the results in the following way. First we consider the cases where the

preconditioner worked well, and solving the system showed a clear system that stems from

this. Second we look into the cases where the preconditioner is not as successful, and finally

we look closer at the systems where a desired solution was not computed, and shortly discuss

the possible explanations for this.

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

38

5.2.1 A successful Multi-Level preconditioner

This section will cover the cases with homogenous and lognormal permeability distribution

and Layer 27 from the SPE10 dataset. These permeability fields have in common that the

Multi- Level preconditioner successfully approximate the coarse scale geometric structures,

and that this not dependent on the size of the coarse grid system. In these cases the iteration

number is expected to stay unchanged even for increasing , both IDR(s) and GMRES. These

three permeability distributions will be covered by on example, which is representative for all.

The representative example is the cases where layer 27 in SPE10 was considered. To get a

good picture on how this preconditioner influences the performance of our methods, we will

in this example cover all of the grid sizes. After solving the systems, Table 5.2.1 shows the

total number of iterations need to solve the different systems.

Table 5.2.1 – Number of iterations for all grid sizes for solving problems with Layer 27 in the SPE10 dataset

As the table shows, the number of iterations needed to compute the solution stays nearly

unchanged even though the number of equations doubles for each system. Since this

preconditioner in these cases is successful, it causes the number of iterations to stay nearly

unchanged, regardless of grid size.

Grid size Iterations

GMRES IDR(1) IDR(2) IDR(4) IDR(8)

5 8 9 8 7

6 8 8 8 7

6 10 9 9 9

7 13 11 11 11

6 10 10 9 9

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

39

When the preconditioner worked this well, and this pattern occurred, all of the IDR(s)-

versions obtained the solution faster than GMRES. However, since the number of iterations is

low the difference in run time not large.

5.2.2 A less successful Multi-Level preconditioner

In the cases where the permeability was more challenging, such as random and binary

distribution and layer 51 in SPE10, we encountered a situation where the preconditioner is not

expected to be successful. In these cases the convergence behavior of both IDR(s) and

GMRES resembled what we saw with the ILU preconditioner. For increasing , the number

of needed iterations to compute the solution increased. For increasing we saw the number of

iterations used by IDR(s) drop, and GMRES still used less iterations than all IDR(s) versions.

The total number of iterations needed to compute the solution for each system was lower was

still lower than when ILU was used, for the same systems. However, the number of iterations

used by IDR(s) was no longer as close to GMRES.

Again we look at a representative example for these results. This specific example a domain

with random distribution of heterogeneous permeability, discretized with grid size

. After

solving the system, Table 5.2.2 shows the total number of iterations and the total run time for

each method.

Table 5.2.2 – Total number of iterations and run time for the example with a less successful preconditioner

Method Iterations Elapsed Time (s)

GMRES 21 0.78

IDR(1) 47 1.10

IDR(2) 40 0.93

IDR(4) 34 0.82

IDR(8) 30 0.78

From the table 5.2.2 we see that GMRES uses the same amount of time as the fastest IDR(s)-

version, which in this case is IDR(8). It also shows that the total number of iterations used is

relatively low, and the difference between GMRES an IDR(s) is relatively large. As we

mentioned in the earlier cases, GMRES gets increasingly more costly as the number of

iterations grows. The first iterations are therefore ‘cheaper’ than the later, so when GMRES

uses few iterations and IDR(s) uses that many iterations more they come out at the same run

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

40

time. A difference in the general behavior from what we saw when we used ILU

preconditioner was that the number of iterations for IDR(4) and IDR(8) no longer got as close

to GMRES. In all cases, IDR(8) used approximately 50 percent more iterations than GMRES

used to solve the same system.

A general behavior of IDR(s), compared to GMRES, is that as the number of iterations rises,

the run time of IDR(s) becomes more attractive due to the short recurrence algorithm.

However, in these cases we saw the IDR(s) versions use less time than GMRES for the

smaller systems (grid size

 and up), and GMRES being the fastest for the bigger systems.

It should be noted that at some point IDR(s) is predicted to be faster than GMRES again.

When the cost of computing and storing the basis for the Krylov subspace get large enough,

IDR(s) will again be faster than GMRES.

5.2.3 Cases with stagnation

In addition to the behavior we have covered in the two sections above we also encountered

some cases where some IDR(s)-versions did not compute a desired solution. When IDR(s) did

not compute the solution this was caused by the so-called Flag 2, as we saw in section 5.1.3.

In addition to this we had one case of IDR(1) using the max number of iterations which was

preset to . In one of the cases we also experienced a stagnation of GMRES before the

desired residual was met. These cases all happened when we solved the bigger systems that

described flow in binary permeability distribution and layer 51 in the dataset SPE10.

We will cover the case where both IDR(s) and GMRES stagnated, and therefore only

considered the binary permeability distribution and the finest grids,

 and

. The comments

made about IDR(4) and IDR(8) in this example also applies for the SPE10 case that we will

not discuss.

In the case of binary permeability distribution and the finer grids, we encountered stagnation

for both IDR(4) and IDR(8). In addition to this stagnation IDR(1) used the maximum number

of iterations when solving the system arising from the finest grid. Table 5.2.3 shows the

iteration count and Table 5.2.4 shows the relative residual. A red number indicates stagnation,

and green indicates max iterations.

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

41

Table 5.2.3 – Total iteration count for solving system describing binary permeability distribution

 Iteration

GMRES IDR(1) IDR(2) IDR(4) IDR(8)

5 184 10 145 116 89 110

20 736 33 20736 3086 733 364

Table 5.2.4 – The relative residual returned by the methods after stagnation, termination, or computing solution

 Relative residual

GMRES IDR(1) IDR(2) IDR(4) IDR(8)

5 184 8.4763e-8 5.5083e-8 6.9895e-8 6.497e-5 0.00033351

20 736 1.1206e-7 0.0076216 6.1429e-8 0.00022213 4.5388e-5

Notice that when the only method that is able to solve the system with the

desired tolerance is IDR(2). However, it used 3086 iterations which is not very impressive.

For the same system, GMRES also stagnated, and returned a notice that the condition number

of the matrix times the unit round-off, machine precision, was greater than the tolerance.

However, GMRES returned a relative residual that was only 12 percent over the tolerance.

This is much less than the residual that IDR(4) and IDR(8) were able to compute.

From the results in our cases it seems like the robustness of IDR(s) goes down when

increases, and especially when the preconditioner is not working optimally. This is most

likely caused by round-off error, since the number of computational operations goes up when

 increases, but as GMRES notified the condition number of the coefficient matrix is high.

This should therefore be weighted carefully.

In the cases where we encountered stagnation IDR(s) proved to be most stable and robust

when is low. In the case where GMRES stagnated and IDR(2) was able to obtain a solution,

GMRES used 33 iterations before it stagnated. IDR(2) used 3086 iterations to compute the

desired solution. Table 5.2.5 shows the run time for the cases discussed above, and as we can

see IDR(2) used more than 50 times the time used by GMRES.

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

42

Table 5.2.5 – Total run time for each method before stagnating, terminating or computing the solution

 Elapsed time (s)

GMRES IDR(1) IDR(2) IDR(4) IDR(8)

5 184 0.20 1.15 0.89 0.69 0.91

20 736 1.45 533.92 80.92 19.61 10.40

In both of the cases where IDR(s) stagnated it used more time than what GMRES did. In the

case where , the iteration number for IDR(s) is still relatively low, but when

 this number goes drastically up. This causes IDR(s) to use considerably more

time to solve the system, and when GMRES still uses a low number of iterations this cases a

large difference in run time. In these cases GMRES is clearly the most attractive method.

Even in the case where GMRES stagnated, the low number of iterations and the fact the

residual was only 12 percent off causes it to be an attractive method.

5.2.4 Summary

From the results of our test cases, we see that the performance of our methods is dependent on

the performance of the Multi-Level preconditioner. When the preconditioner works well, the

convergence of IDR(s) is close to the optimal GMRES independent on the choice of . IDR(s)

solves in all cases the system in less time than GMRES does. In the case where the

permeability field is not as smooth and exhibits large differences within close range, the

preconditioner is not as successful. In these cases the iteration number for the IDR(s) version

is not as close to the GMRES as they were when preconditioning with ILU. Since the iteration

number in these cases is still relatively low compared to in these cases, and the difference

between IDR(s) and the GMRES relatively large, IDR(s) is no longer the obvious choice.

We have in this section also seen some cases where IDR(s) stagnates before returning the

desired solution. In one of these cases, GMRES also stagnated, and returned a notice that the

condition number was bad. In these cases, as in the previous section, we have seen that IDR(s)

preforms best in these cases when low. In the next chapter a summary of both sections will

be given. Some concluding remarks based on the result from our cases and some thoughts on

IDR(s) will be given.

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

43

Chapter 6

Concluding Remarks

In this thesis we have investigated the convergence behavior of the IDR(s) family of solvers

when using it to solve systems that arise from discretizing a mathematical model of flow in

porous media. Through a series of test cases where the properties of the systems of linear

equations have been altered, and with the use of two different preconditioners, we have

encountered a number of different results which leads us to draw these concluding remarks.

In general, the number of iterations IDR(s) has to perform to compute the desired solution

goes up when the number of unknowns goes up. In addition to this, we have also seen the

number of iterations increase further when the permeability becomes rougher and exhibits

large scale differences within close range. This is not surprising and reflects on the fact that

the condition number grows when the permeability becomes rougher and the grid size gets

smaller, and since the convergence rate of IDR(s) is indirectly linked to the condition number

we see this. We have also seen that the number of iterations needed to compute the desire

solution with IDR(s) is dependent on the chosen value of . In exact arithmetic IDR(s) solves

the system in

 steps, so a decrease in number of iterations is expected for larger values

of . This has been confirmed in all cases.

We have chosen to compare the performance of IDR(s) with the well-known GMRES.

GMRES is optimal with respect to the number of iterations, since it in exact arithmetic solves

the system in iterations at most. Throughout our test cases with ILU as preconditioner we

saw the difference in the iteration numbers between IDR(8) and GMRES vary from 10 to 30

percent. In these cases all IDR(s)-versions solved the system faster than GMRES. As the

number of unknowns went up, the difference in run time increased. This algebraic

preconditioner is assumed to work equally well on all systems, and we therefore saw this

system of behavior in all test cases. When a large number of iterations have to be performed

by both methods, IDR(s) is considerably faster than GMRES. This makes IDR(s) especially

attractive when solving larger systems of systems that require many iterations before a desired

solution is computed, compared to GMRES. This is due to the fact that the computational cost

and memory requirements are constant for IDR(s) in each iteration, whereas these properties

grow exponentially for each iteration with GMRES.

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

44

When preconditioning with the Multi-Level-preconditioner, we do not expect the

preconditioner to work well for all permeability distributions. We know that when the

permeability distribution is rough and exhibits large scale differences within close range, this

preconditioner is not optimal. However, since the preconditioner has several attractive

features we chose to apply this to our methods for all permeability distributions. In the cases

where the permeability was smooth, and the Multi-Level-preconditioner worked well, both

IDR(s) and GMRES used a low number of iterations, regardless of grid size and permeability.

The IDR(s)-versions was still the fastest one, but the difference between the two methods was

no longer as significant as in the cases where we used the ILU-preconditioner. However, in

our test cases where the permeability distribution was of such a character that the Multi-

Level-preconditioner no longer was optimal we saw that the IDR(s)-versions struggled more

than what GMRES did. In these cases we saw the IDR(s) versions use more iterations than in

the cases where the preconditioner work well, relative to GMRES. This caused IDR(s) to no

longer be the fastest method in these cases.

We have also seen some cases where IDR(s) stagnates and therefore not compute the desired

solution. This stagnation happened when using the finer grids on rougher permeability fields,

which in general leads to badly conditioned systems. In these cases we saw IDR(s) stagnate

for the higher values of (4 and 8), whereas it performed better when was low (1 and 2).

We have also seen through our cases that IDR(s) is more dependent of the performance of the

preconditioner than GMRES, which should be taken into account

Compared with GMRES we have seen that IDR(s) is a very attractive method when solving

systems that requires many iterations. The short recurrence algorithm requires a constant

amount of computational operations and low memory requirements per iteration, which is

attractive when the number of iterations goes up.

The study in this thesis is however not exhaustive, and more studies are need to identify under

which conditions IDR(s) contains its stability. If this is identified, IDR(s) should after my

consideration, be considered as an attractive method for solving non-symmetric systems of

linear equations in porous media problems. This is based on the opportunity of saving

significantly amounts of time used to compute the solution to these problems.

Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems

45

Bibliography

[1] J.E. Aarnes, T. Gimse, and K.-A. Lie. An Introduction to the Numerics of Flow in Porous

Media using Matlab. In G. Hasle, K.-A. Lie, and E. Quak (Ed.), Geometrical Modeling,

Numerical Simulation, and Optimization: Industrial Mathematics at SINTEF. Springer

Verlag, 2007.

[2] K. Aziz and A. Settari. Petroleum Reservoir Simulation. Applied Science Publishers,

1979.

[3] J. Bear. Dynamics of fluids in porous media. Dover Publications, 1988

[4] K. Chen. Matrix Preconditioning Techniques and Applications. Cambridge University

Press, 2005.

[5] J. M. Nordbotten and M. A. Celia. Geological storage of CO2: Modeling approaches for

Large-Scale Simulations. John Wiley and Sons, 2011.

[6] J. M. Nordbotten. Finite volume methods. In B. Engquist (Ed.) Encyclopedia of Applied

and Computational Mathematics. Springer, 2016

[7] J. M. Nordbotten and E. Keilegavlen. Inexact linear solvers for multi-level control volume

discretization. (In review) SIAM J. Sci. Comput.

[8] Y. Saad and M.H. Shultz. GMRES: A General Minimal Residual Algorithm for Solving

Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput., 7(3): 856-869, 1986

 [9] P. Sonneveld and M.B. van Gijzen. IDR(s): a Family of simple and fast algorithms for

solving large nonsymmetric linear systems. SIAM J. Sci Comput., 31(2): 1035-1062, 2008.

[10] P. Sonneveld. On the convergence behavior of IDR(s) and related methods. SIAM J. Sci.

Comput., 34(5): A2576-A2598, 2012.

[11] P. Sonneveld. IDR(S) implementation manual. Available at:

http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html

[12] L.N. Trefethen and D. Bau. Numerical Linear algerbra. Society for Industrial and

Applied Mathematics, 1997.

[13] H. van der Vorst. Iterative Krylov Methods for Large Linear Systems. Cambridge

University Press, 2003

