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Preface 

The governing of biodiversity by climate is profound. Climate as reflected through the 

major global temperature and precipitation axes determines the distribution of species 

according to their climatic tolerance, or niche. Interactions among species can mediate 

strong climate boundaries by expanding the margins of their realised niche through the 

outcome of positive and negative interactions with other species. However, global 

climate is undergoing rapid change, not only through increased temperatures and a 

redistribution of rainfall patterns, but also through a higher frequency of extreme 

weather events. These ongoing changes have led to a global redistribution of species, 

the rate of which is most pronounced in alpine regions. The variation in species-

specific responses to climate change, according to their climate niche and function in 

the ecosystem, has consequences for community assembly and the ecosystem’s 

functioning in alpine regions. However, very little is hitherto known about how biotic 

interactions mediate the combined effects of temperature and precipitation on 

ecosystem functioning, plant community functioning, and recruitment. 

I address these unresolved questions by monitoring biotic and abiotic responses to a 

fully factorial removal experiment of functionally different plant types – graminoids, 

bryophytes and forbs – in semi-natural alpine grasslands, replicated along natural 

climate gradients in southern Norway. I found that although ecosystem functioning 

and community dynamics were largely determined directly by temperature and 

precipitation, these effects were strongly mediated by functional group interactions. In 

particular, bryophytes played a critical role – their facilitative presence increased 

carbon uptake by forbs at colder alpine sites, whilst limiting carbon uptake by 

graminoids at warmer boreal sites. Similarly, the strength of soil microclimate 

regulation was greatest by bryophytes, reducing both growing-season soil temperature 

on days with high incoming solar radiation, and reducing soil freezing during autumn 

and winter. Bryophyte presence additionally promoted seedling recruitment by forbs 
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under drought conditions. Finally, graminoids alleviated climate severity for forbs in 

cold climates but heightened competition for resources in warm and wet climates, 

resulting in a selection for forb species with competitive trait attributes. The result of 

this effect is an inevitable reduction in biodiversity of these highly diverse ecosystems. 

Further increases in temperature and precipitation will increase graminoid dominance, 

at the expense of forb functioning and cover.  

More generally, and consistently across all components of ecosystem functioning 

addressed in this thesis, the interactive effects of temperature and precipitation point 

towards non-linear changes in biotic interactions under climate change. Not only was 

ecosystem functioning regulated by long-term climate at the landscape scale, but also 

by interannual climate variation and the occurrence of extreme weather events. By 

conducting macroecological experiments over several years we can conclude that the 

spatio-temporal variation in climate causes substantial fluctuations in the role of biotic 

interactions in regulating carbon fluxes, microclimate, and recruitment. 

In this thesis I demonstrate that the outcome of biotic interactions is dependent on 

regional climate, with important consequences for community structure and 

functioning in semi-natural grasslands. As temperatures and precipitation levels 

increase, alpine grasslands will become more carbon-rich and with more stable and 

homogeneous microclimates, whilst simultaneously becoming increasingly species 

poor and asymmetrical. This loss of biodiversity and change in ecosystem functioning 

has large consequences not only for species distributions and the persistence of alpine 

plants, but also more widely for predictions of ecosystem responses to further climate 

change. 

 

 
© Francesca Jaroszynska  
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Synopsis 

 

 

 

 

“Yet in the terrible blasting winds on the plateau  

one marvels that life can exist at all” 

 

 

 

Nan Shepherd, The Living Mountain page 48 
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Introduction 

Grasslands as a web of interactions 

Grasslands in alpine systems are hotspots for species diversity and carbon storage 

(Graae et al., 2018; Rounsevell et al., 2018), making them globally important for a 

range of ecosystem services (F. S. Chapin III, Reynolds, D’Antonio, & Eckhart, 

1996). These grasslands are maintained by a web of non-static interdependent 

pathways and feedbacks between plants, the soil, and the climate. These are evident 

from the basic requirement of light for plants to photosynthesise, to the more complex 

feedbacks of species diversity on carbon flux to the atmosphere (De Boeck et al., 

2007). Disturbance at any point in this web of feedbacks, such as the introduction of a 

new species or a change in climate, has consequences both for species diversity and 

carbon storage. 

A fly in the web: climate change 

Global climate is currently undergoing rapid change (Hanssen-Bauer et al., 2017; 

Masson-Delmotte et al., 2018), in terms of temperature rises, shifts in rainfall patterns, 

and the intensity of extreme weather events. The effects of these changes are 

perceptible in all biomes across the world (see Parmesan (2006) for a review) but are 

particularly pronounced in arctic and alpine systems (Gottfried et al., 2012; Post et al., 

2009; Steinbauer et al., 2018). Decadal increases in temperature and a redistribution of 

rainfall patterns directly affects plants through plant physiological changes, and 

ecosystem processes through increased occurrence rates, such as decomposition (I. H. 

J. Althuizen, Lee, Sarneel, & Vandvik, 2018; F Stuart Chapin III, Matson, & 

Vitousek, 2011). The legacy of climate change in the reorganisation of plant growth 

strategies and plant interactions has been shown to moderate the direct effects of 

climate on ecosystem processes (Adler et al 2012). These indirect effects of climate 

change add another complication to interpreting plant-climate interactions, because 

they are hard to disentangle from the direct effects. However, by not quantifying both 

the direct and indirect effects we risk wrongly estimating the effects of climate change 

on ecosystem functioning in grasslands. 

2
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The interaction of vegetation and climate 

This thesis is part of a project which experimentally disentangles the direct and 

indirect effects of climate on alpine grassland biodiversity and carbon cycling (see 

below). The quantification of biotic interactions will provide us with a better 

understanding of the magnitude of indirect climate effects on alpine grasslands. 

Indeed, a large number of studies have already revealed that the outcome of biotic 

interactions varies along environmental gradients (Brooker et al., 2008; Callaway et 

al., 2002; Callaway & Walker, 1997), demonstrating the potential for shifts in biotic 

interactions with climate change. The effect of climate on the outcome of biotic 

interactions has consequences for community assembly processes and ecosystem 

functioning, such as seed germination and carbon exchange (He, Bertness, & Altieri, 

2013; Meineri, Spindelböck, & Vandvik, 2013). However, the majority of these 

studies are restricted to single species (Cavieres et al., 2014; Kardol et al., 2010), 

species pairs (Butterfield et al., 2013; Kikvidze et al., 2005; Soliveres & Maestre, 

2014), or one benefactor nurse plant (Anthelme, Cavieres, & Dangles, 2014). To my 

knowledge only a handful of studies are conducted at the population (Siri L. Olsen, 

Töpper, Skarpaas, Vandvik, & Klanderud, 2016) or community scale (Ballantyne & 

Pickering, 2015; Klanderud, Vandvik, & Goldberg, 2015; Losapio, De la Cruz, 

Escudero, Schmid, & Schöb, 2018; Schöb, Armas, Guler, Prieto, & Pugnaire, 2013), 

and none that experimentally test for the reciprocal effect of climate and biotic 

interactions on ecosystem functioning at the community level. 

One approach to simplify the wide array of functioning in species and communities is 

to group plant species into functional groups according to their taxonomic, 

physiological and morphological traits (Dorrepaal, 2007; Harrison et al., 2010; Wright 

et al., 2004). Distinguishing among plant functional groups when discussing 

ecosystem processes is crucial firstly because functional groups have been shown to 

respond in different ways to climate change – e.g., through increased shrub dominance 

and increases in graminoid abundance (Bjorkman et al., 2018; Elmendorf, Henry, 

Hollister, Björk, Bjorkman, et al., 2012; Elmendorf, Henry, Hollister, Björk, 

Boulanger-Lapointe, et al., 2012), and large-scale greening of the arctic (Myers-Smith 

 6 

et al., 2019). Secondly, their morphological and growth differences have knock-on 

consequences for the soil microclimate and ecosystem carbon cycling (Ehrenfeld, 

Ravit, & Elgersma, 2005; McLaren & Turkington, 2010; Shaw & Pereira, 1982). 

Thus, the outcome of altered functional group interactions may have consequences not 

only for community assembly processes, but ultimately the surface energy balance. 

The Climate Underdogs: Rain and extremes 

Studies testing for the relationship of biotic interactions to climate are predominantly 

conducted with air temperature as the primary climate predictor. Mounting evidence 

demonstrates functional group-level responses to climate change such as increases in 

vegetation height (Elmendorf, Henry, Hollister, Björk, Boulanger-Lapointe, et al., 

2012), changes in composition and dominance (Elumeeva, Aksenova, Onipchenko, & 

Werger, 2018; Klanderud & Totland, 2005), and phenological shifts (Henry & Molau, 

1997; Meng et al., 2017). However, there is still debate over the drivers of variation in 

the consistency of these patterns. For example, variation in soil temperature (Aalto, 

Roux, & Luoto, 2013; Graae et al., 2012; Scherrer & Körner, 2011) and soil moisture 

(Kemppinen, Niittynen, Aalto, le Roux, & Luoto, 2019) occurs at a much more local 

spatial scale, which builds a case for their regulation of locally-occurring processes.  

Climate change is responsible not only for ever larger and consistent increases in 

temperature but also for a redistribution of rainfall patterns and an increase in the 

frequency of extreme weather events such as drought (Hoegh-Guldberg et al., 2018; 

Wigley, 2009). There are comparatively few studies testing for the effect of climate 

variability on biotic interactions and ecosystem functioning. Indeed, most studies that 

test for the effect of precipitation or climate extremes have hitherto been conducted in 

warm and arid environments (Maestre, Valladares, & Reynolds, 2005; Metz & 

Tielbörger, 2016), where water limitation is already extensive. However, drought 

events are also becoming more frequent in systems not adapted to them, e.g. in areas 

of typically high rainfall, and in these regions we do not yet know the consequences of 

fluctuations for short-term feedbacks in the vegetation, such as carbon flux and 

community assembly processes (Hunt, Kelliher, McSeveny, Ross, & Whitehead, 

2004; Reichstein et al., 2003). To address such questions both spatial and temporal 

4
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climate variation must be considered (De Boeck et al., 2015; Hobbs, Yates, & 

Mooney, 2007; Metz & Tielbörger, 2016). 

Removal experiments 

The reciprocal direct and indirect effects of climate on biotic interactions and carbon 

flux dynamics can be disentangled by replicating removal experiments along climate 

gradients. Removal experiments are used to disentangle the effect of different plant 

functional groups on a variety of community and ecosystem-level processes (Dı́az, 

Symstad, Chapin III, Wardle, & Huenneke, 2003; McLaren & Turkington, 2010; Siri 

L. Olsen et al., 2016). Moreover, by replicating removal experiments along climate 

gradients we overcome the limitations of single-site experiments (e.g. Roscher et al., 

2018).  

In summary, very little is known about how biotic interactions mediate the combined 

effects of temperature, precipitation and climate variability on plant community and 

ecosystem functioning. This thesis contributes to the ongoing debate of the direct and 

indirect effects climate change on biodiversity and ecosystem functioning.   

 8 

Thesis aims 

Understanding how plant functional groups interact with each other and their 

surroundings is key to interpreting and predicting community dynamics and 

ecosystem functioning in response to climate change. I test for the long-term and 

short-term effects of climate on plant functional group interactions in semi-natural 

alpine grasslands, and the implications of their outcomes on ecosystem functioning 

and processes.  

To glean an insight into this rather broad topic, I approach the topic from various 

perspectives whilst maintaining a central focus on the plant community as either the 

beneficiary or the driver. In particular, I consider the following components: 

  

1. What is the effect of regional climate on biotic interactions among plant 

functional groups? (Chapter I) 

2. Do plant functional groups contribute differently to ecosystem carbon 

exchange under different climate conditions? Are plant functional groups able 

to compensate for each other with climate change? (Chapter II) 

3. What role do plant functional groups play in regulating soil microclimate? 

(Chapter III) 

4. To what extent does variation in short-term weather extremes and long-term 

climate determine recruitment success? Do plant functional groups mediate the 

effects of extreme weather events? (Chapter IV) 

 

In the age of open science (Nielsen, 2011), it is clear that reproducible and transparent 

documentation of data and data processing is essential (Borregaard & Hart, 2016; 

Hampton et al., 2015). The data collection protocols for the original data I collected, 

and subsequent data processing and storage, is therefore outlined in Chapter V.  
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Thesis aims 

Understanding how plant functional groups interact with each other and their 

surroundings is key to interpreting and predicting community dynamics and 

ecosystem functioning in response to climate change. I test for the long-term and 

short-term effects of climate on plant functional group interactions in semi-natural 

alpine grasslands, and the implications of their outcomes on ecosystem functioning 

and processes.  

To glean an insight into this rather broad topic, I approach the topic from various 

perspectives whilst maintaining a central focus on the plant community as either the 

beneficiary or the driver. In particular, I consider the following components: 

  

1. What is the effect of regional climate on biotic interactions among plant 

functional groups? (Chapter I) 

2. Do plant functional groups contribute differently to ecosystem carbon 

exchange under different climate conditions? Are plant functional groups able 

to compensate for each other with climate change? (Chapter II) 

3. What role do plant functional groups play in regulating soil microclimate? 

(Chapter III) 

4. To what extent does variation in short-term weather extremes and long-term 

climate determine recruitment success? Do plant functional groups mediate the 

effects of extreme weather events? (Chapter IV) 

 

In the age of open science (Nielsen, 2011), it is clear that reproducible and transparent 

documentation of data and data processing is essential (Borregaard & Hart, 2016; 

Hampton et al., 2015). The data collection protocols for the original data I collected, 

and subsequent data processing and storage, is therefore outlined in Chapter V.  
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Methods 

This thesis combines biotic and abiotic data from a four-year removal experiment with 

a nine year-long comprehensive dataset of biotic and climate variables, both collected 

along independent and orthogonal temperature and precipitation gradients. The 

combination of these two complementary datasets augments the capabilities of 

disentangling direct and indirect impacts of climate and climate change on 

biodiversity and ecosystem functioning. The thesis therefore builds on a variety of 

experiments, datasets and data sources, some of which I have had responsibility for, 

while others which have been conducted and collected by others. The details of these 

different roles and responsibilities are referred to in chapter V, in the contributions 

table of this thesis, and in each publication. 

 

Study location and site set-up 

A macroecological climate experiment was established in 2008 in southern Norway 

(Figure 1). This experiment comprises a collection of twelve semi-natural grasslands 

situated along large-scale natural temperature and precipitation gradients in a 

topographically diverse fjord landscape. Harnessing the steep elevation range inherent 

in the landscape, the temperature gradient stretches from low elevation sites with a 

high mean summer temperature, to high elevation sites with a low mean summer 

temperature (three levels: alpine 6.5°C, intermediate 8.5°C and lowland ca. 10.5°C). 

Similarly, the natural precipitation gradient extends from a coastal climate with high 

annual precipitation, to a continental climate with low annual precipitation (ca. 600, 

1200, 2000 and 2700 mm). These orthogonal gradients create a climate grid, where 

the solitary and combined effects of temperature and precipitation on biotic 

interactions can be tested. All twelve sites are located in species-rich calcareous semi-

natural grasslands (Figure 1), with similar south-facing slopes of ~20°. The sites are 

fenced and grazing is simulated annually by mowing inside the fence. For further 

details on site selection, see Klanderud et al (2015) and Meineri et al (2013). 
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Figure 1: Locations of twelve alpine grasslands, situated along landscape-scale temperature 
and precipitation gradients in southern Norway. Sites were situated so that the climate axes 
varied independently from warm (inverse triangle) to cold (triangle), and from dry (red) to 
wet (dark blue). 

 

Experimental set-up and maintenance 

In paper I I test for the effect of climate on the interactions of the dominant functional 

group with the subordinate functional group in determining community properties and 

functioning. In 2011 a graminoid removal experiment was set up and conducted by 

establishing five blocks of two 25 × 25 cm plots at each of the twelve sites 

(Experiment I, Siri Lie Olsen, 2014). Each year the above-ground biomass of 

graminoids was removed in one plot in each block twice during the growing season. 

The other plot was left untouched. 

To determine how plant functional groups regulate ecosystem carbon flux and 

microclimate (papers II and III) and seedling recruitment (paper IV) we set up four 

blocks of eight 25 × 25 cm plots at each of the twelve sites in 2015 (Experiment II). 

This experiment is the core experiment of the thesis, which I set up in collaboration 

8



 9 

Methods 

This thesis combines biotic and abiotic data from a four-year removal experiment with 

a nine year-long comprehensive dataset of biotic and climate variables, both collected 

along independent and orthogonal temperature and precipitation gradients. The 

combination of these two complementary datasets augments the capabilities of 

disentangling direct and indirect impacts of climate and climate change on 

biodiversity and ecosystem functioning. The thesis therefore builds on a variety of 

experiments, datasets and data sources, some of which I have had responsibility for, 

while others which have been conducted and collected by others. The details of these 

different roles and responsibilities are referred to in chapter V, in the contributions 

table of this thesis, and in each publication. 

 

Study location and site set-up 

A macroecological climate experiment was established in 2008 in southern Norway 

(Figure 1). This experiment comprises a collection of twelve semi-natural grasslands 

situated along large-scale natural temperature and precipitation gradients in a 

topographically diverse fjord landscape. Harnessing the steep elevation range inherent 

in the landscape, the temperature gradient stretches from low elevation sites with a 

high mean summer temperature, to high elevation sites with a low mean summer 

temperature (three levels: alpine 6.5°C, intermediate 8.5°C and lowland ca. 10.5°C). 

Similarly, the natural precipitation gradient extends from a coastal climate with high 

annual precipitation, to a continental climate with low annual precipitation (ca. 600, 

1200, 2000 and 2700 mm). These orthogonal gradients create a climate grid, where 

the solitary and combined effects of temperature and precipitation on biotic 

interactions can be tested. All twelve sites are located in species-rich calcareous semi-

natural grasslands (Figure 1), with similar south-facing slopes of ~20°. The sites are 

fenced and grazing is simulated annually by mowing inside the fence. For further 

details on site selection, see Klanderud et al (2015) and Meineri et al (2013). 

 

 10 

 

Figure 1: Locations of twelve alpine grasslands, situated along landscape-scale temperature 
and precipitation gradients in southern Norway. Sites were situated so that the climate axes 
varied independently from warm (inverse triangle) to cold (triangle), and from dry (red) to 
wet (dark blue). 

 

Experimental set-up and maintenance 

In paper I I test for the effect of climate on the interactions of the dominant functional 

group with the subordinate functional group in determining community properties and 

functioning. In 2011 a graminoid removal experiment was set up and conducted by 

establishing five blocks of two 25 × 25 cm plots at each of the twelve sites 

(Experiment I, Siri Lie Olsen, 2014). Each year the above-ground biomass of 

graminoids was removed in one plot in each block twice during the growing season. 

The other plot was left untouched. 

To determine how plant functional groups regulate ecosystem carbon flux and 

microclimate (papers II and III) and seedling recruitment (paper IV) we set up four 

blocks of eight 25 × 25 cm plots at each of the twelve sites in 2015 (Experiment II). 

This experiment is the core experiment of the thesis, which I set up in collaboration 

9



 11 

with Inge Althuizen. Aboveground biomass of each functional group was removed 

twice every year in a fully factorial design (Figure 3) except in 2015 when unusually 

late snowmelt resulted in only one round of removals at 4 alpine sites. 

Finally, to investigate the effects of extreme weather events on recruitment success I 

used an existing experiment where five blocks of two 25 × 25 cm plots were 

established at each of the twelve sites in 2009 (Experiment III). All above-ground 

biomass was removed once in 2009 in one plot per block.  

Species composition 

In experiments I and II the presence and cover of all vascular plant species and 

vascular and non-vascular functional groups was recorded in each plot before initial 

removal treatment (2011 by Olsen (2014) for experiment I and 2015 by myself for 

experiment II), and all non-treated vascular plant species in subsequent years (see 

Figure 3). The abundance of each species per plot was visually estimated as the 

percentage cover at peak growing season. I used these data to calculate species 

richness and diversity (Shannon Index), derive evenness according to Hill (1973), and 

calculate community-weighted mean traits (see below). Species were identified 

according to Lid (2005). 

Community functioning  

To estimate the difference in resource-acquisition strategy for the vascular functional 

groups (papers I and II) we weighted the functional group compositions by the 

physiological and morphological characteristics of each species. In 2016 traits were 

measured locally at each site for ~85% of the total number of plant species (Gya, 

2017). Where trait data were missing for a particular species at a particular site, a 

mean trait value was imputed for the species in question. If this was not possible, a 

mean trait value was computed for all species in that functional group. For further 

specification of the Bayesian model used to generate these trait imputations, see the 

supplementary material for paper II. 
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Figure 2: An illustration of the experimental set-up. Three independent experiments were 
conducted at each of the twelve sites; Experiment I ran from 2011-2016, experiment II 
from 2015-2018, and experiment III from 2009-2012.   
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Figure 3: plant functional group removal, where the labels indicate the removed functional 
groups. 

 

Species recruitment  

In paper IV the total number of forb seedlings (hereafter referred to as seedlings) was 

recorded in each plot twice each year from 2009 to 2012 (experiment III, Berge, 

2010) and again in 2018 (Experiment II, Jaroszynska). I associated each ‘round’ of 

seedling abundance estimation with the deviation in soil moisture and air temperature 

from the long-term average (2008-2016) at each site. 

Ecosystem carbon flux data 

For paper II we measured net ecosystem exchange (NEE) to estimate ecosystem 

respiration (Reco) and gross primary production (GPP) using a static chamber method 

(I. H. J. Althuizen, 2018). Measurements were taken throughout the growing season at 

ambient light levels. Growing season was considered as the time at which Agrostis 

capillaris flowered at each site. Photosynthetically active radiation and air 

temperature inside the chamber was monitored throughout the measurements to aid 

with the standardisation of measurements. We linked these flux measurements with 

the community vegetation analysis and functional traits. 

 14 

Climate data 

We measured a number of climate parameters at multiple scales. To estimate regional 

climate effects, we continually measured air temperature at 2 m and soil temperature 

at -5 cm, soil moisture, and UV-B from 2009 – 2018 at each site. I refer you to the 

methods chapters in papers I-IV for further description of the processing of these 

variables. 

To investigate plant functional group effects on microclimate (paper III), we 

measured soil temperature and soil moisture in each plot. We continually measured 

soil temperature 3-5 cm below the soil from June 2015 to July 2016. In 2015 and 

2016, we measured soil moisture 3-5 times during each growing season by taking the 

average of measurements at four places in each plot. 

Analytical approach 

To investigate the interactive effects of graminoid removal and climate on total forb 

species cover, species richness, evenness, and functionality (Paper I) and the effect of 

functional group identity on soil microclimate during peak growing season (Paper II) 

I used linear mixed effects models and generalised linear mixed effects models fitted 

with Maximum Likelihood. For each response variable in paper I the models tested 

the interactive effects of graminoid removal, climate (interactive effects of 

temperature and precipitation) and time (fixed effects) for plots nested within sites 

(random effects). All models were run with a gaussian error distribution (lmer), 

except for species richness where we used a poisson error distribution (glmer). I tested 

for significance by extracting model estimates and 95% confidence intervals and 

deemed models as significant where the confidence intervals did not include zero.  

To estimate the effect of plant functional groups on summer soil temperature and 

moisture, and winter soil freezing (paper III), I ran generalised mixed effects models. 

I modelled the response of maximum daily soil temperature and soil moisture to 

functional group removal, and the 1970-2010 interpolated mean annual precipitation 

and mean summer temperature, using a nested random effect structure to account for 

variation among block replicates and among sites. The effect of plant functional 

12
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groups on soil temperature was analysed separately for sunny and cloudy days due to 

the principal effect of solar radiation on soil temperature (Figure 6).  

Similar models were constructed for the effect of plant functional group cover and 

height and their interaction with mean summer temperature and mean annual 

precipitation on soil temperature on sunny days, soil moisture, and frost days. Models 

fitted with the lme4 package for soil temperature and moisture (Bates et al., 2016) and 

the glmmTMB package for soil freezing (Brooks et al., 2017). 

Finally, to investigate climate and functional group effects on recruitment success 

(paper IV), I employed a Bayesian approach. To test for the effect of temperature and 

soil moisture deviations from the long-term average on seedling abundance, I set up a 

negative binomial model, using seedling counts from experiments II and III. Seedling 

abundance varied in response to treatment, temperature and soil moisture deviations, 

season, long-term temperature and precipitation, and the interaction among treatment 

and the two climate deviations (temperature and soil moisture). 

Next, I tested whether any one particular functional group drives the difference 

between recruitment success in gaps and closed vegetation. I constructed a similar 

model to the one described above, except only for 2018 and for the functional group 

removal treatments (experiment II only) and without the climate anomalies, allowing 

seasonality to account for the occurrence of the extreme weather during the first 

seedling census. Lastly, to test for the effect of drought on seedling mortality in 2018, 

I ran a beta-binomial model, where survival varied in response to removal treatment, 

regional temperature and precipitation, and their interactions. 

All models were fitted with a site-level random intercept structure to account for 

differences among sites that are unexplained by site-level temperature or precipitation. 

We ran model checking of the posteriors using the Dharma package (Florian Hartig, 

2019). All models were run with 5 chains and 20 000 iterations. JAGS code and 

model-checking results for the models are provided in supplementary material 

(Figures S6-S8 of paper IV). Models were implemented using JAGS (Plummer, 

Stukalov, Denwood, & Plummer, 2018) and the R2jags package (Su, Yajima, Su, & 

SystemRequirements, 2015).  
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Main findings 

In paper I we ask what the effect of climate is on biotic interactions in semi-natural 

grasslands. Dominant functional group interacts competitively with the subordinate 

functional group at warmer and wetter sites. Further warming and wetting will 

increase this dominance, at the expense of forb trait functionality and cover. We 

demonstrate that the outcomes of biotic interactions along temperature gradients, 

previously illustrated at the population level in our system (Siri L. Olsen et al., 2016), 

can be scaled to the community for biomass and for resource economic strategies.  

 

 

Figure 4: Mean difference in forb species cover from pre-treatment levels (2011) to each 
subsequent year in alpine, sub-alpine and boreal grasslands. Values above the zero line 
indicate higher forb cover or diversity than in the pre-treatment year, while values below the 
zero line indicate lower forb cover or diversity than in the pre-treatment year, ±1 SE. 
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Paper II illustrates that plant functional groups contribute differently to ecosystem 

carbon exchange. We found that graminoids and forbs both contribute substantially to 

gross primary production (GPP) and ecosystem respiration, whereas the non-vascular 

functional group does not (Figure 2AB in paper II). Forb and graminoid presence is 

equally important as regional temperature in regulating GPP. Ecosystem respiration, 

on the other hand, is largely determined by temperature and not by functional groups. 

Precipitation is unimportant for both GPP and ecosystem respiration. 

Temperature and functional group interactions influence the capacity of plant 

functional groups to compensate for the loss of neighbours (Figure 5). For example, at 

cold temperatures forbs poorly compensate in GPP for neighbour removal except in 

the presence of bryophytes. Bryophytes somewhat inhibit the compensation capacity 

of graminoids. 

 

Figure 5: compensation in gross primary productivity (GPP) and ecosystem respiration 
(Reco) in alpine (white), sub-alpine (light grey) and boreal (dark grey) grasslands. 
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In paper III we further investigated the role of plant functional group identity on 

regulating soil temperature and soil moisture in summer, and soil freezing in winter. 

In general plant functional groups differentially moderate the strong effect of solar 

radiation and ambient summer air temperature on soil microclimate (in line with e.g. 

(Isard, 1986; Scherrer & Körner, 2011; Wundram, Pape, & Löffler, 2010). This 

regulation was largely driven by bryophyte presence. On sunny days, functional 

groups reduced daily maximum soil temperatures by as much as ~1°C compared to 

bare soil, an effect that was comparable to the effect of regional climate itself. The 

functional group effect was not seen on overcast days (Figure 2A). 

 

 

Figure 6: Illustration of the effect of different plant functional groups on soil temperature at 
the sub-alpine sites (n = 4).  (A) Average diurnal temperature fluctuation for August and 
September 2015 on sunny (dashed lines) and cloudy (solid lines) days, (B) seasonal trends in 
daily maximum soil temperature from July 2015 to July 2016, and (C) the cumulative frost 
day sum. Colours indicate presence of plant functional groups (i.e., the remaining functional 
groups in the factorial removal experimental plots, see legend). 
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In Paper IV, we demonstrate that seedling recruitment is primarily regulated by 

climate extremes. In general, seedling abundance is higher in seasons with above-

average soil moisture and air temperature (Figures 3 and S3 in paper IV). Below-

average temperatures and wetter soils reduced seedling numbers more so in gaps than 

in intact vegetation.  

Upon further investigation of a year with a drought event (2018), I found seedling 

abundance to be greatest at typically cold and wet sites and lowest at typically warm 

and dry sites (see Figure 7 where ‘early’ is ubiquitous with drought). This trend is 

reversed after drought. In general, this trend in seedling abundance was marginally 

increased in forb-only plots than in closed vegetation. 

Finally, survival over the growing season during a drought year is not improved by the 

presence of any particular functional group. However, survival is lower in gaps. 

Survival is lower at warm sites than at cold ones. 

 

Figure 7: The effect of plant functional groups on seedling abundances in early summer 
(during drought) and late summer (after drought) in alpine (pale grey), sub-alpine (mid grey) 
and boreal (dark grey) grasslands. Letters indicate the functional groups present in the plot, 
where F = forb, B = bryophyte, and G = graminoid.  
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Discussion 

In concert, papers I-IV demonstrate that climate has profound effects on biotic 

interactions and ecosystem functioning, and that plant functional group interactions in 

turn have reciprocal mediating effects on microclimate, carbon flux, and community 

assembly processes. Where the scale and duration of the climate event and biotic 

response vary across different ecosystem functions, the overall trend is toward 

increased ecosystem carbon fluxes and competition with increased warming, at the 

expense of diversity and microclimate heterogeneity. 

Biotic interactions respond to climate 

Across arctic and alpine systems, a number of large-scale shifts of species in direct 

response to climate change has already been documented (Gottfried et al., 2012; Post 

et al., 2009). Furthermore, climate drives change in biotic interactions (Siri L. Olsen et 

al., 2016; Tylianakis, Didham, Bascompte, & Wardle, 2008), which acts to moderate 

the direct effects of climate change. This is supported by my findings of multi-

directional shifts in biotic interactions along both temperature and precipitation 

gradients – graminoid-forb interactions tended towards increased competition with 

increasing temperature (paper I), whilst bryophyte-forb interactions are 

predominantly facilitative with lower temperatures (paper II). These findings support 

the general consensus that climate warming in cold regions will result in increased 

competition. Our results support evidence that forbs, rather than graminoids or 

bryophytes, are most affected by biotic interactions (Klanderud et al 2015).  

Although temperature is the dominant driver of some aspects of ecosystem 

functioning, plant functional groups are arguably as important for functions such as 

carbon flux (paper II) and soil microclimate regulation (paper III). Functional group 

regulation of biomass (Dormann & Woodin, 2002) and aboveground net primary 

production has been observed along temperature gradients in grasslands (Mowll et al., 

2015) although the authors conclude that there are complex interactions with 
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In Paper IV, we demonstrate that seedling recruitment is primarily regulated by 
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and dry sites (see Figure 7 where ‘early’ is ubiquitous with drought). This trend is 

reversed after drought. In general, this trend in seedling abundance was marginally 

increased in forb-only plots than in closed vegetation. 

Finally, survival over the growing season during a drought year is not improved by the 

presence of any particular functional group. However, survival is lower in gaps. 

Survival is lower at warm sites than at cold ones. 

 

Figure 7: The effect of plant functional groups on seedling abundances in early summer 
(during drought) and late summer (after drought) in alpine (pale grey), sub-alpine (mid grey) 
and boreal (dark grey) grasslands. Letters indicate the functional groups present in the plot, 
where F = forb, B = bryophyte, and G = graminoid.  
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Discussion 

In concert, papers I-IV demonstrate that climate has profound effects on biotic 

interactions and ecosystem functioning, and that plant functional group interactions in 

turn have reciprocal mediating effects on microclimate, carbon flux, and community 

assembly processes. Where the scale and duration of the climate event and biotic 

response vary across different ecosystem functions, the overall trend is toward 

increased ecosystem carbon fluxes and competition with increased warming, at the 

expense of diversity and microclimate heterogeneity. 

Biotic interactions respond to climate 

Across arctic and alpine systems, a number of large-scale shifts of species in direct 

response to climate change has already been documented (Gottfried et al., 2012; Post 

et al., 2009). Furthermore, climate drives change in biotic interactions (Siri L. Olsen et 

al., 2016; Tylianakis, Didham, Bascompte, & Wardle, 2008), which acts to moderate 

the direct effects of climate change. This is supported by my findings of multi-

directional shifts in biotic interactions along both temperature and precipitation 

gradients – graminoid-forb interactions tended towards increased competition with 

increasing temperature (paper I), whilst bryophyte-forb interactions are 

predominantly facilitative with lower temperatures (paper II). These findings support 

the general consensus that climate warming in cold regions will result in increased 

competition. Our results support evidence that forbs, rather than graminoids or 

bryophytes, are most affected by biotic interactions (Klanderud et al 2015).  

Although temperature is the dominant driver of some aspects of ecosystem 

functioning, plant functional groups are arguably as important for functions such as 

carbon flux (paper II) and soil microclimate regulation (paper III). Functional group 

regulation of biomass (Dormann & Woodin, 2002) and aboveground net primary 

production has been observed along temperature gradients in grasslands (Mowll et al., 

2015) although the authors conclude that there are complex interactions with 
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precipitation that could explain some of the variation in biotic outcomes. Interactive 

temperature and precipitation effects have been observed for root biomass (Bai et al., 

2010), phenological shifts (Lesica & Kittelson, 2010), and community composition 

(Klanderud et al., 2015). This thesis also finds that precipitation plays a crucial role in 

determining species dominance patterns for forbs (paper I), in addition to recruitment 

success during transient climate events such as droughts (paper IV). Increases in the 

intensity and time between rainfall events, more so than annual precipitation, reduces 

carbon cycling and species diversity (Knapp et al., 2002). Intermittent precipitation 

has also enabled a shift in species dominance (Hobbs et al., 2007), which may enable 

grassland invasion when under climate stress. 

The many and contrasting hats of plant functional groups 

There is variation in the function that stands either to lose or gain in the outcome of 

biotic interactions. For example, whilst the interaction between forbs and graminoids 

at high temperatures is predominantly competitive when the function in question is 

diversity, the interaction is rather neutral for carbon flux. The stability of these 

interactions suggests that under long-term climate equilibrium, the outcomes of biotic 

interactions would likely remain constant. What we observe, however, is temporal 

variation in biotic interactions in response to climate (as in papers I and IV). 

Hollister et al. (2005) found differences in short- and long-term responses of plant 

communities to climate warming (Arft et al. 1999, Walker et al. 2006), indicating that 

the effect of climate-driven changes in biotic interactions may change in the long 

term. 

Climate extremes 

This thesis demonstrates that temperature and precipitation variability are more 

important for recruitment (paper IV) and to some degree diversity (paper I) than 

mean summer temperature or total precipitation. Similar responses have been 

observed for recruitment (Lloret, Peñuelas, & Estiarte, 2005), decomposition (I. H. J. 

Althuizen et al., 2018), and carbon cycling processes (Knapp et al., 2002) variation 

within climate band drove changes in decomposition rates, not so much between 
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climate bands. Suggesting that it’s the climate you’re adapted to. Deviations from that 

which matters, not really climate per se. this does not bode to well for ecosystem 

functioning in the future, when rapid changes are making communities and 

populations lag more… if we use space for time approaches without consideration for 

transient climate events we risk being overly optimistic about ecosystem-wide 

abilities to adapt and respond, in agreement with (Elmendorf et al., 2015). 

Bryophytes – the unassuming director of ecosystem processes? 

A central theme that stands out throughout this thesis has been the unexpected role of 

bryophytes in almost all processes. I demonstrate that bryophytes regulate soil 

microclimate (paper III) and consequently alleviate drought conditions, they 

facilitate carbon flux by forbs in alpine regions (paper II), and they reduce 

recruitment success even during drought (paper IV). Bryophytes play a critical role in 

feedback systems in the arctic (Van Der Wal & Brooker, 2004). Some have found 

bryophytes can exert both positively and negatively on seedling recruitment 

depending on their depth, cover (Wang et al., 2017), and even diversity (Lett, Nilsson, 

Wardle, & Dorrepaal, 2017; Lett, Wardle, Nilsson, Teuber, & Dorrepaal, 2018). 

Similarly, their regulatory capacity for soil heat and carbon fluxes have been 

demonstrated elsewhere (Blok et al., 2011; Douma, Wijk, Lang, & Shaver, 2007) 

Clones and flower power 

Where above-ground leaf traits partly illustrate plant resource acquisition strategies, as 

demonstrated in paper I, it may be that clonal traits can provide additional clarity on 

resource allocation. There is as yet no agreement on the impact of drought on the 

relative role of clonal growth in determining biotic interactions and resource 

allocation. This is an omission in our understanding of grassland systems because 

clonal traits are suggested to be equally as important in determining community 

responses to climate change as growth-related plant characteristics (Guittar, Goldberg, 

Klanderud, Telford, & Vandvik, 2016; Klimešová & Herben, 2015), emphasising the 

urgent need for a better understanding of clonal dynamics. There was a tendency for 

clonal species to profit from drought conditions (Jaroszynska 2019, personal 
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observation). Without consideration for clonal dynamics of alpine vegetation it is 

difficult to conclude on total community resource economy strategy, particularly in 

response to drought. New analyses should address the response of clonal species to 

drought.  

Implications for ecosystem functioning and biodiversity  

Similarly, the increase in competition between forbs and graminoids could result in 

the eventual decline of forb cover, recruitment capacity, and ultimately diversity. 

Graminoids consistently limited seedling abundance across the climate gradients 

(paper IV), and heightened competition between graminoids and forbs resulted in 

reduced forb cover and diversity with increased temperatures (paper I). If 

competition continues at this rate with climate warming, further reductions in forbs 

could lead to lower seedling abundances. However, in long-lived plant communities 

like those found in alpine regions, only a small number of successful recruitment 

events are necessary to maintain populations (Körner, 2003) although the risk of 

building up an ‘extinction debt’ is already prevalent in alpine systems in Europe 

(Dullinger et al., 2012). The implications for species diversity and for their associated 

pollinators are significant (Wesche, Krause, Culmsee, & Leuschner, 2012). Since 

mowing and moderate grazing keeps graminoids from over dominating in semi-

natural grasslands (Kotas et al., 2017; Lepš, 2014), our findings make a case for the 

promotion and upkeep of traditional land-use practices for maintaining plant and 

insect diversity. 

Grazing was simulated annually by removing above-ground biomass across all our 

fenced sites at the end of the growing season, but it may be that this is not sufficient 

for replicating all the effects that herbivores have on alpine grasslands. Although not 

formally tested, permanently fenced sites tend to show greater functional and cover 

responses in the untreated than the treated plots, suggesting that trophic rather than 

non-trophic interactions may be important for mediating plant community dynamics. 

Herbivore density has already been shown to be important for species richness and 

recovery in upland systems in Norway (Speed, Austrheim, Hester, & Mysterud, 

2012), and the role of a dominant plant species can be dwarfed in importance by 
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mowing and fertilising regimes (Kotas et al., 2017). However, since all of our sites 

have been subjected to the same grazing simulation, we can be confident that the 

variation in response of the forb community to graminoid removal along the climate 

gradients is genuine. Nevertheless, this raises an interesting question regarding the 

interplay of climate and land-use.  

Concluding remarks 

This thesis demonstrates that temperature, precipitation, and climate variability have 

profound effects on biotic interactions and ecosystem functioning. Furthermore, I 

show that plant functional groups and biotic interactions are important mediators of 

climate change effects on microclimate, carbon flux, and community assembly 

processes in alpine grasslands. The cascading effect of regional temperature and 

precipitation on biotic interactions toward increased graminoid dominance and 

reduced forb diversity will result in short-term increases in carbon cycling and 

reduced recruitment success. Increased occurrences of extreme weather, such as 

droughts, in combination with climate warming, will likely enhance recruitment 

limitation and alter carbon cycling. The complex longer-term effects have 

consequences and feedbacks on a variety of ecosystem functions. Further 

investigation into the legacy effect of climate variability, microclimate, and the 

stability of communities following diversity loss, will provide deeper insight into the 

longer-term implications of climate change on alpine grasslands. In conclusion, while 

many of the interactions illustrated in this thesis are complex, I demonstrate that 

climate has generalisable direct and indirect effects on ecosystem functioning that 

improve our interpretation and prediction of climate change in alpine ecosystems. 
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JAGS code for model 3:
model {
# Likelihood
for(i in 1:n.dat) {

# Distribution of the number of surviving seedlings
numSurvived[i] ~ dbetabin(nbAlpha[i], nbBeta[i], N[i])

# mean survival probability & precision make the paramters for beta 
binomial model

nbAlpha[i] <- meanSurvProb[i] * survPrec
nbBeta[i] <- survPrec * (1 - meanSurvProb[i])

logit(meanSurvProb[i]) <- beta.intercept +
inprod(beta, matX[i,]) +
beta.site[siteID[i]]

# predictions for model validation, using original data
yPred[i] ~ dbetabin(nbAlpha[i], nbBeta[i], N[i])

}

# predictions
for(j in 1:n.datY){
#numSurvivedPred[j] ~ dbetabin(nbAlphaPred[j], nbBetaPred[j], 100)
nbAlphaPred[j] <- meanSurvProbPred[j] * survPrec
nbBetaPred[j] <- survPrec * (1 - meanSurvProbPred[j])

logit(meanSurvProbPred[j]) <- beta.intercept +
inprod(beta, matY[j,])

}

# Priors
survPrec ~ dgamma(0.001, 0.001)     # Prior for the precision of the 

survival probability
beta.intercept ~ dnorm(0, 0.001)    # intercept prior

for(k in 1:nEff){  
beta[k] ~ dnorm(0, 0.001)         # priors for the remaining betas

}

# priors random effects
randTau ~ dgamma(0.001, 0.001)
for(m in 1:n.site){
beta.site[m] ~ dnorm(0, randTau)

}  
}
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In this world of meta-analyses and large international collaborations, careful 

documentation of data collection and processing is an invaluable tool (Halbritter et al., 

in review). It allows for better and more robust syntheses, which in turn enables us to 

answer some of the most pressing questions regarding climate change at a much larger 

scale than the single site or experiment.  

In order to achieve such goals data, and the means to derive our findings from those 

data, need to be publicly available. In the following section I document the relevant 

procedures used to collect the data I collected. All data are stored on OSF 

(https://osf.io/4c5v2/). All analyses and data cleaning procedures are documented in 

open-access github project files (https://github.com/fja062/FunCaB). 

The data were collected at all twelve of the SeedClim project sites. More information 

on the sites can be found in the SeedClim data documentation: 

https://docs.google.com/document/d/1RUOqkf8V_TqwZabu8LUjwQvephE5EClyYeg

V9wPAgfs/edit?usp=sharing 

 

2.5    Biomass harvest/Carbon flux plots (SeedClim/FunCaB) 

We established four plots of 25x25 cm at each site in 2016 for biomass harvest linked 

to carbon flux measurements (see #2.8). Vegetation analysis was performed on each of 

these plots (see #2.6.1). 

The biomass of these plots was harvested towards the end of the season (Aug/Sept 

2016) and kept in a freezer at -22°C until processing. The removed biomass of each 

plot was separated into species and dried at 60 °C for 48 hours and weighed. 

2.6    Graminoid Removal (FunCaB)         

Within each site we established five experimental blocks, each containing two 25 × 25 

cm plots, one control plot with intact vegetation and one dominant removal plot. The 

dominant removal was carried out once in 2011 and then twice a year, in the beginning 

and peak of the growing season, in 2012 - 2016. The removal was done with hand 

scissors by clipping all graminoids, including grasses, sedges and rushes, at the soil 
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surface leaving the rest of the vegetation undisturbed. Biomass removal is a standard 

method for studying interspecific interactions, and the strengths and limitations of 

removal experiments have been thoroughly discussed by Aarssen & Epp (1990) and 

Díaz et al. (2003). Although clipping mainly manipulates above-ground interactions, it 

is a recommended method for experimental biomass removal in grasslands, as it 

minimizes soil disturbance whereas nutrient-release from decomposing roots has been 

shown to have minimal effects on the remaining vegetation (McLellan et al., 1995). 

The removed biomass was collected, dried at 60 ºC for 48 hours and weighed. The 

total biomass of graminoids removed decreased in all sites over time, from an average 

of 52.7±4.7 g per site in 2011 to 15.3±1.6 g in 2013, indicating that the removal 

treatment successfully suppressed the graminoids in the treated plots (Olsen et al. 

2015). Total vascular plant biomass in one additional plot per block was harvested, 

sorted into functional groups, dried and weighed in 2013 (S. Fariñas, unpublished 

data). On average graminoids made up 65.3±2.2 % of the total vascular plant biomass 

in our study sites, with minimal variation along the climate gradients. Mean vegetation 

height, measured in each plot in 2011 prior to graminoid removal, increased with 

increasing temperature from 6.5±3.8 cm in the alpine sites to 15.3±8.1 cm in the boreal 

sites  (Olsen et al. 2016).  

2.7. Functional Group Removal (FunCaB)                 

A fully factorial field removal experiment was set up in the 12 sites in 2015. The 

experiment was set within the SeedClim experiments whenever possible, or in similar 

grasslands no further than 100m away. We used 25 x 25 cm plots in 4 blocks per site 

with a total of 384 plots across all twelve sites. Four aluminium pipes were hammered 

down into the soil in the outer corners of all the 25 x 25 cm treatment plots, ensuring 

the pipes to fit the corners of the standardized vegetation analysis frame (aluminium 

frame demarking a 25 x 25 cm inner area, with poles fixed in the corners that fit into 

the aluminium tubes used for plot demarcation in the field). Each of the three major 

plant functional groups (non-vascular plants [mainly bryophytes but also including any 

lichens present], graminoids, and forbs [including any woody plants present]) were 
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removed separately and in all possible combinations, yielding 8 treatments including 

an intact community control (Table 3). For each treatment, all above-ground biomass 

of the target functional group(s) was carefully removed using scissors (graminoids, 

forbs) or tweezers (bryophytes) twice per growing season over three years. In 2015 the 

biomass was only removed once in the alpine sites because of a late start to the 

growing season. All removed biomass was dried and weighed, and the plots were 

photographed before and after removal. In the final year, all plots will be destructively 

harvested for above-and below-ground biomass. 

Table 3. Overview of the experimental design per site for the removal experiments (green = 
present, blank = removed). Forbs = non-graminoid vascular plants including woody plants if 
present.     

Treatment Treatment code Graminoids Forbs Non-vascular 

1 C    

2 B    

3 F    

4 FB    

5 G    

6 GB    

7 GF    

8 FGB    

     

2.8 Vegetation composition (FunCaB) 

In 2015, we conducted full species composition of all plots. In each subsequent year 

we recorded the community composition of the functional groups that would remain in 

the plot according to the plot’s corresponding treatment. We recorded all species of 

vascular plants in the central five 5 x 5 cm subplots (Figure 2.7), noting the subplot 

cover of each species present in each of the five subplots (1-25% = 1, 26-50% = 2, 51-

75% = 3, >76% = 4). Additionally, if the individual was fertile (circled if flowers were 

about to come, flowering, or in fruit), juvenile (J), or a seedling (S) was recorded. We 
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estimated the percent cover (%) of acrocarps and pleurocarps in the subplots where 

bryophytes were not removed. For the entire 25 x 25 cm plot, any new species not 

found in one of the central subplots, and their fertility, were noted. The data were 

collected during the growing seasons in 2015, 2017, and 2018. 

 

Figure 2.7: the central five subplots (yellow) were analysed for detailed life history traits. 

 

The total number of seedlings was consistently recorded in 2018. At peak growing 

season, forb seedlings were marked with wooden toothpicks and their coordinates and 

potential species noted. Toward the end of the growing season, each plot was re-

visited and seedling survival established. Any further seedlings were marked. 

Other variables that were measured for each plot: 

vegetation height (mean of 4 measurements) 
moss % cover (pleurocarp and acrocarp) 
moss layer depth (mean of 4 measurements) 
litter % cover  
bare ground % cover 
rock % cover 
date of analysis 
recorder / scribe (if any) 
comments 
Other variables that were measured for each sub-plot: 
moss % cover 
litter % cover  
bare % ground cover 
rock % cover 
nomenclature follows Lid & Lid (2005) 
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8.     How was the data collected and developed (curation, corrections, etc) and 

where is it stored 

The information from the field data sheets was manually entered into digital 

worksheets, manually proof-read and stored in Excel files. If possible, missing data 

and errors were checked and corrected by creating figures of species covers over time. 

Where data were missing, a mean was generated based on the year previous to, and the 

year following the missing data. For further details on data cleaning and management, 

see the cleaning files in the FunCaB github repository. 

For each turf in each year we calculated the diversity, richness, evenness, and cover of 

each functional group. The data are stored and publicly available on OSF. 

 

9.     Other datasets within the project of direct relevance (e.g., predictor data) 

• This dataset shares experimental design with, and can therefore be used in 

conjunction with, all other SG and TT response variable data.  

• All transplant experiment plot-scale environmental data 

• All site-scale environmental data 

For further details on the sites, experimental set-up, and data availability, I refer you to 

https://docs.google.com/document/d/1RUOqkf8V_TqwZabu8LUjwQvephE5EClyYeg

V9wPAgfs/edit#heading=h.j3ecgc8pkwoj. Documentation for seedling recruitment 

data used in paper IV of this thesis is found in section 2.4. Flux data (paper II) 

documentation is available here: 

https://docs.google.com/document/d/1sxwJefOflidReXDOy0EBzKS-

3cD4V3Zyvtg4wFek98I/edit 

References: 

Halbritter, A. H., Boeck, H. J. D., Eycott, A. E., Robinson, D. A., Vicca, S., Berauer, 
B., … Vandvik, V. (2019). The handbook for standardised field measurements in 
terrestrial global-change experiments. 
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estimated the percent cover (%) of acrocarps and pleurocarps in the subplots where 

bryophytes were not removed. For the entire 25 x 25 cm plot, any new species not 

found in one of the central subplots, and their fertility, were noted. The data were 

collected during the growing seasons in 2015, 2017, and 2018. 

 

Figure 2.7: the central five subplots (yellow) were analysed for detailed life history traits. 

 

The total number of seedlings was consistently recorded in 2018. At peak growing 

season, forb seedlings were marked with wooden toothpicks and their coordinates and 

potential species noted. Toward the end of the growing season, each plot was re-

visited and seedling survival established. Any further seedlings were marked. 

Other variables that were measured for each plot: 

vegetation height (mean of 4 measurements) 
moss % cover (pleurocarp and acrocarp) 
moss layer depth (mean of 4 measurements) 
litter % cover  
bare ground % cover 
rock % cover 
date of analysis 
recorder / scribe (if any) 
comments 
Other variables that were measured for each sub-plot: 
moss % cover 
litter % cover  
bare % ground cover 
rock % cover 
nomenclature follows Lid & Lid (2005) 
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