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“People like us, who believe in physics, know that the distinction between

past, present and future is only a stubbornly persistent illusion.”

- Albert Einstein



iii

Abstract

The need for travel time estimations and prediction for both transit companies and

travelers are increasing. Intelligent transportation systems are often plagued by a short-

age of data sources to properly assess the traffic situation. This thesis propose an ap-

proach to improve the reliability of travel time predictions through the creation of a

combined model that relies on traffic estimations from both buses and cars. We found

that the use of multiple sources of traffic data can improve the accuracy and reliability

of travel time estimations and prediction where one of the initial datasets suffer from

data sparcity.
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Chapter 1

Introduction

We live in a world were data are generated from a large number of sources, and it is

really easy to collect and store such data. However, the true value of data is not re-

lated to the data itself, but with the algorithms that are capable of processing such data

in a tolerable elapse of time, and to extract valuable knowledge from it [30]. Finding

new and efficient uses for data is one of the main challenges in the technology indus-

try today. With the emergence of smart cities, many different data sources have been

made available for a wide variety of applications. The common technique for handling

multiple data sources is data fusion, where it improves data output quality or extracts

knowledge from the raw data [16]. These sources of data have introduced new ways of

thinking about data and have changed the way we work.

1.1 Motivation

Even though the amount of available data today is growing at an increasing rate, much

of the relevant data is owned by commercial companies who often have the intention

of gaining profit from its data and do not usually give it away for free. It is hard to

compete with these data companies in terms of data size and quality. Open data is an

alternative to proprietary data that can be used freely without any form of restrictions.

The open data are often collected opportunistically, and do not always answer the most
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societally important questions, which often forces data users to use proprietary data.

The large volume and availability of open data can be used alone or in combination

with the relevance and quality of proprietary data to benefit the society through the

development of new and innovative solutions.

1.2 Travel time prediction

City-wide travel time prediction in real-time is an important enabler for efficient use

of the road network. It can be used in information for travelers to enable more effi-

cient routing of individual vehicles as well as decision support for traffic management

applications such as directed information campaigns or incident management [3].

It is impossible to know the future traffic state due to unforeseen circumstances that

may occur, such as accidents or other events that slow down traffic and create conges-

tion. However, estimates and predictions of travel time based on previous historical

traffic data can be very useful. In this thesis we are investigating how transportation

methods such as cars and buses overlap and if we can benefit from combining bus and

car data into a unified dataset. It is interesting to find out to what degree we are able to

predict future travel times and traffic flow by using machine learning on a combined

dataset of bus and car data. We are looking into traffic datasets that are about the same

domain but with different different qualities. We are specifically looking into the con-

nection between commercial car travel time estimations available from Google and are

combining these with bus travel time data that is openly available from Entur.

The data available from Google is limited in terms of time due to limitations in request

frequency, but has unlimited available paths. The bus data from Entur has the oppo-

site problem as it is not limited in terms of time, but has a limited amount of paths. We

are therefore proposing an approach for dealing with data sparsity of car travel time

data in urban areas where car and bus routes overlap. We want to improve accuracy

and reliability of car travel times by training a combined machine learning model on

bus and car data using a path based approach. We believe that this can discover the

connection between the datasets and improve the accuracy and reliability of car travel
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times without being dependant on Google as the only data provider. Making use of

both proprietary and open data can get the best of both worlds and improves the qual-

ity of data.

1.3 Research questions

We have stated the following research questions to answer throughout this thesis.

1. RQ 1: Can combining multiple sources of different traffic data predict accurate

travel times?

2. RQ 2: Can we improve the accuracy of predictions by combining a low density

dataset with a dataset of higher density from the same domain?

3. RQ 3: Can we gain useful knowledge from the connection between these differ-

ent datasets?

1.4 Contributions

With this thesis we want to contribute with a general approach to discovering coher-

ence between similar datasets within the same domain where data sparsity may be a

concern. We want to contribute with additional knowledge to not only the transporta-

tion domain, but the general field of data mining and machine learning.

1.5 Outline

This thesis has been structured into 7 chapters with the following content.
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Chapter 1: Introduction

This chapter presents a general overview of the field of big data in the context the trans-

portation domain as well as the motivation for this research and the research questions

to be answered in this thesis.

Chapter 2: Background

This chapter goes into the relevant theoretical topics for this thesis, related work on

travel time predictions and the tools used for data processing and model training.

Chapter 3: Methods and workflow

This chapter describes the methods used in this thesis and the workflow used during

development.

Chapter 4: Data collection and transformation

This chapter goes into the dataflow from harvesting to pre-processing and transforma-

tions. Further, the data is explored through a visual overview.

Chapter 5: Modelling

This chapter describes in details how our models are trained, and we go through the

different model training iterations.

Chapter 6: Evaluation

This chapter gives an overview of the results and evaluates the performance of the dif-

ferent machine learning models.
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Chapter 7: Conclusions

This chapter discusses the findings, concludes the thesis and proposes suggestions for

further work.
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Chapter 2

Background

We will now look at some theory behind the field of big data and data mining as well

as some related research within the transportation domain and compare some of the

known problems to the problems we are facing in this thesis. In addition to that we

will look at some of the tools and technologies used throughout the thesis and theory

behind machine learning.

2.1 Big data

The term "BIG DATA" has become increasingly popular and is frequently used in both

academia and the technology industry in general. However, the definition of the term

is often shrouded by many vague concepts. Big data is often referred to in the context

of data aggregation, processing and increased value of analysis as well as the increasing

impact it has on society today.

When defining big data, "size" is what first comes to mind considering the word "big".

However, the true definition is not only determined by the size of the data. The term

is often defined using something called the 3 V’s which each describe important parts

of what are considered characteristics of big data. These where first defined in [19] as

Volume, Variety, and Velocity in a form of 3D data using a cube as an example. The

three V’s have since emerged as a common framework to describe big data. The 3 V’s
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of big data can be described as below.

• Volume - The volume characteristic of big data is concerned with the size of the

data; often measured in the form of bytes. How big it has to be to be categorized

is often relative to the context. A survey conducted by IBM in mid-2012 revealed

that just over half of the 1144 respondents considered datasets over one terabyte

to be big data [10].

• Variety - Variety refers to the structural heterogeneity in a dataset. Technologi-

cal advances allow firms to use various types of structured, semi-structured, and

unstructured data.

• Velocity - Velocity refers to the rate at which data are generated and the speed at

which it should be analyzed and acted upon. The proliferation of digital devices

such as smartphones and sensors has led to an unprecedented rate of data cre-

ation and is driving a growing need for real-time analytics and evidence-based

planning [10].

In the context of big data for emergency management we have also seen some new

emerging characteristics of big data such as veracity, validity and visualizations [2].

However, these are more relevant in the context of textual data such as twitter messages

or news articles.

In the transportation domain, Big Data has the potential to improve the safety and

sustainability of transportation systems. Many cities have installed monitoring equip-

ment, such as cameras, roadside sensors, and wireless sensor networks, to observe

traffic conditions and promote traffic safety [26].

2.2 Open data

The Open Knowledge Foundation defines open data as the freedom to use, reuse, and

redistribute without restrictions beyond a requirement for attribution and share-alike.
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Any further restrictions make an item closed knowledge [24]. With the increase of data

in various forms, many organization are often limited as to how much they are able to

do with it. Therefore, some organization decide to open their data to the public so they

can use this data to create new software which in turn can provide new solutions that

would likely have not been created otherwise. In addition to software and applications,

science is built on data: its collection, analysis, publication, reanalysis, critique, and

reuse. Making data publicly available improve the possibilities of science and can allow

for new experiments that would not have been possible otherwise.

Limitations to open data

In general there is a cultural reluctance to publish data openly, for a multiple of reasons-

from researchers’ fear about releasing data "into the wild" where they lack control over

its usage to a lack of incentive or credit for doing so [24]. Many businesses today are

solely relying on income from selling data or analysis services performed using it and

may therefore reject making it public due to a high chance of profit loss as well as pri-

vacy laws.

2.3 Travel time prediction

There has been done a series of studies with focus on traffic flow estimation and predic-

tion in the past. However, most of the recent studies have primarily been focusing on

travel time estimation and prediction for highway traffic and not as much on suburban

main road networks. This section will look into some of the most recent approaches to

travel time estimation and prediction.

2.3.1 Adaptive smoothing method

The adaptive smoothing method is a two-dimensional spatio-temporal interpolation

algorithm to estimate the speed attribute i.e, a continuous function of the local average
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speed V (t , x) in terms of time t and location x. The ASM method was proposed in [38]

via the isotropic kernel is now widely used in traffic state estimation problems.

2.3.2 Highway travel time prediction

An approach to travel time prediction conducted in Taiwan [36], developed 2 models

to predict freeway travel time through analysis of big data collected from the Taiwan

Highway Electronic Toll Collection System. The goal for their system was to provide

drivers with accurate travel time predictions in response to real-time traffic data. Their

travel time prediction models were established based on historical freeway data: one-

destination travel time prediction (OTTP) and adaptive travel time prognosis (ATTP).

Their OTTP module was developed for use under normal traffic conditions, meaning,

it did not account for unexpected traffic congestion or accidents. This OTTP model

would not be accurate enough for real-time travel time predictions as it was only based

on historical data, it would not be accommodating dynamic and abrupt changes in

freeway traffic conditions. Therefore, in order to enhance the accuracy and adaptabil-

ity they developed the second adaptive model which would remedy the shortcomings

of the OTTP model at a cost of reduced accuracy [36]. Their ATTP model was trained

incrementally in real-time and updated the predictions of the OTTP model if there was

a significant difference between the predictions of the 2 models.

2.3.3 Urban travel time using heterogeneous data

Most existing studies of travel time prediction have primarily focused on travel time

estimation for freeways. Since urban expressways play an important role in alleviating

congestion and connecting the road network as backbones. A reaserch focused pri-

marily on estimating and predicting states of urban expressways. Traffic flow estima-

tion and prediction for urban expressways have some challenging aspects that require

further investigations [5].

They developed an adaptive rolling smoothing (ARS) approach in an attempt to im-
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prove urban expressway traffic state estimation and prediction based on the heteroge-

neous data. The ARS optimization mechanism was developed to dynamically evaluate

algorithms’ performance based on historical data in the regression horizon which were

based on much of the similar aspects of the adaptive smoothing method used in [38].

Heterogeneous data was used instead of a single data source to reconstruct spatio-

temporal speed profiles, based on which the future traffic states can be predicted by

their advanced ASR approach. By applying the ASR approach in practice it managed to

outperform the global optimization algorithm for estimation and prediction, and both

algorithms lead to better results than applying the default non adaptive parameters.

2.3.4 Floating car data

The domain of intelligent transportation systems are plagued by a shortage of data

sources that adequately assess traffic situations. Typically, to provide routing and navi-

gation solutions map attributes in the form of static weights as derived from road cate-

gories and speed limits used for road networks. With the availability of cheap position-

ing technology and positional tracking in management applications, vehicle tracking

data becomes an important component when creating tools or applications for traffic

assessment and prediction [28]. Floating car data (FCD) is location data collected from

cars using GPS and motion based technologies and is often referred to as probe data.

FCD is a commonly used method of data collection used for travel time prediction [28].

A recent study working with floating car data collected from probes dealt with the prob-

lem of data sparsity. They had collected probe data from around 15 taxi cars in urban

areas of Schezhen China. Compared to other similar studies basing their data on FCD

using probes in cars have often had around 1000 probes collecting data simultaneously

such that the traffic speed on a subset of the roads are observed by at least one vehi-

cle within a short time window and does therefore not suffer from the problem of data

sparsity. In [20] they proposed a solution to the difficult problem of travel time predic-

tion when having a small amount of concurrently active GPS-floating cars on the road

network. Their problem consisted of 2 main challenges where data sparsity is the most
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obvious one and the second one is the large variance in travel time observations of the

same path. Their solution finds shared pathlets(sub-paths) which are overlapping on

important areas where the chance of congestion is high. They then identified the cur-

rent congestion patters from the relevant pathlets and inferred the travel time of the

full paths. This resulted in findings which improved accuracy compared to baseline

approach of just using historical data as well as state-of-the art travel time prediction

methods that uses both historical data and real-time data[22].

2.4 Languages and frameworks

The main programming language used in this thesis is Python 3. Python was chosen

mainly because of its increasing popularity in use within the academic field and be-

cause there is a large variety of high quality machine learning frameworks and libraries

available for Python. Sci-kit learn is a popular framework used for pre-processing data,

model training and generating predictions. Initially sci-kit learn in combination with

some other statistical libraries, was the library that we were going to look into due to

it’s simplicity, ease of use and it’s ability to process data fast in memory. However, due

to large amounts of data that would not normally fit inside memory on a single regu-

lar machine, we decided to use a big data framework called Spark which would handle

large quantities of data much better and is able to scale much better. Spark is described

further in section 2.4.2.

2.4.1 Python

Python is a programming language that lets you work more quickly and integrate your

systems more effectively. Python is developed under an OSI-approved open source li-

cense, making it freely usable and distributable, even for commercial use. The Python

Package Index (PyPI) hosts thousands of third-party modules for Python. Both Python’s

standard library and the community-contributed modules allow for many possibili-

ties[29].
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2.4.2 Apache spark

Spark was initially created as part of a research project conducted at the UC Berke-

ley AMPLab in 2009, and was later published open sources in early 2010. Some of the

ideas behind the spark system were then presented in various research papers of the

years after that, where the original framework was proposed in [40]. After Spark was

released, Spark then grew into a much broader developer community, and was moved

to the Apache Software Foundation in 2013. Today, the Spark project is further being

developed collaboratively by a community of developers from several hundreds of or-

ganizations around the world and has a seemingly bright future as it is being used by

more and more organizations as times goes on.

Sparks’ functionality

Spark is generally a unified analytics engine for large-scale data processing [40] that

utilizes in-memory cluster computing to process and analyze big data fast and with the

possibility of using it interactively. Although many of existing similar frameworks have

numerous abstractions for solving cluster computational problems, they lacked ab-

stractions for leveraging distributed memory [36]. One of the main issues when dealing

with cluster computing is to handle the distribution of data across multiple machines

in a fault tolerant way. Spark solves this by creating a data structure called RDD (Re-

silient Distributed Dataset) which is a fault-tolerant abstraction for in-memory cluster

computing.

In a formal context, and RDD is a read-only, partitioned collection of records of an

unknown type. RDDs can only be created through deterministic operations on either

data in stable storage or other RDDs. These operations are called transformations in

order to differentiate them from other operations on RDDs. Some examples of trans-

formations include map, filter and join; where an RDD is transformed and a new RDD

is returned with different values. The RDDs does not need to be materialized at all

times. Instead, an RDD has enough information about how it was derived from other

datasets (its lineage) to compute it’s partitions from the data in stable storage. This is
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a very powerful property; in essence, a program cannot reference an RDD that it can-

not reconstruct after a failure. Users have the options of controlling aspects of RDDs,

namely the persistence and partitioning. Users have the ability to indicate which RDDs

they want to reuse and choose a storage strategy for them (e.g., in-memory storage).

The user can also ask that an RDD’s elements is partitioned across machines based on

a key in each record. This is useful for placement optimizations, such as ensuring that

two datasets that will be joined together are hash-partitioned in the same way [40].

2.4.3 The Spark MLlib pipeline

The Spark MLlib library standardizes APIs for machine learning algorithms to make it

easier to combine multiple algorithms into a single pipeline, or workflow. This section

covers the key concepts introduced by the Pipelines API, where the pipeline concept is

mostly inspired by the scikit-learn project [27].

1. Dataframe: This ML API uses DataFrame from Spark SQL as an ML dataset,

which can hold a variety of data types. E.g., a DataFrame could have different

columns storing text, feature vectors, true labels, and predictions. Dataframes

have become a common general purpose use in Spark and are used as an ab-

straction layer on top of the original RDD datastructure.

2. Transformer: A Transformer is an algorithm which can transform one DataFrame

into another DataFrame. E.g., an ML model is a Transformer which transforms a

DataFrame with features into a DataFrame with predictions.

3. Estimator: An Estimator is an algorithm which can be fit on a DataFrame to pro-

duce a Transformer. E.g., a learning algorithm is an Estimator which trains on a

DataFrame and produces a model.

4. Pipeline: A Pipeline chains multiple Transformers and Estimators together to

specify an ML workflow. These are executed in order to secure a better structure

and re-usability with different algorithms.
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2.5 Machine learning

Machine learning is an actively evolving branch of computational algorithms that are

designed to be able to emulate the capabilities of human intelligence by learning from

the surrounding environment. Machine learning algorithms are considered the main

drive in the new era of the so-called big data where we have to deal with problems such

as data deluge. When dealing with data deluge, it calls for new automated methods of

data analysis, which is what machine learning provides.

Machine learning can be defined as a set of methods that can automatically detect

patterns in data, and use the uncovered patterns to predict future data, or to perform

other kinds of decision making under uncertainty [11, 31]. Different machine learning

techniques have been applied in diverse fields of ranging from pattern recognition,

computer vision, spacecraft engineering, finance, entertainment and computational

biology to biomedical and medical applications [25]. This chapter will look into some

of the different methods of machine learning and how they can be used in practice.

2.5.1 Problem types

We can usually divide machine learning into two main types. These are supervised

and unsupervised machine learning. There exits other problem types called semi-

supervised learning and reinforcement learning, but these are not as common as su-

pervised and unsupervised learning and covers different problem areas.

2.5.2 Supervised learning

Supervised learning can be considered a predictive learning approach and is the form

of machine learning that is most widely used in practice. For supervised learning the

goal is to learn a mapping from inputs x to outputs y , given a labeled set of inputs-

output pairs D = {xi , yi }
∑N

i=1. In this example D is called the training set, and N is the

number of entries used for training.
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The input data used for predictive behavior is denoted as xi in the example and is typ-

ically represented as vectors which are often referred to as features or attributes. The

output variable yi , which is frequently called the label, is categorical when we are deal-

ing with a classification problem also known as pattern recognition, and when yi is

continuous, we have what is considered a regression problem[31].

Traditionally people refer to regression, classification and structured output problems

as supervised learning. Density estimation in support of other tasks is usually consid-

ered unsupervised learning [11].

Classification

The goal when solving a classification problem is to take a mapping containing inputs

X and convert these to output Y , where Y ∈ 1, ...,C where C is denoted as the numbers

of distinct classes or types to predict. Classification problems can generally be split fur-

ther into three categories called binary, multi-class and multi-label classification. We

consider a classification problem binary if it has only 2 classes(yes or no) and a multi-

class problem when we have more than two classes. If we are trying to classify multiple

labels we have what is called multi-label classification and expect multiple outputs pre-

dicting different properties of the same object. Classification is typically used in cases

such as text categorizing, image recognition and medical diagnosis prediction [31].

Regression

A regression problem is essentially the same as a classification problem with the ex-

ception of it’s label or output variable. Regression problems are often used when es-

timating some value over time or in the future. Some examples of real-world regres-

sion problems are predicting short term stock prices, predicting age of a viewer on

YouTube®, predicting temperature at a location based on multiple factors such as weather

data, time, door sensors, etc [31], and predicting travel time based on spatial and tem-

poral aspects.
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Unsupervised learning

The second main type of machine learning is the descriptive or unsupervised learning

approach. Unsupervised learning is only given inputs as such D = {(xi )}
∑N

i=1, and has a

goal of finding interesting patterns in the data as opposed to making predictions. This

may be useful when looking for new ways in which we can use data for and may in

some cases be referred to as knowledge discovery [31].

2.5.3 Model generalization

The main objective when training a machine learning model is to be able to use it to

generate accurate predictions when being introduced to new data that has not been

previously used to train the model. Being able to adapt to new data is often referred to

as generalization. A common way to evaluate or measure how well a model performs

is to use a hold out test or validation set and make predictions on these and compare

the predictions with the actual observed values in order to measure the error rate of

the model. In order to achieve generalization capabilities in a model, it is necessary

for the training error to be as small as possible, and that the gap between training and

test error should be narrow. There are two central challenges that we have to deal with

in machine learning in the context of generalization which are the issues of over and

under fitting the model [11].

Challenges of over- and underfitting

If we have found a predictor whose performance on the training set is excellent, yet its

performance on the true "world" is very poor. This phenomenon is called overfitting.

Intuitively, overfitting occurs when a model fits the training data "too well" [33]. Un-

derfitting occurs when the gap between the test data and the model is too wide which

results in a high error rate.
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Figure 2.1: Visualisation of over and under-fitting [11]
.

Over and underfitting essentially means that the model either performs too well on the

training data or does not perform well at all. The model is therefore not well general-

ized.

2.5.4 Cross validation

Often we use about 80% of the data for the training set, and 20% for the validation set.

If the number of training cases is small, this technique runs into problems, because the

model won’t have enough data to train on, and we won’t have enough data to make a

reliable estimate of the future performance. A simple but popular solution to this is to

use cross validation. The idea is simple: we split the training data into K folds; then,

for each fold k ∈ 1, ...,K , we train on all the folds but the k’th, in a round-robin fashion.

We then compute the error averaged over all the folds, and use this as a proxy for the

test error. (Note that each point gets predicted only once, although it will be used for

training K −1 times.) It is common to use K = 5; this is called 5-fold CV [31].

We have used cross validation to train our models for hyper parameter tuning. This

selects the best parameters we can use in order to achieve best performance for our

model.
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2.5.5 Model performance evaluation

When evaluation the performance of machine learning models we need to compare

the predictions with the test data and see how close we have managed to get to actual

observed data. The test data is not included in the training of the models and is there-

fore unbiased. By using the approach for testing our model we are able to see how well

it adapts to new data.

When evaluating regression performance, one of the most commonly used methods is

the Root Mean Square Error or Mean Square Error. If a vector of N predictions gener-

ated from a sample of n data points on all variables, and Y is the vector of observed

values of the variable being predicted, with Ŷi with Yi being the predicted values, then

the within-sample MSE of the predictor is computed as below.

RMSE =
√∑N−1

i=0 (yi − ŷi )2

N
MSE =

∑N−1
i=0 (yi − ŷi )2

N

MSE is the average of the squared error that is used as the loss function for least squares

regression while RMSE is the square root of MSE. Both the root mean square error

(RMSE) and the mean absolute error (MAE) are regularly employed in model evalu-

ation studies [4]. RMSE is not ambiguous in its meaning, and it is more appropriate

to use than the MAE when model errors follow a normal distribution [4]. In addition,

RMSE satisfies the triangle inequality required for a distance function metric. Giving

higher weighting to the unfavorable conditions, the RMSE usually is better at revealing

model performance differences. A combination of metrics, including but certainly not

limited to RMSEs and MAEs, are often required to assess model performance[4].

In addition to RMSE and MSEs, we have calculated the R2 rating which estimates coef-

ficient of determination using the following formula.

R2 = 1− MSE

VAR(y) · (N −1)
= 1−

∑N−1
i=0 (yi − ŷi )2∑N−1
i=0 (yi − ȳ)2

In our case the r2 rating gives us the same results as calculating NRMSE (Normalised
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RMSE).

2.5.6 Travel time prediction

Predicting travel time can be very useful for both travelers and transit companies in or-

der to prevent spending too much time in traffic congestion and it allows better plan-

ning for routes so it can be avoided. In a machine learning context, the value of the

travel time is usually measured in seconds and is considered a continuous output vari-

able. This means that we are working with a regression problem as previously stated in

section 2.5.2. Most current distributed systems that rely on travel time estimation and

prediction have shown best results using models or ensembles where Random Forest

has given the best results for long-term travel time prediction[23]. Some of the most

recent research have shown great results using multi-layer perceptron algorithms, also

referred to as neural networks, or deep learning depending on the amount of layers

[21, 39]. Throughout this thesis we are looking at linear regression and ensemble/tree

methods for regression analysis, which will be described in more detail in chapter 5

where we show how our models are implemented using the Spark ML pipeline.

2.5.7 Random Forests ensemble

Random Forest is a tree-based ensemble with each tree depending on a collection of

random variables. Random Forests can be used for either a categorical response vari-

able, normally referred to as "classification," or a continuous response, referred to as

"regression". Similarly, the predictor variables can be either categorical or continu-

ous. From a computational standpoint, Random Forests are appealing because they

are relatively fast to train and to predict, they depend only on one or two tuning pa-

rameters, they have a built in estimate of generalization error, can be used directly for

high-dimensional problems and they can easily be implemented in parallel [6].

Often, trees are deliberately grown larger than necessary and “pruned” back to prevent

overfitting [6].
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2.6 Summary

We have through this chapter seen some of the methods that have been used for travel

time estimation and prediction. The current methods used which are considered state-

of-the art for travel time prediction are based on the use of a combination of both his-

torical data and real-time prediction.

Similarly to [20], we are proposing an approach for dealing with data sparsity of car

travel time data in urban areas. We want to attempt to improve predictions on a small

dataset of car data by combining it with a larger dataset of bus data with overlapping

paths that we believe can discover the coherence between the datasets and improve

the accuracy. We will now look at the methods used to complete this research.





23

Chapter 3

Method and workflow

This chapter describes the different methods used to complete this thesis and the steps

taken to ensure a proper execution of the research, as well as an overview of the work-

flow throughout the project.

3.1 Design Science Research

Most of the research conducted today in academia are not applied or is unknown by the

professional practitioners, either in businesses or large organizations. Scientist have

reported that their work are rarely applied in practice. However, in order for research

to be respected scientifically and reliable, it is important that it does not only concern

relevance, but also rigor; it should be presented early on, throughout the evaluation

and the end results. Using research methods allows for better rigor when doing inves-

tigative work. It is also important that the choice of research methods is aligned with

the nature of the problem in which one wants to study [8].

In order to make the gap between theory of studies aimed at organizations smaller, it

is possible to apply design science or design science research to produce useful knowl-

edge and conduct studies within the area [32].
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3.1.1 What is design science research?

Design Science Research (DSR), which is also known as Constructive Research, is con-

sidered to be a method that considers devising artifacts that serve human purposes [8].

It is a form of knowledge production that is about development of new and innovative

constructions that intends to solve real world problems while simultaneously making

a prescriptive scientific contribution to the common knowledge base. It is important

that the outcome of such a research is an artifact developed with an intention of solving

a domain specific problem, also known as solution concept, which must be assessed

against criteria of value or utility. Design Science Research has got a significant in-

crease in its interest in fields such as information systems, business management, and

management accounting; this due to lack of practical relevance and scientific knowl-

edge being produced [8].

Figure 3.1: Design Science Research Cycles[14]

There exists quite a few models of Design Science Research. One that is commonly

used is the three cycles view of design science research. Hevner separates design sci-

ence research into three separate rotations. These cycles consists of the relevance cy-

cle, the rigor cycle, and the design cycle. Following this model should ensure good

quality work with good rigor.
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The Relevance Cycle

Design science research concerns the creation of new and innovative artifacts and the

processes which we use to develop these artifacts and achieve great results. The rele-

vance cycle is the first part of the design science research cycles and good design sci-

ence research often begins here by establishing the domain in focus and connecting it

to a real-world organization and explain how the artifact can improve the current sit-

uations by adding improvements; either to existing functionality or by creating some-

thing completely new [14]. It is also important to mention the people involved in the

project, their organizational systems and the technical systems. Discussing some pos-

sible problems can make it clearer as to what may need some work and then what

possible opportunities that are available to handle the problems in the best way possi-

ble.

The output after applying design science research must be returned back into the envi-

ronment in order to be studied and evaluated within the application domain in focus.

The Rigor Cycle

The knowledge base that design science is built on consists of theories and engineer-

ing methods that function as a base for rigorous design science research. In addition

to that, the knowledge base also contains two different types of additional knowledge

[14]:

1. Experiences and expertise that defines "state of the art" in the application do-

main of the research.

2. The already existing artifact and processes that can be found in the application

domain.

Therefore, by applying the previous knowledge in the development of new artifacts; we

can achieve good rigor while also making sure that we are innovating and not creating
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something that already exists. The new knowledge that the new artifact creation cre-

ates can then naturally be added to the knowledge base and provide further knowledge

for other artifact creations.

Not everyone agrees with this. It is argued in [14] whether a design theory should be

an essential part of the design science rigor or not. He states that some scientific arti-

cles have been rejected because of the lack of a scientific theory and believes that it is

unrealistic that all design research should be grounded on design theories and that it

could even be harmful to the field when good research is denied because of lack of a

theoretic method. It would be much better to base the creative design, but rather use

the theories as the basis of creative ideas[14].

The Design Cycle

The design cycles is the last of the three cycles, and also the most work intensive. The

design phase is where everything is implemented in practice. The cycles iterates over

the requirements and theories from the relevance cycles, while using the theories cho-

sen from the rigor cycle. Different artifact design alternatives are designed and eval-

uated and feedback is generated to refine the design further. These cycles continue

until a satisfactory result has been achieved, and not until then can one evaluate the

resulting artifact [14].

3.1.2 Applying DSR

Design Science Research will be used to make sure that it follows the necessary steps to

achieve good rigor. The relevance cycle for this project will consider big data domain

with focus on public transit data and travel time predictions.

Through the rigor phase we will be choosing a theoretical approach suited for the

project and use this together with the requirements when designing the artifacts in the

design cycle. The method chosen specifically for this project is KDD method, which is

based on an original model created in 1996 [9] , due to a great increase in the amounts
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of data collected. The KDD method is further described in the next section, and also

how it will be integrated into this project.

As mentioned, the design cycle is where the majority of the time will be spent. Through

this phase we will be developing the artifacts. These will primarily consist of a model

which takes in pre-processed data from the database we have stored data in. The de-

velopment of the models is executed through as many iterations as needed in order to

achieve the best results. When the final artifact design has been completed, it can be

evaluated based on the error rates we receive from the models. The evaluation of our

models throughout the different iterations are described and evaluation in chapter 6.

3.2 Knowledge Discovery in Databases

Over a wide variety of different fields, large amounts of data are being collected and

accumulated at an increasingly fast pace. It is therefore a need for a new generation

of computational theories and tools to assist human beings in extracting the useful

information, namely the knowledge, from these growing volumes of data stored in

databases. These theories and tools are the subject of the emerging field of knowledge

discovery in databases (KDD) [9].

If we look at it from an abstract level, the KDD field concerns the development of meth-

ods and techniques for making sense of the available data. The basic problem con-

sidered by the KDD process is low-level data (that can sometimes be too large to un-

derstand and get through easily) into other forms that might be compact or manage-

able (for example, a short), more abstract (for example, a descriptive approximation

or model of the process that generated the data), or even more useful (for example, a

predictive model for estimating the value of future events or cases). The core of the

process is the application of specific data-mining methods used for pattern discovery

and knowledge extraction [9].

There is an urgent need for a new generation of computational theories and tools to

assist humans in extracting useful information (knowledge) from the rapidly growing
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volumes of digital data - Fayyad, Piatetsky-Shapiro, and Smyth

The aforementioned quote is from the old article that created the first KDD theory

which has a significant amount of citations through the last few decades. Although

the term KDD might not be used frequently today, it still has a significance when it

comes to explaining the field of data mining. Most of the concepts are still valid, al-

though we might have some more knowledge within certain areas. In figure 3.2 shown

below, we can see each step the KDD model goes through from start to end and what

the different processes produce.

Figure 3.2: An overview of the steps that compose the KDD process [9]

The model in figure 3.2 was created a long time ago, however, the steps that it goes

through are mostly the same today and the abstract level of the model makes it possible

to use it for this project as well. How we will proceed through the different steps of this

model is described in section 3.3 and further discussed in section 7.2 for of the thesis.

3.3 Work flow

The work flow defines a sequence of logical steps that a study will go through in order

to reach the goals a researcher has created for the study. It is therefore important that

the work method has a rigid structure and is followed accordingly in order to make
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sure of the study’s reputability [8]. Now, considering that this study will use the KDD

research method; these steps are, as displayed in figure 3.2:

1. Domain orientation - Throughout this phase, we want to develop an understanding

of the application domain and figure out what data is available to work with. As for this

study we are going too look into the transportation domain, with a majority of data

coming from public transport as well as a smaller dataset of car travel times.

2. Data selection - Through this phase we will be selecting a dataset to work with, or a

subset of values which we are interested in doing discoveries. The specific data set that

we are going to analyze the bus and car data as described in chapter 4.

3. Pre-processing - This phase handles cleaning and pre-processing the data. This in-

cludes basic operations like removing unnecessary noise of appropriate, collecting the

necessary information in order to model or account for noise, deciding on strategies

for handling missing data fields, and accounting for time-sequel.

4. Transformation - Here we want to find useful features to represent the data de-

pending on the goal of the task we want to achieve. Using dimensional reduction or

transformation methods, the number of variables considered can be reduced or a con-

stant representations for the data can be found.

5. Choosing approach - The fifth step of the method is where goals of the KDD process

(step 1) are matched against a particular data-mining method. Some examples can

be summarizing, classification regression, clustering and more. We are using machine

learning and regressing analysis as our approach for data mining.

6. Model selection - Here we explain how we are going to choose the different ma-

chine learning algorithms suited for the task and find out which parameters might be

fitting and match this with the overall criteria the KDD process. For example the end

user might be more interested in understanding how the model looks rather than its

underlying predictive capabilities. We are testing several different ML algorithms too

see which ones gives us the best results.

7. Model training - The seventh step is to run the ML algorithms and generate results
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for us to compare and analyze. These results should contain patterns that we want to

analyze in step 8. This process searches for patterns of interest in a particular repre-

sentational form or a set of such representations, including classification rules or trees,

regression, and clustering.

8. Analysis - This step uses the results gathered from step 7 and manually analyze the

results in order to detect patterns. Patters found can be used to run new iterations

using the previous steps until we have achieved some substantial new knowledge of

the data. This is probably the most important and time consuming part of the KDD

process.

9. Distribute knowledge - Once all of the preceding steps have been completed and

we have gained new knowledge from the data, we have too choose what we want to

do with the data. It can for instance be used directly, implementing it into already

existing systems or just document it into a knowledge base where it can stay or be

further explored at a later time.

Overall the process mentioned in the 9 steps above from the Knowledge Discovery in

Databases [9] are almost the same as how the model was originally proposed. How-

ever, instead of using data mining which can be quite general, we have have chosen to

use supervised machine learning algorithms instead. Although, one might argue that

machine learning is a subset of data mining.

3.4 Software development methodology

Having a good workflow is important when working on a sizable and challenging project.

In order to maintain control while at the same time completing the different steps in

iterations, software development methodologies can help achieve this. This is a solo

project, and there is therefore not a need for task distribution among team members.

The methodology that seems suitable for this project is the Kanban methodology.

The word Kanban comes from the japanese language and has the meaning "card or

signboard, a verbal instruction, a light, a flag or even a hand signal and is based on
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a pull system. In the ’state of agile’, the use of Kanban has increased from 31% - 39%

just within 2015 and 39% - 50% in 2016 [1]. That is a significant increase and makes it

clear that the method has become increasingly popular. Software engineers have been

plagued by several problems like (1) lack of reliability, (2) poor response to change(lack

of flexibility), (3) limited agility and (4) excessive costs. The Kanban method was cre-

ated with the intention to solve these problems, by allowing developers to adapt quickly

to change increase quality, reduce waste and improve predictability[1].

Kanban is defined by as a set of concepts, principles, practices, techniques, and tools

for managing the product development process with an emphasis on the continual

delivery of value to customers, while promoting ongoing learning and continuous im-

provements. We can define Kanban in software process as a pull system with WIP lim-

its and visualized by the Kanban board. Kanban is used as a workflow management

method especially suitable for managing continuous software engineering work[1].

The main purpose for Kanban is that is its ability to visualize the workflow through

the use of a Kanban board. The Kanban board consists of a wall full of notes stating

ideas, processes, what has been done and what is being done as well as a backlog of

tasks that has already been finished. The board can be physical, but does not have to

be. Trello[37], is a great way of easily managing the current workflow with minimum

effort. Trello is an online and real-time planning board which allows for multiple edi-

tors simultanously and makes it a great tool for teams of any sizes. Trello is used as a

Kanban board during the development of this project.
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Chapter 4

Data collection and transformation

This chapter gives an overview the different datasets that have been collected for use

in this thesis. We elaborate on where the data comes from, how and why it has been

used as data sources for this project. Example of contents of each dataset is described

in further detail with examples of some data from each set. We will also go through the

steps of pre-processing and transformation of the datasets.

4.1 Available open datasets

We will now be going through step 2 of the workflow which concerns the selection of

specific data sources and time period.

After spending some time searching for interesting open datasets online that could

prove useful, we found a Norwegian organization called Entur [7]. Entur offers multiple

open APIs that are free of charge for anyone to use. The data that we considered to be

potentially useful as historical data was Enturs real-time timetable data. The real-time

timetable was being served through a distributed system called SIRI(Service Interface

for Real-time Information). For this thesis we have selected data from a time period

ranging from 12. August 2019 until 12. November 2019.
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4.1.1 Entur real-time data

The Entur organization started creating a centralised system for all of the collective

transportation methods available in Norway. This made it possible for us to collect this

data free of charge without any limits. This project has been focusing on data from

around the Bergen area and therefore chose to collect all of the data from Skyss [35],

which is the company responsible for most of the buses and railways available in and

around Bergen. The SIRI system that Entur use for serving real-time data, have 3 api

endpoints which the users can send requests data from.

1. Estimated timetables (ET)

The estimated timetables is the main source of data and contains data about

the current traffic situation through journey estimations

2. Situation exchange (SX)

The situation exchange contains data about any know traffic situations that

may interfere with estimated travel times

3. Vehicle monitoring (VM)

The vehicle monitoring gives us the current positions of vehicles. This how-

ever was unavailable for Skyss during the writing of this project.

The real-time data from the SIRI system does not give us too much information on its

own and needs to be connected with static data in order to get a full overview of which

routes go where, their names and so on.

General Transit Feed Standard

GTFS is a transit standard created by Google, to represent an overview of all the dif-

ferent stops, timetables, routes, lines and services available for an organization offer-

ing transport services, like Skyss. Google’s intention when creating the General Transit

Feed Specification was to collect as many transit companies as possible to one data for-

mat, in order to make it easier to get an overview of all the different data sources(GTFS
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feeds) without having to handle many different formats for each company. A general

format also allows for easier processing and querying of larger quantities and sets of

data. Using the GTFS system for creation of new services allows for great flexibility as

it can easily be reused for other transport organizations using the same standard. En-

tur is delivering their data through both GTFS and Netex formats. GTFS is split into a

static component that contains schedule, fare, and geographic transit information and

a real-time component that contains arrival predictions, vehicle positions and service

advisories[12].

Estimated Time tables

Entur offers a variety of different datasets from most of the public transit companies

around Norway. The main dataset which we found interesting and possibly useful

for historical time series analysis was the Estimated Timetable(ET) real-time data. We

found it useful as it would give use a constant data flow of estimated travel time data

from busses with little to no temporal limitations.

The ET data is a part of a CEN (Comité Européen de Normalisation) standard system

for real-time information called SIRI (Service Interface for Realtime Information and is

used several other places around Europe, with Germany being one of the initial users

of the standard system [34]. The ET real-time data is both served through a frequent

get-request based manner or by subscribing to updates by giving a callback URL where

the data is sent to whenever it is updated. For this project we used a simple request

based approach and collected data every minute, using cron, to get all of the updated

changes from minute to minute and store these on disk.

The ET consists of a list of journeys with information about its current state at the time

it was harvested. Each journey contains a list of estimated calls which describes each

of the stops using information about when it is scheduled to be at each stop and when

it is expected. The expected arrival or departure times are estimations based on based

the current bus position and speed, and therefore varies depending on traffic.

The SIRI system also has Vehicle Monitoring or VM, which gives deeper insights into
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1 <Siri xmlns="http://www.siri.org.uk/siri" version="2.0">
2 <ServiceDelivery>
3 <EstimatedTimetableDelivery version="2.0">
4 <EstimatedJourneyVersionFrame>
5 <EstimatedVehicleJourney>
6 <LineRef>SKY:Line:1</LineRef>
7 <DirectionRef>10</DirectionRef>
8 <DatedVehicleJourneyRef>6647090</DatedVehicleJourneyRef>
9 <PublishedLineName>Linje 1</PublishedLineName>

10 <DirectionName>Utgående</DirectionName>
11 <DestinationRef>NSR:Quay:51855</DestinationRef>
12 <DestinationName>Flesland</DestinationName>
13 <Monitored>true</Monitored>
14 <PredictionInaccurate>false</PredictionInaccurate>
15 <EstimatedCalls>
16 <EstimatedCall>
17 <StopPointRef>NSR:Quay:51867</StopPointRef>
18 <StopPointName>Birklandskiftet</StopPointName>
19 <Cancellation>false</Cancellation>
20 <AimedArrivalTime>2018-04-30T00:10:09+02:00</AimedArrivalTime>
21 <ExpectedArrivalTime>2018-04-30T00:09:27+02:00</ExpectedArrivalTime>
22 <AimedDepartureTime>2018-04-30T00:10:29+02:00</AimedDepartureTime>
23 <ExpectedDepartureTime>2018-04-30T00:09:47+02:00</ExpectedDepartureTime>
24 <DeparturePlatformName>Birkelandskiftet</DeparturePlatformName>
25 </EstimatedCall>
26 ...
27 </EstimatedCalls>
28 </EstimatedVehicleJourney>
29 ...
30 </EstimatedJourneyVersionFrame>
31 </EstimatedTimetableDelivery>
32 </ServiceDelivery>
33 </Siri>

Listing 4.1: An example response from SIRI Estimated Timetables.

the positions of the vehicles, but this is not currently public for Skyss through Entur.

The SIRI CEN standard serves data using XML and their main format. Listing 4.1 shows

a short XML example of how the raw ET data looks when it is initially collected. A

typical response consists of around 20 journeys which each on their own has around 20

- 40 estimated calls(stops) that is contained within the journey object every time. Since

this is collected every minute it quickly builds up to become quite large quantities of

data and can be a challenge to handle without the proper tools to do the job.
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4.1.2 Google distance matrix

Google offers a large variety of API services through their Google Cloud Platform(GCP).

Some of the data they offer to the public are APIs such as maps, routing, places, direc-

tions and distances. The distance matrix API gives us an estimated travel time for a

path based on an origin address or coordinates A, to another destination address B.

The information we get from Google’s distance matrix API gives us an estimate of the

distance in meters, travel time, travel time in the current traffic and more about each

path. As previously mentioned, we have chosen to focus on data around Bergen, and

have targeted a specific area from the senter of Bergen going north towards Sandviken

and Åsane.

In order to get a higher spread of different paths and locations throughout the day,

we selected a set of different paths starting from the center of Bergen and going out

towards the northern part of Bergen. This was mainly because this part is quite busy

when it comes to bus traffic and is not affected by the railway (Bybanen). By affected

we mean that all travelers who travel in this direction will currently either have to travel

by bus or by driving. The numbers in figure 4.1 each represents a point which distances

have been estimated for, going in directions in and out of Bergen. All of the distances

are calculated from Point 1 on and to the other points on the map so that they all are

somewhat connected to the same main road where most if not all cars are driving.

The data from the Google distance matrix API seem to work well in combination with

the data collected from entur.org due to its similarity. However, google no longer offers

data for free and have started with much stricter rate limiting than what they previ-

ously had available. Google still gives every registered user a fixed number(200$ as of

September 2019) of credits every month that they can use however needed and will

have to pay for each request thereon after, which can we quite expensive in the long

run. We have still been able to collect a significant amount of data over time that is

enough to get a decent representation of each path.

Due to the rate limitation for the GCP, we had to limit the number of requests sent daily.

In order to do this and still get some relevant results we selected certain periods from
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Figure 4.1: The selected distances harvested from the google distance matrix api
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Figure 4.2: Google distance matrix request frequency

each day and had a much higher request frequency from these periods than for the rest

of the day. As can be seen in figure 4.2, the main periods the data were harvested from

was during the rush-hour traffic when most people are going to and from work, which

is between 6-10 each morning and 15-19 in the afternoon. The times for when this

was harvested was selected randomly for each day with the most requests sent during

rush hour and the rest spread around the rest of the day. This way we are able to get

a better spread of travel times from different times on the day which gives us a more

accurate result when used for training to a much higher variance. Having some degree

of variance is an important factor when training a machine learning model so its ability

create a more generalized model is higher.

As we can see in code example 4.2, the google distance matrix API returns a JSON con-

taining information about the path requested. The API can be used to request multiple

paths by adding more origins and destinations, but in our case we decided to separate

all of the requests into single paths in order to get a better spread of harvest times.

The response we get from the Google distance matrix api contains two different values

for travel time. The first value called duration is an estimate of the travel time based

on historical averages alone and does not account for any current traffic or anomalies.

The second value called duration_in_traffic is an estimate based on both historical

data and information about the current traffic. This means that the second estimate

has a much higher variance and is likely be more coherent with the bus data we have
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1 {
2 "destination_addresses":[
3 "Åsamyrane 250, 5131 Bergen, Norge"
4 ],
5 "origin_addresses":[
6 "Christies gate, 5016 Bergen, Norge"
7 ],
8 "rows":[
9 {

10 "elements":[
11 {
12 "distance":{
13 "text":"11,5 km",
14 "value":11452
15 },
16 "duration":{
17 "text":"17 min",
18 "value":1006
19 },
20 "duration_in_traffic":{
21 "text":"14 min",
22 "value":850
23 },
24 "status":"OK"
25 }
26 ]
27 }
28 ],
29 "status":"OK"
30 }

Listing 4.2: Example response from the Google distance matrix API.

collected.

The distance matrix API have a few required parameters that needs to added to each

request. The only required parameters are the origins and destinations, however, in

order to receive information about duration_in_traffic we also need to apply the

travel mode and departure time for the travel distance. The only travel mode that in-

cludes traffic information is the driving mode.

Another parameter traffic_model, specifies the assumptions to use when calculating

time in traffic. This setting affects the value returned in the duration_in_traffic

field in the response. The traffic_model parameter may only be specified for requests

where the travel mode is driving, and where the request includes a departure_time

[13]. We included this for every request.
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(a) duration value (b) duration_in_traffic value

Figure 4.3: An illustration of the visual difference between the different values returned
from the Google distance matrix API

If we take a look at some historical Google data from august 12 2019 and 2 months

ahead we can see that there is a much higher variance when taking in the other factor of

traffic situation. Although this may improve the accuracy of predictions it may also be

harder to use for further predictions due to lack of variance. The duration_in_traffic

value should be the best estimate of travel time given what is known about both histor-

ical traffic conditions and live traffic. Live traffic becomes more important the closer

the departure_time is to now [13]. Our models will therefore be focusing on predict-

ing the duration_in_traffic value from Google, as this is the travel time which is most

similar to the bus travel times collected from Entur.

By comparing both the data example from Entur in listing 4.1 and from google in listing

4.2 we can see that they are quite dissimilar in the sense that we have bus data for each

stop and car data for a specific path. Therefore, in order to be able to connect these

together we need to transform them to better match each other. We are describing the

transformation process further in section 4.3.

4.2 Data harvesting

The data harvesting process is split into 3 steps for each of the aforementioned datasets.

Step 1: downloading raw data(XML and JSON) and then directly store this on disk. Step

2: extract the relevant information and remove duplicates where possible. Step 3: in-
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sert the data into a database where it is stored for later use in analysis. By separating

these steps it allows for a more fault tolerant harvesting architecture and it makes it

easier to debug through separate logs when or where something fails.

4.2.1 Cassandra

Cassandra is a distributed storage system for managing very large amounts of struc-

tured data spread out across many commodity servers, while providing highly avail-

able service with no single point of failure. Cassandra aims to run on top of an infras-

tructure of hundreds of nodes (possibly spread across different data centers). At this

scale, small and large components fail continuously. The way Cassandra manages the

persistent state in the face of these failures drives the reliability and scalability of the

software systems relying on this service. While in many ways Cassandra resembles a

database and shares many design and implementation strategies therewith, Cassandra

does not support a full relational data model; instead, it provides clients with a simple

data model that supports dynamic control over data layout and format. The Cassan-

dra system was designed to run on cheap commodity hardware and handle high write

throughput while not sacrificing read efficiency [18]. The benefits of using a Cassandra

database comes with limitations in terms of querying the data. Reads and writes to-

wards the database are limited to only querying on predefined indexes in order benefit

from the super fast read and write speeds that Cassandra makes possible. Cassandra

uses a query language called CQL (Cassandra Query Language), which at first sight

might seem very similar to SQL (Structured Query Language) in many ways, but it is

not the same. CQL lacks much of the functionality that SQL has available, with rela-

tional joins being one of the major differences. We also had some difficulties perform-

ing windowed queries on the database to it key constraints limiting allowed queries. By

windowed queries we mean in this context a query that returns data that falls within a

given windows based on a start and end value where the value typically is a timestamp

or a value with high variance.

Due to the aforementioned limitations that Cassandra comes with, it turned out not to
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be the optimal solution for time series analysis. In order to be able to handle the data

it was important to choose frameworks that was able to choose process data efficiently

at scale. We therefore started looking at Apache-spark as a tool for both pre-processing

and training a model on the data.

4.2.2 Cron Scheduling

The Cron daemon, crond, packaged with most Linux distributions, controls schedul-

ing of regularly occurring jobs. When started upon entry into multi-user mode, crond

scans the directories /var/spool/cron/crontabs and /etc/cron.d and the file /etc/crontab

for work to do. crond then awakens every minute, performs the work its record of jobs

says it should do at that time, mails the output (by default) to the owning user, then

sleeps until the beginning of the next minute [15]). We used Cron for scheduling when

the harvesters should run. Using Cron allows us to schedule tasks down to the minute

and worked perfectly well for this case of scheduling data harvesting scripts run times.

We scheduled our tasks, fir both the Entur and the google API to run every minute.

However, as mentioned and illustrated in figure 4.2, a separate script was written in

order to select random times for when to send requests to the google distance matrix

API. This script was checked every minute, but was only sending API requests when the

current time existed in a file containing randomly generated timestamps every day.

4.2.3 Architecture

The general system architecture consists of a harvesting server, a database server and

a modelling server. This section describes the dataflow from data harvesting to model

training and predictions.

Harvesting server

The harvesting server is responsible for collecting raw data from both Entur real-time

data and Google distance matrix API. All of the raw data is then stored as files on the



44 CHAPTER 4. DATA COLLECTION AND TRANSFORMATION

Figure 4.4: An overview of the dataflow from harvesting to predictions

harvesting server as xml and json in a folder separate folders named data. The raw files

are then processed to extract the relevant data and convert it into tabular format before

moving the files to a folder for extracted data and sending the extracted structured data

to the database server.

Database server

The database server serves only one purpose, which is to store store and pass along

data to to a spark cluster. As can be seen in figure 4.4, the data is stored into separate

tables as it is being harvested to ensure a consistent and even training and testing set

along the way.

Spark cluster

The last part of the system consists of a spark cluster which downloads all of the train-

ing and test data for both the Entur and Google dataset and then trains 3 different
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models on the data and generates travel time predictions. This is described further in

chapter 5.

4.3 Data structure and pre-processing

The following section will go through step 3 of our workflow which is about the pre-

processing the data files before we continue with model training. We will have a look

at how we have used spark to process and transform the raw data so it can be used to

train models on the different datasets that were mentioned in section 4.1 and create

predictions based on these.

Pre-processing

Many factors affect the success of Machine Learning (ML) on a given task. The repre-

sentation and quality of the instance data is first and foremost. If there is much irrele-

vant and redundant information present or noisy and unreliable data, then knowledge

discovery during the training phase is more difficult. It is well known that data prepa-

ration and filtering steps take considerable amount of processing time in ML prob-

lems. Data pre-processing includes data cleaning, normalization, transformation, fea-

ture extraction and selection, etc. The product of data pre-processing is the final train-

ing set. It would be nice if a single sequence of data pre-processing algorithms had the

best performance for each data set but this is not the case [17]. This section describes

the steps taken in order to pre-process the data described in chapter 4 and how the

data is prepared for training.

Extracting raw data

Before beginning working with the data, it needs to be in a format that can be easily

read by the libraries and frameworks. When dealing with machine learning algorithms

it is common practice to work with data in tabular or structured format, often referred
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to as table format or tables. All of the data harvested for this project was initially just

stored as as files in a mostly flat folder structure. These files were all named with a

timestamp in order to have a reference of when each record was collected.

In order to be able to use the raw data for training, it was important to extract the

data and insert it into a more machine learning friendly format. Most of the data was

therefore inserted into a Cassandra database designed for handling big data. Cassan-

dra was described in section 4.2.1. However, even tho Cassandra has great write and

read speeds it turned out that its query language CQL was not flexible enough to select

the data efficiently due to constraint limitations on the database. In order to handle

this, we decided to export all of the data stored in Cassandra and use Spark as a data

processing engine to handle the big amounts of data that had to be dealt with. An ex-

port to csv format of all the Entur data from the estimated_call table came out at

around 120gb of data for around a year of harvesting and inserting to Cassandra. Con-

sidering the data was getting so big and was no longer able to to fit into memory, was

one of the main reasons why we ended up using Spark to process the data and Spark

MLlib to train models on the data. Initially we wanted to use libraries such as Pandas

and scikit learn, however, these would not have been able to handle this as efficient as

Spark potentially can do with its power of scalable in-memory cluster computing.

Data structure

In order to convert the raw XML and JSON data structures harvested from Entur and

Google, we needed to first create data schemas that could be used to describe the dif-

ferent parts of the data. The following tables describes the table structures the Entur

data was separated into.

Entur estimated timetables schemas

The raw xml data contained within the estimated timetable data shown in example 4.1

were separated into 2 tables to get the estimated_vehicle_journey records into one

table and the estimated_call records into another table which creates a normalized
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Entur data table schemas

Table 4.1: Estimated vehicle journey

Column Data type
journey_ref ascii
harvested_at timestamp
block_ref smallint
cancellation boolean
destination_name ascii
destination_ref ascii
direction_name text
direction_ref ascii
is_complete_stop_sequence boolean
line_ref ascii
monitored boolean
operator_ref tinyint
prediction_inaccurate boolean
published_line_name ascii
vehicle_mode ascii

Table 4.2: Estimated call

Column Data type
dated_vehicle_journey_ref ascii
stop_point_ref ascii
harvested_at timestamp
aimed_arrival_time timestamp
aimed_departure_time timestamp
cancellation boolean
departure_boarding_activity ascii
departure_arrival_activity ascii
expected_arrival_time timestamp
expected_departure_time timestamp
prediction_innacurate boolean
stop_order smallint
stop_point_name text

table structure. Table 4.1 contains the columns and its respective datatypes of the En-

tur estimated vehicle journeys, table 4.2 contains the columns and datatypes for an

Entur estimated call. Of these 2 tables, the Entur estimated call is the largest and con-

tains most of the data.

Google distance matrix schema

We managed to contain the information from the google distance matrix api within

one table as it was not necessary to normalize these any further. The table schema for

the data shown in example 4.2 is displayed in table 4.3 below.

4.4 Data transformations

The following sections concerns step 4 of our workflow which is about the transforma-

tions of our data. We can see that the data structures for the google distance matrix

data and the Entur estimated timetable data is quite different from each other. There-
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Column Data type
id bigint
harvested_at timestamp
origin_address text
destination_address text
duration_seconds bigint
duration_minutes ascii
distance_meters bigint
distance_km ascii
duration_in_traffic_seconds bigint
duration_in_traffic_minutes ascii

Table 4.3: Google distance matrix schema

fore, we need to transform the Entur data to match a similar structure where a single

record represents the travel time of a path. A path in this context is considered as the

geographical length between 2 points, not using straight or direct lines, but following

the roads.

Selecting subset of transit lines

Performaing transformations can be both processing and memory heavy. Therefore, it

is important to select only a subset of the journeys before performing large data trans-

formations.

1 # Join condition based on journey_ref, harvested_at and direction_ref
2 cond = ( (calls.dated_vehicle_journey_ref == journeys.journey_ref) \
3 & (calls.harvested_at == journeys.harvested_at) \
4 & (calls.direction_ref == journeys.direction_ref))
5 df = calls.join(journeys, on=cond, how="left_outer")
6

7 # Filter out the relevant lines
8 line_refs = ["SKY:Line:3", "SKY:Line:4", "SKY:Line:5",
9 "SKY:Line:6", "SKY:Line:83"]

10 df = df.filter(df.line_ref.isin(line_refs))

Listing 4.3: Selecting a subset containing the relevant distances

The selected paths collected through the google distance matrix API all travel through

the same main road in order to get to their destination. Therefore, in order to over-

lap with the same paths, we need to select only the bus lines that overlap with the
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paths shown in figure 4.1. We have shown how this is done using spark in example 4.3

shown above. There we see that we need to join the estimated_call table together

with the estimated_vehicle_journey table. In Spark, a table is represented using a

data structure called a dataframe. Dataframes in spark are based on underlying RDDs

which was the original data structure Spark was created with, but was later moved in a

direction where dataframes became the common way to structure data.

Estimated timetable transformations

As stated earlier in section 4.1.1, each of the estimated timetable vehicle journeys con-

tains information about each stop from its origin stop to its destination stop. There-

fore, in order to get the duration or travel time of a distance, we need to get the time

of arrival at the last stop minus the time of departure from the first stop. In order to

do this with the new table structure, we need to connect each of the journeys to its

estimated calls and then collect the information from the first and last stops.

By using some of the functionalty that spark has to offer, we were able to perform some

transformation relatively easy to a dataframe using the following steps:

1. Transform the dataframe into an rdd

2. Map the rows of the rdd into key value pairs where the key consists of tuple con-

taining journey_ref, harvested_at and direction_ref, and the values as a

list containing a single stop.

3. Reduce the rows to contain all the estimated travel times for each journey

4. Map each journey to a single row with travel time

5. Convert back to a dataframe.

This results in a transformed and significantly smaller dataframe that now matches

the google distance matrix schema(4.3) to a much higher degree. We are now able to

continue onto training a model that uses both datasets with overlapping data. After
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1 def map_journey(row):
2 # Sort on stop order to make sure first is first and last is last elements
3 stops = sorted(row[1], key=lambda k: k["stop_order"])
4 start_point = stops[0]
5 end_point = stops[-1]
6 travel_time = (end_point["expected_arrival_time"]
7 - start_point["expected_departure_time"]).total_seconds()
8 return (row[0][0], row[0][1], start_point["stop_point_ref"],
9 end_point["stop_point_ref"], travel_time, len(stops),

10 end_point["direction_ref"], end_point["line_ref"])
11

12

13 df = df.rdd.map(lambda row: ((row.harvested_at, row.dated_vehicle_journey_ref, row.direction_ref),
14 [
15 {
16 "stop_point_ref": row.stop_point_ref,
17 "expected_departure_time": row.expected_departure_time,
18 "expected_arrival_time": row.expected_arrival_time,
19 "direction_ref": row.direction_ref,
20 "stop_order": row.stop_order,
21 "line_ref": row.line_ref
22 }
23 ]
24 )) \
25 .reduceByKey(lambda x, y: x + y) \
26 .map(map_journey)

Listing 4.4: Example of the transformation of estimated call structure into a full dis-
tance record with travel time estimates

performing the this transformation, we end up with a new dataframe schema that is

described in listing 4.5 using a StructType containing each of the new columns and

their datatypes.

This data schema was then transformed further to match the unified which we will

get to in section 5.1. The path ref was generated by combining both start_ref and

end_ref into a combined path_ref as stated in the unified schema and then dropped.

The is_actual_time attribute is generated based on whether the last stop’s expected

arrival time is before the time of harvest, meaning its the closest we get to an actual

time and not a prediction from the SIRI system based on vehicle positioning.
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1 estimated_journey_travel_time = StructType([
2 StructField("harvested_at", TimestampType(), True),
3 StructField("is_actual_time", BooleanType(), True),
4 StructField("journey_ref", StringType(), True),
5 StructField("path_ref", StringType(), True),
6 StructField("start_point_name", StringType()),
7 StructField("end_point_name", StringType()),
8 StructField("travel_time", FloatType(), True),
9 StructField("direction_ref", IntegerType(), True),

10 StructField("line_ref", StringType(), True),
11 StructField('distance_meters', FloatType(), True)
12 ])

Listing 4.5: The resulting dataframe schema of the transformations.

4.5 Data exploration

We will now look at a few visualisations of the data collected and used to train the dif-

ferent models as described in chapter 5. The following figures gives an overview of the

travel time for all the car paths and all the bus paths for both inbound and outbound

direction using an aggregation of the data to calculated travel time grouped by minute

of the day for a 3 month period from 12. august 2019 to 12 november 2019.

(a) Paths for Entur (b) Paths for Google

Figure 4.5: All inbound paths

As we can see in the graphs in figure 4.6, there is quite a difference in travel time be-

tween the different datasets. There are likely several reasons for why this is happening.

We will discuss what we think may be the main issues when using bus data to predict

car travel times later on in chapter 7.
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(a) Paths for Entur (b) Paths for Google

Figure 4.6: All outbound paths

If we look specifically at bus line 4 and the car path that is tightly overlapping from

origin to destination, there are some interesting patterns that might be useful when

used to train predictive models.

(a) Bus 4 (b) Car path overlapping

Figure 4.7: Inbound paths

The main distinction between the bus and car data is the difference in travel time. It

appears that the buses use a significantly longer time to travel the same distance. The

second thing is that the buses seem to be less affected by morning traffic when going

inbound direction. However, this might be due to lack of car data. There are likely

several different reasons for why this may be occurring in which we will discuss further

in the discussion path of the thesis.

Despite the aforementioned differences between the bus and car data, there still seems

to be a similar peak during rush hours in the morning and afternoon which we hope
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(a) Bus line 4 (b) Car path overlapping

Figure 4.8: Outbound paths

will be discovered when training a combined model.
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Chapter 5

Modelling

We are used machine learning as our approach to pattern recognition as part of step

5 of our workflow stated in section 3.3. This chapter will go through the steps 6 and

7 concerning model selection and training. We will go through the steps taken in or-

der create future travel time predictions based on the data and its transformations de-

scribed in chapters 4. We will look into which methods and algorithms has been used

and how we have trained models to allow for future predictions based on an input of a

timestamp in the future and a given travel path.

5.1 Feature selection

Before we can train a model we need to select a subset of features from a dataset we

want to use for training a model. Machine learning algorithms automatically extract

knowledge from machine-readable information. Unfortunately, their success is usu-

ally dependant on the quality of the data that they operate on [17], and it is therefore

highly important to select the most relevant features of the dataset.

Feature subset selection is the process of identifying and removing as many irrelevant

and redundant features as possible. This reduces the dimensionality of the data and

enables learning algorithms to operate faster and more effectively [17]. Features can

generally be characterized as:
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• Relevant: These features have an influence on the output and their role can not

be assumed by the rest

• Irrelevant: Irrelevant features are defined as those features not having any influ-

ence on the output, and whose values are generated at random for each example.

• Redundant: There exists a redundancy whenever a feature can take the role of

another.

Removing irrelevant and redundant features leaves us with only the relevant features

and will return the best results when training a model.

5.2 Model input data

This sections looks into the input data used to train the machine learning models. We

will look at the different the datasets both combined and separately.

5.2.1 Unified training schema

As stated in research questions 1.1, one of the main questions we are trying to answer

is whether we are able to improve the accuracy of travel time prediction by combining

datasets about the same domain but different in terms of size and quality, where the

label we want to predict lies within a dataset of lower density, which in this case is the

Google distance matrix data. In order to do this, our approach for this has been to keep

the Google data structure pretty much as it is, while transforming the Entur bus data

to match the same structure.

The unified schema as shown in table 5.1 contains the most relevant features shared

between both datasets. We have split the harvested_at columns into 3 separate columns

day_of_year, day_of_week and second_of_ day in order to distinguish between them

when training a model. The travel_time column consists of a floating point number

representing the amount of seconds it takes for a vehicle from the start of a path to
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Column Datatype
day_of_year Integer
day_of_week Integer
second_of_day Integer
path_ref String
direction_ref Integer
vehicle_type string

Table 5.1: A unified data structure used for combining Google and Entur data.

its end. Each path is categorized using a path_ref, which is a string made of an ori-

gin location and a destination location and serves as a unique identifier for each path.

The direction_ref tells us which direction the path is going, it is either inbound or

outbound from the main sentrum stop and is presented through an integer with 1 for

outbound and 2 for inbound.

5.2.2 Google input data

The google input data is quite straight forward with the exception of the choice be-

tween travel_time column. As can be seen in table 4.3, there are 2 estimates for

travel_time, namely duration_in_traffic and duration. We have chosen to use the

duration_traffic estimate as our target label for predictions due to its increased coher-

ence with the Entur bus data.

summary path_ref travel_time distance_meters

0 count 41498 41498 41498
1 mean None 935.693 10944.824
2 stddev None 235.072 3806.406
3 min Christies gate, ... 360.0 2478.0
4 max Åsane Storsenter... 4211.0 38897.0

Table 5.2: Google car data statistics

5.2.3 Entur input data

Earlier in section 4.4 we transformed the Entur data from estimated calls and journeys

into just estimated journeys. The results of this transformation is shown in the table
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below. The Entur data after the initial transformations has been further transformed

to match the unified schema perfectly. We have replaced the harvested_at feature

from the schema in code listing 4.5 with the same temporal features as contained in

the unified schema.

summary path_ref travel_time distance_meters

0 count 1823564 1823564 1823564
1 mean None 1781.198 20854.720
2 stddev None 450.261 5879.932
3 min NSR:Quay:530... 241.0 2985.651
4 max NSR:Quay:537... 5925.0 24688.715

Table 5.3: Entur bus data statistics

5.2.4 Combined input data

The combined input model is trained using a combination of both the bus data from

the real-time Entur API and the car data collected from the google distance matrix

API together. We are combining these by transforming each of the aforementioned

datasets into the unified training schema as seen in table 5.1. These datasets are sim-

ply combined using a union in spark. What we are hoping to achieve when doing this

is that the error rate of the combined model is, in an optimal situation, lower than the

one we get from training a model on the Google data alone.

5.2.5 Training implementation

As mentioned, we have used the spark ML library to train our models. The spark ML

library has allowed for great flexibility and generalization which has made it possible

to test different models using the same function that takes in an algorithm in the form

of a dictionary containing metadata about its’ parameters and map parameters used

for cross validation using 5 fold for hyper-parameter tuning. The following code ex-

ample contains the generalized function used to train a model, also referred to as a

transformer.
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1 def train_model(df, model_meta, feature_cols):
2 # Setup regression algorithm based on input
3 regressor = model_meta['algo'](**model_meta['kwargs'])
4

5 if model_meta['mapParams']:
6 paramGrid = ParamGridBuilder()
7 for key, param in model_meta['mapParams'].items():
8 paramGrid.addGrid(getattr(regressor, key), param)
9 paramGrid = paramGrid.build()

10 # Run cross-validation, and choose the best set of parameters.
11 model = CrossValidator(estimator=regressor,
12 estimatorParamMaps=paramGrid,
13 evaluator=RegressionEvaluator(),
14 numFolds=5) # 5+ folds is considered common practice
15 model = model.fit(df)
16 bestModel = model.bestModel
17 model = bestModel.stages[-1]
18 else:
19 model = regressor.fit(df)
20 return model

Listing 5.1: Generalized training function

The input to our training function is a pre-indexed dataframe containing a "features"

column which holds a vector containing all the features where strings have been in-

dexed as numbers and each feature has been categorized as either a categorical or

continuous variables. In addition to the features input we also have the label column

which is the desired output of our model e.g. the travel time in seconds.

5.3 Iteration 1 - Unified schema

To test our hypothesis we have trained 3 different models which are based on 3 differ-

ent datasets using the same unified schema as stated in table 5.1. These 3 models are

trained using 3 different input datasets. The first model is trained using the car travel

time data from google alone, then the second model is trained using only Entur bus

travel time data and finally a combined model that use the data from both Google and

Entur.

All of following models discussed below are based on data within a time period from

12 August 2019 to 12 November 2019. This period was selected as Skyss, the bus com-
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pany, had started their new routes for the Autumn at that day. This way we could avoid

having possible changes in travel times because of route changes.

The models trained in this thesis are based on a batch learning approach where we are

using historical real-time data. In iteration 1 we have trained 3 models based on the

initial unified schema as described in section 5.1. All of the complete result tables are

listed in the appendix.

5.3.1 Google car data

All of the data collected from within our target period sums up to a total count of 34144

rows for our Google training set and a total count of 7354 rows held out for testing. We

have stored the training data separately with 80% for training and 20% for testing in

order to evaluate model performance.

The point of training a model on the Google car data alone is to see how these results

compare to a combined model trained on both car travel times and bus travel times

with overlapping paths. The first model trained using the historical car data from our

selected period showed decent results as shown in section 6.1.

5.3.2 Entur bus data

Similar to the Google Car dataset, the Entur bus dataset is also split randomly into sep-

arate training and test sets with a distribution of 80% for training and 20% for testing.

We have a significantly larger dataset for bus travel time compared to car travel time.

The total amount of training entries comes to a count of 1454870 and the total amount

of testing entries comes to a total of 368694 for the time period from 12 August to 12

November 2019.

The bus data from Entur is the largest dataset of the two and was intended to be used

in attempt at improving the accuracy of car travel times by combining it with the car

travel data. However, to see how a model trained on the Entur bus data performs at

predicting bus travel times, the second model is trained on just bus data from Entur
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alone. By training a model on just the bus data we can get an overview of how well the

model performs at predicting itself, and whether or not it may be useful for predicting

car travel data.

5.3.3 Combined model

The third model is the combined model which is a combination of both the Entur bus

travel times and the Google car travel times. The intention of this model is to see if

we are able to better predict car travel times by combining the two different datasets.

The way this has been done is through a union between the two datasets and a model

have been trained on all the data. The total count of entries in the combined used for

training is therefore a total of 1489014 and the test set is the same as for our car travel

times model, meaning we have a small test set of 7354 entries.

We found that the predictions were performing slightly better when using random for-

est regression. However, the predictions had potential improvements and we decided

to generate a new feature column that could improve the accuracy as measured by the

RMSE results.

As previously mentioned in section 4.1.2 and shown in figure 4.3b, the Google model

takes into consideration the current traffic based on the time of query execution. The

models trained so far have had no indication of traffic intensity. In the second iteration

we train a model for that predicts traffic flow estimation or intensity to improve the

accuracy of our initial models.

5.4 Iteration 2 - Traffic intensity

We will now describe how we have trained a model that predicts traffic intensity or

based on a combined model where the output is an estimated number under or over

1.0 where lower means low flow and higher means good flow.
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5.4.1 Calculating averages

To get an estimate of the current traffic intensity we calculated an average of traffic

flow for each of the unique paths in our dataset and grouped them using the following

steps.

1. Group all the entries based on path reference, minute of week and perform an

aggregate action to calculate the average travel time for that path in time. This

gives us base in which we use for calculating traffic flow.

2. Join the original dataframe with the group to get both the actual travel time and

the average travel time for that minute

3. Calculate the traffic flow/intensity by dividing the actual travel time with the av-

erage travel time which returns a floating point estimate.

Using the aforementioned steps have given us en estimate of the traffic flow based on

historical data which has been used to train a traffic flow model. In order to predict

future traffic flow we trained a model using the estimated traffic flow calculation.

5.4.2 Intensity model

We train an intensity model using the input columns as described in table 5.4, and

use the predicted traffic flow as the training label. The data fed into the model is a

combined set using both car data and bus data.

Column Datatype
day_of_year Integer
day_of_week Integer
second_of_day Integer
path_ref String
direction_ref Integer
vehicle_type string
travel_time float

Table 5.4: Input data for traffic intensity model that outputs a traffic flow prediction
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When applying the transformation of our unified schema we hope to achieve a better

correlation between the datasets and improve the accuracy of our models. The actual

results of the aforementioned models are evaluated in the next chapter.
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Chapter 6

Evaluation of results

This chapter evaluates our results as stated in step 8 of our KDD workflow. We will

look at the results we have managed to achieve while training our 3 machine learning

models in both first and second iteration. We will look at the statistical results in table

form as well as visualisations of our observed test compared to the predicted output of

the models.

We have primarily measured the accuracy of our models using the RMSE metric as

described in section 2.5.5 as well as an R2 rating for coherence determination which

is similar to a normalized version of the RMSE. Buses and cars have dissimilar travel

times for the same paths and the RMSE can therefore not be used as the only metric

when comparing the results for the models trained alone. The R2 coherence score is a

way to moralise the RMSE. All of the best results for the models trained are displayed

in table 6.1 below.
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Model mae mse r2 rmse

Iteration 1 - alone without intensity

Entur 79.573 14802.640 0.927 121.666
Google 38.619 4638.130 0.915 68.103
Combined 36.572 3960.605 0.927 62.933

Iteration 2 - with added intensity

Entur 59.624 8931.502 0.970 94.506
Google 24.689 2586.978 0.952 50.862
Combined 24.403 2491.484 0.954 49.914

Table 6.1: A summary of the best results for models trained in both iteration 1 and 2.
The complete result overview can be seen in appendix A.1

6.1 Analysis

We will now look a bit deeper into the performance of the models to see where we have

managed to improve the models using visualisations of the observed test data along

with the predictions. Considering all of the test data is shuffled randomly and the col-

lection of car data is mainly within rush hour traffic we have grouped the graph data

by minute and calculated the average travel time. We are comparing each of the mod-

els based on iteration and using predictions for the path between Torget and Flaktveit

which is the same path as represented in section 4.5, overlapping with bus 4.

Entur models

The Entur models are the best performing models of the ones we have trained; which

is likely due to the size of the dataset. In the first iteration Entur model can see that

the prediction have a tendency to predict a lower travel time when the actual observed

travel time is high and a higher value when the prediction is low.

After applying the traffic flow feature in the second iteration, it adapts much better to

the observations compared to iteration 1.
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(a) Entur bus model trained alone (b) Entur bus model with traffic flow

Figure 6.1: Entur model predictions for both iteration 1 and iteration 2

Google models

The predictions we managed to get from the Google model alone were good consider-

ing the significantly smaller dataset, however, there were still space for improvement.

The initial model trained using the Google car data alone managed to get a best score

of 68.102 RMSE using the Random Forest ML algorithm as seen in table 6.1.

(a) Google car data model trained alone (b) Google car data model with traffic flow

Figure 6.2: Google model predictions for both iteration 1 and iteration 2

When adding the new traffic flow feature to the initial google model we see that the

predictions are closer to the observed data during high intensity periods and according

to the results in our results table, it gets a better RMSE score of 50.862. The models

appears to be adapting well throughout the day, although the visualisations might not

be the best ways to measure considering the grouped Google data is uneven in terms

of density. Meaning there may be multiple observations in the same minute.
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Combined models

The combined model compared to the google model has an increased performance

when comparing RMSE. Distinguishing between the differences in performance through

the models we can see from the results in table 6.1 that the first iteration combined

model has an improvement as opposed to the Google model trained on car data alone.

(a) Combined model trained alone (b) Combined model with traffic flow

In the second iteration combined model the prediction accuracy improved perfor-

mance of the combined model, however, we see that the difference compared to the

Google model trained with traffic flow alone (fig. 6.2b) is smaller and that the traffic

flow feature has become a large factor in estimating. It is worth noting that the traffic

flow model used to predict the traffic flow feature has been trained on both the Google

car data and the Entur bus data and the coherence may therefore already be in the

added traffic flow feature and therefore show a smaller difference when used on the

combined model.

6.2 Summary

We have seen that the first iteration traffic models tended to either overestimate or

underestimate the travel time based on how far it is from the mean. This means that the

paths that were shorter had a tendency of getting predictions of a higher duration than

observed and quite the opposite happened with the longer paths. Adding a new feature

for traffic flow allowed the models to predict travel time more accurately without being
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affected as much by the general mean travel time overall.
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Chapter 7

Conclusions, Discussion, and

Recommendations for Further Work

This chapter We will now discuss some of most interesting findings and conclude the

thesis as well as propose some suggestions for further work.

7.1 Discussion

I this section we discuss the findings and share the knowledge we have discovered as

stated in the final stage of our KDD workflow.

7.1.1 Research questions

RQ 1: Can combining multiple sources of different transit data predict accurate travel

times?

Through the training and evaluation of the combined models we have found that the

predictions from the models are quite accurate and may be useful in a real-time sce-

nario.

RQ 2: Can we improve the accuracy of predictions by combining a low density dataset
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with a dataset of higher density from the same domain?

When comparing the results from the combined models with the models trained alone,

we see an increase in accuracy. However, to get the best results we could not solely

rely on the combination of the data alone, but through feature engineering of a mostly

common factor of traffic flow.

RQ 3: Can we gain useful knowledge from the connection between these different

datasets?

We believe that the connection between these different datasets have shown that we

can combine similar datasets to improve accuracy and reliability of predictions, not

just within the transit domain, but as a general concept where there may be some co-

herence between datasets of different sizes.

7.1.2 Approach drawbacks

The models we have trained so far have succeeded in general and appears to be quite

accurate according to the tests we have completed. There are however a few draw-

backs to the path approach. All the models are heavily dependant on the path refer-

ence when estimating the future travel time and the distinction between the different

paths appeared to be too dependant on the path reference.

7.1.3 Variable differences

The main difference between bus travel times and car travel times is the duration.

There are several reasons that cause this; where stopping at bus stops is the main rea-

son for the longer travel time. Time used at bus stops, however, is not time affected by

traffic considering the bus is not moving. Public events or happenings in the city cen-

ter often causes more people to take the bus and may in return increase the waiting

times, without actually delaying the flow of car traffic.

Some patterns that appear in the bus data are the high travel times at night time for

some buses. Most buses do not travel at night, but there are some exceptions during
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the weekends which we can see in our data. These night buses are likely slowed down

by a large number of passengers who want to get the last bus home from a night out.

Carpool lanes for buses is another factor that may impact the travel times of buses, or

at least the real-time flow information. Carpool lanes allow buses to skip traffic in a

separate lane and may therefore in some cases be providing inaccurate information

when used for car travel time prediction.

7.2 Summary and Conclusions

Through this thesis we have looked at the possibilities of traffic estimation and predic-

tion for car travel data using a combination of both bus and car data. We have collected

bus travel times from the organization Entur as well as car travel times from the Google

cloud platform API. The collected data has been processed to match a unified schema

that is similar for both the bus data from Entur and the car data from Google before be-

ing used for model training. We have trained three different models in 2 iterations with

the use of a smaller dataset of car data and a larger dataset of bus data. Using a path

based approach, we found that combining bus and car data improves the prediction of

car travel times by using a model trained on a dataset containing a combination of both

car and bus historical travel times. We can therefore conclude that we have success-

fully shown that the connections between different datasets about the same domain

may improve accuracy and reliability of predictions in general, and not just within the

transit domain.

7.3 Recommendations for Further Work

The focus in this thesis has been on travel time predictions for car data. However, there

are several other areas in which we could have used the data at hand. Looking at the

statistics of both the bus and the car data, there exists some clear anomalies with un-

known origins. Using the data we have looked at in this thesis it would likely be pos-
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sible to label these anomalies and train a binary classification model that can detect

anomalies in real-time. This however, would require a real-time system where our traf-

fic flow model is trained incrementally to continuously provide accurate traffic flow

predictions in real-time and not based on historical data alone. Spark streaming pro-

vides APIs for training of models and predictions on demand that could be useful when

working with real-time data.

Another problem that was not possible to address in our case is the issue of speed and

speed limits. We were unable to estimate speed due to these paths having different

speed limits along the path. By splitting paths into tightly connected subsection based

on speed limits and traffic flow it could possibly be easier to estimate speed for an

entire path. Having knowledge of speed limits would also possibly allow for scaling of

bus travel times down to car travel times to further improve the accuracy and reliability

of predictions. The nature of the car travel time data we have collected did not allow

us to create sections since the only indications we had was a travel time from origin to

destination.
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Appendix A

Model results

Result metrics for all the models trained

A.1 Results from first iteration

A.1.1 Entur bus data

Model mae mse r2 rmse

Linear regression 102.914 22521.453 0.889 150.071
Decision tree regressor 90.364 19368.352 0.904 139.170
Gradient-boosted trees 79.394 15181.146 0.925 123.211
Random forest 79.573 14802.640 0.927 121.666

Table A.1: Results after training a model on just Entur bus journeys

A.1.2 Google car data

Model mae mse r2 rmse

Decision tree regressor 51.125 7928.833 0.855 89.043
Linear regression 50.804 7829.787 0.857 88.486
Gradient-boosted trees 40.886 4979.630 0.909 70.566
Random forest 38.619 4638.130 0.915 68.103

Table A.2: Results after training a model on just Google car travel times
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A.1.3 Combined model

Model mae mse r2 rmse

Gradient-boosted trees 86.935 13602.309 0.752 116.628
Decision tree regressor 62.213 9938.545 0.818 99.692
Linear regression 53.431 8548.153 0.844 92.456
Random forest 36.572 3960.605 0.927 62.933

Table A.3: Results for the combined model

Feature importances

Model path_ref vehicle_type day_week day_year direction_ref second_day

Google 0.8775 0.0 0.0351 0.0240 0.0082 0.055
Entur 0.9549 0.0 0.0061 0.0062 0.0018 0.0307
Combined 0.9262 0.0314 0.005 0.0060 0.0017 0.0285

Table A.4: Feature importances first iteration

A.2 Results from second iteration

A.2.1 Entur model trained with traffic intensity

Model mae mse r2 rmse

Linear regression 110.567 25673.125 0.916 160.228
Decision tree regressor 96.139 18827.025 0.938 137.211
Gradient-boosted trees 87.647 17969.176 0.941 134.049
Random forest 59.624 8931.502 0.970 94.506

Table A.5: Entur model with traffic intensity
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A.2.2 Google model trained with traffic intensity

Model mae mse r2 rmse

Linear regression 52.074 8489.323 0.845 92.137
Decision tree regressor 50.389 6901.904 0.874 83.077
Gradient-boosted trees 38.267 5620.726 0.897 74.971
Random forest 24.689 2586.978 0.952 50.862

Table A.6: Google model with flow

A.2.3 Combined model trained with traffic intensity

Model mae mse r2 rmse

Gradient-boosted trees 75.869 11846.109 0.784 108.839
Decision tree regressor 69.434 11349.034 0.793 106.531
Linear regression 54.839 8820.190 0.839 93.915
Random forest 24.403 2491.484 0.954 49.914

Table A.7: Combined model with flow

A.2.4 Feature importances the 3 models with flow

Model path_ref vehicle_type day_week day_year direction_ref second_day flow

Google 0.835 0.0 0.032 0.022 0.006 0.051 0.051
Entur 0.578 0.0 0.006 0.008 0.325 0.028 0.053
Combined 0.877 0.027 0.007 0.006 0.001 0.035 0.043

Table A.8: Feature importances for the flow models
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Appendix B

Source code

B.1 Source code

The source code for the project will be available on Github as of January 2020 using the

following link: https://github.com/Lillevik/MasterProject

https://github.com/Lillevik/MasterProject
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