
University of Bergen
Department of informatics

A new approach for finding

communities of edges in complex

networks

Author: Morten Movik

Supervisor: Christophe Crespelle

November, 2019

Abstract

Discovering dense subparts, called communities, in complex networks is a fundamental issue

in data analysis. A popular way to do this is to create a partition of the network. This

partition can either be a partition of nodes, or a partition of edges. In this thesis I propose a

new approach to finding a partition of the edges, by mimicking the approach of the Louvain

algorithm, one of the most popular methods for node partitions. The Louvain algorithm is a

greedy optimization technique using modularity as an objective function. I propose several

different objective functions, edge modularities, to optimize in this approach and test the

algorithm with different edge modularities on real networks.

ii

Contents

1 Introduction 1

1.1 Community Detection . 1

1.2 Some Approaches For Communities of Nodes 2

1.3 Some Approaches for Communities of Edges 4

1.4 The Goal of this Thesis: Link Partition in Static Networks Based on Edge

Modularity . 6

2 Implementing Existing Methods 9

2.1 The Louvain Algorithm . 9

2.1.1 The Random Experiment in the Louvain Algorithm. 10

2.1.2 My Implementation of the Louvain Algorithm [5] 11

2.1.3 Criticism . 11

2.2 T. S. Evans et al. 12

3 A New Approach for Link Partitions 15

3.1 What is a Good Partition . 15

3.2 Overview of Measures . 16

3.3 Border Based Measures . 17

3.3.1 Minimize Border Nodes . 17

3.3.2 Minimize Border Pairs . 18

3.3.3 Minimize Border Pairs without an edge 18

3.4 Clique based Measures . 19

3.4.1 Minimize Non-edges Inside Communities 19

3.4.2 Minimize Number of Pairs in Each Community 20

3.5 Random Experiment . 21

3.5.1 Assign Ci Edges in a Random Graph to Ci For All i < |C | 21

iii

3.5.2 Keep the Degree of Each Edge’s Endpoint 22

3.5.3 Keep Community-distribution of Endpoints 22

3.5.4 Assign Communities to Edges Uniformly at Random 23

3.6 Further Exploring pairs . 23

4 Implementation and Results of Minimizing Pairs 27

4.1 Implementation . 27

4.1.1 No Suitable Definition of Contracted Graph 27

4.1.2 Moving Not Only to Neighbouring Communities 29

4.1.3 Computing Expectation . 30

4.1.4 Complexity . 30

4.2 Results With Three Different Edge-Modularities 31

4.2.1 Results of Algorithm using GDM . 32

4.2.2 Comparison of all Three Measures . 34

4.2.3 Analysis with the Karate Club Data 37

4.2.4 Results of the Louvain Algorithm and the Algorithm by Evans et. al. 42

5 Discussion and Conclusion 43

5.1 Improving UM . 43

5.2 Another Idea for Modularity of a Node Partition 45

5.3 Conclusion . 46

Bibliography 48

A My Implementation of the Louvain Algorithm [5] and the algorithm by

Evans et. al. [9] 51

B The implementation of my algorithm 69

iv

Chapter 1

Introduction

1.1 Community Detection

Community detection is about finding dense subparts in graphs called communities. Un-

fortunately there is not one formal and general definition of what a good community is.

Intuitively we want many edges to be between nodes belonging to the same community, and

few edges whose endpoints does not belong to the same community. As an example, consider

a social network, a graph where each node represents a person and each edge is a tie between

two people. Examples of communities in this graph can be a family, a group of friends, and a

football team. Graphs representing real system often have a community structure, meaning

it’s possible to find good communities in the graph. Discovering this community structure

is an important field of study, and a lot of research has been done on community detection

[10].

Community detection algorithms can be exact, finding the ”best” communities according

to some measure. However, independently of the chosen formal definition of a good commu-

nity, this often turns out to be a NP-complete problem, and we are often interested in finding

community structure in large networks. For instance we can find communities by using clus-

ter editing, where the goal is to find the minimum number of edits that makes the graph a

disjoint union of cliques [2]. One edit is removing an edge or adding an edge. This problem

turns out to be NP-complete [6]. Because we are often interested in finding communities in

1

large networks, we need an algorithm that is efficient. The problem can be solved with fixed

parameter tractable algorithms, which have running time f(k) ∗ nc for some constant c and

some parameter k, however f(k) is typically some exponential function. The problem could

potentially be solved with an approximation algorithm, giving a solution that’s guaranteed

to be within some constant factor of the optimal. However, as far as I know, there does not

exist any efficient approximation algorithm for this problem. This is why many community

detection algorithms are heuristics, algorithms that can find good solutions, for example by

optimizing some objective function, but have no guarantee for how good the solutions are.

In this thesis I will focus on heuristics.

Many community detection approaches focus on creating a partition C = {C0, C1, C2, ..., CN}
of the nodes in a graph, meaning that Ci ∩ Cj = ∅ for any i,j. In other words each node

belongs to one and only one community. Communities can also be overlapping however. In

overlapping communities we also divide the graph into communities C0, C1, C2, ..., CN , but

the communities can overlap with each other, meaning it’s possible that Ci ∩ Cj 6= ∅ for

some i, j. A third option is to create a partition of the edges in the graph. I will do an

algorithm for finding an edge partition in a network, to do this I will mimic the approach of

the Louvain algorithm, which makes a partition of the nodes i a graph.

1.2 Some Approaches For Communities of Nodes

In this section I will mention some popular approaches for community detection finding

communities of nodes. Most of them are for partitions of nodes.

Hierarchical Clustering, Hastie et. al. [11]. Sometimes a graph can contain a hierar-

chy of communities. As an example let’s consider a social network of all students in a city.

In this graph each school can be one community. Students that go to the same school are

more likely to know each other than students going to different schools. But within each

school we can also have one community for each class as well. To find communities like

these, where small communities are included in larger communities, we can use hierarchical

clustering. To decide which nodes belong in the same community, hierarchical clustering

uses a similarity measure. Every pair of nodes in the graph receives a value of this measure,

2

indicating how similar they are. And the algorithm aims to create communities where nodes

inside the same community have a high similarity to each other. There are two categories

of hierarchical clustering algorithms, based on how they group nodes with high similarity.

Agglomerative algorithms, which iteratively merge clusters if their similarity is high enough.

And Divisive algorithms, that iteratively removes edges connecting nodes with low similarity.

Partitional clustering (e.g. [16]) Partitional clustering techniques finds a preassigned

number of clusters, k, in a set of data points. The data points, or nodes, are embedded

in a metric space such that they have some distance measure between them. This distance

measure is a measure of dissimilarity between nodes. Then the nodes are separated into k

clusters, with the goal of minimizing or maximizing some cost function based on the distance

between nodes or centroids. One of the most popular techniques using partitional clustering

is k-means clustering by MacQueen [16], which uses the squared error function as a cost

function.

Spectral clustering [8]. Given a number of objects (for instance nodes), let S be a sym-

metric, non-negative similarity function defined for every pair of objects. Spectral clustering

are techniques creates a partition of the set into clusters by using the eigenvector of S or

matrices derived from S. This involves translating the original objects into a set of points

in space, where the coordinates of these are elements of eigenvectors. These coordinates are

then clustered using techniques like k-means clustering.

Newman and Girvan [18] Newman and Girvan introduced an approach similar to di-

visive hierarchical clustering techniques. However instead of using a similarity measure

describing whether two nodes should be in the same community, Newman and Girvan uses a

betweenness measure, describing weather an edge should connect two different communities

or not. Then they remove edges one by one, dividing the network into smaller components.

The process can be stopped at any stage, taking the components at that stage to be the

communities. They then introduce modularity as a measure of the quality of a partition,

and use this to see where the algorithm should stop.

3

Modularity Optimization [18], [5]. Modularity was introduced in 2004 by Newman

and Girvan [18]. It is a function that can tell us something about how good a partition

is. Modularity has become a popular tool in the field of community detection. It works

by counting the number of edges with both endpoints inside the same community, and

then comparing this to the expected number of edges with both endpoints inside the same

community in a random graph (section 2.1.1). One of the most popular approaches to

community detection is modularity optimization. Finding the maximum possible modularity

in a graph is NP-complete [7], but there are many methods that does a good job of finding

high values of modularity in a more reasonable amount of time. One such method is the

Louvain algorithm, which appears to run in linear time on most real datasets [5]. The Louvain

algorithm [5] is probably the most successfull heuristic for finding a partition of nodes. The

algorithm is a greedy optimization method using modularity. In the algorithm each node

starts off in it’s own community. It works by iteratively moving nodes to a community that

gives the highest increase in modularity. The Louvain algorithm will be discussed more in

section 2.1

Clique Percolation, Palla et. al. [19]. There are also popular algorithms for finding

overlapping communities. One of the most popular methods for overlapping communities is

clique percolation. It is based on the idea that nodes inside the same community are likely

to form a clique with each other, because of the high density of edges inside communities.

Nodes that are in different communities are less likely to have edges between them, and

are less likely to form a clique with each other. They use the term k-clique to indicate a

clique with k nodes. Two cliques are considered adjacent if they share k − 1 vertices. The

algorithm starts out with some k-cliques as communities. It then grows the communities

by merging adjacent k-cliques. Because one node can be involved in several k-cliques, this

method produces overlapping communities.

1.3 Some Approaches for Communities of Edges

Consider a social network, it makes sense for one person to be a part of a family, a football

team, and a workplace. If we want to create a node partition of this graph, then this person

can only belong to one community, when it would make more sense for him/her to be part

4

of all three communities. In this example it might make more sense to create a partition

of the edges. That way we still have one community for the family, one for the football

team, and one for the workplace, but one person can be related to all three. Consider

V (C) to be the nodes in G with an edge from community C incident to it. I will refer to

V (C1)∩V (C2)∩ ...V (Ck) as the border between the communities C1, C2, ..., Ck. The person

in the example above, is on the border between the three communities.

UELC, He et. al. [12]. Dongxiao He et. al. developed an algorithm that splits the graph

into a partition with two edge communities. To do this it uses a link-node-link random walk,

as well as markov dynamics. The algorithm then decides whether or not to accept each

community based on a method using link density. Then on each of the two subgraphs

induced by the new communities, it recursively repeats this process, dividing each subgraph

into two edge-communities and deciding whether or not to accept them.

Evans et. al.[9] Evans et. al. introduced a method for finding link-partitions using the

line graph and the Louvain algorithm. They first find the line graph corresponding to the

original graph. Then they assign weights on the edges by using the concept of a random

walker. The weights say something about how densely connected different nodes in the line

graph are. Then they apply the Louvain algorithm to the line graph. The result is a node

partition of the line graph, which corresponds to an edge partition in the original graph.

This algorithm will be discussed further in section 2.2.

Ahn et. al.[3] The algorithm developed by Ahn et. al. use hierarchical clustering with

a similarity measure for pairs of edges to build a dendrogram. Each leaf in the dendrogram

represent an edge from the original graph. each branch of the dendrogram represent a

community. Partitions of the graph into edge-communities can be found by cutting the

dendrogram at various levels. Each branch in the cut is one community in the partition.

To choose where to cut the dendrogram Ahn et. al. uses an objective function based on

link-density.

Li et. al. [15] Li et. al. Formulates an objective function based on partition-density

of edge communities and develops an integer linear programming model of the community

detection problem. They then use a genetic algorithm to solve the integer programming

model.

5

LMBP, He et. al.[14] He et. al. formulates a stochastic model called the link-model,

LM. This model takes into account the varying sizes of the communities when describing

community structure. They then use a maximum likelihood method to learn the parameters

of LM. Then they use a scheme of iterative bipartition.

He et. al. [13] He et. al. introduces a mixture of node and link communities called

hybrid node-link communities. In this scheme communities can be either node communities

or link communities. In a graph with hybrid node-link communities, a node can belong to a

node-community and/or it can have an edge from an edge-community incident to it.

1.4 The Goal of this Thesis: Link Partition in Static

Networks Based on Edge Modularity

Modularity has become a very popular tool for node partitions. And one of the most suc-

cessful algorithms for finding node partitions, the Louvain algorithm, is a method optimizing

modularity. The idea behind this thesis is to provide a community detection algorithm for

edge partitions by mimicking the approach of the Louvain algorithm. In order to do this it

is necessary to formulate a modularity that works for edge-partitions.

The algorithm by Evans et. al. [9] (section 2.2) also uses the Louvain algorithm in their

approach to finding an edge partition. However they do this by applying weights to the line

graph and then running the Louvain algorithm directly on the line graph. These weights

are based on local information, and say something about which edges from the original

graph should be in a community together. This means that which edges end up in the

same community, is not only decided by the optimization of modularity. It depends on the

weights that were applied to the line graph. In this thesis I attempt to provide a global edge

modularity, and mimic the Louvain approach in order to optimize this measure directly. I

would also like to do this in a way that can be adapted to dynamic networks without too

much difficulty.

In chapter 2 I describe my implementation the Louvain algorithm [5] as well as the

algorithm by Evans et. al. [9] which can serve as a comparison to the results of my algorithm.

6

In chapter 3 I provide some definitions for an edge modularity. In chapter 4 I present the

results of my algorithm with each of three different edge modularities, as well as the results

of the first two methods, C and D, developed by Evans et. al. in [9], and the Louvain

algorithm [5] on the same data.

Throughout this paper, unless otherwise specified, I will assume that graphs are undi-

rected and unweighted. To refer to a pair of nodes, where the order of the nodes does not

matter, I will use the shorthand uv, in other words uv = {u, v}. This means I will sometimes

write uv ∈ E to denote an undirected edge in a graph G = {V,E} To denote the number of

nodes |V | in the graph, I will use n, to denote the number of edges |E| I will use m.

7

8

Chapter 2

Implementing Existing Methods

In order to familiarize myself with existing methods, I have implemented them myself. In

particular, I implemented the Louvain-algorithm [5], and the methods from [9]. The code

can be found in appendix A, where the Louvain algorithm is in the same program as the

algorithm for Evans et. al. [9] (section 2.2). The part of the algorithm that is the Louvain

algorithm is about 700 lines, while the additional part required for the algorithm by Evans

et. al. is about 350 lines. Some results of my implementation of these two algorithms can

be found in table 4.5.

2.1 The Louvain Algorithm

The Louvain algorithm is a heuristic that works by optimizing the modularity function:

Q =
1

2m

∑
i,j∈V

[
Aij −

kikj
2m

]
δ(ci, cj) (2.1)

where m is the number of edges in the graph, Aij is the weight of the edge between i and

j, ki is the total weight of edges connected to i, ci is the community to which the node i

belongs, δ is the Kronecker delta:

δ(ci, cj) =

0 if ci 6= cj

1 if ci = cj
(2.2)

9

One strength of the Louvain algorithm is that the change in this modularity can be calculated

in constant time. The change in modularity from moving an isolated node i into a community

C can be calculated with:

∆Q =

[
Σin + 2ki,in

2m
−
(

Σtot + ki
2m

)2
]
−

[
Σin

2m
−
(

Σtot

2m

)2

−
(
ki

2m

)2
]

(2.3)

where Σin is the sum of the weights of links between nodes inside C, and Σtot is the sum

of the weights of all links connected to some node in C.

The Louvain algorithm works by initially placing every node into its own community.

It then loops through each node, checks the gain in modularity from placing it into the

community of a neighbour instead of it’s own community. The node is then placed in the

community that provides the highest gain in modularity if that gain is positive, if the gain

is negative it stays in the same community.

It keeps looping through nodes like this until it has gone for an entire loop over all

the nodes without moving any node to a different community (all modularity gains were

negative). At this point one stage of the algorithm is done. For the next stage it transforms

the graph by contracting each community into one node. Nodes in this new graph have an

edge between them if nodes inside the communities they were made from had edges between

them. The number of edges that was between the communities are now weights on the edges

between the nodes.

2.1.1 The Random Experiment in the Louvain Algorithm.

The term −kikj
2m

in the modularity function is actually a comparison to a random experi-

ment. The modularity is a comparison between how many edges are inside communities
1
2m

∑
i,j∈V Aij δ(ci, cj) , and how many would be inside if the graph was constructed in a

random way 1
2m

∑
i,j∈V

kikj
2m

δ(ci, cj). This random graph is constructed by using the config-

uration model [17], it fixes the communities, as well as the degrees of each node. We can

visualize the graph as a collection of nodes, and connected to each node i are ki edge-stubs

that are not connected to anything yet. Then we choose two edge-stubs at random and

connect them. Observe that there is a chance we will connect a node to itself, creating a

10

self-loop, or connect the same two nodes multiple times, creating multiedges. However in

typical small-density networks this will happen so rarely that it will not significantly alter

the result.

2.1.2 My Implementation of the Louvain Algorithm [5]

I implemented the Louvain Algorithm from scratch, the code is included in Appendix A.

The implementation achieves the same partition as [5] on the karate-club data, except one

node is in a different community. This might be because of the order in which the nodes are

considered. I considered the nodes in random order, and ran the program a few times to get

this result. The modularity from my implementation when run on two larger datasets, were

different from the ones obtained by [5], see table 2.1. Arxiv in the table below is a network

of papers on arxiv [1] and web nd.edu [4] is a network of a subdomain of the internet. More

results can be seen in table 4.5.

Dataset #Nodes/#edges from [5] my implementation
Karate 34/78 0.42 0.42
Arxiv 9k/24k 0.813 0.935
web nd.edu 325k/1M 0.622 0.963

Table 2.1: The modularity obtained with my implementation of the Louvain algorithm, and
the modularities presented in [5]

2.1.3 Criticism

The modularity of Newman and Girvan [18] is very popular. However it might be worth

mentioning some possible downsides to this quality function. It tends to generate large

communities, and miss smaller ones. And if it’s given a graph that consists of nothing but

one clique, it will still prefer a partition with more than one community. If the algorithm is

applied to a large grid, it will also partition it into several communities, even though there

is no naturally denser parts. Despite all of this, it’s still one of the most successful ways to

judge the quality of a partition.

11

2.2 T. S. Evans et al.

Evans et. al. [9] uses the Louvain algorithm as it is, but changes the input graph G. It does

this in several different ways.

Using the Line Graph, C. The first method used in [9] is based on the line graph. They

call the adjacency matrix of the line graph C. In this new graph G(C) each edge of the

original graph is represented by a node. If two edges in the original graph shared a node,

they have an edge between them in G(C). Let B be the incidence matrix, Biα = 1 if node i

has edge alpha incident to it, otherwise Biα=0.

Cαβ =
∑
i

BiαBiβ(1− δαβ)

Line Graph with Weights, D. The next graph used in [9], G(D), is the same as G(C)

but with weights. Evans et. al. uses a link-node-link to derive the weights. Two edges

α = uv and β = vw in the original graph are connected by an edge in the line graph

(because they share the node v). A random walker located on the edge uv can move to any

other neighbour of either u or v with equal probability. If the random walker moves through

the node i, the probability it chooses to walk to vw is 1
ki−1 . Because of this the edge αβ in

the line graph will have weight 1
ki−1 .

Dαβ =
∑
i

BiαBiβ

ki − 1
(1− δαβ)

Line Graph with Weights Based on a Projection of a Node Random Walk, E1

The previous method is based on the idea of a random walk on the line graph. This can’t

be related to a random walk on nodes, because link-node-link walker can move through the

same node v on two subsequent steps. If we try to interpret this random walk on edges as a

random walk on nodes, it will look like a self loop. E1 is based on the idea of a random walk

on nodes that is projected onto edges. They first assume that all neighbouring links of some

node i are connected in the line graph with weight 1
ki

. This is leads to an adjacency matrix:

Eαβ =
∑
i,ki>0

BiαBiβ

ki

12

This is considered to be the state when the random walker is located on a node, but nod

moved yet. The adjacency matrix E1 obtained after the walker moves, can be calculated

using: E1 = EE − E.

Results of my implementation of the algorithm can be seen in table 4.5. Unfortunately

I have not been able to implement method E1 because of a segmentation fault.

13

14

Chapter 3

A New Approach for Link Partitions

3.1 What is a Good Partition

A good partition of nodes. The Louvain modularity counts how many edges are inside

a community. Then it compares to how many edges would be inside in a random graph.

Instead of counting how many edges are inside a community however, we could also count

how few are between communities. This means that intuitively a good node-partition is one

where the subgraphs induced by the communities looks like cliques, and there are few edges

between communities.

In order to come up with a good measure for a partition, it can be useful to think about

what a graph with a perfect node-partition would look like. A good measure will then tell

us something about how far we are from this perfect situation.

A perfect situation for a partition of nodes would be a union of disjoint cliques. See figure

3.1 for an example of a perfect partition nodes. The colors represent communities, there is

a red, a green, and a blue community.

a

b

c

d e

f

g

h j

k

l

m

Figure 3.1: An example of a perfect
partition on an ideal graph.

15

A good partition of edges. In an edge-partition, every edge is inside one community,

so it doesn’t make sense to count how many edges are inside communities. However we can

still require that the subgraphs induced by the communities look like cliques. And we will

see that a consequence of the communities looking like cliques, is that the number of nodes

on the border between communities must be small. To illustrate, let’s look at the perfect

partition for an edge-partition. For the perfect edge-partition we can try something similar

to what we did with nodes, and define a graph with a perfect partition as a graph where

the subgraph induced by V (Ci) is a clique for all i, where V (Ci) is the set of nodes that are

connected to some edge in Ci. A consequence of this is that V (Ci) ∩ V (Cj) ≤ 1, in other

words, only one node can lie on the border between two specific communities. See figure 3.2

for an example.

0

1

2

3

4

5

6

7

8

9

10 1112

13 14

15

16

Figure 3.2: An example of a perfect
link-partition on an ideal graph.

3.2 Overview of Measures

To achieve a good edge-partition, we want the communities to look like cliques. In the perfect

partition the communities are all cliques, so a natural approach to create a measure is to try

to create one that says something about how far away we are from a clique. But there is

also another way to think about the problem. Notice that in order for an edge-partition to

be perfect, there can only be one node on the border between two specific communities. If

two communities share more than one node, then the communities are not cliques, since an

edge between two of these nodes can at most belong to one of the communities. This leads

to the idea of minimizing the size of the border. This is the first approach that I have tried

16

to follow. Unfortunately if the borders between communities are small, it doesn’t mean that

the communities look like cliques. So the measures I have tested are aiming to say something

about how far away the communities are from cliques.

For each of these two criteria, there are several different ways to formalize a measure. To

minimize the size of the border, I propose three different measures. Each measure minimizes

something different.

border-based approaches

� border nodes

� border pairs

� border pairs without an edge

I propose two different measures that focus on making the communities look like cliques.

item For all i, the subgraph induced by V (Ci) looks like a clique. The following measures

should be minimized:

clique-based approaches

� non-edges inside each community.

� number of pairs in each community.

3.3 Border Based Measures

3.3.1 Minimize Border Nodes

In the perfect situation for edge-partitions described above, each pair of communities only

had at most one node between them, in other words V (Ci) ∩ V (Cj) ≤ 1 for each pair i, j.

The number of nodes on the border is one possible measure we can minimize. Note that we

may count one node several times if it is on the border between more than two communities.

17

This is because one node can be a problem for many pairs of communities, and it should

then account for more than a node that’s only between one pair of communities.

Rnodes =
2

|V ||C |(|C | − 1)
∗
∑

Ci,Cj∈C

|(V (Ci) ∩ V (Cj))|

There can’t be more than |V ||C |(|C |−1)
2

border-nodes since each node can at maximum be on

the border between every community. So this measure will be between 0 and 1.

This measure doesn’t feel quite right, since having such border-nodes is not necessarily a

bad thing. Imagine a social network where the edges represent types of relationships between

people. We might want one community bordering this node to be that person’s colleagues,

another might be his friends and yet another his family. It seems like what we really want

might be to minimize the number of pairs on the border.

3.3.2 Minimize Border Pairs

If V (Ci) and V (Cj) both contain the same pair of nodes, then the partition is not perfect. If

there is an edge between the pair, it can only belong to one community. So we are at least

one edge away from the perfect situation. This measure will count the number of pairs that

are shared between each pair of communities:

Rpairs =
4

|V |(|V | − 1)(|C | ∗ (|C | − 1))

∑
CiCj∈C

|{V (Ci) ∩ V (Cj)}| ∗ (|{V (Ci) ∩ V (Cj)}| − 1)

2

(3.1)

Again note that a pair that lies on the border between more than two communities will be

counted several times. Here |V |(|V |−1)(|C |∗(|C |−1))
4

is to make sure the expression is between 0

and 1, it is a upper limit to how many pairs can be shared between communities. Every pair

can at most belong to every community.

3.3.3 Minimize Border Pairs without an edge

If we simply count the number of pairs on the border, like in the previous measure, there

are two possibilities for each pair: The pair has an edge between them, or it does not have

18

an edge between them. As an example of a pair on the border between several communities,

let’s consider two people that are colleagues, play on the same football team and play in the

same chess club. It would be strange if these two people did not know eachother. In other

words, we would expect these two nodes to have an edge between them. If they do know

eachother it’s not strange for them to both be in some of the same communities. So perhaps

instead of measuring simply the number of pairs on the border, it’s better to restrict it to

the number of pairs without an edge between them. This measure will minimize the number

of pairs on the border that does not have an edge between them.

Rborder−non−edges =
4

|V |(|V | − 1)(|C | ∗ (|C | − 1))

∑
CiCj∈C

|{uv | u, v ∈ V (Ci)∩V (Cj), uv 6∈ E}|.

4
|V |(|V |−1)(|C |∗(|C |−1)) is to make sure the expression is normalized. At most every pair is on

the border between every community.

3.4 Clique based Measures

3.4.1 Minimize Non-edges Inside Communities

Consider the perfect partition, the subgraph induced by some V (Ci) is a clique. In order to

judge how far we are from the perfect situation, we can count how many non-edges are in the

subgraph induced by each V (Ci). This is similar to the modularity used in Louvain, which

counts the number of edges inside communities. But instead of maximizing the number

of edges inside communities this measure minimizes the number of missing edges from the

subgraph induced by V (C).

Rnon−edges =
1

|C | ∗ |Ē|
∑
C∈C

|{uv | u, v ∈ V (C), uv 6∈ E}|

|C | ∗ |Ē| is a normalization factor, such that 0 ≤ Rnon−edges ≤ 1. This counts the number of

non edges for each community. This means that if there is a non-edge between a pair of nodes

uv, and uv are together on the border between several communities, then that non-edge will

be counted several times. More precisely, a non-edge will be counted |{Ci | uv ∈ V (Ci)}|
times. Consider figure 3.3, for this partition, the number of non-edges are counted as 4,

19

not 3, because nodes 2 and 3 are counted once for the red community and once for the

blue community. One problem with this measure is that it would not care if one clique

was separated into several communities, since every pair of nodes in each community still

has an edge between them. See figure 3.4 for an example. This clique is divided into two

communities, but still get a perfect score.

0

1

2

3

4

5

Figure 3.3: Edge-partition
into a blue and red commu-
nity. Dashed lines represent
non-edges.

0

1

2

3

Figure 3.4: Edge-partition
into a red and blue commu-
nity

3.4.2 Minimize Number of Pairs in Each Community

Another idea to measure how far away the communities are from cliques is to is to count the

number of pairs inside each community.

pairs(C) =
∑
C∈C

|V (C)| ∗ (|V (C)| − 1)

2
. (3.2)

The idea is that we want to put edges in communities where they do not contribute much to

the number of pairs in that community. Let’s say we want to know how much the number

of pairs increases if we put an edge ab into a community C0. The edge will not contribute to

the number of pairs at all in C0 if both a, b ∈ V (C0). If a ∈ V (C0) and b 6∈ V (C0) then the

number of pairs increases by |V (C0)| (a makes one new pair with each other node in V (C0)).

If neither a, b 6∈ V (C0) then the number of pairs increases by 2|V (C0| + 1 (both a and b

makes a new pair with every other node in V (C0) and ab itself is a new pair. Notice that

if a pair ab will be counted several times if it’s on the border between several communities,

the same way a non-edge will be counted several times in section 3.4.1.

20

3.5 Random Experiment

The modularity used in Louvain counts the number of edges with both endpoints inside the

same community (see section 2.1). If it didn’t compare this to a random experiment, it

would be trivial to obtain a node-partition that is perfect according to that measure. Just

put everything inside one community. The measures proposed in this thesis have the same

problem. Each one has a trivial perfect case, unless we compare to a random experiment.

For each of the border-based measures, a trivial partition that minimizes the measures is

one where every edge is in the same community. That way the graph has only one community

and there is no border. Since each of the border-based measures wants to minimize something

on the border this is a perfect case according to each of those measures. For the measure

in 3.4.1 the trivial case is to put every edge in it’s own community. That way there are no

non-edges inside any community.

The measure in 3.4.2, counts the number of pairs inside each community. Since every

edge uv in the graph is contained in a community, it accounts for at least one pair (u and

v). So a trivial way to minimize this measure is to put every edge in it’s own community.

That way the number of pairs inside communities are the same as the number of edges in

the graph.

To avoid such trivial partitions we compare to the expected value of each measure in

some random experiment. I will propose several possible experiments for comparison with a

measure for edges.

3.5.1 Assign Ci Edges in a Random Graph to Ci For All i < |C |

The first random experiment is one where we keep little information. Let’s say we have an

edge-partition C = {C0, C1, C2, ..., CN}. We create a random graph like the one used in

Louvain, except the first |C0| edges created by connecting edge-stubs belong to community

C0. The next |C1| edges belong to C1 and so on.

We end up with a random graph like the one used in Louvain, and an edge-partition

with communities where each community has the same size as in the original partition. But

21

the edges are spread out randomly in a random graph. Because so little information about

the original partition is kept, the experiment will not be as strongly related to the partition

under investigation as we might like.

3.5.2 Keep the Degree of Each Edge’s Endpoint

This experiment is a variation of 3.5.1 with one additional constraint. We keep the degrees

of nodes incident to edges. In other words, if node v has degree 3 and node u has degree 2,

then the edge uv can only be reassigned to a pair of nodes where one has degree 3 and the

other has degree 2. Thus we keep more information and our experiment is more strongly

related to the partition we compare to. However it might not be random enough for all

inputs. If there is only one edge between nodes of degree 12 and degree 14, then that edge

is guaranteed to still be there in the random experiment.

3.5.3 Keep Community-distribution of Endpoints

Another way to do the experiment that looks more like the one used in Louvain is to fix V (Ci)

and the degree of each node in the subgraph induced by V (Ci). Then for each community C

of size k we randomly assign k edges. Node u might have 3 edges in the red community and

2 edges in the blue community. We reshuffle the edges, but make sure u still has 3 edges in

the red and 2 edges in the blue community, ki,red = 3 and ki,blue = 2.

It’s easy to see the parallel to the experiment in the Louvain modularity. In the Louvain

algorithm, the partition and degrees of every node is kept, and only the edges are moved.

Here we keep all the V (Ci) and then rearrange edges.

A problem with this experiment might be that we keep too much information. There

might be too few ways to rearrange the communities in this way for it to be meaningful as

a comparison.

22

3.5.4 Assign Communities to Edges Uniformly at Random

In this experiment we keep the graph as it is and instead randomly reassign edges to different

communities. Given a graph and an edge partition, go through all the edges and assign a

community to them. Choose each community C with probability |C|
|E| , where m is the total

number of edges in the graph. An advantage of this method is that it can be fairly easy to

work with. The problem is that the communities can end up being different in size from the

communities we started with, so it’s not as related to our initial partition as we would like.

The goal of this thesis is a new approach for community detection in complex networks,

but a secondary goal, or a hope, is that this approach should be easy to adapt to dynamic

networks. If the experiment we use changes the graph, it can be difficult to adapt to a

dynamic network, since it is not clear how to address the time-aspect of the dynamic network.

This experiment however can be done on a dynamic network the same way it’s done on a

static one.

3.6 Further Exploring pairs

The goal of this thesis was to mimic the Louvain approach, but for edges. The modularity

used in Louvain does not look at the border between communities. It measures how far away

the communities are from cliques by counting the number of edges inside the communities.

Focusing on how similar a partition is to a clique also has the advantage that if a partition is

similar to a partition of cliques, then the border is also small (as mentioned in 3.2). Because

of this it makes sense to choose a measure that is also clique-based. Out of the two clique-

based measures proposed, the one in 3.4.1 has the problem that if a clique is partitioned into

two communities it will give a perfect score. So I have chosen the measure in 3.4.2. The

random experiment I chose for this measure is the one in 3.5.4.

Normalizing

An intuitive way to compare this to the random experiment would be:

pairs− E (pairs(C))

23

But if we want to compare the results of this expression between different partitions with

different graphs, it needs to be normalized. This is not so simple however since the experiment

in 3.5.4 can end up creating communities of different sizes than the partition we compare to.

So the expected value of pairs using this experiment can have a different range of possible

values than pairs. So how do we normalize this? Instead of normalizing, I will present two

possible definitions of an edge modularity that circumvents this issue. The first is naturally

normalized in the way it compares to random. The second does not normalize at all, this

means values of the edge modularity is not meaningful to compare between graphs, but it

might still provide good communities when employed in the algorithm.

Edge Modularity Inspired by Global Density

One way to formalize a measure using the number of pairs is to consider the concept of

density. The density of a graph is the ratio of the number of edges in the graph to the

number of pairs of nodes
2|E|

|V | ∗ (|V | − 1)
. (3.3)

In an edge-partition we want the communities to be dense. In other words, for a partition

C = {C0, C1, C2, ...CN} the subgraphs induced by each V (Ci) should be dense according

to 3.3. One possibility here is to take the average of this density for each community.

But it might make more sense to consider the partition as a whole, and consider a sort of

global density. The following is the density of the graph except we only count the pairs of

nodes where both nodes are inside the same community. And we still count the pairs for

each community independently, meaning the same pair can be counted several times if it is

contained in several communities.

ρ =
|E|

pairs(C)
.

This also solves the problem of normalizing, it is guaranteed that 0 ≤ ρ ≤ 1. The number

of pairs inside communities must be at least |E| since all the edges are inside communities

and each edge represents a pair, so ρ ≤ 1. And ρ ≥ 0 since both factors are positive.

Unfortunately I don’t know how to calculate E(ρ), so I cheat a little and calculate instead:

|E|
E (pairs(C))

24

This is not the same as E (ρ) but hopefully this is an adequate approximation. It tells

us something about the average case and it does exclude the trivial cases, which was the

purpose of the comparison in the first place (section 3.5). So the full expression of the Global

Density inspired Modularity is:

GDM =
|E|

pairs(C)
− |E|

E(pairs(C))
(3.4)

Edge Modularity Unnormalized

Another way around the difficulty of normalizing, is to simply not normalize. This is not

ideal, as the results for different graphs can’t easily be compared. However this is easy to

implement when 3.4 is already implemented. The Unnormalized Modularity is:

UM = E (pairs(C))− pairs(C) (3.5)

Calculating the Expectation of the Random Experiment

In the random experiment (section 3.5.4), we go through all the edges of the graph and

assign a community to it. We will assign community C to a certain edge with probabilty |C||E| .

To get the expectation we can loop through every pair of nodes and sum the probability.

Let l = |C| and m = |E|.
E (pairs(C)) =

∑
C∈C

∑
u,v∈V

plu,v

Where pluv is the probability that u and v are both in V (C), when the size of the community

is l. If uv 6∈ E, then both u and v can have some other edge attached to them that is put

into C. If uv ∈ E then we have one more way that u and v can be put into V (C): We put

uv into C.

pluv =

plkuplkv , if uv 6∈ E
l
m

+
(
1− l

m

)
∗ plku−1p

l
kv−1, if uv ∈ E

(3.6)

plku is the probability that a node with degree ku is in V(C), when C has size l.

plku = 1− (1− l

m
)ku

25

Here l
m

is the probability that one specific edge attached to u is in c. (1 − l
m

)ku is the

probability that none of the edges attached to u is in C.

Ratio of Number of Pairs to Expectation

After testing the algorithm with GDM and UM, I decided to add a third option, since the

results of the first two were not completely satisfactory, and because this is a measure that’s

easy to implement when the other two are implemented already. It is simply the ratio of the

expectation to the number of pairs. This measure should also be maximized.

Q3 =
E(pairs(C))

pairs(C)
(3.7)

26

Chapter 4

Implementation and Results of

Minimizing Pairs

4.1 Implementation

I have tried to follow the implementation of Louvain when implementing my method for

edges, but there are some differences in the implementation.

4.1.1 No Suitable Definition of Contracted Graph

In the Louvain algorithm, after each stage, when no more improvements can be gained

by moving a node to another community, the algorithm contracts the graph. This is not

meaningful when the communities consists of edges. When nodes are aggregated in the

Louvain algorithm, we simply set the endpoints of the edges to be the communities of the

original endpoints instead of the nodes themselves, and we let each community represent

a node (this is better explained in section 2.1). This way we end up with multiedges and

self loops. The natural way that Louvain deals with multiedges is to replace them with one

edge that has weight equal to the sum of the weights of the original edges. If we were to

aggregate the edges, the problem would be different. If we merge some edges in the in the

27

graph into one edge, it is not clear what the endpoints of that edge would be. I do not see a

way contract edges in a meaningful way, so I have done this part of the algorithm differently.

The important effect of the aggregation in Louvain is that once a stage is complete, the

communities that were created during that stage will never be split into different communi-

ties. For instance if a community C = {u, v, w} were created during the first stage of the

Louvain algorithm, then those three nodes are guaranteed to be in the same community at

the end of the entire algorithm. In my algorithm I don’t aggregate the graph, but I get the

same effect. Each community at the end of a stage can be a union of communities from the

beginning of the stage.

So when the Louvain algorithm would treat one node, and try to put it into different

communities to see if there is an increase in modularity. This algorithm treats one community

as a whole and tries to take the union between this community and other communities to

check if there is an increase in edge-modularity.

To illustrate, let’s consider an example run of the algorithm on a graph with edges

{ei | 0 ≤ i ≤ 9}:

� First stage:

– Communities at the beginning:

C0 = {e0}, C1 = {e1}, C2 = {e2}, C3 = {e3}, C4 = {e4},
C5 = {e5}, C6 = {e6}, C7 = {e7}, C8 = {e8}, C9 = {e9}

– Communities at the end:

C
′
0 = C0 ∪ C1 ∪ C2 = {e0, e1, e2},

C
′
1 = C3 ∪ C4 = {e3, e4},

C
′
2 = C5 ∪ C6 ∪ C7 = {e5, e6, e7},

C
′
3 = C8 ∪ C9 = {e8, e9}

� Second stage:

– Communities at the beginning:

C
′
0, C

′
1, C

′
2, C

′
3

– Communities at the end:

C
′′
0 = C

′
0 = {e0, e1, e2},

C
′′
1 = C

′
1 = {e3, e4},

C
′′
2 = C

′
2 ∪ C

′
3 = {e5, e6, e7, e8, e9},

28

� Third stage:

– Nothing happens, so the algorithm ends.

� Communities at the end of the algorithm:

{e0, e1, e2} {e3, e4} {e5, e6, e7, e8, e9}

4.1.2 Moving Not Only to Neighbouring Communities

In each stage the Louvain algorithm attempts to put each node into the community of each of

its neighbours to check if there is a gain in modularity. It does not have to check communities

where that node doesn’t have a neighbour, because if the node doesn’t have a neighbour in

the community, then it is guaranteed that there will be a decrease in the modularity. This

is fortunate for two reasons. It makes the algorithm more efficient, if it had to check every

community the running time of the algorithm would always be quadratic in the number of

nodes (since at the beginning every node is in it’s own community). But perhaps the more

important reason this is fortunate is that it wouldn’t make much sense to have a node in a

community where it has no neighbours.

For edge-modularity I would like a similar property. There should not be a gain in edge-

modularity by putting two communities together if they do not share a border. For instance

if we start out with communities C0, C1 on one stage of the algorithm, and V (C0)∩V (C1) = 0

we should not get an increase in edge-modularity by putting C0 and C1 together.

I attempted to prove mathematically that each of the three measures in 3.6 have this

property, but I couldn’t prove this. I hoped that when running the algorithm on the data,

it would only put communities together if they share a border. Because I did not know

whether the measures would have this property, the algorithm checks all the communities in

the graph, not only it’s neighbours. I hoped that the algorithm would never put communities

together if they do not share a border. However, it turns out that this can happen for each

of the three measures in 3.6.

29

4.1.3 Computing Expectation

In the Louvain algorithm, the expectation of the random experiment is computed in constant

time using equation 2.3. I do not have a constant time way of calculating the expectation.

The expectation is a sum of the probabilities pluv for each pair in each community. Where pluv

(equation 3.6) is the probability that a pair of nodes uv are both inside the same community

of size l (see section 3.6). pluv only depends on the degrees of the two nodes ku and kv, and

whether there is an edge between them. The way I have implemented this is by creating

two tables, S and T, of size M ∗M where M is the largest degree in the graph. Sku,kv is the

number of pairs uv graph where u has degree ku and v has degree kv. Tku,kv is the number of

edges uv in the graph where u has degree ku and v has degree kv. This way I can calculate

equation 3.6 only for each pair of degrees instead of per pair of nodes.

A more memory efficient alternative to this table would be an N ∗ N table where N is

the number of different degrees in the graph. Each row and column of this table would

correspond to degrees that actually are in the graph. As we don’t usually need all possible

degrees in this table, it will be smaller than the M ∗M table. This table could be a bottleneck

for memory. The highest degree possible in a graph with n nodes is n − 1. As an example

the biggest graph in table 4.1 has about 23000 nodes. A graph with this many nodes could

have max degree 22999, and, if each element in the M ∗M table is stored as an int taking 4

bytes, the memory used will be about 4229992

2
= 264MB. Luckily this is not an issue for the

computer I’ve used to test. The running time of the algorithm is already at least O(m2), so

this should not have much of an impact on the running time either.

4.1.4 Complexity

At the beginning of the first stage, every edge is inside it’s own community. And for every

community, the algorithm checks how much the modularity would increase when merging

with one of the other, maximum m, number of communities. Then the algorithm might need

to merge two communities. The time it takes to check whether two communities should be

merged is O(m). The time it takes to actually do the merge is also O(m). This means the

worst case complexity of one stage is O(m3). The number of stages will never exceed m,

because at every stage, the algorithm has to merge at least two communities together, or

30

the algorithm stops, and it can at most merge all the edges into one community. This means

that in the worst case the complexity of the algorithm is O(m4). However, it runs faster on

typical data 4.5, where it tends to only need 2-4 stages.

4.2 Results With Three Different Edge-Modularities

I have run the algorithm on several complex networks of increasing size. The three proposed

definitions of modularity from section 3.6 is used. All results are from testing on the same

computer. The computer has the following processor: Intel(R) Xeon(R) CPU E7- 4850 @

2.00GHz, and 256GB RAM. I have tested the algorithm with each of the three measures in

section 3.6 on 12 different networks displayed in table 4.1.

Dataset nodes edges max degree
karate 34 78 17

foodweb 183 2.4k 108
figeys 2.2k 6.4k 314

moreno 1.7k 9.1k 364
as2000 6.4k 12.6k 1500
GrQc 4.1k 13.4k 81

HepTh 8.6k 24.8k 65
jung-j 6.1k 50.3k 26133

jdk 6.4k 53.7k 32530
as-caida 26.4k 53.4k 2600

CondMat 21.3k 91.3k 107
cora 23.2k 89.2k 379

Table 4.1: Data used for testing

karate is a social network of a karate club that split into two factions after an argument.

foodweb is made up of foodchains in an ecosystem. figeys describes interactions between

proteins in humans. moreno is a network describing proteins. as2000 is describes subgraphs

of the internet called autonomous systems. GrQc describes collaborations between authors

in the field of general relativity and quantum cosmology. HepTh is a collaboration network

in the field high energy physics. jdk describes software dependencies of the JDK framework.

s-caida represents autonomous systems of the internet. CondMat is a collaboration network

between authors writing about condense matter physics. cora is a citation network.

31

4.2.1 Results of Algorithm using GDM

The results of my algorithm using GDM is shown in table 4.3. The algorithm produces high

values of GDM, the measure is between -1 and 1, and the values obtained are all above 0.5.

This suggests that the algorithm does a good job optimizing the measure. However, although

the measure is high for all of the results, the communities are not what we would expect in

a good partition. This is apparent from the number of communities obtained. For each run

of the algorithm the number of communities are close to the number of edges in the graph.

This means that most edges end up in a community by itself. As an example, consider the

last run of the algorithm on the network cora, the number of communities we obtain are

83900, and the number of edges in the network is 89200. If each community contained only

one edge we would be left with only 89200 − 83900 = 5300 edges, meaning that at most

5300 communities can contain more than one edge (since we can distribute those 5300 edges

between at most 5300 communities). In other words we are left with at least 83900−5300 =

78600 communities with only one edge. This means at least 78600/83900 = 94% of the

communities contain only one edge, and yet the GDM score is as high as 0.688. Since GDM

gives high values for edge-partitions that are not good, we can conclude that it is not a good

measure.

32

Dataset #edges #stages Time #com GDM
UM

/1000
RM

2 0 62 0.556 0.11 2.3
karate 78 2 0 59 0.563 0.12 2.5

2 0 61 0.587 0.12 2.5
2 6 1890 0.681 21.29 7.8

foodweb 2400 2 6 1910 0.660 19.66 7.1
2 6 1950 0.667 16.79 6.4
3 88 6110 0.564 15.83 3.0

figeys 6400 2 88 6040 0.636 28.67 4.6
3 85 5950 0.564 17.69 3.2
2 91 8170 0.640 82.63 7.7

moreno 9100 2 89 8010 0.638 90.98 8.2
2 105 8160 0.687 78.16 7.8
3 887 11700 0.590 40.20 3.6

as2000 12600 3 700 11800 0.606 46.38 3.9
3 906 12200 0.614 35.44 3.4
2 180 11800 0.790 44.93 28.4

GrQc 13400 2 140 11500 0.761 35.73 22.2
2 165 11800 0.757 237.6 15.3
3 764 22600 0.774 328.0 12.1

HepTh 24800 3 1061 22500 0.740 366.6 12.8
3 930 22300 0.776 445.5 15.8
2 53011 45360 0.626 714.7 10.8

jung-j 50300 2 46088 45070 0.587 657.8 9.5
2 44775 45150 0.624 669.8 10.2
2 52728 48900 0.635 802.4 11.4

jdk 53700 2 43827 48460 0.574 922.6 11.7
2 49318 48510 0.610 812.8 11.1
3 22098 52190 0.699 273100 5.3

as-caida 53400 3 22106 51930 0.729 346900 6.5
3 22589 52080 0.722 389800 7.1
3 11115 83380 0.631 748700 7.0

CondMat 91300 3 14684 83190 0.650 944600 8.6
4 15760 84570 0.641 740800 7.0
3 13470 83700 0.682 619600 6.5

cora 89200 4 15288 84440 0.656 640400 6.5
3 14462 83900 0.688 665900 6.9

Table 4.3: The results of my algorithm using GDM. There are three runs for each dataset,
and in each stage of the algorithm the communities are considered in a random order. #S is
the number of stages. Time is the running time in seconds. #C is the number of communities
in the result. GDM, UM, and RM are the scores of the result with those edge-modularities.
UM is counted /1000 (first entry is 110).

4.2.2 Comparison of all Three Measures

Results of the algorithm using the two other measures, UM and RM, are displayed in table

4.5 together with the results when using the first measure GDM. Here the results are the

average between three runs of the algorithm, where each run considers the edges in a random

order.

We can see that for each measure, the algorithm terminates within 2-4 stages. Keep in

mind that the algorithm terminates when it goes through one stage without making any

changes to the partition. In other words if it terminates after one stage, it means that it

keeps the initial partition where each node is placed in a community by itself. So unless no

changes are made to the algorithm, 2 stages is the minimum we will see.

When it comes to the number of communities created by the algorithm, only the runs

with UM displays a sensible amount. As discussed in section 4.2.1, most of the communities

gained using GDM contain only one edge. It is a little better using RM, but the number of

communities are still close to the number of edges in the graph. Using RM on the dataset

cora we get 66550 communities, and the number of edges is 89200. Looking at the number

of communities using UM however, none of the values seem unreasonable. They are all in

the range between 3 and 17, depending on the graph this could be a sensible number. It is

worth noting however that both the Louvain algorithm and the algorithm by Evans et. al.

generally obtain more communities than this on the same data (see figure 4.7).

As discussed in section 4.2.1, when the algorithm uses GDM we obtain a high GDM-score

but most of the communities contain only one edge. If we look at the GDM score when the

algorithm uses UM or RM we can see that it’s very low. For the dataset cora the GDM

score is 0.675 when GDM was used in the algorithm. When RM was used it is 0.07, and

when UM is used it is 0.000678. Since the two other measures aren’t normalized, it’s hard

to say whether the algorithm obtains high values UM when it uses UM, and whether it

obtains high values of RM when using RM. But assuming the algorithm does a good job at

optimizing each measure, in other words it gains a high value in the measure it uses, this

suggests that GDM is not at all measuring the same thing as the two other measures. This

seems a bit surprising since they are all based on the same idea, the number of pairs in

the communities, and they use the same random experiment for comparison. The difference

between the measures is how they compare the number of pairs inside communities to the

34

expected number in the random experiment. The low GDM scores we obtain when the

algorithm is run with UM, seems to reinforce the idea that GDM gives a higher score for

many tiny communities.

Let’s take a look at the times in table 4.5. The time used by the algorithm does not

only depend on the size of the graph. The networks jung-j and jdk take more time, for each

measure, than the larger networks as-caida, CondMat and cora, even though the number

of stages is not necessarily higher. These are the networks that have the highest maximum

degree among the ones I’ve used to test my algorithm. The algorithm is most likely slower

on these networks because of how I calculate expectation (see section 4.1.3). This can be

improved in the implementation however (this is also mentioned in section 4.1.3).

35

a
lg

orith
m

u
sin

g
G

D
M

a
lg

o
rith

m
u

sin
g

U
M

algorith
m

u
sin

g
R

M

D
ataset

#
ed

ges
#

S
T

im
e

#
co

m
G

D
M

sco
re

U
M

sco
re

/
1
0
0
0

R
M

sco
re

#
S

T
im

e
#

co
m

G
D

M
sco

re

U
M

sco
re

/
1
0
0
0

R
M

score
#

S
T

im
e

#
com

G
D

M
score

U
M

score
/1000

R
M

score

ka
ra

te
78

2
0

61
0.56

9
0
.1

2
.4

2
.7

0
5

0
.2

2
0

0
.6

0
3.4

3
0

17
0.414

0.43
4.0

fo
o
d

w
eb

240
0

2
6

1
917

0.66
9

1
9
.2

7
.1

2
8

1
7

0
.1

3
0

1
0
4

7.4
3

7
1132

0.452
56

12.4
fi

g
ey

s
640

0
2.7

87
6
033

0.58
8

2
0
.7

3
.6

3
.3

1
0
4

1
0

0
.0

0
9

1
5
9
7

3.9
3.3

102
4455

0.243
235

11.3
m

oren
o

910
0

2
95

811
3

0.65
5

8
3
.9

7
.9

3
1
7
2

9
.3

0
.0

1
2

2
9
5
2

5.8
3

132
5900

0.250
546

17.0
as2

000
1
2
600

3
831

118
7

0.60
3

4
0
.7

3
.6

2
.7

4
2
8
1

3
.7

0
.0

0
3

9
6
4
5

2.3
3.3

1533
10046

0.239
623

13.6
G

rQ
c

1
3
400

2
162

1
170

0
0.76

9
3
4
.8

2
2
.0

2
.7

3
3
9

8
0
.0

0
5

1
0
7
8
3

5.7
2.7

214
9477

0.359
2237

62.3
H

ep
T

h
2
4
800

3
918

2
246

6
0.76

3
3
8
0
.0

1
3
.6

2
.7

1
8
6
5

7
0
.0

0
2

4
3
7
1
7

4.4
3.7

1067
17577

0.137
3948

23.7
ju

n
g-j

5
0
300

2
4
7
958

4
519

3
0.61

2
6
8
0
.8

1
0
.7

3
1
1
9
1
6
5

9
.7

0
.0

0
6

4
8
6
6
0

7.9
3

89469
34270

0.223
8338

39.1
jd

k
5
3
700

2
4
8
624

4
862

3
0.60

6
8
4
5
.9

1
1
.4

3
1
3
8
5
0
8

9
.3

0
.0

0
6

5
5
8
7
0

8.4
3.3

105480
36483

0.225
10180

44.5
as-caid

a
5
3
400

3
2
2
264

5
206

6
0.71

7
3
3
6
.6

6
.3

3
9
5
8
8
9

3
.3

0
.0

0
1

1
6
1
1
6
7

2.1
3.3

13549
44697

0.176
7560

26.8
C

o
n

d
M

a
t

9
1
300

3.3
13

8
53

8
3
713

0.64
1

8
1
1
.3

7
.5

2
2
9
9
7
1

8
.3

0
.0

0
1

4
3
0
1
6
7

8.4
4

19214
66297

0.087
32087

32.3
cora

8
9
200

3.3
14

4
06

8
4
013

0.67
5

6
4
1
.9

6
.6

2
.7

3
4
9
9
7

8
.3

0
.0

0
1

4
1
4
7
3
3

5.0
4

19787
66550

0.070
28410

24.1

T
ab

le
4.5:

R
esu

lts
of

m
y

algorith
m

u
sin

g
th

e
th

ree
d
iff

eren
t

m
easu

res.
T

h
e

valu
es

are
th

e
average

resu
lts

taken
from

th
ree

ru
n
s

of
th

e
algorith

m
w

h
ere

th
e

com
m

u
n
ities

are
con

sid
ered

in
a

ran
d
om

ord
er.

#
S

is
th

e
n
u
m

b
er

of
stages.

T
im

e
is

th
e

ru
n
n
in

g
tim

e
in

secon
d
s.

#
com

is
th

e
n
u
m

b
er

of
com

m
u
n
ities

in
th

e
resu

lt.
G

D
M

,
U

M
,

an
d

R
M

are
th

e
scores

of
th

e
resu

lt
w

ith
th

ose
ed

ge-m
o
d
u
larities.

U
M

is
cou

n
ted

/1000
(fi

rst
en

try
is

110)
in

all
th

ree
colu

m
n
s.

4.2.3 Analysis with the Karate Club Data

The Zachary karate club network is a social network of the members of a karate club that

split into two groups after an argument between two of its leaders. The nodes are members

of the club, and the links are ties between the members after the club split.

From figure 4.1 we can see that when the algorithm uses GDM it produces a partition

where most communities contain only one edge. This is what we expect from the observations

in section 4.2.1 and 4.2.2. Figure 4.1 shows that RM produces many tiny communities. RM

only produce one community that contains only one edge, but the communities are very small.

Each of the three figures in 4.1 were made with the algorithm considering communities in a

random order.

When the algorithm is run using UM, figure 4.1, it produces 5 communities, and the

size of each community looks more sensible. This partition however, does not seem like

the most intuitive way to divide the graph either. At first sight it looks like the blue and

green communities should have been merged into one community in figure 4.1 (UM), since

visually they are very close to each other in a dense part of the graph. However, if we look

more closely, we can see that the two communities are pretty separate. The only two nodes

with edges from both communities incident to them are nodes 0 and 33. So if we merged

these two communities, each node from the green community, except 0 and 33, would make

a new pair with each node of the blue community, except 0 and 33. The new community

would probably not look as much like a clique as the two old communities, since the new

community would consist of two dense parts that are connected by only two nodes.

The red community in figure 4.1 (UM) can also look a bit surprising. It is spread

throughout the graph, sharing a border with each of the other communities. Intuitively this

should be split between the yellow and green/blue community. The black community also

looks a bit surprising, it includes the triangle between the nodes 25, 26, and 32, even though

only one edge ({1, 32}) connects it to the rest of the community. The black community also

includes a cycle between the nodes 1, 8, 4, and 13. At first glance it looks like this cycle

should belong to the yellow community, and looking closer we can see that three of the four

nodes (1, 8, and 4) already have an edge in the yellow community incident to them. This

means that if these edges was placed in the yellow community, let’s call it Cyellow, the yellow

community would get 4 more edges, and V (Cyellow) would only increase by 1. While having

37

these 4 edges in the black community, Cblack, means that the black community has 3 more

edges but because of those three edges V (Cblack) is increased by 3 nodes.

A possible explanation for why the communities are created this way when we use

UM, is that the size of the communities might affect the decision of whether or not we

merge two communities. For instance the algorithm might have decided to put the edges

{{1, 8}, {8, 4}, {4, 13}, {13, 1}} into the black community instead of the yellow community

because the black community was smaller. In fact when studying the algorithm step by step

as it is performed on the karate club data with the measure UM, it looks like the size is

relevant when making a choice of which communities to merge.

Size Effect of UM

When the algorithm uses UM it does not produce tiny communities like it does with GDM

or RM, but there also seems to be a limit to how big communities it produces. To test this

effect I have run the algorithm on the karate club data, but with additional disjoint cliques

with 13 nodes each. The idea is to make the graph bigger, and study what happens with

the partition of the part of the graph that represents the karate club. When one disjoint

clique is added to the network it is twice the since of the original network in terms of edges,

since 13∗12
2

= 78, the exact number of edges in the karate klub network. I added cliques one

by one and each time a new clique was added, I ran the algorithm 10 times, considering

communities in a random order. Then I stopped when all the edges from the original karate

club network was put into one community. The results are shown in figures 4.2 to 4.7.

Unfortunately the algorithm tends to place some edges from a clique in the same com-

munity as edges from the part of the network with the karate club, even though they are

disjoint. To remedy this I have run the algorithm with the modification that I only consider

merging communities that share a border node. See section 4.1.2 for a discussion about this.

By adding one clique (figure 4.2), doubling the size of the graph, the partition we obtain

consists of 4 communities instead of the 5 communities in 4.1 (UM). However, the commu-

nities are still spread throughout the graph more than we might expect. Then one more

clique is added, providing a graph three times the size of the original. The algorithm creates

a partition with only three communities 4.3. With three cliques added, the graph is 4 times

38

GDM

0

1

2

3

4

5

6

7

8

9

10

11

12
13

14

1516

17

18

19

20

21

22

23

2425

26

27

28

29

30

31

32

33

UM

0

1

2

3

4

5

6

7

8

9

10

11

12
13

14

1516

17

18

19

20

21

22

23

2425

26

27

28

29

30

31

32

33

RM

0

1

2

3

4

5

6

7

8

9

10

11

12
13

14

1516

17

18

19

20

21

22

23

2425

26

27

28

29

30

31

32

33

Figure 4.1: Results of my algorithm on the karate-club data using GDM, UM, and RM
respectively. For GDM, the grey links represent edges that are alone in their community.

the size of the original, and the partition is split into just two communities. It’s not hard to

imagine that these two communities can represent how the members of the club split into two

factions. With only three cliques added, the number of cliques has already decreased from

5 to 2. The communities we obtain when adding 4 and 5 cliques still has two communities.

It only takes 6 cliques before the algorithm places every edge in one community. We can

clearly see that the size of the network has an effect on the communities created. The larger

the graph is, the larger communities are created.

40

41

0

1

2

3

4

5

6

7

8

9

10

11

12
13

14

1516

17

18

19

20

21

22

23

2425

26

27

28

29

30

31

32

33

Figure 4.2: Result of algorithm using UM on
the karate club data with 1 disjoint clique
with 13 nodes added.

0

1

2

3

4

5

6

7

8

9

10

11

12
13

14

1516

17

18

19

20

21

22

23

2425

26

27

28

29

30

31

32

33

Figure 4.3: Result of algorithm using UM on
the karate club data with 2 disjoint clique
with 13 nodes added.

0

1

2

3

4

5

6

7

8

9

10

11

12
13

14

1516

17

18

19

20

21

22

23

2425

26

27

28

29

30

31

32

33

Figure 4.4: Result of algorithm using UM on
the karate club data with 3 disjoint clique
with 13 nodes added.

0

1

2

3

4

5

6

7

8

9

10

11

12
13

14

1516

17

18

19

20

21

22

23

2425

26

27

28

29

30

31

32

33

Figure 4.5: Result of algorithm using UM on
the karate club data with 4 disjoint clique
with 13 nodes added.

0

1

2

3

4

5

6

7

8

9

10

11

12
13

14

1516

17

18

19

20

21

22

23

2425

26

27

28

29

30

31

32

33

Figure 4.6: Result on the karate-club data
with 5 disjoint clique with 13 nodes added.
The edge-modularity used is GDM

0

1

2

3

4

5

6

7

8

9

10

11

12
13

14

1516

17

18

19

20

21

22

23

2425

26

27

28

29

30

31

32

33

Figure 4.7: Result of algorithm using UM on
the karate club data with 6 disjoint clique
with 13 nodes added. Every edge is in the
same community.

4.2.4 Results of the Louvain Algorithm and the Algorithm by

Evans et. al.

I have included the results of my implementations of Louvain (section 2.1) and the two

methods in [9] C and D (section 2.2). One interesting thing to note about the results (table

4.7) is that the datasets that required the most time with each of my measures are the same

ones that require the most time here. It is the two graphs that have the highes maximum

degree.

results of louvain using C results of louvain using D results louvain

Dataset edges #S Time #C mod #S Time #C mod #S Time #C mod

karate 78 3 0 5 0.54 3 0 7 0.51 3 0 4 0.42
foodweb 2400 3 0.08 12 0.57 3 0.08 11 0.49 3 0 4 0.35
figeys 6400 5 0.12 32 0.87 5 0.39 32 0.59 5 0.01 13 0.46
moreno 9100 5 0.19 18 0.72 5 0.60 27 0.63 5 0.03 16 0.51
as2000 12600 4 0.64 18 0.67 5 1.66 45 0.70 5 0.30 28 0.62
GrQc 13400 5 0.25 32 0.81 5 0.30 45 0.86 6 0.03 42 0.84
HepTh 24800 5 0.53 50 0.80 6 0.76 60 0.79 5 0.09 50 0.76
jung-j 50300 5 12.33 22 0.71 6 26.55 44 0.64 5 0.06 14 0.48
jdk 53700 5 9.83 18 0.71 6 25.04 42 0.66 4 0.07 16 0.49
as-caida 53400 5 2.89 40 0.87 6 12.88 54 0.73 5 0.12 37 0.67
CondMat 91300 5 1.90 58 0.80 6 3.40 75 0.78 5 0.25 57 0.72
cora 89200 5 1.66 51 0.88 6 3.48 42 0.81 5 0.29 34 0.79

Table 4.7: Results of louvain with two of the graph-transformations in [9], C and D. And the
results using louvain directly on the graph. #S is the number of stages. Time is the running
time in seconds. #C is the number of communities in the result. mod is the modularity
used in louvain.

42

Chapter 5

Discussion and Conclusion

5.1 Improving UM

Why Does UM Want to Merge Disconnected Communities?

Consider two communities C1 and C2, by disconnected I mean that V (C1)∩V (C2) = 0. Even

if C1 and C2 are disconnected, we can sometimes obtain a higher value of UM by merging

C1 and C2 into one community. This is probably the main issue with UM, and a possible

first step to improving the measure.

It seems like it does this because of how we compare to the random experiment in section

3.5.4. UM works by subtracting pairs from E(pairs), so UM is positive when E(pairs) >

pairs. Let’s first take a look at the gain in pairs, ∆, when two small dense communities are

merged.

Let’s say C1 and C2 are two small dense edge communities. The increase in the number

of pairs when we merge the communities, would be ∆ = |V (C1)|∗|V (C2)|
2

(each node in V (C1)

forms a new pair with each node in V (C2))

In the following discussion I will consider a typical outcome of the random experiment,

instead of the expectation. This is just because it makes the argumentation easier, and a

typical outcome will normally be close to the expected value. Let’s compare this to a typical

43

outcome of the random experiment (section 3.5.4). Let C
′
1 and C

′
2 be communities produced

by the random experiment corresponding to C1 and C2 respectively. The increase of pairs

in the random experiment when two communities are merged is

∆rand =
(|V (C

′
1)| − |V (C

′
1) ∩ V (C

′
2)|) ∗ (|V (C

′
2)| − |V (C

′
1) ∩ V (C

′
2)|)

2
. (5.1)

Each node in V (C1) that is not in V (C2) creates a new pair with each node in V (C2) that’s

not in V (C1). However V (C
′
1)∩V (C

′
2) will likely be small, because C

′
1 and C

′
2 are small, and

when choosing a small number of edges from a large graph, it is unlikely that many of those

edges are incident to the same node. This means there will be little or no overlap of V (C
′
1)

and V (C
′
2). In other words, if we disregard |V (C

′
1) ∩ V (C

′
2)| in the expression of ∆rand it

should not make a big difference. We end up with

∆rand ≈ |V (C
′
1)| ∗ |V (C

′
2)|

2
.

The same expression as ∆, however it is unlikely that C
′
1 and C

′
2 will be dense, because

we choose edges at random from the entire graph. Thus V (C
′
1) and V (C

′
2) will most likely

contain more nodes than V (C1) and V (C2) respectively. Thus ∆rand will most likely be

larger than ∆, meaning that there is an increase in UM if we merge the communities, even

though the communities were originally unconnected.

As an example, let’s say |C1| = |C2| = 5 are two communities with V (C1) ∩ V (C2) = 0

and |V (C1)| = |V (C2)| = 4. Then it is likely that V (C
′
1) = V (C

′
2) = 10, if the graph is

large. After the merge, pairs in the real partition increases by ∆ = 4∗4
2

= 8. Meanwhile

the increase in pairs in a typical outcome of the random experiment is ∆rand = 10∗10
2

= 50.

When the expected increase of pairs in the random experiment is higher than the increase

of pairs in the real partition, then UM will have a higher value after we merge.

It looks like a way to interpret this issue is that too much importance is given to

E(pairs(C) when comparing it to pairs(C), when dealing with small communities. One

possible way to improve UM could be to remedy this issue in some way. For instance it

might be possible to find some normalization factor, K, for the random part of UM.

UMimproved =
E(pairs(C))

K
− pairs(C)

44

The Size Effect of UM

The issue above seems to be because too much importance is placed on E(pairs(C)) when

we deal with small communities. The size effect might also be a result of the comparison

between E(pairs(C) and pairs(C) being uneven. As mentioned above, when C is small,

V (C) in the random experiment is likely to be big. This is because each edge in C is likely

to contribute two nodes to V (C) in the random experiment. On the other hand if the

community C is large compared to the graph, then it is much more likely that some edges

contribute only one node, or no new nodes to V (C). This is because when we choose an

edge uv to be in C in the random experiment, it is likely that either u ∈ V (c) or v ∈ V (c).

Meaning V (C) will be smaller compared to C than it would be with a small community. In

summary, it looks like E(pairs(C)) tends to be small when the community is big. Again this

issue is about the comparison to the random experiment in UM, and could be improved by,

for instance, some normalization factor.

5.2 Another Idea for Modularity of a Node Partition

An alternative modularity can be obtained by minimizing the number of edges across com-

munities and the number of non-edges between nodes of V (Ci). Let Eout be the edges that

go across communities, and Emissing be the set of non-edges between nodes inside V (Ci)).

Eout = {uv| uv ∈ E, C(u) 6= C(v)}

Emissing = {uv| uv 6∈ E, C(u) = C(v)}

We want a number between 0 and 1, so we need to normalize:

Eout ≤ m

Emissing ≤
n ∗ (n− 1)

2
−m

The Measure we would like to minimize is

|Eout|
2m

+
|Emissing|

n ∗ (n− 1)− 2m
.

45

Note that we use different normalization factors for each term. If we used the second factor

(1/(n(n−1)/2−m)) for both the first term would be extremely small on sparse data compared

to the second term. With this measure it might be unnecessary to compare to a random

experiment. With Louvain modularity we need to compare to a random experiment because

otherwise the optimal partition is just everything in one community. Here there is no such

obvious problem.

5.3 Conclusion

A lot of research has been done on community detection in recent years. Among the methods

for finding node partitions, the Louvain algorithm stands out as probably the most successful,

and it works by optimizing a global measure of the quality of a partition, modularity [18].

In this thesis I have developed a model for link partitions that mimics the approach of the

popular Louvain algorithm. The challenge of designing this method is to develop a version

of modularity that works directly for edge partitions. I have provided several definitions of

edge modularity. I implemented the new algorithm, and tested it on real data, using three

different definitions of edge modularity. I also implemented the Louvain algorithm, and one

other algorithm for edge partitions that uses the Louvain algorithm in it’s approach. When

testing the algorithm using the new edge modularities, one of the edge modularities, UM,

seemed to provide more sensible communities than the others. In the end I discuss some

ways in which UM could be improved.

46

47

Bibliography

[1] Cornell kddcup datasets. http://www.cs.cornell.edu/projects/kddcup/datasets.html.

Accessed: 2019-03-30.

[2] EL ADNANI. A comprehensive literature review on community detection: Approaches

and applications. Procedia Computer Science, 151:295–302, 2019.

[3] Yong-Yeol Ahn, James P. Bagrow, and Sune Lehmann. Link communities reveal mul-

tiscale complexity in networks. Nature, 466(7307):761–764, Jun 2010. ISSN 1476-4687.

doi: 10.1038/nature09182.

URL: http://dx.doi.org/10.1038/nature09182.

[4] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Internet: Diameter of the

world-wide web. nature, 401(6749):130, 1999.

[5] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.

Fast unfolding of community hierarchies in large networks. CoRR, abs/0803.0476, 2008.

URL: http://arxiv.org/abs/0803.0476.

[6] Sebastian Böcker and Jan Baumbach. Cluster editing. In Conference on Computability

in Europe, pages 33–44. Springer, 2013.

[7] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin Hoefer, Zoran

Nikoloski, and Dorothea Wagner. On modularity-np-completeness and beyond. Univ.,

Fak. für Informatik, Bibliothek, 2006.

[8] W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs.

IBM Journal of Research and Development, 17(5):420–425, Sep. 1973. doi: 10.1147/

rd.175.0420.

48

http://dx.doi.org/10.1038/nature09182
http://arxiv.org/abs/0803.0476

[9] T. S. Evans and Renaud Lambiotte. Edge partitions and overlapping communities in

complex networks. CoRR, abs/0912.4389, 2009.

URL: http://arxiv.org/abs/0912.4389.

[10] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75–174,

Feb 2010. ISSN 0370-1573. doi: 10.1016/j.physrep.2009.11.002.

URL: http://dx.doi.org/10.1016/j.physrep.2009.11.002.

[11] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical

learning, volume 1. Springer series in statistics New York, 2001.

[12] Dongxiao He, Dayou Liu, Weixiong Zhang, Di Jin, and Bo Yang. Discovering link

communities in complex networks by exploiting link dynamics. CoRR, abs/1303.4699,

2013.

URL: http://arxiv.org/abs/1303.4699.

[13] Dongxiao He, Di Jin, Zheng Chen, and Weixiong Zhang. Identification of hybrid node

and link communities in complex networks. Scientific reports, 5:8638, 2015.

[14] Dongxiao He, Dayou Liu, Di Jin, and Weixiong Zhang. A stochastic model for detecting

heterogeneous link communities in complex networks. In Proceedings of the Twenty-

Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas,

USA, pages 130–136, 2015.

URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9372.

[15] Zhenping Li, Xiang-Sun Zhang, Rui-Sheng Wang, Hongwei Liu, and Shihua Zhang.

Discovering link communities in complex networks by an integer programming model

and a genetic algorithm. PloS one, 8(12):e83739, 2013.

[16] James MacQueen et al. Some methods for classification and analysis of multivariate

observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics

and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

[17] Michael Molloy and Bruce Reed. A critical point for random graphs with a given degree

sequence. Random structures & algorithms, 6(2-3):161–180, 1995.

[18] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in

networks. Physical Review E, 69(2), Feb 2004. ISSN 1550-2376. doi: 10.1103/

49

http://arxiv.org/abs/0912.4389
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://arxiv.org/abs/1303.4699
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9372

physreve.69.026113.

URL: http://dx.doi.org/10.1103/PhysRevE.69.026113.

[19] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. Uncovering the overlapping

community structure of complex networks in nature and society. nature, 435(7043):814,

2005.

50

http://dx.doi.org/10.1103/PhysRevE.69.026113

Appendix A

My Implementation of the Louvain Algorithm [5] and the algorithm

by Evans et. al. [9]

Listing A.1: Source code of my implementation of the Louvain algorithm and the algorithm

by Evans et. al. (both algorithms are in the same program).
1
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <string.h>
5 #include <stdbool.h>
6 #include <time.h>
7 #include <math.h>
8 #include <assert.h>
9 #include "rand.c"

10 #include "prelim.c"
11
12 char *IN_NAME = "./data/karate_right_numbers_converted";
13 bool RANDOM_ORDER = false;
14 bool RANDOM_TIEBREAKER = false;
15 double MIN_MOD_INCREASE = 0.001;
16 char *NODE2EDGE_FILENAME = "node2edge";
17 char *OUTPUT_FILENAME = "output";
18
19 /** type of graph to make
20 * 0 - keep original
21 * 1 - C (linegraph)
22 * 2 - D (weighted linegraph)
23 * 3 - E (weighted linegraph with self -loops)
24 * 4 - E1 (weighted linegraph with self -loops)
25 **/
26 int TYPE = 0;
27
28 typedef struct Partition {
29 /** number of nodes **/
30 int n;
31
32 /** sum of weights of edges inside each community **/
33 double *inside;
34
35 /** sum of weights of edges incident to some node in each community **/
36 double *incident;

51

37
38 /** mapping node i -> community **/
39 int *node2comm;
40
41 } Partition;
42
43 typedef struct Edge {
44 int dest;
45 int origin;
46 double weight;
47 } Edge;
48
49 Edge *node2edge;
50
51 typedef struct wgraph {
52 int n;
53 int m;
54 Edge **links;
55 int *degrees;
56 double w;
57 double *weighted_degrees;
58 double *self_loops;
59 } wgraph;
60
61 /** assumes contiguous allocation of links! **/
62 void free_wgraph(wgraph *g) {
63 free(g->degrees);
64 free(g->weighted_degrees);
65 free(g->self_loops);
66 free(g->links [0]);
67 free(g->links);
68 }
69
70 int *rand_perm(int n){
71 int *perm;
72 int i, tmp , j;
73 if((perm=(int *) malloc(n*sizeof(int))) == NULL)
74 printf("random_perm: malloc () error");
75 for (i=n-1;i>=0;i--)
76 perm[i] = i;
77 for (i=n-1;i>=0;i--){
78 j = random ()%(i+1);
79 tmp = perm[i];
80 perm[i] = perm[j];
81 perm[j] = tmp;
82 }
83 return(perm);
84 }
85
86 /** makes weighted version of g in wg **/
87 void make_weighted(graph *g, wgraph *wg) {
88 /* links */
89 Edge **adj = malloc(g->n * sizeof *adj);
90 adj [0] = malloc(g->m * 2 * sizeof **adj);
91 for (int i = 1; i < g->n; i++) {
92 adj[i] = adj[i-1] + g->degrees[i-1];
93 }
94 for (int i = 0; i < 2*g->m; i++) {
95 Edge e;
96 e.dest = g->links [0][i];
97 e.weight = 1;
98 adj [0][i] = e;
99 }

52

100
101 /* weighted degree */
102 double *weighted_degrees = malloc(g->n * sizeof *weighted_degrees);
103 for (int i = 0; i < g->n; i++) {
104 weighted_degrees[i] = g->degrees[i];
105 }
106
107 wg->n = g->n;
108 wg->m = g->m;
109 wg->degrees = g->degrees;
110 wg->links = adj;
111 wg->w = 2*g->m;
112 wg->weighted_degrees = weighted_degrees;
113 wg->self_loops = calloc(g->n, sizeof *wg->self_loops);
114 }
115
116 int** sort_adj_list(graph *g, int *half_degs) {
117 /* allocate memory for new adjacency list */
118 int **adj = (int**) calloc(g->n,sizeof(int*));
119 adj [0] = (int*) calloc(g->m, sizeof(int));
120 for (int i = 1; i < g->n; i++) {
121 adj[i] = adj[i-1] + half_degs[i-1];
122 }
123
124 int *indices = (int*) calloc(g->n, sizeof(int));
125
126 for (int u = 0; u < g->n; u++) {
127 for (int j = 0; j < g->degrees[u]; j++) {
128 int v = g->links[u][j];
129 if (u < v) continue;
130 adj[v][indices[v]++] = u;
131 }
132 }
133 free(indices);
134 return adj;
135 }
136
137 int* get_half_degs(graph *g) {
138 int *degs = malloc(g->n * sizeof *degs);
139 for (int i = 0; i < g->n; i++) {
140 degs[i] = 0;
141 }
142 for (int u = 0; u < g->n; u++) {
143 for (int j = 0; j < g->degrees[u]; j++) {
144 int v = g->links[u][j];
145 if (u < v) degs[u]++;
146 }
147 }
148 return degs;
149 }
150
151 int* get_line_indices(graph *g, int *half_degs) {
152 /* index of first edge connected to node u.
153 * where edges (u,v) are only counted if u < v */
154 int *edge_indices = (int*) malloc(g->n*sizeof(int));
155 edge_indices [0] = 0;
156 for (int u = 1; u < g->n; u++) {
157 edge_indices[u] = edge_indices[u-1] + half_degs[u-1];
158 }
159 return edge_indices;
160 }
161

53

162 int* get_line_degrees(graph *g, int ** adj_sorted , int *edge_indices , int
↪→ *half_degrees) {

163 int *line_degrees = (int*) malloc(g->m*sizeof(int));
164 for (int u = 0; u < g->n; u++) {
165 for (int j = 0; j < half_degrees[u]; j++) {
166 int v = adj_sorted[u][j];
167 if (u >= v) continue;
168 int index_uv = edge_indices[u] + j;
169 line_degrees[index_uv] = g->degrees[u] + g->degrees[v] - 2;
170 }
171 }
172 return line_degrees;
173 }
174
175 Edge** get_line_adj(graph *g, int *half_degs , int line_m , int

↪→ *line_degrees) {
176 bool use_self_loops = (TYPE == 3 || TYPE == 4);
177 if (use_self_loops) {
178 for (int i = 0; i < g->m; i++) {
179 line_degrees[i]++;
180 }
181 }
182
183 Edge ** line_adj = malloc(g->m * sizeof *line_adj);
184 if (use_self_loops) line_adj [0] = malloc((line_m * 2 + g->m) * sizeof

↪→ ** line_adj);
185 else line_adj [0] = malloc(line_m * 2 * sizeof ** line_adj);
186 for (int i = 1; i < g->m; i++) {
187 line_adj[i] = line_adj[i-1] + line_degrees[i-1];
188 }
189
190 FILE *translation_file = fopen(NODE2EDGE_FILENAME , "w");
191 node2edge = malloc(g->m * sizeof *node2edge);
192
193 int *line_adj_indices = calloc(g->m, sizeof *line_adj_indices);
194 int *edge_indices = get_line_indices(g, half_degs);
195 int *not_added_twice = (int*) calloc(g->n, sizeof(int));
196 int *edges_to_add = (int*) malloc(g->m*sizeof(int));
197 int *self_loops = calloc(g->m, sizeof *self_loops);
198 int num_edges_to_add = 0;
199 for (int u = 0; u < g->n; u++) {
200 num_edges_to_add = 0;
201 int u_adj_index = 0;
202 /* loop through neighbour edges (u,v) */
203 for (int k = 0; k < g->degrees[u]; k++) {
204 int v = g->links[u][k];
205 int index_uv;
206 if (u < v) index_uv = edge_indices[u] + u_adj_index ++;
207 else index_uv = edge_indices[v] + not_added_twice[v]++;
208 edges_to_add[num_edges_to_add ++] = index_uv;
209
210 /* Translation back to edges */
211 fprintf(translation_file , "%d %d %d\n", index_uv , u, v);
212 Edge e;
213 e.origin = u;
214 e.dest = v;
215 node2edge[index_uv] = e;
216
217 /* add a self_loop */
218 if (TYPE != 3 && TYPE != 4) continue;
219 if (u < v) {
220 Edge self_loop = {
221 .dest = index_uv ,

54

222 .weight = 1./g->degrees[u] + 1./g->degrees[v],
223 };
224 line_adj[index_uv][line_adj_indices[index_uv]++] = self_loop;
225 self_loops[index_uv] = self_loop.weight;
226 }
227 }
228 /* create a link between each pair of neighbouring edges edges */
229 for (int p = 0; p < num_edges_to_add; p++) {
230 int e1 = edges_to_add[p];
231 for (int q = 0; q < num_edges_to_add; q++) {
232 if (p == q) continue;
233 int e2 = edges_to_add[q];
234 Edge e;
235 e.dest = e2;
236 if (TYPE == 1) e.weight = 1.0;
237 else if (TYPE == 2) e.weight = 1.0/(g->degrees[u] -1);
238 else if (TYPE == 3 || TYPE == 4) e.weight = 1.0/g->degrees[u];
239 line_adj[e1][line_adj_indices[e1]++] = e;
240 }
241 }
242 }
243 free(line_adj_indices);
244 free(edge_indices);
245 free(not_added_twice);
246 free(edges_to_add);
247 fclose(translation_file);
248 return line_adj;
249 }
250
251 int compare_edge(const void* a, const void* b)
252 {
253 Edge edge_a = * ((Edge*) a);
254 Edge edge_b = * ((Edge*) b);
255
256 if (edge_a.dest == edge_b.dest) return 0;
257 else if (edge_a.dest < edge_b.dest) return -1;
258 else return 1;
259 }
260
261 /** Create E1 by E*E - E.
262 * g -> graph corresponding to E
263 **/
264 void create_E1(wgraph *g) {
265 /* create adjacency matrix of E */
266 double **E = malloc(g->n * sizeof *E);
267 for (int i = 0; i < g->n; i++) {
268 E[i] = malloc(g->n * sizeof **E);
269 }
270 /* init etries to -1 */
271 for (int i = 0; i < g->n; i++) {
272 for (int j = 0; j < g->n; j++) {
273 E[i][j] = -1;
274 }
275 }
276
277 /* fill table */
278 for (int u = 0; u < g->n; u++) {
279 for (int j = 0; j < g->degrees[u]; j++) {
280 Edge e = g->links[u][j];
281 E[u][e.dest] = e.weight;
282 }
283 }
284

55

285 /* table with non -zero entries in E1 */
286 bool ** non_zero = malloc(g->n * sizeof *non_zero);
287 for (int i = 0; i < g->n; i++) {
288 non_zero[i] = malloc(g->n * sizeof ** non_zero);
289 }
290 for (int i = 0; i < g->n; i++) {
291 for (int j = 0; j < g->degrees[i]; j++) {
292 non_zero[i][j] = false;
293 }
294 }
295
296 /* allocate memory for result matrix */
297 double **E1 = malloc(g->n * sizeof *E1);
298 for (int i = 0; i < g->n; i++) {
299 E1[i] = malloc(g->n * sizeof **E1);
300 }
301 for (int i = 0; i < g->n; i++) {
302 for (int j = 0; j < g->n; j++) {
303 E1[i][j] = 0;
304 }
305 }
306
307 FILE *out = fopen("temp_debug", "w");
308
309 /* do the math */
310 /* E1 = E * E */
311 for (int i = 0; i < g->n; i++) {
312 for (int j = 0; j < g->n; j++) {
313 for (int k = 0; k < g->n; k++) {
314 if (E[i][k] > -1 && E[k][j] > -1) {
315 E1[i][j] += E[i][k] * E[k][j];
316 non_zero[i][j] = true;
317 }
318 }
319 }
320 }
321 fclose(out);
322
323 /* E1 = E1 - E */
324 for (int i = 0; i < g->n; i++) {
325 for (int j = 0; j < g->n; j++) {
326 if (E[i][j] > -1) {
327 E1[i][j] -= E[i][j];
328 non_zero[i][j] = true;
329 }
330 }
331 }
332
333 /* create adj -list from matrix */
334 /* degrees */
335 int m = 0;
336 double w = 0;
337 int *degrees = malloc(g->n * sizeof *degrees);
338 double *weighted_degrees = malloc(g->n * sizeof *weighted_degrees);
339 int l = 0;
340 for (int i = 0; i < g->n; i++) {
341 degrees[i] = 0;
342 weighted_degrees[i] = 0;
343 for (int j = 0; j < g->n; j++) {
344 if (non_zero[i][j]) {
345 degrees[i]++;
346 weighted_degrees[i] += E1[i][j];
347 if (i <= j) l++;

56

348 }
349 }
350 weighted_degrees[i] += E1[i][i]; // count self_loop twice
351 m += degrees[i];
352 w += weighted_degrees[i];
353 w += E1[i][i];
354 }
355 // every edge exept self -loops are counted twice
356 m += g->n;
357 m /= 2;
358
359 /* adj -list */
360 Edge **adj = malloc(g->n * sizeof *adj);
361 adj [0] = malloc ((g->m * 2 + g->n) * sizeof **adj);
362 for (int i = 1; i < g->n; i++) {
363 adj[i] = adj[i-1] + degrees[i-1];
364 }
365 for (int i = 0; i < g->n; i++) {
366 int k = 0;
367 for (int j = 0; j < g->n; j++) {
368 if (non_zero[i][j]) {
369 Edge e;
370 e.dest = j;
371 e.weight = E1[i][j];
372 adj[i][k++] = e;
373 }
374 }
375 if (k > degrees[i]) report_error("\ndegree incoherence");
376 }
377
378 /* self -loops */
379 double *self_loops = malloc(g->n * sizeof *self_loops);
380 for (int i = 0; i < g->n; i++) {
381 if (non_zero[i][i]) {
382 self_loops[i] = E1[i][i];
383 } else {
384 report_error("\nself loop was zero");
385 }
386 }
387
388 free(g->links [0]);
389 free(g->links);
390 free(g->degrees);
391 free(g->weighted_degrees);
392 free(g->self_loops);
393
394 g->m = m;
395 g->w = w;
396 g->degrees = degrees;
397 g->weighted_degrees = weighted_degrees;
398 g->self_loops = self_loops;
399 g->links = adj;
400 }
401
402 void make_linegraph(graph *g, wgraph *linegraph) {
403 /* n */
404 int line_n = g->m;
405
406 /* m */
407 int line_m = 0;
408 for (int i = 0; i < g->n; i++) {
409 line_m += (g->degrees[i] - 1) * g->degrees[i];
410 }

57

411 line_m /= 2;
412 if (TYPE == 3 || TYPE == 4) line_m += line_n; // account for self -loops
413
414 /* degrees */
415 int *half_degs = get_half_degs(g);
416 int *edge_indices = get_line_indices(g, half_degs);
417 int ** adj_sorted = sort_adj_list(g, half_degs);
418 int *line_degrees = get_line_degrees(g, adj_sorted , edge_indices ,

↪→ half_degs);
419
420 /* links */
421 Edge ** line_links = get_line_adj(g, half_degs , line_m , line_degrees);
422
423 /* self loops */
424 double *self_loops;
425 if (TYPE == 3 || TYPE == 4) {
426 self_loops = malloc(line_n * sizeof *self_loops);
427 for (int i = 0; i < line_n; i++) {
428 for (int j = 0; j < line_degrees[i]; j++) {
429 if (line_links[i][j].dest == i)
430 self_loops[i] = line_links[i][j]. weight;
431 }
432 }
433 } else {
434 self_loops = calloc(line_n , sizeof self_loops);
435 }
436 /* weighted degrees */
437 double *line_weighted_degrees = malloc(line_n * sizeof

↪→ *line_weighted_degrees);
438 if (TYPE == 1) {
439 for (int i = 0; i < line_n; i++) {
440 line_weighted_degrees[i] = line_degrees[i];
441 }
442 } else if (TYPE == 2) {
443 for (int u = 0; u < line_n; u++) {
444 line_weighted_degrees[u] = 0;
445 for (int j = 0; j < line_degrees[u]; j++) {
446 line_weighted_degrees[u] += line_links[u][j]. weight;
447 }
448 }
449 } else if (TYPE == 3 || TYPE == 4) {
450 for (int i = 0; i < line_n; i++) {
451 line_weighted_degrees[i] = 2;
452 line_weighted_degrees[i] += self_loops[i];
453 }
454 }
455
456 double line_w = 0;
457 if (TYPE == 1) line_w = 2* line_m;
458 if (TYPE == 2) {
459 for (int i = 0; i < line_n; i++) {
460 line_w += line_weighted_degrees[i];
461 }
462 }
463 if (TYPE == 3 || TYPE == 4) {
464 line_w = 2* line_n;
465 for (int i = 0; i < line_n; i++) {
466 line_w += self_loops[i];
467 }
468 }
469
470 linegraph ->self_loops = self_loops;
471 linegraph ->n = line_n;

58

472 linegraph ->m = line_m;
473 linegraph ->links = line_links;
474 linegraph ->degrees = line_degrees;
475 linegraph ->w = line_w;
476 linegraph ->weighted_degrees = line_weighted_degrees;
477
478 if (TYPE == 4) create_E1(linegraph);
479
480 free(edge_indices);
481 free(adj_sorted);
482 free(half_degs);
483 }
484
485 /* --------- Louvain ------------ */
486
487 long double modularity(wgraph *g, Partition *partition){
488 bool *visited = (bool*) malloc ((g->n)*sizeof(bool));
489 for (int i = 0; i < g->n; i++) {
490 visited[i] = false;
491 }
492 long double q = 0;
493 long double w = (long double) g->w;
494 for (int i = 0; i < g->n; i++) {
495 int c = partition ->node2comm[i];
496 if (visited[c]) continue;
497 visited[c] = true;
498
499 q += 2*partition ->inside[c];
500 q -= ((partition ->inside[c] + partition ->incident[c])
501 * (partition ->inside[c] + partition ->incident[c])) / w;
502 }
503 q /= w;
504 free(visited);
505 return q;
506 }
507
508 long double modularity_gain(wgraph *g, Partition *partition , int node ,

↪→ int c, double k_in) {
509 long double tot = (long double) partition ->incident[c] +

↪→ partition ->inside[c];
510 long double k = (long double) g->weighted_degrees[node];
511 long double w = (long double) g->w;
512 long double gain = (2*((long double)k_in) - 2*tot*k/w) / w;
513 return gain;
514 }
515
516 void insert(int u, int c, Partition *partition , wgraph *g, double k_in_c)

↪→ {
517 partition ->inside[c] += k_in_c + g->self_loops[u];
518
519 partition ->incident[c] += g->weighted_degrees[u];
520 partition ->incident[c] -= k_in_c;
521 partition ->incident[c] -= g->self_loops[u];
522 partition ->node2comm[u] = c;
523 }
524
525 void remove_node(wgraph *g, Partition *partition , int u, int c, double

↪→ k_in_c) {
526 partition ->inside[c] -= k_in_c;
527 partition ->inside[c] -= g->self_loops[u];
528
529 partition ->incident[c] -= g->weighted_degrees[u];
530 partition ->incident[c] += k_in_c;

59

531 partition ->incident[c] += g->self_loops[u];
532 partition ->node2comm[u] = -1;
533 }
534
535 int* init_node2comm(wgraph *g) {
536 /* initialize partition with one community per node */
537 int *partition = (int*) malloc ((g->n)*sizeof(int));
538 for (int i = 0; i < (*g).n; i++) {
539 partition[i] = i;
540 }
541 return partition;
542 }
543
544 void reset_neighbour_info(wgraph *g, int *node2comm , int u, bool

↪→ *visited , double *k_in) {
545 /* reset neighbours_in and visited */
546 k_in[node2comm[u]] = 0;
547 visited[u] = false;
548 for (int i = 0; i < g->degrees[u]; i++) {
549 int v = g->links[u][i].dest;
550 int c = node2comm[v];
551 visited[c] = false;
552 k_in[c] = 0;
553 }
554 /* setting number of neighbours in each community for this node */
555 for (int i = 0; i < g->degrees[u]; i++) {
556 int v = g->links[u][i].dest;
557 int c = node2comm[v];
558 if (!(v == u)) { // does not count itself as a neighbour
559 k_in[c] += g->links[u][i]. weight;
560 }
561 }
562 }
563
564
565 bool should_visit(int u, int v, int *partition , bool *visited) {
566 int c = partition[v];
567 if (visited[c]) {
568 return false;
569 } else if (partition[u] == c) {
570 return false;
571 } else {
572 visited[c] = true;
573 }
574 return true;
575 }
576
577 /**
578 * returns a random community among <<best_communities >>
579 * or -1 if max_gain is zero and the tiebreaker chooses the original

↪→ community
580 **/
581 int tiebreak(int *best_communities , int n) {
582 int k_max;
583 int k;
584 // choose random community among the best:
585 k_max = n - 1;
586 k = rand_lim(k_max);
587 return best_communities[k];
588 }
589
590 /**
591 * returns a community for node u among it’s neighbouring communities

60

592 **/
593 int best_assignment(int *best_communities , int num_best_comm) {
594 int winner = -1;
595 if (num_best_comm < 1) {
596 return winner;
597 }
598 else if (! RANDOM_TIEBREAKER) {
599 return best_communities [0]; // num_best_comm - 1];
600 }
601 /* tiebreaker */
602 winner = tiebreak(best_communities , num_best_comm);
603 return winner;
604 }
605
606 bool one_level(wgraph *g, Partition* partition) {
607 bool *visited = (bool*) malloc ((g->n)*sizeof(bool));
608 double *k_in = (double *) malloc ((g->n)*sizeof(double));
609 int *best_communities = (int*) malloc ((g->n)*sizeof(int));
610
611 bool improvement = false;
612 long double gain_this_round;
613 long double max_gain;
614 long double removal_gain;
615 long double mod_incremental = modularity(g, partition);
616
617 int round = 0;
618 do { /* NEW ROUND */
619 round ++;
620 gain_this_round = 0;
621
622 int *node_perm;
623 if (RANDOM_ORDER) {
624 node_perm = rand_perm(g->n);
625 } else {
626 node_perm = malloc(g->n * sizeof *node_perm);
627 for (int i = 0; i < g->n; i++) {
628 node_perm[i] = i;
629 }
630 }
631
632 for (int p = 0; p < g->n; p++) {
633 int u = node_perm[p]; /* TREATING NODE u */
634 if (g->degrees[u] == 1 && g->links[u][0]. dest == u) return

↪→ false; // only self as neighbour
635
636 /* reset <<visited >> and <<neighbours_in >> for neighbourhood: */
637 reset_neighbour_info(g, partition ->node2comm , u, visited , k_in);
638
639 /* remove node from old community */
640 int old_community = partition ->node2comm[u];
641 remove_node(g, partition , u, old_community , k_in[old_community]);
642 removal_gain = -modularity_gain(g, partition , u, old_community ,

↪→ k_in[old_community]);
643
644 /* find all max gain communities among neighbours */
645 max_gain = -3;
646 int num_best_comm = 0; // number of communities with highest gain
647 for (int i = 0; i < g->degrees[u]; i++) {
648 int v = g->links[u][i].dest;
649 int c = partition ->node2comm[v];
650
651 if (! should_visit(u, v, partition ->node2comm , visited))

↪→ continue;

61

652
653 long double gain = removal_gain + modularity_gain(g,

↪→ partition , u, c, k_in[c]);
654 if (gain > max_gain) {
655 best_communities [0] = c;
656 num_best_comm = 1;
657 max_gain = gain;
658 } else if (gain == max_gain) {
659 best_communities[num_best_comm ++] = c;
660 }
661 }
662
663 if (max_gain <= 0.000000) {
664 // the node stays in it’s old community
665 best_communities [0] = old_community;
666 num_best_comm = 1;
667 max_gain = 0;
668 }
669 /* end find max gain communities */
670
671 /* Assign node to community */
672 int assign_to = best_assignment(best_communities , num_best_comm);
673 insert(u, assign_to , partition , g, k_in[assign_to]);
674
675 mod_incremental += max_gain;
676 gain_this_round += max_gain;
677
678 }
679 if (gain_this_round > 0) improvement = true;
680 } while (gain_this_round > MIN_MOD_INCREASE);
681 free(visited);
682 free(k_in);
683 free(best_communities);
684 return improvement;
685 }
686
687 void init_partition(wgraph *g, Partition *partition) {
688 int *node2comm = init_node2comm(g);
689 double *inside = calloc(g->n, sizeof *inside);
690 double *incident = (double *) malloc ((g->n)*sizeof(double));
691
692 for (int i = 0; i < g->n; i++) {
693 inside[i] = g->self_loops[i];
694 }
695 for (int i = 0; i < g->n; i++) {
696 incident[i] = g->weighted_degrees[i];
697 incident[i] -= g->self_loops[i]; //we should not count self_loops

↪→ twice here
698 }
699 partition ->inside = inside;
700 partition ->incident = incident;
701 partition ->node2comm = node2comm;
702 partition ->n = g->n;
703 }
704
705
706 void read_command_line_args(int argc , char **argv) {
707 for (int i=1; i<argc; i++){
708 if ((strcmp(argv[i],"-i")==0) || (strcmp(argv[i],"--input")==0)) {
709 IN_NAME = argv [++i];
710 }
711 } for (int i=1; i<argc; i++){
712 if ((strcmp(argv[i],"-o")==0) || (strcmp(argv[i],"--output")==0)) {

62

713 OUTPUT_FILENAME = argv [++i];
714 }
715 } for (int i=1; i<argc; i++){
716 if ((strcmp(argv[i],"-r")==0) || (strcmp(argv[i],"--random")==0)) {
717 RANDOM_ORDER = true;
718 RANDOM_TIEBREAKER = true;
719 }
720 } for (int i=1; i<argc; i++){
721 if ((strcmp(argv[i],"-m")==0) || (strcmp(argv[i],"--minmod")==0)) {
722 sscanf(argv [++i], "%lf", &MIN_MOD_INCREASE);
723 }
724 } for (int i=1; i<argc; i++){
725 if ((strcmp(argv[i],"-e")==0) ||

↪→ (strcmp(argv[i],"--edge -partition")==0)) {
726 sscanf(argv [++i], "%d", &TYPE);
727 }
728 }
729 }
730
731 /** shift community numbering **/
732 void renumber_partition(Partition *partition) {
733 /* old2new */
734 int *old2new = malloc(partition ->n * sizeof *old2new);
735 for (int i = 0; i < partition ->n; i++) {
736 old2new[i] = -1;
737 }
738 int k = 0; // new index of community
739 for (int i = 0; i < partition ->n; i++) {
740 int old_c = partition ->node2comm[i];
741 if (old2new[old_c] == -1) old2new[old_c] = k++;
742 }
743
744 double *new_inside = malloc(partition ->n * sizeof new_inside);
745 double *new_incident = malloc(partition ->n * sizeof new_incident);
746 for (int i = 0; i < partition ->n; i++) {
747 new_inside[i] = 0;
748 new_incident[i] = 0;
749 }
750 for (int i = 0; i < partition ->n; i++) {
751 int old_comm_index = partition ->node2comm[i];
752 int new_comm_index = old2new[old_comm_index];
753 partition ->node2comm[i] = new_comm_index;
754 new_inside[new_comm_index] = partition ->inside[old_comm_index];
755 new_incident[new_comm_index] = partition ->incident[old_comm_index];
756 }
757 free(partition ->inside);
758 free(partition ->incident);
759 partition ->inside = new_inside;
760 partition ->incident = new_incident;
761 }
762
763 int count_communities(Partition *partition) {
764 int n = 0;
765 for (int i = 0; i < partition ->n; i++) {
766 if (partition ->incident[i] > 0) n++;
767 }
768 return n;
769 }
770
771 /* communities must be numbered 0, 1, ... */
772 int* get_comm_sizes(wgraph *g, Partition *partition , int num_comms) {
773 int *comm_sizes = calloc(num_comms , sizeof *comm_sizes);
774 for (int i = 0; i < g->n; i++) {

63

775 comm_sizes[partition ->node2comm[i]]++;
776 }
777 return comm_sizes;
778 }
779
780 int** get_comm2nodes(wgraph *g, Partition *partition , int *comm_sizes ,

↪→ int num_comms) {
781 int *comm_indices = calloc(num_comms , sizeof *comm_indices);
782 int ** comm2nodes = malloc(num_comms * sizeof *comm2nodes);
783 comm2nodes [0] = malloc(g->n * sizeof ** comm2nodes);
784 for (int i = 1; i < num_comms; i++) {
785 comm2nodes[i] = comm2nodes[i-1] + comm_sizes[i-1];
786 }
787 for (int i = 0; i < g->n; i++) {
788 int c = partition ->node2comm[i];
789 comm2nodes[c][comm_indices[c]++] = i;
790 }
791 for (int i = 0; i < num_comms; i++) {
792 if (comm_indices[i] != comm_sizes[i])
793 report_error("get_comm_sizes: incoherence with indices");
794 }
795 free(comm_indices);
796 return comm2nodes;
797 }
798
799 int* get_degrees(wgraph *g, Partition *partition , int *comm_sizes , int

↪→ **comm2nodes , int n) {
800 int *neighb = calloc(n, sizeof *neighb);
801 int *degrees = malloc(n * sizeof *degrees);
802 for (int c = 0; c < n; c++) {
803 int deg_c = 0;
804 /* count neighb. in each comm. */
805 for (int i = 0; i < comm_sizes[c]; i++) {
806 int u = comm2nodes[c][i];
807 for (int j = 0; j < g->degrees[u]; j++) {
808 int v = g->links[u][j].dest;
809 int c_v = partition ->node2comm[v];
810 neighb[c_v]++;
811 }
812 }
813 /* find degree by counting each neighb. comm. only once */
814 for (int i = 0; i < comm_sizes[c]; i++) {
815 int u = comm2nodes[c][i];
816 for (int j = 0; j < g->degrees[u]; j++) {
817 int v = g->links[u][j].dest;
818 int c_v = partition ->node2comm[v];
819 if (neighb[c_v] == 1) deg_c ++;
820 neighb[c_v]--;
821 }
822 }
823 degrees[c] = deg_c;
824 }
825 free(neighb);
826 return degrees;
827 }
828
829 Edge** get_adj(wgraph *g, Partition *partition , int *degrees , int

↪→ *comm_sizes , int **comm2nodes , int n, int m) {
830 Edge **adj = malloc(n * sizeof *adj);
831 adj [0] = malloc(m * sizeof **adj);
832 for (int i = 1; i < n; i++) {
833 adj[i] = adj[i - 1] + degrees[i - 1];
834 }

64

835 int *neighb = calloc(n, sizeof *neighb); // num negihbours in each comm
836 double *neighb_weight = calloc(n, sizeof *neighb_weight);
837 for (int c = 0; c < n; c++) {
838 int k = 0; // neighbour index
839 /* loop through nodes in comm ,
840 and count number of edges to neighbour comms
841 and total weight of those edges */
842 for (int i = 0; i < comm_sizes[c]; i++) {
843 int u = comm2nodes[c][i];
844 for (int j = 0; j < g->degrees[u]; j++) {
845 int v = g->links[u][j].dest;
846 int c_v = partition ->node2comm[v];
847 if (c_v == c && u > v) continue; // count edges inside c only

↪→ once
848 neighb[c_v]++;
849 neighb_weight[c_v] += g->links[u][j]. weight;
850 }
851 }
852 /* find degree by counting each neighb. comm. only once */
853 for (int i = 0; i < comm_sizes[c]; i++) {
854 int u = comm2nodes[c][i];
855 for (int j = 0; j < g->degrees[u]; j++) {
856 int v = g->links[u][j].dest;
857 int c_v = partition ->node2comm[v];
858 if (c_v == c && u > v) continue;
859 if (neighb[c_v] == 1) {
860 Edge e;
861 e.dest = c_v;
862 e.weight = neighb_weight[c_v];
863 adj[c][k++] = e;
864 neighb_weight[c_v] = 0;
865 }
866 neighb[c_v]--;
867 }
868 }
869 }
870 free(neighb);
871 return adj;
872 }
873
874 wgraph* next_stage(wgraph *g, Partition *partition) {
875 wgraph *new_graph = malloc(sizeof *new_graph);
876
877 int n = count_communities(partition);
878 int *comm_sizes = get_comm_sizes(g, partition , n);
879 int ** comm2nodes = get_comm2nodes(g, partition , comm_sizes , n);
880 int *degrees = get_degrees(g, partition , comm_sizes , comm2nodes , n);
881 int m = 0;
882 for (int i = 0; i < n; i++) {
883 m += degrees[i];
884 }
885 Edge **adj = get_adj(g, partition , degrees , comm_sizes , comm2nodes , n,

↪→ m);
886
887 double *self_loops = malloc(n * sizeof *self_loops);
888 for (int u = 0; u < n; u++) {
889 for (int j = 0; j < degrees[u]; j++) {
890 if (adj[u][j].dest == u) {
891 self_loops[u] = adj[u][j]. weight;
892 }
893 }
894 }
895

65

896 double w = 0;
897 double *weighted_degs = malloc(n * sizeof *weighted_degs);
898 for (int u = 0; u < n; u++) {
899 weighted_degs[u] = 0;
900 for (int j = 0; j < degrees[u]; j++) {
901 weighted_degs[u] += adj[u][j]. weight;
902 w += adj[u][j]. weight;
903 }
904 weighted_degs[u] += self_loops[u];
905 w += self_loops[u];
906 }
907
908 new_graph ->n = n;
909 new_graph ->m = m;
910 new_graph ->w = w;
911 new_graph ->degrees = degrees;
912 new_graph ->links = adj;
913 new_graph ->weighted_degrees = weighted_degs;
914 new_graph ->self_loops = self_loops;
915 return new_graph;
916 }
917
918 void update_actual_partition(Partition *actual_partition , Partition

↪→ *new_partition) {
919 /* a community in actual must have numbering corresponding to it’s

↪→ node in new */
920 for (int i = 0; i < actual_partition ->n; i++) {
921 actual_partition ->inside[i] = 0;
922 actual_partition ->incident[i] = 0;
923 }
924 for (int i = 0; i < actual_partition ->n; i++) {
925 int old_comm = actual_partition ->node2comm[i];
926 int new_comm = new_partition ->node2comm[old_comm];
927 actual_partition ->node2comm[i] = new_comm;
928 actual_partition ->inside[new_comm] =

↪→ new_partition ->inside[new_comm];
929 actual_partition ->incident[new_comm] =

↪→ new_partition ->incident[new_comm];
930
931 }
932 }
933
934 void free_partition(Partition *partition) {
935 free(partition ->inside);
936 free(partition ->incident);
937 free(partition ->node2comm);
938 }
939
940 /**
941 * Perform the louvain algorithm on g.
942 * Returns the partition
943 * @param stages will be updated with number of stages the algorithm used
944 **/
945 Partition* louvain(wgraph *g, int *stages) {
946 /* initialize partition */
947 Partition *partition = malloc(sizeof *partition);
948 init_partition(g, partition);
949
950 /* <<partition >> is the partition in the graph we edit ,
951 * we need to remember the partition as it is in the original graph */
952 Partition *actual_partition = malloc(sizeof *actual_partition);
953 init_partition(g, actual_partition);
954

66

955 /* Perform steps of the algorithm until we get no more improvement */
956 bool improvement;
957 int stage = 0;
958 wgraph *new_graph = malloc(sizeof *new_graph);
959 do {
960 improvement = one_level(g, partition);
961 renumber_partition(partition);
962 update_actual_partition(actual_partition , partition);
963 new_graph = next_stage(g, partition);
964 free_partition(partition);
965 init_partition(new_graph , partition);
966 free_wgraph(g);
967 g = new_graph;
968 } while (improvement);
969
970 *stages = stage;
971 return actual_partition;
972 }
973
974 void create_wgraph(wgraph *g, char *in_name) {
975 /* create unweighted graph from file */
976 FILE *in_file = fopen(in_name , "r");
977 graph *raw_graph = graph_from_file(in_file);
978 fclose(in_file);
979
980 /* create weighted graph */
981 if (TYPE == 0) {
982 make_weighted(raw_graph , g);
983 } else {
984 make_linegraph(raw_graph , g);
985 }
986 }
987
988 void output_partition(wgraph *g, Partition *partition , int stages , double

↪→ elapsed_time , long double mod , FILE *outfile) {
989 int num_comm = count_communities(partition);
990 int *comm_sizes = get_comm_sizes(g, partition , num_comm);
991 int ** comm2nodes = get_comm2nodes(g, partition , comm_sizes , num_comm);
992
993 fprintf(outfile , "stages: %d \n", stages);
994 fprintf(outfile , "elapsed time: %f \n", elapsed_time);
995 fprintf(outfile , "num_coms: %d \n", num_comm);
996 fprintf(outfile , "mod: %Lf \n", mod);
997
998 for (int c = 0; c < num_comm; c++) {
999 for (int i = 0; i < comm_sizes[c]; i++) {

1000 int u = comm2nodes[c][i];
1001 if (TYPE == 0) {
1002 fprintf(outfile , "%d %d\n", c, u);
1003 } else {
1004 Edge e = node2edge[u];
1005 fprintf(outfile , "%d %d %d\n", c, e.dest , e.origin);
1006 }
1007 }
1008 }
1009 }
1010
1011 int main(int argc , char **argv) {
1012 //srand ((unsigned) 102458);
1013 srand(time(NULL));
1014
1015 /* command line arguments */
1016 read_command_line_args(argc , argv);

67

1017
1018 /* Create weighted graph */
1019 wgraph *g = malloc(sizeof *g);
1020 create_wgraph(g, IN_NAME);
1021
1022 /* Run the algorithm */
1023 int stages = 0;
1024 clock_t start_at = clock();
1025 Partition *partition = louvain(g, &stages);
1026 double elapsed = ((double) (clock() - start_at)) / CLOCKS_PER_SEC;
1027
1028 /* recreate original graph */
1029 wgraph *original_graph = malloc(sizeof *original_graph);
1030 create_wgraph(original_graph , IN_NAME);
1031 long double mod_final = modularity(original_graph , partition);
1032
1033 /* output file */
1034 FILE *outfile = fopen(OUTPUT_FILENAME , "w");
1035 output_partition(g, partition , stages , elapsed , mod_final , outfile);
1036 fclose(outfile);
1037 }

68

Appendix B

The implementation of my algorithm

Listing B.1: Source code of my algorithm
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <stdbool.h>
5 #include <time.h>
6 #include <math.h>
7 #include <assert.h>
8 #include <float.h>
9

10 #include "prelim.c"
11 #include "rand.c"
12
13 char *IN_NAME = "./data/karate_right_numbers_converted";
14 // double MIN_MOD_INCREASE = 0.0;
15 char *OUTPUT_FILENAME = "output";
16 char *HISTORY_FILENAME = NULL;
17 bool RANDOM = false;
18 bool ONLY_NEIGHBOURS = false;
19 int MEASURE = -1;
20
21 void read_command_line_args(int argc , char **argv) {
22 int i;
23 for (i=1; i<argc; i++){
24 if ((strcmp(argv[i],"-i")==0) || (strcmp(argv[i],"--input")==0)) {
25 IN_NAME = argv [++i];
26 }
27 } for (i=1; i<argc; i++){
28 if ((strcmp(argv[i],"-o")==0) || (strcmp(argv[i],"--output")==0)) {
29 OUTPUT_FILENAME = argv [++i];
30 }
31 } for (i=1; i<argc; i++){
32 if ((strcmp(argv[i],"-h")==0) || (strcmp(argv[i],"--history")==0))

↪→ {
33 HISTORY_FILENAME = argv [++i];
34 }
35 } for (i=1; i<argc; i++){
36 if ((strcmp(argv[i],"-m")==0) || (strcmp(argv[i],"--measure")==0))

↪→ {
37 sscanf(argv [++i], "%d", &MEASURE);
38 }

69

39 } for (i=1; i<argc; i++){
40 if ((strcmp(argv[i],"-r")==0) || (strcmp(argv[i],"--random")==0)) {
41 RANDOM = true;
42 }
43 } for (i=1; i<argc; i++){
44 if ((strcmp(argv[i],"-n")==0) ||

↪→ (strcmp(argv[i],"--neighbours")==0)) {
45 ONLY_NEIGHBOURS = true;
46 }
47 }
48
49 }
50
51 // ////////////////////////
52 // BEGIN : DATA STRUCTURES
53 // ////////////////////////
54
55 typedef struct LocalEdge {
56 // origin node ID
57 int ori;
58 // local number among the neighbours
59 int nei_num;
60 } LocalEdge;
61
62 typedef struct EdgeCommunities {
63 // number of communities
64 int k;
65 // number of edges in each community (table of size k)
66 int* nb_edge;
67 // number of nodes in each community (table of size k)
68 int* nb_node;
69 // list of edges in each community (table of size k pointing to a

↪→ table of size m)
70 LocalEdge ** edge_list;
71 // list of nodes in each community (table of size k pointing to a

↪→ table of size <= 2m)
72 int** node_list;
73 // mapping edge (u,i) -> community (table of size n pointing to a

↪→ table of size 2m, same as "links" for a graph)
74 int** edge_to_com;
75 } EdgeCommunities;
76
77 void free_EdgeCommunities(EdgeCommunities *com) {
78 free(com ->nb_edge);
79 free(com ->nb_node);
80 free(com ->edge_list [0]);
81 free(com ->edge_list);
82 free(com ->node_list [0]);
83 free(com ->node_list);
84 free(com ->edge_to_com [0]);
85 free(com ->edge_to_com);
86 }
87
88 typedef struct SuperPartition {
89 // number of supersets
90 int p;
91 // minimum free ID for a super set
92 int freeID;
93 // number of edges in each super set (table of size k with only p

↪→ (non -consecutive) indices that are valid)
94 int* nb_edge;
95 // number of nodes in each super set (table of size k with only p

↪→ (non -consecutive) indices that are valid)

70

96 int* nb_node;
97 // mapping community -> super set (table of size k)
98 int* com_to_sset;
99 } SuperPartition;

100
101 void free_SuperPartition(SuperPartition *spart) {
102 free(spart ->nb_edge);
103 free(spart ->nb_node);
104 free(spart ->com_to_sset);
105 }
106 // //////////////////////
107 // END : DATA STRUCTURES
108 // //////////////////////
109
110 typedef struct Edge {
111 int dest;
112 int origin;
113 double weight;
114 } Edge;
115
116 Edge *node2edge;
117
118 int *rand_perm(int n){
119 int *perm;
120 int i, tmp , j;
121 if((perm=(int *) malloc(n*sizeof(int))) == NULL)
122 printf("random_perm: malloc () error");
123 for (i=n-1;i>=0;i--)
124 perm[i] = i;
125 for (i=n-1;i>=0;i--){
126 j = random ()%(i+1);
127 tmp = perm[i];
128 perm[i] = perm[j];
129 perm[j] = tmp;
130 }
131 return(perm);
132 }
133
134 void print_communities(const graph *g, EdgeCommunities * com , FILE* fout)

↪→ {
135 int i;
136 int j;
137 for (i=0; i<com ->k; i++) {
138 fprintf(fout ,"edges=%d, nodes=%d\n", com ->nb_edge[i],

↪→ com ->nb_node[i]);
139 for (j=0; j<com ->nb_edge[i]; j++) {
140 fprintf(fout ,"(%d,%d)

↪→ ",com ->edge_list[i][j].ori ,g->links[com ->edge_list[i][j].ori][com ->edge_list[i][j]. nei_num]);
141 }
142 fprintf(fout ,"\n");
143 }
144
145 }
146
147 // ////////////////////
148 // BEGIN : EXPECTATION
149 // ////////////////////
150
151 int find_max_deg(const graph *g) {
152 int max_deg = 0;
153 int i;
154 for (i = 0; i < g->n; i++) {
155 if (g->degrees[i] > max_deg) {

71

156 max_deg = g->degrees[i];
157 }
158 }
159 return max_deg;
160 }
161
162 /** table with how many couples of each degreee -combination there are in

↪→ g**/
163 int ** get_S(const graph *g, int max_deg) {
164 int **S = calloc ((max_deg + 1), sizeof *S);
165 int i;
166 int u;
167 int v;
168 for (i = 0; i <= max_deg; i++) {
169 S[i] = calloc ((max_deg + 1), sizeof **S);
170 }
171 for (u = 0; u < g->n; u++) {
172 for (v = 0; v < g->n; v++) {
173 if (u == v) continue;
174 S[g->degrees[u]][g->degrees[v]] += 1;
175 }
176 }
177 /* couples between equal degree are counted twice in the table */
178 for (i = 0; i < max_deg + 1; i++) {
179 S[i][i] /= 2;
180 }
181 return S;
182 }
183
184 /** table with how many edges of each degreee -combination there are in g

↪→ **/
185 int ** get_T(const graph *g, int max_deg) {
186 int **T = calloc ((max_deg + 1), sizeof *T);
187 int i;
188 int j;
189 int u;
190 int v;
191 for (i = 0; i <= max_deg; i++) {
192 T[i] = calloc ((max_deg + 1), sizeof **T);
193 }
194 for (u = 0; u < g->n; u++) {
195 for (j = 0; j < g->degrees[u]; j++) {
196 v = g->links[u][j];
197 T[g->degrees[u]][g->degrees[v]] += 1;
198 }
199 }
200 for (i = 0; i < max_deg; i++) {
201 T[i][i] /= 2;
202 }
203 return T;
204 }
205
206 /** Probability that u and v is in V(C) of a community of size l,
207 * if there is an edge between u and v **/
208 long double Puv_edge(int l, int ku , int kv , int m) {
209 // works correctly for:
210 // calculated for hand Puv_edge(1, 1, 4, 6) = 0.16666666666666666
211 // calculated for hand Puv_edge(1, 2, 4, 6) = 0.225180
212 if (ku == 0 || kv == 0) return 0;
213 if (l == m) return 1;
214 long double Puv = 0;
215 Puv += pow (1.0 - (long double) l/(long double)m, ku + kv - 1);
216 Puv -= pow (1.0 - (long double) l/(long double)m, ku);

72

217 Puv -= pow (1.0 - (long double) l/(long double)m, kv);
218 Puv += 1.0;
219 return Puv;
220 }
221
222 /** Probability that u and v is in V(C) of a community of size l,
223 * if there is no edge between u and v **/
224 long double Puv_noedge(int l, int ku , int kv , int m) {
225 // works correctly for:
226 // calculated for hand Puv_noedge (1, 1, 4, 6) = 0.08629115226337448
227 if (ku == 0 || kv == 0) return 0;
228 if (l == m) return 1;
229 long double Puv = 0;
230 Puv += pow (1.0 - (long double) l/(long double)m, ku + kv);
231 Puv -= pow (1.0 - (long double) l/(long double)m, ku);
232 Puv -= pow (1.0 - (long double) l/(long double)m, kv);
233 Puv += 1.0;
234 return Puv;
235 }
236
237 long double expectation(int l, const graph *g, bool* calculated , long

↪→ double* expectation_table) {
238 if (calculated[l]) return expectation_table[l];
239 int ku;
240 int kv;
241 int i;
242
243 int max_deg = find_max_deg(g);
244 int **S = get_S(g, max_deg);
245 int **T = get_T(g, max_deg);
246
247 long double expectation = 0;
248 for (ku = 0; ku <= max_deg; ku++) {
249 for (kv = 0; kv <= max_deg; kv++) {
250 if (ku > kv) continue;
251 long double edge = (long double) T[ku][kv];
252 long double noedge = (long double) S[ku][kv] - edge;
253 expectation += noedge * Puv_noedge(l, ku, kv, g->m);
254 expectation += edge * Puv_edge(l, ku, kv, g->m);
255 }
256 }
257
258 for (i = 0; i < max_deg; i++) {
259 free(S[i]);
260 free(T[i]);
261 }
262 free(S);
263 free(T);
264
265 expectation_table[l] = expectation;
266 calculated[l] = true;
267 return expectation;
268 }
269
270 // ////////////////////
271 // END : EXPECTATION
272 // ////////////////////
273
274 // create and initialise a super partition from a given partition into

↪→ communities by putting each community alone in its super set
275 SuperPartition* init_superpart (const EdgeCommunities* com) {
276 int c;
277 SuperPartition* spart;

73

278 if((spart=(SuperPartition *) malloc(sizeof(SuperPartition))) == NULL)
279 report_error("init_superpart: malloc () error");
280 spart ->p = com ->k;
281 spart ->freeID = spart ->p;
282
283 if((spart ->nb_edge =(int*) malloc(com ->k * sizeof(int))) == NULL)
284 report_error("init_superpart: malloc () error");
285 if((spart ->nb_node =(int*) malloc(com ->k * sizeof(int))) == NULL)
286 report_error("init_superpart: malloc () error");
287 if((spart ->com_to_sset =(int*) malloc(com ->k * sizeof(int))) == NULL)
288 report_error("init_superpart: malloc () error");
289
290 for (c = 0; c < com ->k; c++) {
291 spart ->nb_edge[c] = com ->nb_edge[c];
292 spart ->nb_node[c] = com ->nb_node[c];
293 spart ->com_to_sset[c] = c;
294 }
295 return spart;
296 }
297
298 // ///
299 // ////////////////////////////// UPDATE_COMMUNITIES

↪→ ///
300 // ///
301 /// IN: spart , g
302 /// IN/OUT: com , visited_nodes (comes back to its initial value at the

↪→ end of the procedure)
303 /// OUT:
304 // ///
305 /// PRE -REQUISITE: all cells of visted nodes contain the value -1 and

↪→ spart is a proper partition of the communities in com , which are
↪→ communities of graph g

306 /// RESULT: update com by merging the communities belonging to the same
↪→ part of the super partition spart

307 // ///
308 void update_communities(EdgeCommunities* com , const SuperPartition*

↪→ spart , const graph* g, int* visited_nodes) {
309
310 int l;
311 int i,j;
312 int u,v;
313 LocalEdge ** new_edge_list;
314 int* cur_edge;
315 int* nb_com;
316 int** com_list;
317 int* cur_com_list;
318 int** new_node_list;
319
320 // build a table new_com of mapping from old communities to new

↪→ comunity number from 0 to p-1
321 // update com ->nb_edge et com ->nb_node (old values are lost)
322 int* new_com;
323 int* new_nb_edge;
324 int* new_nb_node;
325 int cur_com;
326
327 if((new_com =(int *) malloc(com ->k*sizeof(int))) == NULL)
328 report_error("update_communities: malloc () error");
329 if((new_nb_edge =(int *) malloc(spart ->p*sizeof(int))) == NULL)
330 report_error("update_communities: malloc () error");
331 if((new_nb_node =(int *) malloc(spart ->p*sizeof(int))) == NULL)
332 report_error("update_communities: malloc () error");
333

74

334 cur_com = 0;
335 for (i=0; i<com ->k; i++) {
336 if (spart ->nb_edge[i]!= -1) {
337 new_com[i] = cur_com;
338 new_nb_edge[cur_com]=spart ->nb_edge[i];
339 new_nb_node[cur_com]=spart ->nb_node[i];
340 cur_com ++;
341 }
342 else
343 new_com[i] = -1;
344 }
345 if (cur_com != (spart ->p)) report_error("update_communities:

↪→ incoherence with p");
346
347 // update com ->edge_to_com
348 for (u=0; u<g->n; u++) {
349 for (v=0; v<g->degrees[u]; v++) {
350 com ->edge_to_com[u][v] =

↪→ new_com[spart ->com_to_sset[com ->edge_to_com[u][v]]];
351 }
352 }
353
354 // update com ->edge_list
355 if((new_edge_list =(LocalEdge **) malloc(spart ->p*sizeof(LocalEdge *)))

↪→ == NULL)
356 report_error("update_communities: malloc () error");
357 if((new_edge_list [0]=(LocalEdge *) malloc(g->m*sizeof(LocalEdge))) ==

↪→ NULL)
358 report_error("update_communities: malloc () error");
359 for (i=1; i<spart ->p; i++) {
360 new_edge_list[i] = new_edge_list[i-1]+ new_nb_edge[i-1];
361 }
362 if((cur_edge =(int *) malloc(spart ->p*sizeof(int))) == NULL)
363 report_error("update_communities: malloc () error");
364 for (i=0; i<spart ->p; i++) cur_edge[i] = 0;
365
366 for (i=0; i<com ->k; i++) {
367 for (j=0; j<com ->nb_edge[i]; j++) {
368 new_edge_list[new_com[spart ->com_to_sset[i]]][cur_edge[new_com[spart ->com_to_sset[i]]]+j]=com ->edge_list[i][j];
369 }
370 cur_edge[new_com[spart ->com_to_sset[i]]] += com ->nb_edge[i];
371 }
372
373 for (i=0; i<spart ->p; i++) {
374 if (cur_edge[i] != new_nb_edge[i])

↪→ report_error("update_communities: incoherence in
↪→ new_edge_list");

375 }
376
377 free(cur_edge);
378
379 // update com ->node_list
380 if((nb_com =(int*) malloc(spart ->p*sizeof(int))) == NULL)
381 report_error("update_communities: malloc () error");
382 for (i=0; i<spart ->p; i++) {
383 nb_com[i]=0;
384 }
385 for (i=0; i<com ->k; i++) {
386 nb_com[new_com[spart ->com_to_sset[i]]]++;
387 }
388
389 if((com_list =(int **) malloc(spart ->p*sizeof(int*))) == NULL)
390 report_error("update_communities: malloc () error");

75

391 if((com_list [0]=(int*) malloc(com ->k*sizeof(int))) == NULL)
392 report_error("update_communities: malloc () error");
393 for (i=1; i<spart ->p; i++) {
394 com_list[i] = com_list[i-1]+ nb_com[i-1];
395 }
396
397 if((cur_com_list =(int*) malloc(spart ->p*sizeof(int))) == NULL)
398 report_error("update_communities: malloc () error");
399 for (i=0; i<spart ->p; i++) {
400 cur_com_list[i]=0;
401 }
402
403 for (i=0; i<com ->k; i++) {
404 com_list[new_com[spart ->com_to_sset[i]]][cur_com_list[new_com[spart ->com_to_sset[i]]]]=i;
405 cur_com_list[new_com[spart ->com_to_sset[i]]]++;
406 }
407 for (i=0; i<spart ->p; i++) {
408 if (cur_com_list[i] != nb_com[i])

↪→ report_error("update_communities: incoherence in com_list");
409 }
410 free(cur_com_list);
411
412 if((new_node_list =(int **) malloc(spart ->p*sizeof(int*))) == NULL)
413 report_error("update_communities: malloc () error");
414 if((new_node_list [0]=(int*) malloc (2*g->m*sizeof(int))) == NULL)
415 report_error("update_communities: malloc () error");
416 for (i=1; i<spart ->p; i++) {
417 new_node_list[i] = new_node_list[i-1]+ new_nb_node[i-1];
418 }
419
420 int cur_merge;
421 for (i=0; i<spart ->p; i++) {
422 cur_merge = 0;
423 for (j=0; j<nb_com[i]; j++) {
424 for (l=0; l<com ->nb_edge[com_list[i][j]]; l++) {
425 u=com ->edge_list[com_list[i][j]][l].ori;
426 v=g->links[u][com ->edge_list[com_list[i][j]][l]. nei_num];
427 if (visited_nodes[u] == -1) {
428 visited_nodes[u]=1;
429 new_node_list[i][cur_merge]=u;
430 cur_merge ++;
431 }
432 if (visited_nodes[v] == -1) {
433 visited_nodes[v]=1;
434 new_node_list[i][cur_merge]=v;
435 cur_merge ++;
436 }
437 }
438 }
439 if (cur_merge != new_nb_node[i])

↪→ report_error("update_communities: incoherence in
↪→ node_list");

440 // reset visited_nodes
441 for (j=0; j<new_nb_node[i]; j++) {
442 visited_nodes[new_node_list[i][j]] = -1;
443 }
444 }
445
446 free(com ->node_list [0]);
447 free(com ->node_list);
448 com ->node_list=new_node_list;
449
450 // update com ->k

76

451 com ->k = spart ->p;
452
453 // update com ->nb_edge and com ->nb_node
454 free(com ->nb_edge);
455 free(com ->nb_node);
456 com ->nb_edge=new_nb_edge;
457 com ->nb_node=new_nb_node;
458
459 // update com ->edge_list
460 free(com ->edge_list [0]);
461 free(com ->edge_list);
462 com ->edge_list = new_edge_list;
463
464 //free memory
465 free(new_com);
466 free(nb_com);
467 free(com_list [0]);
468 free(com_list);
469
470 }
471
472 // ///
473 // ///////////////////////////////////// NODE_DIFF

↪→ ///
474 // ///
475 /// IN:
476 /// IN/OUT:
477 /// OUT:
478 // ///
479 /// PRE -REQUISITE:
480 /// RESULT: for c a community not in super set sset , return the number of

↪→ nodes of c that are not in sset
481 // ///
482 int node_diff (const int c, const int sset , const EdgeCommunities* com ,

↪→ const SuperPartition* spart , const graph* g) {
483 int diff = 0;
484
485 int u;
486 bool in_sset;
487 int i,j;
488
489 for (i = 0; i < com ->nb_node[c] ; i++) {
490 u = com ->node_list[c][i];
491
492 in_sset = false;
493 j = 0;
494 while ((j < g->degrees[u]) && !in_sset) {
495 if (spart ->com_to_sset[com ->edge_to_com[u][j]]== sset) in_sset =

↪→ true;
496 j++;
497 }
498 if (! in_sset) diff ++;
499
500 }
501 return diff;
502 }
503
504 int count_couples(EdgeCommunities *com) {
505 int couples = 0;
506 int c;
507 for (c = 0; c < com ->k; c++) {
508 couples += (com ->nb_node[c] * (com ->nb_node[c] - 1))/2;
509 }

77

510 return couples;
511 }
512
513 long double calculate_expectation(const graph *g, EdgeCommunities *com ,

↪→ bool *calculated , long double * expectation_table) {
514 long double expect = 0;
515 int c;
516 for (c = 0; c < com ->k; c++) {
517 expect += expectation(com ->nb_edge[c], g, calculated ,

↪→ expectation_table);
518 }
519 return expect;
520 }
521
522 // returns modularity of edge -partition , using the formula:
523 // Q = |E|*(1/ couples(partition) - 1/E(couples(partition)))
524 long double edge_modularity(const graph *g, EdgeCommunities *partition ,

↪→ bool* calculated , long double* expectation_table) {
525 int couples = count_couples(partition);
526 long double q1 = ((long double) g->m) / ((long double) couples);
527
528 long double expect = calculate_expectation(g, partition , calculated ,

↪→ expectation_table);
529 long double q2 = ((long double) g->m) / expect;
530
531 return q1 - q2;
532 }
533
534 // returns modularity of edge -partition , using the formula:
535 // Q = |E|*(couples(partition) - E(couples(partition)))
536 long double edge_mod_minus(const graph *g, EdgeCommunities *partition ,

↪→ bool* calculated , long double* expectation_table) {
537 int couples = count_couples(partition);
538 long double expect = calculate_expectation(g, partition , calculated ,

↪→ expectation_table);
539 return (expect - (long double)couples);
540 }
541
542 // returns modularity of edge -partition , using the formula:
543 // Q = |E|*(E(couples(partition))/couples(partition))
544 long double edge_mod_ratio(const graph *g, EdgeCommunities *partition ,

↪→ bool* calculated , long double* expectation_table) {
545 int couples = count_couples(partition);
546 long double expect = calculate_expectation(g, partition , calculated ,

↪→ expectation_table);
547 return expect / couples;
548 }
549
550 // gain in modularity for putting community c into sset
551 long double edge_mod_gain(int c, int sset , int couples_in_spart , long

↪→ double expect_spart , EdgeCommunities * com , SuperPartition *spart ,
↪→ const graph *g, bool* calculated , long double* expectation_table) {

552
553 if (expect_spart <= 0.0)
554 report_error("The expected number of couples in the partition must

↪→ be positive .\n");
555 if (couples_in_spart <= 0)
556 report_error("the number of couples in the superpartition must be

↪→ positive .\n");
557
558 // COUPLES
559 int diff_nodes = node_diff(c, sset , com , spart , g);
560 int nodes_sset = spart ->nb_node[sset];

78

561 int nodes_c = com ->nb_node[c];
562
563 int couples_after = couples_in_spart;
564 couples_after -= (spart ->nb_node[sset] * (spart ->nb_node[sset] - 1)) /

↪→ 2;
565 couples_after -= (nodes_c * (nodes_c - 1)) / 2;
566 couples_after += ((nodes_sset + diff_nodes) * (nodes_sset + diff_nodes

↪→ - 1)) / 2;
567
568 // EXPECTED COUPLES
569 long double expectation_after = expect_spart;
570 expectation_after -= expectation(com ->nb_edge[c], g, calculated ,

↪→ expectation_table);
571 expectation_after -= expectation(spart ->nb_edge[sset], g, calculated ,

↪→ expectation_table);
572 expectation_after += expectation(com ->nb_edge[c] +

↪→ spart ->nb_edge[sset], g, calculated , expectation_table);
573
574 // DELTA MODULARITY
575 // modularity is mod after merge , minus mod before
576 long double mod;
577 if (MEASURE == 1) {
578 // with first idea of modularity
579 mod = (long double) g->m / ((long double) (couples_after)) - (long

↪→ double) g->m / ((long double) (expectation_after));
580 mod -= (long double) g->m / ((long double) couples_in_spart) -

↪→ (long double) g->m / ((long double) expect_spart);
581 } else if (MEASURE == 2) {
582 // with second idea of modularity
583 mod = ((long double) (couples_after)) - ((long double)

↪→ (expectation_after));
584 mod -= ((long double) couples_in_spart) - ((long double)

↪→ expect_spart);
585 mod = -mod;
586 } else if (MEASURE == 3) {
587 // with third idea of modularity
588 mod = ((long double) (expectation_after)) / ((long double)

↪→ (couples_after)) ;
589 mod -= ((long double) expect_spart) / ((long double)

↪→ couples_in_spart);
590 } else report_error("measure must be given with -m option\n");
591
592 return mod;
593 }
594
595 // Returns sorted adj -list
596 int** sort_adj_list(graph *g) {
597 int i, u, j;
598 // allocate memory for new adjacency list
599 int **adj = (int**) calloc(g->n,sizeof(int*));
600 adj [0] = (int*) calloc (2*g->m, sizeof(int));
601 for (i = 1; i < g->n; i++) {
602 adj[i] = adj[i-1] + g->degrees[i-1];
603 }
604
605 int *indices = (int*) calloc(g->n, sizeof(int));
606
607 for (u = 0; u < g->n; u++) {
608 for (j = 0; j < g->degrees[u]; j++) {
609 int v = g->links[u][j];
610 adj[v][indices[v]++] = u;
611 }
612 }

79

613 free(indices);
614 return adj;
615 }
616
617 void init_edge_communities(const graph *g, EdgeCommunities* partition) {
618 int i;
619 partition ->k = g->m;
620
621 // Allocate nb_edge , nb_node
622 if((partition ->nb_edge =(int *) malloc(partition ->k*sizeof(int))) ==

↪→ NULL)
623 report_error("init_edge_communities: malloc () error");
624 for (i = 0; i < partition ->k; i++) {
625 partition ->nb_edge[i] = 1;
626 }
627 if((partition ->nb_node =(int *) malloc(partition ->k*sizeof(int))) ==

↪→ NULL)
628 report_error("init_edge_communities: malloc () error");
629 for (i = 0; i < partition ->k; i++) {
630 partition ->nb_node[i] = 2;
631 }
632
633 // Allocate edge_list
634 if((partition ->edge_list =(LocalEdge

↪→ **) malloc(partition ->k*sizeof(LocalEdge *))) == NULL)
635 report_error("init_edge_communities: malloc () error");
636 if((partition ->edge_list [0]=(LocalEdge *) malloc(g->m *

↪→ sizeof(LocalEdge))) == NULL)
637 report_error("init_edge_communities: malloc () error");
638 for (i = 1; i < partition ->k; i++) {
639 partition ->edge_list[i] = partition ->edge_list[i-1] + 1;
640 }
641
642 // Allocate node_list
643 if((partition ->node_list =(int **) malloc(partition ->k*sizeof(int*)))

↪→ == NULL)
644 report_error("init_edge_communities: malloc () error");
645 if((partition ->node_list [0]=(int *) malloc (2*g->m * sizeof(int))) ==

↪→ NULL)
646 report_error("init_edge_communities: malloc () error");
647 for (i = 1; i < partition ->k; i++) {
648 partition ->node_list[i] = partition ->node_list[i-1] + 2;
649 }
650
651 // Allocate edge_to_com
652 if((partition ->edge_to_com =(int **) malloc(g->n*sizeof(int*))) == NULL

↪→)
653 report_error("init_edge_communities: malloc () error");
654 if((partition ->edge_to_com [0]=(int *) malloc (2*g->m * sizeof(int)))

↪→ == NULL)
655 report_error("init_edge_communities: malloc () error");
656 for (i = 1; i < g->n; i++) {
657 partition ->edge_to_com[i] = partition ->edge_to_com[i-1] +

↪→ g->degrees[i-1];
658 }
659
660 // Fill edge_list , node_list , and edge_to_com
661 //int ** sorted_adj = sort_adj_list(g);
662 int* indices;
663 if((indices =(int *) malloc(g->n*sizeof(int))) == NULL)
664 report_error("init_edge_communities: malloc () error");
665 for (i = 0; i < g->n; i++) indices[i]=0;
666

80

667 int u,j,l;
668 int com = 0;
669 for (u = 0; u < g->n; u++) {
670 for (j = 0; j < g->degrees[u]; j++) {
671 int v = g->links[u][j];
672 if (u < v) {
673
674 // fill edge_list
675 partition ->edge_list[com][0]. ori = u;
676 partition ->edge_list[com][0]. nei_num = j;
677
678 // fill node_list
679 partition ->node_list[com][0] = u;
680 partition ->node_list[com][1] = v;
681
682 // fill edge_to_com
683 partition ->edge_to_com[u][j] = com;
684
685 com++;
686 }
687 else {
688 l=0;
689 while (g->links[v][l]!=u) l++;
690 partition ->edge_to_com[u][j] = partition ->edge_to_com[v][l];
691 }
692 }
693 }
694
695 free(indices);
696 }
697
698 // Remove c from it’s superset and put it in a new superset freeID. Do

↪→ not update freeID
699 void remove_com(int c, EdgeCommunities *com , SuperPartition *spart , const

↪→ graph *g) {
700 int sset = spart ->com_to_sset[c];
701
702 if (com ->nb_edge[c] != spart ->nb_edge[sset]) {
703 spart ->p++;
704
705 spart ->com_to_sset[c] = spart ->freeID;
706 spart ->nb_edge[sset] -= com ->nb_edge[c];
707 spart ->nb_node[sset] -= node_diff(c, sset , com , spart , g);
708
709 spart ->nb_edge[spart ->com_to_sset[c]] = com ->nb_edge[c];
710 spart ->nb_node[spart ->com_to_sset[c]] = com ->nb_node[c];
711
712 if (spart ->nb_node[sset] <= 0 || spart ->nb_edge[sset] <= 0)
713 report_error("a sset ended up with a non -positive number of

↪→ nodes or edges after moving a community out of it");
714 }
715 }
716
717 // move c from its current super set (local variable ori_sset) to

↪→ dest_sset
718 void move(int c, int dest_sset , EdgeCommunities *com , SuperPartition

↪→ *spart , const graph *g) {
719 int diff_nodes_ori;
720 int diff_nodes_dest = node_diff(c, dest_sset , com , spart , g);
721 int ori_sset = spart ->com_to_sset[c];
722
723 spart ->nb_edge[dest_sset] += com ->nb_edge[c];
724 spart ->nb_node[dest_sset] += diff_nodes_dest;

81

725
726 spart ->com_to_sset[c] = dest_sset;
727
728
729 if (spart ->nb_edge[ori_sset] == com ->nb_edge[c]) {
730 spart ->nb_edge[ori_sset] = -1;
731 spart ->nb_node[ori_sset] = -1;
732 spart ->p -= 1;
733 if (ori_sset < spart ->freeID) spart ->freeID = ori_sset;
734 }
735 else {
736 diff_nodes_ori = node_diff(c, ori_sset , com , spart , g);
737 spart ->nb_edge[ori_sset] -= com ->nb_edge[c];
738 spart ->nb_node[ori_sset] -= diff_nodes_ori;
739 }
740
741 }
742
743 // take a partition into edge communities and group some communities

↪→ together to obtain a superpartition
744 // return true if there is an improvement
745 bool one_level_edge(const graph *g, EdgeCommunities* com , SuperPartition

↪→ *spart , bool* calculated , long double* expectation_table) {
746 int c;
747 // ///////// initialize couples and expectation /////////////////
748 // remember to update this for every insert/remove:
749 int couples_in_spart = 0;
750 long double expect_spart = 0.0;
751 int diff_nodes;
752 int nodes_sset;
753
754 // all communities in different super sets
755 for (c = 0; c < com ->k; c++) {
756 couples_in_spart += (com ->nb_node[c] * (com ->nb_node[c] - 1)) / 2;
757 expect_spart += expectation(com ->nb_edge[c], g, calculated ,

↪→ expectation_table);
758 }
759
760 bool improved_this_turn;
761 bool overall_improvement = false;
762 long double best_mod_gain;
763 long double gain_comeback;
764 int inter_sset;
765 int *random_order;
766
767 int round = 0;
768 int h, c2;
769 do {
770 round ++;
771
772 if (RANDOM) {
773 random_order = rand_perm(com ->k);
774 } else {
775 random_order = (int*) malloc(com ->k*sizeof(int));
776 for (int i = 0; i < com ->k; i++) {
777 random_order[i] = i;
778 }
779 }
780 improved_this_turn = false;
781 // //////////// Treat community c //////////////////
782 for (h = 0; h < com ->k; h++) {
783 int c = random_order[h];
784 int old_sset = spart ->com_to_sset[c];

82

785
786 // ///////// Put c in a sset by itself /////////////////
787 remove_com(c, com , spart , g);
788 inter_sset = spart ->com_to_sset[c];
789
790 // update if we moved c:
791 if (spart ->com_to_sset[c] != old_sset) {
792 // update expectation:
793 expect_spart -= expectation(com ->nb_edge[c] +

↪→ spart ->nb_edge[old_sset], g, calculated ,
↪→ expectation_table);

794 expect_spart += expectation(spart ->nb_edge[old_sset], g,
↪→ calculated , expectation_table);

795 expect_spart += expectation(com ->nb_edge[c], g, calculated ,
↪→ expectation_table);

796
797 // update couples:
798 diff_nodes = node_diff(c, old_sset , com , spart , g);
799 nodes_sset = spart ->nb_node[old_sset];
800 couples_in_spart -= ((nodes_sset + diff_nodes) * (nodes_sset

↪→ + diff_nodes - 1)) / 2;
801 couples_in_spart += (nodes_sset * (nodes_sset - 1)) / 2;
802 couples_in_spart += (com ->nb_node[c] * (com ->nb_node[c] - 1))

↪→ / 2;
803 }
804
805 // ///////////// which sset do we insert c into?

↪→ //////////////////
806 int best_sset = -1;
807 best_mod_gain = -LDBL_MAX;
808 if (spart ->com_to_sset[c] == old_sset) gain_comeback = 0.0;
809 for (c2 = 0; c2 < com ->k; c2++) {
810 int new_sset;
811 if (c2 != c) {
812 new_sset = spart ->com_to_sset[c2];
813 if (ONLY_NEIGHBOURS && node_diff(c, new_sset , com , spart ,

↪→ g) == com ->nb_node[c]){
814 continue; //don’t move if no links are shared between

↪→ V(c) and V(new_sset)
815 }
816 long double gain = 0.0;
817 gain = edge_mod_gain(c, new_sset , couples_in_spart ,

↪→ expect_spart , com , spart , g, calculated ,
↪→ expectation_table);

818 if (new_sset == old_sset) gain_comeback = gain;
819
820 if (gain > best_mod_gain) {
821 best_mod_gain = gain;
822 best_sset = new_sset;
823 }
824 }
825 }
826
827 if (best_mod_gain < 0.0) {
828 best_mod_gain = 0.0;
829 best_sset = spart ->com_to_sset[c];
830 }
831
832 if (best_mod_gain > gain_comeback) {
833 improved_this_turn = true;
834 overall_improvement = true;
835 }
836 else {

83

837 best_sset = old_sset;
838 }
839
840 // ////////////////// insert c into best community or keep

↪→ intermediate ////////////////
841 if (best_sset == inter_sset) {
842 if (inter_sset == spart ->freeID) {
843 while (spart ->nb_node[spart ->freeID] != -1)

↪→ spart ->freeID ++;
844 }
845 else {
846 }
847 } else {
848 // insert into new community
849
850 // update expectation
851 expect_spart -= expectation(com ->nb_edge[c], g, calculated ,

↪→ expectation_table);
852 expect_spart -= expectation(spart ->nb_edge[best_sset], g,

↪→ calculated , expectation_table);
853 expect_spart += expectation(spart ->nb_edge[best_sset] +

↪→ com ->nb_edge[c], g, calculated , expectation_table);
854
855 // update couples
856 diff_nodes = node_diff(c, best_sset , com , spart , g);
857 nodes_sset = spart ->nb_node[best_sset];
858 couples_in_spart -= (spart ->nb_node[best_sset] *

↪→ (spart ->nb_node[best_sset] - 1)) / 2;
859 couples_in_spart -= (com ->nb_node[c] * (com ->nb_node[c] - 1))

↪→ / 2;
860 couples_in_spart += ((nodes_sset + diff_nodes) * (nodes_sset

↪→ + diff_nodes - 1)) / 2;
861
862 // insert c into the best sset:
863 move(c, best_sset , com , spart , g);
864
865
866 // sset with freeID is now free again
867 if ((spart ->nb_edge[spart ->freeID] != 0 &&

↪→ spart ->nb_edge[spart ->freeID] != -1)
868 || (spart ->nb_node[spart ->freeID] != 0 &&

↪→ spart ->nb_node[spart ->freeID] != 0))
869 spart ->nb_node[spart ->freeID] = -1;
870 spart ->nb_edge[spart ->freeID] = -1;
871 }
872 }
873 free(random_order);
874 } while (improved_this_turn);
875 return overall_improvement;
876 }
877
878 // write output of algorithm to file out.
879 void output(FILE *out , EdgeCommunities *com , const graph *g, bool

↪→ *calculated , long double *expectation_table) {
880 int couples = count_couples(com);
881 long double expected = calculate_expectation(g, com , calculated ,

↪→ expectation_table);
882
883 if (MEASURE == 1) fprintf(out , "Modularity used: m/r - m/E(r)\n");
884 else if (MEASURE == 2) fprintf(out , "Modularity used: (E(r) - r)\n");
885 else if (MEASURE == 3) fprintf(out , "Modularity used: (E(r)/r)\n");
886 else report_error("measure must be given with -m option");

84

887 fprintf(out , "Modularity m/r - m/E(r): %Lf\n", edge_modularity(g, com ,
↪→ calculated , expectation_table));

888 fprintf(out , "Modularity (E(r) - r): %Lf\n", edge_mod_minus(g, com ,
↪→ calculated , expectation_table));

889 fprintf(out , "Modularity (E(r)/r) = %Lf\n", edge_mod_ratio(g, com ,
↪→ calculated , expectation_table));

890 fprintf(out , "couples: %d\n", couples);
891 fprintf(out , "expectation: %Lf\n", expected);
892 fprintf(out , "# of communities: %d\n", com ->k);
893 print_communities(g, com , out);
894 }
895
896 // LOUVAIN FOR EDGES , MAIN FUNCTION
897 EdgeCommunities* edge_louvain(const graph *g, bool* calculated , long

↪→ double * expectation_table) {
898 clock_t start_at = clock();
899 int i;
900 bool improved = true;
901 int* visited_nodes;
902 EdgeCommunities* com;
903 SuperPartition* spart;
904
905 if((visited_nodes =(int*) malloc(g->n*sizeof(int))) == NULL)
906 report_error("main: malloc () error");
907 for (i=0; i<g->n; i++) visited_nodes[i]=-1;
908
909 if((com=(EdgeCommunities *) malloc(sizeof(EdgeCommunities))) == NULL)
910 report_error("main: malloc () error");
911
912 // initialize partition
913 init_edge_communities(g, com);
914 spart = init_superpart(com);
915
916 // prepare output files
917 FILE *out = NULL;
918 if ((out=fopen(OUTPUT_FILENAME ,"w"))==NULL)
919 perror("fopen");
920
921 FILE *history = NULL;
922 if (HISTORY_FILENAME) {
923 if ((history=fopen(HISTORY_FILENAME ,"w"))==NULL)
924 perror("fopen");
925 }
926
927 i=0;
928 while (improved) {
929 i++;
930 improved = one_level_edge(g, com , spart , calculated ,

↪→ expectation_table);
931 update_communities(com , spart , g, visited_nodes);
932 free_SuperPartition(spart);
933 spart = init_superpart(com);
934
935 if (HISTORY_FILENAME) {
936 fprintf(history , "after STAGE %d\n", i);
937 output(history , com , g, calculated , expectation_table);
938 }
939 }
940
941 double elapsed = ((double) (clock() - start_at)) / CLOCKS_PER_SEC;
942 int elapsed_hour = elapsed / (60*60);
943 int rest_min = elapsed /60 - elapsed_hour *60;
944 int rest_sec = elapsed - elapsed_hour *60*60 - rest_min *60;

85

945
946 fprintf(out , "elapsed time: %d hour , %d min , %d sec , after final stage

↪→ (%d):\n", elapsed_hour , rest_min , rest_sec , i);
947 output(out , com , g, calculated , expectation_table);
948
949 fclose(out);
950 if (HISTORY_FILENAME) fclose(history);
951
952 free(visited_nodes);
953 free_SuperPartition(spart);
954
955 return com;
956 }
957
958 // /////////////////////////
959 //// MAIN ////
960 // /////////////////////////
961
962 int main(int argc , char **argv) {
963 int i;
964 // command line arguments
965 read_command_line_args(argc , argv);
966
967 if (RANDOM) {
968 srand(time(NULL));
969 } else srand ((unsigned) 102458);
970
971 FILE* infile=NULL;
972 graph* g=NULL;
973
974 // Create graph
975 if ((infile=fopen(IN_NAME ,"r"))==NULL)
976 report_error("IN_NAME -- fopen: error");
977
978 g = graph_from_file(infile);
979 fclose(infile);
980
981 long double *expectation_table;
982 bool *calculated;
983
984 if((expectation_table =(long double *) malloc ((g->m+1)*sizeof(long

↪→ double))) == NULL)
985 report_error("main: malloc () error");
986 for (i=0; i<g->m+1; i++) expectation_table[i] = -1.0;
987
988 if((calculated =(bool *) malloc(g->m+1* sizeof(bool))) == NULL)
989 report_error("main: malloc () error");
990 for (i=0; i<g->m; i++) calculated[i] = false;
991
992 EdgeCommunities* com;
993 com=edge_louvain(g, calculated , expectation_table);
994
995 free_EdgeCommunities(com);
996 return 0;
997 }

86

	Introduction
	Community Detection
	Some Approaches For Communities of Nodes
	Some Approaches for Communities of Edges
	The Goal of this Thesis: Link Partition in Static Networks Based on Edge Modularity

	Implementing Existing Methods
	The Louvain Algorithm
	The Random Experiment in the Louvain Algorithm.
	My Implementation of the Louvain Algorithm louvain
	Criticism

	T. S. Evans et al.

	A New Approach for Link Partitions
	What is a Good Partition
	Overview of Measures
	Border Based Measures
	Minimize Border Nodes
	Minimize Border Pairs
	Minimize Border Pairs without an edge

	Clique based Measures
	Minimize Non-edges Inside Communities
	Minimize Number of Pairs in Each Community

	Random Experiment
	Assign Ci Edges in a Random Graph to Ci For All i < |C|
	Keep the Degree of Each Edge's Endpoint
	Keep Community-distribution of Endpoints
	Assign Communities to Edges Uniformly at Random

	Further Exploring pairs

	Implementation and Results of Minimizing Pairs
	Implementation
	No Suitable Definition of Contracted Graph
	Moving Not Only to Neighbouring Communities
	Computing Expectation
	Complexity

	Results With Three Different Edge-Modularities
	Results of Algorithm using GDM
	Comparison of all Three Measures
	Analysis with the Karate Club Data
	Results of the Louvain Algorithm and the Algorithm by Evans et. al.

	Discussion and Conclusion
	Improving UM
	Another Idea for Modularity of a Node Partition
	Conclusion

	Bibliography
	My Implementation of the Louvain Algorithm louvain and the algorithm by Evans et. al. physics
	The implementation of my algorithm

