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Abstract 

Ethnopharmacological relevance: A wide variety of traditional herbal remedies have been used 

throughout history for the treatment of symptoms related to acute respiratory infections (ARIs). 

Aim of the review: The present work provides a timely overview of natural products affecting 

the most common pathogens involved in ARIs, in particular influenza viruses and rhinoviruses 

as well as bacteria involved in co-infections, their molecular targets, their role in drug 

discovery, and the current portfolio of available naturally derived anti-ARI drugs.  

Materials and Methods: Literature of the last ten years was evaluated for natural products active 

against influenza viruses and rhinoviruses. The collected bioactive agents were further 

investigated for reported activities against ARI-relevant bacteria, and analysed for the chemical 

space they cover in relation to currently known natural products and approved drugs. 

Results: An overview of (i) natural compounds active in target-based and/or phenotypic assays 

relevant to ARIs, (ii) extracts, and (iii) in vivo data are provided, offering not only a starting 

point for further in-depth phytochemical and antimicrobial studies, but also revealing insights 

into the most relevant anti-ARI scaffolds and compound classes. Investigations of the chemical 

space of bioactive natural products based on principal component analysis show that many of 

these compounds are drug-like. However, some bioactive natural products are substantially 

larger and have more polar groups than most approved drugs. A workflow with various 

strategies for the discovery of novel antiviral agents is suggested, thereby evaluating the merit 

of in silico techniques, the use of complementary assays, and the relevance of 

ethnopharmacological knowledge on the exploration of the therapeutic potential of natural 

products. 

Conclusions: The longstanding ethnopharmacological tradition of natural remedies against 

ARIs highlights their therapeutic impact and remains a highly valuable selection criterion for 
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natural materials to be investigated in the search for novel anti-ARI acting concepts. We 

observe a tendency towards assaying for broad-spectrum antivirals and antibacterials mainly 

discovered in interdisciplinary academic settings, and ascertain a clear demand for more 

translational studies to strengthen efforts for the development of effective and safe therapeutic 

agents for patients suffering from ARIs.  
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1. Acute respiratory infections (ARIs): Pathogens and relevant targets 

Acute respiratory infections (ARIs) with mild (e.g. common cold) to severe (influenza and 

influenza-like illness) symptoms affect the life of millions of people worldwide each year. 

Among these infections, lower respiratory tract infections are the fourth most common cause 

of death globally and the primary cause in low-income countries (WHO, 2018). 

Improved diagnostic tests, such as the introduction of multiplex polymerase chain reaction 

diagnosis, allow close-to-real-time surveillance of a broad range of respiratory viruses and 

bacteria (single as well as co-infections) in ambulant and clinical specimens (Biancardi et al., 

2016; Visseaux et al., 2017). The results of these surveillance programs are summarized in 

national, European, and worldwide reports and are available in “real-time” databases, e.g. at the 

Robert-Koch-Institute in Berlin, Germany (Influenza, 2019), and the Clinical Virology 

Network (CVN, 2019). 

Influenza viruses A and B, together with enteroviruses such as the rhinoviruses A, B, and C, 

account for the majority of ARIs (Heikkinen and Jarvinen, 2003; Monto, 2002; Visseaux et al., 

2017). Therefore, this review will exclusively focus on influenza viruses and rhinoviruses. Both 

pathogens are known to boost secondary bacterial infections (co-infections). Concerning 

influenza viruses, the M2 ion channel protein, the enzymes neuraminidase and viral polymerase 

represent established targets of approved anti-influenza drugs (Tab. 1) (De Clercq and Li, 2016; 

Furuta et al., 2017; Hayden et al., 2018). For influenza prevention, vaccines are available but 

poorly accepted (Nguyen et al., 2011). In contrast to influenza, no drugs are approved for the 

treatment of rhinovirus infections today. Previous attempts to develop an anti-rhinoviral 

vaccine failed due to the high number (159) of circulating serotypes and insufficient cross-

protective immunity between serotypes (Stepanova et al., 2019). Although rhinoviruses cause 

a mild contagious disease, they may trigger bacterial otitis media, sinusitis, and pneumonia 

(Jacobs et al., 2013).  
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The co-infection of influenza viruses and bacteria (e.g. Streptococcus pneumoniae, 

Staphylococcus aureus, and Haemophilus influenzae) contributes significantly to the mortality 

rates of seasonal influenza epidemics as well as pandemics and is therefore called lethal 

synergism (Brundage and Shanks, 2008; McCullers, 2014). Table 1 provides an overview of 

the main viral pathogens involved in ARIs including their molecular targets as well as approved 

drugs (natural product based or synthetic). 

 

Table 1. Overview of the molecular targets and approved drugs of influenza and rhinoviruses.  

Viruses involved in 
ARIs Description Potential drug targets Approved drugs 

Influenza viruses 
A and B 

Orthomyxoviridae, 
enveloped, negative-sense 
single-stranded RNA 
viruses, segmented 
genome 

hemagglutinin 
(= surface glycoprotein) --- 

  nucleoprotein --- 

  viral polymerase 
favipiravir (8) (Avigan®), 
baloxavir marboxil 
(Xofluza®) 

  
M2 ion channel protein 
(only active against influenza 
A viruses) 

amantadine (Symmetrel®), 
rimantadine (Flumadine®) 

  neuraminidase 
(= surface glycoprotein) 

oseltamivir (1) (Tamiflu®), 
zanamivir (2) (Relenza® – 
inhalative; Dectova® -
intavenously), peramivir (6) 
(e.g. Rapivab®, Alpivab®), 
laninamivir (7) (Inavir®) 

Rhinoviruses 

Picornaviridae, non-
enveloped, positive-sense, 
single-stranded RNA 
viruses 

viral proteins: e.g. protease 3C,  
the viral polymerase,  
and a small hydrophobic 
pocket in the capsid protein 
VP1 

--- 

 

2. Approved small-molecule drugs against ARIs from or inspired by nature 

To date there is only one class of natural product-derived drugs approved for the treatment of 

virus-induced ARIs: influenza neuraminidase inhibitors (Fig. 1). All presently known 

neuraminidase inhibitors are natural product derivatives and/or substances mimicking the 

transition state of N-acetyl-neuraminic acid, the endogenous substrate of viral neuramindase 

(Newman and Cragg, 2016; von Itzstein, 2007). The development of neuraminidase inhibitors 
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has been guided by structure-based molecular design. In 1999, the first two neuraminidase 

inhibitors, oseltamivir (1) (Tamiflu®) and zanamivir (2) (Relenza®), were approved as drugs by 

the FDA. Zanamivir is commonly applied via inhalation, a requirement related to its high 

polarity and low bioavailability. In addition, zanamivir was approved for intravenous 

application. Its ethyl ester derivative, oseltamivir, is a prodrug designed for improved 

bioavailability, and is the first approved, orally bioavailable neuraminidase inhibitor (Kim et 

al., 1997). 

Synthesis of oseltamivir starts from either quinic acid (3) or shikimic acid (4) (Fig. 1). Both 

metabolites are widespread in nature, whereof the latter one is obtained in high yields (3-7%) 

from star anise pods, i.e. the star-like fruits of Illicium verum (Ghosh et al., 2012; Nguyen et 

al., 2006). It can also be produced by fermentation of genetically modified E. coli (Johansson 

et al., 2005; Krämer et al., 2003). Several natural derivatives of quinic acid, such as chlorogenic 

acid (5), have been probed for anti-influenza activity. In particular, the catechol group from the 

caffeic acid moiety of chlorogenic acid derivatives showed to be responsible for the inhibition 

of neuraminidases, although they might not reach the viral target in vivo due to their 

transformation in the gut (Gamaleldin Elsadig Karar et al., 2016). 

In 2010, two further neuraminidase-inhibiting N-acetyl-neuraminic acid derivatives have been 

launched for the treatment of influenza: peramivir (6) (Rapivab®) and laninamivir (7) (Inavir®). 

Peramivir has been approved as a drug in Japan, South Korea, the US, and Europe. Laninamivir, 

which is approved in Japan only, is a long-acting zanamivir derivative that is applied via 

inhalation. 

In 2014, the viral polymerase inhibitor favipiravir (8) (Avigan®) was approved in Japan for 

stockpiling against influenza pandemics (Furuta et al., 2017). Although favipiravir is a synthetic 

compound, its pyrazine carboxamide is based on a natural-product-like nucleoside scaffold. 

Favipiravir is a prodrug, which, after oral administration, is metabolized to the bioactive 

favipiravir-ribofuranosyl-5′-triphosphate. This metabolite acts against RNA viruses via 
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selective binding to PB1 inhibiting the viral polymerase (Jin et al., 2013). Favipiravir’s efficacy 

in influenza treatment has lately been doubted because of a lack of efficacy in primary human 

airway cells (Yoon et al., 2018). 

 

 

Fig. 1. Chemical structures of approved anti-influenza drugs inspired by nature (1, 2, 6-8), their natural precursor 

molecules (3 and 4), and chlorogenic acid (5). 

3. Natural products with reported activities relevant to the treatment of ARIs 

Nature is still the primary source of healthcare for people in developing countries. According 

to the WHO, in Africa the ratio of traditional healers to population is 1:500, whereas the ratio 

of medical doctors to population is 1:40.000, which is related to the lack of availability and 

accessibility of conventional medicines (WHO, 2013).  

The most frequently used remedies for the management of ARIs, especially in children, are 

natural-based agents (mainly from botanical sources) due to easy access, low cost (Lucas et al., 
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2018) and lack of specific antiviral drugs. Plants and microorganisms are a rich source of 

pharmacologically relevant small molecules because they have no immune system and, in 

consequence, are forced to defend themselves against enemies with potent natural products 

(Jones and Dangl, 2006). Compounds from nature have been used for the treatment of microbial 

(viral and bacterial) infections throughout history, and it is estimated that two-thirds of all of 

today’s approved antibacterial drugs are derived from natural products (Martinez et al., 2015; 

Newman and Cragg, 2016).  

However, challenges involved in the evaluation and comparison of outcomes from clinical 

studies have limited the number of botanicals approved by regulatory agencies for medical use 

(Kellogg et al., 2019). From 1981 to 2014 neither an antibacterial nor an antiviral botanical 

drug has been approved by the FDA. However, 11 out of 140 drugs introduced to the markets 

during this period are genuine natural products with antibacterial activity, whereas no genuine 

natural product with antiviral activity has been launched as new drug. Comparing the numbers 

of newly approved small chemical entities, only 22% (i.e. 14 out of 64) are entirely synthetic 

antiviral drugs leaving, a quite high portion of 78% for drug substances derived from or inspired 

by natural products (Newman and Cragg, 2016). 

 

3.1. Methods for the extraction of literature data 

We used SciFinder® to search for any literature published between January 2009 and June 2019 

that is relevant to the research of natural products for the prevention and treatment of ARIs, in 

particular those caused by influenza or rhinoviruses. More specifically, we searched for any 

“journal”, “letter”, and “review” matching the research topic “natural products” in combination 

with any of the following keywords: “acute respiratory infection”, “influenza” and 

“neuraminidase” or “rhinovirus”. Documents in languages other than English and publications 

reporting on active extracts but lacking information on the origin of natural products were not 

considered. Furthermore, natural products relevant in ARIs identified by these searches were 
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manually screened for information on additional antibacterial activity, thereby considering the 

following species: Streptococcus pneumoniae and S. pyogenes, Haemophilus influenzae, 

Klebsiella pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa.  

 

3.2. Data evaluation and aspects to consider in the search for natural products against 

ARIs 

An overview of bioactive pure compounds identified during our survey is provided in Table 2; 

results from extract testing are reported in Table 3 (including information on the solvents used 

for extract preparation); observations from in vivo studies (preclinical animal models or clinical 

studies) are presented in Table 4. 

For better comparability of the biological data presented in Table 2, activity data (50% 

inhibition concentration: IC50 values; % inhibition at a certain concentration) are presented 

together with the corresponding positive controls. In the case of cell-based assays, information 

on the cytotoxicity of compounds (50% cytotoxic concentration: CC50) is also provided. 

A major challenge for the evaluation of natural products with reported activities against ARIs 

is the diversity of viral and bacterial strains. There is a large body of literature reporting on drug 

resistance related to the exchange of amino acids in viral proteins, for example, influenza virus 

neuraminidase (Abed and Boivin, 2017; Hoffmann et al., 2016). This fact underlines the limited 

comparability of activity data of different viral strains involved in ARIs. Comparability of 

activity data is further hampered by the fact that in many publications (i) the positive control 

(known inhibitor or drug) is missing, (ii) activity data are not reported as numbers but provided 

only as part of figures without any supplementary material, and (iii) activity at only one 

concentration is given, thus missing dose-dependency. 

Moreover, comparability of activity data may also strongly be impacted by the used assay under 

investigation: target- or cell-based assays are usually the first access to bioactivity. The choice 

of respective assays depends on the level of available target information as well as the aims of 
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the study. For example, target-based assays are often used in the search for novel neuraminidase 

inhibitors that overcome resistance of influenza viruses to established drugs (Ding et al., 2017; 

Grienke et al., 2014; Kirchmair et al., 2011; Sriwilaijaroen et al., 2012). Previously coined 

“invalid metabolic panaceas” ascribed to natural compounds showing manifold bioactivities 

revealed a high prevalence of compounds to interfere in particular with the target-based 

neuraminidase inhibition assays (Bisson et al., 2016). This phenomenon raises concerns about 

the validity of natural products as lead compounds for neuraminidase inhibitors. In general, the 

reliability of target-based neuraminidase inhibition assays using fluorescence (FL), 

chemiluminescence (CL), and colorimetric readouts can be hampered by self-FL, signal 

quenching or the color of the samples (Chamni and De-Eknamkul, 2013; Kongkamnerd et al., 

2011; Richter et al., 2015). To avoid assay interference pitfalls when dealing with self-FL and 

CL- or FL-quenching compounds (Henrich and Beutler, 2013), complementary assays have 

been established in our group (Richter et al., 2015). However, the test results of target-based 

assays do not necessarily correspond well with those of cell-based assays (e.g. virus yield 

reduction assay, cytopathic effect inhibition assay, plaque reduction assay) that capture cell 

permeability and full infection pathways rather than single targets (e.g. neuraminidase or 

receptor inhibition) (Martinez et al., 2015). In cell-based assays, an activity value alone (often 

expressed as the 50% effective or inhibitory concentration) has little validity, but is to be set in 

proportion to a control value (50% cytotoxic concentration to calculate the selectivity index 

(SI), positive control, vehicle control) for significance. Both target- und cell-based assays lack 

any kind of holistic effect on an organism such as metabolic processes and interactions with the 

immune response. 

As apparent from Table 2, flavonoids, including their glycosides and chlorogenic acid 

derivatives, represent the most important class of natural products for which anti-influenza or 

anti-rhinovirus activities have been reported (Fig. 2). Further relevant compound classes 

include diarylheptanoids, iridoidglycosides, lignans and their glycosides, phenanthrenes, 
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phenolic compounds (including tannins), triterpenoids (including their glycosides), and 

xanthones. 

 

 

Fig. 2. Percentages of natural product compound classes listed in Tab. 2. 

 

Using principal component analysis, we compared the chemical space of all bioactive natural 

products listed in Table 2 (IC50 < 70 µM) with that of a large set of known natural products 

(201,761 compounds compiled previously) and approved drugs. The set of known natural 

products consists of 201,761 unique compounds that we compiled previously (Chen et al., 

2019); the set of approved drugs was retrieved from DrugBank (Wishart et al., 2017). Fifteen 

key physicochemical properties (e.g. molecular weight and log P) were used to describe the 

molecules in a technical approach identical to the one described in Chen et al., 2019. As shown 

in Fig. 3A, many of the natural products active in ARI-relevant phenotypic and target-based 

assays populate areas in chemical space that are densely populated by approved drugs. Taking 

the loadings into consideration (Figure 3B), several natural products active against IVs and RVs 

are observed to be heavier (and larger) and to consist of more hydrogen bond donors and 

acceptors than most approved drugs. 
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A  B  

Fig. 3. PCA of the of the chemical space of natural products active in biological assays relevant to ARIs, known 

natural products and approved drugs. (A) PCA loadings plot. (B) PCA score plot. For the sake of clarity, only 10% 

of the 201,761 compounds of the known natural products data set are depicted. The PCA is based on 15 important 

physicochemical properties: molecular weight (Weight), log P (log P (o/w)), topological polar surface area 

(TPSA), number of hydrogen bond acceptors (a_acc), number of hydrogen bond donors (a_don), number of heavy 

atoms (a_heavy), fraction of rotatable bonds (b_rotR), number of nitrogen atoms (a_nN), number of oxygen atoms 

(a_nO), number of acidic atoms (a_acid), number of basic atoms (a_base), sum of formal charges (FCharge), 

number of aromatic atoms (a_aro) and number of chiral centers (chiral), and number of rings (rings). The 

percentage of the total variance explained by the first two principal components (PC1, PC2) is reported in the 

respective axis labels. 
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Table 2. Natural compounds with reported activities against ARIs: Anti-influenza virus, anti-rhinovirus, and dual antiviral and antibacterial compounds.  

Natural source Compound name 
Subtype, 
strain/isolate or 
target 

Inhibitory 
assay 

Activity in 
comparison to 
positive control or 
50% inhibition 
concentration 
(IC50) 

Positive control: used 
at a certain 
concentration or 50% 
inhibition 
concentration 
(IC50) 

50% Cytotoxic 
concentration (CC50) 

Antibacterial 
activity Reference(s) 

 Chlorogenic acids 

n.g. 
1,4-dicaffeoylquinic 
acid 

IV, H1N1  
A/PR/8/1934 NAI - CL  17.0 µM oseltamivir: 0.0002 µM  n.r. 

(Kirchmair et al., 
2011) 

n.g. 1,5-di-O-
caffeoylquinic acid CP NA NAI - FL  23.0 fold at 10 µM oseltamivir at 10 µM  n.r. (Gamaleldin Elsadig 

Karar et al., 2016) 

n.g. 3,4,5-tri-O-
caffeoylquinic acid CP NA NAI - FL  20.0 fold at 10 µM oseltamivir at 10 µM  n.r.  

  IV, rH5N1 (N-His)-
Tag NAI - FL  20.0 fold at 10 µM oseltamivir at 100 µM    

n.g. 3,4-di-O-
caffeoylquinic acid CP NA NAI - FL  25.0 fold at 10 µM oseltamivir at 10 µM  n.r.  

  IV, rH5N1 (N-His)-
Tag NAI - FL  24.0 fold at 10 µM oseltamivir at 100 µM    

n.g. 3,5-di-O-
caffeoylquinic acid CP NA NAI - FL  28.0 fold at 10 µM oseltamivir at 10 µM  n.r.  

  IV, H5N1 NAI - FL  58.0 fold at 100 µM oseltamivir at 100 µM    

  
IV, rH5N1 (N-His)-
Tag NAI - FL  22.0 fold  at 10 µM oseltamivir at 100 µM    

n.g. 3-O-caffeoylglucose IV, CP NA NAI - FL  20.0 fold at 10 µM oseltamivir at 10 µM  n.r.  

n.g. 4,5-di-O-
caffeoylquinic acid CP NA NAI - FL  25.0 fold at 10 µM oseltamivir at 10 µM  n.r.  

  IV, rH5N1 (N-His)-
Tag NAI - FL  28.0 fold at 10 µM oseltamivir at 100 µM    

n.g. 5-O-caffeoylquinic 
acid CP NA NAI - FL  24.0 fold at 10 µM oseltamivir at 10 µM  n.r.  
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Natural source Compound name 
Subtype, 
strain/isolate or 
target 

Inhibitory 
assay 

Activity in 
comparison to 
positive control or 
50% inhibition 
concentration 
(IC50) 

Positive control: used 
at a certain 
concentration or 50% 
inhibition 
concentration 
(IC50) 

50% Cytotoxic 
concentration (CC50) 

Antibacterial 
activity Reference(s) 

n.g. caffeic acid 
IV, rH5N1 (N-His)-
Tag NAI - FL  63.0 fold at 100 µM oseltamivir at 100 µM  PA 

(Gamaleldin Elsadig 
Karar et al., 2016; 
Perumal et al., 2015) 

n.g. methyl-3,4-di-O-
caffeoylquinate CP NA NAI - FL  38.0 fold at 10 µM oseltamivir at 10 µM  SA 

(Gamaleldin Elsadig 
Karar et al., 2016; 
Zhang et al., 2013) 

Ilex asprella (Hook. 
et Arn.) Champ. ex 
Benth. 

3,4,5-
trimethoxyphenol b-
D-5-O-caffeoyl-
apiofuranosyl-(16)-
b-D-glucopyranoside 

IV, H1N1 
 A/PR/8/1934 NAI - FL  1.7 µM oseltamivir: 0.9 µM  n.r. (Peng et al., 2016) 

Lonicera japonica 
Thunb. 

3,4-di-O-
caffeoylquinic acid CP NA NAI - FL 68.3 µM oseltamivir: 11.82 µM  n.r. (Zhao et al., 2018) 

 3,5-di-O-
caffeoylquinic acid CP NA NAI - FL 61.2 µM oseltamivir: 11.82 µM  SA (Xiong et al., 2013; 

Zhao et al., 2018) 

 chlorogenic acid IV, H1N1 
A/FM1/1/1947 

CPE 39.4 µM n.g. 364.3 µM in MDCK 
cells n.r. (Ding et al., 2017) 

  
IV, H1N1 
A/Jinnan/15/2009 CPE  54.8 µM n.g. 

364.3 µM in MDCK 
cells   

  IV, H1N1 
A/PR/8/1934 CPE 44.9 µM oseltamivir: ~ 60% at 2 

µM 
364.3 µM in MDCK 
cells   

  IV, H1N1 
A/PR/8/1934 NAI - FL  22.1 µM n.g.    

  IV, H3N2 
A/Beijing/32/1992 

CPE 62.3 µM oseltamivir: ~ 60% at 2 
µM 

364.3 µM in MDCK 
cells   

  
IV, H3N2 
A/Beijing/32/1992 NAI - FL  59.1 µM n.g.    

  IV, H3N2 
A/Hubei/3/2005 CPE 51.2 µM n.g. 364.3 µM in MDCK 

cells   

  IV, H3N2 
A/Zhuhui/1222/2010 CPE 71.9 µM n.g. 364.3 µM in MDCK 

cells   

  IV, H1N1  
A/PR/8/1934 

NAI - FL  84.7 µM oseltamivir: 0.007 µM  n.r.  
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Natural source Compound name 
Subtype, 
strain/isolate or 
target 

Inhibitory 
assay 

Activity in 
comparison to 
positive control or 
50% inhibition 
concentration 
(IC50) 

Positive control: used 
at a certain 
concentration or 50% 
inhibition 
concentration 
(IC50) 

50% Cytotoxic 
concentration (CC50) 

Antibacterial 
activity Reference(s) 

Moringa oleifera 
Lam. 

5-O-caffeoyl quinic 
acid 

IV, H1N1 
A/PR/8/1934 NAI - FL  78.5 µM oseltamivir: 0.007 µM  n.r. (Kashiwada et al., 

2012) 

Polygonum chinense 
L. caffeic acid IV, B/Lee/1940 CPE 81.6 µM oseltamivir: 0.21 µM > 1,665.2 µM in MDCK 

cells PA 
(Perumal et al., 
2015; Tran et al., 
2017) 

  IV, H1N1 
A/PR/8/1934 

CPE 209.8 µM oseltamivir: < 0.005 µM > 1,665.2 µM in MDCK 
cells   

  IV, H3N2 
A/HK/2/1968 CPE 178.2 µM oseltamivir: < 0.07 µM > 1,665.2 µM in MDCK 

cells   

 Diarylheptanoids 

Alpinia katsumadai 
Hayata 

(E,E)-1,7-diphenyl-
4,6-heptadien-3-one 

IV, H1N1  
A/PR/8/1934 

NAI - CL  6.1 µM oseltamivir: 0.0001 µM  n.r. (Grienke et al., 2010) 

 
(E,E)-5-hydroxy-1,7-
diphenyl-4,6-
heptadien-3-one 

IV, H1N1 
A/PR/8/1934 NAI - CL  4.7 µM oseltamivir: 0.0001 µM  n.r.  

 (S)-1,7-diphenyl-
6(E)-hepten-3-ol 

IV, H1N1  
A/PR/8/1934 NAI - CL  4.1 µM oseltamivir: 0.0001 µM  n.r.  

 katsumadain A CP NA NAI - CL  0.1 µM oseltamivir: 43.5 µM  SP (Richter et al., 2015) 

  CP NA NAI - FL  2.8 µM oseltamivir: 61.3 µM    

  CP NA NAI - lectin-
based HA  

2.4 µM oseltamivir: 100 µM    

  IV, H1N1  
A/342/2009 NAI - CL  0.6 µM oseltamivir: > 0.03 µM   

(Kirchmair et al., 
2011; Walther et al., 
2016) 

  
IV, H1N1 
A/Belzig/2/2001a NAI - CL  0.6 µM oseltamivir: 0.0002 µM   

(Grienke et al., 2010; 
Walther et al., 2016) 

  
IV, H1N1 
A/Brest/IDT7490/20
08 

NAI - CL  1.6 µM oseltamivir: 0.0002 µM    

  
IV, H1N1 
A/Horneburg/IDT74
89/2008 

NAI - CL  1.1 µM oseltamivir: 0.0001 µM    
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Natural source Compound name 
Subtype, 
strain/isolate or 
target 

Inhibitory 
assay 

Activity in 
comparison to 
positive control or 
50% inhibition 
concentration 
(IC50) 

Positive control: used 
at a certain 
concentration or 50% 
inhibition 
concentration 
(IC50) 

50% Cytotoxic 
concentration (CC50) 

Antibacterial 
activity Reference(s) 

  IV, H1N1 
A/Jena/5258/2009 NAI - CL  0.4 µM oseltamivir: 0.0002 µM   (Richter et al., 2015) 

  IV, H1N1 
A/Jena/525820/09 

NAI - FL  48.4 µM oseltamivir: 0.0005 µM    

  IV, H1N1 
A/Jena/5528/2009 NAI - CL  0.2 µM oseltamivir: 0.0001 µM   

(Kirchmair et al., 
2011; Walther et al., 
2016) 

  IV, H1N1 
A/Jena/5555/2009 NAI - CL  0.3 µM oseltamivir: 0.0001 µM    

  
IV, H1N1 
A/Jena/8178/2009+r
NanA 

plaque 
reduction  

28.1% at 20 µM oseltamivir at 1 µM    

  
IV, H1N1 
A/Jena/8178/2009+r
NanB 

plaque 
reduction  21.0% at 20 µM oseltamivir at 1 µM    

  IV, H1N1 
A/Potsdam/15/1981a NAI - CL  0.7 µM oseltamivir: 0.0002 µM   (Grienke et al., 2010; 

Walther et al., 2016) 

  IV, H1N1 
A/PR/8/1934 NAI - CL  1.1 µM oseltamivir: 0.0001 µM    

  SP CJ9400 NAI - lectin-
based HA  

0.7 µM oseltamivir: 0.3 µM   (Walther et al., 2015) 

  SP D39 NAI - lectin-
based HA  1.0 µM oseltamivir: 10.0 µM    

  SP DSM20566 NAI - CL  0.9 µM oseltamivir: 0.6 µM   (Richter et al., 2015) 

  SP DSM20566 NAI - FL  13.4 µM oseltamivir: 1.1 µM    

  SP DSM20566 NAI - lectin-
based HA  

3.2 µM oseltamivir: 2.1 µM   (Walther et al., 2015) 

  SP DSM20566 
rNanA 

NAI - lectin-
based HA  3.2 µM oseltamivir: 3.2 µM    

  SP DSM20566 
rNanB 

NAI - lectin-
based HA  5.4 µM oseltamivir: 31.6 µM    
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  VC NA NAI - CL  0.4 µM zanamivir: 20.6 µM   (Richter et al., 2015) 

  VC NA NAI - FL  15.0 µM zanamivir: 42.5 µM    

  VC NA NAI - lectin-
based HA  1.7 µM zanamivir: 54.4 µM    

 Flavonoids 

Euphorbia 
ebracetolata Hayata 

ent-(13S)-13-hy-
droxyatis-16-ene-
3,14-dione 

RV, B3 
Cell titer-Glo 
Lumninescent 
Cell Viability  

25.3 µM n.g.  n.r. (Wang et al., 2018) 

 
ent-(3β,13S)-3,13-
dihydroxyatis-16-en-
14-one 

RV, B3 
Cell titer-Glo 
Lumninescent 
Cell Viability  

49.3 µM n.g.  n.r.  

 
ent-13(R)-hydroxy-
3,14-dioxo-16-
atisene 

RV, B3 
Cell titer-Glo 
Lumninescent 
Cell Viability  

80.1 µM n.g.  n.r.  

 ebracetone B RV, B3 
Cell titer-Glo 
Lumninescent 
Cell Viability  

90.4 µM n.g.  n.r.  

n.g. 4'-O-
methylochnaflavone 

IV, H1N1  
A/342/2009 

NAI - CL  40.7 µM oseltamivir: > 0.03 µM  n.r. (Kirchmair et al., 
2011) 

  
IV, H1N1 
A/Jena/5528/2009 NAI - CL  3.5 µM oseltamivir: 0.0001 µM    

  IV, H1N1 
A/Jena/5555/2009 NAI - CL  2.0 µM oseltamivir: 0.0001 µM    

  IV, H1N1  
A/PR/8/1934 NAI - CL  2.1 µM oseltamivir: 0.0002 µM    

n.g. gossypetin IV, H1N1  
A/PR/8/1934 

CPE 43.0 µM oseltamivir: 8.3 µM > 283.0 µM in MDCK 
cells n.r. (Jeong et al., 2009) 

  
IV, H9N2 
A/Chicken/Korea/M
S96/1996 

CPE 36.3 µM oseltamivir: 6.3 µM > 283.0 µM in MDCK 
cells   

n.g. quercetin 
IV, H1N1  
A/PR/8/1934 CPE 43.1 µM oseltamivir: 8.3 µM 

> 253.8 µM in MDCK 
cells n.r.  
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n.g. quercetin-5,7,3',4'-
tetramethylether 

IV, H1N1  
A/342/2009 NAI - CL  14.8 µM oseltamivir: > 0.03 µM  n.r. (Kirchmair et al., 

2011) 

  IV, H1N1 
A/Jena/5528/2009 

NAI - CL  0.4 µM oseltamivir: 0.0001 µM    

  IV, H1N1 
A/Jena/5555/2009 NAI - CL  1.0 µM oseltamivir: 0.0001 µM    

  IV, H1N1  
A/PR/8/34 NAI - CL  1.1 µM oseltamivir: 0.0002 µM    

Artocarpus sp. artocarpin IV, H1N1  
A/342/2009 NAI - CL  0.6 µM oseltamivir: > 0.03 µM  SP (Kirchmair et al., 

2011) 

  IV, H1N1 
A/Jena/5528/2009 

NAI - CL  0.2 µM oseltamivir: 0.0001 µM    

  IV, H1N1 
A/Jena/5555/2009 NAI - CL  0.3 µM oseltamivir: 0.0001 µM    

  
IV, H1N1 
A/Jena/8178/2009+r
NanA 

Plaque 
reduction  

44.3% at 20 µM oseltamivir at 1 µM   (Walther et al., 2016) 

  
IV, H1N1 
A/Jena/8178/2009+r
NanB 

Plaque 
reduction  

77.1% at 20 µM oseltamivir at 1 µM    

  IV, H1N1 
A/PR/8/1934 NAI - CL  0.2 µM oseltamivir: 0.0002 µM   (Kirchmair et al., 

2011) 

  SP DSM20566 NAI - lectin-
based HA  7.7 µM oseltamivir: 2.1 µM   (Walther et al., 2015) 

  SP DSM20566 
rNanA 

NAI - FL  10.0 µM oseltamivir: 2.9 µM   (Walther et al., 2016) 

  SP DSM20566 
rNanB 

NAI - lectin-
based HA  10.0 µM oseltamivir: 31.6 µM    

  SP DSM20566r 
NanA 

NAI - lectin-
based HA  10.0 µM oseltamivir: 3.2 µM    

Glycyrrhiza glabra 
L. 

(E)-1-[2,4-
dihydroxy-3-(3-
methyl-2-butenyl)-

IV, H1N1 
A/Jena/8178/2009 CPE 29.7% at 50 µM oseltamivir: 0.03 µM 

135.0 µM in MDCK 
cells n.r. (Grienke et al., 2014) 
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phenyl]-3-(8-
hydroxy-2,2-
dimethyl-2H-1-
benzopyran-6-yl)-2-
propen-1-one 

  IV, H3N2  
A/HK/1968 CPE 48.1% at 50 µM oseltamivir: 0.004 µM 135.0 µM in MDCK 

cells 
  

 biochanin B IV, H1N1 
A/Jena/8178/2009 CPE 38.2% at 50 µM oseltamivir: 0.03 µM 123.0 µM in MDCK 

cells n.r.  

  IV, H3N2 
A/HK/1968 

CPE 42.6% at 50 µM oseltamivir: 0.004 µM 123.0 µM in MDCK 
cells 

  

 glabrone 
IV, H1N1 
A/Jena/8178/2009 CPE 34.7% at 50 µM oseltamivir: 0.03 µM 

90.8 µM in MDCK 
cells n.r.  

  IV, H3N2  
A/HK/1968 CPE 24.2% at 50 µM oseltamivir: 0.004 µM 90.8 µM in MDCK 

cells 
  

 licoflavone B IV, H1N1 
A/Jena/8178/2009 CPE 34.2% at 50 µM oseltamivir: 0.03 µM 79.7 µM in MDCK 

cells n.r.  

Glycyrrhiza inflata 
Batalin isoliquiritigenin IV, H1N1 NAI - FL  32.8 µM oseltamivir: 0.13 µM  n.r. (Dao et al., 2011) 

  IV, H1N1 (H274Y) NAI - FL  13.3 µM oseltamivir: 16.4 µM    

  IV, H9N2 NAI - FL  37.9 µM oseltamivir: 0.016 µM    

Lonicera japonica 
Thunb. luteolin CP NA NAI - FL  53.2 µM oseltamivir: 11.82 µM  n.r. (Zhao et al., 2018) 

Morus alba L. kuwanon L SP DSM20566 NAI - FL  31.6 µM oseltamivir: 2.8 µM  SP (Grienke et al., 2016) 

 sanggenol A 
IV, H1N1 
A/Jena/8178/2009 NAI - FL  50.2 µM oseltamivir: 0.004 µM  SP  

  SP DSM20566 NAI - FL  31.6 µM oseltamivir: 2.08 µM    
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 sanggenol B SP DSM20566 NAI - FL  31.6 µM oseltamivir: 2.08 µM  SP  

 sanggenon C IV, H1N1 
A/Jena/8178/2009 

CPE 8.3 µM n.g. 51.7 µM in MDCK 
cells SP  

  IV, H1N1 
A/Jena/8178/2009 NAI - FL  50.6 µM oseltamivir: 0.004 µM    

 sanggenon D SP DSM20566 NAI - FL  31.6 µM oseltamivir: 2.08 µM  SP  

 sanggenon G IV, H1N1 
A/Jena/8178/2009 CPE 8.8 µM n.g. > 100 µM in MDCK 

cells SP  

  IV, H1N1 
A/Jena/8178/2009 

NAI - FL  30.9 µM oseltamivir: 0.004 µM    

  SP DSM20566 NAI - FL  5.4 µM oseltamivir: 2.08 µM    

Pithecellobium 
clypearia (Jack) 
Benth. 

7-O-
galloyltricetiflavan 

IV, H1N1  
A/PR/8/34 

NAI - FL  36.9 µM zanamivir: 0.00009 µM  n.r. (Kang et al., 2014) 

Polygonum chinense 
L. quercetin IV, B/Lee/1940 CPE 49.7 µM oseltamivir: 0.21 µM 992.6 µM in MDCK 

cells SA (Alvarez et al., 2008; 
Tran et al., 2017) 

  IV, H1N1 
A/PR/8/1934 CPE 41.7 µM oseltamivir: 0.07 µM 992.6 µM in MDCK 

cells   

  IV, H3N2 
A/HK/2/1968 

CPE 43.3 µM oseltamivir: 0.005 µM 992.6 µM in MDCK 
cells   

Rhodiola rosea L. herbacetin IV, H1N1  
A/PR/8/1934 CPE 35.0 µM oseltamivir: 8.3 µM 293.7 µM in MDCK 

cells n.r. (Jeong et al., 2009) 

  
IV, H9N2 
A/Chicken/Korea/M
S96/1996 

CPE 23.0 µM oseltamivir: 6.3 µM 293.7 µM in MDCK 
cells   

  
IV, H1N1 
A/Bervig_Mission/1/
1918 

NAI - FL  8.9 µM oseltamivir: 0.0016 µM    

 kaempferol IV, H1N1 
A/PR/8/1934 CPE 30.2 µM oseltamivir: 8.3 µM > 300 µM in MDCK 

cells n.r.  
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IV, H9N2 
A/Chicken/Korea/M
S96/1996 

CPE 18.5 µM oseltamivir: 6.3 µM 
> 300 µM in MDCK 
cells 

  

  
IV, H1N1 
A/Bervig_Mission/1/
1918 

NAI - FL  11.2 µM oseltamivir: 0.0016 µM    

 rhodiolinin IV, H1N1 
A/PR/8/1934 CPE 41.7 µM oseltamivir: 8.3 µM > 300 µM in MDCK 

cells n.r.  

  
IV, H9N2 
A/Chicken/Korea/M
S96/1996 

CPE 29.3 µM oseltamivir: 6.3 µM > 300 µM in MDCK 
cells   

  
IV, H1N1 
A/Bervig_Mission/1/
1918 

NAI - FL  10.3 µM oseltamivir: 0.0016 µM    

Salvia plebeia R. Br. hispidulin IV, H1N1 
A/PR/8/1934 

CPE 22.6 µM oseltamivir: 0.55 µM > 200 µM in MDCK 
cells n.r. (Bang et al., 2016) 

  IV, H1N1 
A/PR/8/1934 NAI - FL  19.8 µM oseltamivir: 0.1 µM    

 luteolin IV, H1N1 
A/PR/8/1934 NAI - FL  18.0 µM oseltamivir: 0.1 µM  n.r.  

 nepetin IV, H1N1 
A/PR/8/1934 CPE 17.5 µM oseltamivir: 0.55 µM > 200 µM in MDCK 

cells n.r.  

  IV, H1N1 
A/PR/8/1934 

NAI - FL  11.2 µM oseltamivir: 0.1 µM    

 Flavonoid glycosides 

n.g. cosmosiin IV, H1N1 
A/PR/8/1934 CPE 40.0 µM oseltamivir: 8.3 µM > 300 µM in MDCK 

cells n.r. (Jeong et al., 2009) 

 nicotiflorin IV, H1N1 
A/PR/8/1934 

CPE 40.1 µM oseltamivir: 8.3 µM > 300 µM in MDCK 
cells n.r.  

Castanea crenata 
Siebold & Zucc. 

kaempferol-3-O-
[2″,6″-di-O-E-p-
coumaroyl]-β-D-
glucopyranoside 

RV, 1B CPE 1.2 µM rupintrivir: < 0.04 µM > 50 µM in HeLa cells n.r. (Kim et al., 2019) 
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kaempferol-3-O-[3″-
acetyl-2″,6″-di-E-p-
coumaroyl]-β-D-
glucopyranoside 

RV, 1B CPE 5.5 µM rupintrivir: < 0.04 µM > 50 µM in HeLa cells n.r.  

 

kaempferol-3-O-[4″-
acetyl-2″,6″-di-E-p-
coumaroyl]-β-D-
glucopyranoside 

RV, 1B CPE 7.5 µM rupintrivir: < 0.04 µM > 50 µM in HeLa cells n.r.  

Cleistocalyx 
operculatus (Roxb.) 
Merr. and Perry 

myricetin-3′,5′-
dimethylether 3-O-β-
D-galactopyranoside 

IV, H1N1 
A/PR/8/1934 NAI - FL  8.7 µM oseltamivir: 0.1058 µM  n.r. (Ha et al., 2016) 

  
IV, H1N1 
A/PR/8/1934 
(H274Y) 

NAI - FL  9.3 µM oseltamivir: 7.42 µM    

  
IV, H9N2 
A/Chicken/Korea/O1
310/2001 

NAI - FL  6.5 µM oseltamivir: 0.0129 µM    

Glycyrrhiza glabra 
L. prunin IV, H1N1 

A/Jena/8178/2009 CPE 49.6% at 50 µM oseltamivir: 0.03 µM > 126.0 µM in MDCK 
cells n.r. (Grienke et al., 2014) 

Lonicera japonica 
Thunb. 

luteolin-7-O-ß-
glucoside IV, CP NA NAI - FL 76.5 µM oseltamivir: 11.82 µM  SA (Xiong et al., 2013; 

Zhao et al., 2018) 

Matteuccia 
struthiopteris (L.) 
Tod. 

matteflavoside G IV, H1N1 
A/PR/8/1934 NAI - FL  6.9 µM ribavirin: 19.7 µM  n.r. (Li et al., 2015) 

Moringa oleifera 
Lam. 

quercetin 3-O-b-D-
(6''-O-malonyl)-
glucoside 

IV, H1N1 
A/PR/8/1934 NAI - FL  46.0 µM oseltamivir: 0.007 µM  n.r. (Kashiwada et al., 

2012) 

Rhodiola rosea L. rhodionin 
IV, rH1N1 
A/Bervig_Mission/1/
1918 

NAI - FL  32.2 µM oseltamivir: 0.0016 µM  n.r. (Jeong et al., 2009) 

 rhodiosin 
IV, H9N2 
A/Chicken/Korea/M
S96/1996 

CPE 35.1 µM oseltamivir: 6.3 µM 297.3 µM in MDCK 
cells n.r.  

  
IV, rH1N1 
A/Bervig_Mission/1/
1918 

NAI - FL  56.5 µM oseltamivir: 0.0016 µM    

Syzygium 
aromaticum (L.) 
Merr. et Perry 

isorhamnetin-3-O-b-
D-glucopyranoside 

IV, H1N1 
A/PR/8/1934 NAI - FL  23.8 µM zanamivir: 0.004 µM  n.r. (He et al., 2017) 
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 Iridoids 

Gardenia 
jasminoides J.Ellis geniposide 

IV, H1N1 
A/jiangsu/1/2009 CPE 87.7 µM peramivir: n.g.  

1,040.0 µM in MDCK 
cells n.r. (Zhang et al., 2017) 

Lonicera japonica 
Thunb. 

dimethylsecolologan
oside 

IV, H1N1 
A/PR/8/1934 

Plaque 
reduction  

49.3% at 100 
µg/mL oseltamivir at 0.1 µg/mL  n.r. (Kashiwada et al., 

2013) 

 secoxyloganin 
IV, H1N1 
A/PR/8/1934 

Plaque 
reduction  

53.1% at 100 
µg/mL oseltamivir at 0.1 µg/mL  SA 

(Kashiwada et al., 
2013; Xiong et al., 
2013) 

 Lignans 

Forsythia 
viridissima Lindl. conicaol A RV, A1B CPE 13.0 µM rupuntrivir: n.g. > 50 µM in HeLa cells n.r. (Huh et al., 2019) 

 matairesinol RV, A1B CPE 42.2 µM rupuntrivir: n.g. > 50 µM in HeLa cells n.r.  

 viridissimaol A RV, A1B CPE 45.7 µM rupuntrivir: n.g. > 50 µM in HeLa cells n.r.  

 viridissimaol B RV, A1B CPE 47.5 µM rupuntrivir: n.g. > 50 µM in HeLa cells n.r.  

Isatis indigotica 
Fortune ex Lindl. clemastanin B 

IV, H1N1 
A/Guangzhou/GRID
07/2009 

CPE 253.0 µM ribavirin: 49.1 µM 21,808.7 µM in MDCK 
cells n.r. (Yang et al., 2013) 

  
IV, H7N3 
A/Duck/Guangdong/
1994 

CPE 255.1 µM ribavirin: 57.3 µM 21,808.7 µM in MDCK 
cells 

  

 Others 

n.g. 

1-(5-hydroxyl-2,2,-
dimethyl-2H-1-
benzopyran-6-yl)-2-
phenyl-ethanone 

IV, H1N1 
A/Jena/5528/2009 

NAI - CL  2.0 µM oseltamivir: 0.0001 µM  n.r. (Kirchmair et al., 
2011) 

  IV, H1N1 
A/Jena/5555/2009 NAI - CL  2.2 µM oseltamivir: 0.0001 µM    
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  IV, H1N1 
A/PR/8/1934 NAI - CL  1.3 µM oseltamivir: 0.0002 µM    

n.g. 9-deoxythysanone RV 

3C 
protease/solid-
phase 
fluorescent  

20.3 µM n.g.  n.r. (Young Jeong et al., 
2014) 

Thysanophora 
penicilloides 
(Roum.) W.B. 
Kendr. 

thysanone  
3C 
protease/solid-
phase 
fluorescent  

51.8 µM n.g.  n.r.  

Aspergillus terreus 
Thom pulvic acid IV, H1N1 

A/PR/8/1934 CPE 94.4 µM zanamivir: 0.085 µM > 811.0 µM in MDCK 
cells n.r. (Gao et al., 2013) 

Cleistocalyx 
operculatus (Roxb.) 
Merr. and Perry 

2′,4′-dihydroxy-6′-
methoxy-3′,5′-
dimethylchalcone 

IV, H1N1 
A/PR/8/1934 NAI - FL  8.2 µM oseltamivir: 0.1058 µM  n.r. (Ha et al., 2016) 

  
IV, H1N1 
A/PR/8/1934 
(H274Y) 

NAI - FL  8.8 µM oseltamivir: 7.42 µM    

  
IV, H9N2 
A/Chicken/Korea/O1
310/2001 

NAI - FL  5.1 µM oseltamivir: 0.0129 µM    

Glycyrrhiza glabra 
L. 

3,4-dihydro-8,8-
dimethyl-2H,8H-
benzo[1,2-b:3,4-
b′]dipyran-3-ol 

IV, H1N1 
A/Jena/8178/2009 CPE 36.1% at 50 µM oseltamivir: 0.03 µM 336.0 µM in MDCK 

cells n.r. (Grienke et al., 2014) 

 hispaglabridin B 
IV, H1N1 
A/Jena/8178/2009 CPE 48.4% at 50 µM oseltamivir: 0.03 µM 

39.2 µM in MDCK 
cells n.r.  

  IV, H3N2 
A/HK/1968 CPE 31.2% at 50 µM oseltamivir: 0.004 µM 39.2 µM in MDCK 

cells   

Streptomyces sp. 
SMU03 

(4S)-4-hydroxy-10-
methyl-11-oxo-
dodec-2-en-1,4-olide 

IV, H1N1 
A/FM1/1/1947 CPE 27.2 µM umifenovir: 11.7 µM 

170.1 µM in MDCK 
cells n.r. (Li et al., 2018a) 

  IV, H1N1 
A/PR/8/1934 CPE 1.4 µM umifenovir: 0.94 µM 170.1 µM in MDCK 

cells   

  
IV, H1N1 
A/PR/8/1934(H274Y
) 

CPE 16.1 µM umifenovir: n.g. 170.1 µM in MDCK 
cells   
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  IV, H3N2 
A/Aichi/2/1968 CPE 33.9 µM umifenovir: 20.9 µM 170.1 µM in MDCK 

cells   

Glycyrrhiza inflata 
Batalin echinantin IV, H1N1 NAI - FL  21.5 µM oseltamivir: 0.13 µM  n.r. (Dao et al., 2011) 

  IV, H1N1 (H274Y) NAI - FL  8.1 µM oseltamivir: 16.4 µM    

  IV, H9N2 NAI - FL  21.1 µM oseltamivir: 0.016 µM    

Tolypocladium 
inflatum W. Gams cyclosporin A 

IV, 
B/Brisbane/60/2008 
(Victoria) 

Plaque 
reduction  3.2 µM oseltamivir: n.g. 

15.2 µM in MDCK 
cells n.r. (Ma et al., 2016) 

  IV, 
B/Phuket/3073/2013 

Plaque 
reduction  1.0 µM oseltamivir: n.g. 15.2 µM in MDCK 

cells   

  
IV, H1N1 
A/California/07/200
9 

Plaque 
reduction  11.7 µM oseltamivir: n.g. 15.2 µM in MDCK 

cells   

  IV, H1N1 
A/Texas/04/2009 

Plaque 
reduction  

2.3 µM oseltamivir: n.g. 15.2 µM in MDCK 
cells   

  IV, H1N1 
A/WSN/1933 

Plaque 
reduction  2.1 µM oseltamivir: n.g. 15.2 µM in MDCK 

cells   

  
IV, H3N2 
A/Switzerland/97152
93/2013 

Plaque 
reduction  0.4 µM oseltamivir: n.g. 15.2 µM in MDCK 

cells   

  IV, H3N2 
A/Udorn/1972 

Plaque 
reduction  2.6 µM oseltamivir: n.g. 15.2 µM in MDCK 

cells   

n.g. camphecene IV,  
B/Lee/1940 Hemolysis  ~63 µM rimantadine 80% at 100 

µM  n.r. (Zarubaev et al., 
2015) 

  IV,  
B/Lee/1940 

Yield 
reduction  

52.7 µM rimantadine: 3 µM 5.7 µM in MDCK cells   

  IV, H1N1 
A/California/07/09 

Yield 
reduction  3.6 µM rimantadine: 55.6 µM 701.4 µM in MDCK 

cells   

  IV, H1N1 
A/PR/8/1934 

Yield 
reduction  8.3 µM rimantadine: 6 µM 1.1 µM in MDCK cells   
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Natural source Compound name 
Subtype, 
strain/isolate or 
target 

Inhibitory 
assay 

Activity in 
comparison to 
positive control or 
50% inhibition 
concentration 
(IC50) 

Positive control: used 
at a certain 
concentration or 50% 
inhibition 
concentration 
(IC50) 

50% Cytotoxic 
concentration (CC50) 

Antibacterial 
activity Reference(s) 

  IV, H3N2 
A/Aichi/2/1968 

Yield 
reduction  83.8 µM rimantadine: 41 µM 9.5 µM in MDCK cells   

  
IV, H5N2 
A/mallardPennsylva
nia/10218/84 

Yield 
reduction  79.8 µM rimantadine: 59 µM 4.9 µM in MDCK cells   

  IV, subtype A Hemolysis  ~63.0 µM rimantadine 70% at 100 
µM 

   

Penicillium 
simplicissimum 
(Oudem.) Thom 
MA-332 

simpterpenoid A IV NAI - FL 0.0081 µM oseltamivir: 0.0032 µM  n.r. (Li et al., 2018b) 

Neorhodomela 
aculeata (L.P. 
Perestenko) Masuda. 

2,2′,3-tribromo-
3′,4,4′,5-
tetrahydroxy-6′-
methoxymethyldiphe
nylmethane 

RV, A2 CPE 13.9 µM ribavirin: 8.8 µM > 39.1 µM in HeLa 
cells n.r. (Park et al., 2012) 

  RV, B3 CPE 9.2 µM ribavirin: 20.8 µM > 39.1 µM in HeLa 
cells 

  

 lanosol RV, A2 CPE 8.4 µM ribavirin: 8.8 µM > 67.1 µM in HeLa 
cells n.r.  

Bupleurum 
fructicosum L. 

(E)-3-(3,4-
dimethoxy-phenyl)-
2-propen-1-yl (Z)-2-
[(Z)-2-methyl-2-
butenoyloxymethyl)
butenoate 

RV, A39 CPE 2.4 µM pleconaril: 0.1 µM > 20.3 µM in HeLa 
cells n.r. (Fois et al., 2017) 

 4-O-methylcinnamyl 
angelic acid ester RV, A39 CPE 30.9 µM pleconaril: 0.1 µM > 248.0 µM in HeLa 

cells n.r.  

 

cis-9,17-
octadecadiene-
12,14-diyne-1,16-
diol 

RV, A39 CPE 1.8 µM pleconaril: 0.1 µM > 14.6 µM in HeLa 
cells n.r.  

Phellinus ignarius 
(L.) Quél 

3-hydroxy-2-methyl-
4-pyrone IV, H5N1 CPE 3.2 µM zanamivir: 15 µM > 435.1 µM in MDCK 

cells n.r. (Song et al., 2014) 

Chaetomium 
coarctatum Kuntze 
ex Fries 

aureonitol 
IV, 
B/MEMPHIS/20/199
6 

Hemagglutinati
on 

0.4 µM n.g.  n.r. (Sacramento et al., 
2015) 
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Natural source Compound name 
Subtype, 
strain/isolate or 
target 

Inhibitory 
assay 

Activity in 
comparison to 
positive control or 
50% inhibition 
concentration 
(IC50) 

Positive control: used 
at a certain 
concentration or 50% 
inhibition 
concentration 
(IC50) 

50% Cytotoxic 
concentration (CC50) 

Antibacterial 
activity Reference(s) 

  
IV, 
B/MEMPHIS/20/199
6 

Yield 
reduction  2.0 µM oseltamivir: 0.052 µM 

1,429.0 µM in MDCK 
cells   

  IV, H1N1 
A/RJ/512/2009 

Hemagglutinati
on 0.1 µM n.g.    

  IV, H1N1 
/RJ/512/2009 

Yield 
reduction  

0.4 µM oseltamivir: 0.012 µM 1,428.0 µM in MDCK 
cells   

  IV, H3N2 
A/ENG/42/1972 

Hemagglutinati
on 0.1 µM n.g.    

  IV, H3N2 
A/ENG/42/1972 

Yield 
reduction  0.1 µM oseltamivir: 0.03 µM 1,426.0 µM in MDCK 

cells   

  IV, H3N2 
A/WA/01/2007 

Hemagglutinati
on 0.1 µM n.g.    

  IV, H3N2 
A/WA/01/2007 

Yield 
reduction  

0.3 µM oseltamivir: 0.03 µM 1,427.0 µM in MDCK 
cells 

  

 Phenanthrenes 

Bletilla striata 
(Thunb.) Rchb.f. 

2,2′,7′-trihydroxy-
3′,4,5′,7-
tetramethoxy-9′,10′-
dihydro-1,1′-di-
phenanthrene 

IV, H1N1 
A/jiangsu/1/2012 NAI - FL  16.8 µM oseltamivir: 0.3 µM  n.r. (Shi et al., 2017) 

 

2,2′–dyhydroxyl-
4,4′,7,7′-9′,10′-
dihydro-1,6′-di-
phenanthrene 

IV, H1N1 
A/jiangsu/1/2016 NAI - FL  57.6 µM oseltamivir: 0.3 µM  n.r.  

 

2,7-dyhydroxyl-4-
methoxy-9,10-
dihydro-
phenanthrene 

IV, H1N1 
A/jiangsu/1/2011 NAI - FL  72.6 µM oseltamivir: 0.3 µM  n.r.  

 
2-hydroxyl-4,7-
dimethoxyphenanthr
ene 

IV, H1N1 
A/jiangsu/1/2015 NAI - FL  87.5 µM oseltamivir: 0.3 µM  n.r.  

 
4,4′,7,7′-
tetrahydroxy-
2,2′,8,8′-

IV, H1N1 
A/jiangsu/1/2010 CPE 14.6 µM oseltamivir: 4.9 µM 80.0 µM in MDCK 

cells n.r.  
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Subtype, 
strain/isolate or 
target 

Inhibitory 
assay 
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positive control or 
50% inhibition 
concentration 
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Positive control: used 
at a certain 
concentration or 50% 
inhibition 
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50% Cytotoxic 
concentration (CC50) 

Antibacterial 
activity Reference(s) 

tetramethoxy-1,1′-di-
phenanthrene 

  IV, H1N1 
A/jiangsu/1/2013 

NAI - FL  21.7 µM oseltamivir: 0.3 µM    

 

4,4′,7,7′-
tetrahydroxy-2,2′-
dimethoxy-1,1′-di-
phenanthrene 

IV, H1N1 
A/jiangsu/1/2014 NAI - FL  16.1 µM oseltamivir: 0.3 µM  n.r.  

 Phenolic compounds 

Phellinus ignarius 
(L.) Quél 

1-(3,4-
dihydroxyphenyl) 
ethanone 

IV, H5N1 CPE 9.8 µM zanamivir: 15 µM 258.3 µM in MDCK 
cells n.r. (Song et al., 2014) 

 1,2-benzenediol IV, H5N1 CPE 30.7 µM zanamivir: 15 µM 602.2 µM in MDCK 
cells n.r.  

 4-methyl-1,2-
benzenediol IV, H5N1 CPE 12.4 µM zanamivir: 15 µM 363.0 µM in MDCK 

cells n.r.  

 eudesm-1b,6a, 11-
triol IV, H5N1 CPE 0.1 µM zanamivir: 15 µM 85.4 µM n.r.  

  IV, H5N1 NAI - FL  0.7 µM zanamivir: 0.0035 µM    

Salvia plebeia R. Br. rosmarinic acid 
methyl ester 

IV, H1N1 
A/PR/8/1934 

CPE 22.6 µM oseltamivir: 0.55 µM > 200 µM in MDCK 
cells SP (Aziz et al., 2014; 

Bang et al., 2016) 

  IV, H1N1 
A/PR/8/1934 NAI - FL  16.7 µM oseltamivir: 0.1 µM    

Pogostemon cablin 
Benth. patchouli alcohol IV, H1N1 

A/PR/8/1934 Plaque forming  75% at 2 µg/mL zanamivir at 1 µg/mL  n.r. (Kiyohara et al., 
2012) 

Lagerstroemia 
speciosa (L.) Pers. ellagic acid RV, A2 CPE 125.7 µM ribavirin: 286.6 µM > 330.9 µM in HeLa 

cells KP (Dey et al., 2015; 
Park et al., 2014) 

  RV, B3 CPE 102.6 µM ribavirin: 290.7 µM 
> 330.9 µM in HeLa 
cells   

  RV, B4 CPE 96.0 µM ribavirin: 258.0 µM > 330.9 µM in HeLa 
cells   
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strain/isolate or 
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Inhibitory 
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concentration 
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50% Cytotoxic 
concentration (CC50) 

Antibacterial 
activity Reference(s) 

Pithecellobium 
clypearia Benth 

7-O-
galloylplumbocatech
in A 

IV, 
B/Jiangsu/10/2003 NAI - FL  78.7 µM zanamivir: 0.0009 µM  n.r. (Kang et al., 2014) 

  IV, H1N1 
A/PR/819/34 NAI - FL  59.8 µM zanamivir: 0.0001 µM    

  IV, H3N2 
A/Sydney/5/97 

NAI - FL  64.6 µM zanamivir: 0.0006 µM    

Polygonum chinense 
L. gallic acid IV, H1N1 

A/PR/8/1934 CPE 122.3 µM oseltamivir: 0.07 µM 653.1 µM in MDCK 
cells n.r. (Tran et al., 2017) 

  IV, H3N2 
A/HK/2/1968 CPE 102.9 µM oseltamivir: < 0.005 µM 653.1 µM in MDCK 

cells 
  

 methyl gallate IV, B/Lee/1940 CPE 79.8 µM oseltamivir: 0.21 µM 
> 1,629.1 µM in MDCK 
cells KP 

(Noundou et al., 
2016; Tran et al., 
2017) 

  IV, H1N1 
A/PR/8/1934 CPE 98.3 µM oseltamivir: 0.07 µM > 1,629.1 µM in MDCK 

cells   

  IV, H3N2 
A/HK/2/68 

CPE 92.9 µM oseltamivir: < 0.005 µM > 1,629.1 µM in MDCK 
cells   

Punica granatum L. punicalagin IV, H3N2 
A/HK/2/1968 

Hemagglutinati
on 9.2 µM n.g.  n.r. (Haidari et al., 2009) 

Syzygium 
aromaticum (L.) 
Merr. et Perry 

1,2,3-tri-O-
galloylglucose 

IV, H1N1 
A/PR/8/1934 CPE 5.3 µM ribavirin: 46.7 µM 651.4 µM in MDCK 

cells n.r. (He et al., 2017) 

 1,3-di-O-galloyl-4,6-
HHDP-glucose 

IV, H1N1 
A/PR/8/1934 NAI - FL  11.2 µM zanamivir: 0.004 µM  n.r.  

 casuarictin IV, H1N1 
A/PR/8/1934 CPE 14.2 µM ribavirin: 46.7 µM > 534.2 µM in MDCK 

cells n.r.  

  IV, H1N1 
A/PR/8/1934 

NAI - FL  19.1 µM zanamivir: 0.004 µM    

 eugeniin IV, H1N1 
A/PR/8/1934 CPE 4.6 µM ribavirin: 46.7 µM 374.3 µM in MDCK 

cells n.r.  

  IV, H1N1 
A/PR/8/1934 NAI - FL  8.4 µM zanamivir: 0.004 µM    
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Antibacterial 
activity Reference(s) 

 tellimagrandin I IV, H1N1 
A/PR/8/1934 CPE 3.9 µM ribavirin: 46.7 µM 101.0 µM in MDCK 

cells SA (He et al., 2017; 
Shiota et al., 2004) 

  IV, H1N1 
A/PR/8/1934 

NAI - FL  23.5 µM zanamivir: 0.004 µM    

 Triterpenoids 

Ilex asprella (Hook. 
et Arn.) Champ. ex 
Benth. 

asprellcoside A 
IV, H1N1 
A/PR/8/1934 CPE 4.1 µM oseltamivir: 0.9 µM > 100 µM in A549 cells n.r. (Peng et al., 2016) 

Castanea crenata 
Siebold & Zucc. 

castaartancrenoic 
acid D RV, A1B CPE 6.3 µM rupintrivir: < 0.04 mM > 50 µM in HeLa cells n.r. (Kim et al., 2019) 

 castaartancrenoic 
acid E 

RV, A1B CPE 5.6 µM rupintrivir: < 0.04 mM > 50 µM in HeLa cells n.r.  

Ganoderma lingzhi 
S.H. Wu, Y. Cao & 
Y.C. Dai 

ganoderic acid T-Q 
IV, H1N1 
A/California/04/200
9 

NAI - FL  81.7% at 200 µM n.g.  n.r. (Zhu et al., 2015) 

  
IV, H1N1 
A/California/04/200
9(N295S) 

NAI - FL  62.7% at 200 µM n.g.    

  
IV, H3N2 
A/Babol/36/2005(E1
19V) 

NAI - FL  55.4% at 200 µM n.g.    

  IV, H5N1 
A/Hubei/1/2011 NAI - FL  94.4% at 200 µM n.g.    

 ganoderic acid TR 
IV, H1N1 
A/California/04/200
9 

NAI - FL  87.4% at 200 µM n.g.  n.r.  

  
IV, H1N1 
A/California/04/200
9(N295S) 

NAI - FL  57.7% at 200 µM n.g.    

  
IV, H3N2 
A/Babol/36/2005(E1
19V) 

NAI - FL  59.2% at 200 µM n.g.    

  IV, H5N1 
A/Hubei/1/2011 NAI - FL  96.5% at 200 µM n.g.    
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Gloeophyllum 
odoratum (Wulfen) 
Imazeki 

21-
hydroxylanosterol 

IV, H1N1 
A/Jena/8178/2010 CPE 34.5 µM oseltamivir: 0.076 µM 

> 100 µM in MDCK 
cells n.r. (Grienke et al., 2019) 

  IV, H3N2 
A/HK/1969 CPE 9.0 µM oseltamivir: 0.004 µM > 100 µM in MDCK 

cells 
  

 eburicodiol IV, H1N1 
A/Jena/8178/2009 

CPE 31.2 µM oseltamivir: 0.076 µM > 100 µM in MDCK 
cells n.r.  

  IV, H3N2 
A/HK/1968 CPE 15.4 µM oseltamivir: 0.004 µM > 100 µM in MDCK 

cells 
  

 gloeophyllin K IV, H1N1 
A/Jena/8178/2009 CPE 46.4 µM oseltamivir: 0.076 µM > 100 µM in MDCK 

cells n.r.  

 trametenolic acid B IV, H1N1 
A/Jena/8178/2009 CPE 11.3 µM oseltamivir: 0.076 µM > 100 µM in MDCK 

cells n.r.  

  IV, H3N2 
A/HK/1968 

CPE 14.1 µM oseltamivir: 0.004 µM > 100 µM in MDCK 
cells 

  

n.g. 

O-[2-O-(1-methyl-
N-
acetylneuraminyl)]et
hyl 3β-hydroxy-lup-
20(29)-en-28-oate 

IV, H1N1 
A/WSN/1933 

CPE 41.2 µM oseltamivir: 46.5 µM > 500 µM in MDCK 
cells n.r. (Han et al., 2016) 

 Xanthones 

Garcinia × 
mangostana L. garcinone C IV, H5N1 NAI - FL  95.5 µM oseltamivir: 0.0048 µM  n.r. (Ikram et al., 2015) 

 rubraxanthone IV, H5N1 NAI - FL  89.7 µM oseltamivir: 0.0048 µM  n.r.  

 α-mangostin IV, H5N1 NAI - FL  92.0 µM oseltamivir: 0.0048 µM  SA, PA 
(Ikram et al., 2015; 
Narasimhan et al., 
2017) 

Polygala karensium 
Kurz 

1,3, 7-
trihydroxyxanthone 

IV, H1N1 
A/PR/8/1934 

NAI - FL  109.7 µM oseltamivir: 0.13 µM  n.r. (Dao et al., 2012) 

  
IV, H1N1 
A/PR/8/34(H274Y) NAI - FL  37.3 µM oseltamivir: 16.3 µM    
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  IV, H9N2 NAI - FL  101.6 µM oseltamivir: 0.016 µM    

 1,7-dihydroxy-4-
methoxyxanthone 

IV, H1N1 
A/PR/8/1934 

NAI - FL  110.0 µM oseltamivir: 0.13 µM  SA (Dao et al., 2012; 
Joseph et al., 2006) 

  
IV, H1N1 
A/PR/8/1934(H274Y
) 

NAI - FL  49.6 µM oseltamivir: 16.3 µM    

  IV, H9N2 NAI - FL  99.1 µM oseltamivir: 0.016 µM    

Abbreviations: CP = Clostridium perfringens,  CPE = cytopathic effect, CL = chemiluminescence, FL = fluorescence, HA = hemagglutination, HI = Haemophilus influenzae, IV = influenza virus, KP = Klebsiella pneumoniae, MDCK = Madin-Darby 

canine kidney cells, MIC = minimum inhibitory concentration, MTT = 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTS = 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, NA = 

neuraminidase, NAI = neuraminidase inhibitor, n.g. = not given, n.r. = not reported, PA = Pseudomonas aeroguinosa, RV = rhinovirus, SA = Staphylococcus aureus, SP = Streptococcus pneumoniae, SPy = Streptococcus pyogenes, VC = Vibrio cholerae. 
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Table 3. Examples of extracts with reported activities related to ARIs: Anti-influenza virus, anti-rhinovirus, dual antiviral and antibacterial actives. 

Natural source Organ Type of 
extract 

Subtype, 
strain/isolate or 
target 

Inhibitory assay 

Activity in comparison 
to positive control or 
50% inhibition 
concentration 
(IC50) 

Positive control: used at a 
certain concentration or 
50% inhibition 
concentration (IC50) 

50% Cytotoxic 
concentration 
(CC50) 

Antibacterial 
activity Reference(s) 

Alpinia zerumbet 
(Pers.) B.L.Burtt & 
R.M.Sm. 

leaf W CP NA NAI - FL  43.0 µg/mL quercetin: 34.7 µg/mL  n.r. (Upadhyay et al., 
2011) 

 root  CP NA NAI - FL  57.0 µg/mL quercetin: 34.7 µg/mL  n.r.  

Camellia sinensis 
(L.) Kuntze leaf W 

IV, H1N1 
A/Kitakyushu/10/200
6 

NAI - FL  195 µg/mL oseltamivir: 1.42 µM  n.r. (Sriwilaijaroen et 
al., 2012) 

   IV, H1N1 
A/Narita/1/2009 NAI - FL  22.1 µg/mL oseltamivir: 0.0026 µM    

   
IV, H1N1 
A/Yamaguchi/20/200
6 

NAI - FL  152 µg/mL oseltamivir: 0.0029 µM    

Clinacanthus 
siamensis Bremek. leaf E IV, B/Ibaraki/2/1985 NAI - FL  21.3% at 100 µg/mL oseltamivir 99.7% at 10 

µg/mL 
 n.r. (Wirotesangthong 

et al., 2009) 

   
IV, H1N1 
A/PR/8/1934 NAI - FL  26.6% at 100 µg/mL 

oseltamivir 97.9% at 10 
µg/mL    

   IV, H3N2 
A/Guizhou/54/1989 NAI - FL  31.2% at 100 µg/mL oseltamivir 99.7% at 10 

µg/mL    

Curcuma longa L. rhizome E IV, B/Ibaraki/2/1985 NAI - FL  43.4% at 100 µg/mL oseltamivir 99.7% at 10 
µg/mL  n.r. (Wirotesangthong 

et al., 2009) 

   IV, H1N1 
A/PR/8/1934 

NAI - FL  63.2% at 100 µg/mL oseltamivir 97.9% at 10 
µg/mL 

   

   
IV, H3N2 
A/Guizhou/54/1989 NAI - FL  51.8% at 100 µg/mL 

oseltamivir 99.7% at 10 
µg/mL    

Echinacea 
purpurea (L.) 
Moench 

arial part + root 65% E IV, H3N2 A/Vicotria 
+ HI NTHi 

HI adherence 
(CFU/100 cells) 

Extract dilution 1:200: 
0.55-fold decresion control: 3.08-fold increase  HI (Vimalanathan et 

al., 2017) 

   IV, H3N2 A/Vicotria 
+ SA ATCC 25923 

SA adherence 
(CFU/100 cells) 

Extract dilution 1:200: 
0.86-fold decresion control: 1.70-fold increase  SA  

Ficus religiosa L. bark M RV, 1A CPE 5.5 µg/mL n.g. 66.5 µg/mL in 
HeLa cells n.r. (Cagno et al., 2015) 
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extract 
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strain/isolate or 
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(CC50) 

Antibacterial 
activity Reference(s) 

Gloeophyllum 
odoratum (Wulfen) 
Imazeki (strain 23) 

fruit body E IV, H3N2 
A/HK/1969 CPE 13.0 µg/mL oseltamivir: n.g. > 100 µg/mL in 

MDCK cells n.r. (Grienke et al., 
2018) 

Gloeophyllum 
odoratum (Wulfen) 
Imazeki (strain 28) 

fruit body E IV, H3N2 
A/HK/1969 CPE 9.4 µg/mL oseltamivir: n.g. > 100 µg/mL in 

MDCK cells n.r.  

Gloeophyllum 
odoratum (Wulfen) 
Imazeki (strain 54) 

fruit body E IV, H3N2 
A/HK/1969 CPE 15.0 µg/mL oseltamivir: n.g. > 100 µg/mL in 

MDCK celsl n.r.  

   RV, A2 CPE 16.0 µg/mL oseltamivir: n.g. > 100 µg/mL in 
HeLa cells 

  

Garcinia × 
mangostana L. hull M IV, H5N1 NAI - FL  83.0% at 250 µg/mL n.g.  n.r. (Ikram et al., 2015) 

Glycyrrhiza glabra 
L. root 

Aglycon
e-
enriched 
fraction 

IV, H3N2 
A/HK/1968 NAI-CL  0.3 µg/mL oseltamivir: 0.0003 µM  n.r. (Grienke et al., 

2014) 

 root M IV, H3N2 
A/HK/1968 NAI-CL  1.7 µg/mL oseltamivir: 0.0003 µM  n.r.  

Morus alba L. root bark M IV, H1N1 
A/Jena/8178/2009 CPE 9.3 µg/mL n.g. 75.20 µg/mL in 

MDCK cells SP (Grienke et al., 
2016) 

Neorhodomela 
aculeata (L.P. 
Perestenko) 
Masuda. 

red alga M RV, B2 CPE 17.6 µg/mL ribavirin: 17.4 µg/ml > 20 µg/mL in 
HeLa cells n.r. (Park et al., 2012) 

   RV, A3 CPE 18.3 µg/mL ribavirin: 14.3 µg/ml 
> 20 µg/mL in 
HeLa cells 

  

Nephelium 
lappaceum L. pericarp E IV, B/Ibaraki/2/1985 NAI - FL  39.3% at 100 µg/mL oseltamivir 99.7% at 10 

µg/mL  PA 

(Sulistiyaningsih et 
al., 2018; 
Wirotesangthong et 
al., 2009) 

Pelargonium 
sidoides DC. root 11% E IV, H1N1 A/New 

Caledonia/20/1999 CPE 9.5 µg/mL n.g. > 100 µg/mL in 
MDCK cells n.r. (Michaelis et al., 

2011) 

   IV, H3N2 
A/California/7/2004 CPE 8.7 µg/mL n.g. > 100 µg/mL in 

MDCK cells 
  

Polygonum 
chinense L. leaf EAc IV, B/Lee/1940 CPE 50.8 µg/mL oseltamivir: 1.2 µM 

> 300 µg/mL in 
MDCK cells n.r. (Tran et al., 2017) 
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Natural source Organ Type of 
extract 

Subtype, 
strain/isolate or 
target 

Inhibitory assay 

Activity in comparison 
to positive control or 
50% inhibition 
concentration 
(IC50) 

Positive control: used at a 
certain concentration or 
50% inhibition 
concentration (IC50) 

50% Cytotoxic 
concentration 
(CC50) 

Antibacterial 
activity Reference(s) 

  M IV, B/Lee/1940 CPE 55.5 µg/mL oseltamivir: 1.2 µM > 300 µg/mL in 
MDCK cells n.r.  

  B IV, H1N1 
A/PuertoRico/8/1934 CPE 45.9 µg/mL oseltamivir: 0.38 µM > 300 µg/mL in 

MDCK cells n.r.  

  EA IV, H1N1 
A/PuertoRico/8/1934 

CPE 46.9 µg/mL oseltamivir: 0.38 µM > 300 µg/mL in 
MDCK cells 

n.r.  

  M 
IV, H1N1 
A/PuertoRico/8/1934 CPE 55.0 µg/mL oseltamivir: 0.38 µM 

> 300 µg/mL in 
MDCK cells n.r.  

  B IV, H3N2 A/Hong 
Kong/2/1968 CPE 18.3 µg/mL oseltamivir: 20.5 µM > 300 µg/mL in 

MDCK cells n.r.  

  EA IV, H3N2 A/Hong 
Kong/2/1968 CPE 23.2 µg/mL oseltamivir: 20.5 µM > 300 µg/mL in 

MDCK cells n.r.  

  M IV, H3N2 A/Hong 
Kong/2/1968 

CPE 38.4 µg/mL oseltamivir: 20.5 µM > 300 µg/mL in 
MDCK cells 

n.r.  

Poncirus trifoliata 
L. seed E 

IV, H1N1 
A/PuertoRico/8/1934 CPE 2.5 µg/mL oseltamivir: 3.7 µM 

1,250 µg/mL in 
MDCK cells n.r. (Heo et al., 2018) 

   
IV, H1N1 
A/PuertoRico/8/1934 
NA mutant 

CPE 3.9 µg/mL oseltamivir: 31.3 µM 1,250 µg/mL in 
MDCK cells   

Psidium guajava L. leaf W 
IV, H1N1 
A/Kitakyushu/10/200
6 

NAI - FL  75 µg/mL oseltamivir: 1.42 µM  KP, PA, SA, 
SP 

(Morais-Braga et 
al., 2016; 
Sriwilaijaroen et 
al., 2012) 

   IV, H1N1 
A/Narita/1/2009 NAI - FL  4.4 µg/ml oseltamivir: 0.0026 µM    

   
IV, H1N1 
A/Yamaguchi/20/200
6 

NAI - FL  68.3 µg/mL oseltamivir: 0.0029 µM    

Punica granatum 
L. fruit W IV, H3N2 A/Hong 

Kong/2/1968 
Hemagglutination 1.25 µg/mL n.g.  KP (Dey et al., 2015; 

Haidari et al., 2009) 

Rhodiola rosea L. rhizome W IV, H1N1 
A/PR/8/1934 CPE 78.5 µg/mL oseltamivir: 8.3 µM > 500 µg/mL in 

MDCK cells n.r. (Jeong et al., 2009) 

Sclerocarya birrea 
(A.Rich.) Hochst. bark D IV, H3N2 

A/HK/1969 CPE 7.9 µg/mL n.g. > 100 µg/mL in 
MDCK cells n.r. (Grienke et al., 

2018) 
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Natural source Organ Type of 
extract 

Subtype, 
strain/isolate or 
target 

Inhibitory assay 

Activity in comparison 
to positive control or 
50% inhibition 
concentration 
(IC50) 

Positive control: used at a 
certain concentration or 
50% inhibition 
concentration (IC50) 

50% Cytotoxic 
concentration 
(CC50) 

Antibacterial 
activity Reference(s) 

  E IV, H3N2 
A/HK/1969 CPE 26.0 µg/mL n.g. > 100 µg/mL in 

MDCK cells n.r.  

   IV, H3N2 
A/HK/1969 CPE 29.0 µg/mL n.g. > 100 µg/mL in 

MDCK cells 
  

Syzygium 
aromaticum (L.) 
Merr. et Perry 

flower bud M IV, H1N1 
A/PR/8/1934 NAI - FL  9.1 µg/mL zanamivir: 0.004 µg/mL  SA 

(He et al., 2017; 
Perumal et al., 
2017) 

Thunbergia 
laurifolia Lindl. leaf E IV, H3N2 

A/Guizhou/54/1989 
NAI - FL  38.3% at 100 µg/mL oseltamivir 99.7% at 10 

µg/mL 
 n.r. (Wirotesangthong 

et al., 2009) 

Sinupret® - 51% E IV, H1N1 
A/California/07/2009 CPE 43.4 µg/mL amantadine: 6 µg/ml > 500 µg/mL in 

MDCK cells n.r. 
(Glatthaar-
Saalmuller et al., 
2011) 

   
IV, H1N1 A/Chile 
1/1983 CPE 124.8 µg/mL amantadine: 5 µg/ml 

> 500 µg/mL in 
MDCK cells   

   RV, A14 CPE 50.5 µg/mL n.g. > 500 µg/mL in 
HeLa cells   

Abbreviations: CP = Clostridium perfringens,  CPE = cytopathic effect, CL = chemiluminescence, FL = fluorescence, HI = Haemophilus influenzae, IV = influenza virus, KP = Klebsiella pneumoniae, MTT = 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide, NA = neuraminidase, NAI = neuraminidase inhibitor, n.g. = not given, n.r. = not reported, PA = Pseudomonas aeroguinosa, RV = rhinovirus, SA = Staphylococcus aureus, SP = Streptococcus pneumoniae, SPy = Streptococcus 

pyogenes. 

Extraction solvents: B = butanol, D = dichloromethane, E = ethanol, EA = ethyl acetate, M = methanol, W = water. 
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3.3. Strategies to identify natural products against ARIs 

During the evaluation of literature data on natural products targeting ARIs we found that 

ethnopharmacological knowledge is the main criterion for selecting natural starting materials 

for further investigations. Extract screening followed by bioassay-guided fractionation yielded 

the majority of bioactive compounds summarized in Table 2. As presented in Table 3, numerous 

studies identified extracts with pronounced anti-influenza virus and anti-rhinovirus activities, 

still lying idle to be further investigated for their antiviral constituents and for unraveling their 

molecular mechanism. In the following chapters, different strategies to identify these 

compounds are discussed giving selected outstanding examples. 

3.3.1. Extract screening  

An important tool in modern drug discovery is high or medium throughput screening (HTS, 

MTS). In the field of natural products however, the number of bioactive compounds discovered 

using this approach is lower than 1% (Henrich and Beutler, 2013; Thornburg et al., 2018). This 

may be related to the scarcity and preciousness of natural product isolates. In the case of an 

extract screening, this approach implies that further labor- and equipment-intense 

phytochemical work is necessary to finally isolate and identify the bioactive constituents.  

In a recently performed phenotypic CPE-based MTS, some 160 extracts have been screened for 

the identification of anti-influenza virus, anti-rhinovirus and anti-coxsackie natural material 

(Grienke et al., 2018). Among these extracts different strains of the polypore fungus 

Gloeophyllum odoratum were found to show significant inhibition of influenza A viruses 

(H3N2). Further mycochemical investigation led to the isolation of trametenolic acid B showing 

IC50 values of 11.3 µM and 14.1 µM on two different H3N2 influenza A virus strains in a CPE 

assay (Grienke et al., 2019). 

Another type of MTS deals with the concept of bioaffinity chromatography (Zhao et al., 2018). 

Zhao et al. used magnetic beads coated with immobilized influenza virus neuraminidase for 

compound fishing in natural extracts or pure compound libraries. The authors first tested the 
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system with an artificial model mixture containing known neuraminidase inhibitors such as 

oseltamivir as well as known inactive natural products such as the	 tetracycloquinolizidine 

alkaloid matrine. As a proof-of-concept, this ligand fishing strategy was applied to the complex 

extract of the flowers of a Lonicera species. With this approach, combined with further 

chromatographic and MS/MS techniques, flavonoid and phenolic acid derivatives, i.e. luteolin, 

luteolin-7-O-β-D-glucoside, 3,5-di-O-caffeoylquinic acid, and 3,4-di-O-caffeoylquinic acid, 

were identified as neuraminidase inhibitors (Zhao et al., 2018). Moreover, a good reusability of 

the neuraminidase-magnetic beads was demonstrated. Although in this example only 

moderately active compounds were discovered (IC50s between 53 and 77 µM), this approach 

seems to have a great potential to identify minor active components which are often overlooked 

in a conventional bio-guided fractionation set-up. 

3.3.2. Bioassay-guided fractionation 

The classic and also most common strategy for identifying bioactive natural products is 

bioassay-guided fractionation. Initially starting from a bioactive crude extract, this may lead to 

bioactive fractions and, via iterative testing, to the pure compound(s) responsible for the 

observed activity. Many research groups have successfully applied this concept to isolate 

antiviral constituents from a natural starting material. In the case of a dichloromethane extract 

of Bupleurum fruticosum leaves this resulted in the isolation of two potent anti-rhinovirus 

agents, i.e. a polyacetylene and a phenylpropenol derivative. These compounds were active 

against human rhinovirus A39 with IC50 values measured in a CPE reduction assay of 1.8 µM 

and 2.4 µM (SI = 8.1 and 8.5), respectively (Fois et al., 2017). As another example of bioassay-

guided fractionation using an in vitro fluorescence-based neuraminidase inhibition assay, He et 

al. discovered anti-influenza polyphenols from Flos Caryophylli with IC50s between 8.4 µM 

and 94.1 µM (He et al., 2017). 
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However, bioassay-guided fractionation faces many pitfalls. For instance, due to assay-

interfering components present in the fractions, isolation efforts might be guided towards 

inactive (or false positive) constituents and minor active constituents are easily overlooked. 

3.3.3. Computational approaches 

Computational methods are established as an important pillar of natural products-based drug 

discovery, in particular also in the context of antiviral research. One of the most well-known 

examples of the application of in silico methods is the successful design of zanamivir based on 

experimental structures of the viral enzyme co-crystallized with sialic acid and analogues 

thereof (von Itzstein et al., 1993). 

As of 2017, the molecular structures of more than 250,000 unique natural products have been 

deposited in virtual libraries (Chen et al., 2017), most of which are freely accessible. These 

resources can be used, among many other applications, for virtual screening for promising 

natural products. Also, the amount of published structural data on viral proteins has been steeply 

increasing throughout the last decade. As of 2018, high-quality structures of more than 2,000 

complexes of natural products bound to biomacromolecules have been deposited in the Protein 

Data Bank (PDB) (Chen et al., 2018). 

NP-Scout is a machine learning model for the identification of natural products (Chen et al., 

2019). According to predictions with NP-Scout, close to 25% of all (unique) small molecules 

reported in high-quality co-crystals with biomacromolecules in the PDB (PDB subset taken 

from (Chen et al., 2018)) have a likelihood of being a natural product of greater than 0.8 (Fig. 

4B). In other words, approximately one-quarter of all co-crystallized small molecules are either 

genuine natural products or natural product-like. This corroborates the relevance of structural 

data to natural product-based drug discovery. For comparison, in Fig. 4A the same type of 

distribution is reported for a dataset of more than 230,000 natural products (Chen et al., 2018). 

Of this dataset, NP-Scout correctly identifies more than 95% of all compounds as natural 

product-like. 
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A B C  

Fig. 4. Predicted natural product class probability distributions for (A) a set of more than 230,000 natural products, 

(B) a comprehensive set of small-molecule ligands observed in high-quality co-crystals in the PDB and (C) the 

“in-stock” subset of ZINC. A compound is predicted as natural product if the class probability is greater than 0.5; 

below this value it is considered to be of synthetic origin. Note that the y-axis is in logarithmic scale. 

 

Virtual screening approaches can also be employed for prioritizing plant material for extraction, 

chromatographic work-up, and pharmacological studies. For example, Ikram et al. recently 

employed a docking approach to identify plant materials enriched with natural products likely 

to be active against influenza neuraminidase. Some of the compounds isolated from the selected 

materials, such as the xanthone α-mangostin, showed (moderate) activity against the viral 

enzyme (Ikram et al., 2015). 

In general, the bottleneck of virtual screening is not technology but the limited availability of 

material for testing. Only an estimated 10% of the above-mentioned 250,000 natural products 

registered in virtual databases are readily obtainable from public and commercial sources (Chen 

et al., 2017). However, this number increases substantially when looking at natural-product-

like compounds rather than genuine natural products only. 

The “in-stock” subset of the ZINC database (Sterling and Irwin, 2015) lists more than nine 

million compounds that are readily purchasable. Among those, NP-Scout assigns a natural 

product class probability of 0.8 to approximately 70,000 compounds (less than 1%), meaning 

that these compounds are either genuine natural products or have a substantial amount of 

structural features characteristic to natural products (Fig. 4C). 
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Advanced homology modelling techniques and molecular dynamics simulations expand the 

applicability of structure-based methods well beyond measured structures of 

biomacromolecules. For example, molecular dynamics simulations were instrumental in the 

representation of the active site flexibility of influenza virus neuraminidase and the derivation 

of the possible binding mode of katsumadain A, a diarylheptanoid inhibitor from Alpinia 

katsumadai with measured IC50 values between 0.59 µM and 1.64 µM against the viral enzyme 

of several porcine H1N1 isolates (Grienke et al., 2010). Molecular dynamics simulations have 

also been employed to explain the dependency of the catalytic activity of influenza 

neuraminidase on its assembly state (von Grafenstein et al., 2015). 

Although data on measured biological activities of natural products remain sparse in 

comparison to that of synthetic compounds, also methods for in silico target prediction are 

becoming increasingly relevant to natural products-based drug discovery (Fang et al., 2017; 

Rollinger et al., 2009).  

Concerning rhinoviruses, a pharmacophore-based VS approach using the target rhinovirus A2 

coat protein, revealed two antiviral compounds isolated from the gum resin of Ferula asafetida, 

namely farnesiferol B (IC50 = 1.0 µM) and farnesiferol C (IC50 = 0.96 µM) with selective anti-

rhinovirus activity in a CPE inhibition assay (Rollinger et al., 2008). 

The value of computational methods in natural products-based drug discovery extends to the 

prediction of absorption, distribution, metabolism, excretion (ADME), toxicity and further 

properties. One example where computational methods are widely applicable to natural 

products is the prediction of metabolically labile atom positions (Kirchmair et al., 2015), most 

of these predictors being machine learning models (Tyzack and Kirchmair, 2019). 

Of particular relevance to natural products-based drug discovery are in silico methods for the 

identification of compounds prone to causing assay interference. Recently, we established a 

web service (Stork et al., 2019) that allows the prediction of pan-assay interference compounds 

(Baell and Holloway, 2010), frequent hitters (Roche et al., 2002), aggregators (McGovern et 
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al., 2002; Reker et al., 2019) and compounds with undesirable chemical and pharmacological 

properties. 

3.3.4. Host targeting 

In the search for broad-spectrum antivirals, host targeting is a strategy as a therapy regimen in 

ARIs (Martinez et al., 2015). Here, host cell proteins involved in e.g. viral replication, signalling 

or immunresponse, serve as targets for agents to combat ARIs. For instance, DAS181 (Fludase), 

cleaves off sialic acids from the host cell surface and thus prevents influenza virus attachment, 

entry, and replication (Koszalka et al., 2017; Marjuki et al., 2014). Another example for host-

targeting as well as drug repurposing is the antiparasitic drug nitazoxanide (NTZ), a compound 

preventing the exit of newly built influenza viruses from the host cell by interfering with the 

assembly of viral hemagglutinin (Koszalka et al., 2017). 

The concept of host targeting has been exemplified by the herbal drug Andrographis paniculata. 

Extracts of A. paniculata are reported to significantly improve the overall symptoms of ARIs 

compared to placebo (randomized controlled trials, n = 596), but the results have to be 

considered critically due to the heterogeneity of data and often missing manufacturing or quality 

control details (Hu et al., 2017). 

3.3.5. Drug repurposing 

In the context of drug repurposing, Medina-Franco et al. have followed a multitarget approach 

to systematically identify potential additional targets of existing or virtual chemical compounds 

(Medina-Franco et al., 2013). For example, the immunosuppressant drug cyclosporine A was 

found to exhibit a broad-spectrum antiviral activity against several influenza virus strains. 

Dealing with the imminent issue of the emergence of resitstant strains, cyclosporine A was 

subjected to serial viral passage experiments resulting in a high in vitro genetic barrier of drug 

resistance. Moreover, mechanistic studies revealed the antiviral activity at the intermediate step 

of viral replication after the entrance of the virus to the host cell (Ma et al., 2016). 
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Traditionally used to treat gastrointestinal disorders, Heo et al. recently discovered a Poncirus 

trifoliata orange seed extract to significantly inhibit oseltamivir-sensitive as well as -resistant 

influenza viruses on the endocytosis pathway. This novel mode of antiviral activity renders the 

P. trifoliata extract a highly potential remedy to fight resistant strains. Noteworthy, this extract 

competitively outrules the synthetic and single-target molecule oseltamivir phosphate by its 

multi-target anti-influenza activity (Heo et al., 2018). 

3.3.6. Combined approaches 

In an attempt to identify the best strategy for finding new nature-derived ARI therapeutics, we 

found that following different approaches led to promising results. Thus, the most fruitful 

concept seemed to be the combination of several strategies. This has been further developed by 

Nothias et al., who worked on bioactivity-based molecular networking. New drug leads were 

discovered by tandem mass spectrometry and bioactivity score prediction. Relative abundance 

of a molecule in a fraction subsequently is associated to bioactivity, which led to the 

identification of antiviral compounds of an extract of Euphorbia dendroides that were not 

discovered by classical bioactivity-guided fractionation (Nothias et al., 2018). In one of our 

recently conduced studies (Grienke et al., 2018), ethnopharmacological knowledge was 

interlinked with phenotypic screening technologies and computational methods to prioritise 

promising extracts, and at the same time to get clues about their virtually predicted hits. This 

combined approach enables the rapid and target-oriented identification of putatively bioactive 

consituents, while also providing insight into their molecular mechanism. This combinatory 

approach enabled to rapidly identify, for example, neuraminidase-inhibiting constituents of 

licorice (Grienke et al., 2014). 

3.4. Does knowledge from traditional medicine matter? 

Empirical knowledge and ethnopharmacological hints about multicomponent herbal remedies 

with yet undisclosed mechanisms of action are valuable selection criteria to identify 

antimicrobials from nature. The Chinese medicinal herb Morus alba root bark (sāng bái pí), 
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traditionally used against symptoms related to influenza and pneumonia, was recently in the 

focus of our investigations. The isolated prenylated flavonoids, among them sanggenon G and 

sanggenol A, not only showed significant inhibitory activities against influenza and 

pneumococcal neuraminidases, but also an inhibition of planktonic pneumococcal growth and 

biofilm formation observed by scanning electron microscopy (Grienke et al., 2016). 

Another traditional Chinese medicinal plant, i.e. Lonicera japonica, was found to be rich in 

chlorogenic acids. The antiviral properties of this ubiquitous compound class were 

systematically investigated in vitro (CPE, time-of-addition experiment, nucleoprotein 

localization, neuraminidase inhibtion) as well as in vivo (H1N1 influenza A virus infected 

mice). Chlorogenic acid was shown to significantly inhibit growth of different influenza A virus 

strains (H1N1 and H3N2) with IC50 values ranging from 22.1 µM to 71.9 µM in a CPE 

inhibition assay. Chlorogenic acid was reported to interfere in the late stage of the infectious 

cycle due to down-regulation of nucleoprotein expression and neuraminidase inhibition. In vivo, 

chlorogenic acid was administered i.v. (100 mg/kg/d), leading to a survival rate of 60%, 

whereas 100% died in the placebo group. The histological investigation of lung tissue evidenced 

reduced virus titers and alleviated inflammation (Ding et al., 2017). 

Although ethnopharmacological references are a valuable incentive to investigate a specific 

herbal drug, one has to be aware that they only give us hints for benefits in the treatment of 

symptoms, but not on its causative pathogen or involved targets. Additionally, the translation 

of ethnopharmacological knowledge not only points to a putative antimicrobial activity, but can 

also (or exclusively) refer to an anti-inflammatory or immune-stimulating activity as e.g. 

demonstrated by the elucidated activities of extracts and constituents from Echinacea purpurea 

(Sharma et al., 2006; Vimalanathan et al., 2017) and Andrographis paniculata (Coon and Ernst, 

2004; Hu et al., 2017).  

The materia medica of many cultures favors curative agents consisting of mixtures of herbal 

(and animal) drugs, thus being a composition of complex mixtures by themselves, so-called 
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composita (as e.g. in ancient Roman and Egyptian recipes) or formulations (as e.g. in Ayurveda, 

traditional Chinese and Kampo medicine). In modern pharmacognostic research with its 

simplified aim to track down the overall effect to one or a few (co)effectors, this habit multiplies 

researchers’ difficulties to unravel the complexity in terms of bioactive constituents and 

involved molecular mechanisms as well as additive or even synergistic effects (see Hochu-ekki-

to, Sinupret®, Esberitox®). 

Ethnopharmacology converts traditional cultural and cross-cultural knowledge of medicinal 

plants and their therapeutic applicability into a helpful tool in drug discovery (Leonti et al., 

2017). Going back centuries in the history of traditional medicine, Echinacea purpurea has 

been one of the most prominent examples for the treatment of ARIs (Barrett, 2003). A 

standardized 65% ethanolic extract of Echinacea purpurea significantly reduced the adhesion 

of Haemophilus influenzae and Staphylococcus aureus to bronchial epithelial cells infected 

with influenza virus (Vimalanathan et al., 2017). Echinacea extracts (ethanolic root extract and 

pressed juice of aerial parts) have been shown to reverse the rhinovirus induced release of pro-

inflammatory cytokines and chemokines (Sharma et al., 2006). Oral administration of an 

aqueous-ethanolic extract of Thuja occidentialis, Baptisia tinctoria, E. purpurea and E. pallida 

(Esberitox®) resulted in a beneficial effect on influenza virus infected BALB/c mice compared 

to placebo (Bodinet et al., 2002). These data point out why this plant has stood the test of time: 

the beneficial effect of E. purpurea against influenza virus infections and its lethal synergism 

with bacterial superinfections is obvious (Vimalanathan et al., 2017), however there is no 

evidence for a significant effect on rhinovirus infection (Rollinger and Schmidtke, 2011). Even 

though this plant has been intensively investigated, we neither know the one compound 

responsible for bioactivity, nor the exact mechanism of action (Senica et al., 2018).  

Hochu-ekki-to is a mixture of ten herbs used in Japanese traditional medicine. It was shown to 

reduce the amount of rhinovirus B14-RNA after 120 h from 100% in DMSO (0.2%) to 75% 

when tracheal epithelial cells were treated with 0.1 mg/mL with Hochu-ekki-to. Inhibition of 
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baseline intercellular cell adhesion molecule-1 mRNA expression at an extent of more than 

50% compared to 0.2% DMSO and a reduced number of acidic endosomes pointed towards a 

distinct viral entry blockage. The decreased release of cytokines (IL-1β, IL-6 and TNFα) three 

days post infection also suggested a modulation of airway inflammation after RV14 infection. 

Glycyrrhizin as a main constituent of Hochu-ekki-to was proposed to contribute to the anti-

rhinovirus effect, however the potency of the mixture is higher (Yamaya et al., 2007). 

One of the few examples for approved anti-ARI herbal medicinal product is derived from a 

well-defined Pelargonium sidoides extract (Eps 7630®). With the indication for the treatment 

of acute bronchitis this extract significantly suppresses the replication of influenza virus strains 

(H1N1 and H3N2) in vitro with IC50s of 9.5 µg/mL and 8.7 µg/mL, respectively (Table 3) 

(Michaelis et al., 2011).  

Further, as given in Table 4, in vivo experiments underline the beneficial effect by reduction of 

cough frequency in cough models and enhancement of bronchosecretolysis. The antitussive 

effect was measured in an ammonia-induced cough model decreasing the number of coughs 

from 34.6 in the untreated mice to 4.9 when mice were treated with 120 mg/kg/d P. sidoides 

extract (Bao et al., 2015). Beyond influenza virus, also anti-rhinovirus effects of this extract 

were investigated in human bronchial epithelial cells indicating inhibitory effects by down-

regulation of cell membrane docking proteins and up-regulation of host defence proteins (Roth 

et al., 2019).  

Notwithstanding the importance of ethnopharmacological knowledge as incentive to explore 

the large reservoir of chemical space in natural products, it is imperative to also exploit the 

biosynthetic machinery of fungi and bacteria besides traditional source organisms like plants 

(Pye et al., 2017). 

3.5. Translatability from in vitro to in vivo studies and beyond 

During preclinical drug development multiple in vitro and in vivo studies need to be performed 

to classify synthetic compounds or natural products as potential drug candidates. The in vitro 
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studies using target- and cell-based assays alone or in combination allow for the identification 

of bioactive extracts, hit compounds thereof, their target, their mechanism of action, and their 

antimicrobial spectrum. Cell-based assays also give first hints on the compatibility of identifed 

inhibitors for cells (Grienke et al., 2018). Furthermore, the target- and cell-based assays can be 

used in structure-activity-relationship studies aiming to enhance the inhibitory activity and to 

identify a lead compound for drug development (Grienke et al., 2010). Co-cell-culture models 

e.g. comprising human or murine lung epithelial cell lines as well as immune cell lines 

(monocytes/macrophages, dendritic cells) additionally mimic selected parameters of the in vivo 

situation e.g. receptor expression (important for viral infection and spread), pattern recognition 

receptors, and innate immune response by reflecting the interplay between these epithial, 

endothelial, and immune cells (Mosig et al., 2017). Furthermore, pro-inflammatory mediators 

produced by infected cells and contributing to the severity of symptoms can be studied. For 

example, a humane triple co-culture model consisting of a humane bronchial epithelial cell line, 

macrophages and dendritic cells was established (Blom et al., 2016). Noteworthy, a translation 

of results from target- and cell-culture-based assays is not always given. The reasons are 

manifold. For example, neuraminidase inhibition activity in cell culture depends on receptor 

expression as well as the functional balance of the influenza virus hemagglutinin and 

neuraminidase (Barnett et al., 2000; Bauer et al., 2012; Mishin et al., 2005). A further reason 

for discrepancies between target and cell-based assay is that higher inhibitor concentrations can 

commonly be tested in target-based assays because their readout is not hampered by 

cytotoxicity. 

To better mimic the in vivo conditions, lung ex vivo models were established and used, for 

example, to analyse the course of influenza virus infection (Chan et al., 2016; Hocke et al., 

2017; Weinheimer et al., 2012) and anti-influenza virus activity (Nicholas et al., 2015) as well 

as rhinovirus infection (Bochkov et al., 2011). The availibilty of ex vivo models is limited by 

the access to organ material and high costs. Moreover, ex vivo models are not mimicking the 
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systemic effects of ARI infections like cytokine networks, inflammation, adaptive immune 

response etc. Neither (co-)cell culture nor ex vivo models do fully reflect the complex in vivo 

situation, where the adsorption, distribution, metabolism, excretion, and toxicity of the 

identified inhibitors but also the complex pathogen-host interactions can impact the efficacy of 

inhibitory activity. This is the reason why the results obtained with (co-)cell-culture and ex vivo 

models are not directly transferable to in vivo or human studies. However, the application of 

such models can help to preselect inhibitors for in vivo studies and thereaby to reduce the 

number of animal experiments.  

During preclinical development of inhibitors, animal models are important to confirm the 

efficacy of potential antimicrobials as well as for drug resistance studies. For example mice 

(Gluck et al., 2013), ferrets (Frise et al., 2016; Oh et al., 2018; Roosenhoff et al., 2018), and 

pigs (Duerrwald et al., 2013) are applied in anti-influenza virus studies. In addition, 

embryonated egg models were successfully applied for anti-influenza virus studies (Sauerbrei 

et al., 2006; Shi et al., 2017). In contrast, there are no good in vivo models mimicking rhinovirus 

infection. Generally, the proven compatibility and strong efficacy of an inhibitor in vitro 

represent an absolute prerequisite of in vivo studies. Therefore, only a small portion of the 

initially in vitro identified antimicrobial active natural products summarized in Tables 2 and 3 

proceeded to in vivo studies as summarized in Table 4 where they are grouped according to the 

used infection model (viral, bacterial or co-infection model) as well as the respective activity 

read-out in comparison to the control (positive or negative). 

As a substitute for a missing suitable animal model for anti-rhinovirus studies, human 

rhinovirus challenge models were used in preclinical studies to prove the antiviral effect of 

potential drug candidates e.g. pirodavir, pleconaril, and rupintrivir (Hayden et al., 1992; Hayden 

et al., 2003; Lambkin-Williams et al., 2018; Turner et al., 1993). Although some drug 

candidates were well tolerated and effective (reduction in viral load and symptoms) in 



51 

rhinovirus challenge models, side effects and limited treatment effects were recorded in clinical 

studies. To the best of our knowledge, no natural products were studied by this manner. 

However, randomized clinical studies were performed with plant extracts or constituents therof 

concerning safety and efficacy. The meta-analysis of six clinical studies with ethanolic extracts 

from Echinacea revealed a reduced risk of respiratory infections (Schapowal et al., 2015). 

Another randomized trial with Cistus monitored a stronger symptom reduction over the course 

of treatment with Cistus extract compared to green tea extract (Kalus et al., 2010). In addition, 

the results of a placebo-controlled, randomized trial with a poly-furanosyl-pyranosyl-

saccharide-based extract of Panax quinquefolius (CVT-E002) demonstrated that it is well 

tolerated and reduces moderate to severe ARI and sore throat (High et al., 2012). According to 

publications in the Cochrane Database of Systematic Reviews (i) Pelargonium sidoides did not 

show serious side effects, whereas a low evidence for reduction of chronic bronchitis and 

sinusitis was found (Timmer et al., 2013), (ii) no serious side effects but also no effects on acute 

sinusitis were induced by Cyclamen europaeum (Zalmanovici Trestioreanu et al., 2018) and 

(iii) the effect of garlic for the common cold remains unclear (Lissiman et al., 2012). According 

the Cochrane authors, the study quality needs to be improved. This is also relevant for the 

publised clinical studies with Chinese medicinal herbs for influenza, sore throat, and acute 

bronchitis (Huang et al., 2012; Jiang et al., 2013; Jiang et al., 2012). The insufficient quality of 

data did not allow for drawing conclusions about the benefits of Chinese herbs. 
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Table 4. Natural products (extracts and pure compounds) with reported in vivo activities related to ARIs: Anti-influenza virus, anti-rhinovirus and dual antiviral and antibacterial 

actives. 

Natural source Type of 
extract Compound name In vivo model Pathogen Study parameter Activity Control Reference 

n.g. - camphecene BALB/c mice 
IV, H1N1 
A/California/07/200
9 

survival survival rate: 60% (50 mg/kg/d p.o.) 
survival rate: 
oseltamivir: 80% (20 
mg/kg/d p.o.) 

(Zarubaev et al., 2015) 

    
IV, H1N1 
A/California/07/200
9 

survival survival rate: 70% (100 mg/kg/d 
p.o.) 

survival rate: 
oseltamivir: 80% (20 
mg/kg/d p.o.) 

 

    IV,  
B/Lee/1940 survival survival rate: 10% (50 mg/kg/d p.o.) 

survival rate: 
oseltamivir: 90% (10 
mg/kg/d p.o.) 

 

    IV,  
B/Lee/1940 survival survival rate: 90% (100 mg/kg/d 

p.o.) 

survival rate: 
oseltamivir: 90% (10 
mg/kg/d p.o.) 

 

Artemisia vestita 
Wall. ex Besser 

essential oil - swiss albino mice SPy ATCC 12344 lung tissue (Log10 CFU/g of organ p.i.) 0.1 mg/mouse 2x/day ciprofloxacin 0.1 
mg/mouse (Yang et al., 2015) 

    SPy ATCC 12344 lung tissue (Log10 CFU/g of organ p.i.) day 3 p.i.: 4.13 CFU day 3 p.i.: 3.32 CFU  

    SPy ATCC 12344 lung tissue (Log10 CFU/g of organ p.i.) day 6 p.i.: 3.92 CFU day 6 p.i.: 3.52 CFU  

    SPy ATCC 12344 lung tissue (Log10 CFU/g of organ p.i.) day 9 p.i.: 4.12 CFU day 9 p.i.: 3.38 CFU  

 - grandisol  SPy ATCC 12344 lung tissue (Log10 CFU/g of organ p.i.) 0.135 mg/mouse 2x/day negative control  

    SPy ATCC 12344 lung tissue (Log10 CFU/g of organ p.i.) day 3 p.i.: 4.92 CFU day 3 p.i.: 7.22 CFU  

    SPy ATCC 12344 lung tissue (Log10 CFU/g of organ p.i.) day 6 p.i.: 4.52 CFU day 6 p.i.: 7.10 CFU  

    SPy ATCC 12344 lung tissue (Log10 CFU/g of organ p.i.) day 9 p.i.: 4.88 CFU day 9 p.i.: 7.30 CFU  

Bergenia 
purpurascens 
(Hook.f. & 
Thomson) Engl. 

M - neonatal rats SA survival survival rate: 48.57% (50 mg/kg/d) 
positive control 
without infection: 80% 
survival 

(Liu et al., 2018) 

    SA survival survival rate: 60.0% (100 mg/kg/d) negative control: 34% 
survival 

 

Bletilla striata 
(Thunb.) Rchb.f. 

- 

2,2,7′-trihydroxy-
4,4′,7-trimethoxy-
9′,10′-dihydro-
1,1′-
diphenanthrene 

dmbryonated hen 
eggs 

IV, H1N1 
A/Jiangsu/1/2016 IC50 in embryonated eggs model IC50 at 0.08 mmol/egg: 79.3% oseltamivir at 0.01 

mmol/egg: 100% (Shi et al., 2017) 

  

2,2′,7′-trihydroxy-
3′,4,5′,7-
tetramethoxy-
9′,10′-dihydro-

 IV, H1N1 
A/Jiangsu/1/2016 IC50 in embryonated eggs model IC50 at 0.08 mmol/egg: 17.2% oseltamivir at 0.01 

mmol/egg: 100%  
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Natural source Type of 
extract Compound name In vivo model Pathogen Study parameter Activity Control Reference 

1,1′-di-
phenanthrene 

  

2,2′–dyhydroxyl-
4,4′,7,7′-9′,10′-
dihydro-1,6′-di-
phenanthrene 

 IV, H1N1 
A/Jiangsu/1/2016 IC50 in embryonated eggs model IC50 at(0.08 mmol/egg: 75.9% oseltamivir at 0.01 

mmol/egg: 100%  

  

2,7-dyhydroxyl-4-
methoxy-9,10-
dihydro-
phenanthrene 

 IV, H1N1 
A/Jiangsu/1/2016 IC50 in embryonated eggs model IC50 at 0.08 mmol/egg: 20.7% oseltamivir at 0.01 

mmol/egg: 100%  

  
2,7-dyhydroxyl-4-
methoxyphenanthr
ene 

 IV, H1N1 
A/Jiangsu/1/2016 IC50 in embryonated eggs model IC50 at 0.08 mmol/egg: 34.5% oseltamivir at 0.01 

mmol/egg: 100%  

  

4,4′,7,7′-
tetrahydroxy-
2,2′,8,8′-
tetramethoxy-1,1′-
di-phenanthrene 

 IV, H1N1 
A/Jiangsu/1/2016 IC50 in embryonated eggs model IC50 at 0.08 mmol/egg: 34.5% oseltamivir at 0.01 

mmol/egg: 100%  

  

4,4′,7,7′-
tetrahydroxy-2,2′-
dimethoxy-1,1′-di-
phenanthrene 

 IV, H1N1 
A/Jiangsu/1/2016 IC50 in embryonated eggs model IC50 at 0.08 mmol/egg: 34. % oseltamivir at 

0.01mmol/egg: 100%  

  
4,5-dyhydroxyl-2-
methoxy-9,10-
dihydro-
phenanthrene 

 IV, H1N1 
A/Jiangsu/1/2016 IC50 in embryonated eggs model IC50 at 0.08 mmol/egg: 34.5% oseltamivir at 0.01 

mmol/egg: 100%  

Cistus x. incanus 
L. Cystus052® - humans 

viral or/and 
bacterial infection 
(throat swabs 
samples) 

severe fever day 0: 40% (~260 mg 
polyphenols/d) 

green tea day 0: 50% 
(~480 mg 
polyphenols/d) 

(Kalus et al., 2010) 

    

viral or/and 
bacterial infection 
(throat swabs 
samples) 

severe fever day 3-4: <10% (~260 mg 
polyphenols/d) 

green tea day 3-4: 39% 
(~480 mg 
polyphenols/d) 

 

Clinacanthus 
siamensis 
Bremek. 

E - BALB/c mice IV, H3N2 
A/Guizhou/54/1989 

IgG1 and IgA in broncheo-alveolar 
wash (up to 20 days p.i.) 

induction of humoral immune 
response (day 19) (100 mg/kg/d p.o.) 

oseltamivir (0.1 
mg/kg/d p.o.): no 
induction of humoral 
activity  

(Wirotesangthong et al., 
2009) 

Gardenia 
jasminoides 
J.Ellis 

- geniposide ICR mice IV, H1N1 
A/Jiangsu/1/2009 survival survival rate: 90% (20 mg/kg) 8 days 

p.i. 

peramivir survival rate: 
90% (30 mg/kg) 8 days 
p.i. 

(Zhang et al., 2017) 

Lonicera japonica 
Thunb. - chlorogenic acid BALB/c mice 

IV, H1N1 
A/PuertoRico/8/193
4 

survival survival rate: 60% (100 mg/kg/d i.v.) oseltamivir: 70% (100 
mg/kg/d) (Ding et al., 2017) 

    IV, H3N2 
A/Beijing/32/1992 survival survival rate: 50% (100 mg/kg/d i.v.) oseltamivir: 70% (100 

mg/kg/d)  



54 

Natural source Type of 
extract Compound name In vivo model Pathogen Study parameter Activity Control Reference 

    
IV, H1N1 
A/PuertoRico/8/193
4 

virus titre (5 days p.i.) 3.77 Log10CCID50/g 5.52 Log10CCID50/g 
in placebo group  

Panax 
quinquefolius L. 

CVT-
E002™ - 

humans (early-
stage untreated 
chronic 
lymphocytic 
leukemia) 

n.g. sore throat (moderate-severe, study 
period: 3 months) 10% at 200 mg/2x/d placebo: ~23% (High et al., 2012) 

Pelargonium 
sidoides DC 11% E - guinea pigs - citric acid-induced cough model 10 mg/kg: number of coughs: 6.1 negative control: 

number of coughs: 20.0 (Bao et al., 2015) 

     citric acid-induced cough model 20 mg/kg: number of coughs: 7.5 Radix glycyrrhizae 5.5 
ml/kg: 6.7  

     citric acid-induced cough model 45 mg/kg: number of coughs: 5.5   

   ICR miceSPE-
class - ammonia-induced coughing 20 mg/kg: number of coughs: 9.8 Negative control: 

number of coughs: 34.6  

     ammonia-induced coughing 40 mg/kg: number of coughs: 5.5 Radix glycyrrhizae 5.5 
ml/kg: 12.0  

     ammonia-induced coughing 120 mg/kg: number of coughs: 4.9   

     bronchosecretolytic effect (phenol red 
secretion) 

20 mg/kg: phenol red: c = 349.1 
µg/ml 

phenol red: c = 274.3 
µg/ml  

     bronchosecretolytic effect (phenol red 
secretion) 

40 mg/kg: phenol red: c = 414.1 
µg/ml 

Radix glycyrrhizae 5.5 
ml/kg: phenol red: c = 
401.6 µg/ml 

 

     bronchosecretolytic effect (phenol red 
secretion) 

120 mg/kg: phenol red: c = 474.5 
µg/ml 

  

Zuccagnia 
punctata Cav. 

E - infant swiss 
albino mice SP AV6 lung tissue, blood (Log10 CFU/g of 

organ) 1 mg/mouse p.o. 2x/day Amoxicillin: 
2 mg/mouse (Zampini et al., 2012) 

    SP AV6 lung tissue, blood (Log10 CFU/g of 
organ) day 3 p.i.: 4.64 CFU day 3 p.i.: 4.34 CFU  

    SP AV6 lung tissue, blood (Log10 CFU/g of 
organ) day 5 p.i.: 4.09 CFU day 5 p.i.: 3.67 CFU  

    SP AV6 lung tissue, blood (Log10 CFU/g of 
organ) day 7 p.i.: 4.30 CFU day 7 p.i.: 3.41 CFU  

 - 7-
hydroxyflavanone  SP AV6 lung tissue, blood (Log10 CFU/g of 

organ) 1 mg/mouse p.o. 2x/day negative control  

    SP AV6 lung tissue, blood (Log10 CFU/g of 
organ) day 3 p.i.: 4.43 CFU day 3 p.i.: 5.49 CFU  

    SP AV6 lung tissue, blood (Log10 CFU/g of 
organ) day 5 p.i.: 4.13 CFU day 5 p.i.: 5.29 CFU  

    SP AV6 lung tissue, blood (Log10 CFU/g of 
organ) day 7 p.i.: 4.35 CFU day 7 p.i.: 5.36 CFU  

Abbreviations:  c = concentration, CFU = colony forming units, i.v. = intravenous, IV = influenza virus, n.g. = not given. p.i. = post infection, p.o. = peroral, SA = Staphylococcus aureus, SP = Streptococcus pneumoniae, SPy = Streptococcus pyogenes 

Extraction solvents: E = ethanol, M = methanol 
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4. Conclusion and future perspectives 

In many cultures all over the world, herbal remedies have a longstanding tradition as a preferred 

choice to treat ARIs. The applied herbal remedies are complex multicomponent mixtures, where 

individual constituents can exert their effects through interactions with multiple viral and 

bacterial targets (multi-targeting) in a multi-functional (pleiotropic) way. 

Despite the fact that the identification and development of novel innovative anti-ARI agents 

from natural sources are of utmost importance, promising lead candidates and clinical evidence 

are largely missing. To fill this gap, an arsenal of sophisticated strategies is required to 

investigate antimicrobial natural products more comprehensively with straightforward 

protocols and assays for the assessment of their value within drug discovery initiatives. 

Evaluating the impact of natural products to combat ARIs, this review critically addresses the 

relevance of traditional knowledge as a main criterion for the biased selection of starting 

materials and the strategies which have been pursued. 

Regarding the overall influence of natural products on ARIs within the last ten years we 

encountered a vast amount of literature data. The majority consists of in vitro studies, where 

the “one compound-one target” paradigm is strongly represented, since pure compounds were 

mainly tested only against one target pathogen and/or one target. As ARIs in many cases are 

characterized by a complex interplay of more than one pathogen (McCullers, 2014; Visseaux 

et al., 2017), testing natural products against one distinct virus or bacterium represents only a 

part of the puzzle. Hence, an interpretation of the significance of the published results for the 

treatment of ARIs is difficult unless accompanied with meaningful in vivo experiments. Co-

infection models in vitro as well as in vivo might be an advanced approach mimicking the 

complex infectious condition. However, in the current literature such multi-targeting 

approaches are rather the exceptions than the rule. 
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Concerning targets of distinct pathogens involved in ARIs, influenza neuraminidase has 

evolved as the most popular druggable motive for natural products (as well as synthetic 

compounds). Due to well-established and easily available neuraminidase inhibition assay kits, 

which however are prone to assay interferences, extensive screening campaigns have resulted 

in an accumulation of a vast amount of in vitro data contemplating the largest group of anti-

ARI natural product lead candidates. Although other anti-influenza virus and anti-rhinovirus 

targets are known (e.g. hemagglutinin, nucleoprotein), the degree of their experimental advance 

and the knowledge about their druggability is in its infancy. On the phenotypic/cell-based level, 

the evaluation of the inhibition of the viral cytopathic effect has evolved as the most commonly 

applied assay, giving insights into general antiviral activity.  

Comparative analysis of the chemical space of all bioactive natural products discussed in this 

work shows that many of these compounds are drug-like but also that there are several bioactive 

natural products which are substantially larger and have more hydrogen bond donors and 

acceptors than most approved drugs. 

To discover anti-influenza virus natural compounds with drug-like properties, we broadly 

applied the cytopathic effect inhibition assay in a recently accomplished 5-years project from 

the Austrian Science Fund (FWF P24587). In this project, based on the knowledge of antiviral 

herbal remedies from traditional medicine, starting materials from plants and fungi were 

selected for the generation of 162 extracts. Intriguingly, defining an antiviral activity threshold 

with an IC50 value of ≤ 50 µg/mL, the sample set revealed 20% and 11% active extracts against 

influenza virus A/Hong Kong/1968 and rhinovirus A2, respectively (Grienke et al., 2018). 

These data underline the importance of ethnopharmacological knowledge in the selection of 

plant materials to achieve a high yield of “hit extracts” for further investigation. In most cases, 

data from the phenotypic antiviral screening in combination with information from virtually 

predicted hits guided the analytical and phytochemical investigations for the identification of 

novel antiviral lead structures from nature. During this project, an assay protocol for the 
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straightforward identification of anti-influenza molecular mechanisms and a standard procedure 

for ruling out false positives at an early stage have been established (Fig. 5). 

Taking together the data from our research and available literature data from the last ten years, 

there is a clear tendency towards assaying for more broadspectrum antiviral and antibacterial 

effects bearing a large potential for further investigations in this interdisciplinary field. 

 

Fig. 5. Workflow for the selection, extraction and identification of natural products against ARIs. 
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