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Abstract 

We investigate the performance of the IDR(s)-algorithms when solving nonsymmetric 

systems in porous media problems. We derive a mathematical model for the flow in porous 

media, and discretized this with the method known as Two-Point Flux-Approximation. By 

altering the permeability distribution and the grid size we design a series of systems with 

different sizes and properties. These systems have then been solved with IDR(s), using two 

different preconditioners, and the results have been compared against the popular GMRES.  

We shall see that the short recurrence algorithm of IDR(s) appears in our cases to be an 

attractive alternative, compared to GMRES. Especially in the cases where both methods 

require a large number of iterations to solve the system shall we see the IDR(s) algorithm 

excel. However, we also encounter badly conditioned systems where the stability of the 

IDR(s) is not as good as GMRES. 

This study is however not exhaustive, and more studies are need to identify under which 

conditions IDR(s) loses its stability. When this is identified, IDR(s) should after my 

consideration be considered as an attractive method for solving non-symmetric systems of 

linear equations in porous media problems. 
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Motivation 

 

The need for solving linear systems with a large number of unknowns arises in many different 

fields; engineering, medical, environmental, etc. This thesis considers solving such systems, 

in the case where they describe the flow of some fluid in a porous media. Solving these large 

systems exactly is usually not attractive, due to the size of the problem. Instead, we search for 

good approximations to the solution with the use of an iterative method. Iterative methods all 

have in common that they generate a sequence of estimates that improves for each step. The 

idea is to start the sequence with an initial guess to the solution and by each step approximate 

a new and better solution. Once the approximation is sufficiently close to the true solution, it 

is taken as the solution to the system. 

There exist a large number of iterative methods for solving large systems of linear 

equations. One of the classes of iterative methods for solving these systems is the Krylov 

subspace methods. These methods attempt to generate better approximations from the Krylov 

subspace. The choice of methods depends on the property on the system. For symmetric 

systems, the usual choice is the method of Conjugate Gradients. For nonsymmetric systems, 

the choice is not so clear. In general there is no superior method for solving nonsymmetric 

system. GMRES, proposed in 1986 by Saad and Shultz, is one of the most popular methods. 

However, it is quite expensive in terms of memory requirements. The other methods are not 

as robust, but are less expensive with respect to computational operations and memory 

requirements. The choice is therefore usually based on testing multiple methods on a specific 

problem.  

The challenge lies in finding new and better algorithms for the iterative methods. The 

search for faster and more robust algorithms that require less computer memory and less CPU 

time is active field of research.  In 2008 Sonneveld presented a new family of iterative 

methods, the IDR(s). IDR(s) was based on the nearly forgotten induced dimension reduction 

method. As we shall see further on in this thesis there is a clear relation between the methods, 

yet the ideas a completely different. 

The aim of this thesis is to investigate the performance of the induced dimension 

reduction method, or IDR(s), presented by Sonneveld (2008) when solving systems that arise 

from discretizing a mathematical model for flow in porous media. To investigate the 
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performance of IDR(s) we will solve several different systems, and the results will be 

evaluated and related to one of the most popular and frequently used Krylov methods; the 

generalized minimal residual method (GMRES). Each system will be solved twice, with two 

different preconditioners, one algebraic and one geometric. 

 

Chapter 1 is devoted to the mathematical model describing the flow of fluid in porous media. 

A discussion on the challenges of assembling the model is given, as well as important 

characteristics of the porous media and the equations describing the flow of the fluid. At the 

end of the chapter we end up with a complete model describing flow in porous media. 

 

Chapter 2 focuses on the task of discretizing our model assembled in Chapter 1, and making 

it suitable for numerical evaluations. We derive the two-point flux-approximation scheme, 

based on the finite volume method and a Cartesian grid-system.  

In Chapter 3 we look at the concept of the condition number and how the idea of 

preconditioning affects this. A short discussion on the two preconditioners used in this thesis, 

ILU and ML, will be given. 

In Chapter 4 we introduce the iterative methods used in this thesis. We present their 

algorithms, and give a short discussion on the theoretical convergence and computational cost 

of the methods. 

The presentation of the numerical results from our test cases will be given in Chapter 5. 

Chapter 6 will be devoted to concluding remarks for the discussion given in the previous 

chapter. 
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Chapter 1 

Challenges of modelling  

flow in porous media 

Before we derive a complete model for describing the flow in porous media, we present the 

challenges that arise when assembling the equations that make up this model. Necessary 

properties and definitions of a porous media and fluids that flow in these will be given, and 

the challenges these present to our continuous model of flow will be discussed. We then 

introduce the equations that describe the flow in porous media, and the important 

characteristics of these. By the end of this chapter we will have a complete model flow of 

fluids in porous media.  

  For simplicity we will focus on single phase flow, which can be expanded for two of 

more fluids present in the porous media. Most of the following presentation is based upon [5]. 

For more details I refer to this book. 

 

1.1 A Porous media 

A porous media is a solid medium that contains pores. These pores can be described as 

“holes” or voids, and are randomly distributed throughout the media. For the fluids to flow 

through the media the pores have to be interconnected. These connected pores make up 

continuous pathways where the fluid can flow from one area of the material to another. These 

pathways in which the fluids flow are complex and complicated, and their length-scale are so 

small that they cannot easily be resolved, neither observationally of computationally. To 

describe these complex pathways mathematically we therefore introduce the notion of 

representative elementary volume (REV) [5]. The REV-method consists of giving a 

mathematical point the properties of a certain volume of material surrounding the point. The 

volume of REV should be large enough to give a representative average, but small enough to 

allow the properties to be approximated by continuous functions.  

After introducing the notion of REV we can define the measurable property porosity, φ, of the 

rock. It is the scalar quantity that represents the volume of pores over the total volume within 

the REV, 
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From our approach of representative elementary volume, the actual porous media has been 

replaced with a fictitious continuum. In this fictitious media we have assigned an averaged 

value of porosity with respect to a surrounding volume to a mathematical point. The porosity 

is therefore assumed to be well defined and smooth. It can be differentiated or integrated, and 

is suitable for mathematical modeling [3]. 

 

1.2 The Darcy Law 

One of the most important equations for describing flow of fluids through porous media is the 

Darcy law, named after Henry Darcy. He did several experiments on water treatment with 

different sand filters, and from this he made some observations that led him to predict how the 

water would flow through these filters. He found that the volumetric flow rate,    , could be 

written 

     
        

 
 (1.2.1) 

Where   is a proportionality coefficient,   is the cross-section area of the filter,      are the 

respective hydraulic heads, and   is the length between the measuring points. 

The hydraulic head is a measure of the pressure,  , (scaled by   ) plus the elevation of the 

point, and is defined as   
 

  
  . Where   is the gravitational acceleration, and   is the 

elevation of the measuring point relative to a set datum. 

To express the volumetric flux, equation (1.2.1) is divided with   on both sides, and we get  

   
  

 
  

       

 
 (1.2.2) 
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From Darcy’s original linear equation we can now extend (1.2.2) into differential form. We 

let the fluid flow in three dimensions, assume the hydraulic head to be a sufficiently smooth 

function, and take the limit as   goes to zero. The Darcy law then takes the following 

differential form,  

         

One of Darcy’s key observations was that the fluid flows from regions of higher hydraulic 

head to regions with lower. This explains the negative sign in front of the coefficient of 

proportionality,  , which we refer to as hydraulic conductivity.  

 

1.2.1 Hydraulic conductivity and permeability 

Hydraulic conductivity is an important property when describing flow in porous media. It is 

defined as  

  
   

 
 

and is dependent on properties of both the fluid and the porous media. When a fluid flows in 

the interconnected pores it continuously deforms, and this deformation is referred to as flow. 

The fluid viscosity,  , is the fluid’s ability to resists this deformation. The fluid density,  , is 

simply defined as the mass of the fluid per unit volume of fluid. As for the effect of the 

property of the porous media on the hydraulic coefficient, permeability,  , is an average 

measure of the ability for fluid to flow through the porous media. Together with gravitational 

acceleration,  , these properties of the fluid and porous media define the hydraulic 

coefficient. In words, we can say the hydraulic conductivity indicates the ease of which a fluid 

flows through a porous media. 

 One of the challenging aspects of modelling flow in porous media is that the 

permeability of the medium may allow the fluid to flow more easily in one direction than 

another. When the hydraulic conductivity has no directional differences (isotropic),   is a 

constant scalar that indicates the ease of which the fluid flows through the porous media. Our 

volumetric flux vector,  , is then related to the product of a constant scalar times the vector, 
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  . On the contrary, if the hydraulic conductivity is anisotropic we need to assign values to   

that are dependent on the direction of flow. To preserve the vector form of our volumetric 

flux,  , we need   to take the form of a conductivity matrix,  . In this case, the Darcy law 

can be written 

         

From the previous mentioned definition of the hydraulic head, we see that there are two 

driving forces in porous media: gravity and the pressure gradient. Substituting in our defined 

hydraulic head, we then write   

    
 

 
         

 

Where   is the gravitational acceleration vector. This form of the Darcy law is a more general 

statement of the relationship between fluid flow and the driving forces for that flow [5]. Since 

gravitational forces are approximately constant with a reservoir domain we can neglect the 

effect of gravity, and we only use pressure as the unknown. 

        (1.2.3) 

Where   
 

 
.  

 

It is worth stating that Darcy’s law is only valid when the flow of fluid is so slow that the 

kinetic energy can be neglected (Laminar flow). When the fluid flows through the small 

complex pathways that define the porous media, the friction forces between the fluid and the 

pore walls will dominate and the flow tends to be very slow. Also, the influence of 

temperature and dissolved substances are neglected by assumption. 
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1.3 Mass Conservation Law 

While the Darcy law describes how the fluid flows in a porous media, it is not sufficient for a 

complete model of the flow. To make it possible to obtain a unique solution to a general 

problem, a second equation has to be added to the model and we therefore look to mass 

conservation for a second equation. The mass conservation law is based on a simple and 

intuitive principle: any change of mass within a volume,  , must be a result of either mass 

flow through the boundary,   , or added mass to the volume that is not associated with the 

boundary. In mathematical terms we write 

 ∫
  

  
  

 

  ∮       

  

 ∫    

 

 (1.3.1) 

Where   is the mass per total volume of porous media,   is the mass flux vector,   is the 

outer normal to the surface    and   is any sink or source terms within the volume. This 

equation states the above mentioned principle that the total change in mass over time (left 

side) is equal to the transfer of mass over the boundary (first term on right side) and the 

addition or removal of mass not associated with the boundary (second term on right side). To 

apply this equation to our model of flow, we express the variables above with respect to the 

known properties of the fluid and porous media. We write 

     ,     , and     (1.3.2) 

where ψ represent sink of source terms of mass. Substituting the variables and with the use of 

Gauss theorem on the surface integral, the mass conservation can be written, 

 ∫ (
     

  
         )   

 

  

 

Since the volume Ω is arbitrary and the integrand is assumed continuous we set the integrand 

itself to zero, and obtain the mass conservation law on a differential form, also known as the 

transport law, 
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For our simplified model, we assume the fluid to have constant density, and for the media to 

have constant porosity. The first term  on the left side will then equal zero, and we arrive at 

our extension of the mass conservation law, which writes 

     
 

 
 1.3.3 

 

1.4 Complete model  

Together, equation (1.2.3) and (1.3.4) now make up a complete model for single phase flow in 

porous media. It reads, for our case: 

 
    

 

 
  

         

These two equations can be combined with each other, and we arrive at the so called pressure 

equation 

        
 

 
 1.4.1 

Together with boundary conditions we now have a complete and closed model. A common 

practice in setting boundary conditions is to assume that no fluid can enter or exit through the 

boundary of the domain. Such a boundary condition is known as no-flow boundary condition, 

and usually the most common. 

 

This model is based upon single phase flow under ideal conditions, and is therefore only valid 

under such conditions. However, this model can be generalized for two or more fluid by 

deriving one Darcy law and one transport law for each of the fluids present in the porous 

media. For such a case we need additional equations to close the system. For simplicity we 

have omitted the model for two- or multiphase flow. The latter discussion and mathematical 

operations are equally valid for the two- and multiphase, and can be done by extending the 

single phase model. 
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Chapter 2                                        

Discretizing our model 

of flow in porous media 

After dealing with the challenges of deriving a complete model for the flow in porous media 

we ended up with a complete model for describing the flow. This chapter will deal with the 

process of discretizing and making the continuous model suitable for numerical evaluations. 

Due to the memory capacity of the computer we cannot solve a continuous model 

numerically. Where an analytical solution solves our variables continuously throughout the 

domain, a numerical solution can only give approximate solutions to discrete points.  

The following discretization will transform our continuous model into a sequence of 

discrete values for the domain. There are numerous ways of discretizing a domain, and in this 

thesis we are going to use a finite volume method of discretization. Our approach uses a 

Cartesian grid system with the gridlines aligned with the principal axes, and where each cell is 

represented by a cell centered average of the fluid pressure. This method is sometimes 

referred to as the two-point flux-approximation (TPFA) scheme [1]. 

 

2.1 Cartesian Grid system 

Grids are generated by dividing our domain into smaller subdomains. We consider the 

situation where a domain Ω is divided into   subdomains   , and refer to each of the 

subdomains as a cell. We let the subdomains be non-overlapping, and the union of all 

subdomains combine to Ω. We refer to the edges between two neighboring cells i and j as a 

face, denoted      , and the cell center of    as   . For a three dimensional problem these 

subdomains would represent volumes, where as in two dimension they would represent areas. 

 

 

 

 



Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems 

11 
 

Figure 2.1 – A Cartesian grid system, with cell centers. Bold line around indicates the full domain, Ω, and the 

fine lines indicates the subdomains. All cell centers have been marked, and one has been labeled.  

        

             

        

        

 

The Cartesian grid, which is used in this thesis, is a structured grid. The geometry of cells is 

arranged by letting the subdomains have faces that are aligned with the principal axes. This 

structure defines our grid, which we in the next will use to construct the finite volume 

method. 

 

2.2 Finite Volume method 

The finite volume method is family of numerical methods that discretely represents 

conservation laws [6]. It is based on the assumption that the conservation law holds for our 

domain, but also is valid for each cell in our discretized domain. As the name finite volume 

method implies, our domain is divided into a finite number of volumes.  After dividing our 

domain into smaller subdomains, we return to the conservation law and generalize (1.3.1) for 

each subdomain. We then write 

 ∫
   

  
  

  

  ∮           

   

 ∫     

  

 (2.2.1) 

where the outward normal vector from one cell to the neighboring cells is denoted     . Using 

the same assumptions as in the previous chapter, the integral on the left hand side is still equal 

to zero. For the first term on the right hand side, we let the flux over the boundary from cell i 
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go to any neighboring cell j. By summing over all the faces to the neighboring cells j, the 

equation for mass conservation for each cell can then be written as 

 ∑ ∮            

     

 
 ∫     

  

 (2.2.2) 

Keeping in mind that the density is assumed constant, and that the volumetric flux over a face 

can be and we write 

      ∮         

     

 (2.2.3) 

 

The conservation of mass in each cell then takes the following form 

 ∑     
 

 ∫
 

 
  

  

 (2.2.4) 

For this equation the flux is the unknown, and two solve this we use the Two-Point Flux-

approximation to approximate the flux.  

 

2.3 Two-Point Flux Approximation 

The Two-Point Flux Approximation scheme is a discretization of the Darcy law. As the name 

states, it approximates the flux between two cells. In our case it uses the average pressure, 

assigned the cell centers, in two adjacent cells to approximate the flux over the face between 

the two cells. When this is done for all cells in our grid the scheme yields a complete mapping 

of the fluxes. This scheme was pioneered in [2]. 

The volumetric flux over a face, given by (2.2.3), and can be expanded using the Darcy law 

(1.2.5). The total flux from one cell over the faces between the adjacent cells is then given by  



Comparison of Iterative Solvers for Non-Symmetric Linear Systems in Porous Media Problems 

13 
 

       ∫    

      

      (2.3.1) 

 

The pressure potential is assigned to the cell center, and to approximate the pressure gradient 

at the cell face we use central differences. The permeability is also defined as a cell wise 

constant, and is not defined at the edges. We must therefore also approximate   on the faces 

between the cells. This can be done by taking a weighted harmonic average of the respective 

directional cell permeability. 

After this has been done we end up with these approximations for the pressure gradient and  . 

   
        

       
 

           (
  

     
 

  

     
)

  

 

Where    and    are the respective distances from the face,      , to the cell centers. This can 

be used to rewrite (2.3.1), and the total flux over the face then takes the form 

       |     |        (
  

     
 

  

     
)

  

 (2.3.3) 

To express the flux on a more compact form, and this is done by gathering the terms that do 

not involve the pressure into what is defined as face transmissibility     .  

       |     | (
  

     
 

  

     
)

  

 (2.3.4) 

 

By summing the fluxes over all faces to adjacent cells, we get an approximation to the total 

flux over the faces, and we can rewrite (2.2.4)  

 ∑    (     )  

 

∫
 

 
  

  

 (2.3.4) 
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This can also be written as  

∑    (     )

 

                                   

                                              (     )                 
 

 
   

We have now reached a system of equations where the local fluxes can be explicitly 

represented as a combination of the pressure in adjacent cells. (2.3.4) is a linear system on the 

form 

      (2.3.5) 

In this thesis we use periodic boundary conditions, and therefore have to make this system 

positive definite. To do this we add a positive constant to the first diagonal of the matrix   

 

Remark: This system is clearly a symmetric system, since the conservation law predicts flux 

to be the same magnitude, but with negative value, if we evaluate the flux from   to   instead. 

The goal of this thesis is however to investigating convergence behavior of IDR(s) when 

solving nonsymmetric systems. As we shall see in the latter, we will precondition our system 

using nonsymmetric preconditioners which will transform our system to being nonsymmetric 

and therefore suitable for our thesis. 
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Chapter 3 

Preconditioning 

After discretizing our mathematical model we ended the previous chapter with a system of 

linear equations. Before we look at the methods for solving this system, we will in this 

chapter briefly discuss the concept of condition number, preconditioning, and at the end we 

give a short description of the two preconditioners that will be used when solving our 

systems. 

For this chapter, and the next, we consider a linear system on the same form as the one we 

derived in the previous chapter. We write it on a more general form, and for the remainder of 

this thesis we will refer to the non-symmetric systems in porous media problems as 

      (3.1.1) 

where         ,      and   is unknown.  

Before we present our preconditioner we shortly introduce the notion of condition number 

 

3.1 Condition number 

If a small perturbations of input data leads to a small change in output we say that the problem 

is well condition. On the contrary, we say that the problem is ill-conditioned if small 

perturbations of input data lead to large changes in output data. The meaning of “small” and 

“large” is related to the application. The condition number is used to measure the sensitivity 

of the solution to our system, with regards to small perturbations of input data. The problem 

of computing  , given  , has condition number 

   ‖   ‖
‖ ‖

‖ ‖
 ‖ ‖‖   ‖ 

 

with respect to perturbations of   [12]. The product ‖ ‖‖   ‖ is the condition number of  , 

denoted     : 

      ‖ ‖‖   ‖ 
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The condition number therefore only is attached to the coefficient matrix  , and not the 

system. In the next chapter we will see that this is of practical important to us, since the 

convergence rate of iterative methods, such as GMRES and IDR(s), are indirectly linked to 

the convergence number. The convergence rate tends to decay as the condition number rises. 

To obtain the approximate solution to our system in a fast and accurate way, the condition 

number of our coefficient matrix is required to be as small as possible. If the condition 

number is not small enough, we can modify our system with the use of a preconditioner.  

  

3.2 Preconditioning 

The main idea of preconditioning is to design an effective matrix, the so-called 

preconditioner, in order to obtain a numerical solution with more accuracy or in less time [4]. 

If we consider system (3.1.1), the preconditioned system takes the following form 

            (3.2.1) 

The trick is to find some matrix  , sufficiently close to  , so that      has a better 

properties and condition number. This is based on the observation that for    , we would 

have the ideal system               and all subspace methods would deliver the true 

solution in one single step [13]. The cost and time of constructing the preconditioner should 

be as low as possible. The bigger the difference between the costs saved by applying the 

preconditioner to the iterative method and the cost of constructing it, the more attractive the 

preconditioner is.  

For this thesis, the choice has been made to use two different preconditioners. One is the well-

known Incomplete Lower Upper (ILU) preconditioner, and the other is a Multi-Level 

preconditioner as described in [7]. A short description of these preconditioners will now 

follow. 

 

3.3 Incomplete Lower Upper Preconditioner 

The Incomplete Lower Upper (ILU) preconditioner has its name from Standard Gaussian 

elimination. Standard Gaussian elimination is the same as factoring the coefficient matrix,  , 
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into a lower and an upper triangular matrix, respectively denoted   and  . After       steps 

of Gaussian elimination, we end up with and upper triangular matrix,  , defined as:  

                            

From this we define the lower matrix as the elimination matrix  

                      

 

This leads to a factorization of our coefficient matrix, defined as  

     

The main problem in such factoring of a sparse matrix, as the once that arises from our 

discretizing techniques, is that the factors tends to be much less sparse than the original matrix 

A. In order to amend this problem, which causes the computation to be more expensive, the 

basic idea in the preconditioner is to set restrictions to the “fill in's” that occurs in the 

factorization. To preserve the sparsity of the system, the only non-zero entries in the factors 

   are restricted to be the corresponding non-zero entries of  . We then consider the 

factorization of   as  

   ̃ ̃ 

The incomplete factors of  ,  ̃ ̃, then defines the Incomplete Lower Upper preconditioner. 

For further use, we will only refer to this preconditioner as ILU. 

 

Remark: ILU-preconditioners where proposed for positive and definite matrices with special 

structures. Due to this, it has been shown that this preconditioner has some difficulties 

providing robustness for a general matrix. Though this is the case, there has been a lot of 

theory developed proving that ILU-preconditioners are suitable for special classes of matrices, 

such as the once that arises from our discretization. Therefore, this is a suitable preconditioner 

for our system.   

 

 

3.4 Multi-Level preconditioner 

The other preconditioner we shall use in this thesis is Multi-Level preconditioner. This is a 

geometric multi-level preconditioner and is tailored to the give an approximation of the fine 

scale discretization on the coarse scale, and is based on conservation laws. A general 

description of the preconditioner will be given, but for details the reader is referred to [7] 
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To show how these preconditioners are constructed the notion of a ‘coarse grid’ needs to be 

explained. This can be done by recalling the grid system that was introduced in section 2.1, 

and defining this as the primal coarse grid. Each cell is then referred to as a primal coarse cell. 

These primal coarse cells consist of a set of interior cells from a finer grid, where the middle 

cell is defined as the ‘vertex’, see Figure 3.4.1. 

 

 

 

Figure 3.4.1: A Cartesian grid with fine and coarse (thick lines) cells; a finer grid is also indicated. The dual coarse grid is 

indicated by grey cells. The basis function centered in the black cell has support in all four surrounding dual coarse cells, and 

thus contribute to the flux expressions of all coarse edges shown in the figure. (Both figure and text are borrowed with 

curtesy from [7]) 

 

From the dual coarse grid shown in Figure 3.4.1, for each vertex a basis functions can be 

constructed with a one-dimensional version of the pressure equation (1.4.1). A matrix, ψ, can 

then be assembled by adding each basis function to its columns. Together with a matrix, φ, 

with piecewise constant test functions associated with the primal cells, the coarse 

discretization matrix    takes the form 

       

This coarse linear system is then applied as our preconditioner.  
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Chapter 4 

IDR(s) and GMRES 

This chapter is devoted to our two iterative methods for solving non-symmetric systems. First, 

a general introduction to Krylov Subspace Methods is given. We thereafter present the 

mathematical ideas behind the IDR(s)-algorithm and look at the computational cost and 

theoretical convergence behavior, before we present GMRES and its properties. At the end of 

the chapter we make a short summary of the two methods and compare them to one another.  

 

4.1 Krylov Subspace Methods 

The Krylov subspace methods attempts to generate better approximations to the solution from 

what is known as the Krylov subspace, which is defined as  

                       
            

 

where   is the iteration number, and    is the initial residual defined as         , where 

   is the initial guess to our solution. We search for an approximate solution,   , for which 

the residual    is within some desired tolerance. The residual,   , can due to (4.1.1) also be 

given as a polynomial on the form  

            (4.1.1) 

where    is a  -th degree polynomial. 

There exists a number of different Krylov Methods. One of the most popular methods is the 

generalized minimal residual approach, or GMRES. GMRES has the property of minimizing 

at every step the norm of residual vector over a Krylov Subspace [8]. As we shall see later, 

GMRES comes at the cost of having to compute and store new orthogonal basis vectors for 

the Krylov subspace at every iterations. If many iterations have to be performed in order to 

achieve the desired precision, the cost of memory and computations become prohibitive.  
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In the search for new and efficient Krylov methods, Sonneveld presented IDR(s) in 2008. 

This is a revised version of the induced dimension reduction (IDR) algorithm, presented by 

Sonneveld in 1980. As Sonneveld showed in his article describing the method, it has many 

desirable features. In the next section we present this method. 

 

4.2 The IDR(s)-method 

IDR(s) is a family of efficient, short recurrence methods for solving large nonsymmetric 

systems of linear equations. This algorithm, presented in [9], was based on a previous method 

introduced by Sonneveld in 1980, the Induced Dimension Reduction (IDR) method. IDR 

introduced a new way of solving these types of systems, as the underlying idea was 

completely different from the “usual” way of solving nonsymmetric systems. In contrast to 

many other methods, including GMRES, the IDR and IDR(s) methods generates residuals that 

are forced to be in subspaces of decreasing dimension. Though the IDR(s) method is built 

around this completely different idea, its features has clear relations to other Krylov-type 

solvers.  

Before we look at the algorithm behind the iterative solver, we present the theorem that it is 

based on. The proof will not be given, for that I refer to [9] from where this section is based 

upon. 

4.2.1 The IDR(s) theorem 

As mentioned, IDR(s) is based on the IDR theorem from 1980. The theorem states 

Theorem 4.2.1: The IDR theorem: Let   be any matrix in     , let    be any nonzero 

vector in   , and let    be the full Krylov subspace         . Let   denote any proper 

subspace of    such that   and    do not share a nontrivial invariant subspace of  , and 

define the sequence   ,          as  

                   

Where the      are nonzero scalars. Then the following hold: 

(i)               

(ii)    { } for some     
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According to the theorem it is possible to generate a sequence of nested subspaces of 

decreasing dimension, where the smallest possible subspace is { }. The IDR(s) algorithm, as 

we shall see next, consists of generating residual that are forced to be in these nested 

subspaces,   . Applying this theorem to the algorithm then assures us that the problem will be 

solved after   steps of dimension reduction, at most.  

What follows next is based on [9]. It is presented not intended as a practical, but instead a 

mathematical algorithm, and serves only as a justification for the algorithm used in this thesis. 

 

4.2.2 The IDR(s) algorithm 

At the end of Chapter 2 we ended up with a system of linear equations. This system was on 

the same form as (3.1.1), and for the rest of this chapter we will consider these types of 

systems. To solve the system (3.1.1) we start the algorithm with an initial guess,   , to the 

solution to the system. This initial guess generates the initial residual, which is defined as 

        . For each step we look for a new and better approximate solution,   , which 

again generates a residual defined as         .  

A trivial observation is that if we are able to produce a recursion for the residual,   , then we 

will also be able to produce a corresponding recursion for the approximate solution,   . As 

mentioned in Section 4.1, the general Krylov Solver produces solutions for which the residual 

is forced to be the Krylov subspace. If the residuals and approximate solutions up to the  -th 

step has been calculated, then we will also be able to calculate      from  

                       [             ]   
 

 

We can then express the general form of a Krylov-type solver as 

 

             ∑       

 ̂

   

 

            ∑       

 ̂

   

 

(4.2.1) 
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where    is any computable vector in           
         ,     is the forward difference 

operator            , and  ̂ is the depth of the recurrsion.  

After generalizing the Krylov-type solver we can now revisit the IDR-theorem. This theorem 

can be used to generate residual that are forced to be the subspaces,   . The residual      will 

be in the subspace     , if 

      (       )   
 

where        . With this restriction for the vector,   , we choose 

       ∑  

 

   

      (4.2.2) 

 

This leads us to (4.2.3) which describes the recursion of the IDR(s) family 

 

                ∑  

 

   

      

               ∑   

 

   

     

 

(4.2.3) 

After deriving a recursion for the IDR(s) algorithm, we see that (4.2.3) is on the same form as 

the general Krylov-type solver given by (4.2.1).  

In (4.2.3),   defines the depth of recursion. Since the usual choices of   is range from 1 to 16 

(default value is 4), we have that     and an algorithm that uses short recurrence, which is 

attractive with respect to computational and memory requirements.  

The recursions for the solution and the residual are now defined, but are dependent on 

computing the coefficients   . These coefficients can be computed in the following manner. 

We first assume that the space   to be the left null space of some     matrix   of full 

column rank, defined as 

              ,         

Note that  , known as the shadow vectors, is the codimension of the subspace  .  
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Since    is in        , the relation        holds. Combining this with (4.2.4), we end 

up with a     system for the coefficients   , which has to be solved in order to determine   

and     . In [9] Sonneveld proposed to compute the residual      in the following way. 

Define the matrices 

                          

                          

After defining these matrices, the computation      is then carried out by the following 

algorithm 

 Calculate:       from the relation               

             

                 

When     residuals have been computed in      the next residual will be in     . In the 

generic case, the decrease in dimension for the next subspace is then equal to  .  

The scalar      can be chosen freely when computing the first residual in     , though the 

best choice is the value that minimizes the norm of the residual. This value must be kept the 

same during the calculations of all the     residuals in the same subspace. In the section 

about convergence, the choice of   is discussed. Once the residual is within the desired 

tolerance, we can update the approximate solution which yields our solution to the system. 

 

4.2.3 Cost of IDR(s) 

The cost of the IDR(s) algorithm is related to the choice of  . The computational cost and 

memory requirements increase for increasing  . To perform one full cycle of     IDR(s) 

steps, we can divide the cost into three parts. We need     matrix-vector products,      

  inner products and     
 

 
  

 

 
 vector updates. This gives us that IDR(s) only needs one 

matrix-vector multiplication, which is the most costly operation, per iteration. The total cost 

for solving a system can then calculated from this.  

Note that the cost per iteration is the same, regardless of which number is it. 
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4.2.4 Convergence behavior 

Through what has been shown in the mathematical algorithm in section (4.2.2), after every 

      iterations the residuals will be in a new subspace. This new subspace is of a lower 

dimension than the previous, and in most practical problems this dimension reduction has 

been shown to equal  . If this is the case, then in exact arithmetic it will require at most   
 

 
 

iterations to arrive at the exact solution.   

As for the convergence rate, Sonneveld showed in [10] that the convergence behavior was 

dependent on two factors. By expressing the residual as the so-called residual polynomial, 

          , this can be rewritten as a product of two polynomials 

                   

Here, the       are called the damping or stability factors, and         is called the Lanczos 

factor. These two factors have an independent influence the convergence rate of IDR(s).  

The damping factors have their names because the factors   , as mentioned earlier, are 

chosen minimize the norm of the residual that computed by the algorithm. The choice of   ’s 

are therefore partially responsible for the convergence of the algorithm.  

The Lanczos Factors is usually related to  , i.e. the rate of convergence will usually increase 

with increasing  . Though the value of   plays a role in the convergence behavior, it has also 

been shown that the choice of shadow vectors also plays a role. The best results are obtained 

if the vectors has as little to with the problem as possible. 

As for the convergence rates, there is no way of telling the exact rate. This is due to the fact 

that no system exhibits the same properties, and this will lead to different rates for the 

convergence. What are shown above are factors that influence the convergence rate, but there 

is no way of explicitly telling how fast it will converge, other than practical examples. 
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4.3 The Generalized Minimal RESidual method 

In this section we will cover the basic steps of the algorithm that builds up GMRES. This 

section is based upon [8] and [13], and for some of the terms used, the reader is referred to 

[12] for more information.  

GMRES is a part of the class of Krylov methods that are known as the “minimal norm 

residual approach”. In general we can say that the algorithm, at iteration step  , tries so 

identify the approximate solution    for which the norm of the residual, ‖     ‖, is 

minimal over the Krylov subspace   . 

 

4.3.1 Finding a suitable basis 

Due to the fact that for each iterations the vectors      points more and more in the direction 

of the dominant eigenvectors causes the basis {        
          } to be an unattractive 

basis for the Krylov subspace. Before we start computing the approximate solution we need a 

suitable basis. This is done by the Arnoldi process, which orthonormalizes the basis for the 

Krylov subspace. There are many ways of doing this, but the most used is the modified Gram 

Schmidt procedure.  

The process of making a suitable basis starts with normalizing the initial residual, which then 

is defined as    
  

‖  ‖
. Using this normalized residual we can now compute    . This is then 

orthogonalized with respect to    and the result is again normalized, which yields   . This 

process is repeated for each step to create the basis for the Krylov subspace. Given that we 

already have an orthonormal basis            for the Krylov subspace         , this basis 

is expanded by computing          and orthonormalizing this vector with respect to the 

basis. 

From the Arnoldi process we also initiate a   by     upper Hessenberg matrix,  ̂  , with 

entries defined by the process. For more information on the Hessenberg matrix, see [12]. This 

matrix is in direct relation to coefficient matrix,  . If the last row of  ̂   is removed, then 

relation between the two would be a similarity transformation. The eigenvalues of the 

coefficient matrix will then be preserved.  
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From this, the following relations are true 

          ̂  (4.3.1) 

where    is the matrix with columns    to   .  

 

4.3.2 Minimizing the residual norm 

The last step of the GMRES algorithm is the step that minimizes the residual norm over the 

Krylov subspace, and then gives the approximate solution. We then look for an approximate 

solution on the form        , for which the residual norm over   in    is minimal. This 

gives us a least square problem to solve, represented by 

        ‖   [    ]‖         ‖     ‖ (4.3.2) 

The vector   can be represented as      , where   is a k-dimensional vector. We define 

  ‖  ‖ and the function      ‖     ‖ and use the above stated relation to rewrite 

(4.3.2) 

      ‖        ‖ (4.3.3) 

Using the relation stated (4.3.1) we obtain 

      ‖         ̂  ‖ 
 

which can be factorized into 

      ‖    [     ̂  ]‖ 
 

Where    is the first column of the identity matrix. Remember that      is composed of 

vectors that are orthonormal to each other, and that the norm such matrices are one, this gives 

us that 

      ‖     ̂  ‖ (4.3.4) 
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The solution to the least square problem is then given by  

            (4.3.5) 

Where    minimizes the function (4.3.4) over      

The final norm can then be minimized by solving the minimum norm least square problem for 

the   by     upper Hessenberg matrix,  ̂ , and the right hand side    . This result can then 

be given as 

 ̂       

This least square problem is then solved by realizing that  ̂  has a    decomposition. For 

more information on the QR decomposition see [12]. Due to the upper Hessenberg structure 

of the  ̂  matrix, this can efficiently be done with plane rotations, also known as Givens 

rotation. The Givens rotation annihilates the sub diagonal elements of  ̂ . This results in a   

by      upper triangular matrix which is denoted   , whose last row is zero. This results in 

the relation 

    ̂     
 

Where    is a   by   matrix and the product of the successive Givens eliminations of the sub 

diagonal elements of  ̂ . After this transformation   the minimizes the least square problem 

which can be rewritten as 

 
     ‖ ̂      ‖  ‖  

        ‖ 

           ‖         ‖  

This leads us to the final least square problem to the minimum norm solution 

     
        

 

Which leads us to our approximate solution,   , given as 
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Note that from minimizing function the residual norm is nothing but      which is equal to 

‖         ‖. By the construction of  , this norm is the absolute value of the last 

component of      . The residual norm of the approximate solution,   , is therefore 

calculated at the end of each iterate. This prevents us from having to specifically calculate the 

residual norm at each step. The algorithm will therefore keep iterating until the residual norm 

is within the desired tolerance,  and we do not have to calculate the approximate solution at 

every step. 

 

To summarize the algorithm, we can easily generalize the algorithm into four important 

steps: 

1. With the Arnoldi process, generate a suitable basis for the subspace, and initiate the 

upper Hessenberg matrix. 

2. Minimize the norm of the residual, ‖     ‖ 

3. Repeat until the residual is within the desired tolerance 

4. Compute the approximate solution    

 

4.3.3 GMRES(m): A restarted version 

One of the most obvious challenges with GMRES is the cost of storing and calculating the 

basis for the Krylov subspace. As   increases, so does the number of vectors requiring 

storage. To remedy this challenge, there exist a version of GMRES which is known as 

GMRES( ), or restarted GMRES. In this version, the algorithm is restarted at every   step, 

where   is some fixed integrer much smaller than  . If the residual norm is not within the 

desired tolerance after   iterations we set       and restart the algorithm, which allows us 

to clear the storage. 

There is no rule for determining a suitable  . Restarting at some   may work better for some 

matrices than other. Since the speed of convergence may vary drastically for different  , even 

for those close to one another. The only way to determine a suitable   is by trial and error. 
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4.3.4 Cost of GMRES 

The cost of computing the approximate solution,   , is for GMRES increasing for each 

iteration. As we have seen, a new basis for the Krylov subspace has to be computed and 

stored for each iteration. For a low number of iterations this is not a problem, but as the 

number of iteration grows, this becomes quite significant. For each iteration the algorithm 

performs one matrix-vector multiplication. To account for the other computational operations 

we divide the GMRES algorithm into two parts, the Arnoldi process and the formation of the 

solution, we can easier account the number. The Arnoldi process requires approximately 

           multiplications, and the formation of our solution   . The total cost of 

calculating our solution comes at            multiplications, where   denotes the 

number of nonzero entries in our coefficient matrix  . In addition to this, as mentioned above, 

the computation also requires storage of vectors. As   increases the number of vectors to be 

stored increases like  , which can become quite prohibiting as   grows. 

 For the restarted algorithm, GMRES(m), the total cost is  (    
 

 
)    . But 

we only have to store the orthonormalize vectors, the   ’s, the approximate solution   , and 

the vector for    . The storage is then reduced to         

 

4.3.5 Convergence Behavior 

In exact arithmetic GMRES will converge to the true solution within the  -th step. At the  -

th step the Krylov subspace spans    and therefore the minimizing step will find the exact 

solution, but as mentioned before, this is very inefficient for large systems since the storage 

increases drastically as   grows. On a more general basis, we say that the convergence of the 

algorithm is monotonic. This is true due to the fact that the residual is minimized over the 

Krylov subspace, and since         the minimization over a larger subspace will yield a 

smaller residual, or at worst a residual equal to that of the previous subspace. 

 Though it is easy to show that the convergence of the algorithm is monotonic, the e 

rate of convergence is more difficult to predict. To establish some useful insight we can use 

the fact that the nonsymmetric nature of the coefficient matrix   may have eigenvalues that 

are complex. These eigenvalues appear in the complex plane, and are within   circle, and can 

be bounded by an ellipse. The size of this ellipse can be used to determine the convergence 
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rate of GMRES , i.e the closer the eigenvalues are to one another, the faster GMRES 

converges. 

 

4.4 A short summary 

The obvious difference between the two methods is the subspace from which they generate 

the residual. IDR(s) starts out with the full Krylov subspace and there after uses a series of 

nested subspace of decreasing dimension, where GMRES uses a subspace of increasing 

dimension. We have also seen that GMRES has a standard algorithm without free parameters; 

after choosing an initial guess the algorithm computes the solution by minimizing the residual 

at each step. IDR(s) has three free parameters,  ,   , and  , that can impact efficiency of the 

algorithm. The choice of the shadow space,  , affects the dimension reduction per full cycle, 

and therefore the total number iterations.   defines the subspace  , and    is chosen to 

minimize the residual. The differences mentioned above are the most obvious differences 

between the two, but as we also have seen the IDR(s) algorithm can be expressed as a general 

Krylov solver and there are therefore many common features between the two methods. 

We also say that GMRES is the optimal method with regards to iterations. In exact arithmetic 

GMRES solves the system in   iterations, whereas IDR(s) solves it in   
 

 
 iterations. For 

each iteration, both of the methods preform one matrix-vector multiplication. This matrix-

vector multiplication is the most costly of all the computational operations, but the same for 

both methods. The big difference between the two is that the memory requirement and 

computational operation for IDR(s) is constant, independent of the number of iterations. On 

the contrary, GMRES needs to compute and store a new basis for the Krylov Subspace for 

each iteration. This becomes quite prohibiting as the number of iteration. 
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Chapter 5 

Numerical Results 

To investigate how IDR(s) performs when solving our discretized model of flow in porous 

media, a series of test cases will now follow. All of the test cases have been done with 

MATLAB R2014A programed on a standard stationary computer. The performance of IDR(s) 

will be evaluated and discussed, and the results are compared to GMRES. These test cases are 

all examples of systems of linear equations that arise from discretizing the model of flow in 

porous media.  

To test IDR(s) on different systems, a series of linear systems have been constructed. These 

systems have been assembled accordingly to the first two chapters, and their properties have 

been altered by changing the permeability distribution. Six different permeabilities have been 

tested. One of each one listed below.  

- Homogeneous 

- Randomly distributed heterogeneous permeability    

- Randomly distributed binary heterogeneous permeability   

- Log-normal permeability      

- The SPE10 dataset. This dataset consist of 85 layer, where the top 35 layers have a 

relatively smooth permeability and the bottom 50 layers have well defined long 

channels with high permeability. The methods will be tested on two layers. One from 

the top, layer 27, and one from the bottom, layer 51.     

    

In addition to changing the permeability, the discretized has been done with 5 different grid 

sizes. The finest grid size we have used is 
 

   
 in each direction. The other 4 grids are the same 

structure, but doubles in size at each step. The biggest grid size we will use is then 
 

  
. For 

each permeability the methods will then be tested on five different linear systems, with   

ranging from 324 to 82 944.   

For each case we have solved the system with two versions of preconditioned IDR(s) and 

GMRES each, using the two preconditioners described in the Chapter 3. When solving with 

IDR(s), we have chosen four values of  ; 1, 2, 4, and 8. The default choice of   and   has 
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been used, with              and      . IDR(s) has be implemented in MATLAB 

with Sonneveld’s own algorithm, and GMRES with a special memory saving code. Instead of 

full GMRES, a version called “reduced memory” has been used. This is not the restarted 

version, but a version where the matrix used to store the representation of the Krylov 

subspace is not preallocated. In this case, the size of the matrix grows dynamically instead of 

be the full size from the start. 

The focus of our investigation that follows will be on the convergence behavior of IDR(s) on 

these types of systems. Important features are the total number of iterations, the memory 

usage to reach the approximate solution within the desired tolerance. The tolerance is set to 

         in all cases. As an indication on how the computational operations and memory 

requirements are balanced in each case, the run time for the total process of computing the 

solution will also be given. The only change made in the GMRES algorithm is that what has 

mentioned, we therefore include its run time for comparison. Together with the iteration 

count, run time can give us a good indication of the performance of IDR(s) compared to 

GMRES, and conclusions can be drawn from this. 

The results are divided into three sections. First we look at the cases where our methods 

where preconditioned with ILU. Not all of the results from every case are given, but the 

general behavior will be explained and a representative example will follow. In the cases 

where some of the IDR(s)-versions were not able to compute a solution within the specified 

tolerance, the test cases will be highlighted and discussed. Secondly, we repeat the above 

mentioned for the cases where we used the Multi-Level preconditioner. Concluding remarks 

will be given in the next chapter. 

 

5.1 Preconditioned with ILU 

As mentioned above, this section will discuss the cases where the methods were 

preconditioned with ILU. We first focus on the cases where the desired solution was 

computed and section 5.1.1 will generalize these results. In section 5.1.2, the cases where 

IDR(s) did not compute the desired solution will be covered. Finally, in section 5.1.3, we 

make some remarks and make a short summary of the previous two sections. 
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5.1.1 General behavior of IDR(s) 

In general, solving larger systems needs more iterations than smaller systems, and as the 

permeability gets rougher and exhibits large variations within close range the iteration number 

goes further up. The total number of iterations is also dependent on the value of  . As the 

theory in chapter 4 predicted, the total number of needed iterations is decreasing for an 

increasing value of  . When we compare IDR(s) and GMRES, IDR(8) uses between 10 and 

30 percent more iterations than GMRES. Except for this general behavior the results from 

each test case was fairly similar. We will therefore generalize the result, and this will be 

discussed with a representative example. This example will together with some extra 

comments be representative for all, only excluding cases that will be covered in section 5.1.2. 

The representative example is from a case where the media has a homogenous permeability 

distribution. We have discretized our continuous model according to Chapter 2, using square 

grids with length 
 

   
, and end up with a linear system of 82 944 equations. We precondition 

our system with the ILU-preconditioner and the system is solved with IDR(s) and GMRES. 

When solving this system with the two iterative methods the residual can be plotted against 

the number of iterations, and we end up with a convergence plot, see figure 5.1.1.  

 

 

Figure 5.1.1 - Convergence plot of our representative example 
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As we can see from figure 5.1.1 the curve of IDR(8) is fairly close to the curve of GMRES. 

We clearly see that the convergence of IDR(s) is dependent on the value of  , and converges 

faster when   increase. For a precise number of iterations and run time needed to compute the 

desired solution by each method see table 5.1.1. 

 

 

 

 

 

In this specific example, the difference in number of iterations between IDR(8) and GMRES 

is only 23. Table 5.1.1 shows us the number of iterations performed by each method. Even 

though the number of iterations goes down for increasing values of  , the computation 

operations and memory requirements of IDR(s) increases as   increases. This cost is as we 

have seen constant for each iteration. GMRES, on the other hand, has to store and compute a 

new orthogonal basis for every iteration. This becomes quite costly when the iteration number 

increases. To get an indication on the cost of the two methods, table 5.1.1 also presents the 

run time for reaching the approximate solution for each method.  

As we can see, GMRES uses approximately twenty times more run time than what is used by 

IDR(2). This is a major difference, and reflects how attractive a short recurrence method like 

IDR(s) is when   is large. Also notice that IDR(2) only uses 65 percent of the time that 

IDR(8) uses on the same problem. Though the difference between the two versions is 50 

iterations, the number of inner products and vector updates per iteration goes up, as well as 

the memory requirement, when   increases. The decrease in iterations is in this case not large 

enough, compared to the increase in computational operations.  

In this specific case IDR(2) was the fastest of the tested methods, which indicates that the 

combination of number of iterations, computational operations, and memory requirement was 

well balanced. This was not only the case for this example, but also for more than 50 percent 

Table 5.1.1 – Number of iterations and elapsed time for our representative example 
 

Method Number of iterations Elapsed time (s) 

GMRES 267 122.71 

IDR(1) 447 5.23 

IDR(2) 340 4.49 

IDR(4) 308 5.37 

IDR(8) 290 6.90 
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of the test cases. Even though the total number of iterations need to compute a solution goes 

down when   increases, both memory and computational requirements goes up per iteration.  

An important feature of IDR(s) is that when   gets bigger and bigger, the convergence curves 

of IDR(4) and IDR(8) looks more and more like GMRES. However, the cost of GMRES 

become more expensive with respect to memory requirements as the iteration count goes up. 

The low memory requirements of IDR(s) compared to GMRES causes IDR(s) to use 

significantly less time to reach a solution. This difference in run time therefore grows 

drastically as   gets bigger, and for some our biggest systems the fastest IDR(s) versions only 

used approximately 3 percent of what GMRES used to solve the same system. 

 

5.1.2 Stagnation of IDR(s) 

In this section we take a closer look at the cases where some of the IDR(s)-versions were not 

able to compute a desired solution. This occurred in three cases, one with IDR(4) and two 

with IDR(8). All of these three cases happened when using permeability fields from the 

SPE10 dataset, and only when we used the finer grid systems.  

In a case where we used Layer 27 and grid size 
 

   
, both IDR(4) and IDR(8) returned a 

solution that was not within the tolerance. Table 5.1.2 shows total number of iterations, run 

time, and relative residual for all methods. Remember that the tolerance was set to 1.00e-7. 

 

Figure 5.1.2 – Total number of iterations, run time, and relative residual for case with stagnation 

Method Number of iterations Elapsed time (s) Relative Residual 

GMRES 728 850.63 9.8397e-8 

IDR(1) 2455 26.89 9.2222e-8 

IDR(2) 1456 18.39 6.4038e-8 

IDR(4) 857 13.83 1.3947e-7 

IDR(8) 956 24.08 1.2834e-7 
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When IDR(4) and IDR(8) returned the residual, it also returned a so called “Flag 2” indicating 

that this is the lowest residual that this algorithm possibly can produce. There could be some 

ways of working around this, and in [11] some steps for remedying this problem is discussed. 

In this thesis this has not been done, so for more information on the remedy I refer to this 

manual. However, a notice should be made about possible explanations. The condition 

number of our coefficient matrix gets higher as the grid gets finer and the contrast in 

permeability gets larger. We also know that the number of computational operation grows 

with increasing  , which again increases the round-off errors in MATLAB. Since the 

stagnation happened with IDR(4) and IDR(8), this could be an explanation. This is strengthen 

by the fact that when considering layer 51 described in SPE10, and grid size 
 

   
, IDR(8) 

stagnated with a relative residual equal to 2.4761e-7, after 670 iterations.  

In these cases when IDR(s) do not return the desired solution, we see in Table 5.1.2 that due 

to the high number of iterations, the run time for IDR(4) and IDR(8) is significantly lower 

than the that of GMRES. However, IDR(1) and IDR(2) compute the solution and their run 

time is also significantly lower than GMRES. In these cases, where our system is badly 

conditioned, IDR(s) seems to perform better when   is low. 

 

5.1.3 Summary 

In all cases GMRES solved the systems with fewest iterations, and IDR(8) was the runner up. 

This result in not very surprising, and reflects the theory discussed in chapter 5. GMRES is 

theoretical optimal with respect to iterations, since it in exact arithmetic uses at most   

iterations to compute the exact solution. In exact arithmetic IDR(8) solves the system in 

  
 

 
 total iterations, which is 12.5 percent more than GMRES. In our results this was in 

some cases as low as 10 percent, but sometimes as high as 30.  

Though GMRES solves the system with the least iterations, it comes with a cost of storing 

and computing a new orthonormal basis for the Krylov subspace at each step. This becomes 

prohibiting as the iteration count grows. The cost of IDR(s) is constant for each iteration. 

Because of this, all IDR(s)-versions use significantly less time to solve the system than 

GMRES when the iterations count is high. In our results we have also seen that IDR(s) is 

faster than GMRES when the iteration number is low, but this difference is not as large.  
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When solving some of the larger systems, arising from the different layers in SPE10, we saw 

IDR(4) and IDR(8) stagnate at a relative residual larger than what we set as our tolerance. In 

these cases we expect the system to be badly conditioned, and they therefore required a large 

number of computational operations. Since IDR(4) and IDR(8) were the only versions to 

stagnate above the tolerance, it is plausible that this could be caused by a build-up of round-

off errors.  

This gives us an indication that the ILU preconditioned IDR(s) can be a good alternative when 

solving systems that arise from discretizing equations that describes flow in porous media. To 

prevent stagnation of the residual   should be kept small (1 or 2) for larger problems where 

the permeability field exhibits large variations. In the cases where IDR(s) did stagnate the 

algorithm returned the lowest possible residual within 10 percent of the time used by GMRES 

to compute the solution, and the loss of time is therefore not severe. The possibility to save 

this amount of run time makes IDR(s) a good alternative.  

 

5.2 Preconditioned with Multi Level preconditioner 

We now look at the cases where the Multi-Level preconditioner was used. The structure of 

this section will be the same as the previous section. 

The performance of IDR(s) is looks to be more dependent on the performance of the 

preconditioner. In general we can say that when the Multi-Level preconditioner successfully 

approximates the geometry of the permeability on the coarse scale, IDR(s) works better than 

when an algebraic preconditioner is used. On the other hand, when the Multi-Level 

preconditioner is used on the binary permeability distribution and the lower levels of the 

dataset SPE10, it is not predicted that the preconditioner is quite as successful. In these cases 

we will that IDR(s) performs less efficiently than when preconditioned with ILU, compared to 

GMRES.  

This section will cover the results in the following way. First we consider the cases where the 

preconditioner worked well, and solving the system showed a clear system that stems from 

this. Second we look into the cases where the preconditioner is not as successful, and finally 

we look closer at the systems where a desired solution was not computed, and shortly discuss 

the possible explanations for this.   
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5.2.1 A successful Multi-Level preconditioner 

This section will cover the cases with homogenous and lognormal permeability distribution 

and Layer 27 from the SPE10 dataset. These permeability fields have in common that the 

Multi- Level preconditioner successfully approximate the coarse scale geometric structures, 

and that this not dependent on the size of the coarse grid system. In these cases the iteration 

number is expected to stay unchanged even for increasing  , both IDR(s) and GMRES. These 

three permeability distributions will be covered by on example, which is representative for all.  

The representative example is the cases where layer 27 in SPE10 was considered. To get a 

good picture on how this preconditioner influences the performance of our methods, we will 

in this example cover all of the grid sizes. After solving the systems, Table 5.2.1 shows the 

total number of iterations need to solve the different systems. 

Table 5.2.1 – Number of iterations for all grid sizes for solving problems with Layer 27 in the SPE10 dataset 

 

 

 

 

 

 

 

 

As the table shows, the number of iterations needed to compute the solution stays nearly 

unchanged even though the number of equations doubles for each system. Since this 

preconditioner in these cases is successful, it causes the number of iterations to stay nearly 

unchanged, regardless of grid size.  

Grid size Iterations 

GMRES IDR(1) IDR(2) IDR(4) IDR(8) 

 

  
 

5 8 9 8 7 

 

  
 

6 8 8 8 7 

 

  
 

6 10 9 9 9 

 

   
 

7 13 11 11 11 

 

   
 

6 10 10 9 9 
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When the preconditioner worked this well, and this pattern occurred, all of the IDR(s)-

versions obtained the solution faster than GMRES. However, since the number of iterations is 

low the difference in run time not large. 

5.2.2 A less successful Multi-Level preconditioner 

In the cases where the permeability was more challenging, such as random and binary 

distribution and layer 51 in SPE10, we encountered a situation where the preconditioner is not 

expected to be successful. In these cases the convergence behavior of both IDR(s) and 

GMRES resembled what we saw with the ILU preconditioner. For increasing  , the number 

of needed iterations to compute the solution increased. For increasing   we saw the number of 

iterations used by IDR(s) drop, and GMRES still used less iterations than all IDR(s) versions. 

The total number of iterations needed to compute the solution for each system was lower was 

still lower than when ILU was used, for the same systems. However, the number of iterations 

used by IDR(s) was no longer as close to GMRES.  

Again we look at a representative example for these results. This specific example a domain 

with random distribution of heterogeneous permeability, discretized with grid size 
 

   
. After 

solving the system, Table 5.2.2 shows the total number of iterations and the total run time for 

each method.  

Table 5.2.2 – Total number of iterations and run time for the example with a less successful preconditioner 

Method Iterations Elapsed Time (s) 

GMRES 21 0.78 

IDR(1) 47 1.10 

IDR(2) 40 0.93 

IDR(4) 34 0.82 

IDR(8) 30 0.78 

 

From the table 5.2.2 we see that GMRES uses the same amount of time as the fastest IDR(s)-

version, which in this case is IDR(8). It also shows that the total number of iterations used is 

relatively low, and the difference between GMRES an IDR(s) is relatively large. As we 

mentioned in the earlier cases, GMRES gets increasingly more costly as the number of 

iterations grows. The first iterations are therefore ‘cheaper’ than the later, so when GMRES 

uses few iterations and IDR(s) uses that many iterations more they come out at the same run 
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time. A difference in the general behavior from what we saw when we used ILU  

preconditioner was that the number of iterations for IDR(4) and IDR(8) no longer got as close 

to GMRES.  In all cases, IDR(8) used approximately 50 percent more iterations than GMRES 

used to solve the same system. 

A general behavior of IDR(s), compared to GMRES, is that as the number of iterations rises, 

the run time of IDR(s) becomes more attractive due to the short recurrence algorithm. 

However, in these cases we saw the IDR(s) versions use less time than GMRES for the 

smaller systems (grid size 
 

  
 and up), and GMRES being the fastest for the bigger systems. 

It should be noted that at some point IDR(s) is predicted to be faster than GMRES again. 

When the cost of computing and storing the basis for the Krylov subspace get large enough, 

IDR(s) will again be faster than GMRES. 

 

5.2.3 Cases with stagnation 

In addition to the behavior we have covered in the two sections above we also encountered 

some cases where some IDR(s)-versions did not compute a desired solution. When IDR(s) did 

not compute the solution this was caused by the so-called Flag 2, as we saw in section 5.1.3. 

In addition to this we had one case of IDR(1) using the max number of iterations which was 

preset to   . In one of the cases we also experienced a stagnation of GMRES before the 

desired residual was met. These cases all happened when we solved the bigger systems that 

described flow in binary permeability distribution and layer 51 in the dataset SPE10.  

We will cover the case where both IDR(s) and GMRES stagnated, and therefore only 

considered the binary permeability distribution and the finest grids, 
 

  
 and 

 

   
. The comments 

made about IDR(4) and IDR(8) in this example also applies for the SPE10 case that we will 

not discuss. 

In the case of binary permeability distribution and the finer grids, we encountered stagnation 

for both IDR(4) and IDR(8). In addition to this stagnation IDR(1) used the maximum number 

of iterations when solving the system arising from the finest grid. Table 5.2.3 shows the 

iteration count and Table 5.2.4 shows the relative residual. A red number indicates stagnation, 

and green indicates max iterations. 
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Table 5.2.3 – Total iteration count for solving system describing binary permeability distribution  

  Iteration 

GMRES IDR(1) IDR(2) IDR(4) IDR(8) 

5 184 10 145 116 89 110 

20 736 33 20736 3086 733 364 

 

Table 5.2.4 – The relative residual returned by the methods after stagnation, termination, or computing solution  

  Relative residual 

GMRES IDR(1) IDR(2) IDR(4) IDR(8) 

5 184 8.4763e-8 5.5083e-8 6.9895e-8 6.497e-5 0.00033351 

20 736 1.1206e-7 0.0076216 6.1429e-8 0.00022213 4.5388e-5 

 

Notice that when          the only method that is able to solve the system with the 

desired tolerance is IDR(2). However, it used 3086 iterations which is not very impressive.  

For the same system, GMRES also stagnated, and returned a notice that the condition number 

of the matrix times the unit round-off, machine precision, was greater than the tolerance. 

However, GMRES returned a relative residual that was only 12 percent over the tolerance. 

This is much less than the residual that IDR(4) and IDR(8) were able to compute. 

From the results in our cases it seems like the robustness of IDR(s) goes down when   

increases, and especially when the preconditioner is not working optimally. This is most 

likely caused by round-off error, since the number of computational operations goes up when 

  increases, but as GMRES notified the condition number of the coefficient matrix is high. 

This should therefore be weighted carefully.  

In the cases where we encountered stagnation IDR(s) proved to be most stable and robust 

when   is low. In the case where GMRES stagnated and IDR(2) was able to obtain a solution, 

GMRES used 33 iterations before it stagnated. IDR(2) used 3086 iterations to compute the 

desired solution. Table 5.2.5 shows the run time for the cases discussed above, and as we can 

see IDR(2) used more than 50 times the time used by GMRES.  
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Table 5.2.5 – Total run time for each method before stagnating, terminating or computing the solution  

  Elapsed time (s) 

GMRES IDR(1) IDR(2) IDR(4) IDR(8) 

5 184 0.20 1.15 0.89 0.69 0.91 

20 736 1.45 533.92 80.92 19.61 10.40 

 

In both of the cases where IDR(s) stagnated it used more time than what GMRES did. In the 

case where        , the iteration number for IDR(s) is still relatively low, but when 

         this number goes drastically up. This causes IDR(s) to use considerably more 

time to solve the system, and when GMRES still uses a low number of iterations this cases a 

large difference in run time. In these cases GMRES is clearly the most attractive method. 

Even in the case where GMRES stagnated, the low number of iterations and the fact the 

residual was only 12 percent off causes it to be an attractive method. 

 

5.2.4 Summary 

From the results of our test cases, we see that the performance of our methods is dependent on 

the performance of the Multi-Level preconditioner. When the preconditioner works well, the 

convergence of IDR(s) is close to the optimal GMRES independent on the choice of  . IDR(s) 

solves in all cases the system in less time than GMRES does. In the case where the 

permeability field is not as smooth and exhibits large differences within close range, the 

preconditioner is not as successful. In these cases the iteration number for the IDR(s) version 

is not as close to the GMRES as they were when preconditioning with ILU. Since the iteration 

number in these cases is still relatively low compared to   in these cases, and the difference 

between IDR(s) and the GMRES relatively large, IDR(s) is no longer the obvious choice. 

We have in this section also seen some cases where IDR(s) stagnates before returning the 

desired solution. In one of these cases, GMRES also stagnated, and returned a notice that the 

condition number was bad. In these cases, as in the previous section, we have seen that IDR(s) 

preforms best in these cases when   low. In the next chapter a summary of both sections will 

be given. Some concluding remarks based on the result from our cases and some thoughts on 

IDR(s) will be given.    
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Chapter 6 

Concluding Remarks 

In this thesis we have investigated the convergence behavior of the IDR(s) family of solvers 

when using it to solve systems that arise from discretizing a mathematical model of flow in 

porous media. Through a series of test cases where the properties of the systems of linear 

equations have been altered, and with the use of two different preconditioners, we have 

encountered a number of different results which leads us to draw these concluding remarks.  

In general, the number of iterations IDR(s) has to perform to compute the desired solution 

goes up when the number of unknowns goes up. In addition to this, we have also seen the 

number of iterations increase further when the permeability becomes rougher and exhibits 

large scale differences within close range. This is not surprising and reflects on the fact that 

the condition number grows when the permeability becomes rougher and the grid size gets 

smaller, and since the convergence rate of IDR(s) is indirectly linked to the condition number 

we see this. We have also seen that the number of iterations needed to compute the desire 

solution with IDR(s) is dependent on the chosen value of  . In exact arithmetic IDR(s) solves 

the system in   
 

 
 steps, so a decrease in number of iterations is expected for larger values 

of  . This has been confirmed in all cases.  

We have chosen to compare the performance of IDR(s) with the well-known GMRES. 

GMRES is optimal with respect to the number of iterations, since it in exact arithmetic solves 

the system in   iterations at most. Throughout our test cases with ILU as preconditioner we 

saw the difference in the iteration numbers between IDR(8) and GMRES vary from 10 to 30 

percent. In these cases all IDR(s)-versions solved the system faster than GMRES.  As the 

number of unknowns went up, the difference in run time increased. This algebraic 

preconditioner is assumed to work equally well on all systems, and we therefore saw this 

system of behavior in all test cases. When a large number of iterations have to be performed 

by both methods, IDR(s) is considerably faster than GMRES. This makes IDR(s) especially 

attractive when solving larger systems of systems that require many iterations before a desired 

solution is computed, compared to GMRES. This is due to the fact that the computational cost 

and memory requirements are constant for IDR(s) in each iteration, whereas these properties 

grow exponentially for each iteration with GMRES.  
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When preconditioning with the Multi-Level-preconditioner, we do not expect the 

preconditioner to work well for all permeability distributions. We know that when the 

permeability distribution is rough and exhibits large scale differences within close range, this 

preconditioner is not optimal. However, since the preconditioner has several attractive 

features we chose to apply this to our methods for all permeability distributions. In the cases 

where the permeability was smooth, and the Multi-Level-preconditioner worked well, both 

IDR(s) and GMRES used a low number of iterations, regardless of grid size and permeability. 

The IDR(s)-versions was still the fastest one, but the difference between the two methods was 

no longer as significant as in the cases where we used the ILU-preconditioner. However, in 

our test cases where the permeability distribution was of such a character that the Multi-

Level-preconditioner no longer was optimal we saw that the IDR(s)-versions struggled more 

than what GMRES did. In these cases we saw the IDR(s) versions use more iterations than in 

the cases where the preconditioner work well, relative to GMRES. This caused IDR(s) to no 

longer be the fastest method in these cases.  

We have also seen some cases where IDR(s) stagnates and therefore not compute the desired 

solution. This stagnation happened when using the finer grids on rougher permeability fields, 

which in general leads to badly conditioned systems. In these cases we saw IDR(s) stagnate 

for the higher values of   (4 and 8), whereas it performed better when   was low (1 and 2). 

We have also seen through our cases that IDR(s) is more dependent of the performance of the 

preconditioner than GMRES, which should be taken into account 

Compared with GMRES we have seen that IDR(s) is a very attractive method when solving 

systems that requires many iterations. The short recurrence algorithm requires a constant 

amount of computational operations and low memory requirements per iteration, which is 

attractive when the number of iterations goes up.  

The study in this thesis is however not exhaustive, and more studies are need to identify under 

which conditions IDR(s) contains its stability. If this is identified, IDR(s) should after my 

consideration, be considered as an attractive method for solving non-symmetric systems of 

linear equations in porous media problems. This is based on the opportunity of saving 

significantly amounts of time used to compute the solution to these problems. 
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