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Abstract 

With the advent of mass spectrometry based proteomics, the identification of thousands of proteins 

has become commonplace in biology nowadays. Increasingly, efforts have also been invested 

toward the detection and localization of posttranslational modifications. It is furthermore common 

practice to quantify the identified entities, a task supported by a panel of different methods. Finally, 

the results can also be enriched with functional knowledge gained on the proteins, detecting for 

instance differentially expressed gene ontology terms or biological pathways. 

In this study, we review the resources, methods and tools available for the researcher to achieve 

such a quantitative functional analysis. These include statistics for the post-processing of 

identification and quantification results, online resources and public repositories. With a focus on 

free but user-friendly software, preferably also open-source, we provide a list of tools designed to 

help the researcher manage the vast amount of data generated. We also indicate where such 

applications currently remain lacking. Moreover, we stress the eventual pitfalls of every step of such 

studies. 
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1. Introduction 

The progress in the application of mass spectrometry to biological compounds has revolutionized 

the field of biology: the large scale identification of proteins provides a unique snapshot of a 

biological system of interest at a given time point.1, 2 The study of proteins and their modifications in 

a single sample, or differentially between samples dramatically increased our understanding of 

living cells and allowed the setup of ambitious experiments3-5 opening new opportunities for 

biomedical research.6 The canonical example of the latter is the comparison of the proteomes of a 

disease affected population against those of a control population.7 Such studies aim to identify 

biomarkers – an easily detectable indicator of a biological state – for the targeted disease.8 However, 

the efficiency of statistical comparison between metrics associated to a biological entity is 

questioned in the literature.9-12 Indeed, such studies suffer from the high variance inherently found 

in biological systems,9 from the low number of replicates typically analyzed,10 and from 

experimental artifacts, errors and missing values.13-15 As a result, the fine nuances of the proteomic 

variations are often not statistically significant when compared to the global variance of the system. 

In order to tackle these issues, the proteomics community has started an ambitious systematic 

sharing of resources.16 The rationale is the following: when bringing knowledge from previous 

experiments and other fields like genomics and transcriptomics together, one will have a better 

understanding of the results and might be able to extract patterns of interest from the crowd.17 As a 

result, the community saw the emergence of quantitative biological pathway or protein interaction 

analyses. Such systemic approaches aim at providing a fine grained picture of the biological features 

of interest, hoping at identifying pathology specific disturbances undetectable otherwise.  

This process can typically be subdivided into four main tasks: (1) the identification of the biological 

entities, (2) their absolute or relative quantification, (3) the functional analysis of these entities, and 

(4) the public dissemination of the results in standardized formats. Starting from the identified and 

quantified peptides and proteins results canonically obtained from a shotgun proteomics 
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experiment,18 we thus detail in the present review the current follow-up resources available in 

proteomics. Focusing on free and user-friendly tools, we list the applications – when existing – 

allowing researchers to reach these objectives. We also list the potential pitfalls involved in these 

post-identification steps. 

 

2. Global PTM, Peptides and Protein identification  

The typical outcome of a proteomic identification process is a list of identified peptides and proteins 

with posttranslational modifications (PTMs) mapped onto the sequence. However, these 

identifications typically contain a certain proportion of false positives.19 Tremendous progress has 

been achieved in the monitoring of error rates in proteomics, notably with the use of target-decoy 

databases20 – as comprehensively reviewed by Nesvizhskii AI.21 It has therefore become possible to 

filter a dataset of interest at a desired False Discovery Rate22 (FDR) independently from the specific 

scoring used by the search engine – an demarche common to other scientific fields.23 For example, in 

a previous study,24 where three isoelectric focusing (IEF) fractions of the same sample were 

analyzed using OMSSA,25 a canonical FDR threshold set at 1% required the filtering of all hits with 

an e-value higher than 0.15, 0.20 and 0.19 for fractions 3, 9 and 20, respectively.  

When comparing the target and decoy distribution of hits at these scores, it is possible to estimate 

an unbiased quality metric, the Posterior Error Probability (PEP).26 Concretely, among hundred hits 

with a PEP of 25%, one expects 25 false positives, 75 true positives. The complement of the PEP 

(100%-25%=75%) hence indicates a confidence in the identification. Note that the threshold scores 

used for the IEF fractions example, although very similar, correspond to a confidence of 72%, 96% 

and 84%, respectively. This variability in confidence between fractions at fixed FDR shows the 

heterogeneity found in proteomic results and highlights the necessity for thorough statistical post-

processing of the identification matches.  
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As schematized in Figure 1A, proteomic experiments typically consist of several samples that are 

measured in replicates (technical and biological) and that may each be further fractionized. Peptides 

are inferred from the obtained mass spectra, and proteins are then in turn inferred from the 

peptides. In the example of the IEF fractions above, we illustrate the importance of processing sets 

of spectra specifically: the PEP at a given OMSSA score differs from one fraction to the other. Using 

the OMSSA score for the merged PSM set hence results in a lower identification rate (6,084 PSMs at 

1% FDR, in orange Figure 1A) compared to the same set scored using a fraction specific PEP (in 

black Figure 1A, 6,247 PSMs at 1% FDR: +2.6%). Such specific processing is comparable to charge 

and modification specific scoring27, also mandatory when different mass spectrometers or 

experimental workflows are used on the same sample. A critical point is then to ensure a 

statistically relevant size of the subgroups of PSMs retained for scoring.28 Statistical processing 

hence makes it possible to filter identification matches at a given quality threshold with a high 

accuracy29 and merge the results a posteriori. 
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Figure 1: Taking advantage of the experimental design. (A) A typical proteomics experiment 

consists of several samples analyzed in replicates. Here, we take the simple example of three 

measurements of Isoelectric Focusing fractions from which we want to infer peptide and protein 

identifications. For every fraction, we represent the target/decoy derived Posterior Error Probability 

(PEP) at a given score. For the merged result set of Peptide-Spectrum Matches (PSMs), the number of 

PSMs is plotted at a given False Discovery Rate (FDR) when sorted against the OMSSA score (orange) 

and against the inferred PEP (black). (B) Processing all samples separately and merging the results 

increases the FDR substantially: considering an example where 25% of the proteins identified in a 

sample are unique to that sample, and this includes all false positives (numbers in red). When merging 

these three datasets (that are each filtered at 1% FDR), a final dataset is obtained with an FDR equal 

to 1.7%. (C) When considering six proteins identified in the three datasets at different confidence levels 

(indicated by red, orange and green for bad, medium and good confidence, respectively), it can for 

instance be seen that protein D is found in all samples yet is not validated due to its moderate score in 

each sample. The fact that it is found in all samples however, makes it quite likely that it should in fact 

be included in the global set of identifications. Indeed, although a false negative in all datasets, this 

1 

2 

3 

FDR: 1% -> 1.7% 

 1 2 3 Id 

Protein A     
Protein B     
Protein C     
Protein D     
Protein E     
Protein F     
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protein could be rescued by scoring the identifications globally. Similarly, protein B is not validated in 

sample 3 but its presence in the global identification suggests that the peptides found in sample 3 

should be used for quantification. (D) In proteomics it is sometimes impossible to infer the presence of a 

protein due to the absence of an identified unique peptide as illustrated here for replicate 1. While 

protein sequences A and B can be distinguished by peptide 1, this peptide does not receive a high 

enough score (orange) for identification, and will therefore not be used for protein inference. In 

replicate 2 however, peptide 1 receives a higher score (green) allowing the unambiguous identification 

of protein A. Yet if protein A is confidently identified in the second replicate, it is likely to have been in 

the first replicate as well. A suitable study design can thus help resolve protein inference by analyzing 

the data globally. 

 

However, as illustrated in Figure 1B with the concatenation of three hypothetical datasets, merging 

results obtained on different replicates substantially increases the share of false positives since false 

positive identifications are more likely to differ between replicates than true identifications – a 

problem well known to affect searches using multiple search engines30 and peptide and protein 

inference approaches.31 In this simple example, where every dataset was filtered to 1% FDR, 25% of 

the correct matches were unique to a particular dataset, while all false positives were unique. The 

final FDR therefore reached 1.7% across the datasets: it is hence vital to monitor the quality level of 

the final result set. Crucially, as illustrated in Figure 1C, a peptide or a protein can score moderately 

(in orange) in each of the replicates (like protein D), preventing it from being validated at a quality 

driven FDR within that replicate. However, its presence among all replicates may make it more 

confident than another protein scoring well in only one replicate (like protein C). Keeping all 

identifications from all datasets when creating the merged results and subsequently filtering the 

combined set thus allows rescuing such peptides and proteins, reducing the False Negative Rate 

(FNR).  

Finally, as illustrated in Figure 1D, when a peptide is shared between different proteins (e.g., 

peptide 2 that is shared between proteins A and B), it is not always possible to resolve the correct 

protein identification; this is the well-described but often underestimated protein inference 
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problem,32 which has particularly strong incidence on the quantification of proteins. In the 

illustrative example Figure 1D, the uniquely matched peptide 1 scores well in the first replicate and 

gives evidence for the presence of protein A. In replicate 2 however, this peptide now receives a 

poor score and would not pass a stringent quality threshold, thus impairing the protein inference 

within this replicate. This kind of situation typically occurs when proteins are identified using 

different fractionation methods or different mass spectrometers. It is hence crucial to consider all 

peptide candidates across all replicates for protein inference as well. 

In summary, an ideal post-identification workflow for proteomics treats identification results 

accounting for specificities of fractions and replicates (technical and biological) while taking 

advantage of the study design in its whole to reduce the FNR at a controlled FDR. However, such a 

statistical analysis is complicated by the fact that identification results between fractions and 

replicates are not independent. Moreover, there is no guarantee that the target/decoy strategy 

holds when merging replicates. On the contrary, it can lead to similar issues as multi-stage search 

strategies.33 Finally, since such experimental designs can easily lead to the generation of several 

millions of spectra – as evidenced by some of the biggest datasets34-37 submitted to the PRoteomics 

IDEntifications (PRIDE) repository,38 global analysis of complex proteomic studies are also 

challenging in terms of processing time, computational space, and data management. Several free 

packages exist that allow the processing of large sets of spectra39-43, these offer different solutions 

for the final compilation of the results between replicates, most notably, the MaxQuant/Perseus39 

tool combination allows combination of large datasets, statistical analysis and interaction with 

external resources. 
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3. PTM, Peptides and Protein quantification 

The identified peptides and proteins are subsequently quantified – taking into account their 

modification status. Various non-targeted methods exist for this purpose, with the quantification 

output being either absolute or relative. Absolute quantification is obtained by spectrum counting44-

46 or by comparing intensities of peptides of interest with a spiked-in labeled version of known 

quantity.47 Relative quantification is usually achieved by comparing the intensities of peptides 

measured in parallel or multiplexed after chemical labeling.48 The quantification is then directly 

obtained by comparing peptide intensities49 or by comparing intensities of reporter ions released by 

the label upon fragmentation.50, 51 Several reviews cover the advantages and shortcomings of these 

methods.52-56  

The obtained intensities are typically normalized prior to processing. As demonstrated in Figure 2A 

with different spectra of a regulated peptide monitored by iTRAQ quantification (courtesy of F Beck 

and RP Zahedi, unpublished data), when several quantification channels are available, a reference 

channel is typically used for normalization (here the reporter at m/z 114). The result after this 

normalization step shows high variance for the 115/114, 116/114 and 117/114 ratios, however. As 

shown in Figure 2B, after normalizing using the average of intensities at m/z 116 and 117, it 

actually appears that the high variance was due to the intensities at m/z 114 and this variance was 

propagated to all other channels by normalization. It is thus preferable to normalize using the 

median of the intensities or on a set of intensities which are known from the experimental design to 

be a reliable reference. A final ratio is estimated (shown in red Figure 2A and B) for the channel 

using an estimator that combines robustness and accuracy: maximum likelihood estimators were 

shown to perform best.13 This type of processing can be achieved using user friendly tools such as 

Rover57 or Perseus (http://maxquant.org/).  
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Figure 2: Quantification post-processing. (A) An example of peptide iTRAQ 4-plex ratios measured in 

different spectra (black crosses). When normalizing on the 114 channel, the obtained peptide ratio using a 

maximal likelihood estimator (red) for the different channels, 114:115:116:117 are 1:1.56:2.79:3:50, 

respectively. Note how important the variance on every channel is: regulation between 116 and 117 

cannot be confidently assessed here. (B) when normalizing on the average intensity of channels 116 and 

117, the peptide ratios are 0.2:0.4:0.82:1.18, equivalent to 1:2.00:4.10:5.85. The regulation is hence more 

pronounced and the variability on the channels is reduced, except for the low intensities. In (B) significant 

regulation can be inferred whereas in (A) no significance is detected; this simple pitfall can be avoided by 

normalizing on the most reproducible measurements. (C) When asserting the regulation of proteins, as 

performed here with 1,869 iTRAQ protein ratios obtained between two replicates (blue distribution), one 

typically compares the regulation to the standard deviation of the distribution under the assumption that 

1.96 times the standard deviation yields 95% confidence for a two-sided test. The assumption is of course 

that the data is normally distributed. As shown by the red dotted line, the assumed normal distribution 
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based on the mean and the standard deviation of the data, does not fit the experimental distribution at all 

however, failing the Kolmogorov-Smirnov test (see main text). A normal distribution calibrated on the 

quartiles of the experimental distribution (dashed lines in green) fits the experimental distribution better 

but still does not perform very well on the Kolmogorov-Smirnov test (see main text). The choice of the 

reference statistical model is therefore crucial to assess regulation, yet this topic is rarely touched upon in 

quantitative proteomics studies. (D) Statistical analysis and display can be performed on any kind of data 

in the Perseus software. Here, the four ratios obtained from a set of 3,253 proteins quantified with iTRAQ 

between four biological replicates are displayed in correlation plots. The color gradient from black to red 

indicates increasing absolute quantification. Note that highly abundant proteins are less subject to 

relative variation than low abundant proteins. 

 

The overall aim of statistical studies based on quantification results is typically to assert the 

confidence in a hypothesis, for instance the significance of a protein regulation regarding a 

hypothesis of stability: is the protein significantly regulated when compared to the stable 

background? Given a distribution of ratios, as illustrated in blue in Figure 2C for the distribution of 

iTRAQ ratios of two biological replicates from a publicly available dataset,37 the confidence in a 

regulation will thus be obtained by comparing potentially regulated ratios to the global distribution. 

Assuming that the total complement of ratios is normally distributed, such a test can for instance be 

performed using thresholds calculated from the standard deviation of the ratios after logarithmic 

transformation. However, as illustrated by the dotted red line in Figure 2C, the mean and standard 

deviation based normal distribution is a poor model for the experimental data; here, the model fails 

the Kolmogorov-Smirnov test with a statistic of 0.0759 and a corresponding p-value of 8.686*10-10. 

It is possible to address this issue by reverting to the use of a robust distribution based on the 

median and quartile values – implicitly correcting for non-symmetrical distributions. As displayed 

by the green dashed line in Figure 2C, the match with the actual distribution is improved in this 

case. Yet the Kolmogorov-Smirnov test continues to fail (albeit with a much less dramatic statistic of 

0.0317 and p-value of 0.04698). This example shows the crucial impact of the choice of the 
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statistical model, and it illustrates that the significance of regulation must be computed and 

interpreted with care.  

In more advanced experimental designs, the question to answer is typically more complex, for 

example: is a protein significantly regulated in patient samples when compared to control samples? 

This question is typically assessed by analysis of variance (ANOVA). The design of the experiment 

plays a crucial role here,9 especially regarding the number of replicates that will determine the 

statistical power of the experiment. The power of an experiment describes its ability to discriminate 

the actually regulated compounds from the experimental artifacts.10 The subject of replication is 

essential in proteomics due to the low number of samples available for clinical studies. Low number 

of samples also make the study more sensitive toward outliers thus creating important issues 

regarding pooling strategies as often used with gel-based proteomics.58 Perseus 

(http://maxquant.org/) provides several analysis strategies that support the statistical analysis of 

quantitative experiments in a user friendly fashion, as illustrated in Figure 2D with the display of 

four iTRAQ ratios obtained from biological replicates,37 where the color represents the abundance 

of the protein. 
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4. External resources for functional studies 

The emergence of resources for functional proteomics has broadened the scope of quantitative 

proteomics from the monitoring of single peptides or proteins to entire systems. The rationale 

behind such analyses is that biological deregulations do not only affect single proteins but rather 

disturb or activate entire systems. The comparison of the sub-proteome of interest between the 

healthy and disease state thus provides a fine grained picture of the regulations involved. In order to 

enrich the resulting large amount of identification and quantification results with functional 

knowledge, the community can fortunately already make use of various well-established resources, 

as reviewed in detail by Vizcaíno JA et al..16 These external resources can be most readily queried 

using the accession numbers of the identified and quantified proteins. Note that the portability of 

such accession numbers across databases and through time (as some accession numbers may not be 

stable over time) is ensured by a very powerful and user friendly application: the Protein Identifier 

Cross-Referencing (PICR) service.59  

Proteins are also associated with so-called Gene Ontology (GO) terms,60 that are organized into 

three categories: cellular component, molecular function and biological process. These GO terms can 

be obtained and analyzed for a given list of protein accession numbers using web interfaces61, 62 or 

using dedicated software like Ontologizer.63 It is moreover possible to compare the frequency of 

occurrence of a GO term in a dataset to the frequency of the same term in a given background. 

Similar to the analysis performed in quantification studies, the GO term expression analysis comes 

with a question, most notably: is my term significantly differentially expressed in diseased samples? 

Although quite some effort has been expended towards the correction of potential biases in the 

evaluation of GO term expression,64 it is crucial to note that the type of sample used might influence 

the answer. For instance, when studying a given cell type, the detected regulated expression might 

be due to the cell type and not the disease. 
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Another source of potentially useful external information comes from interaction databases65-67 that 

list known interacting proteins, as displayed in Figure 3A for data obtained from STRING68 on 

protein P04114. Note that PSIMEX,69 an integrated version of these resources, is available. Further 

information about protein function is available via pathway analyses70, 71 as displayed in Figure 3B 

with a view on the pathway platelet homeostasis in Reactome.71 Interestingly, it is possible to study 

the expression levels of a pathway in a dataset.72 It is however important to consider the sensitivity 

of such an approach in light of protein detection and protein inference issues. Indeed, if unique 

peptides for particular isoforms occurring in the pathway are not found, the coverage might easily 

be falsely underestimated. The pathways obviously also contain entities that are not detected in 

typical proteomic studies, such as metabolites, yet precisely because of this reason, pathways 

provide an ideal means to link proteomics identifications to metabolomics data in multi-omics 

analyses. Finally, pathway coverage is obviously also highly dependent on the FDR thresholding 

used during identification processing. 

Further information on proteins that can be quite relevant to the interpretation of proteomics 

results are provided by their three-dimensional structure,73 as illustrated in Figure 3C where a 

protein structure is displayed using jmol74 in the PeptideShaker (http://peptide-

shaker.googlecode.com) tool. Identified peptides and their modifications are mapped onto the 

structure, immediately revealing the identified peptides and the sites of modification from a 

structural perspective. The latter can provide powerful orthogonal information for modification site 

localization.75 
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Figure 3: External resources for proteomics. (A) A network of protein-protein interactions as rendered 

by STRING for Apolipoprotein B-100 (accession P04114). (B) Pathway platelet homeostasis, as shown in 

Reactome. (C) 3D structure of a protein with the identified peptides and post-translational modifications 

mapped and highlighted, as shown by PeptideShaker (http://peptide-shaker.googlecode.com). (D) 

Annotation view of a protein in Dasty, using combined information from a variety of annotation servers. 

 

  

A B 

C D 
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It is thus clear that a complete cloud of heterogeneous resources are available to the researcher 

interested in placing proteomics results in a biological context. Navigating a variety of resources one 

by one can be very cumbersome and error-prone however, and simplified methods to access all this 

information in single analysis sweeps have therefore been constructed. Of these, Biomarts and the 

DAS protocol stand out as useful resources. Originally developed for the Ensembl database,76-79 

Biomarts allow dynamic, easily user-defined querying of available resources, offering a uniform 

interface regardless of the underlying resource. Moreover, Biomarts for two different resources can 

be linked, allowing across-resource queries. As a result, it is quite easy to perform exhaustive and up 

to date protein annotation for a large dataset from a single (across-)Biomart query. The Distributed 

Annotation System80 (DAS) on the other hand, is meant to aggregate positional annotations for a 

given protein or gene sequence from a very broad set of compatible annotation servers. Web 

interfaces like Dasty81 provide user-friendly tools to aggregate these resources, and present the 

annotations in a global overview (see Figure 3D). 

Despite the capacity of these web interfaces to gather functional information, mapping vast 

quantitative proteomic studies on these external resources and navigating the results rapidly 

becomes impossible. Notably, no free tool allows taking into account the experimental design in the 

statistical processing of the external information while allowing its intuitive navigation, although 

open source network navigation interfaces already exist.82  
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5. Public repositories 

As demonstrated in Section 4 above, proteomics research is not anymore limited to obtaining a 

dataset in the lab, but takes increasing advantage of the global knowledge on proteins, their 

interactions, features and roles as determined by the collective actions of the community. In order 

to improve the outcome of this global process of integrating knowledge, public repositories were set 

up to explicitly enable the sharing of proteomics data and associated results; for a detailed review 

see83. By making their data available, scientists can actively contribute to an overall collaborative 

effort, enabling their findings to act in feedback loops by for instance aiding in the annotation of 

protein databases that are in turn so useful in proteomics research. Recently, substantial progress in 

this area has been made to facilitate the submission to repositories with applications like PRIDE 

Converter84, 85 and the ProteomeXchange (http://proteomexchange.org) submission tool. At the 

same time, inspecting and retrieving data from repositories such as PRIDE38 has been made much 

easier thanks to the powerful PRIDE Inspector application86 that greatly simplifies the interaction 

between the user and the repository. In fact, user friendliness is a vital feature for repositories, as 

the ultimate potential of the data will depend on the user’s ability to deposit their findings in the 

repository. An important yet often overlooked aspect here is the annotation of the data, which is of 

fundamental importance for the efficient re-use of the information. Here, user-friendly interfaces 

such as the OLS Dialog87 can aid substantially in lowering the required effort to correctly annotate a 

dataset. Automated checks on the semantic validity of the annotation can then be used to ensure 

that the user reports the correct type of information.88 High quality public datasets are not only of 

interest for the simple sharing of the obtained results, but also for their potential value when reused 

in research with a novel focus.89-92  
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6. Discussion and overview 

Thanks to the advent of shotgun proteomics, protein analysis went from the laborious identification 

of a few entities to the automated identification and quantification of thousands of proteins with 

their mapped PTMs. However, for both identification as well as quantification, current workflows 

contain some unseen pitfalls that are not always adequately handled by established methods. This is 

especially the case for advanced, multi-sample experiments using several replicates. This is 

unfortunate, since such experiments are actually of the highest biological interest. The community is 

thus in need for renewed efforts to develop powerful, user friendly software able to handle such 

experiments easily and correctly. This task is however complicated by the amount of data involved. 

Indeed, in order to resolve protein inference issues, precisely map PTMs, and achieve global 

proteome quantification, it is necessary to navigate and process several millions of spectra in a 

practical time scale with reasonable computational requirements. To successfully tackle such a 

challenge, new, more advanced computational techniques may be required,93 while reducing 

algorithmic complexity without sacrificing performance should be a high priority for developers in 

the field.  

These techniques should no longer solely focus on delivering lists of peptides and proteins, but aim 

at identifying entire biological systems, mapping the experimental results on them and allow their 

intuitive navigation. This task is made particularly difficult by the complex experimental design of 

many proteomic experiments. Notably, the combination of shotgun and targeted studies for the 

study of functional changes in proteomics is crucial for the identification and validation of 

biomarkers. However, such investigations currently rely heavily on inefficient manual data 

manipulation. 

Since functional proteomics relies on acquired knowledge, the quality and quantity of information 

available is strongly species dependent. Moreover, the study of certain samples breaks standard 

statistical assumptions in proteomics, notably in terms of database size and identification reliability. 
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Despite the availability of resources for some organisms, 94 these problems are commonplace in 

plant proteomics and metaproteomics95 for instance. There is therefore a strong need for increased 

species coverage for functional proteomics, which may be answered at least in part by cross-species 

portability of the existing annotation, as for instance performed by Reactome71 and Ensembl96, 97. 

The second breakthrough that has become evident in proteomics over the past few years is the 

generalization of data and knowledge sharing. This collective effort of the community has enriched 

the field with global access to large amounts of high quality information. Here again, despite the 

progress in data sharing, current resources remain mainly populated with data from established 

methods and well-studied model organisms. Species with a partially or non-sequenced genome are 

simply not yet part of this dynamic. Similarly, innovative experimental designs do not always fit in 

the predefined data structures of external resources and repositories. This, together with the 

sometimes insufficient annotation of the datasets currently impairs the mapping of experimental 

data to external resources, hence blocking their use for functional proteomics. This issue can be 

solved by the establishment of efficient curation systems, and the development of robust, automated 

reprocessing methods. 

Yet despite these caveats, the accurate and quantitative systematic proteomics analysis of model 

organisms is now within reach, by bringing together cutting edge competence in various fields 

comprising biology, sample preparation, chromatography, mass spectrometry, data interpretation 

and statistics.  
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