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Abstract 

Modern analytical techniques provide an unprecedented insight to biomedical samples, allowing 

an in depth characterization of cells or body fluids, to the level of genes, transcripts, peptides, 

proteins, metabolites, or metallic ions. The fine grained picture provided by such approaches 

holds the promise for a better understanding of complex pathologies, and consequently the 

personalization of diagnosis, prognosis and treatment procedures. In practice however, 

technical limitations restrict the resolution of the acquired data, and thus of downstream 

biomedical inference. As a result, the study of complex diseases like leukemia and other types of 

cancer is impaired by the high heterogeneity of pathologies as well as patient profiles. In this 

review, we propose an introduction to the general approach of characterizing samples and 

inferring biomedical results. We highlight the main limitations of the technique with regards to 

complex and heterogeneous pathologies, and provide ways to overcome these by improving the 

ability of experiments in discriminating samples. 
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Introduction 

The establishment of methods for sequencing entire genomes have opened the era of large scale 

systemic analyses of biomedical samples1. Since the sequences of proteins, the main actors of 

biological systems, find their origin in genetic information2, the completion of the Human 

Genome Project1a, the “sequencing of the book of life”, revolutionized the “diagnosis, prevention 

and treatment of most, if not all, human diseases” as foreseen by U.S. president Clinton 

(www.genome.gov/10001356). Genes and their transcripts present the advantage of being 

replicable, allowing the detection of low abundant signals by amplification, ultimately enabling a 

comprehensive characterization of genes and transcripts in a sample, respectively termed 

genomics and transcriptomics. Modern sequencing techniques hence make it affordable to 

sequence entire genomes and transcriptomes within a reasonable timeframe3.  

However, cellular processes involve the post-translationally processed, mature form of proteins, 

and complex interactions with internal and external compounds, e.g., ions, metabolites 

(including sugars and lipids). As a consequence, genetic, transcriptional information is not 

sufficient to accurately describe disease mechanisms4. In order to characterize samples in a 

more comprehensive manner, other omics approaches have been established, as described 

Figure 1A: proteomics for the study of proteins in their different forms and modification 

statuses, metabolomics for metabolites, metallomics for metals and their isotopic distributions. 

As a result, researchers now benefit from a vast panel of analytical techniques allowing the 

characterization of biomedical samples at increasing depth and level of detail. The systemic 

analysis of these samples, may provide more comprehensive and precise results, in turn 

allowing a more accurate inference of underlying biological processes, and may thus provide 

better understanding of the various pathologies. 

This increased performance in biomedical sample characterization holds the promise for a 

better understanding of complex pathologies. Indeed, many cancers types show an extensive 

intratumor as well as an intertumor heterogeneity which is reflected at the molecular and 

clinical level.  In particular, omics experiments  represent important tools for the classification of  

patients into risk stratification groups, or tailoring the treatment according to the patient 

pathological profile5. In this context, a direct benefit of an increased coverage and higher 

precision of omics techniques is a higher resolution when attempting to discriminate patients, 

and thus move towards a more personalized medicine. This twenty-first century medicine 

paradigm is notably known through US President Obama’s “Precision Medicine Initiative”, 

aiming at accounting for “individual variability in genes, environment, and lifestyle for each 

person” (www.nih.gov/precisionmedicine). 
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In this review, we highlight different factors limiting the resolution power of omics approaches 

in biomedical sciences. We describe potential solutions available to critically evaluate and 

interpret the vast datasets produced by such techniques. Finally, we suggest ways to improve 

the resolution of biomedical experiments and identify the limiting factors impairing high 

resolution medicine. 

Limitations in Omics Approaches 

Using systemic characterization of samples, biomedical researchers aim at identifying the 

mechanism underlying the pathologic state of an organism. This characterization can be done in 

a discovery mode, by attempting to characterize samples as comprehensively as possible, or in a 

targeted fashion, by accurately monitoring putative  compounds. The performance of the 

analysis will be evaluated in terms of sensitivity, i.e. the ability to comprehensively characterize 

the sample, and in terms of specificity, i.e. the propensity to produce correct results. Generally, 

discovery and targeted studies respectively prioritize sensitivity or specificity. 

The sensitivity is limited by the initial sample amount in relationship to the detection limit of the 

workflow, while to a lower extend for analytical approaches benefiting from signal amplification 

techniques like the polymerase chain reaction (PCR)6. This is notably the case when 

characterizing low abundant biological compounds like post-translationally modified proteins7, 

where a complete profiling requires large amounts of starting material. Obtaining such amounts 

can be challenging in time and financially when culturing cells, and especially when working 

with cell sub-populations; it is often impossible for limited patient material. 6 

Ideally, omics techniques should profile cells individually8, providing subcellular localization of 

the identified compounds, and combine the results in a systemic overview. However, due to 

sensitivity limits in the analytical technique, populations of cells are generally studied together, 

and, despite being of paramount biological importance, little or no information is available on 

the localization of the compounds in the cells. As a result, the characterization is an average of 

distinct sub-populations, hence limiting the resolution of the biomedical study. This is notably a 

critical aspect when studying samples obtained from cell populations with heterogeneous 

cytogenetic profiles, as encountered in cancer samples, or with heterogeneous cell functions, as 

encountered in targeted differentiation of induced pluripotent stem cells. However, it is 

sometimes possible to separate the cells prior to analysis. The efficiency of the categorization is 

then a crucial parameter, and implies working with less material, which might in turn impair the 

detection of low abundant compounds as discussed above. The improvement of workflows and 

instrumentation, allowing to work with minute amounts of starting material, is a promising way 

toward characterization of heterogeneous samples9. Similarly methods have been developed to 

assess the localization of proteins in cell sub-compartments in proteomic analyses, paving the 
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way towards spatially resolved proteome characterization10. On a tissue scale, MALDI imaging is 

certainly the most promising technique for spatial identification and quantification of 

metabolites and proteins, including post-translational modifications11. Spatially resolved omics 

are however still at their infancy, and current experiments generally couple omics studies with 

techniques of high spatial resolution, but of much less coverage, typically using antibodies12. 

With the problem of sample heterogeneity, comes often problems of sample purity and 

preparation. By design, sample extraction introduces a bias in the observation of biological 

systems, and it is important to verify potential consequences of sample handling on downstream 

analysis, and importantly their compatibility with the analytical method used. This is 

particularly the case for cell culture techniques involving the use of feeder cells or media which 

might interfere with the systems biology characterization. The question of sample purity is 

crucial to avoid biological signals from sample preparation, which might increase variability or 

interfere with the sample compounds. The same considerations apply to contaminants, including 

viral contaminations13, multiple species samples14, and contamination by the experimentalist 

when preparing the sample as commonly seen with the presence of foreign compounds and 

famously illustrated by the case of the Phantom of Heilbronn. The sample uptake will also 

influence downstream analysis, notably at the post-translational level, depending on the 

inhibition of immune system and degradation processes. 

In order to account for the loss of specificity introduced during sample preparation or the 

analytical workflow, and whenever conclusions must be drawn on populations, biomedical 

results must be replicated and evaluated statistically. For this, observed differences are 

compared to the variability of populations. As illustrated Figure 1B, the most encountered 

statistical evaluation in biomedical sciences is the test of a significant difference between two 

conditions, e.g. sick and healthy, using a Student's t-test15 and modelling population 

observations, e.g. patient and control observations, using normal distributions. The significance 

of a regulation will then depend on the populations’ variability and on the number of samples 

considered16. When designing an experiment, the number of samples is thus a key parameter to 

consider. As detailed Figure 1C, it is possible to link the smallest significant difference to other 

parameters of the model used to evaluate the significance of the results, and thus, in the case of 

normal distributions and a Student's t-test, to the population variability and the number of 

samples. Interestingly, the smallest significant difference relative to the population variability 

can be used to illustrate the resolution of the experiment. As illustrated Figure 1D, it is hence 

possible to directly link the maximal resolution of the experiment to the number of samples, and 

thus verify that it allows detecting the expected changes. When working with limited patient 

materials, it is recommended to estimate proactively the resolution of the experiment, and 

consider the relevance of the approach. 
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Processing Experimental Data 

The first step in evaluating scientific data is to conduct a visual inspection. This task may be 

challenging due to the size of the dataset, yet it is crucial to assess the parameters submitted to 

the statistical analysis, for example, by simply plotting data in a scatter plot, or visualizing the 

standard deviation against the average. This upstream visual quality control of the data allows 

avoiding numerous issues, and helps the scientist familiarizing with the dataset.  By such an 

approach, it may be possible to detect trends in the data, and thus adapt the downstream data 

interpretation procedure. As illustrated by Anscombe’s quartet17 Figure 2, various datasets and 

their statistical characteristics can be interpreted as noise, and can remain undetected unless 

specifically looked for. A simple visualization of the data will allow detecting these and improve 

the data interpretation strategy. 

Biomedical studies often focus on fold change variations of compounds between populations, 

where one is used as a reference in order to estimate a ratio. Here it is important to apply a 

logarithmic transformation of the ratio before further processing. The main objective is to move 

the observations to a space where standard mathematical models can be applied. For example, 

ratios distribute around 1, with all down-regulations in the range between 0 and 1, and all up-

regulations in the range between 1 and infinity. As a result, the variability of down regulated 

compounds will not be comparable to the variability of up regulated compounds. After 

logarithmic transformation most standard operators will be applicable to ratios. In general, it is 

vital to verify that the observations abide by the hypotheses of the descriptive model used, and 

otherwise transform them, e.g. if the model assumes normally distributed values, makes sure to 

confirm that the values are normally distributed before applying the model. 

The first step in data processing often consists in normalizing the results in order to correct for 

systematic errors induced by the experimental workflow. As detailed in the previous section, the 

minimal significant change depends on the variance in the population.  An example is  illustrated 

in Figure 3A, where proteomic data obtained from the cerebrospinal fluid expression of proteins 

unaffected by blood flow18 among different patients, courtesy of Dr. J.A. Opsahl, the 

normalization of the results allows reducing the variability between patients, and thus allows to 

more reliably detect low abundant changes. Different normalization procedures exist, based on 

statistical estimators like the mode, median, mean, or the sum of observed values. In such 

strategies, the normalization corrects according to a hypothesis about the sample content. For 

example, the median assumes that the majority of observations have same abundance between 

samples, while the sum assumes that the global abundance of compounds is the same between 

samples. For the example shown in Figure 3A, the protein expression levels were normalized 

according to the mean and median across patients, the latter providing the lowest variability. 
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Alternatively, when population based estimators are inaccurate, it is possible to normalize on 

sub-populations of compounds known to be stable, or to use internal standards. It should be 

emphasized that while this step allows identifying systemic perturbations of low abundance 

compounds, the transfer of such results to the clinics can only be achieved if the normalization 

procedures are applicable. This is notably challenging when moving from discovery to targeted 

strategies. 

As detailed in the previous section, the analytical methods used in omics experiments all present 

sensitivity limits, and some compounds will thus show missing values. Missing values represent 

a challenge in the downstream processing of the data interpretation. A common approach is to 

assume that these compounds are present in low quantity, below the detection limit of the 

analytical characterization. They are thus assigned an arbitrarily low value, referred to as 

imputation. In order not to skew the distribution of the actual observations, it is possible to infer 

randomized values distributed in the low range of the observed values, as illustrated Figure 3B 

with imputation from the Perseus software in the MaxQuant suite19. Another approach consists 

in assigning the missing values an arbitrary non regulated ratio, to ensure that the outcome of 

the study will not be based on imputated values.  After missing values imputation, the same 

number of numerical values will be available for every patient, allowing the conduction of 

standard downstream analyses, e.g. statistical tests or clustering. Ultimately, it is important to 

verify the influence of imputated values on the final list of regulated compounds, and eventually 

conduct follow-up experiments to verify the candidates selected with a strong prevalence of 

missing values.  

Statistical Evaluation 

After initial processing, the data can be subjected to statistical evaluation, where the validity of 

the scientific hypothesis is evaluated in light of the experimental data and translated into a 

probability that such or more extreme results could be observed by chance, i.e. a p-value. While 

the p-value was originally conceived as a way to select the most promising results, it has evolved 

towards a self-sufficient validation procedure in biomedical sciences20. However, it is not 

because a result is not statistically significant that it is wrong – the test might simply fail due to 

the low resolution of the experiment – and it is not because a result is statistically significant 

that it is correct. On the contrary, by design, the results are validated with an arbitrary minimal 

probability of being wrong. In biomedical studies, due to the often low amount of samples, 

systematic errors, or inaccurate modelling, this probability is moreover generally under 

evaluated21. When producing multiple results at a given error probability, the chances of having 

a false result accumulate and the overall probability of the result set to contain errors increases. 

This effect has a strong prevalence in omics studies where large numbers of compounds are 
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characterized and statistically tested. This phenomenon is described as the multiple comparisons 

or multiple testing problem, and can be corrected for, generally by increasing the stringency of 

the threshold until reaching a desired false discovery rate (FDR)22. The rationale behind multiple 

hypothesis correction is that incorrect results occur randomly and thus distribute evenly. By 

selecting the most extreme results, one thus avoids the prevalence of false positives. As 

illustrated Figure 3C, in practice, multiple hypothesis correction can be achieved by creating 

volcano plots, where the results related to significance is plotted against its magnitude, and by 

selecting the points the furthest from the origin. This can be achieved by calibrating the p-

values23, or by thresholding the candidates based on their initial p-value and fold-change until 

reaching a desired FDR24. 

While statistical evaluation has become a sine qua non condition for publication, it is crucial to 

underline that the role of this procedure is to select the most confident results in a given context, 

and not to provide a universal validation of the results. One of the dangers of emphasizing the 

importance of statistical evaluation is the modification of the context of the data, voluntary or 

involuntary, in order to pass a given p-value threshold; a problem termed data dredging or p-

hacking25. Another prejudicial consequence is the assumption that results passing the statistical 

evaluation do not require additional validation. Due to inadequateness between the model and 

the observations, dependence between observations, or systematic errors, false results can 

artificially reach extreme p-values, but be irreproducible using other techniques. This is notably 

the case for observations with skewed distributions, or incorrectly inferred missing values. To 

tackle these issues, it is recommended to validate and reproduce the results, preferably with an 

orthogonal analytical technique, preferably in a targeted manner in order to gain precision. 

Finally, statistically significant differences between samples do not necessarily imply separation 

of populations. The performance of the separation is generally evaluated using a Receiver 

Operating Characteristic (ROC), as illustrated Figure 3D. In this way the specificity and 

sensitivity can be visually evaluated, and the separation efficiency is measured by taking the 

Area Under the Curve (AUC), or the value of the sensitivity at a given specificity threshold. The 

robustness of this separation can be evaluated by studying the variability of the retained 

efficiency metric when sequentially removing one patient after the other, the so-called leave one 

out approach. 

Strategies to Improve Resolution 

Several techniques have been developed to increase the discrimination power of omics 

techniques, often by improving experimental designs. The first consists in reducing the 

variability by conducting paired studies. Because patient intra variability is generally lower than 

inter variability, differences relevant to a change in conditions, e.g. introduced by a treatment, 
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are less likely to be masked by inter sample variability. Such designs however presume the 

availability of samples prior to conditional change, a prerequisite not met for patient entering 

research studies after diagnosis. In such cases it may be possible to find family controls, as for 

monogenic diseases26, allowing the design of comparative studies with reduced variability 

between patients. 

The second possibility for increasing the resolution of omics experiments is to increase the 

comprehensiveness of sample characterization. Enhancing sample coverage increases the 

chances of identifying discriminating biological parameters between patients, hence allowing 

their distinction. By this approach, additional knowledge needs to be acquired regarding the 

sample, for example by combining different analytical techniques that provide extended 

information on different biological species. As an example, transcriptomic data can be completed 

by post-translational analyses allowing the differentiation of patients both at the genetic and 

post-translational level27. Modern studies hence propose so-called multi-omics datasets, 

combining genomics, transcriptomics, proteomics, metabolomics, etc28. 

A third solution to increase the experimental resolution is to tune the experimental design to 

reduce the prevalence of false positives, for example introduced by multiple hypothesis testing. 

The most common approach in this context is the use of time series. As illustrated Figure 4A, 

when comparing the status of a patient in triplicates before and after treatment, the chances of 

getting an up regulation randomly is substantially higher than the chances of getting a series of 

six time points in increasing abundance. As illustrated with the red bands Figure 4A, the chances 

of having six random values distributed around 0 with a standard deviation of 1, in a band of 

y=0.2x±0.5 or y=0.5x±0.5, is 0.1% and 0.006%, respectively. In comparison, as illustrated with 

the blue squares, the chances of having three replicates of similar magnitude (over 0.8 or 2) 

randomly occurring is much higher (1% or 0.01%, respectively). Given that random 

measurements take their values erratically, the chances of getting a specific time series profile 

are thus lower. This can be intuitively understood by the fact that achieving a specific pattern in 

a given order is less likely to be achieved by erratic events than a specific value for three 

(unordered) replicates. As illustrated Figure 4B, clustering methods thus allow to efficiently 

extract patterns from the biological and technical noise.  

Different dimensions can be used to analyse systems biology data: it is possible to monitor 

systems dynamics in time , on spatial evolutions, e.g. following biological fluid flow18, thermal 

profiling where the sample is heated and characterized at different temperatures, e.g. when 

monitoring interactions and complexes29. In these approaches, the resolution of the analytical 

procedure on the studied dimension, e.g. the sampling frequency for time series, is a crucial 

factor. It is necessary that the sampling time is much lower than the time scale of the 
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biochemical event to monitor. This makes it particularly difficult to monitor metabolite-protein 

interactions, which occur at very low time scales, and techniques of higher time resolution must 

be used complementarily to omics techniques. 

The monitoring of systems dynamics over time is a key feature in the description of cellular 

processes. While analytically challenging, such experiments provide a view on the cellular 

response over time and thus a better understanding of the mechanisms involved. Such 

approaches were for example applied to study the dynamics of the circadian cycle to the 

metabolic, transcriptomic and proteomic level28, or to monitor the phosphorylation events 

involved during platelet activation30. The mathematical and computational modelling of such 

dynamic events can ultimately allow simulating the effect of perturbations on the biological 

system, and predict its evolution. 

As previously discussed, in order to reduce the incidence of multiple hypothesis problems, it is 

possible to retain only the most significant and highest regulated components until reaching the 

desired false discovery rate. Another approach relies on the rationale that false positives will 

appear in an uncoordinated manner, while true positives are likely to represent specific 

functions of interest. As illustrated Figure 4C, by mapping results on known biochemical 

pathways, it is thus possible to discriminate the relevant compounds from the others. While this 

method is extremely promising for systems biology based biomedical studies, it suffers from the 

lack of maturity of pathway databases, and from low accuracy when matching experimental and 

theoretical data, notably at the post-translational level31. 

Different bioinformatic tools allow the conduction of these data interpretation steps. However, 

they often require advanced computational skills. The software Perseus, from the MaxQuant 

suite19, is a good alternative for users lacking advanced computational skills. It allows processing 

multi-omics datasets seamlessly, implementing most of the data interpretation techniques of the 

field, and support the implementation of additional plugins. Additionally, its workflow based 

design allows navigating the individual steps of the analysis and visually inspecting intermediate 

results. Multiple resources are available for functional and pathway analyses, computing a false 

discovery rate or p-value per pathway32, as illustrated Figure 4D. 

Conclusion 

As outlined in this review, one of the characteristics of omics approaches in biomedical sciences 

is the complexity and size of modern datasets. As a consequence, browsing and efficiently 

mining published results requires new ways of accessing and visualizing data33, and associated 

training material34. Modern system wide studies thus come with advanced data sharing and 

display solutions allowing scientists to fully benefit from the results35. The dependence on the 
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data interpretation also poses new questions concerning the review and reproducibility of 

results. The public availability of the raw data and of their interpretation procedures have now 

become a requirement for many journals, and specialized repositories are available allowing the 

storage and mining of the knowledge produced globally by the scientific community32b, 36. 

The tremendous advances of analytical techniques for the characterization of biological samples 

have made it possible for researchers to inspect samples to an unprecedented level of detail. The 

best established techniques, genomics, transcriptomics, and, to a certain extent, metabolomics 

and proteomics, are now affordable at reasonable costs from core facilities and companies. 

Additionally, the characterization of more complex biological compounds, like proteins carrying 

complex modifications or mutated proteins, is a rapidly evolving field37, and will soon be 

accessible to all38. However, while our ability to analyse samples in detail increases, the 

functional interpretation of the large datasets produced remains challenging due to the lack of 

knowledge on how biological compounds interact. As a result, while modern analytical 

techniques allow ever improving characterizing of samples, it is not always possible to make 

sense out of the data. Systems biology approaches based on pathway and network analyses aim 

at solving this need. It is for example already possible to compare ones results against so-called 

connectivity maps generated by characterizing the reaction of cells to known drugs39. There is 

no doubt that such approaches will greatly benefit from the evolution towards spatial, dynamic, 

multi-omics analyses. 

The standardization in biomedical sample characterization simplifies the possibility to set up 

international across-lab studies, as illustrated by the setup of ambitious projects like the 

100,000 genomes project (http://www.genomicsengland.co.uk). It also opens the possibility for 

data reprocessing and crowd sourcing studies, where publicly available data is reprocessed and 

repurposed to answer new scientific questions40. Finally, recent developments have moved 

towards setting up big data strategies for the reprocessing of data produced globally, providing 

insight on biomedical sciences at large35a, 41. In the future, it is thus realistic to envision the use of 

in silico controls to compare the results of a disease study against large amounts of data from the 

healthy population, or patients affected by other pathologies. The field is already witnessing the 

move towards in silico experiments for the prediction of drug effects42, and it can be anticipated 

that the design of in silico omics experiments will play a major role in the 21st century biomedical 

sciences, dramatically reducing the need for animal testing, reducing the experimental costs, and 

increasing the ability of the field to rapidly tackle new issues.  
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Figure Legends 

 

Figure 1  

A. Representation of the different omics techniques. Genomics and transcriptomics are used to 

characterize the gene transcriptional activity and splice variation of the genes transcribed. 

Proteomics then allows the characterization of the proteins in their different forms and 

modification statuses. In turn, the regulation of gene expression operated by a portion of the 

proteome is characterized using epigenetics. The interaction of the proteins with metabolites 

and metals is characterized using metabolomics and metallomics, respectively. 

B. Omics techniques can be used to compare populations, e.g. patients and controls, of different 

conditions, e.g. disease and healthy. The separation power of discriminating factors is then 

evaluated by studying the significance of the inter variability compared to the intra variability, 

as illustrated here by two artificial Gaussian distributions. The inter-intra variation ratio can be 

used to illustrate the resolution of the experiment. 

C. The properties of the distributions and the test allow linking the inter-intra variation ratio, the 

resolution of the experiment, to the properties of the statistical model. As illustrated here with a 

normal distribution and a Student's t-test, the number of samples 𝑛 can be directly linked to the 

resolution of the experiment  
𝐼𝑛𝑡𝑒𝑟

𝐼𝑛𝑡𝑟𝑎
, and the stringency of the testing 𝛼 and 𝛽, where 𝛼 represents 

the probability of assuming that the populations differ while they do not, a false positive result, 
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and 𝛽 the probability of assuming that the populations do not differ while they do, a false 

negative result. 𝛷 represents the cumulative probability of the normal distribution. The 

numerator can easily be calculated as illustrated here for different stringencies after rounding 

with: (1) 𝛼 = 5%,  𝛽 = 20% in green, (2) 𝛼 = 5%,  𝛽 = 5% in orange, and (3) 𝛼 = 1%,  𝛽 = 1% 

in red. 

D. Using the values of C, the number of samples necessary to achieve a given resolution is plotted 

for the three different cases, note the log scale for the number of samples. Reciprocally, it is 

possible to see the maximal resolution achievable with a given number of samples, as illustrated 

here by the resolution which can be achieved with three replicates at the different levels of 

stringency: (1) 2.3 for 𝛼 = 5%,  𝛽 = 20%, in green, (2) 2.9 for 𝛼 = 5%,  𝛽 = 5%, in orange, and 

(3) 4 for 𝛼 = 1%,  𝛽 = 1%, in red. 

 

Figure 2  

Representation of Anscombe’s quartet17 illustrating the importance of visually inspecting results 

and not simply relying on descriptive statistics. Here four series of doublets are plotted, which, 

even though barely distinguishable by linear regression, clearly have completely different 

shapes when visually inspected. 
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Figure 3  

A. Variability of the cerebrospinal fluid expression of proteins unaffected by blood flow among 

different patients, courtesy of Dr. J.A. Opsahl. The variability was evaluated by the standard 

deviation divided by the mean of the protein abundance between patients. A box plot of the 

variability for the different proteins is displayed before normalization (Raw), and after 

normalization by the mean and median of the protein expression level for every patient. 

B. Histograms of the protein expression ratio between Acute Myeloid Leukemia cell lines43, with 

the observations in blue, and the missing values imputation in red using Perseus. 

C. Example of a volcano plot obtained from the protein expression of induced pluripotent stem 

cells before and after reprogramming, courtesy of H. Vethe and Prof. Dr. H. Ræder. The 

significance of the testing is plotted against the fold change of the protein expression between 

replicates, note the logarithmic scales. Proteins were clustered in four categories after 

thresholding at a p-value of 0.05: (1) strong regulation, i.e. ≥10, and significant p-value in green, 

(2) moderate regulation, i.e. <10 and ≥2, and significant p-value in orange, (3) background 

regulation, i.e. <2, and significant p-value in red, and (4) not significant p-value in grey. Green 

rectangles indicate the most promising candidates, presenting strong and significant regulations. 

D. Example of a Receiver Operating Characteristic (ROC) obtained from the monitoring of a 

protein from the MAPK pathway in the duodenal juice of diabetic patients and controls44, with 
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the sensitivity of the patient separation plotted against the specificity, when going from the 

highest regulation to the lowest (blue diamonds), and the interpolation using non symmetrical 

normal distributions calibrated on the quartiles of the protein expression as a dotted line. 

 

Figure 4  

A. Illustration of the interest of series compared to on-off situations. Randomly generated series 

of six regulations with a standard deviation of 1 are plotted representing a simulated regulation 

(log2 scale) against six conditions, e.g. time points. To the left, two blue squares represent the 

levels to be achieved by three replicates to have a regulation of at least 1.7 or 4 (0.8 and 2 in base 

2 logarithm, respectively). As indicated in the squares, the probability of three replicates to 

achieve such a regulation by chance is 1% and 0.01%, respectively. Two red bands illustrate the 

pattern a series would have to follow to achieve this magnitude of regulation at 𝑥 = 4, with a 

tolerance of 0.5 standard deviation, i.e. 𝑦 = 0.2𝑥 ± 0.5 and 𝑦 = 0.5𝑥 ± 0.5, respectively. As 

indicated in the red bands, the probability of having a series of random values following these 

patterns is 0.1% and 0.006%, respectively. Here x can be time, distance, or any dimension of 

interest, see main text for details. 

B. Heat map and illustrative example of clusters obtained from a time series study of 

phosphorylation events during platelet activation obtained using EPCLUST 

(http://www.bioinf.ebc.ee/EP/EP/EPCLUST) on data from Beck et al.30. 
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C. Illustration of functional networks as displayed in Reactome32a (www.reactome.org). 

D. Illustration of the p130Cas linkage to MAPK signaling for integrins pathway as displayed in 

Reactome32a (www.reactome.org). This pathway was covered by the protein expression 

significantly different between Acute Myeloid Leukemia cell lines43, as highlighted in blue, and 

was given a p-value of 0.01. 

 

 

 

 

 


