Phenylethylene glycol-derived LpxC inhibitors with diverse $\mathbf{Z n}^{2+}$-binding groups

Magdalena Galster, ${ }^{a}$ Marius Löppenberg, ${ }^{\text {a }}$ Fabian Galla, ${ }^{a}$ Frederik Börgel, ${ }^{\text {a }}$ Oriana Agoglitta, ${ }^{\text {b,c,d }}$ Johannes Kirchmair, e,f,g and Ralph Hollic,d,*
alnstitute of Pharmaceutical and Medicinal Chemistry, Westfälische WilhelmsUniversität Münster, Corrensstr. 48, 48149 Münster, Germany
${ }^{\text {b }}$ NRW Graduate School of Chemistry, University of Münster, Germany
${ }^{\text {}}$ Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
${ }^{d}$ German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-BorstelRiems
${ }^{e}$ Center for Bioinformatics (ZBH), University of Hamburg, Bundesstr. 43, 20146 Hamburg, Germany
fDepartment of Chemistry, University of Bergen, N-5020 Bergen, Norway
${ }^{9}$ Computational Biology Unit (CBU), University of Bergen, N-5020 Bergen, Norway
*To whom correspondence should be addressed. Tel.: +49-40-42838-2825; Fax: +49-40-42838-4325; E-mail: ralph.holl@chemie.uni-hamburg.de

Graphical abstract

Key words

Antibacterials; LpxC inhibitors; hydroxamic acids; metabolic stability; Zn^{2+}-chelating groups

Abstract

The Zn^{2+}-dependent bacterial deacetylase LpxC is a promising target for the development of novel antibiotics. Most of the known LpxC inhibitors carry a hydroxamate moiety as Zn^{2+}-binding group. However, hydroxamic acids generally exhibit poor pharmacokinetic properties. (S)-N-Hydroxy-2-\{2-hydroxy-1-[4(phenylethynyl)phenyl]ethoxy\}acetamide (3) is a known phenylethylene glycol derivative potently inhibiting LpxC with a K_{i} of 66 nM . In vitro experiments have confirmed in silico predictions that the hydroxamate moiety of $\mathbf{3}$ is indeed metabolically labile. In this study, several strategies were explored to replace the hydroxamate moiety by other Zn^{2+}-binding groups while maintaining target activity. In total, 15 phenylethylene glycol derivatives with diverse Zn^{2+}-binding groups like carboxylate, hydrazide, carboxamide, sulfonamide, vicinal diol, thiol, thioester, and hydroxypyridinone moieties were prepared in divergent syntheses. However, their biological evaluation revealed that the replacement of the hydroxamate moiety of $\mathbf{3}$ by any of the investigated Zn^{2+}-binding groups is detrimental for LpxC inhibitory and antibacterial activity.

1. Introduction

After iron, zinc is the second most abundant transition metal in all living organisms, including animals, plants, and microorganisms, with Zn^{2+}-containing enzymes constituting the largest category of metalloproteins. ${ }^{1}$ Many of these enzymes are involved in biological processes also associated with the propagation of various diseases, like cancer, arthritis, hypertension, and bacterial infections, thus making them attractive targets for drug therapy. ${ }^{2}$ In the design and development of inhibitors of these enzymes, their metal ion cofactor has frequently been targeted by chelating groups. ${ }^{3-4}$

The Zn^{2+}-dependent bacterial deacetylase LpxC represents a promising target for the development of antibiotics, selectively combating Gram-negative bacteria. ${ }^{5}$ The enzyme, which is highly conserved among Gram-negative bacteria, is involved in the biosynthesis of lipid A. Lipid A is essential for growth and viability of Gram-negative bacteria as it constitutes the hydrophobic membrane anchor of lipopolysaccharides, representing the main component of the outer monolayer of the outer membrane of these germs. ${ }^{6}$ LpxC plays a central role in lipid A biosynthesis, catalyzing its first irreversible step, which in E. coli is the deacetylation of UDP-3-O-[(R)-3-hydroxymyristoyl]- N-acetylglucosamine (1, Scheme 1). ${ }^{7-8}$ The enzyme's catalytic $\mathrm{Zn}^{2+}{ }^{-}$ ion is located at the bottom of the $\sim 20 \AA$ deep, conical active site cleft, where it is coordinated by one aspartate and two histidine residues. From this active site, an approximately $15 \AA$ long, hydrophobic tunnel leads outwards, which encloses the 3-O-[(R)-3-hydroxymyristoyl] substituent of the enzyme's natural substrate during catalysis. ${ }^{9-10}$

Scheme 1: LpxC-catalyzed deacetylation of UDP-3-O-[(R)-3-hydroxymyristoyl]-Nacetylglucosamine (1).

Various structural classes of LpxC inhibitors have been described in the patent and non-patent literature. ${ }^{5,11}$ Most of the described inhibitors share common structural features like a Zn^{2+}-binding group as well as a structural element addressing the enzyme's hydrophobic tunnel. ${ }^{5,11-12}$ The vast majority of the reported LpxC inhibitors uses a hydroxamate moiety as the Zn^{2+}-binding group.

Although a hydroxamate moiety is found in some approved drugs, like the histone deacetylase inhibitors vorinostat, panobinostat, and belinostat, the clinical effectiveness of hydroxamic acids is generally limited by their inadequate selectivity for Zn^{2+}-ions and poor pharmacokinetics. ${ }^{13-18}$ The unfavorable pharmacokinetic properties of hydroxamic acids result from poor oral bioavailability as well as high clearance due to rapid metabolism via conjugate formation (glucuronidation and sulfation), reduction, and hydrolytic cleavage, the latter leading to the release of toxic hydroxylamine. ${ }^{19-26}$

In case of numerous Zn^{2+}-containing target enzymes, inhibitors have been developed which exhibit alternative Zn^{2+}-binding groups with more favorable pharmacological and pharmacokinetic properties. ${ }^{13,19,24,27-28}$ However, in the case of LpxC inhibitors, only a few inhibitors that do not contain the Zn^{2+}-chelating hydroxamate moiety have been reported so far. ${ }^{29-37}$

Recently, we have reported on a series of benzyloxyacetohydroxamic acids as inhibitors of LpxC , with the most potent compound, 3 (Figure 1), exhibiting promising
activities in the enzyme assay $\left(\mathrm{IC}_{50}=0.48 \mu \mathrm{M}, \mathrm{K}_{\mathrm{i}}=66 \mathrm{nM}\right)$ as well as in the performed disc diffusion assays (Table 1). ${ }^{38}$ Therefore, the compound should be further investigated. In this work, the results of in silico and in vitro experiments on the metabolism of hydroxamic acid 3 are reported. In addition, a systematic study of alternative metal binding groups is described, in which the hydroxamate moiety of 3 was replaced by various other Zn^{2+}-binding groups that are part of effective inhibitors of other Zn^{2+}-dependent enzymes. ${ }^{24,39-45}$ Thus a carboxylic acid, a hydrazide, several amides and sulfonamides, vicinal diols, a thiol, a thioester, and hydroxypyridinone derivatives were synthesized and tested for antibacterial activity.

Figure 1: Structure of hydroxamic acid 3 and alternative Zn^{2+}-binding groups.

2. Results and Discussion

2.1. Prediction of the metabolism of 3

The susceptibility of 3 toward human cytochrome P450 (CYP)-mediated metabolism was investigated with FAME 2, a random forest-based predictor of sites of metabolism. ${ }^{46}$ FAME 2 assigned a moderate likelihood of metabolism (0.602; values ranging from 0 to 1 , with higher values indicating higher probabilities of atoms being sites of metabolism) to the para-position of the terminal phenyl moiety (Figure 2). This is interpreted as a moderate likelihood for a hydroxylation to happen at this atom position. All other atom positions were predicted as stable in the context of CYP metabolism.

4
SyGMa 0.213

5
SyGMa SyGMa
0.199

FAME 2
0.602

6
SyGMa
SyGMa
0.189
3

Figure 2: Predictions of sites of metabolism with FAME 2 and of metabolites with SyGMa. The circle in the center compound (parent) indicates the most likely labile atom position related to CYP-mediated metabolism. The numbers report the scores
(probabilities) assigned by FAME 2 or SyGMa. Note that scores from FAME 2 and SyGMa are not directly comparable. In the case of SyGMa they should primarily be considered as a means for ranking metabolites.

The most likely human metabolites of 3 resulting from phase I and phase II metabolism were predicted with SyGMa. ${ }^{47}$ SyGMa assigns to all predicted metabolites an empirical probability score, which represents the proportion of correctly predicted metabolites of the training set. For 3, SyGMa predicts four metabolites with a score greater than 0.09 (Figure 2): two glucuronic acid conjugates $(\mathbf{4}, 7)$ and two carboxylic acid metabolites $(5,6)$.

2.2. In vitro metabolism using rat liver microsomes

To identify the metabolically labile positions of hydroxamic acid 3 in vitro, the compound was incubated with NADPH (for CYP-mediated phase I metabolism) and UDPGA (for UGT-mediated phase II metabolism) in the presence of a suspension of rat liver microsomes (Figure 3).

Figure 3: HPLC chromatogram of the incubation of 3 with a rat liver microsome suspension, $\mathrm{NADPH} / \mathrm{H}^{+}$and UDPGA. EICs: blue ($\mathrm{m} / \mathrm{z} 486.1414 \pm 0.05$), green
(310.1091 ± 0.05), red (295.0991 ± 0.05), gradient elution (HPLC method 3), MSdetection in negative ion polarity.

Furthermore, experiments with 3 and the rat liver microsome suspension alone as well as with the addition of only one of the cofactors have been performed. All samples were analyzed by LC-MS. Suggestions on the chemical structure of the formed metabolites were made based on their exact masses and retention times (Figure 4).

3

HRMS (m / z):

[$\mathrm{M}+\mathrm{Na}]^{+}$calc for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{Na}: 334.1050$, found: 334.1023 [M-H]- calc for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{4}: 310.1085$, found: 310.1091
HPLC (method 3): $\mathrm{t}_{\mathrm{R}}=5.6 \mathrm{~min}$

6 (3-NH)

HRMS (m / z):

$[\mathrm{M}+\mathrm{Na}]^{+}$calc for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}: 319.0941$, found: 319.0905 [M-H]- calc for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{4}$: 295.0976 , found: 295.0991 HPLC (method 3): $t_{R}=6.1 \mathrm{~min}$

HRMS (m / z):
$[\mathrm{M}+\mathrm{Na}]^{+}$calc for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{10} \mathrm{Na}: 519.1371$, found: 510.1331 [$\mathrm{M}-\mathrm{H}$]- calc for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{10}: 486.1406$, found: 486.1414 HPLC (method 3$)$: $\mathrm{t}_{\mathrm{R}}=5.4 \mathrm{~min}$

Figure 4: Suggested structures of the observed phase I- and phase II-metabolites of hydroxamic acid 3.

When investigating the phase I metabolism of 3, the formation of carboxylic acid 6 (3NH) was observed. Whereas only traces of carboxylic acid 6 were found upon incubation of $\mathbf{3}$ in PBS buffer pH 7.4 for 120 min , the addition of the rat liver microsome
suspension caused a hydrolytic cleavage of the hydroxamate moiety, irrespective of the absence or presence of the cofactor NADPH.

In the performed phase II metabolism study of 3, conjugate formation yielded glucuronide $\mathbf{3 + G l u}$, which is most probably compound $\mathbf{4}$, exhibiting a glucuronidated hydroxamate moiety.

The formation of monooxygenated products or metabolites arising from combined phase I and phase II biotransformation reactions could not be observed. Although these experiments were performed with rat liver microsomes rather than with human materials, the observations are in good agreement with the in silico predictions. Both the carboxylic acid metabolite 6 and the glucuronic acid metabolite 4 were predicted with SyGMa as two out of four metabolites. The transformation of the para-position of the terminal phenyl moiety, predicted by FAME 2 with a moderate likelihood, could not be experimentally confirmed. However, it is plausible that such a metabolite is formed in humans.

2.3. Chemistry

The envisaged carboxylic acid derivatives $13,14,15$ and 16 were synthesized from ester 9 (Scheme 2), which can be accessed in enantiomerically pure form via a described procedure starting from 4-bromostyrene (8). ${ }^{38}$ In order to establish the lipophilic side chain of the compounds, a Sonogashira coupling of aryl bromide 9 with phenylacetylene was performed to yield diphenylacetylene derivative 10. Subsequently, the MOM protective group of ester 10 was cleaved under acidic conditions. When performing the reaction in ethanol, ethyl ester 12 was obtained. The use of methanol as solvent led to an additional transesterification, yielding methyl ester 11. Whereas the saponification of ester 12 gave carboxylic acid 13, the aminolyses of esters 11 and 12 with ammonia and hydrazine yielded primary amide 14 and hydrazide

15, respectively. ${ }^{48-49}$ Finally, amide 16 was obtained by coupling carboxylic acid 13 with 1,2-phenylenediamine in the presence of the carboxyl activating agent EDCI hydrochloride and N-hydroxysuccinimide. ${ }^{19,50-51}$

Scheme 2: Reagents and conditions: (a) phenylacetylene, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CuI}^{2} \mathrm{NEt}_{3}, \Delta, 16$ h, 99 \%; (b) HCl, MeOH or EtOH, rt, 16 h, 1186 \%, 1284 \%; (c) NaOH, THF, rt, 16 h, 82 \%; (d) aq. NH_{3}, rt, $16 \mathrm{~h}, 75$ \%; (e) $\mathrm{H}_{2} \mathrm{NNH}_{2}, \mathrm{EtOH}, 37 \%$; (f) EDCI hydrochloride, N hydroxysuccinimide, 1,2-phenylenediamine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $16 \mathrm{~h}, 29 \%$.

In order to access thiol derivatives 20 and 22, ester 10 was reduced with DIBAL to yield primary alcohol 17 (Scheme 3). ${ }^{52}$ Subsequently, the alcohol was mesylated and the resulting methanesulfonic acid ester 18 was subjected to a nucleophilic substitution with thioacetic acid to obtain thioester 19. ${ }^{53-54}$ The removal of the MOM protective group of thioester 19 under acidic conditions also led to the cleavage of the compound's thioester moiety, thus yielding thiol 20. In order to obtain thioester 22, at first, the MOM protective group of mesylate 21 was cleaved and thereafter a nucleophilic substitution with thioacetic acid was performed.

10

23

(i) \square 24: $\mathrm{R}^{\mathrm{d}}=\mathrm{MOM}$

17

18

21
(f)

19

22

(d)

2

Scheme 3: Reagents and conditions: (a) DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 30 \mathrm{~min}, 77$ \%; (b) mesyl chloride, NEt_{3}, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, $2.5 \mathrm{~h}, 69$ \%; (c) thioacetic acid, $\mathrm{NEt}_{3}, \mathrm{DMF}, \mathrm{rt}, 16 \mathrm{~h}$, 67 \%; (d) $\mathrm{HCl}, \mathrm{MeOH}, \mathrm{rt}, 16 \mathrm{~h}, 53 \%$; (e) $\mathrm{HCl}, \mathrm{MeOH}, \mathrm{rt}, 16 \mathrm{~h}, 87 \%$; (f) thioacetic acid, $\mathrm{NEt}_{3}, \mathrm{DMF}, \mathrm{rt}, 16 \mathrm{~h}, 72$ \%; (g) potassium phthalimide, DMF, $80{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 84 \%$; (h) $\mathrm{H}_{2} \mathrm{NCH}_{3}, \mathrm{EtOH}, 70^{\circ} \mathrm{C}, 16 \mathrm{~h}, 82 \%$; (i) $\mathrm{HCl}, \mathrm{EtOH}, \mathrm{rt}, 16 \mathrm{~h}, 41 \%$.

The primary amine 24 (Scheme 3) represents an important intermediate in the synthesis of the envisaged carboxamide and sulfonamide derivatives. The compound could be accessed via a Gabriel synthesis. Thus, mesylate 18 was subjected to a nucleophilic substitution with potassium phthalimide, yielding N-alkylphthalimide 23, which was subsequently cleaved with methylamine to give primary amine $24 .{ }^{55}$ Additionally, the MOM protective group of compound 24 was removed under acidic conditions yielding amine 25, which was also tested for antibacterial and LpxC inhibitory activity.

Subsequently, primary amine 24 was coupled with pyrrole-2-carboxylic acid to give carboxamide 26 and reacted with mesyl chloride, triflyl chloride, and tosyl chloride to yield sulfonamides 28, 30, and 32, respectively (Scheme 4). ${ }^{56}$ These compounds were
finally deprotected under acidic conditions, giving access to alcohols 27, 29, 31, and
33.

Scheme 4: Reagents and conditions: (a) pyrrole-2-carboxylic acid, EDCI hydrochloride, $\mathrm{HOBt}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 16 \mathrm{~h}, 87 \%$; (b) $\mathrm{H}^{+}, \mathrm{MeOH}, \mathrm{rt}, 82 \%$; (c) mesyl chloride, $\mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 16 \mathrm{~h}, 79 \%$; (d) $\mathrm{HCl}, \mathrm{MeOH}, \mathrm{rt}, 16 \mathrm{~h}, 85 \%$; (e) triflyl chloride, $\mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 16 \mathrm{~h}, 45$ \%; (f) HCl, MeOH, rt, $16 \mathrm{~h}, 63$ \%; (g) $p \mathrm{TsCl}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$, 16 h, 85 \%; (h) HCl, MeOH, rt, 16 h, 89 \%.

In order to obtain vicinal diols 38 and 39 , secondary alcohol 34 , which is another intermediate of the described synthesis of hydroxamic acid 3 and which is also accessible from 4-bromostyrene (8), ${ }^{38}$ was reacted with allyl bromide to give allyl ether 35 (Scheme 5). The latter was subjected to a Sonogashira coupling with phenylacetylene, yielding diphenylacetylene derivative 36. After cleavage of the MOM protective group, Sharpless asymmetric dihydroxylations were performed with the resulting alcohol $37 .{ }^{57}$ When AD-mix- α was used, allyl ether 37 should be transformed into the (R)-configured vicinal diol 38 , whereas the use of AD-mix- β should lead to the formation of the respective (S)-configured vicinal diol 39. However, the diastereoselectivities of the performed asymmetric dihydroxylations of allyl ether 37
were relatively low. Whereas the reported Sharpless asymmetric dihydroxylations of 4-bromostyrene (8) had yielded the respective diols with high enantioselectivities (ee $>97 \%$), ${ }^{38}$ the diastereomeric excess of vicinal diols 38 ($d e=60 \%$) and 39 ($d e=20$ \%) was rather poor.

Scheme 5: Reagents and conditions: (a) allyl bromide, LiHMDS, NBu4l, THF, Δ, 16 h , 64 \%; (b) phenylacetylene, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Cul}^{2} \mathrm{NEt}_{3}, \Delta, 16 \mathrm{~h}, 86$ \%; (c) $\mathrm{HCl}, \mathrm{MeOH}, \mathrm{rt}, 16$ h, 91 \%; (d) AD-mix-a, $t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (1:1), $0^{\circ} \mathrm{C}$, $16 \mathrm{~h}, 3893 \%$, de = 60% or AD-mix- β, $t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1), 0^{\circ} \mathrm{C}, 16 \mathrm{~h}, 3990 \%$, $d e=20 \%$; (e) 1. 9-BBN, THF, rt, $17.5 \mathrm{~h}, 2$. MeOH , aq. NaOH , aq. $\mathrm{H}_{2} \mathrm{O}_{2},-25^{\circ} \mathrm{C} \rightarrow 40^{\circ} \mathrm{C}, 99 \%$; (f) phenylacetylene, $\mathrm{Pd}^{\mathrm{C}}\left(\mathrm{PPh}_{3}\right)_{4}$, CuI, $\mathrm{NEt}_{3}, \Delta, 16 \mathrm{~h}, 78 \%$.

Primary alcohol 41 was obtained from ether 35 via the hydroboration of its allyl substituent with 9-borabicyclononane (9-BBN) followed by an oxidative workup with $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O}_{2}$, yielding propanol derivative 40 , and a subsequent Sonogashira coupling with phenylacetylene (Scheme 5). ${ }^{58-59}$

Primary alcohols 17 and 41 were used as stating materials for the synthesis of hydroxypyridinone derivatives (Scheme 6). Thus, the compounds were transformed
into azides 44 and 45 via a tosylation and a subsequent substitution with sodium azide. The obtained azides 44 and 45 were subjected to a Staudinger reduction and the intermediately formed primary amines were reacted with benzyl-protected maltol (47) to yield pyridinone derivatives 48 and 49 , respectively. ${ }^{60}$ Subsequently, both protective groups should be cleaved under acidic conditions. According to the literature, the benzyl protective group of the pyridinone derivatives should be removable under strongly acidic conditions. ${ }^{60}$ However, these conditions also led to the cleavage of the second benzyl ether moiety within the molecules and consequently to a degradation of the compounds. Thus, after the acid-catalyzed cleavage of the MOM protective groups of pyridinone derivatives 48 and 49, their benzyl groups were hydrogenolytically removed. However, under the latter reaction conditions, the triple bonds of the compounds were additionally hydrogenated, leading to the formation 1,2diphenylethane derivatives 50 and 51 .

Scheme 6: Reagents and conditions: (a) pTsCl, DMAP, $\mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 4286 \%, 43 82 \%; (b) $\mathrm{NaN}_{3}, \mathrm{DMSO}, \Delta, 16 \mathrm{~h}, 4492$ \%, 4590 \%; (c) $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{ACN}, \Delta, 16 \mathrm{~h}, 95$
\%; (d) 1. polymer-bound $\mathrm{PPh}_{3}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}, 2.47, \mathrm{H}_{2} \mathrm{O}, 140{ }^{\circ} \mathrm{C}, 7 \mathrm{~d}, 4819 \%, 4914 \%$; (e) 1. HCl, MeOH, rt, 16 h, 2. H2, Pd/C, MeOH, rt, 16 h, 5027 \%, 5126 \%.

For a better comparability, when elucidating the effect of the replacement of the hydroxamate group by a hydroxypyridinone moiety, two additional compounds were synthesized. On the one hand, the 1,2-diphenylethane-derived hydroxamic acid 53 was prepared (Scheme 7). Staring from the described lactone 52, ${ }^{38}$ at first, the hydrogenation of its acetylene moiety was performed, followed by an aminolysis with hydroxylamine, yielding hydroxamic acid 53.

Scheme 7: Reagents and conditions: (a) 1. $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{rt}, 16 \mathrm{~h}, 2 . \mathrm{H}_{2} \mathrm{NOH} \cdot \mathrm{HCl}$, $\mathrm{NaOMe}, \mathrm{MeOH}, \mathrm{rt}, 16 \mathrm{~h}, 52 \%$.

On the other hand, diphenylacetylene derivative 57 was synthesized (Scheme 8), which can be considered as a hydroxypyridinone-derived analogue of the described benzyloxyacetohydroxamic acid $58 .{ }^{38}$ The reaction of 2-(4-bromophenyl)ethylamine (54) with maltol derivative 47 yielded pyridinone derivative 55. After a Sonogashira coupling with phenylacetylene, the benzyl protective group was removed by heating pyridinone derivative 56 under strongly acidic conditions to yield hydroxypyridinone derivative 57.

Scheme 8: Reagents and conditions: (a) $\mathrm{H}_{2} \mathrm{O}, 140^{\circ} \mathrm{C}, 10 \mathrm{~d}, 60 \%$; (b) phenylacetylene, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Cul}^{2} \mathrm{NEt}_{3}, \mathrm{ACN}, \Delta, 16 \mathrm{~h}, 67$ \%; (c) aq. $\mathrm{HCl}, \mathrm{MeOH}, \Delta, 4 \mathrm{~h}, 60 \%$.

2.4. Biological evaluation

Table 1: Results of the biological evaluation of the synthesized inhibitors with various Zn^{2+}-binding groups. n. d.: not determinable. *: not soluble in the assay buffer at a concentration of $200 \mu \mathrm{M}$.

	$\mathrm{R}=$	E. coli BL21	E. coli D22	E. coli BL21	E. coli D22	$\mathrm{IC}_{50}[\mu \mathrm{M}]$	$\mathrm{K}_{\mathrm{i}}[\mu \mathrm{M}]$
57		<6	<6	>64	>64	>200	-
58^{38}		10.6 ± 0.4	13.2 ± 1.6	32	2	>200	-

In order to evaluate the antibacterial activities of the synthesized compounds, disc diffusion tests with E. coli BL21 (DE3) and the defective E. coli strain D22, ${ }^{61}$ which is more sensitive towards LpxC inhibition, were performed and the MIC (minimal inhibitory concentration) values of the potential LpxC inhibitors were determined (Table 1). Additionally, a fluorescence-based LpxC enzyme assay was performed to test the inhibitory activity of the synthesized compounds against the isolated enzyme. ${ }^{62}$ In the LpxC enzyme assay, purified E. coli LpxCC63A was employed, as the C63A mutation lowers the undesired influence of Zn^{2+}-concentration on enzymatic activity. ${ }^{5,} 63$ The inhibition of the deacetylation of the enzyme's natural substrate 1 (Scheme 1) caused by a certain concentration of the putative inhibitors (ranging from 0.2 nM to $200 \mu \mathrm{M}$) was determined by transforming the resulting deacetylated primary amine 2 into a fluorescent isoindole with phthalaldehyde and 2-mercaptoethanol.

As under the conditions of the enzyme assay primary amine $\mathbf{2 5}$ gave a fluorescent product itself, an IC_{50} value could not be determined for this compounds. For all the other phenylethylene glycol derivatives the results of the enzyme assay clearly showed that the replacement of the hydroxamate moiety of compound 3 by any other of the investigated functional groups is detrimental for the inhibitory activity toward LpxC. None of the assayed compounds was able to inhibit the enzymatic activity of LpxC by more than half at the highest concentrations tested. These data are in general agreement with the observed antibacterial activities.

Whereas carboxylic acid 13, amide 14, thiol 20 and thioester 22 did not show any antibacterial activity, neither in the disc diffusion nor in the MIC assays, hydrazide 15 was found to be able to inhibit the growth of both E. coli strains in the performed disc diffusion assays. However, the diameters of the observed halos of inhibition caused by this compound, which should be able to chelate the catalytic Zn^{2+}-ion of LpxC in a
similar fashion as hydroxamic acid 3, are considerably smaller compared to the ones caused by the latter compound. Also 1,2-phenylenediamine derivative 16 as well as vicinal diols 38 and 39 caused observable halos of inhibition, particularly against the sensitive E. coli D22 strain. Whereas pyrrole-2-carboxamide 27 was found to exhibit no antibacterial activity, among the investigated sulfonamides 29, 31, and 33, noticeable halos of inhibition were found for mesylamide 29 and triflylamide 31. In contrast, no inhibition of bacterial growth was observed for sulfonamide 33.

Surprisingly, primary amine 25 caused quite large halos of inhibition, which however did not translate into low MIC values. Due to its primary amino group, the inhibitory activity of compound $\mathbf{2 5}$ could not be determined using the fluorescence-based LpxC enzyme assay. Thus, it still needs to be elucidated, whether the observed antibacterial activity in the disc diffusion assays is due to inhibitory activity of the compound toward LpxC or due to unspecific cytotoxicity, the latter being indicated by halos of inhibition of approximately the same size when being assayed against E. coli BL21 and the sensitive E. coli strain D22.

The hydroxypyridinone derivatives 50 and 51 also exhibit no antibacterial activity. However, their inactivity in the performed assays could be attributed to their flexible side chain, as the hydrogenation of the triple bond of the diphenylacetylene moiety also led to the complete inactivity of hydroxamic acid 53 . This finding is in agreement with previous observations that in case of the benzyloxyacetohydroxamic acids a long, linear, and rigid lipophilic side chain is required for potent LpxC inhibitory activity. ${ }^{38,64}$

Additional evidence that the replacement of the hydroxamate group by a hydroxypyridinone is unfavorable for the biological activity of the compounds is given by hydroxypyridinone derivative 57, which, in contrast to benzyloxyacetohydroxamic acid 58, exhibits no antibacterial activity at the concentrations tested.

3. Conclusions

In divergent syntheses, phenylethylene glycol derivatives exhibiting various Zn^{2+} binding groups, like e.g. carboxylate, hydrazide, amide, sulfonamide, and thiol moieties, were obtained. The biological evaluation of the synthesized compounds revealed that the replacement of the hydroxamate moiety of compound $\mathbf{3}$ by other Zn^{2+} binding groups is detrimental for the LpxC inhibitory and antibacterial activity of the phenylethylene glycol derivatives. For this reason, the metabolic stability of none of the newly synthesized compounds exhibiting an alternative Zn^{2+}-binding group was investigated. Thus, hydroxamic acid 3, whose hydroxamate moiety was shown by in silico predictions as well as by in vitro experiments to be the major metabolically labile position of the compound, still represents the most potent LpxC inhibitor of the presented phenylethylene glycol derivatives. In consequence, further efforts need to be undertaken to find suitable Zn^{2+}-binding groups that can replace the hydroxamate moiety without causing a loss of LpxC inhibitory and antibacterial activity.

4. Experimental Section

4.1. Chemistry, general

Unless otherwise mentioned, THF was dried with sodium/benzophenone and was freshly distilled before use. Thin layer chromatography (TLC): Silica gel 60 F 254 plates (Merck). Reversed phase thin layer chromatography (RP-TLC): Silica gel 60 RP-18 F_{254} S plates (Merck). Flash chromatography (FC): Silica gel 60, 40-64 $\mu \mathrm{m}$ (MachereyNagel); brackets include: diameter of the column, fraction size, eluent. Automatic flash column chromatography: Isolera ${ }^{\text {TM }}$ One (Biotage ${ }^{\circledR}$); brackets include: eluent, cartridgetype. Melting point: Melting point apparatus SMP 3 (Stuart Scientific), uncorrected. Optical rotation α [deg] was determined with a Polarimeter 341 (Perkin Elmer); path length 1 dm , wavelength 589 nm (sodium D line); the unit of the specific rotation $[\alpha]_{D}^{20}$ [deg $\left.\cdot \mathrm{mL} \cdot \mathrm{dm}^{-1} \cdot \mathrm{~g}^{-1}\right]$ is omitted; the concentration of the sample $\mathrm{c}\left[\mathrm{mg} \cdot \mathrm{mL}^{-1}\right]$ and the solvent used are given in brackets. ${ }^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{13} \mathrm{C}$ NMR (100 MHz): Agilent DD2 400 MHz spectrometer; δ in ppm related to tetramethylsilane. IR: IR Prestige-21 (Shimadzu). APCI/LC-MS: MicrOTOF-QII (Bruker). HPLC methods for the determination of product purity: Method 1: Merck Hitachi Equipment; UV detector: L7400; autosampler: L-7200; pump: L-7100; degasser: L-7614; column: LiChrospher ${ }^{\circledR}$ 60 RP-select $B(5 \mu \mathrm{~m})$; LiChroCART ${ }^{\circledR} 250-4 \mathrm{~mm}$ cartridge; flow rate: $1.00 \mathrm{~mL} / \mathrm{min}$; injection volume: $5.0 \mu \mathrm{~L}$; detection at $\lambda=210 \mathrm{~nm}$ for 30 min ; solvents: A : water with 0.05 \% (V/V) trifluoroacetic acid; B: acetonitrile with $0.05 \%(\mathrm{~V} / \mathrm{V})$ trifluoroacetic acid: gradient elution: (A \%): $0-4 \mathrm{~min}: 90 \%, 4-29 \mathrm{~min}$: gradient from 90% to $0 \%, 29-$ $31 \mathrm{~min}: 0 \%, 31-31.5 \mathrm{~min}$: gradient from 0% to $90 \%, 31.5-40 \mathrm{~min}: 90 \%$. Method 2: Merck Hitachi Equipment; UV detector: L-7400; pump: L-6200A; column: phenomenex Gemini ${ }^{\circledR} 5 \mu \mathrm{~m}$ C6-Phenyl $110 \AA$ Å; LC Column $250 \times 4.6 \mathrm{~mm}$; flow rate: $1.00 \mathrm{~mL} / \mathrm{min}$; injection volume: $5.0 \mu \mathrm{~L}$; detection at $\lambda=254 \mathrm{~nm}$ for 20 min ; solvents: A :
acetonitrile : 10 mM ammonium formate $=10: 90$ with 0.1% formic acid; B : acetonitrile : 10 mM ammonium formate $=90: 10$ with 0.1% formic acid; gradient elution: (A \%): $0-5 \mathrm{~min}: 100 \%, 5-15 \mathrm{~min}:$ gradient from 100% to $0 \%, 15-20 \mathrm{~min}: 0 \%, 20-22$ min: gradient from 0% to $100 \%, 22-30 \mathrm{~min}: 100 \%$.

4.2. Synthetic procedures

4.2.1 Ethyl
 (phenylethynyl)phenyl]ethoxy\}acetate (10)

Under $\quad \mathrm{N}_{2} \quad$ atmosphere, copper(I) iodide $\quad(50 \mathrm{mg}, \quad 0.26 \mathrm{mmol})$, tetrakis(triphenylphosphine)palladium(0) ($200 \mathrm{mg}, 0.18 \mathrm{mmol}$) and phenylacetylene $(0.27 \mathrm{~mL}, 250 \mathrm{mg}, 2.5 \mathrm{mmol})$ were added to a solution of $9(610 \mathrm{mg}, 1.8 \mathrm{mmol})$ in triethylamine $(40 \mathrm{~mL})$. The mixture was heated to reflux and additional phenylacetylene ($0.27 \mathrm{~mL}, 250 \mathrm{mg}, 2.5 \mathrm{mmol}$) was added. After stirring the mixture under reflux conditions for 16 h , the solvent was evaporated and the residue was purified by flash column chromatography $(\varnothing=3 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, cyclohexane/ethyl acetate $=8: 2$, $V=20 \mathrm{~mL}$) to give 10 as yellowish oil ($650 \mathrm{mg}, 1.8 \mathrm{mmol}, 99 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.68$ (cyclohexane/ethyl acetate $=2: 1$); specific rotation: $[\alpha]_{D}^{20}=+91.4\left(3.5 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.26\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.29(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), $3.71\left(\mathrm{dd}, J=10.8 / 4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 3.84(\mathrm{dd}, J=10.8 / 7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCHCH}_{2} \mathrm{O}\right), 3.99\left(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 4.11(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 4.15-4.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.64\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$, $4.67\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.69\left(\mathrm{dd}, J=7.2 / 4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 7.31-$ 7.39 (m, 5H, Harom.), 7.49-7.56 (m, 4H, Harom.); $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}\right): ~ \delta[p p m]=14.3(1 \mathrm{C}, ~$
$\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 55.5\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 61.0\left(1 \mathrm{C}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 66.5\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right)$, 71.3 (1C, $\mathrm{OCHCH}_{2} \mathrm{O}$), 81.4 (1C, $\mathrm{OCHCH}_{2} \mathrm{O}$), 89.1 (1C, $\left.\mathrm{C} \equiv \mathrm{C}\right), 89.9$ (1C, $\mathrm{C} \equiv \mathrm{C}$), 96.7 $\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 123.3\left(1 \mathrm{C}, \mathrm{C}_{\text {arom. }}\right), 123.5$ (1C, $\mathrm{C}_{\text {arom. }}$), 127.4 (2C, $\mathrm{C}_{\text {arom. }}$), 128.49 (1C, Carom.), 128.50 (2C, Carom.), 131.8 (2C, Carom.), 131.9 (2C, Carom.), 138.5 (1C, Carom.), 170.3 (1C, $\mathrm{CO}_{2} \mathrm{Et}$); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2928,1751,1508,1443,1381,1277,1200$, 1111, 1034, 918, 837, 756, 691; HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{5}: 369.1697$, found: 369.1664; HPLC (method 1): $t_{R}=22.0$ min, purity 97.5%.

4.2.2. Methyl (S)-2-\{2-hydroxy-1-[4-(phenylethynyl)phenyl]ethoxy\}acetate (11)

$10(100 \mathrm{mg}, 0.28 \mathrm{mmol})$ was dissolved in HCl -saturated methanol $(5 \mathrm{~mL})$. The reaction mixture was stirred at ambient temperature for 16 h . After addition of a saturated aqueous solution of sodium bicarbonate and water, the mixture was extracted with ethyl acetate $(3 \times)$. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=2 \mathrm{~cm}, \mathrm{~h}=17 \mathrm{~cm}$, cyclohexane/ethyl acetate $=8: 2 \rightarrow 2: 1$, $\mathrm{V}=10 \mathrm{~mL}$) to give 11 as colorless oil ($73 \mathrm{mg}, 0.24 \mathrm{mmol}, 86 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.21$ (cyclohexane/ethyl acetate $=2: 1$); specific rotation: $[\alpha]_{D}^{20}=+175.9\left(3.4 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR: $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=3.63$ (dd, $\left.J=11.8 / 4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 3.72(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$), $3.74\left(\mathrm{dd}, J=11.8 / 7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 4.04(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$), $4.11\left(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.54(\mathrm{dd}, J=7.4 / 4.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCHCH}_{2} \mathrm{OH}$), $7.34-7.40\left(\mathrm{~m}, 5 \mathrm{H}, 2^{\prime}-\mathrm{H}_{4}\right.$-(phenylethynyl)phenyl, $6^{\prime}-\mathrm{H}_{4}$-(phenylethynyl)phenyl, $3^{\prime \prime}-\mathrm{H}_{\text {phenyl }}$, 5"- $\mathrm{H}_{\text {phenyl }}$ 4"- $\mathrm{H}_{\text {phenyl }}$), 7.47-7.55 (m, 4H, 3'- $\mathrm{H}_{4 \text {-(phenylethynyl)phenyl, }} 5^{\prime}-\mathrm{H}_{4-(\text { (phenylethynyl) phenyl }}$ 2"-H ${ }_{\text {phenyl }}$ 6"- $\mathrm{H}_{\text {phenyl }}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $\delta[\mathrm{ppm}]=52.4\left(1 \mathrm{C}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 67.2$ (1C, $\left.\mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 67.4\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 84.7\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 89.8(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 90.4$ (1C, C $=\mathrm{C}$), 124.46 (1C, $\mathrm{C}_{\text {arom. }}$), 124.48 (1C, $\mathrm{C}_{\text {arom. }}$), 128.4 (2C, C-2'4-(phenylethynyl)phenyl, C-

6'4-(phenylethyny)pheny)), 129.5 (1C, C-4"phenyl), 129.6 (2C, C-3"phenyl, C-5"phenyl), 132.5 (2C, Carom.), 132.7 (2C, C arom.), 140.0 (1C, $\mathrm{C}-1$ '4-(phenylethynyl)phenyl), 172.8 (1C, $\mathrm{CO}_{2} \mathrm{CH}_{3}$); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3456,2951,1740,1508,1439,1408,1377,1215,1126,1053,833$, 756, 691; LCMS (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NaO}_{4}: 333.1097$, found: 333.1097; HPLC (method 1$): t_{R}=21.1 \mathrm{~min}$, purity 95.7%.

4.2.3. Ethyl (S)-2-\{2-hydroxy-1-[4-(phenylethynyl)phenyl]ethoxy\}acetate (12)

$10(120 \mathrm{mg}, 0.31 \mathrm{mmol})$ was dissolved in HCl -saturated ethanol $(4 \mathrm{~mL})$. The reaction was stirred at ambient temperature for 16 h . After addition of a saturated aqueous solution of sodium bicarbonate and water the mixture was extracted with ethyl acetate $(3 x)$. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography $(\varnothing=2 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, cyclohexane/ethyl acetate $=8: 2 \rightarrow 2: 1$, $\mathrm{V}=10 \mathrm{~mL}$) to give 12 as yellowish oil ($84 \mathrm{mg}, 0.26 \mathrm{mmol}, 84 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.14$ (cyclohexane/ethyl acetate $=3: 1$); specific rotation: $[\alpha]_{D}^{20}=+156.2\left(2.6 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta[\mathrm{ppm}]=1.29\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.65(\mathrm{dd}, \mathrm{J}=11.8 / 3.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}$), 3.76 (dd, $J=11.8 / 8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}$), $3.94(\mathrm{~d}, \mathrm{~J}=16.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 4.20\left(\mathrm{~d}, \mathrm{~J}=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 4.21-4.28(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $4.52(\mathrm{dd}, \mathrm{J}=8.8 / 3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH} 2 \mathrm{OH}), 7.29-7.39\left(\mathrm{~m}, 5 \mathrm{H}, 2^{\prime}-\mathrm{H}_{4-}\right.$ (phenylethynyl)phenyl, 6'-H ${ }^{\prime}$-(phenylethynyl)phenyl, $3^{"-}-\mathrm{H}_{\text {phenyl }}, 5{ }^{\text {" }}-\mathrm{H}_{\text {phenyl }}, 4$ "- $\mathrm{H}_{\text {phenyl }}$), $7.50-7.56(\mathrm{~m}, 4 \mathrm{H}$, 3'- $\left.\mathrm{H}_{4 \text {-(phenylethynyl)phenyl, }} 5^{\prime}-\mathrm{H}_{4-(\text { phenylethynyl)phenyl, }} 2^{\prime \prime}-\mathrm{H}_{\text {phenyl }}, 6 "-\mathrm{H}_{\text {phenyl }}\right) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta[\mathrm{ppm}]=14.3\left(1 \mathrm{C}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 61.5\left(1 \mathrm{C}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 66.5\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right)$, 67.3 (1C, $\mathrm{OCHCH}_{2} \mathrm{OH}$), 84.6 (1C, $\mathrm{OCHCH}_{2} \mathrm{OH}$), 89.0 (1C, $\mathrm{C} \equiv \mathrm{C}$), 90.0 (1C, $\mathrm{C} \equiv \mathrm{C}$),
 (phenylethynyl)phenyl, C-6'4-(phenylethynyl)phenyl), 128.51 (2C, C-3" ${ }_{\text {phenyl }}$ C-5"phenyl), 128.53 (1C,

C-4"phenyl), 131.8 (2C, C-2"phenyl, C-6"phenyl), 132.0 (2C, C-3'4-(phenylethynyl)phenyl, C$5^{\prime} 4$-(phenylethynyl)phenyl), 137.9 (1C, $\mathrm{C}^{-1}{ }^{\prime} 4$-(phenylethynyl)phenyl), 171.3 (1C, $\mathrm{CO}_{2} \mathrm{Et}$); IR (neat): \tilde{v} $\left[\mathrm{cm}^{-1}\right]=3437,2970,1736,1508,1443,1381,1215,1126,949,837,756,691 ;$ LCMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{4}: 325.1434$, found: 325.1469; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=$ 22.1 min, purity 97.7 \%.

4.2.4. (S)-2-\{2-Hydroxy-1-[4-(phenylethynly)phenyl]ethoxy\}acetic acid (13)

$12(310 \mathrm{mg}, 0.95 \mathrm{mmol})$ was dissolved in THF (3 mL) and a 1 M aqueous solution of $\mathrm{NaOH}(10 \mathrm{~mL})$ was added. The reaction was stirred at ambient temperature for 16 h . Then the mixture was acidified with a 1 M aqueous solution of HCl and extracted with ethyl acetate $(3 \times)$. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo to give 13 as a colorless solid (230 mg , $0.78 \mathrm{mmol}, 82 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.41$ (dichloromethane $/$ methanol $=9: 1$); melting point: $122{ }^{\circ} \mathrm{C}$; specific rotation: $[\alpha]_{D}^{20}=+87.3\left(2.2 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=$ 3.63 (dd, J = 11.8/3.9 Hz, 1H, OCHCH 2 OH), $3.74(\mathrm{dd}, J=11.8 / 7.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCHCH}_{2} \mathrm{OH}\right), 3.99\left(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 4.08(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 4.54\left(\mathrm{dd}, \mathrm{J}=7.5 / 3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 7.30-7.41\left(\mathrm{~m}, 5 \mathrm{H}, 2^{\prime}-\mathrm{H}_{4-}\right.$ (phenylethynyl)phenyl, $\quad 6$ '- $\mathrm{H}_{4 \text {-(phenylethynyl)phenyl }} \quad 3$ "- $\left.\mathrm{H}_{\text {phenyl }}, \quad 5^{\prime \prime}-\mathrm{H}_{\text {phenyl }}, \quad 4 "-\mathrm{H}_{\text {phenyl }}\right)$, 7.45-7.59 (m, 4H, 3'- $\mathrm{H}_{4-(\text { phenylethynyl)phenyl, }} 5^{\prime}-\mathrm{H}_{4 \text {-(phenylethynyl)phenyl, }} \mathbf{2 n}^{2}-\mathrm{H}_{\text {phenyl }}, 6{ }^{6}-\mathrm{H}_{\text {phenyl }}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=67.1\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), \quad 67.4\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{OH}\right)$, 84.7 (1C, $\mathrm{OCHCH}_{2} \mathrm{OH}$), 89.8 ($1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}$), 90.4 (1C, $\mathrm{C} \equiv \mathrm{C}$), 124.47 (1C, $\mathrm{C}_{\text {arom. }}$), 124.49 (1C, Carom.), 128.4 (2C, C-2'4-(phenylethynyl)phenyl, C-6'4-(phenylethynyl)phenyl), 129.5 (1C, C4"phenyl), 129.6 (2C, C-3"phenyl, C-5"phenyl), 132.5 (2C, Carom.), 132.7 (2C, Carom.), 140.0 (1C, C-1'4-(phenylethyny) pheny), 174.2 (1C, $\mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{H}$); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2978$, 2889, 1739, 1597, 1508, 1385, 1242, 1126, 1072, 1053, 953, 833, 752, 687; LCMS
$(\mathrm{m} / \mathrm{z}):\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{4}$: 314.1387, found: 314.1416; HPLC (method 2): $t_{R}=17.0 \mathrm{~min}$, purity 98.0%.

4.2.5. (S)-2-\{2-Hydroxy-1-[4-(phenylethynyl)phenyl]ethoxy\}acetamide (14)

An emulsion of 11 ($55 \mathrm{mg}, 0.18 \mathrm{mmol}$) in ammonia solution (ca. $25 \% \mathrm{NH}_{3}, 4 \mathrm{~mL}$) was stirred at ambient temperature overnight. The formed precipitate was filtered off, washed with water ($3 \times$) and dried in a desiccator for 7 d to give 14 as colorless solid ($40 \mathrm{mg}, 0.14 \mathrm{mmol}, 75 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.34$ (dichloromethane $/$ methanol $=9: 1$); melting point: $139{ }^{\circ} \mathrm{C}$; specific rotation: $[\alpha]_{D}^{20}=+127.1\left(2.9 ; \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR: $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta[p p m]=3.64\left(\mathrm{dd}, J=11.9 / 3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 3.71(\mathrm{dd}, J=11.9 / 8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCHCH}_{2} \mathrm{OH}$), 3.81 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CONH}_{2}$), 3.93 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CONH}_{2}$), $4.51(\mathrm{dd}, \mathrm{J}=8.0 / 3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH} 2 \mathrm{OH}), 7.33-7.41\left(\mathrm{~m}, 5 \mathrm{H}, 2 \mathrm{C}^{\prime}-\mathrm{H}_{4}\right.$ (phenylethynyl)phenyl, $\left.6^{\prime}-\mathrm{H}_{4-(\text { phenylethynyl)phenyl }} 3^{"}-\mathrm{H}_{\text {phenyl }}, 5^{"}-\mathrm{H}_{\text {phenyl }}, 4 "-\mathrm{H}_{\text {phenyl }}\right), 7.48-7.56(\mathrm{~m}, 4 \mathrm{H}$, 3'- $\mathrm{H}_{4 \text {-(phenylethynyl)phenyl, }} 5^{\prime}-\mathrm{H}_{4 \text {-(phenylethynyl)phenyl, }} 2^{2}-\mathrm{H}_{\text {phenyl }}, 6 "-\mathrm{H}_{\text {phenyl }}$); ${ }^{13} \mathrm{C}$ NMR: $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta[\mathrm{ppm}]=67.4\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 69.0\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CONH}_{2}\right), 85.3\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{OH}\right)$, 89.7 (1C, C三C), 90.5 (1C, C三C), 124.5 (1C, Carom.), 124.6 (1C, Carom.), 128.2 (2C, C-2'4-(phenylethynyl)phenyl, C-6'4-(phenylethynyl)phenyl), 129.5 (1C, C-4"phenyl), 129.6 (2C, C-3" ${ }^{\text {phenyl }}$, C-5"phenyl), 132.5 (2C, C-2"phenyl, C-6"phenyl), 132.8 (2C, C-3'4-(phenylethynyl)phenyl, C-5'4(phenylethynyl)phenyl), 139.7 (1C, C-1'4-(phenylethynyl)phenyl), 175.6 (1C, CONH_{2}); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-}\right.$ $\left.{ }^{1}\right]=3348,3194,2978,2913,1686,1655,1597,1504,1412,1331,1238,1107,1076$, 1049, 833, 756, 691; $\operatorname{LCMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{3}: 296.1281$, found: 296.1289; HPLC (method 2$)$: $t_{R}=16.2$ min, purity 97.2 \%.

After heating a solution of hydrazine monohydrate ($98 \%, 0.20 \mathrm{~mL}, 210 \mathrm{mg}, 4.1 \mathrm{mmol}$) in ethanol (6 mL) to reflux for 5 min , a solution of 12 ($170 \mathrm{mg}, 0.54 \mathrm{mmol}$) in ethanol (6 mL) was added and the mixture was heated to reflux for 75 min and then stirred at ambient temperature overnight. After removing the solvent in vacuo, the residue was purified by flash column chromatography (1. $\varnothing=2 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, ethyl acetate/methanol $=100: 0 \rightarrow 10: 1, V=10 \mathrm{~mL}$; $2 . \varnothing=2 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, dichloromethane/ methanol $=98: 2 \rightarrow 95: 5, \mathrm{~V}=10 \mathrm{~mL}$) to give 15 as colorless solid ($61 \mathrm{mg}, 0.20 \mathrm{mmol}, 37 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.23$ (ethyl acetate $/$ methanol $=10: 1$); melting point: $104{ }^{\circ} \mathrm{C}$; specific rotation: $[\alpha]_{D}^{20}=+106.5\left(3.0 ; \mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta[p p m]=3.41-3.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 3.78\left(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CONH}\right), 3.85$ (d, J = $14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CONH}$), 4.20-4.55 (m, 2H, CONHNH2), 4.45 (dd, J = $\left.7.3 / 3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 5.21-5.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 7.32-7.49\left(\mathrm{~m}, 5 \mathrm{H}, 2^{2}-\right.$ $\mathrm{H}_{4 \text {-(phenylethynyl) phenyl }} 6^{\prime}-\mathrm{H}_{4-(\text { phenylethynyl)phenyl }} 3^{\prime \prime}-\mathrm{H}_{\text {phenyl }}, 5$ "-H $\mathrm{H}_{\text {phenyl }}$, 4"- $\mathrm{H}_{\text {phenyl }}$), 7.49-7.63 (m, $4 \mathrm{H}, 3$ '- $\mathrm{H}_{4 \text {-(phenylethynyl)phenyl, }} 5^{\prime}-\mathrm{H}_{4-(\text { phenylethynyl)phenyl, }} 2^{2}-\mathrm{H}_{\text {phenyl }}, 6$ "- $\mathrm{H}_{\text {phenyl }}$), 9.19 (s, 1 H , $\left.\mathrm{CONHNH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta[\mathrm{ppm}]=65.5\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 67.7(1 \mathrm{C}$, $\left.\mathrm{OCH}_{2} \mathrm{CONH}\right), 83.2\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 89.2$ (1C, $\left.\mathrm{C} \equiv \mathrm{C}\right), 89.3(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 121.7$ (1C, C$4^{\prime}{ }_{4 \text {-(phenylethynyl) phenyl), }} 122.2$ (1C, C-1"phenyl), 127.3 (2C, C-2 ${ }_{4}{ }_{\text {-(phenylethynyl)phenyl, }}{ }^{-}-6{ }_{4}{ }_{4}$ (phenylethynyl)phenyl), 128.76 (2C, C-3"phenyl, C-5"phenyl), 128.80 (1C, C-4"phenyl), 131.3 (2C, Carom.), 131.4 (2C, Carom.), 139.5 (1C, C-1'4-(phenylethynyl)phenyl), 168.0 (1C, CONHNH_{2}); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3294,2909,1651,1632,1535,1508,1443,1335,1119,1049,833$, 756, 691; LCMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}$: 311.1390, found: 311.1384; HPLC $(\operatorname{method} 1): t_{R}=17.4 \mathrm{~min}$, purity 95.7%.

4.2.7.

Under N_{2} atmosphere, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDCI) hydrochloride ($65 \mathrm{mg}, 0.34 \mathrm{mmol}$), N-hydroxysuccinimide ($39 \mathrm{mg}, 0.34 \mathrm{mmol}$) and 1,2phenylenediamine ($37 \mathrm{mg}, 0.34 \mathrm{mmol}$) were added to a solution of $13(100 \mathrm{mg}$, 0.34 mmol) in dry dichloromethane (15 mL). The reaction mixture was stirred under N_{2} atmosphere (balloon) at ambient temperature for 16 h . Then water was added and the mixture was extracted with dichloromethane (3x). The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=2 \mathrm{~cm}, \mathrm{~h}=20 \mathrm{~cm}$, dichloromethane/methanol $=100: 0 \rightarrow 9: 1, \mathrm{~V}=20 \mathrm{~mL}$) to give 16 as yellowish solid (38 $\mathrm{mg}, 0.10 \mathrm{mmol}, 29 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.23$ (cyclohexane/ethyl acetate $=1: 2$); melting point: $134{ }^{\circ} \mathrm{C}$; specific rotation: $[\alpha]_{D}^{20}=+115.2\left(2.5 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=$ 3.70 (dd, $J=11.9 / 3.2 \mathrm{~Hz}, \quad 1 \mathrm{H}, \quad \mathrm{OCHCH}_{2} \mathrm{OH}$), 3.76 (dd, $J=11.9 / 8.5 \mathrm{~Hz}, \quad 1 \mathrm{H}$, $\left.\mathrm{OCHCH}_{2} \mathrm{OH}\right), 4.00\left(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CONH}\right), 4.17(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CONH}$), $4.65(\mathrm{dd}, J=8.5 / 3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH} 2 \mathrm{OH}), 6.74(\mathrm{td}, J=7.6 / 1.4 \mathrm{~Hz}, 1 \mathrm{H}$, 5"'-H2-aminophenyl), 6.88 (dd, $J=8.0 / 1.4 \mathrm{~Hz}, \quad 1 \mathrm{H}, \quad 3$ "'- H_{2}-aminophenyl), 7.05 (ddd, $J=8.0 / 7.4 / 1.5 \mathrm{~Hz}, 1 \mathrm{H}, 4$ "'- $\mathrm{H}_{2 \text {-aminophenyl), }} 7.24$ (dd, $J=7.8 / 1.5 \mathrm{~Hz}, 1 \mathrm{H}, 6$ "'- H_{2}-aminophenyl), 7.34-7.40 (m, 3H, 3"-H ${ }_{\text {phenyl }}$ 5"-H phenyl 4"-Hphenyl), 7.42-7.46 (m, 2H, 2'-H4(phenylethynyl)phenyl, 6 '- $\mathrm{H}_{4 \text {-(phenylethynyl) phenyl }}$), 7.49-7.54 (m, 2H, 2"- $\mathrm{H}_{\text {phenyl }}$, 6"- $\mathrm{H}_{\text {phenyl }}$), 7.547.58 (m, 2H, 3'- $\mathrm{H}_{4 \text {-(phenylethynyl)phenyl, }} 5^{\prime}-\mathrm{H}_{4}$-(phenylethynyl)phenyl); ${ }^{13} \mathrm{C} \quad \mathrm{NMR} \quad\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta[\mathrm{ppm}]=67.3\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 69.6\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CONH}\right), 85.7\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{OH}\right)$,
 aminophenyl), 124.2 (1C, $\left.1^{\prime \prime \prime}-C_{2-a m i n o p h e n y l}\right)$, 124.5 (1C, C-1"phenyl), 124.7 (1C, C-4'4(phenylethynyl)phenyl), 127.1 (1C, 6 "'- $\mathrm{C}_{2 \text {-aminophenyl) }} 128.3$ (2C, C-2'4-(phenylethynyl)phenyl, $\mathrm{C}-6^{\prime}{ }_{4}$ (phenylethynyl)phenyl), 128.5 (1C, 4"'- $\mathrm{C}_{2 \text {-aminophenyl }}$), 129.5 (1C, C-4"phenyl), 129.6 (2C, C-3"phenyl, C-5"phenyl), 132.5 (2C, C-2" ${ }^{\text {phenyl }}$ C-6"phenyl), 132.8 (2C, C-3'4-(phenylethynyl)phenyl, C-5'4-(phenylethyny)pheny), 139.6 (1C, C-1'4-(phenylethynyl)phenyl), 143.2 (2"'- C $_{2}$-aminophenyl), 171.4
(1C, CONH); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3472,3383,3310,2924,2866,1663,1616,1531$, 1504, 1458, 1335, 1312, 1269, 1111, 1057, 833, 748, 691; LCMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}$: 387.1703, found: 387.1719; HPLC (method 2): $\mathrm{t}_{\mathrm{R}}=17.4$ min, purity 97.7 \%.

4.2.8. (S)-2-\{2-(Methoxymethoxy)-1-[4-(phenylethynyl)phenyl]ethoxy\}ethan-1-ol

 (17)Under N_{2} atmosphere, a 1.2 M solution of diisobutylaluminium hydride in toluene $(14 \mathrm{~mL}, 17 \mathrm{mmol})$ was added to a solution of $10(2.8 \mathrm{~g}, 7.6 \mathrm{mmol})$ in dry dichloromethane (100 mL). The mixture was stirred at ambient temperature. After 30 min the reaction was terminated by adding a saturated aqueous solution of Rochelle salt $(50 \mathrm{~mL})$. Then diethyl ether (100 mL) was added and the mixture was vigorously stirred until two clear layers appeared. The aqueous layer was extracted with ethyl acetate $(3 \times)$. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=6 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, cyclohexane/ethyl acetate $=8: 2 \rightarrow 100 \%$ ethyl acetate, $\mathrm{V}=50 \mathrm{~mL}$) to give 17 as colorless oil ($1.9 \mathrm{~g}, 5.9 \mathrm{mmol}, 77 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.41$ (cyclohexane/ethyl acetate $=1: 1$); specific rotation: $[\alpha]_{D}^{20}=+56.8\left(3.1 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.51$ (ddd, $J=10.7 / 6.0 / 3.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $3.63\left(\mathrm{ddd}, J=10.7 / 5.4 / 3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$), $3.66(\mathrm{dd}, J=10.9 / 3.7$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 3.71-3.78\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{O}, \mathrm{OCHCH}_{2} \mathrm{O}(1 \mathrm{H})\right), 4.58(\mathrm{dd}, \mathrm{J}=$ $8.0 / 3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), $4.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 7.31-7.37\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.51-$ $7.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=55.5\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 62.0(1 \mathrm{C}$, $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $70.9\left(1 \mathrm{C}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 72.1\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 81.8\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right)$, $89.1(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 89.8(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 96.9\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 123.2\left(1 \mathrm{C}, \mathrm{C}_{\text {arom. }}\right)$, $123.3(1 \mathrm{C}$,

Carom.), 127.0 (2C, Carom.), 128.47 (1C, Carom.), 128.49 (2C, Carom.), 131.8 (2C, Carom.), 131.9 (2C, $\mathrm{C}_{\text {arom. }}$), 139.3 (1C, $\mathrm{C}_{\text {arom. }}$); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3429,2927,2882,1597$, 1508, 1443, 1408, 1343, 1211, 1150, 1107, 1030, 918, 833, 756, 691; HRMS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{4}: 327.1591$, found: 327.1563 ; $\mathrm{HPLC}(\operatorname{method} 1)$: $\mathrm{t}_{\mathrm{R}}=$ 21.4 min, purity 99.3 \%.

4.2.9. (S)-2-\{2-(Methoxymethoxy)-1-[4-(phenylethynyl)phenyl]ethoxy\}ethyl methanesulfonate (18)

Under N_{2} atmosphere, triethylamine ($1.6 \mathrm{~mL}, 1.2 \mathrm{~g}, 12 \mathrm{mmol}$), DMAP (140 mg , 1.2 mmol) and methanesulfonyl chloride ($0.9 \mathrm{~mL}, 1.3 \mathrm{~g}, 12 \mathrm{mmol}$) were added to a solution of 17 ($1.9 \mathrm{~g}, 5.9 \mathrm{mmol}$) in dry dichloromethane (100 mL). The reaction was stirred for 2.5 h at ambient temperature. Then water and a saturated aqueous solution of sodium bicarbonate were added and the mixture was extracted with dichloromethane $(3 \times)$. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was evaporated in vacuo. The residue was purified by flash column chromatography ($\varnothing=6 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, cyclohexane/ethyl acetate $=8: 2 \rightarrow 2: 1$, $\mathrm{V}=50 \mathrm{~mL}$) to give 18 as colorless solid ($1.7 \mathrm{~g}, 4.1 \mathrm{mmol}, 69 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.22$ (cyclohexane/ethyl acetate $=2: 1$); melting point: $59^{\circ} \mathrm{C}$; specific rotation: $[\alpha]_{D}^{20}=+27.4$ (2.4; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=3.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSO}_{2} \mathrm{CH}_{3}\right), 3.28(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), 3.63 (dd, $J=10.9 / 4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), $3.65-3.71(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OS}$) 3.74 (dd, $J=10.9 / 7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), 4.32-4.37 (m, 2H, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OS}$), 4.56 (dd, $J=7.4 / 4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), $4.60(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), $4.62\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 7.32-7.40\left(\mathrm{~m}, 5 \mathrm{H}, 2 \mathrm{D}^{\prime}-\mathrm{H}_{4}\right.$ (phenylethynyl)phenyl, $6^{\prime}-\mathrm{H}_{4}$-(phenylethynyl)phenyl, $\left.3^{\prime \prime}-\mathrm{H}_{\text {phenyl }}, 5 "-\mathrm{H}_{\text {phenyl }}, 4 "-\mathrm{H}_{\text {phenyl }}\right), 7.50-7.57(\mathrm{~m}, 4 \mathrm{H}$, $\left.3^{\prime}-\mathrm{H}_{4-(\text { (phenylethynyl) phenyl }}, 5^{\prime}-\mathrm{H}_{4 \text {-(phenylethynyl)phenyl }}, 2 "-\mathrm{H}_{\text {phenyl }}, 6 "-\mathrm{H}_{\text {phenyl }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$:
$\delta[\mathrm{ppm}]=38.1\left(1 \mathrm{C}, \mathrm{OSO}_{2} \mathrm{CH}_{3}\right), 55.6\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 67.7\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OS}\right), 70.2$ (1C, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OS}$), $72.0\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 82.3\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 89.5(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 90.1$ (1C, $\mathrm{C} \equiv \mathrm{C}), 97.2\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 123.6\left(1 \mathrm{C}, \mathrm{C}_{\text {arom. }}\right), 123.7\left(1 \mathrm{C}, \mathrm{C}_{\text {arom. }}\right), 127.7(2 \mathrm{C}, \mathrm{C}-$ 2'4-(phenylethynyl)phenyl, C-6'4-(phenylethynyl)phenyl), 128.98 (1C, C-4"phenyl), 128.99 (2C, C-3" ${ }^{\text {phenyl }}$, C-5"phenyl), 132.1 (2C, Carom.), 132.2 (2C, Carom.), 139.6 (1C, C-1'4-(phenylethynyl)phenyl); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2932,1508,1443,1350,1173,1107,1034,1018,968,914,833,799$, 756, 691; LCMS (m/z): [M+H] ${ }^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{6} \mathrm{~S}: 405.1366$, found: 405.1365; HPLC $($ method 1$): t_{R}=22.9 \mathrm{~min}$, purity 99.7%.

4.2.10. (S)-S-\{2-[2-(Methoxymethoxy)-1-(4-[phenylethynyl]phenyl)ethoxy]ethyl\} ethanethioate (19)

Triethylamine ($40 \mu \mathrm{~L}, 26 \mathrm{mg}, 0.26 \mathrm{mmol}$) was added to a solution of 18 (97 mg , $0.24 \mathrm{mmol})$ in DMF (10 mL). Then thioacetic acid ($20 \mu \mathrm{~L}, 19 \mathrm{mg}, 0.25 \mathrm{mmol}$) was added dropwise to the mixture. The reaction was stirred at ambient temperature for 16 h . After the addition of water, the mixture was extracted with ethyl acetate ($3 \times$). The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography $(\varnothing=2 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, cyclohexane/ ethyl acetate $=10: 1 \rightarrow 8: 2, \mathrm{~V}=10 \mathrm{~mL}$) to give 19 as reddish oil ($61 \mathrm{mg}, 0.16 \mathrm{mmol}, 67 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.38$ (cyclohexane/ethyl acetate $=8: 2$); specific rotation: $[\alpha]_{D}^{20}=+81.7\left(2.6 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta[\mathrm{ppm}]=2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCOCH}_{3}\right), 3.01-3.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 3.27(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), $3.44-3.57\left(\mathrm{~m}, 2 \mathrm{H}, \quad \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 3.60(\mathrm{dd}, \mathrm{J}=10.8 / 4.3 \mathrm{~Hz}, \quad 1 \mathrm{H}$, $\mathrm{OCHCH}_{2} \mathrm{O}$), 3.71 (dd, $J=10.8 / 7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), 4.51 (dd, $J=7.2 / 4.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCHCH}_{2} \mathrm{O}\right), 4.59\left(\mathrm{~d}, \quad J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \quad \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.62(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 7.32-7.40\left(\mathrm{~m}, 5 \mathrm{H}, 2\right.$ 2- $\mathrm{H}_{4 \text {-(phenylethynyl)phenyl, }} 6^{\prime}-\mathrm{H}_{4 \text {-(phenylethynyl)phenyl }} 3^{3}-\mathrm{H}_{\text {phenyl }}$,

5"-H ${ }_{\text {phenyl }}$ 4"-Hphenyl), 7.50-7.57 (m, 4H, 3'-H4-(phenylethynyl)phenyl, 5'-H 4 -(phenylethyny)phenyl, 2"$\mathrm{H}_{\text {phenyl, }} 6$ "-- $\mathrm{H}_{\text {phenyl }}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=29.6\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 30.9(1 \mathrm{C}$, $\left.\mathrm{SCOCH}_{3}\right), 55.6\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 68.5\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 71.9\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 81.9$ $\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 89.6(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 89.9(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 97.2\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 123.3(1 \mathrm{C}$, Carom.), 123.7 (1C, Carom.), 127.7 (2C, C-2'4-(phenylethynyl)phenyl, C-6'4-(phenylethynyl)phenyl), 128.9 (1C, C-4"phenyl), 129.0 (2C, C-3"phenyl, C-5"phenyl), 132.1 (4C, C-3'4-(phenylethyny)phenyl, C-5'4(phenylethynyl)phenyl, C-2"phenyl, C-6"phenyl), 140.3 (1C, C-1'4-(phenylethynyl)phenyl), 195.7 (1C, SCOCH_{3}); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2928,1690,1508,1443,1354,1103,1034,953,918$, 837, 756, 691, 625; LCMS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{~S}: 385.1468$, found: 385.1456; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=24.7$ min, purity 98.1%.

4.2.11. (S)-2-(2-Mercaptoethoxy)-2-[4-(phenylethynyl)phenyl]ethan-1-ol (20)

19 ($58 \mathrm{mg}, 0.15 \mathrm{mmol}$) was dissolved in HCl -saturated methanol (7.5 mL). The reaction was stirred at ambient temperature for 16 h . After addition of a saturated aqueous solution of sodium bicarbonate and water the mixture was extracted with ethyl acetate $(3 \times)$. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by automatic flash column chromatography (100\% $\mathrm{H}_{2} 0 \rightarrow$ 100\% ACN, Biotage® SNAP KP-C18-HS 12 g , $\mathrm{V}=20 \mathrm{~mL}$) to give 20 as colorless oil ($25 \mathrm{mg}, 0.08 \mathrm{mmol}, 53 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.21$ (cyclohexane/ethyl acetate $=3: 1$); specific rotation: $[\alpha]_{D}^{20}=+99.0\left(1.7 ; \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=2.64-2.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{SH}\right), 3.53(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{SH}$), $3.59\left(\mathrm{dd}, \mathrm{J}=11.7 / 4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 3.67(\mathrm{dd}, \mathrm{J}=11.7 / 7.5 \mathrm{~Hz}$, 1H, $\mathrm{OCHCH}_{2} \mathrm{O}$), 4.44 (dd, $J=7.5 / 4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), 7.34-7.41 (m, 5H, 2'-H4-
 3'- H_{4}-(phenylethynyl)phenyl, $\quad 5^{\prime}-\mathrm{H}_{4 \text {-(phenylethynyl)phenyl, }} \quad 2$ "- $\mathrm{H}_{\text {phenyl }}, \quad 6$ "- $\mathrm{H}_{\text {phenyl }}$); $\quad{ }^{13} \mathrm{C} \quad$ NMR
$\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=24.9\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{SH}\right), 67.6\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 72.4(1 \mathrm{C}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{SH}$), $84.4\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 89.9(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 90.2(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 97.2(1 \mathrm{C}$, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), 124.2 (1C, $\mathrm{C}_{\text {arom. }}$), 124.6 (1C, $\mathrm{C}_{\text {arom. }}$), 128.3 (2C, C-2'4-(phenylethynyl)phenyl, C-6'4-(phenylethyny) phenyl), 129.46 (1C, C-4"phenyl), 129.54 (2C, C-3"phenyl, C-5"phenyl), 132.5 (2C, Carom.), 132.6 (2C, Carom.), 141.2 (1C, C-1'4-(phenylethynyl)pheny); IR (neat): \tilde{v} [cm^{-} $\left.{ }^{1}\right]=3402,2866,2558,1682,1504,1443,1393,1339,1177,1096,1034,833,752$, 691; LCMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{~S}: 299.1100$, found: 299.1131; HPLC $($ method 1$): t_{R}=22.4 \min$, purity 95.8%.

4.2.12.

(S)-2-\{2-Hydroxy-1-[4-(phenylethynyl)phenyl]ethoxy\}ethyl methanesulfonate (21)
$18(190 \mathrm{mg}, 0.46 \mathrm{mmol})$ was dissolved in HCl -saturated methanol $(5 \mathrm{~mL})$. The reaction was stirred at ambient temperature for 16 h . After addition of a saturated aqueous solution of sodium bicarbonate and water, the mixture was extracted with ethyl acetate $(3 x)$. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography $(\varnothing=2 \mathrm{~cm}, \quad \mathrm{~h}=15 \mathrm{~cm}, \quad$ cyclohexane/ethyl acetate $=3: 1 \rightarrow 1: 2$, $\mathrm{V}=10 \mathrm{~mL}$) to give 21 as colorless oil ($150 \mathrm{mg}, 0.40 \mathrm{mmol}, 87 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.21$ (cyclohexane/ethyl acetate $=1: 1$); specific rotation: $[\alpha]_{D}^{20}=+91.2\left(5.5 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=2.40-2.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHCH} 2 \mathrm{OH}), 3.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OSO}_{2} \mathrm{CH}_{3}\right)$, 3.59-3.74 (m, 4H, OCH $\mathrm{OH}_{2} \mathrm{OS}, \mathrm{OCHCH}_{2} \mathrm{OH}$), 4.34-4.41 (m, 2H, OCH $\mathrm{CH}_{2} \mathrm{OS}$), 4.49 (dd, $J=8.2 / 3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), 7.32-7.35 (m, 2H, 2'-H ${ }_{4}$-(phenylethynyl)phenyl, 6'- H_{4-} (phenylethynyl)phenyl), 7.35-7.39 (m, 3H, 3"-H phenyl, 5"-H ${ }_{\text {phenyl }}$ 4"-H ${ }_{\text {phenyl }}$), 7.52-7.56 (m, 4H, 3'- $\left.\mathrm{H}_{4 \text {-(phenylethynyl)phenyl, }} 5^{\prime}-\mathrm{H}_{4 \text {-(phenylethynyl)phenyl, }} 2^{"-}-\mathrm{H}_{\text {phenyl }}, 6 "-\mathrm{H}_{\text {phenyl }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta[\mathrm{ppm}]=38.2\left(1 \mathrm{C}, \mathrm{OSO}_{2} \mathrm{CH}_{3}\right), 67.56\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 67.63\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OS}\right)$,
69.7 (1C, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OS}$), 84.2 (1C, $\left.\mathrm{OCHCH}_{2} \mathrm{O}\right), 89.4$ (1C, $\left.\mathrm{C} \equiv \mathrm{C}\right), 90.1$ (1C, $\left.\mathrm{C} \equiv \mathrm{C}\right), 123.6$ (1C, C-1"pheny)), 123.7 (1C, C-4'4-(phenylethynyl)pheny), 127.6 (2C, C-2'4-(phenylethyny)phenyl, C-6'4-(phenylethynyl)phenyl), 129.0 (3C, C-3" phenyl, C-5"phenyl, C-4" ${ }_{\text {phenyl }}$), 132.1 (2C, C-2" ${ }_{\text {phenyl }}$, C6 "phenyl), 132.3 (2C, C-3'4-(phenylethynyl)phenyl, C-5'4-(phenylethynyl)phenyl), 139.0 (1C, C-1'4(phenylethynyl)phenyl); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3522,2924,1508,1443,1346,1173,1115,1015$, 972, 918, 833, 802, 756; LCMS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{~S}: 361.1104$, found: 361.1126; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=21.3 \mathrm{~min}$, purity 99.7%.

4.2.13.

(S)-S-(2-\{2-Hydroxy-1-[4-(phenylethynyl)phenyl]ethoxy\}ethyl)

ethanethioate (22)

Triethylamine $(90 \mu \mathrm{~L}, 65 \mathrm{mg}, 0.64 \mathrm{mmol})$ and thioacetic acid $(46 \mu \mathrm{~L}, 49 \mathrm{mg}$, $0.64 \mathrm{mmol})$ were added to a solution of $21(120 \mathrm{mg}, 0.32 \mathrm{mmol})$ in DMF (10 mL). The reaction mixture was stirred at ambient temperature overnight. Then water was added and the mixture was extracted with ethyl acetate (3x). The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=2 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, cyclohexane/ethyl acetate $=8: 2, \mathrm{~V}=10 \mathrm{~mL}$) to give 22 as reddish oil (78 mg , $0.23 \mathrm{mmol}, 72 \%$ yield). $R_{f}=0.33$ (cyclohexane/ethyl acetate $=3: 1$); specific rotation: $[\alpha]_{D}^{20}=+109.5\left(9.0 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCOCH}_{3}\right), 3.05-$ 3.16 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~S}$), 3.46-3.66 (m, 4H, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~S}, \mathrm{OCHCH}_{2} \mathrm{O}$), 4.44 (dd, $J=7.7 / 4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), 7.30-7.40 (m, 5H, $\mathrm{H}_{\text {arom. }}$), $7.50-7.57$ (m, 4H, $\mathrm{H}_{\text {arom. }}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=29.7\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 31.0\left(1 \mathrm{C}, \mathrm{SCOCH}_{3}\right), 67.5(1 \mathrm{C}$, $\left.\mathrm{OCHCH}_{2} \mathrm{O}\right), 68.4\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 83.6\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 89.5(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 90.0(1 \mathrm{C}$, C三C), 123.5 (1C, Carom.), 123.7 (1C, Carom.), 127.5 (2C, Carom.), 128.96 (1C, Carom.), 128.98 (2C, Carom.), 132.1 (2C, Carom.), 132.2 (2C, Carom.), 139.5 (1C, Carom.), 195.8 (1C,
SCOCH_{3}); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3429,2866,1686,1508,1393,1350,1099,1042,953$, 833, 756, 691, 625; LCMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~S}: 341.1206$, found: 341.1218; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=22.7 \mathrm{~min}$, purity 97.2%.

4.2.14.

(S)-2-(2-\{2-(Methoxymethoxy)-1-[4-

(phenylethynyl)phenyl]ethoxy\}ethyl)isoindoline-1,3-dione (23)

Potassium phthalimide ($840 \mathrm{mg}, 4.5 \mathrm{mmol}$) was added to a solution of $18(1.7 \mathrm{~g}$, 4.1 mmol) in DMF (55 mL). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 3 h . After cooling the reaction mixture to ambient temperature, water was added and the mixture was extracted with ethyl acetate (3x). The combined organic layers were dried over sodium sulfate, filtered, and the solvent was evaporated in vacuo. The residue was purified by flash column chromatography ($\varnothing=6 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, cyclohexane/ethyl acetate $=8: 2$ $\rightarrow 2: 1, \mathrm{~V}=50 \mathrm{~mL}$) to give 23 as colorless oil ($1.6 \mathrm{~g}, 3.4 \mathrm{mmol}, 84 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.26$ (cyclohexane/ethyl acetate $=3: 1$); specific rotation: $[\alpha]_{D}^{20}=+7.6\left(1.6 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=3.18\left(\mathrm{~s}, 3 \mathrm{H}, \quad \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.53(\mathrm{dd}, \quad J=10.8 / 4.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCHCH}_{2} \mathrm{O}$), 3.62-3.70 (m, 3H, $\mathrm{OCHCH}_{2} \mathrm{O}(1 \mathrm{H}), \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $3.81(\mathrm{dt}, \mathrm{J}=14.1 / 5.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.90 (ddd, $J=14.1 / 7.0 / 5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4.45-4.49 (m, 2H, $\left.\mathrm{OCHCH}_{2} \mathrm{O}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}(1 \mathrm{H})\right), 4.50\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 7.22-7.26(\mathrm{~m}, 2 \mathrm{H}$, 2'- $\mathrm{H}_{4 \text {-(phenylethynyl)phenyl }} 6^{\prime}-\mathrm{H}_{4-(\text { phenylethynyl)phenyl) }}$, $7.33-7.41$ (m, 5H, C-3'4-(phenylethynyl)phenyl, C-

 7"'-H ${ }_{\text {isoindoline }}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=38.3\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 55.4$ (1C, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), $66.5\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, 71.7 (1C, $\mathrm{OCHCH}_{2} \mathrm{O}$), 81.9 (1C, $\mathrm{OCHCH}_{2} \mathrm{O}$), 89.6 (1C, $C \equiv \mathrm{C}), 89.9$ (1C, $C \equiv \mathrm{C}$), 97.1 (1C, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), 123.3 (1C, $\mathrm{C}^{-4}{ }_{4}{ }_{4}$ (phenylethynyl)phenyl), 123.6 (2C, C-4"'isoindoline, C-7"'isoindoline), 123.7 (1C, C-1"phenyl), 127.6
(2C, C-2'4-(phenylethyny))phenyl, C-6'4-(phenylethynyl)pheny), 128.9 (1C, C-4"phenyl), 129.0 (2C, C3"phenyl, C-5"phenyl), 132.0 (2C, C-3'4-(phenylethynyl)phenyl, C-5'4-(phenylethynyl)phenyl), 132.1 (2C, C-2" phenyl, C-6"phenyl), 132.7 (2C, C-3a"'isoindoline, C-7a"'isoindoline), 134.5 (2C, C-5'isoindoline, C-6'isoindoline), 140.2 (1C, C-1'4-(phenylethynyl)phenyl), 168.6 (2C, C-1"'isoindoline, C-3"'isoindoline); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2882,1775,1709,1393,1107,1030,918,837,756,718,691$; LCMS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{NO}_{5}: 456.1805$, found: 456.1784; HPLC (method $1): t_{R}=24.8 \mathrm{~min}$, purity 98.8%.

4.2.15. (S)-2-\{2-(Methoxymethoxy)-1-[4-(phenylethynyl)phenyl]ethoxy\}ethan-1amine (24)

An aqueous solution of methylamine ($40 \% \mathrm{wt} ., 0.89 \mathrm{~mL}, 10 \mathrm{mmol}$) was added to a solution of $23(1.6 \mathrm{~g}, 3.4 \mathrm{mmol})$ in absolute ethanol $(60 \mathrm{~mL})$. The mixture was heated to $70^{\circ} \mathrm{C}$ for 16 h . Then water (60 mL) was added, the mixture was acidified ($\mathrm{pH}<2$) with a 1 N aqueous solution of sulfuric acid and extracted with ethyl acetate. Afterwards, the water layer was basified ($\mathrm{pH}>10$) with a 0.5 M aqueous solution of sodium hydroxide and extracted with ethyl acetate $(3 x)$. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=4 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, dichloromethane/methanol $=20: 1 \rightarrow 5: 1, \mathrm{~V}=30 \mathrm{~mL}$) to give 24 as yellowish solid $(910 \mathrm{mg}, 2.8 \mathrm{mmol}, 82 \%$ yield $) . \mathrm{R}_{\mathrm{f}}($ RP-TLC $)=0.33$ (acetonitrile/water $=2: 1$); melting point: $97{ }^{\circ} \mathrm{C}$; specific rotation: $[\alpha]_{D}^{20}=+62.1\left(3.3 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=$ 3.06-3.14 (m, 1H, $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $3.14-3.21$ (m, 1H, H2 $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.30 (s, 3 H , $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), 3.59-3.66 (m, 2H, $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.68 (dd, $J=10.8 / 4.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCHCH}_{2} \mathrm{O}\right), 3.79\left(\mathrm{dd}, J=10.8 / 7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 4.63(\mathrm{dd}, J=7.4 / 4.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCHCH}_{2} \mathrm{O}\right), 4.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 7.34-7.45\left(\mathrm{~m}, 5 \mathrm{H}, 2\right.$ 2-H4-(phenylethynyl)phenyl, 6'- H_{4-}
(phenylethynyl)phenyl, $3^{3 "-} \mathrm{H}_{\text {phenyl }}$, $5^{\prime-}-\mathrm{H}_{\text {phenyl, }} 4$ "-H $\mathrm{H}_{\text {phenyl }}$), 7.48-7.57 (m, 4H, C-3'4-(phenylethynyl)phenyl, C-5'4-(phenylethynyl)phenyl, 2 "- $\mathrm{H}_{\text {phenyl }} 6$ "- $\mathrm{H}_{\text {phenyl }}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=40.8$ (1C, $\left.\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 55.7\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 66.4\left(1 \mathrm{C}, \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 72.6$ (1C, $\left.\mathrm{OCHCH}_{2} \mathrm{O}\right), 82.8\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 89.7(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 90.6(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 97.8(1 \mathrm{C}$, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), 124.4 (1C, C-1"phenyl), 124.6 (1C, C-4'4-(phenylethynyl)phenyl), 128.4 (2C, C-2'4(phenylethynyl)phenyl, C-6'4-(phenylethynyl)phenyl), 129.6 (3C, C-3"phenyl, C-5"phenyl, C-4"phenyl), 132.5 (2C, C-2"phenyl, C-6"phenyl), 132.8 (2C, C-3'4-(phenylethynyl)phenyl, C-5'4-(phenylethynyl)pheny1), 140.1 (1C, C-1'4-(phenylethynyl)phenyl); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2874,1597,1508,1485,1150$, 1099, 1022, 914, 829, 752, 687; LCMS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{3}: 326.1751$, found: 326.1779; HPLC (method 2): $\mathrm{t}_{\mathrm{R}}=13.7 \mathrm{~min}$, purity 97.6%.

4.2.16. (S)-2-(2-Aminoethoxy)-2-[4-(phenylethynyl)phenyl]ethan-1-ol (25)

24 ($560 \mathrm{mg}, 1.7 \mathrm{mmol}$) was dissolved in a mixture of $\mathrm{HCl}-$ saturated ethanol (6 mL) and pure ethanol (9 mL). The reaction mixture was stirred at ambient temperature for 16 h . After addition of a saturated aqueous solution of sodium bicarbonate and water, the mixture was extracted with ethyl acetate $(3 \times)$. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=3 \mathrm{~cm}, \mathrm{~h}=9 \mathrm{~cm}$, dichloromethane/methanol/triethylamine $=9: 1: 0 \rightarrow 5: 1: 0.05, \mathrm{~V}=5 \mathrm{~mL}$) to give 25 as yellowish solid (200 mg, $0.70 \mathrm{mmol}, 41 \%$ yield). $\quad R_{f} \quad(R P-T L C)=0.20$ (acetonitrile/water $=1: 1$); melting point: $72^{\circ} \mathrm{C}$; specific rotation: : $[\alpha]_{D}^{20}=+66.9$ (1.5; $\mathrm{CH}_{3} \mathrm{OH}$); ${ }^{1} \mathrm{H}$ NMR: ($\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=2.80$ (ddd, $J=13.2 / 6.9 / 4.0 \mathrm{~Hz}, \quad 1 \mathrm{H}$, $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 2.85 (ddd, $J=13.2 / 6.0 / 3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.41 (ddd, $J=9.8 / 6.9 / 3.9 \mathrm{~Hz}, \quad 1 \mathrm{H}, \quad \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $\quad 3.48 \quad$ (ddd, $J=9.8 / 6.0 / 4.0 \mathrm{~Hz}, \quad 1 \mathrm{H}$, $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $3.59\left(\mathrm{dd}, J=11.8 / 3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 3.67(\mathrm{dd}, J=11.8 / 7.9 \mathrm{~Hz}$,
$1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}$), 4.42 (dd, $\left.J=7.9 / 3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 7.33-7.39\left(\mathrm{~m}, 5 \mathrm{H}, 2^{\prime}-\right.$ H4-(phenylethynyl)phenyl, 6'-H ${ }^{4}$-(phenylethynyl)phenyl, 3 "- $\mathrm{H}_{\text {phenyl, }}$ 5"-H $\mathrm{H}_{\text {phenyl }}$ 4"-H ${ }_{\text {phenyl }}$), 7.48 - 7.54 (m, 4H, 2"- $\mathrm{H}_{\text {phenyl }}, 6{ }^{\prime \prime}-\mathrm{H}_{\text {phenyl }}, 3^{\prime}-\mathrm{H}_{4-(\text { phenylethynyl)phenyl, }} 5^{\prime}-\mathrm{H}_{4-\text { (phenylethynyl)phenyl }}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=42.3\left(1 \mathrm{C}, \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 67.7\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{OH}\right)$, 71.4 (1C, $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 84.6 (1C, $\mathrm{OCHCH}_{2} \mathrm{OH}$), $89.9(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 90.3(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 124.2$ (1C, Carom.), 124.5 (1C, $\mathrm{C}_{\text {arom. }}$), 128.2 (2C, C-2'4-(phenylethynyl)phenyl, $\mathrm{C}^{\prime} 6^{\prime} 4$-(phenylethynyl)phenyl), 129.5 (1C, C-4"phenyl), 129.6 (2C, C-3"phenyl, C-5"phenyl), 132.5 (2C, Carom.), 132.6 (2C, $\mathrm{C}_{\text {arom. }}$), 141.1 (1C, $\mathrm{C}^{-1}{ }^{\prime} 4$-(phenylethynyl)pheny); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3453,3352,3287,3040$, 2913, 2851, 1605, 1504, 1443, 1335, 1192, 1177, 1099, 1049, 1015, 964, 910, 887, 860, 829, 752, 687; LC-MS $(m / z):[M+H]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2}$: 282.1489 , found: 282.1514; HPLC (method 1): $t_{R}=17.2$ min, purity 97.4%.

4.2.17. (S)-N-(2-\{2-(Methoxymethoxy)-1-[4-(phenylethynyl)phenyl]ethoxy\}ethyl)-1H-pyrrole-2-carboxamide (26)

Under N_{2} atmosphere, triethylamine ($0.13 \mathrm{~mL}, 93 \mathrm{mg}, 0.92 \mathrm{mmol}$) and $\mathrm{EDCl} \cdot \mathrm{HCl}$ ($88 \mathrm{mg}, 0.46 \mathrm{mmol}$) were added to a suspension of pyrrole-2-carboxylic acid (26 mg , $0.23 \mathrm{mmol})$ and $\mathrm{HOBt}(47 \mathrm{mg}, 0.35 \mathrm{mmol})$ in dry dichloromethane $(2 \mathrm{~mL})$. After stirring the reaction mixture for 1 h at ambient temperature, a solution of $24(150 \mathrm{mg}$, 0.46 mmol) in dry dichloromethane (1 mL) was added at $0^{\circ} \mathrm{C}$ (ice bath). Afterwards, the ice bath was removed and the mixture was stirred at ambient temperature overnight. Then a saturated aqueous solution of ammonium chloride and water were added and the mixture was extracted with dichloromethane $(3 x)$. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=2 \mathrm{~cm}$, $h=17 \mathrm{~cm}$, cyclohexane/ethyl acetate $=1: 2, \mathrm{~V}=10 \mathrm{~mL}$) to give 26 as colorless oil
($85 \mathrm{mg}, 0.20 \mathrm{mmol}, 87 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.28$ (cyclohexane/ethyl acetate $=1: 2$); specific rotation: $[\alpha]_{D}^{20}=+35.3\left(2.6 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=3.33(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), $3.50-3.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}(1 \mathrm{H}), \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}(1 \mathrm{H})\right), 3.62-3.72(\mathrm{~m}$, $\left.3 \mathrm{H}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}(1 \mathrm{H}), \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}(1 \mathrm{H}), \mathrm{OCHCH}_{2} \mathrm{O}(1 \mathrm{H})\right), 3.75$ (dd, $J=10.9 / 8.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), 4.55 (dd, $J=8.0 / 3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), 4.68 (d, $J=6.9 \mathrm{~Hz} 1 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), $4.70\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 6.23-6.27\left(\mathrm{~m}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}_{\text {pyrrole }}\right)$, 6.536.66 (m, 2H, 3'-Hpyrrole, CONH), 6.91-6.94 (m, 1H, 5'-H pyrrole), 7.29-7.39 (m, 5H, 2'-H ${ }_{4-}$ (phenylethynyl)phenyl, 6'- $\mathrm{H}_{4-(\text { phenylethynyl)phenyl, }} 3^{"}-\mathrm{H}_{\text {phenyl }}, 5{ }^{\text {" }}$ - $\left.\mathrm{H}_{\text {phenyl }}, 4 "-\mathrm{H}_{\text {phenyl }}\right), 7.48-7.56(\mathrm{~m}, 4 \mathrm{H}$, 3'-H4-(phenylethynyl)phenyl, 5'-H4-(phenylethynyl)phenyl, 2"-H ${ }_{\text {phenyl }}$ 6"-H ${ }_{\text {phenyl }}$), 9.53 (s br, 1H, 1'$\left.\mathrm{H}_{\text {pyrrole }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=39.3\left(1 \mathrm{C}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 55.5\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$, $68.4\left(1 \mathrm{C}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 72.0\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 81.8\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 89.1(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C})$, 89.9 (1C, $\mathrm{C} \equiv \mathrm{C}$), 96.9 (1C, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), 109.1 (1C, 3'- $\mathrm{C}_{\text {pyrrole }}$), 110.0 (1C, 4'- $\mathrm{C}_{\text {pyrrole }}$), 121.5 (1C, 5'- C pyrrole), 123.3 (1C, Carom.), 123.4 (1C, Carom.), 126.1 (1C, 2'- C $_{\text {pyrrole }}$), 126.9 (2C, C-2'4-(phenylethynyl)phenyl, \quad C-6' ${ }_{4}$-(phenylethynyl)phenyl), 128.49 (1C, C-4"phenyl), 128.50 (2C, C-3"phenyl, C-5"phenyl), 131.8 (2C, C-2"phenyl, C-6"phenyl), 132.0 (2C, C-3'4(phenylethynyl)phenyl, $\mathrm{C}-5^{\prime} 4$-(phenylethynyl)phenyl), 139.0 (1C, C-1'4-(phenylethynyl)phenyl), 161.2 (1C, CONH); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3248,2928,1632,1732,1558,1512,1408,1312,1107$, 1034, 833, 752, 691; LCMS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}$: 419.1965, found: 419.2006; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=22.4 \min$, purity 99.3%.

4.2.18. (S)-N-(2-\{2-Hydroxy-1-[4-(phenylethynyl)phenyl]ethoxy\}ethyl)-1H-pyrrole-2-carboxamide (27)

p-Toluenesulfonic acid monohydrate ($16 \mathrm{mg}, 0.09 \mathrm{mmol}$) was added to a solution of 26 ($71 \mathrm{mg}, 0.17 \mathrm{mmol}$) in methanol (2 mL) and the mixture was stirred at ambient temperature overnight. Then HCl -saturated methanol (0.5 mL) was added and the
reaction mixture was stirred until TLC control indicated completion of the reaction. Then a saturated aqueous solution of sodium bicarbonate and water were added and the mixture was extracted with ethyl acetate ($3 \times$). The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=2 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, ethyl acetate $=100 \%$, $\mathrm{V}=10 \mathrm{~mL}$) to give 27 as colorless solid ($52 \mathrm{mg}, 0.14 \mathrm{mmol}, 82 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.25$ (ethyl acetate); melting point: $124{ }^{\circ} \mathrm{C}$; specific rotation: $[\alpha]_{D}^{20}=+48.9\left(3.0 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR: $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=3.48-3.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}(1 \mathrm{H}), \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}(1 \mathrm{H})\right)$, 3.60-3.78 (m, 4H, $\mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}(1 \mathrm{H}), \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}(1 \mathrm{H}), \mathrm{OCHCH}_{2} \mathrm{OH}$), 4.48 (dd, $J=8.2 / 3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}$), 6.21-6.27 (m, 1H, 4"'-H pyrrole), 6.55-6.72 (m, 2H, CONH, 3"'-H ${ }_{\text {pyrrole }}$), 6.90-6.96 (m, 1H, 5"'-Hpyrrole), 7.25-7.31 (m, 2H, 2'-H4(phenylethynyl)phenyl, 6'- $\mathrm{H}_{4 \text {-(phenylethynyl)phenyl }}$, 7.31-7.40 (m, 3H, 3"- $\mathrm{H}_{\text {phenyl }}$ 5"- $\mathrm{H}_{\text {phenyl, }} 4$ "-
 (phenylethynyl)phenyl), 9.70 (s, 1H, 1"'- $\mathrm{H}_{\text {pyrrole }}$); ${ }^{13} \mathrm{C} \operatorname{NMR~(~} \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=39.5$ (1C, $\mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 67.3 (1C, $\mathrm{OCHCH}_{2} \mathrm{OH}$), 68.6 (1C, $\mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 83.5 (1C, $\mathrm{OCHCH}_{2} \mathrm{OH}$), 89.0 (1C, $\mathrm{C} \equiv \mathrm{C}$), 90.0 (1C, $\mathrm{C} \equiv \mathrm{C}$), 109.7 (1C, 3"'- $\mathrm{C}_{\text {pyrrole }}$), 110.1 (1C, 4"'-C pyrrole), 121.9 (1C, 5"'-C pyrrole), 123.3 (1C, C-1"phenyl), 123.5 (1C, C-4'4(phenylethynyl)phenyl), 125.8 (1C, 2 "'- $C_{\text {pyrrole) }}$), 126.9 (2C, C-2'4-(phenylethynyl)phenyl, C-6'4(phenylethynyl)phenyl), 128.5 (3C, C-3"phenyl, C-5"phenyl, C-4"phenyl), 131.8 (2C, C-2"phenyl, C-6"pheny), 132.0 (2C, C-3'4-(phenylethynyl)phenyl, C-5'4-(phenylethynyl)phenyl), 138.6 (1C, C-1'4(phenylethynyl)phenyl), 161.6 (1C, CONH); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3657,3291,2978,2886,1620$, 1562, 1516, 1393, 1319, 1250, 1099, 1069, 953, 833, 752, 691; LCMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}: 375.1703$, found: 375.1697 ; HPLC (method 2): $\mathrm{t}_{\mathrm{R}}=17.2 \mathrm{~min}$, purity 99.5%.

(phenylethynyl)phenyl]ethoxy\}ethyl)methanesulfonamide (28)

Under N_{2} atmosphere, triethylamine ($40 \mu \mathrm{~L}, 28 \mathrm{mg}, 0.28 \mathrm{mmol}$) and methanesulfonyl chloride ($20 \mu \mathrm{~L}, 32 \mathrm{mg}, 0.28 \mathrm{mmol}$) were added to a solution of $24(45 \mathrm{mg}, 0.14 \mathrm{mmol})$ in dry dichloromethane (3 mL). After stirring the reaction mixture at ambient temperature for 16 h , water was added and the mixture was extracted with ethyl acetate $(3 x)$. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=1 \mathrm{~cm}, \mathrm{~h}=20 \mathrm{~cm}$, dichloromethane/methanol $=98: 2, \mathrm{~V}=2.5 \mathrm{~mL}$) to give 28 as colorless oil $\left(44 \mathrm{mg}, \quad 0.11 \mathrm{mmol}, \quad 79 \%\right.$ yield). $R_{f}=0.24$ (dichloromethane/methanol = 99:1); specific rotation: $[\alpha]_{D}^{20}=+40.0\left(4.5 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=2.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 3.26-3.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.35$ (s, $3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}$), 3.52 (ddd, $J=10.2 / 7.1 / 3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.62-3.68 (m, $\left.2 \mathrm{H}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}(1 \mathrm{H}), \mathrm{OCHCH}_{2} \mathrm{O}(1 \mathrm{H})\right), 3.72\left(\mathrm{dd}, \mathrm{J}=11.0 / 8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right)$, 4.53 (dd, $J=8.0 / 3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), $4.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 7.28-7.33(\mathrm{~m}, 2 \mathrm{H}$, 2'-H4-(phenylethynyl)phenyl, 6'-H4-(phenylethynyl)phenyl), 7.33-7.38 (m, 3H, 3"-H ${ }_{\text {phenyl }}$, ${ }^{\prime \prime}-\mathrm{H}_{\text {phenyl }}$ 4"$H_{\text {phenyl }}$), 7.50-7.56 (m, 4H, 3'- $\mathrm{H}_{4 \text {-(phenylethynyl)phenyl, }} 5^{\prime}-\mathrm{H}_{4 \text {-(phenylethynyl)phenyl }} 2^{2 "-} \mathrm{H}_{\text {phenyl }}$, 6"$\left.\mathrm{H}_{\text {phenyl }}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=40.5\left(1 \mathrm{C}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 43.3\left(1 \mathrm{C}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 55.6$ $\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 68.3\left(1 \mathrm{C}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 72.1\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 82.0(1 \mathrm{C}$, $\left.\mathrm{OCHCH}_{2} \mathrm{O}\right), 89.0(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 90.0(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 96.9\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 123.2$ (1C, C1 "phenyl), 123.5 (1C, C-4'4-(phenylethynyl)phenyl), 126.9 (2C, C-2'4-(phenylethynyl)phenyl, C-6'4(phenylethynyl)phenyl), 128.51 (2C, C-3"phenyl, C-5"phenyl), 128.53 (1C, C-4"phenyl), 131.8 (2C, $\mathrm{C}-2$ "phenyl, $\quad \mathrm{C}-6{ }^{\text {p phenyl }}$), $\quad 132.0 \quad$ (2C, $\mathrm{C}-3^{\prime} 4$-(phenylethynyl)phenyl, $\quad \mathrm{C}-5^{\prime} 4$-(phenylethynyl)phenyl), 138.6 (1C, C-1'4-(phenylethyny) pheny); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3283,2978,2882,1508,1439$, 1404, 1315, 1150, 1107, 1072, 1030, 976, 837, 756, 691; LCMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd
for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{~S}: 404.1526$, found: 404.1524 ; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=21.7$ min, purity 99.2 \%.

4.2.19.

(S)-N-(2-\{2-Hydroxy-1-[4-

(phenylethynyl)phenyl]ethoxy\}ethyl)methanesulfonamide (29)

$28(52 \mathrm{mg}, 0.13 \mathrm{mmol})$ was dissolved in HCl -saturated methanol $(5 \mathrm{~mL})$. The reaction was stirred at ambient temperature for 16 h . After addition of a saturated aqueous solution of sodium bicarbonate and water, the mixture was extracted with ethyl acetate $(3 x)$. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography $(\varnothing=1 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}, \quad$ cyclohexane/ethyl acetate $=2: 1 \rightarrow 0: 1$, $\mathrm{V}=5 \mathrm{~mL}$) to give 29 as colorless oil ($39 \mathrm{mg}, 0.11 \mathrm{mmol}, 85 \%$ yield). $R_{f}=0.35$ (dichloromethane/methanol = 20:1); specific rotation: $[\alpha]_{D}^{20}=+51.8\left(7.0 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $\delta[\mathrm{ppm}]=2.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 3.23-3.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.47$ (ddd, $J=10.0 / 6.7 / 4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.53 (ddd, $J=10.0 / 5.9 / 4.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.60 (dd, $J=11.8 / 3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), 3.67 (dd, $J=11.8 / 7.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), 4.45 (dd, $\mathrm{J}=7.9 / 3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), 7.33-7.40 (m, 5H, 2'- H_{4-} (phenylethynyl)phenyl, 6'-H 4 -(phenylethynyl)phenyl, $3^{\prime "-} \mathrm{H}_{\text {phenyl }}, 5 "-\mathrm{H}_{\text {phenyl }}, 4$ "- $\mathrm{H}_{\text {phenyl }}$), 7.48-7.54 (m, 4H, 3'- $\left.\mathrm{H}_{4 \text {-(phenylethynyl)phenyl, }} 5^{\prime}-\mathrm{H}_{4 \text {-(phenylethynyl)phenyl, }} 2^{\prime \prime}-\mathrm{H}_{\text {phenyl }}, 6 "-\mathrm{H}_{\text {phenyl }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta[\mathrm{ppm}]=40.2\left(1 \mathrm{C}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 44.2\left(1 \mathrm{C}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 67.6\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 69.5$ (1C, $\mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 84.7 (1C, $\mathrm{OCHCH}_{2} \mathrm{O}$), 89.9 (1C, $\mathrm{C} \equiv \mathrm{C}$), 90.3 (1C, $\mathrm{C} \equiv \mathrm{C}$), 124.3 (1C, Carom.), 124.5 (1C, Carom.), 128.3 (2C, C-2'4-(phenylethynyl)phenyl, C-6'4-(phenylethynyl)phenyl), 129.5 (1C, C-4"phenyl), 129.6 (2C, C-3"phenyl, C-5"phenyl), 132.5 (2C, Carom.), 132.7 (2C, $C_{\text {arom. }}$), 140.7 (1C, C-1'4-(phenylethynyl)pheny); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3480,3287,2928,2870$, 1732, 1508, 1439, 1408, 1312, 1150, 1103, 1065, 980, 833, 756, 691; LCMS (m/z):
$[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}$: 360.1264 , found: 360.1268 ; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=$ 19.9 min, purity 99.4 \%.
4.2.21.
(S)-1,1,1-Trifluoro-N-(2-\{2-(methoxymethoxy)-1-[4(phenylethynyl)phenyl]ethoxy\}ethyl)methanesulfonamide (30)

Under $\quad \mathrm{N}_{2}$ atmosphere, triethylamine $(60 \mu \mathrm{~L}, 44 \mathrm{mg}, \quad 0.43 \mathrm{mmol})$ and trifluoromethanesulfonyl chloride ($46 \mu \mathrm{~L}, 73 \mathrm{mg}, 0.43 \mathrm{mmol}$) were added to a solution of $24(70 \mathrm{mg}, 0.22 \mathrm{mmol})$ in dry dichloromethane $(7 \mathrm{~mL})$. After stirring the reaction mixture at ambient temperature for 16 h , the solvent was removed in vacuo. Then water was added and the mixture was extracted with ethyl acetate ($3 x$). The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=1 \mathrm{~cm}$, $h=20 \mathrm{~cm}$, dichloromethane/ methanol $=98: 2, \mathrm{~V}=2.5 \mathrm{~mL}$) to give 30 as colorless oil ($44 \mathrm{mg}, 0.10 \mathrm{mmol}, 45 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.30$ (cyclohexane/ethyl acetate $=3: 1$); specific rotation: $[\alpha]_{D}^{20}=+53.8\left(3.5 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=3.41(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), 3.44-3.54 (m, 3H, $\mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}(1 \mathrm{H})$), 3.65-3.81 (m, 3H, $\left.\mathrm{OCHCH}_{2} \mathrm{O}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}(1 \mathrm{H})\right), 4.55\left(\mathrm{dd}, \mathrm{J}=7.8 / 4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 4.70(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}$), $4.73\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 6.90(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}$, $\mathrm{SO}_{2} \mathrm{NH}$), 7.27-7.32 ($\left.\mathrm{m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}_{4-(\text { phenylethynyl)phenyl, }} 6^{\prime}-\mathrm{H}_{4-(\text { phenylethynyl)phenyl }}\right)$, 7.32-7.39 (m ,
 (phenylethynyl)phenyl, $\quad 5^{\prime}-\mathrm{H}_{4}$-(phenylethynyl)phenyl); ${ }^{13} \mathrm{C} \quad \mathrm{NMR} \quad\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=44.4 \quad(1 \mathrm{C}$, $\left.\mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 55.8\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 68.6\left(1 \mathrm{C}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 73.0\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right)$, $82.8\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 88.9(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 90.1(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 97.3\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 120.0$ ($\mathrm{q}, J=321 \mathrm{~Hz}, 1 \mathrm{C}, \mathrm{CF}_{3}$), 123.2 (1C, C-1"pheny) , 123.7 (1C, C-4'4-(phenylethyny) phenyl), 126.7 (2C, C-2'4-(phenylethynyl)phenyl, C-6'4-(phenylethynyl)phenyl), 128.5 (2C, C-3" ${ }^{\text {phenyl }}$, C-5"phenyl), 128.6
(1C, C-4"phenyl), 131.8 (2C, C-2"phenyl, C-6"phenyl), 132.1 (2C, C-3'4-(phenylethynyl)phenyl, C-5'4(phenylethynyl)phenyl), 138.1 (1C, C-1'4-(phenylethynyl)phenyl); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3144,2978$, 2886, 1508, 1443, 1373, 1231, 1188, 1150, 1107, 1030, 968, 833, 756, 691; LCMS $(\mathrm{m} / \mathrm{z})$: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}: 475.1509$, found: 475.1513; HPLC (method 1): $t_{R}=25.0$ min, purity 94.7%.
4.2.22.
(S)-1,1,1-Trifluoro-N-(2-\{2-hydroxy-1-[4(phenylethynyl)phenyl]ethoxy\}ethyl)methanesulfonamide (31)
$30(58 \mathrm{mg}, 0.13 \mathrm{mmol})$ was dissolved in a mixture of HCl -saturated methanol (0.5 mL) and pure methanol (1.5 mL). The reaction mixture was stirred at ambient temperature for 16 h . After addition of a saturated aqueous solution of sodium bicarbonate and water, the mixture was extracted with ethyl acetate (3x). The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=1 \mathrm{~cm}, \mathrm{~h}=21 \mathrm{~cm}$, cyclohexane/ethyl acetate $=2: 1, \mathrm{~V}=5 \mathrm{~mL}$) to give 31 as colorless oil (33 mg , $0.08 \mathrm{mmol}, 63 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.22$ (cyclohexane/ethyl acetate $=2: 1$); specific rotation: $[\alpha]_{D}^{20}=+44.0\left(1.4 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=3.40-3.57(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}(1 \mathrm{H})$), $3.59-3.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$), 3.72 (dd, $\mathrm{J}=$ $11.8 / 4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}$), 3.77 (dd, $J=11.8 / 7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}$), 4.51 (dd, $\left.J=7.8 / 4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 6.86-6.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{SO}_{2} \mathrm{NH}\right), 7.26-7.31\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}_{4-}\right.$ (phenylethynyl)phenyl, 6'- $\mathrm{H}_{4-\text { (phenylethynyl)phenyl }}$), 7.32-7.39 (m, 3H, 3"- $\mathrm{H}_{\text {phenyl }}$, 5"- $\mathrm{H}_{\text {phenyl }}$ 4"$\mathrm{H}_{\text {phenyl }}$), 7.50-7.58 (m, 4H, 3'-H4-(phenylethynyl)phenyl, 5'-H4-(phenylethyny) phenyl, 2"-H ${ }_{\text {phenyl, }}$ 6"$\left.\mathrm{H}_{\text {phenyl }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=44.4\left(1 \mathrm{C}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 67.3\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{OH}\right)$, 68.1 (1C, $\mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 83.4 (1C, $\mathrm{OCHCH}_{2} \mathrm{OH}$), 88.9 (1C, $\mathrm{C} \equiv \mathrm{C}$), 90.2 (1C, $\mathrm{C} \equiv \mathrm{C}$), 119.9 ($\mathrm{q}, \mathrm{J}=321 \mathrm{~Hz}, 1 \mathrm{C}, C F_{3}$), 123.2 (1C, C-1"phenyl), 123.9 (1C, C-4'4-(phenylethyny) phenyl),
126.9 (2C, C-2'4-(phenylethynyl)phenyl, C-6'4-(phenylethynyl)phenyl), 128.5 (2C, C-3"phenyl, C-5"phenyl), 128.6 (1C, C-4"phenyl), 131.8 (2C, C-2" ${ }^{\text {phenyl }}$, C-6" ${ }_{\text {phenyl }}$), 132.2 (2C, C-3'4-(phenylethynyl)phenyl, C-5'4-(phenylethynyl)phenyl), 137.6 (1C, C-1'4-(phenylethynyl)pheny); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3661$, 3314, 2978, 2886, 1508, 1443, 1373, 1227, 1184, 1150, 1111, 1065, 976, 833, 756, 691; LCMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}: 414.0981$, found: 414.0975 ; HPLC $(\operatorname{method} 2): \mathrm{t}_{\mathrm{R}}=18.3 \mathrm{~min}$, purity 99.7%.

4.2.23. (S)-N-(2-\{2-[Methoxymethoxy]-1-[4-(phenylethynyl)phenyl]ethoxy\}ethyl)-4-methylbenzenesulfonamide (32)

Under N_{2} atmosphere, triethylamine ($40 \mu \mathrm{~L}, 26 \mathrm{mg}, 0.26 \mathrm{mmol}$) and p-toluenesulfonyl chloride ($50 \mathrm{mg}, 0.26 \mathrm{mmol}$) were added to a solution of $24(43 \mathrm{mg}, 0.13 \mathrm{mmol})$ in dry dichloromethane (5 mL). After stirring the reaction mixture at ambient temperature for 16 h , water was added and the mixture was extracted with dichloromethane (3x). The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography $(\varnothing=1 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, dichloromethane $/$ methanol $=100: 0 \rightarrow 98: 2, \mathrm{~V}=2.5 \mathrm{~mL}$) to give 32 as colorless oil $\left(53 \mathrm{mg}, \quad 0.11 \mathrm{mmol}, \quad 85 \%\right.$ yield). $\quad R_{f}=0.28$ (dichloromethane/methanol = 98:2); specific rotation: $[\alpha]_{D}^{20}=+22.3\left(1.7 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{PhCH}_{3}\right), 3.02-3.11\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, 3.11-3.20 (m, 1H, $\mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.31 ($\mathrm{s}, 3 \mathrm{H}, \quad \mathrm{OCH}_{2} \mathrm{OCH}_{3}$), 3.37 (ddd, $J=10.2 / 7.3 / 3.6 \mathrm{~Hz}, \quad 1 \mathrm{H}, \quad \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $\quad 3.49 \quad(\mathrm{ddd}, \quad J=10.2 / 5.9 / 3.8 \mathrm{~Hz}, \quad 1 \mathrm{H}$, $\mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.58 (dd, $J=10.9 / 3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), $3.65(\mathrm{dd}, J=10.9 / 7.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), 4.40 (dd, $J=7.8 / 3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), $4.63\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$,
 (phenylethynyl)phenyl), $\quad 7.31-7.41 \quad\left(\mathrm{~m}, \quad 5 \mathrm{H}, \quad 3\right.$ "- $\mathrm{H}_{\text {phenyl }}, \quad 5 "-\mathrm{H}_{\text {phenyl }}, \quad 4 "-\mathrm{H}_{\text {phenyl }}, \quad 3 "{ }^{\prime \prime}-\mathrm{H}_{4}$
methylbenzenesulfonamide, 5 "'- H_{4}-methylbenzenesulfonamide), $7.48-7.57\left(\mathrm{~m}, 4 \mathrm{H}, 2 "-\mathrm{H}_{\text {phenyl }}, 6 "-\mathrm{H}_{\text {phenyl }}\right.$, 3'- $\mathrm{H}_{4 \text {-(phenylethyny)phenyl, }} \quad 5$ '- $\mathrm{H}_{4 \text {-(phenylethynyl) phenyl), }} \quad 7.68-7.74 \quad\left(\mathrm{~m}, \quad 2 \mathrm{H}, \quad 2{ }^{2}\right.$ "- $-\mathrm{H}_{4}$ methylbenzenesulfonamide, 6 "'- $\mathrm{H}_{4 \text {-methylbenzenesulfonamide }) ;{ }^{13} \mathrm{C} \text { NMR }\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=21.8\left(1 \mathrm{C},{ }^{2}\right)}$ $\left.\mathrm{SO}_{2} \mathrm{PhCH}_{3}\right), 43.8\left(1 \mathrm{C}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 55.8\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$, $68.2\left(1 \mathrm{C}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, 72.4 (1C, $\left.\mathrm{OCHCH}_{2} \mathrm{O}\right), 82.2$ (1C, $\left.\mathrm{OCHCH}_{2} \mathrm{O}\right), 89.4$ (1C, $\left.\mathrm{C} \equiv \mathrm{C}\right), 90.1$ (1C, $\left.\mathrm{C} \equiv \mathrm{C}\right), ~ 97.3$ (1C, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), 123.6 (1C, $\mathrm{C}-4{ }_{4}^{\prime}$-(phenylethynyl)phenyl), 123.7 (1C, $\mathrm{C}-1$ "phenyl), 127.4 (2C, C-2'4-(phenylethynyl)phenyl, C-6'4-(phenylethyny))phenyl), 127.5 (2C, C-2"' 4 -methylbenzenesulfonamide, C-6"' 4 -methylbenzenesulfonamide), 128.99 (1C, C-4"phenyl), 129.00 (2C, C-3"phenyl, C-5"phenyl), 130.3 (2C, C-3"' 4 -methylbenzenesulfonamide, C-5"'4-methylbenzenesulfonamide), 132.1 (2C, C-2" phenyl, C-6" ${ }^{\text {phenyl) }}$), 132.2 (2C, C-3'4-(phenylethynyl)phenyl, C-5'4-(phenylethynyl)phenyl), 137.7 (1C, C-1" ${ }^{4}$ methylbenzenesulfonamide), 139.6 (1C, C-1'4-(phenylethynyl)pheny), 144.1 (1C, C-4"'4methylbenzenesulfonamide); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3256,2928,2878,1597,1508,1443,1404$, 1327, 1153, 1092, 1030, 961, 814, 756, 691, 660; LCMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NO}_{5} \mathrm{~S}: 480.1839$, found: 480.1846 ; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=24.4$ min, purity 96.3 \%.

4.2.24. (S)-N-(2-\{2-Hydroxy-1-[4-(phenylethynyl)phenyl]ethoxy\}ethyl)-4methylbenzenesulfonamide (33)

$32(42 \mathrm{mg}, 0.09 \mathrm{mmol})$ was dissolved in HCl -saturated methanol $(4 \mathrm{~mL})$. The reaction was stirred at ambient temperature for 16 h . After addition of a saturated aqueous solution of sodium bicarbonate and water, the mixture was extracted with ethyl acetate $(3 \times)$. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography $(\varnothing=2 \mathrm{~cm}, \mathrm{~h}=10.5 \mathrm{~cm}$, cyclohexane/ethyl acetate $=2: 1 \rightarrow 1: 1$, $\mathrm{V}=10 \mathrm{~mL}$) to give 33 as colorless oil ($34 \mathrm{mg}, 0.08 \mathrm{mmol}, 89 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.17$
(cyclohexane/ethyl acetate $=2: 1$); specific rotation: $[\alpha]_{D}^{20}=+52.1$ (1.5; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=2.26-2.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SO}_{2} \mathrm{PhCH}_{3}\right)$, 3.07-3.13 (m, 1H, $\mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.17 (dtd, $J=13.4 / 6.3 / 3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.39 (ddd, $J=10.2 / 6.8 / 3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.44 (ddd, $J=10.1 / 6.3 / 3.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $3.56-3.65\left(\mathrm{~m}, 2 \mathrm{H}, \quad \mathrm{OCHCH}_{2} \mathrm{OH}\right), 4.35$ (dd, $J=7.9 / 3.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCHCH}_{2} \mathrm{OH}\right), 5.13\left(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{SO}_{2} \mathrm{NH}\right), 7.21-7.25\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}_{4}\right.$-(phenylethynyl)phenyl, 6'- $\mathrm{H}_{4 \text {-(phenylethynyl)phenyl) }}$, $7.32-7.35 \quad\left(\mathrm{~m}, \quad 2 \mathrm{H}, \quad 3\right.$ "'- $-\mathrm{H}_{4 \text {-methylbenzenesulfonamide, }} \quad 5 "$ "- H_{4} methylbenzenesulfonamide), 7.35-7.40 ($\mathrm{m}, 3 \mathrm{H}, 3$ "-H $\mathrm{H}_{\text {phenyl }}$ 5"- $\mathrm{H}_{\text {phenyl }}$ 4"- $\mathrm{H}_{\text {phenyl }}$), 7.49-7.52 (m, $2 \mathrm{H}, 3^{\prime}-\mathrm{H}_{4 \text {-(phenylethynyl)phenyl, }} 5^{\prime}-\mathrm{H}_{4 \text {-(phenylethynyl)phenyl }}$), $7.52-7.56\left(\mathrm{~m}, 2 \mathrm{H}, 2{ }^{\prime \prime}-\mathrm{H}_{\text {phenyl }}, 6 "-\mathrm{H}_{\text {phenyl }}\right)$,
 $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=21.8\left(1 \mathrm{C} \quad \mathrm{SO}_{2} \mathrm{PhCH}_{3}\right), 43.8\left(1 \mathrm{C}, \mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 67.5(1 \mathrm{C}$, $\mathrm{OCHCH}_{2} \mathrm{OH}$), 68.2 (1C, $\mathrm{HNCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 83.8 (1C, $\mathrm{OCHCH}_{2} \mathrm{O}$), 89.4 (1C, $\mathrm{C} \equiv \mathrm{C}$), 90.2 (1C, C $=\mathrm{C}$), 123.6 (1C, C-1"phenyl), 123.7 (1C, C-4'4-(phenylethynyl)phenyl), 127.47 (2C, C-2'4(phenylethynyl)phenyl, C-6'4-(phenylethynyl)phenyl), 127.53 (2C, C-2"' 4 -methylbenzenesulfonamide, C-6"' 4 methylbenzenesulfonamide), 129.0 (3C, C-3"phenyl, C-5"phenyl, C-4"phenyl), 130.3 (2C, C-3"'4methylbenzenesulfonamide, C-5"'4-methylbenzenesulfonamide), 132.1 (2C, C-2" phenyl, C-6"phenyl), 132.3 (2C, C-3'4-(phenylethyny) phenyl, C-5'4-(phenylethynyl)phenyl), 137.6 (1C, C-1" 4 -methylbenzenesulfonamide), 139.2 (1C, C-1'4-(phenylethynyl)phenyl), 144.3 (1C, C-4"'4-methylbenzenesulfonamide); IR (neat): \tilde{v} $\left[\mathrm{cm}^{-1}\right]=3487,3287,2924,2870,1597,1504,1443,1400,1323,1157,1092,961,814$, 756, 691, 660; LCMS $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}_{4} \mathrm{~S}: 436.1577$, found: 436.1572; HPLC (method 1$): t_{R}=22.8 \mathrm{~min}$, purity 98.3%.

4.2.25. (S)-1-[1-(Allyloxy)-2-(methoxymethoxy)ethyl]-4-bromobenzene (35)

Under N_{2} atmosphere, a 1 M solution of LiHMDS in THF ($4.8 \mathrm{~mL}, 4.8 \mathrm{mmol}$) and tetrabutylammonium iodide ($150 \mathrm{mg}, 0.40 \mathrm{mmol}$) were added to a solution of $34(1.0 \mathrm{~g}$,
4.0 mmol) in THF (50 mL). Then allyl bromide ($0.69 \mathrm{~mL}, 960 \mathrm{mg}, 8.0 \mathrm{mmol}$) was added and the mixture was heated to reflux for 16 h . After cooling the mixture to ambient temperature, water was added and the mixture was extracted with ethyl acetate (3x). The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=4 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, cyclohexane/ethyl acetate $=8: 2, \mathrm{~V}=30 \mathrm{~mL}$) to give 35 as colorless oil $\left(760 \mathrm{~g}, \quad 2.5 \mathrm{mmol}, \quad 64 \%\right.$ yield). $\quad \mathrm{R}_{\mathrm{f}}=0.17$ (cyclohexane/ethyl acetate $=20: 1$); specific rotation: $[\alpha]_{D}^{20}=+58.9\left(2.0 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ [ppm] = $3.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.60\left(\mathrm{dd}, \mathrm{J}=10.8 / 4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 3.73$ (dd, $J=10.8 / 7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), 3.87 (ddt, $J=12.8 / 6.0 / 1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 3.98 (ddt, $J=12.8 / 5.2 / 1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 4.51 (dd, $J=7.3 / 4.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCHCH}_{2} \mathrm{O}\right), 4.61\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \quad \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.64(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 5.16\left(\mathrm{dq}, J=10.4 / 1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.24(\mathrm{dq}, J=17.2 / 1.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, $5.86-5.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 7.21-7.25\left(\mathrm{~m}, 2 \mathrm{H}, 2{ }^{2}-\mathrm{H}_{4}-\right.$ bromophenyl, 6'-H ${ }_{4}$-bromophenyl), 7.46-7.50 (m, 2H, 3'-H ${ }_{4}$-bromophenyl, $5^{\prime}-\mathrm{H}_{4 \text {-bromophenyl }}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=55.4\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 70.1\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 71.6(1 \mathrm{C}$, $\left.\mathrm{OCHCH}_{2} \mathrm{O}\right), 79.9\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 96.8\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 117.3\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, 122.0 (1C, C-4'4-bromophenyl), 128.9 (2C, C-2'4-bromophenyl, C-6'4-bromophenyl), 131.7 (2C, C-3'4-bromophenyl, C-5'4-bromophenyl), $134.6\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right.$), 138.5 (1C, $\mathrm{C}-1$ '4-bromophenyl); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2928,2882,1593,1485,1404,1339,1211,1150,1107,1069,1038$, 1011, 918, 822; LCMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{18}{ }^{79} \mathrm{BrO}_{3}: 301.0434$, found: 301.0412; HPLC $(\operatorname{method} 1): t_{R}=20.2 \min$, purity 99.5%.
4.2.26. (S)-1-[1-(Allyloxy)-2-(methoxymethoxy)ethyl]-4-(phenylethynyl)benzene (36)

Under $\quad \mathrm{N}_{2} \quad$ atmosphere, \quad copper $(\mathrm{I}) \quad$ iodide $\quad(67 \mathrm{mg}, \quad 0.35 \mathrm{mmol})$, tetrakis(triphenylphosphine)palladium(0) ($280 \mathrm{mg}, 0.24 \mathrm{mmol}$) and phenylacetylene ($0.36 \mathrm{~mL}, 340 \mathrm{mg}, 3.3 \mathrm{mmol}$) were added to a solution of $35(710 \mathrm{mg}, 2.4 \mathrm{mmol}) \mathrm{in}$ triethylamine (15 mL). The mixture was heated to reflux and additional phenylacetylene ($0.36 \mathrm{~mL}, 340 \mathrm{mg}, 3.3 \mathrm{mmol}$) was added. After heating the reaction mixture to reflux for 16 h , the solvent was evaporated and the residue was purified twice by flash column chromatography (1. $\varnothing=6 \mathrm{~cm}, \quad \mathrm{~h}=15 \mathrm{~cm}, \quad$ cyclohexane/ethyl acetate $=20: 1$, $\mathrm{V}=30 \mathrm{~mL}, 2 . \quad \varnothing=5 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, cyclohexane/ethyl acetate $=100: 0 \rightarrow$ 20:1, $V=30 \mathrm{~mL}$) to give 36 as yellowish oil ($650 \mathrm{mg}, 2.0 \mathrm{mmol}, 86 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.16$ (cyclohexane/ethyl acetate $=20: 1$); specific rotation: $[\alpha]_{D}^{20}=+52.8\left(1.6 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta[\mathrm{ppm}]=3.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.64(\mathrm{dd}, \mathrm{J}=10.8 / 4.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCHCH}_{2} \mathrm{O}$), $3.76\left(\mathrm{dd}, J=10.8 / 7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 3.89(\mathrm{ddt}, J=12.8 / 6.0 / 1.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 4.01 (ddt, $J=12.8 / 5.1 / 1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 4.57 (dd, $\left.J=7.3 / 4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 4.63\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.66(\mathrm{~d}$, $\left.J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 5.17\left(\mathrm{dq}, J=10.4 / 1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right.$), 5.26 (dq, $\left.J=17.2 / 1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.87-5.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 7.32-7.44(\mathrm{~m}$, $5 \mathrm{H}, 2$ '- $\mathrm{H}_{4-(\text { phenylethynyl)phenyl }} 6^{\prime}-\mathrm{H}_{4-(\text { (phenylethynyl) phenyl }}, 3$ "- $\mathrm{H}_{\text {phenyl }} 5$ "- $\mathrm{H}_{\text {phenyl }}, 4$ "- $\mathrm{H}_{\text {phenyl }}$), $7.50-$ 7.57 ($\mathrm{m}, 4 \mathrm{H}, 3^{\prime}-\mathrm{H}_{4 \text {-(phenylethynyl)phenyl, }} 5^{\prime}-\mathrm{H}_{4 \text {-(phenylethynyl)phenyl, }} 2^{\prime \prime}-\mathrm{H}_{\text {phenyl }}, 6$ "- $\mathrm{H}_{\text {phenyl }}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=55.4\left(1 \mathrm{C}, \quad \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 70.1\left(1 \mathrm{C}, \quad \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 71.7(1 \mathrm{C}$, $\mathrm{OCHCH}_{2} \mathrm{O}$), $80.3\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 89.3(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 89.7$ (1C, $\left.\mathrm{C} \equiv \mathrm{C}\right), 96.8$ (1C, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), $117.2\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 123.1$ (1C, Carom.), 123.4 (1C, Carom.), 127.3 (2C, C-2'4-(phenylethynyl)phenyl, $\mathrm{C}-6{ }^{\prime} 4$-(phenylethynyl)phenyl), 128.4 (1C, $\mathrm{C}-4{ }^{\prime}{ }^{\text {phenyl }}$), 128.5 (2C, C-3" phenyl, C-5" ${ }_{\text {phenyl }}$), 131.76 (2C, $\mathrm{C}_{\text {arom. }}$), 131.82 (2C, $\mathrm{C}_{\text {arom. }}$), 134.8 (1C, $\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 139.7 (1C, C-1'4-(phenylethyny)pheny); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2924,2882$, 1597, 1508, 1485, 1439, 1339, 1211, 1150, 1111, 1038, 918, 833, 756, 691; LCMS
$(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{3}$: 323.1642, found: 323.1613; HPLC (method 1$): \mathrm{t}_{\mathrm{R}}=$ 25.2 min, purity 71.9 \%.

4.2.27. (S)-2-(Allyloxy)-2-[4-(phenylethynyl)phenyl]ethan-1-ol (37)

$36(620 \mathrm{mg}, 1.9 \mathrm{mmol})$ was suspended in a mixture of HCl -saturated methanol (4 mL) and pure methanol (6 mL). The reaction mixture was stirred at ambient temperature for 16 h . After addition of a saturated aqueous solution of sodium bicarbonate and water, the mixture was extracted with ethyl acetate (3x). The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=3 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, cyclohexane/ethyl acetate $=8: 2, \mathrm{~V}=20 \mathrm{~mL}$) to give 37 as yellow oil (490 mg , $1.8 \mathrm{mmol}, 91 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.25$ (cyclohexane/ethyl acetate $=8: 2$); specific rotation: $[\alpha]_{D}^{20}=+102.7\left(2.7 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=3.64(\mathrm{dd}, J=11.7 / 3.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCHCH}_{2} \mathrm{OH}$), $3.70\left(\mathrm{dd}, \mathrm{J}=11.7 / 8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}\right.$), $3.85-3.90(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.00-4.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 4.50(\mathrm{dd}, \mathrm{J}=8.4 / 3.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCHCH}_{2} \mathrm{OH}\right), 5.19-5.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 5.25-5.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$,

 3'- $\left.\mathrm{H}_{4 \text {-(phenylethynyl)phenyl, }} \quad 5^{\prime}-\mathrm{H}_{4 \text {-(phenylethynyl)phenyl, }} \quad 2{ }^{2 \prime}-\mathrm{H}_{\text {phenyl }}, \quad 6 "-\mathrm{H}_{\text {phenyl }}\right) ; \quad{ }^{13} \mathrm{C} \quad$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=67.3\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 70.1\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 82.0(1 \mathrm{C}$, $\left.\mathrm{OCHCH}_{2} \mathrm{OH}\right), 89.1(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C})$, $89.8(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 117.6\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 123.29$ (1C, C arom.), 123.30 ($1 \mathrm{C}, \mathrm{C}_{\text {arom. }}$), 127.1 (2C, C-2'4-(phenylethynyl)phenyl, $\mathrm{C}^{-6} 6^{\prime} 4$-(phenylethynyl)phenyl), 128.48 (1C, C-4"phenyl), 128.50 (2C, C-3"phenyl, C-5"pheny), 131.8 (2C, C-2"phenyl, C-6"phenyl), 132.0 (2C, $\mathrm{C}-3^{\prime}{ }_{4}{ }^{-}$(phenylethynyl)phenyl, $\mathrm{C}-5^{\prime} 4$-(phenylethynyl)phenyl), 134.5 (1C, $\mathrm{OCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$), 138.9 (1C, C-1'4-(phenylethynyl)pheny); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3426,2866$,

1597, 1508, 1408, 1339, 1219, 1096, 1042, 922, 833, 756, 691; HPLC (method 1$): t_{R}=$ 22.7 min, purity 97.9 \%.

4.2.28. (R)-3-\{(S)-2-Hydroxy-1-[4-(phenylethynyl)phenyl]ethoxy\}propane-1,2-diol (38)

AD-mix- $\alpha(410 \mathrm{mg})$ was added to a mixture of tert-butyl alcohol $(1.5 \mathrm{~mL})$ and water (1.5 mL). The mixture was cooled to $0^{\circ} \mathrm{C}$, a solution of $37(82 \mathrm{mg}, 0.29 \mathrm{mmol})$ in a mixture of tert-butyl alcohol (1 mL) and water (1 mL) was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 16 h . Then sodium sulfite (440 mg) was added, the mixture was warmed to ambient temperature and stirred for 1 h . Then ethyl acetate was added to the reaction mixture and after separation of the layers, the aqueous phase was again extracted with ethyl acetate $(3 \times)$. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The crude product was purified by flash column chromatography ($\varnothing=2 \mathrm{~cm}, \mathrm{~h}=10 \mathrm{~cm}$, ethyl acetate $/$ methanol $=10: 1, \mathrm{~V}=10 \mathrm{~mL}$) to give an inseparable mixture of diastereomers 38 and 39 ($8: 2$) as colorless solid ($84 \mathrm{mg}, 0.27 \mathrm{mmol}, 93 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.36$ (ethyl acetate/methanol $=10: 1$); melting point: $111^{\circ} \mathrm{C}$; specific rotation: $[\alpha]_{D}^{20}=+89.6(2.6$; $\left.\mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=3.35$ (dd, $J=9.8 / 6.8 \mathrm{~Hz}, \quad 0.9 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{38}$), 3.44-3.46 (m, 0.2H, OCH $\mathrm{CHCH}_{2} \mathrm{OH}^{39}$), 3.49-3.53 (m, 1.8H, $\left.\mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{38}(0.9 \mathrm{H}), \quad \mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{38}(0.9 \mathrm{H})\right), \quad 3.56-3.60 \quad(\mathrm{~m}, \quad 2.1 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{38} \quad(0.9 \mathrm{H}), \quad \mathrm{OCHCH}_{2} \mathrm{OH}^{38} \quad(0.9 \mathrm{H}), \quad \mathrm{OCHCH}_{2} \mathrm{OH}^{39} \quad(0.1 \mathrm{H})$, $\mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{39}$), 3.66 (dd, $J=11.7 / 7.9 \mathrm{~Hz}, 0.1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}^{39}$), 3.67 (dd, $\left.J=11.7 / 8.0 \mathrm{~Hz}, 0.9 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}^{38}\right), 3.77-3.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}\right), 4.44$ (dd, $\left.J=7.9 / 3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 7.34-7.39\left(\mathrm{~m}, 5 \mathrm{H}, 2^{\prime}-\mathrm{H}_{4-(\text { phenylethynyl)phenyl, }} 6^{\prime}-\mathrm{H}_{4-}\right.$ (phenylethynyl)phenyl, $3^{\prime \prime}-\mathrm{H}_{\text {phenyl }}, 5{ }^{\text {" }}-\mathrm{H}_{\text {phenyl }}, 4{ }^{4}-\mathrm{H}_{\text {phenyl }}$), $7.49-7.53\left(\mathrm{~m}, 4 \mathrm{H}, 3^{\prime}-\mathrm{H}_{4}\right.$-(phenylethynyl)phenyl ,

5'-H4-(phenylethynyl)phenyl, 2"-H ${ }_{\text {phenyl }}$, 6 "-H $H_{\text {phenyl }}$); ratio of the daistereomers: $38: 39=8: 2$; ${ }^{13} \mathrm{C} \quad \mathrm{NMR} \quad\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=64.3 \quad\left(0.9 \mathrm{C}, \quad \mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{38}\right), \quad 64.4 \quad(0.1 \mathrm{C}$, $\mathrm{OCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{OH}^{39}$), $67.7\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{OH}\right)$, $71.7\left(0.1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{39}\right)$, 72.1 (0.9C, $\left.\mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{38}\right), \quad 72.3 \quad\left(0.1 \mathrm{C}, \quad \mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{39}\right), \quad 72.6$ (0.9C, $\left.\mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{38}\right)$, $84.8\left(0.1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{OH}^{39}\right)$, $85.1\left(0.9 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{OH}^{38}\right), 89.9(1 \mathrm{C}$, C三C), 90.2 (1C, C三C), 124.1 (0.1C, Carom. ${ }^{39}$), 124.2 (0.9C, Carom. ${ }^{38}$), 124.5 (1C, Carom.), 128.3 (2C, C-2'4-(phenylethynyl)phenyl, C-6'4-(phenylethynyl)phenyl), 129.5 (1C, C-4"phenyl), 129.6 (2C, C-3"phenyl, C-5"phenyl), 132.5 (2C, Carom.), 132.6 (2C, Carom.), 140.9 (0.9C, C-1'4(phenylethynyl)pheny ${ }^{38}$), $141.0\left(0.1 \mathrm{C}, \mathrm{C}-1^{\prime} 4\right.$-(phenylethynyl)phenyl ${ }^{39}$); ratio of the daistereomers: 38 : $39=8: 2$; IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3456,3271,2905,2862,1504,1443,1404,1296,1219$, 1107, 1038, 1022, 930, 829, 752, 691; $\operatorname{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{4}$: 313.1434, found: 313.1399 ; HPLC (method 2): $t_{R}=15.2$ min, purity 97.8%.
4.2.29. (S)-3-\{(S)-2-Hydroxy-1-[4-(phenylethynyl)phenyl]ethoxy\}propane-1,2-diol (39)

AD-mix- β (410 mg) was added to a mixture of tert-butyl alcohol $(1.5 \mathrm{~mL})$ and water (1.5 mL). The mixture was cooled to $0^{\circ} \mathrm{C}$, a solution of $37(82 \mathrm{mg}, 0.29 \mathrm{mmol})$ in a mixture of tert-butyl alcohol (1 mL) and water (1 mL) was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 16 h . Then sodium sulfite (440 mg) was added, the mixture was warmed to ambient temperature and stirred for 1 h . Then ethyl acetate was added to the reaction mixture and after separation of the layers, the aqueous phase was again extracted with ethyl acetate $(3 \times)$. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The crude product was purified by flash column chromatography ($\varnothing=2 \mathrm{~cm}, \mathrm{~h}=10 \mathrm{~cm}$, ethyl acetate/methanol $=10: 1, \mathrm{~V}=10 \mathrm{~mL}$) to give an inseparable mixture of diastereomers

39 and 38 (6:4) as colorless solid ($81 \mathrm{mg}, 0.26 \mathrm{mmol}, 90 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.35$ (ethyl acetate/methanol $=10: 1$); melting point: $106{ }^{\circ} \mathrm{C}$; specific rotation: $[\alpha]_{D}^{20}=+83.1(3.8$; $\left.\mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=3.35 \quad(\mathrm{dd}, \quad J=9.8 / 6.8 \mathrm{~Hz}, \quad 0.4 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{38}\right)$, 3.43-3.47 (m, 1.2 $\mathrm{H}, \mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{39}$), 3.49-3.53 (m, 0.8 H , $\left.\mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{38}(0.4 \mathrm{H}), \quad \mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{38}(0.4 \mathrm{H})\right), \quad 3.56-3.62 \quad(\mathrm{~m}, \quad 2.6 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{38} \quad(0.4 \mathrm{H}), \quad \mathrm{OCHCH}_{2} \mathrm{OH}^{38} \quad(0.4 \mathrm{H}), \quad \mathrm{OCHCH}_{2} \mathrm{OH}^{39} \quad(0.6 \mathrm{H})$, $\mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{39}$), 3.66 (dd, $J=11.7 / 7.9 \mathrm{~Hz}, 0.6 \mathrm{H}, \quad \mathrm{OCHCH}_{2} \mathrm{OH}^{39}$), 3.67 (dd, $J=11.7 / 8.0 \mathrm{~Hz}, 0.4 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}^{38}$), 3.79 (qi, $J=5.3 \mathrm{~Hz}, 0.6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{39}$), 3.79-3.84 (m, 0.4H, OCH $\mathrm{CHCH}_{2} \mathrm{OH}^{38}$), $4.44\left(\mathrm{dd}, J=7.9 / 3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}\right)$, 7.34-7.39 (m,5H, 2'- H-(phenylethynyl)phenyl, 6 '- $\mathrm{H}_{4 \text {-(phenylethynyl)phenyl, }} 3^{3}-\mathrm{H}_{\text {phenyl }}, 5$ "- $\mathrm{H}_{\text {phenyl }}$ 4"$\mathrm{H}_{\text {phenyl }}$), 7.49-7.53 (m, 4H, 3'- $\mathrm{H}_{4 \text {-(phenylethynyl)phenyl, }} 5^{\prime}-\mathrm{H}_{4-(\text { phenylethynyl)phenyl, }}$ 2"- $_{\text {phenyl }}$ 6"$\left.H_{\text {phenyl }}\right)$; ratio of the daistereomers: $39: 38=6: 4 ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=64.3$ $\left(0.4 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{38}\right), 64.4\left(0.6 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CHOHCH}_{2} \mathrm{OH}^{39}\right), 67.7\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{OH}\right)$, $71.7\left(0.6 \mathrm{C}, \quad \mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{39}\right), \quad 72.1 \quad\left(0.4 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{38}\right)$, 72.3 (0.6 C , $\left.\mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{39}\right)$, $72.6\left(0.4 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}^{38}\right)$, $84.8\left(0.6 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{OH}^{39}\right), 85.1$ (0.4C, $\mathrm{OCHCH}_{2} \mathrm{OH}^{38}$), 89.9 (1C, $\left.\mathrm{C} \equiv \mathrm{C}\right), 90.2(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 124.1$ ($0.6 \mathrm{C}, \mathrm{Ca}_{\text {arom. }}{ }^{39}$), 124.2 (0.4C, $\mathrm{C}_{\text {arom. }}{ }^{38}$), 124.5 (1C, $\mathrm{C}_{\text {arom. }}$), 128.3 (2C, C-2'4-(phenylethynyl)phenyl, $\mathrm{C}^{\prime} \mathbf{6}^{\prime}{ }_{4}$ (phenylethynyl)phenyl), 129.5 (1C, C-4"phenyl), 129.6 (2C, C-3"phenyl, C-5"phenyl), 132.5 (2C, $\mathrm{C}_{\text {arom. }}$), 132.6 (2C, $\mathrm{C}_{\text {arom. }}$), 140.9 ($0.4 \mathrm{C}, \mathrm{C}-1$ '4-(phenylethynyl)phenyl ${ }^{38}$), 141.0 ($0.6 \mathrm{C}, \mathrm{C}-1{ }^{\prime} 4$ (phenylethynyl)phenyl ${ }^{39}$); ratio of the daistereomers: $39: 36=6: 4$; IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3653$, 3318, 2978, 2866, 1597, 1443, 1393, 1238, 1111, 1038, 833, 752, 687; HRMS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{4}: 313.1434$, found: 313.1415 ; HPLC (method 2): $\mathrm{t}_{\mathrm{R}}=15.2$ min, purity 96.9 \%.
4.2.30. (S)-3-[1-(4-Bromophenyl)-2-(methoxymethoxy)ethoxy]propan-1-ol (40)

Under N_{2} atmosphere, a 0.5 M solution of 9-borabicyclo[3.3.1]nonane (9-BBN) in THF ($13.2 \mathrm{~mL}, 6.6 \mathrm{mmol}$) was added to a solution of $35(1.0 \mathrm{~g}, 3.3 \mathrm{mmol})$ in THF (50 mL) and the mixture was stirred at ambient temperature overnight. Then again a 0.5 M solution of $9-\mathrm{BBN}$ in THF ($6.6 \mathrm{~mL}, 3.3 \mathrm{mmol}$) was added. After 1.5 h , the reaction mixture was cooled to $-25^{\circ} \mathrm{C}$ and methanol (1 mL) was added. After $15 \mathrm{~min}, 1 \mathrm{M} \mathrm{NaOH}$ ($13.2 \mathrm{~mL}, 13.2 \mathrm{mmol}$) was added, whereupon after $15 \mathrm{~min} \mathrm{H}_{2} \mathrm{O}_{2}\left(30 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)(3.3$ $\mathrm{mL}, \sim 33 \mathrm{mmol}$) was added. Then the mixture was stirred for 1 h at $-25^{\circ} \mathrm{C}, 1 \mathrm{~h}$ at ambient temperature and finally heated to $40{ }^{\circ} \mathrm{C}$. After the gas formation had finished, the mixture was cooled to ambient temperature, water was added and the mixture was extracted with dichloromethane $(3 \times)$. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=4 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, cyclohexane/ethyl acetate $8 / 2 \rightarrow 1 / 2, \mathrm{~V}=20 \mathrm{~mL}$) to give 40 as colorless oil ($1.1 \mathrm{~g}, 3.3 \mathrm{mmol}, 99 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.49$ (cyclohexane/ethyl acetate $=1: 1$); specific rotation: $[\alpha]_{D}^{20}=+37.7$ (3.6; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.83$ (quin, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), $3.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.49-3.64\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{OCHCH}_{2} \mathrm{O}(1 \mathrm{H})\right), 3.67$ (dd, $J=10.7 / 8.1 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), $3.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right.$), 4.47 (dd, $J=$ $\left.7.9 / 3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 4.63\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 7.19-7.24\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}_{4-}\right.$ bromophenyl, $6^{\prime}-\mathrm{H}_{4 \text {-bromophenyl }}$), $7.47-7.51$ ($\mathrm{m}, 2 \mathrm{H}, 3^{\prime}$ '- $\mathrm{H}_{4 \text {-bromophenyl, }} 5^{\prime}$ '- $\mathrm{H}_{4 \text {-bromophenyl }}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=32.1\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 55.5\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 62.2(1 \mathrm{C}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 68.9 (1C, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 71.7 (1C, $\mathrm{OCHCH}_{2} \mathrm{O}$), 81.3 (1C, $\mathrm{OCHCH}_{2} \mathrm{O}$), $96.8\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 122.2\left(1 \mathrm{C}, \mathrm{C}-4{ }_{4}{ }_{4 \text {-bromophenyl}}\right), 128.8\left(2 \mathrm{C}, \mathrm{C}^{-} 2_{4}^{4}\right.$
 bromopheny); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3433,2924,2874,1589,1485,1404,1339,1300,1211$, 1150, 1107, 1069, 1034, 1011, 964, 918, 822; $\operatorname{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calc for
$\mathrm{C}_{13} \mathrm{H}_{20}{ }^{79} \mathrm{BrO}_{4}: 319.0562$, found: 319.0539 ; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=16.6 \mathrm{~min}$, purity 99.5\%.

4.2.31. (S)-3-\{2-(Methoxymethoxy)-1-[4-(phenylethynyl)phenyl]ethoxy\}propan-1ol (41)

Under $\quad \mathrm{N}_{2}$ atmosphere, copper(I) iodide (240 mg, 1.3 mmol$)$, tetrakis(triphenylphosphine)palladium(0) (420 mg, 0.4 mmol$)$ and phenylacetylene ($0.8 \mathrm{~mL}, 740 \mathrm{mg}, 7.2 \mathrm{mmol}$) were added to a solution of $40(1.1 \mathrm{~g}, 3.6 \mathrm{mmol})$ in triethylamine (50 mL). The mixture was heated to reflux and another portion of phenylacetylene ($0.8 \mathrm{~mL}, 740 \mathrm{mg}, 7.2 \mathrm{mmol}$) was added. After heating the mixture to reflux for 16 h , the solvent was evaporated and the residue was purified twice by flash column chromatography $(1 . \varnothing=4 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, dichloromethane/methanol 98/2 \rightarrow $90 / 10, \mathrm{~V}=20 \mathrm{~mL}, 2 . \varnothing=4 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, cyclohexane/ethyl acetate $8 / 2 \rightarrow 1 / 2, \mathrm{~V}=$ 20 mL) to give 41 as yellowish oil ($950 \mathrm{mg}, 2.8 \mathrm{mmol}, 78 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.49$ (cyclohexane/ethyl acetate $=1: 1$); specific rotation: $[\alpha]_{D}^{20}=+57.2\left(3.0 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR: $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.83$ (quin, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), $3.33(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), $3.51-3.68\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{OCHCH}_{2} \mathrm{O}(1 \mathrm{H})\right.$), 3.70 (dd, $\mathrm{J}=$ $10.8 / 8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), 3.77 - $3.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right.$), 4.53 (dd, J = $\left.8.0 / 3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 4.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 7.29-7.38\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.51$ $-7.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=32.1\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 55.5$ $\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 62.3\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 69.0\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 71.8(1 \mathrm{C}$, $\left.\mathrm{OCHCH}_{2} \mathrm{O}\right), 81.6\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 89.1(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 89.8(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 96.8$ (1C, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), 123.27 (1C, Carom.), 123.28 (1C, Carom.), 127.1 (2C, Carom.), 128.48 (1C, Carom.), 128.50 (2C, Carom.), 131.8 (2C, Carom.), 131.9 (2C, Carom.), 139.2 (1C, Carom.); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3441,2928,2882,1597,1508,1443,1400,1342,1211,1150,1107$,

1034, 964, 918, 833, 756, 691; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calc for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{4}: 341.1747$, found: 341.1742; HPLC (method 1$): t_{R}=20.0 \min$, purity 94.6%.

4.2.32. (S)-2-\{2-(Methoxymethoxy)-1-[4-(phenylethynyl)phenyl]ethoxy\}ethyl 4methylbenzenesulfonate (42)

Under N_{2} atmosphere, triethylamine ($0.65 \mathrm{~mL}, 0.48 \mathrm{~g}, 4.7 \mathrm{mmol}$) and 4dimethylaminopyridine ($60 \mathrm{mg}, 0.50 \mathrm{mmol}$) were added to a solution of $17(770 \mathrm{mg}$, 2.3 mmol) in dry DCM (50 mL). Then 4-toluenesulfonyl chloride ($900 \mathrm{mg}, 4.7 \mathrm{mmol}$) was added and the reaction was stirred for 24 h at room temperature. Afterwards, the mixture was extracted with EtOAc $(3 \times)$, the organic phase dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography $(\varnothing=4 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, cyclohexane/ethyl acetate $8 / 2 \rightarrow 1 / 2, \mathrm{~V}=10$ mL) to give 42 as colorless oil ($970 \mathrm{mg}, 2.0 \mathrm{mmol}, 86 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.76$ (cyclohexane/ethyl acetate $=2: 1$); specific rotation: $[\alpha]_{D}^{20}=+15.3\left(3.2 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SO}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 3.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.55-$ $3.65\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OS}, \mathrm{OCHCH}_{2} \mathrm{O}(1 \mathrm{H})\right), 3.67(\mathrm{dd}, \mathrm{J}=10.8 / 7.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCHCH}_{2} \mathrm{O}$), $4.13-4.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OS}\right), 4.47(\mathrm{dd}, J=7.4 / 4.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCHCH}_{2} \mathrm{O}\right), 4.58\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.61\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$, $7.23-7.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.31-7.38\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.47-7.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.52$ -7.55 (m, 2H, $\mathrm{H}_{\text {arom. }}$), $7.75-7.79$ (m, $2 \mathrm{H}, \mathrm{H}_{\text {arom. }}$); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=21.8$ (1C, $\mathrm{SO}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), 55.4 (1C, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), $66.8\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OS}\right), 69.3$ (1C, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OS}$), $71.5\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right)$, $81.8\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 89.1(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 89.9(1 \mathrm{C}$, $\mathrm{C} \equiv \mathrm{C}$), 96.7 (1C, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), 123.27 (1C, Carom.), 123.28 (1C, Carom.), 127.1 (2C, Carom.), 128.1 (2C, Carom.), 128.49 (1C, Carom.), 128.51 (2C, Carom.), 129.9 (2C, Carom.), 131.8 (2C, Carom.), 131.9 (2C, Carom.), 133.2 (1C, Carom.), 138.9 (1C, Carom.), 144.9 (1C,

Carom.); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2924,2882,1597,1508,1443,1400,1358,1177,1107$, 1018, 918, 814, 756, 691, 664; HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calc for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{~S}: 481.1679$, found: 481.1646; HPLC (method 1): $t_{R}=23.0$ min, purity 98.2%.

4.2.33. (S)-3-\{2-(Methoxymethoxy)-1-[4-(phenylethynyl)phenyl]ethoxy\}propyl 4methylbenzenesulfonate (43)

Under N_{2} atmosphere, triethylamine ($0.75 \mathrm{~mL}, 0.55 \mathrm{~g}, 5.4 \mathrm{mmol}$) and 4dimethylaminopyridine ($66 \mathrm{mg}, 0.54 \mathrm{mmol}$) were added to a solution of 41 (920 mg , 2.7 mmol) in dry DCM (50 mL). Then 4-toluenesulfonyl chloride ($1.0 \mathrm{~g}, 5.4 \mathrm{mmol}$) was added and the reaction was stirred for 16 h at room temperature. Afterwards, the mixture was extracted with EtOAc $(3 \times)$, the organic phase dried over sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography $(\varnothing=4 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, cyclohexane/ethyl acetate $8 / 2 \rightarrow 1 / 2, \mathrm{~V}=10$ mL) to give 43 as yellowish oil ($1.1 \mathrm{~g}, 2.2 \mathrm{mmol}, 82 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.62$ (cyclohexane/ethyl acetate $=2: 1$); specific rotation: $[\alpha]_{D}^{20}=+26.0\left(2.2 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta[\mathrm{ppm}]=1.87-1.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.45(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{SO}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), $3.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.42\left(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, 3.57 (dd, 1H, $\left.J=10.8 / 4.2 \mathrm{~Hz}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 3.66\left(\mathrm{dd}, J=10.8 / 7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 4.12$ $-4.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.40\left(\mathrm{dd}, J=7.3 / 4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 4.58(\mathrm{~d}, J=$ $\left.6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.60\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 7.24-7.27(\mathrm{~m}, 2 \mathrm{H}$, Harom.), 7.32 - 7.38 (m, 5H, Harom.), 7.48 - 7.51 (m, 2H, $\mathrm{H}_{\text {arom. }}$), 7.52 - 7.55 (m, 2H, Harom.), $7.75-7.78$ (m, 2H, Harom.); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=21.8$ (1C, $\mathrm{SO}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), 29.6 (1C, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 55.4 (1C, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), 64.9 (1C, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $67.7\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$, $71.5\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 81.5(1 \mathrm{C}$, $\left.\mathrm{OCHCH}_{2} \mathrm{O}\right), 89.2(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 89.8(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 96.7\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 123.1(1 \mathrm{C}$,

Carom.), 123.3 (1C, Carom.), 127.0 (2C, Carom.), 128.0 (2C, Carom.), 128.46 (1C, Carom.), 128.50 (2C, Carom.), 130.0 (2C, Carom.), 131.7 (2C, Carom.), 131.8 (2C, Carom.), 133.3 (1C, Carom.), 139.5 (1C, Carom.), 144.8 (1C, $\mathrm{C}_{\text {arom. }}$); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2924,2878,1597$, 1508, 1443, 1358, 1177, 1107, 1034, 941, 833, 814, 756, 691, 664; HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calc for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{~S}: 495.1836$, found: 495.1891 ; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=25.7$ min, purity 92.8%.
4.2.34.
(S)-1-[1-(2-Azidoethoxy)-2-(methoxymethoxy)ethyl]-4-

(phenylethynyl)benzene (44)

Sodium azide ($880 \mathrm{mg}, 14 \mathrm{mmol}$) was added to a solution of $42(1.1 \mathrm{~g}, 2.4 \mathrm{mmol})$ in DMSO (80 mL). The mixture was heated to reflux for 16 h . After cooling the mixture to ambient temperature, water was added and the mixture was extracted with ethyl acetate $(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography $(\varnothing=4 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, cyclohexane/ethyl acetate $8 / 2 \rightarrow 1 / 2, \mathrm{~V}=20$ mL) to give 44 as yellowish oil ($770 \mathrm{mg}, 2.2 \mathrm{mmol}, 92 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.77$ (cyclohexane/ethyl acetate $=2: 1$); specific rotation: $[\alpha]_{D}^{20}=+1.9\left(2.5 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.36(\mathrm{dt}, \mathrm{J}=13.2 / 5.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.42\left(\mathrm{dt}, J=13.2 / 5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.59(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$), $3.65\left(\mathrm{dd}, J=10.8 / 4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right.$), $3.78(\mathrm{dd}, J=10.8 / 7.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), $4.54\left(\mathrm{dd}, J=7.4 / 4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 4.63(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), $4.66\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 7.32-7.37\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.51$ 7.56 (m, 4H, Harom.); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[p p m]=51.0\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 55.4(1 \mathrm{C}$, $\left.\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$, $68.3\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right)$, $71.7\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right)$, 81.9 (1C, $\mathrm{OCHCH}_{2} \mathrm{O}$), $89.2(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 89.8(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 96.8\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 123.30\left(1 \mathrm{C}, \mathrm{C}_{\text {arom. }}\right), 123.32$
(1C, Carom.), 127.2 (2C, Carom.), 128.48 (1C, Carom.), 128.50 (2C, Carom.), 131.8 (2C, Carom.), 131.9 (2C, Carom.), 139.1 (1C, Carom.); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2928,2882,2102$, 1597, 1508, 1443, 1342, 1285, 1211, 1150, 1107, 1034, 964, 918, 833, 756, 691; HRMS $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]^{+}$calc for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}: 352.1656$, found: 352.1656 ; HPLC (method $1): t_{R}=22.3 \mathrm{~min}$, purity 97.8%.
4.2.35.
(S)-1-[1-(3-Azidopropoxy)-2-(methoxymethoxy)ethyl]-4-
(phenylethynyl)benzene (45)

Sodium azide ($800 \mathrm{mg}, 12 \mathrm{mmol}$) was added to a solution of $43(1.1 \mathrm{~g}, 2.2 \mathrm{mmol})$ in DMSO (80 mL). The mixture was heated to reflux for 16 h . After cooling the mixture to ambient temperature, water was added and the mixture was extracted with ethyl acetate $(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography $(\varnothing=4 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, cyclohexane/ethyl acetate $8 / 2 \rightarrow 1 / 2, \mathrm{~V}=20$ mL) to give 45 as yellowish oil ($730 \mathrm{mg}, 2.0 \mathrm{mmol}, 90 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.66$ (cyclohexane/ethyl acetate $=8: 2$); specific rotation: $[\alpha]_{D}^{20}=+38.6\left(1.9 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta[\mathrm{ppm}]=1.77-1.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.30(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.35-3.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.47(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$), $3.62\left(\mathrm{dd}, \mathrm{J}=10.8 / 4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 3.74(\mathrm{dd}, \mathrm{J}=10.8 / 7.4$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 4.48\left(\mathrm{dd}, J=7.5 / 4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 4.62(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), $4.65\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 7.29-7.38\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.50-$ $7.56\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=29.4\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 48.6(1 \mathrm{C}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$), $55.4\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 66.1\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right)$, 71.7 (1C, $\left.\mathrm{OCHCH}_{2} \mathrm{O}\right), 81.6\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 89.2(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 89.7(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 96.7(1 \mathrm{C}$, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), 123.1 (1C, $\mathrm{C}_{\text {arom. }}$), 123.3 (1C, $\mathrm{C}_{\text {arom. }}$), 127.1 (2C, $\mathrm{C}_{\text {arom. }}$), 128.4 (1C,

Carom.), 128.5 (2C, Carom.), 131.7 (2C, Carom.), 131.8 (2C, Carom.), 139.6 (1C, Carom.); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2928,2874,2095,1597,1508,1443,1400,1342,1300,1261,1211$, 1150, 1107, 1034, 972, 918, 837, 756, 691; HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calc for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}$: 366.1812, found: 366.1819; HPLC (method 1): $t_{R}=25.1$ min, purity 97.3%.

4.2.36. 3-(Benzyloxy)-2-methyl-4H-pyran-4-one (47)

47 was synthesized according to the literature: ${ }^{65}$

Potassium carbonate ($4.8 \mathrm{~g}, 35 \mathrm{mmol}$) and benzyl bromide ($1.3 \mathrm{~mL}, 1.9 \mathrm{~g}, 11 \mathrm{mmol}$) were added to a solution of 3-hydroxy-2-methyl-4H-pyran-4-one ($1.1 \mathrm{~g}, 8.7 \mathrm{mmol}$) in dry acetonitrile (50 mL). After heating the mixture to reflux for 16 h , water was added and the mixture was extracted with ethyl acetate (3x). The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=4 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, cyclohexane/ethyl acetate $=8: 2 \rightarrow 2: 1, \mathrm{~V}=30 \mathrm{~mL}$) to give 47 as yellowish oil (1.8 g , $8.3 \mathrm{mmol}, 95 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.49$ (cyclohexane/ethyl acetate $=1: 1$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta[\mathrm{ppm}]=2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 6.50(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}$, OCH=CHCO), 7.30-7.36 (m, 3H, 3'-H phenyl 4'-H $_{\text {phenyl }}$, $\left.{ }^{\prime}-\mathrm{H}_{\text {phenyl }}\right)$, 7.37-7.40 (m, 2H, 2'$H_{\text {phenyl, }} \quad 6$ '- $\mathrm{H}_{\text {phenyl }}$), $7.64(\mathrm{~d}, \quad J=5.6 \mathrm{~Hz}, \quad 1 \mathrm{H}, \quad \mathrm{OCH}=\mathrm{CHCO}) ;{ }^{13} \mathrm{C} \quad \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta[\mathrm{ppm}]=15.0\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 73.8\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 117.0(1 \mathrm{C}, \mathrm{OCH}=\mathrm{CHCO}), 128.5(1 \mathrm{C}$,
 $\mathrm{C}-1$ 'phenyl), $143.8\left(1 \mathrm{C}, \mathrm{OC}=\mathrm{CCH}_{3}\right), 153.8(1 \mathrm{C}, \mathrm{OCH}=\mathrm{CHCO}), 160.6\left(1 \mathrm{C}, \mathrm{OC}=\mathrm{CCH}_{3}\right)$ 175.3 (1C, OCH=CHCO); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3063,3028,2959,2882,1643,1574$, 1497, 1427, 1389, 1354, 1250, 1173, 1080, 1026, 972, 914, 829, 748, 702; LCMS
$(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{3}$: 217.0859, found: 217.0875; HPLC (method 1$)$: $\mathrm{t}_{\mathrm{R}}=$ 17.2 min, purity 97.9 \%.

4.2.37.

(S)-3-(Benzyloxy)-1-(2-\{2-(methoxymethoxy)-1-[4-
(phenylethynyl)phenyl]ethoxy\}ethyl)-2-methylpyridin-4(1H)-one (48)

Under N_{2} atmosphere, polymer-bound triphenylphosphine ($1.6 \mathrm{mmol} / \mathrm{g}, 2.0 \mathrm{~g}, 3.2$ mmol) was added to a solution of $44(570 \mathrm{mg}, 1.6 \mathrm{mmol})$ in dry THF (50 mL) and the reaction was stirred for 72 h at room temperature. Then water (0.5 mL) was added and the mixture was filtered through Celite via a Nutsch-type filter. The organic solvent was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo (obtained crude product: 407 mg). A portion of the crude product (180 mg) was dissolved in water $(50 \mathrm{~mL})$ and 47 $(130 \mathrm{mg}, 0.58 \mathrm{mmol})$ was added. The reaction mixture was stirred for 7 d at $140{ }^{\circ} \mathrm{C}$ and then quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. After cooling the mixture to ambient temperature, it was extracted with ethyl acetate ($3 \times$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=1 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, dichloromethane/methanol $98 / 2 \rightarrow 90 / 10, \mathrm{~V}=5 \mathrm{~mL})$ to give 48 as brown solid (71 mg , $0.14 \mathrm{mmol}, 19 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.67$ (dichloromethane/methanol $=9: 1$); melting point: 127 ${ }^{\circ} \mathrm{C}$; specific rotation: $[\alpha]_{D}^{20}=+2.8\left(\mathrm{c}=1.5 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=2.12$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OC}=\mathrm{CCH}_{3}\right), 3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 3.50-3.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}(1 \mathrm{H})\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}(1 \mathrm{H})\right), 3.60-3.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}(1 \mathrm{H}), \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}(1 \mathrm{H})\right), 3.93-4.00$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 4.06 (ddd, $J=14.9 / 7.6 / 3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $4.42(\mathrm{dd}, J=$ $\left.7.8 / 3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 4.58\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.59(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}$), $5.17\left(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.29(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.58-6.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}=\mathrm{CHCO}), 7.06-7.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.26-7.31$
(m, 3H, Harom.), 7.32 - 7.37 (m, 4H, NCH=CHCO, Harom.), $7.40-7.43$ (m, 2H, Harom.), $7.46-7.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.49-7.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=$ $12.9\left(1 \mathrm{C}, \mathrm{OC}=\mathrm{CCH}_{3}\right), 53.5\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 55.4\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 67.7(1 \mathrm{C}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $71.6\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 73.4\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 82.0\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 88.9$ (1C, $\mathrm{C} \equiv \mathrm{C}$), 90.2 (1C, $\mathrm{C} \equiv \mathrm{C}), 96.8\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 116.9$ (1C, $\left.\mathrm{NCH}=\mathrm{CHCO}\right), 123.1$ (1C, Carom.), 123.7 (1C, Carom.), 126.9 (2C, Carom.), 128.2 (1C, Carom.), 128.4 (2C, Carom.), 128.5 (2C, Carom.), 128.6 (1C, Carom.), 129.2 (2C, Carom.), 131.8 (2C, Carom.), 132.1 (2C, Carom.), 137.6 (1C, Carom.), 138.1 (1C, Carom.), 139.3 (1C, $\mathrm{NCH}=\mathrm{CHCO}$), 141.9 (1C, $\left.\mathrm{OC}=\mathrm{CCH}_{3}\right), 145.9\left(1 \mathrm{C}, \mathrm{OC}=\mathrm{CCH}_{3}\right), 172.9(1 \mathrm{C}, \mathrm{NCH}=\mathrm{CHCO})$; IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=$ 2928, 2882, 1624, 1566, 1508, 1443, 1250, 1215, 1150, 1107, 1030, 968, 918, 833, 756, 691; HRMS (m/z): [M+H] ${ }^{+}$calc for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{NO}_{5}: 524.2431$, found: 524.2455 ; HPLC $($ method 2$): \mathrm{t}_{\mathrm{R}}=18.5 \mathrm{~min}$, purity 96.5%.

4.2.38.
 (S)-3-(Benzyloxy)-1-(3-\{2-(methoxymethoxy)-1-[4-(phenylethynyl)phenyl]ethoxy\}propyl)-2-methylpyridin-4(1H)-one (49)

Under N_{2} atmosphere, polymer-bound triphenylphosphine ($1.6 \mathrm{mmol} / \mathrm{g}, 2.2 \mathrm{~g}, 3.6$ $\mathrm{mmol})$ was added to a solution of $45(650 \mathrm{mg}, 1.8 \mathrm{mmol})$ in dry THF (50 mL) and the reaction was stirred for 72 h at room temperature. Then water (0.5 mL) was added and the mixture was filtered through Celite via a Nutsch-type filter. The organic solvent was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo (obtained crude product: 330 mg). A portion of the crude product (180 mg) was dissolved in water (50 mL) and 47 $(120 \mathrm{mg}, 0.53 \mathrm{mmol})$ was added. The reaction mixture was stirred for 7 d at $140{ }^{\circ} \mathrm{C}$. Then a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added. After cooling the mixture to ambient temperature, it was extracted with ethyl acetate (3x). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The
residue was purified by flash column chromatography ($\varnothing=1 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, dichloromethane/methanol 98/2 $\rightarrow 90 / 10, \mathrm{~V}=5 \mathrm{~mL}$) to give 49 as yellowish oil (71 mg , $0.13 \mathrm{mmol}, 14 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.69$ (dichloromethane/methanol $=9: 1$); specific rotation: $[\alpha]_{D}^{20}=+17.0\left(1.6 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=1.81-1.96(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OC}=\mathrm{CCH}_{3}\right), 3.17-3.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.33$ (s, $3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}$), $3.35-3.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$), 3.61 (dd, $J=10.7 / 3.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), 3.72 (dd, $J=10.7 / 8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}$), $3.94-4.15$ (m, 2H, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $4.42\left(\mathrm{dd}, J=8.1 / 3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}\right), 4.64(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), $4.66\left(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 5.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.81$ $7.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}=\mathrm{CHCO}), 7.26-7.41\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{NCH}=\mathrm{CHCO}, \mathrm{H}_{\text {arom. }}\right), 7.49-7.58(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{H}_{\text {arom. }}$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right): ~ \delta[\mathrm{ppm}]=12.7$ (1C, $\mathrm{OC}=\mathrm{CCH}_{3}$), 30.4 (1C, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 51.3 ($1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 55.6 (1C, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), 64.3 (1C, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $71.7\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right)$, $73.6\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 81.8\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right)$, $88.9(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 90.1(1 \mathrm{C}, \mathrm{C} \equiv \mathrm{C}), 96.8\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 116.5(1 \mathrm{C}, \mathrm{NCH}=\mathrm{CHCO})$, 123.2 (1C, Carom.), 123.6 (1C, Carom.), 127.0 (2C, Carom.), 128.4 (1C, Carom.), 128.48 (2C, Carom.), 128.53 (2C, Carom.), 128.6 (1C, Carom.), 129.3 (2C, C arom.), 131.8 (2C, Carom.), 132.0 (2C, Carom.), 138.7 (1C, Carom.), 139.6 (1C, $\mathrm{NCH}=\mathrm{CHCO}$); the signals for $\mathrm{C}_{\text {arom. }}$., $\mathrm{OC}=\mathrm{CCH}_{3}, \mathrm{OC}=\mathrm{CCH}_{3}, \mathrm{NCH}=\mathrm{CHCO}$ could not be observed in the spectrum; IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2928,2882,1624,1566,1497,1250,1215,1150,1107,1034,972,918$, 833, 756, 694; HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calc for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{NO}_{5}$: 538.2588 , found: 538.2627 ; HPLC (method 2$): t_{R}=18.9$ min, purity 96.4%.

4.2.39. (S)-3-Hydroxy-1-\{2-[2-hydroxy-1-(4-phenethylphenyl)ethoxy]ethyl\}-2-methylpyridin-4(1H)-one (50)

48 ($60 \mathrm{mg}, 0.11 \mathrm{mmol}$) was dissolved in dry methanol (5 mL) and a saturated solution of hydrochloric acid in methanol (1 mL) was added. After stirring the mixture at room temperature overnight, the mixture was extracted with EtOAc ($3 \times$), the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was dissolved in dry methanol $(10 \mathrm{~mL})$ and $\mathrm{Pd} / \mathrm{C}(10 \%, 10 \mathrm{mg})$ was added. The mixture was stirred under H_{2} atmosphere (4 bar) at room temperature for 16 h . The catalyst was filtered off (Celite) and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=1 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, dichloromethane/methanol $98 / 2 \rightarrow 90 / 10, \mathrm{~V}=5 \mathrm{~mL}$) to give 50 as red solid (12 mg , $0.03 \mathrm{mmol}, 27 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.47$ (dichloromethane/methanol $=9: 1$); melting point: 255 ${ }^{\circ} \mathrm{C}$ (decomposition); specific rotation: $[\alpha]_{D}^{20}=+0.5\left(1.2 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta$ $[\mathrm{ppm}]=2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{HOC}=\mathrm{CCH}_{3}\right), 2.83-2.89\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 3.40-3.65(\mathrm{~m}$, $\left.3 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}(1 \mathrm{H})\right), 3.68-3.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 4.14-4.34(\mathrm{~m}$, $\left.3 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{O}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 6.36-6.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}=\mathrm{CHCO}), 6.89-6.94(\mathrm{~m}, 2 \mathrm{H}$, Harom.), $7.03-7.07$ (m, 2H, $H_{\text {arom. }}$), 7.11 - 7.17 (m, 3H, $H_{\text {arom. }}$), $7.19-7.25$ (m, 2H, $\mathrm{H}_{\text {arom. }}$), $7.56-7.64$ (m, 1H, NCH=CHCO); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=12.2$ (1C, $\mathrm{HOC}=\mathrm{CCH}_{3}$), $38.7\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 39.0\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 54.8$ (1C, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $67.6\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{OH}\right)$, $68.4\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, $84.8\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{O}\right)$, 112.3 (1C, $\mathrm{NCH}=\mathrm{CHCO}$), 126.9 (1C, Carom.), 127.9 (2C, Carom.), 129.3 (2C, Carom.), 129.5 (2C, Carom.), 129.7 (2C, Carom.), 133.3 (1C, $\mathrm{HOC}=\mathrm{CCH}_{3}$), 137.3 (1C, $\mathrm{C}_{\text {arom. }}$), 139.9 (1C, $\mathrm{NCH}=\mathrm{CHCO}$), 142.9 (1C, Carom.), 143.2 (1C, Carom.), 147.0 (1C, $\mathrm{HOC=CCH} 3$), 170.8 (1C, NCH=CHCO); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3267,2978,2920,1624,1562,1504$, 1454, 1346, 1250, 1107, 1072, 822, 748,$698 ; \operatorname{HRMS}(m / z):[\mathrm{M}+\mathrm{H}]^{+}$calc for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{4}$: 394.2013, found: 394.2073; HPLC (method 2): $\mathrm{t}_{\mathrm{R}}=15.5 \mathrm{~min}$, purity 98.0%.

4.2.40. (S)-3-Hydroxy-1-\{3-[2-hydroxy-1-(4-phenethylphenyl)ethoxy]propyl\}-2-methylpyridin-4(1H)-one (51)

$49(60 \mathrm{mg}, 0.11 \mathrm{mmol})$ was dissolved in dry methanol $(5 \mathrm{~mL})$ and a saturated solution of hydrochloric acid in methanol (1 mL) was added. After stirring the mixture at room temperature overnight, the mixture was extracted with EtOAc (3x). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was dissolved in dry methanol $(10 \mathrm{~mL})$ and $\mathrm{Pd} / \mathrm{C}(10 \%, 10 \mathrm{mg})$ was added. The mixture was stirred under H_{2} atmosphere (4 bar) at room temperature for 16 h . The catalyst was filtered off (Celite) and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=1 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, dichloromethane/methanol $98 / 2 \rightarrow 90 / 10, \mathrm{~V}=5 \mathrm{~mL}$) to give 51 as red solid (12 mg , $0.03 \mathrm{mmol}, 26 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.49$ (dichloromethane/methanol $=9: 1$); specific rotation: $[\alpha]_{D}^{20}=+29.3\left(1.8 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=1.90-2.06(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{HOC}=\mathrm{CCH}_{3}\right), 2.84-2.94\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 3.32$ - $3.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.36-3.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.56(\mathrm{dd}, \mathrm{J}=$ $\left.11.7 / 3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 3.69\left(\mathrm{dd}, J=11.7 / 8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 4.12-$ $4.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 4.31\left(\mathrm{dd}, J=8.2 / 3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 6.34(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}=\mathrm{CHCO}$), $7.12-7.20$ (m, 5H, $\mathrm{H}_{\text {arom. }}$), $7.20-7.24$ (m, 4H, $\mathrm{H}_{\text {arom. }}$), 7.59 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}=\mathrm{CHCO}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]=11.9\left(1 \mathrm{C}, \mathrm{HOC}=\mathrm{CCH}_{3}\right)$, 31.6 (1C, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 38.8 (1C, $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 39.0 (1C, $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 52.3 (1C, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), $65.9\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 67.7\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{OH}\right)$, $84.9(1 \mathrm{C}$, $\mathrm{OCHCH}_{2} \mathrm{OH}$), 112.5 (1C, $\mathrm{NCH}=\mathrm{CHCO}$), 126.9 (1C, Carom.), 128.1 (2C, Carom.), 129.3 (2C, Carom.), 129.5 (2C, Carom.), 129.8 (2C, Carom.), 132.9 (1C, $\mathrm{OC}=\mathrm{CCH}_{3}$), 137.9 (1C, Carom.), 139.2 (1C, $\mathrm{NCH}=\mathrm{CHCO}$), 143.0 (1C, Carom.), 143.1 (1C, Carom.), 147.3 (1C, $\mathrm{HOC}_{\mathrm{CCH}}^{3}$), 170.5 (1C, $\mathrm{NCH}=\mathrm{CHCO}$); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3275,2924,2859,1624$,

1562, 1508, 1346, 1246, 1103, 1038, 822, 748, 698; $\operatorname{HRMS}(m / z):[M+H]^{+}$calc for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}_{4}: 408.2169$, found: 408.2268 ; HPLC (method 2): $\mathrm{t}_{\mathrm{R}}=16.0 \mathrm{~min}$, purity 97.8%.

4.2.41. (S)-N-Hydroxy-2-[2-hydroxy-1-(4-phenethylphenyl)ethoxy]acetamide (53)

52 ($53 \mathrm{mg}, 0.19 \mathrm{mmol}$) was dissolved in dry methanol (10 mL) and Pd/C (10 \%, 10 mg) was added. The mixture was stirred under H_{2} atmosphere (balloon) at ambient temperature for 16 h . Then, the catalyst was filtered off (Celite) and the solvent was removed in vacuo. The crude product (50 mg) was dissolved in dry methanol (5 mL) and hydroxylamine hydrochloride ($38 \mathrm{mg}, 0.54 \mathrm{mmol}$) and a 5.4 M solution of sodium methoxide in methanol ($0.1 \mathrm{~mL}, 0.54 \mathrm{mmol}$) were added. The reaction mixture was stirred at ambient temperature for 16 h until TLC showed complete conversion. Then the reaction mixture was acidified with 1.0 M HCl and the mixture was extracted with ethyl acetate $(3 \times)$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography $(\varnothing=1 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, dichloromethane $/$ methanol $=98 / 2 \rightarrow 90 / 10, \mathrm{~V}$ $=5 \mathrm{~mL}$) to give 53 as brown oil ($33 \mathrm{mg}, 0.10 \mathrm{mmol}, 55 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.61$ (dichloromethane/methanol $=9: 1$); specific rotation: $[\alpha]_{D}^{20}=+66.4\left(3.0 ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $\delta[\mathrm{ppm}]=2.84-2.95\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 3.58(\mathrm{dd}, \mathrm{J}=11.9 / 3.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}$), $3.69\left(\mathrm{dd}, J=11.9 / 8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 3.84(\mathrm{~d}, J=14.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CONHOH}$), $3.92\left(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CONHOH}\right.$), 4.41 (dd, $J=$ $8.4 / 3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHCH} 2 \mathrm{OH}), 7.11-7.25\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta[\mathrm{ppm}]$ $=38.7\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 39.0\left(1 \mathrm{C}, \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 67.5\left(1 \mathrm{C}, \mathrm{OCHCH}_{2} \mathrm{OH}\right), 68.3(1 \mathrm{C}$, $\mathrm{OCH}_{2} \mathrm{CONHOH}$), 85.6 (1C, $\mathrm{OCHCH}_{2} \mathrm{OH}$), 126.9 (1C, Carom.), 128.0 (2C, Carom.), 129.3 (2C, Carom.), 129.5 (2C, Carom.), 129.9 (2C, C arom.), 136.4 (1C, Carom.), 142.9 (1C, Carom.), 143.5 (1C, Carom.), 169.1 (1C, $\mathrm{OCH}_{2} \mathrm{CONHOH}$); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2978,1728,1670$,

1431, 1192, 1130, 1053, 1030, 818, 721, 698; HRMS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{4}$: 316.1543, found: 316.1548; HPLC (method 2): $\mathrm{t}_{\mathrm{R}}=15.8 \mathrm{~min}$, purity 96.3%.

4.2.42. 3-(Benzyloxy)-1-(4-bromophenethyl)-2-methylpyridin-4(1H)-one (55)

2-(4-Bromophenyl)ethylamine ($210 \mathrm{mg}, 1.0 \mathrm{mmol}$) was added to an emulsion of 47 $(230 \mathrm{mg}, 1.0 \mathrm{mmol})$ in water $(5 \mathrm{~mL})$. The reaction mixture was stirred at $140^{\circ} \mathrm{C}$ for 10 d. Afterwards, ethyl acetate was added and after separation of the layers, the aqueous phase was extracted with ethyl acetate $(2 \times)$. The combined organic layers were dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=3 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, dichloromethane/methanol $=97: 3, \mathrm{~V}=20 \mathrm{~mL})$ to give 55 as brownish oil $(250 \mathrm{mg}, 0.62$ mmol, 60% yield). $\quad R_{f}=0.29$ (dichloromethane/methanol $=10: 1$); ${ }^{1} \mathrm{H} \quad$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OC}=\mathrm{CCH}_{3}\right), 2.84\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 3.95$ ($\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), $5.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 6.34(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NCH}=\mathrm{CHCO}$), $6.80-6.85\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}_{4 \text {-bromophenyl, }} 6^{\prime}-\mathrm{H}_{4 \text {-bromophenyl }}\right), 6.90(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}$, 1H, NCH=CHCO), $7.28-7.35$ (m, 3H, 3"-H benzyloxy, 4"-H ${ }_{\text {benzyloxy, }} 5$ "- $H_{\text {benzyloxy }}$), 7.37 7.42 (m, 4H, 2"-H ${ }^{\text {benzyloxy, 6"-H }}$ benzyloxy, 3'-H4-bromophenyl, $5^{\prime}-\mathrm{H}_{4 \text {-bromophenyl }}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=12.6$ (1C, $\left.\quad \mathrm{OC}=\mathrm{CCH}_{3}\right), 36.6$ (1C, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$, 54.9 (1C, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 73.1 ($1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{Ph}$), 117.3 (1C, $\mathrm{NCH}=\mathrm{CHCO}$), 121.5 (1C, $\mathrm{C}-4_{4}{ }_{4}$ bromophenyl), 128.2 (1C, C-4"benzyloxy), 128.4 (2C, C-3"benzyloxy, C-5"benzyloxy), 129.4 (2C, C2"benzyloxy, C-6"benzyloxy), 130.6 (2C, C-2'4-bromophenyl, C-6'4-bromophenyl), 132.3 (2C, C-3'4bromophenyl, $\mathrm{C}-\mathrm{S}^{\prime} 4$-bromophenyl), 135.3 (1C, $\mathrm{C}-1$ '4-bromophenyl), 137.6 (1C, C -1"benzyloxy), 138.3 (1C, $\mathrm{NCH}=\mathrm{CHCO}$), 140.6 (1C, $\mathrm{OC}=\mathrm{CCH}_{3}$), $146.2\left(1 \mathrm{C}, \mathrm{OC}=\mathrm{CCH}_{3}\right), 173.5(1 \mathrm{C}$, $\mathrm{NCH}=\mathrm{CHCO}$); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2978,1701,1624,1566,1524,1489,1454,1400$, 1362, 1246, 1215, 1150, 1069, 1011, 972, 818, 737, 702; HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd
for $\mathrm{C}_{21} \mathrm{H}_{21}{ }^{79} \mathrm{BrNO}_{2}$: 398.0750, found: 398.0761; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=20.3$ min, purity 97.4 \%.

4.2.43. 3-(Benzyloxy)-2-methyl-1-[4-(phenylethynyl)phenethyl]pyridin-4(1H)-one (56)

Under $\quad \mathrm{N}_{2} \quad$ atmosphere, \quad copper $(\mathrm{I}) \quad$ iodide $\quad(10 \mathrm{mg}, \quad 0.05 \mathrm{mmol})$, tetrakis(triphenylphosphine)palladium(0) (46 mg, 0.04 mmol$)$ and phenylacetylene $(54 \mu \mathrm{~L}, 50 \mathrm{mg}, 0.49 \mathrm{mmol})$ were added to a solution of $55(140 \mathrm{mg}, 0.35 \mathrm{mmol})$ in a mixture of triethylamine (5 mL) and acetonitrile (2 mL). The mixture was heated to reflux and additional phenylacetylene ($54 \mu \mathrm{~L}, 50 \mathrm{mg}, 0.49 \mathrm{mmol}$) was added. After stirring the mixture under reflux conditions for 16 h , the solvent was evaporated and the residue was purified by flash column chromatography ($\varnothing=3 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, ethyl acetate/methanol $=10: 1, \mathrm{~V}=20 \mathrm{~mL}$) to give 56 as brown oil ($99 \mathrm{mg}, 0.24 \mathrm{mmol}, 67 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.29$ (dichloromethane/methanol $=10: 1$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=2.04$ (s, 3H, OC=CCH3), $2.90\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 3.98(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 5.24 (s, 2H, $\mathrm{OCH}_{2} \mathrm{Ph}$), 6.37 (d, J=7.5 Hz, 1H, NCH=CHCO), 6.92 (d, J $=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}=\mathrm{CHCO}), 6.93-6.96\left(\mathrm{~m}, 2 \mathrm{H}, 2{ }^{\prime}-\mathrm{H}_{4 \text {-(phenylethyny)phenyl, }} 6^{\prime}-\mathrm{H}_{4}\right.$ -
 Hbenzyloxy, 4"'-H benzyloxy), $7.40-7.46$ (m, 4H, 2"'-H ${ }_{\text {benzyloxy, }} 6$ "'- $H_{\text {benzyloxy, }}$ 3'-H4(phenylethynyl)phenyl, 5 '- $\mathrm{H}_{4-(\text { phenylethynyl)phenyl) }} 7.50-7.55\left(\mathrm{~m}, 2 \mathrm{H}, 2 "-\mathrm{H}_{\text {phenyl }}, 6 "-\mathrm{H}_{\text {phenyl }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta[\mathrm{ppm}]=12.6\left(1 \mathrm{C}, \mathrm{OC}=\mathrm{CCH}_{3}\right), 37.1\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 55.0(1 \mathrm{C}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 73.2\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 88.8(1 \mathrm{C}, \mathrm{C}=\mathrm{C}), 90.2(1 \mathrm{C}, \mathrm{C}=\mathrm{C})$, 117.3 (1C, $\mathrm{NCH}=\mathrm{CHCO}$), 122.6 (1C, $\mathrm{C}^{2} 4^{4}$-(phenylethynyl)phenyl), 123.2 (1C, $\mathrm{C}-1{ }^{\prime \prime}$ phenyl), 128.2 (1C, C4"'benzyloxy), 128.4 (2C, C-3"'benzyloxy, C-5"'benzyloxy), 128.5 (2C, C-3"phenyl, C-5"phenyl), 128.6 (1C, C-4"phenyl), 129.0 (2C, C-2'4-(phenylethynyl)phenyl, C-6'4-(phenylethynyl)phenyl), 129.4
(2C, C-2"'benzyloxy, C-6"'benzyloxy), 131.7 (2C, C-2"phenyl, C-6"pheny), 132.3 (2C, C-3'4(phenylethynyl)phenyl, C-5'4-(phenylethynyl)phenyl), 136.5 (1C, C-1'4-(phenylethynyl)phenyl), 137.6 (1C, C1 "'benzyloxy), $138.4(1 \mathrm{C}, \mathrm{NCH}=\mathrm{CHCO}), 140.7\left(1 \mathrm{C}, \mathrm{OC}=\mathrm{CCH}_{3}\right), 146.2\left(1 \mathrm{C}, \mathrm{OC}=\mathrm{CCH}_{3}\right)$, 173.5 (1C, $\mathrm{NCH}=\mathrm{CHCO}$); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2978,2886,1732,1624,1562,1508$, 1497, 1454, 1369, 1242, 1215, 1153, 1069, 968, 826, 752, 691; HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{NO}_{2}: 420.1958$, found: 420.1961 ; $\mathrm{HPLC}(\operatorname{method} 1): \mathrm{t}_{\mathrm{R}}=22.8 \mathrm{~min}$, purity 97.9 \%.

4.2.44. 3-Hydroxy-2-methyl-1-[4-(phenylethynyl)phenethyl]pyridin-4(1H)-one (57)

An emulsion of 56 ($87 \mathrm{mg}, 0.21 \mathrm{mmol}$) in a 6 M aqueous solution of hydrochloric acid $(7.5 \mathrm{~mL})$ and methanol (2 mL) was heated to reflux for 4 h . Then the reaction mixture was cooled to ambient temperature, a saturated aqueous solution of potassium carbonate was added, and the mixture was extracted with ethyl acetate (3x). The combined organic layers were washed with a saturated aqueous solution of NaHCO_{3} and brine, dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=1 \mathrm{~cm}, \mathrm{~h}=15 \mathrm{~cm}$, cyclohexane/ ethyl acetate $=1: 2 \rightarrow 0: 1 \rightarrow$ ethyl acetate/methanol $=10: 1 \rightarrow 10: 1+$ 0.1 \% triethylamine, $\mathrm{V}=5 \mathrm{~mL}$) to give 57 as yellowish solid ($43 \mathrm{mg}, 0.13 \mathrm{mmol}, 60 \%$ yield). $\quad R_{f}=0.21$ (ethyl acetate/methanol $=10: 1$); melting point $=212{ }^{\circ} \mathrm{C}$ (decomposition); ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta[\mathrm{ppm}]=2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OC}=\mathrm{CCH}_{3}\right), 3.00(\mathrm{t}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 4.17 (t, $\left.J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 6.04(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, 1H, $\mathrm{NCH}=\mathrm{CHCO}$), $7.24-7.29\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}_{4 \text {-(phenylethynyl)phenyl, }} 6^{\prime}-\mathrm{H}_{4 \text {-(phenylethynyl)phenyl), }} 7.40\right.$ $-7.45\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}=\mathrm{CHCO}, 3\right.$ "- $\mathrm{H}_{\text {phenyl }}, 5^{\prime \prime}-\mathrm{H}_{\text {phenyl }}, 4$ "- $\left.\mathrm{H}_{\text {phenyl }}\right), 7.46-7.51\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}_{4-}\right.$ (phenylethynyl)phenyl, 5 '- $\mathrm{H}_{4-(\text { (phenylethynyl)phenyl), }} 7.52-7.57\left(\mathrm{~m}, 2 \mathrm{H}, 2 "-\mathrm{H}_{\text {phenyl }}, 6 "-\mathrm{H}_{\text {phenyl }}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $)_{6}: \delta[p p m]=11.3\left(1 \mathrm{C}, \mathrm{OC}=\mathrm{CCH}_{3}\right), 36.1\left(1 \mathrm{C}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 53.5(1 \mathrm{C}$,
$\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 89.2(2 \mathrm{C}, \mathrm{C}=\mathrm{C}), 110.4$ (1C, $\mathrm{NCH}=\mathrm{CHCO}$), 120.5 (1C, $\mathrm{C}^{2} \mathrm{H}^{\prime}{ }_{4}$ (phenylethynyl)phenyl), 122.3 (1C, $\mathrm{C}-1$ "phenyl), 128.4 (1C, $\mathrm{OC}=\mathrm{CCH}_{3}$), 128.71 (1C, $\mathrm{C}-4$ "phenyl), 128.73 (2C, C-3"phenyl, C-5"phenyl), 129.5 (2C, C-2'4-(phenylethynyl)phenyl, C-6'4(phenylethynyl)phenyl) 131.3 (2C, C-2"phenyl, C-6"phenyl), 131.4 (2C, C-3'4-(phenylethynyl)phenyl, C-5'4(phenylethynyl)phenyl), 137.5 (1C, $\mathrm{NCH}=\mathrm{CHCO}$), 138.4 (1C, $\mathrm{C}-1$ '4-(phenylethynyl)phenyl), 145.4 (1C, $\mathrm{HOC}_{=} \mathrm{CCH}_{3}$), 168.9 (1C, $\mathrm{NCH}=\mathrm{CHCO}$); IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3653,3136,2978,2889$, 1624, 1574, 1531, 1508, 1443, 1381, 1346, 1265, 1223, 1184, 1157, 1061, 1042, 953, 818, 756,691 ; $\mathrm{HRMS}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{2}: 330.1489$, found: 330.1502 ; HPLC (method 1): $\mathrm{t}_{\mathrm{R}}=27.0 \mathrm{~min}$, purity 99.5% (tailing).

4.3. Metabolism studies

4.3.1. In silico prediction of metabolism

Sites of metabolism were predicted with FAME 2^{46} with default settings. SyGMa was executed via a KNIME^{66} node available within the 3D-e-Chem virtual machine. ${ }^{67-68}$ The number of phase 1 and phase 2 cycles were each set to " 1 ".

4.3.2. In vitro metabolism studies with rat liver microsome suspensions

4.3.2.1. Chemicals and materials

Double distilled water for HPLC and for the preparation of buffer solutions was generated by a Milli-Q Advantage Ultrapure Water System, Millipore (Billerica, MA, USA). Magnesium chloride hexahydrate was purchased from Honeywell Riedel-de Haën (Seelze, Germany). Acetonirtrile in LC-MS grade was obtained from Thermo Fischer Scientific (Schwerte, Germany). NADPH tetra sodium salt was purchased from Carl Roth (Karlsruhe, Germany). Formic acid p.a. was obtained from Acros Organics
(Thermo Fischer Scientific). Phosphate buffer saline tablets, uridine 5'diphospoglucoronic acid trisodium salt (UDGPA), Coomassive Brilliant Blue G^{\circledR} and methanol in LC-MS grade were purchased from Sigma-Aldrich (Munich, Germany).

4.3.2.2. Preparation of rat liver microsomes

Deep frozen livers of rats were obtained from the working group of Prof. Dr. M. Düfer, Institute of Pharmaceutical and Medicinal Chemistry, Münster, Germany.

Livers $(20 \mathrm{~g})$ were thawed in $1.15 \%(\mathrm{~m} / \mathrm{V})$ potassium chloride solution at $4^{\circ} \mathrm{C}$. Livers were cut in slices and homogenized in an Elvehjem-Potter (10 strokes, 3 sec.) with 20 mL of cold phosphate buffer ($\mathrm{pH} 7.4,0.1 \mathrm{M}$) containing sodium EDTA (0.5 mM). 60 mL of cold sodium phosphate buffer ($\mathrm{pH} 7.4,0.1 \mathrm{M}$) was added and the resulting suspension centrifuged for 20 min at $4^{\circ} \mathrm{C}$ at $9,000 \mathrm{~g}$. The supernatant was centrifuged at $45,000 \mathrm{~g}$ for 90 min . The resulting microsome pallet was resolved in sodium phosphate buffer ($\mathrm{pH} 7.4,0.1 \mathrm{M}$). Aliquots were stored at $-80^{\circ} \mathrm{C}$ prior to use.

4.3.2.3. Determination of protein concentration ${ }^{69}$

Bradford solution:

5 mg Coomassie ${ }^{\circledR}$ Brilliant Blue G 250 was dissolved in 2.5 mL abs. ethanol. 10 mL dist. water and 5 mL of phosphoric acid were added. The solution was diluted with dist. water to 50 mL . The resulting solution was stored in the dark and at $4{ }^{\circ} \mathrm{C}$ overnight. Before the experiment, the solution was filtered twice through paper filters.

A stock solution of BSA in dist. water ($1.25 \mathrm{mg} / \mathrm{mL}$) was prepared. A multi-point calibration curve $(19.5 \mu \mathrm{~g}, 39 \mu \mathrm{~g}, 78 \mu \mathrm{~g}, 156 \mu \mathrm{~g}, 312 \mu \mathrm{~g}, 615 \mu \mathrm{~g}, 1000 \mu \mathrm{~g}$ all of them per mL) was created by dilution of the stock solution with dist. water. The samples where diluted 20 -fold ($50 \mu \mathrm{~L}$ microsome solution, $200 \mu \mathrm{~L} 1 \mathrm{M} \mathrm{NaOH}, 750 \mu \mathrm{~L}$ dist. water) and 50 -fold ($20 \mu \mathrm{~L}$ microsome solution, $200 \mu \mathrm{~L} 1 \mathrm{M} \mathrm{NaOH}, 780 \mu \mathrm{~L}$ dist. water). The measurements were performed in a 96-well plate. To $10 \mu \mathrm{~L}$ of a diluted sample and each of the calibration solutions, $190 \mu \mathrm{~L}$ Bradford solution were added, respectively. The plate was shaken for 5 min and the absorption at 595 nm was recorded. Samples and calibration were prepared in triplicate.

4.3.2.4. Incubation of 3 with rat liver microsomes and cofactors

A stock solution of hydroxamic acid 3 in DMSO ($1.0 \mu \mathrm{~L}, 10 \mathrm{mM}$) was added to a solution that contained PBS (pH 7.4, $23 \mu \mathrm{~L}, 0.1 \mathrm{M}$), MgCl_{2} solution ($50 \mu \mathrm{~L}, 50 \mathrm{mM}$), NADPH solution ($50 \mu \mathrm{~L}, 2 \mathrm{mg} / \mathrm{mL}$ in PBS), UDPGA solution ($50 \mu \mathrm{~L}, 2 \mathrm{mg} / \mathrm{mL}$ in PBS), and rat liver microsome suspension ($26 \mu \mathrm{~L}, 7.8 \mathrm{mg}$ protein $/ \mathrm{mL}$). The experiments were performed in duplicate. In case of the incubation without UDPGA or NADPH, $50 \mu \mathrm{~L}$ PBS was added instead of the solution of the respective cofactor. The resulting suspensions were mixed vigorously and shaken for 120 min at $37^{\circ} \mathrm{C}(900 \mathrm{rpm})$. The incubation was stopped by the addition of ice-cold acetonitrile/methanol (1:1, $400 \mu \mathrm{~L})$. The Eppendorf cups were cooled to $0^{\circ} \mathrm{C}$ for 10 min using a water/ice bath. The precipitated proteins were separated via centrifugation ($15 \mathrm{~min}, 16000 \mathrm{rpm}, 4^{\circ} \mathrm{C}$) and the supernatant was analyzed by the LC-MS method described below in positive and negative ion polarity. With the same procedure, the empty value (without stock solution), the blank value (without cofactors) were prepared. To detect possible
impurities in the stock solution, a positive control (599 $\mu \mathrm{L}$ solvent and $1 \mu \mathrm{~L}$ DMSO stock solution) was prepared and analyzed by the LC-MS method immediately.

4.3.2.5. HPLC-ESI-MS with micrOTOF-Q II (HPLC method 3)

For the determination of exact masses, an Ultimate 3000 RS LC system from Dionex (Dionex Softron, Bremen, Germany) was coupled with a microOTOF-Q II (Bruker Daltonics, Bremen, Germany). The MS was operated with the standard ESI-source. The LC system consisted of a solvent rack (SRD 3600), a pump (DGP-3600RS), an autosampler (WPS-3000RS), a column oven (TCC-3000RS) and a DAD-dectector (DAD-3000RS) operating at 230 and 250 nm . Control of the system and data handling were carried out using the software Hystar and DataAnalysis from Bruker Daltonics (Bremen, Germany). The calibration of the TOF spectra was achieved by injection of 10 mM lithium formiate (isopropyl alcohol/bidist. water = 1:1) via a $20 \mu \mathrm{~L}$ sample loop within each LC run at 1 min . Precolumn: Security GuardTM Cartidge C18 (4.0 x 2.0 $\mathrm{mm}, 4 \mu \mathrm{~m}$ particle size); main column: Phenomenex Synergi Hydro RP (50 x 2.10 mm , $2.6 \mu \mathrm{~m}$ particle size); solvents: A: bidist. water/acetonitrile $=90: 10$ with 0.1% formic acid (V/V), B: bidist. water/acetonitrile $=10: 90$ with 0.1% formic acid $(\mathrm{V} / \mathrm{V})$; gradient elution: (A \%): $0-5 \mathrm{~min}$: gradient from 100% to $0 \%, 5-6.5 \mathrm{~min}: 0 \%, 6.5-7 \mathrm{~min}$: gradient from 0 \% to 100 \%, 7 - $10 \mathrm{~min}: 100 \%$; flow: 0.4 mL ; temperature: $25^{\circ} \mathrm{C}$.

4.3.2.6. Metabolite identification

3: $\mathrm{HRMS}(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calc for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{Na}: 334.1050$, found: 334.1023 ; $[\mathrm{M}-\mathrm{H}]^{-}$calc for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{4}: 310.1085$, found: 310.1091 ; HPLC (method 3): $\mathrm{t}_{\mathrm{R}}=5.6 \mathrm{~min}$.

3+Glu: HRMS (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calc for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{10} \mathrm{Na}$: 519.1371 , found: 510.1331 ; [MH] calc for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{10}: 486.1406$, found: 486.1414 ; HPLC (method 3): $\mathrm{t}_{\mathrm{R}}=5.4 \mathrm{~min}$. 3-NH: HRMS $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calc for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}: 319.0941$, found: 319.0905; [M-H] calc for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{4}:$ 295.0976, found: 295.0991; HPLC (method 3): $\mathrm{t}_{\mathrm{R}}=6.1 \mathrm{~min}$.

4.4. Biological evaluation

4.4.1. Agar diffusion clearance assay

The antibiotic activity of the synthesized inhibitors was determined by agar disc diffusion clearance assays. Liquid cultures of E. coli BL21 (DE3) and the defective strain E. coli strain D22 ${ }^{61}$ were grown overnight in LB broth ${ }^{70}$ at $37^{\circ} \mathrm{C}, 200 \mathrm{rpm} .150$ $\mu \mathrm{L}$ of an overnight cell suspension were spread evenly onto LB agar petri dishes. 15 $\mu \mathrm{L}$ of each compound (10 mM in DMSO) were applied onto circular filter paper ($\varnothing=6$ mm, thickness 0.75 mm , Carl Roth). Pure DMSO, serving as a negative and CHIR090, ${ }^{71}$ serving as a positive control were also spotted. The petri dishes were incubated overnight at $37{ }^{\circ} \mathrm{C}$ and the diameter of the zone of growth inhibition was measured for each compound.

4.4.2. Minimum Inhibitory Concentration (MIC) determination

The MIC values of the compounds were determined by means of the microdilution method using a 96-well plate and LB medium in the presence of 5% DMSO as previously reported by Tangherlini et al. ${ }^{72}$ E. coli BL21 (DE3) and E. coli D22 were grown overnight in LB medium at $37{ }^{\circ} \mathrm{C}$ and 200 rpm . The overnight suspension was diluted 1:100 in fresh LB broth and $190 \mu \mathrm{~L}$ of the inoculated medium were dispensed
to each well of a 96 -well plate. $10 \mu \mathrm{~L}$ of a twofold dilution series of the compounds in DMSO (ranging from $1.28 \mathrm{mg} / \mathrm{mL}$ to $1.25 \mu \mathrm{~g} / \mathrm{mL}$) was added to the inoculated medium resulting in a final concentration range between $64 \mu \mathrm{~g} / \mathrm{mL}$ to $62.5 \mathrm{ng} / \mathrm{mL}$. Then the plates were incubated for 20 h at $37^{\circ} \mathrm{C}$ and 200 rpm . The lowest concentrations at which no visible growth of bacteria could be observed were taken as the MIC values. ${ }^{72}$

4.4.3. LpxC assay

The expression and purification of E. coli LpxCC63A was performed as previously described. ${ }^{72}$ A fluorescence-based microplate assay for LpxC activity was performed as described by Clements et al. ${ }^{62}$ The wells in a black, non-binding, 96 wells fluorescence microplate (Greiner Bio One, Frickenhausen) were filled with $93 \mu \mathrm{~L}$ of a 40 mM sodium morpholinoethanesulfonic acid buffer (pH 6.0) containing $26.9 \mu \mathrm{~m}$ UDP-3-O-[(R)-3-hydroxymyristoyl]- N-acetylglucosamine, $80 \mu \mathrm{M}$ dithiothreitol and 0.02% Brij 35. Inhibitors were dissolved in DMSO and assayed over a range starting from 0.2 nM up to $200 \mu \mathrm{M}$. After addition of 250 ng purified LpxC, the microplate was incubated for 30 min at $37^{\circ} \mathrm{C}$ in a plate shaker. Then the biochemical reaction was stopped by adding $40 \mu \mathrm{~L}$ of 0.625 M sodium hydroxide. The reaction mixture was further incubated for 10 min and neutralized by adding $40 \mu \mathrm{~L}$ of 0.625 M acetic acid. The deacetylated product UDP-3-O-[(R)-3-hydroxymyristoyl]glucosamine was converted into a fluorescing isoindole by adding $120 \mu \mathrm{~L}$ of 250 nM o-phthaldialdehyde-2mercaptoethanol in 0.1 M borax 73 and detected by a Mithras plate reader (Berthold, Bad Wildbad) at 340 nm excitation and 460 nm emission wavelengths. The calculation of the IC_{50} values was performed with the aid of the software GraphPadPrism, which were then converted into K_{i} values using the Cheng-Prusoff equation. The K_{i} and IC_{50}
values are given as mean value \pm SD from three independent experiments. The K_{m} value was calculated from the Lineweaver-Burk plot.

Acknowledgements

Magdalena Galster received generous funding from the Apothekerstiftung WestfalenLippe. Johannes Kirchmair is supported by the Deutsche Forschungsgemeinschaft (KI 2085/1-1) and the Bergen Research Foundation (BFS) (BFS2017TMT01), Ralph Holl is supported by the DZIF (German Center for Infection Research) and the Deutsche Forschungsgemeinschaft (HO 5220/2-1), which is gratefully acknowledged.

References

1. Supuran CT, Winum JY. Drug Design of Zinc-Enzyme Inhibitors: Functional, Structural, and Disease Applications. John Wiley \& Sons; 2009.
2. Rouffet M, Cohen SM. Emerging trends in metalloprotein inhibition. Dalton Trans. 2011;40(14):3445-3454. https://doi.org/10.1039/c0dt01743d
3. Jacobsen JA, Fullagar JL, Miller MT, Cohen SM. Identifying Chelators for Metalloprotein Inhibitors Using a Fragment-Based Approach. J Med Chem. 2011;54(2):591-602. https://doi.org/10.1021/jm101266s
4. White RJ, Margolis PS, Trias J, Yuan ZY. Targeting metalloenzymes: a strategy that works. Curr Opin Pharmacol. 2003;3(5):502-507. https://doi.org/10.1016/S1471-4892(03)00115-2
5. Kalinin DV, Holl R. Insights into the Zinc-Dependent Deacetylase LpxC: Biochemical Properties and Inhibitor Design. Curr Top Med Chem.

2016;16(21):2379-2430.
https://doi.org/10.2174/1568026616666160413135835
6. Raetz CRH. Biochemistry of Endotoxins. Annu Rev Biochem. 1990;59:129-170. https://doi.org/10.1146/annurev.biochem.59.1.129
7. Raetz CRH, Guan ZQ, Ingram BO, et al. Discovery of new biosynthetic pathways: the lipid A story. J Lipid Res. 2009;50:S103-S108. https://doi.org/10.1194/jlr.R800060-JLR200
8. Sorensen PG, Lutkenhaus J, Young K, Eveland SS, Anderson MS, Raetz CRH. Regulation of UDP-3-O-[R-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase in Escherichia coli - The second enzymatic step of lipid a biosynthesis. J Biol Chem. 1996;271(42):25898-25905. https://doi.org/10.1074/jbc.271.42.25898
9. Whittington DA, Rusche KM, Shin H, Fierke CA, Christianson DW. Crystal structure of LpxC, a zinc-dependent deacetylase essential for endotoxin biosynthesis. Proc Natl Acad Sci U S A. 2003;100(14):8146-8150. https://doi.org/10.1073/pnas. 1432990100
10. Clayton GM, Klein DJ, Rickert KW, et al. Structure of the bacterial deacetylase LpxC bound to the nucleotide reaction product reveals mechanisms of oxyanion stabilization and proton transfer. J Biol Chem. 2013;288(47):34073-34080. https://doi.org/10.1074/jbc.M113.513028
11. Kalinin DV, Holl R. LpxC inhibitors: a patent review (2010-2016). Expert Opin Ther Pat. 2017:1-24. https://doi.org/10.1080/13543776.2017.1360282
12.

Barb AW, Jiang L, Raetz CR, Zhou P. Structure of the deacetylase LpxC bound to the antibiotic CHIR-090: Time-dependent inhibition and specificity in ligand binding. Proc Natl Acad Sci U S A. 2007;104(47):18433-18438. https://doi.org/10.1073/pnas. 0709412104
13. Jacobsen FE, Lewis JA, Cohen SM. The design of inhibitors for medicinally relevant metalloproteins. ChemMedChem. 2007;2(2):152-171. https://doi.org/10.1002/cmdc. 200600204
14. O'Brien EC, Farkas E, Gil MJ, Fitzgerald D, Castineras A, Nolan KB. Metal complexes of salicylhydroxamic acid ($\mathrm{H}_{2} \mathrm{Sha}$), anthranilic hydroxamic acid and benzohydroxamic acid. Crystal and molecular structure of $\left[\mathrm{Cu}(\mathrm{phen})_{2}(\mathrm{CI})\right] \mathrm{Cl} x$ H_{2} Sha, a model for a peroxidase-inhibitor complex. J Inorg Biochem. 2000;79(1-4):47-51. https://doi.org/10.1016/S0162-0134(99)00245-7
15. Chen K, Xu L, Wiest O. Computational exploration of zinc binding groups for HDAC inhibition. J Org Chem. 2013;78(10):5051-5055. https://doi.org/10.1021/jo400406g
16. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R. FDA approval summary: Vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist. 2007;12(10):1247-1252. https://doi.org/10.1634/theoncologist.12-10-1247
17. Atadja P. Development of the pan-DAC inhibitor panobinostat (LBH589): Successes and challenges. Cancer Lett. 2009;280(2):233-241. https://doi.org/10.1016/j.canlet.2009.02.019
18. Pohlman B, Advani R, Duvic M, et al. Final Results of a Phase II Trial of Belinostat (PXD101) in Patients with Recurrent or Refractory Peripheral or Cutaneous T-Cell Lymphoma. Blood. 2009;114(22):379-379.
19. Agrawal A, de Oliveira CA, Cheng Y, Jacobsen JA, McCammon JA, Cohen SM. Thioamide hydroxypyrothiones supersede amide hydroxypyrothiones in potency against anthrax lethal factor. J Med Chem. 2009;52(4):1063-1074. https://doi.org/10.1021/jm8013212
20. Brown MF, Reilly U, Abramite JA, et al. Potent inhibitors of LpxC for the treatment of Gram-negative infections. J Med Chem. 2012;55(2):914-923. https://doi.org/10.1021/jm2014748
21. Montgomery JI, Brown MF, Reilly U, et al. Pyridone methylsulfone hydroxamate LpxC inhibitors for the treatment of serious gram-negative infections. J Med Chem. 2012;55(4):1662-1670. https://doi.org/10.1021/jm2014875
22. Dalvie D, Cosker T, Boyden T, Zhou S, Schroeder C, Potchoiba MJ. Metabolism distribution and excretion of a matrix metalloproteinase-13 inhibitor, 4-[4-(4-fluorophenoxy)-benzenesulfonylamino]tetrahydropyran-4-carboxylic acid hydroxyamide (CP-544439), in rats and dogs: Assessment of the metabolic profile of CP-544439 in plasma and urine of humans. Drug Metab Dispos. 2008;36(9):1869-1883. https://doi.org/10.1124/dmd.108.022566
23. Mulder GJ, Meerman JHN. Sulfation and Glucuronidation as Competing Pathways in the Metabolism of Hydroxamic Acids - the Role of N,O-Sulfonation in Chemical Carcinogenesis of Aromatic-Amines. Environ Health Persp. 1983;49(Mar):27-32. https://doi.org/10.2307/3429577
24. Whittaker M, Floyd CD, Brown P, Gearing AJH. Design and therapeutic application of matrix metalloproteinase inhibitors. Chem Rev. 1999;99(9):27352776. https://doi.org/10.1021/Cr9804543
25. Summers JB, Gunn BP, Mazdiyasni H, et al. In vivo characterization of hydroxamic acid inhibitors of 5-lipoxygenase. J Med Chem. 1987;30(11):21212126. https://doi.org/10.1021/jm00394a032
26. Sugihara K, Tatsumi K. Participation of Liver Aldehyde Oxidase in Reductive Metabolism of Hydroxamic Acids to Amides. Arch Biochem Biophys. 1986;247(2):289-293. https://doi.org/10.1016/0003-9861(86)90586-2
27. Garner AL, Struss AK, Fullagar JL, et al. 3-Hydroxy-1-alkyl-2-methylpyridine-4(1H)-thiones: Inhibition of the Pseudomonas aeruginosa Virulence Factor LasB. ACS Med Chem Lett. 2012;3(8):668-672. https://doi.org/10.1021/ml300128f
28. Agrawal A, Romero-Perez D, Jacobsen JA, Villarreal FJ, Cohen SM. Zincbinding groups modulate selective inhibition of MMPs. ChemMedChem. 2008;3(5):812-820. https://doi.org/10.1002/cmdc. 200700290
29. Pirrung MC, Tumey LN, Raetz CR, et al. Inhibition of the antibacterial target UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC): isoxazoline zinc amidase inhibitors bearing diverse metal binding groups. J Med Chem. 2002;45(19):4359-4370. https://doi.org/10.1021/jm020183v
30. Chen MH, Steiner MG, de Laszlo SE, et al. Carbohydroxamido-oxazolidines: antibacterial agents that target lipid A biosynthesis. Bioorg Med Chem Lett. 1999;9(3):313-318. https://doi.org/10.1016/S0960-894X(98)00749-5
31. Shin H, Gennadios HA, Whittington DA, Christianson DW. Amphipathic benzoic acid derivatives: synthesis and binding in the hydrophobic tunnel of the zinc deacetylase LpxC. Bioorg Med Chem. 2007;15(7):2617-2623. https://doi.org/10.1016/j.bmc.2007.01.044
32. Jackman JE, Fierke CA, Tumey LN, et al. Antibacterial agents that target lipid A biosynthesis in gram-negative bacteria. Inhibition of diverse UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylases by substrate analogs containing zinc binding motifs. J Biol Chem. 2000;275(15):11002-11009. https://doi.org/10.1074/jbc.275.15.11002
33. Cuny GD. A new class of UDP-3-O-(R-3-hydroxymyristol)-N-acetylglucosamine deacetylase (LpxC) inhibitors for the treatment of Gram-negative infections:

PCT application WO 2008027466. Expert Opin Ther Pat. 2009;19(6):893-899. https://doi.org/10.1517/13543770902766829
34. Barb AW, Leavy TM, Robins LI, et al. Uridine-based inhibitors as new leads for antibiotics targeting Escherichia coli LpxC. Biochemistry. 2009;48(14):30683077. https://doi.org/10.1021/bi900167q
35. Patten PA, Armstrong ES, Achaogen, Inc., USA. Combinations comprising a LpxC inhibitor and an antibiotic for use in the treatment of infections caused by gram-negative bacteria. WO 2011005355. 2011:90pp.
36. Cohen SM, Puerta DT, Perez C, The Regents of the University of California, USA. Inhibitors of LpxC. WO 2015085238. 2015:112pp.
37. Hoekstra WJ, Yates CM, Rafferty SW, Viamet Pharmaceuticals, Inc., USA. Preparation of naphthyridine and isoquinoline derivatives as metalloenzyme inhibitors. WO 2014117090. 2014:372pp.
38. Szermerski M, Melesina J, Wichapong K, et al. Synthesis, biological evaluation and molecular docking studies of benzyloxyacetohydroxamic acids as LpxC inhibitors. Bioorg Med Chem. 2014;22(3):1016-1028. https://doi.org/10.1016/j.bmc.2013.12.057
39. Madsen AS, Kristensen HME, Lanz G, Olsen CA. The Effect of Various Zinc Binding Groups on Inhibition of Histone Deacetylases 1-11. ChemMedChem. 2014;9(3):614-626. https://doi.org/10.1002/cmdc.201300433
40. Augé F, Hornebeck W, Decarme M, Laronze JY. Improved gelatinase a selectivity by novel zinc binding groups containing galardin derivatives. Bioorg Med Chem Lett. 2003;13(10):1783-1786. https://doi.org/10.1016/S0960-894X(03)00214-2
41. Fournel M, Bonfils C, Hou Y, et al. MGCD0103, a novel isotype-selective histone deacetylase inhibitor, has broad spectrum antitumor activity in vitro and in vivo.

Mol Cancer Ther. 2008;7(4):759-768. https://doi.org/10.1158/1535-7163.Mct-07-2026
42. Puerta DT, Lewis JA, Cohen SM. New beginnings for matrix metalloproteinase inhibitors: identification of high-affinity zinc-binding groups. J Am Chem Soc. 2004;126(27):8388-8389. https://doi.org/10.1021/ja0485513
43. Skiles JW, Gonnella NC, Jeng AY. The design, structure, and therapeutic application of matrix metalloproteinase inhibitors. Curr Med Chem. 2001;8(4):425-474. https://doi.org/10.2174/0929867013373417
44. Kawai K, Nagata N. Metal-ligand interactions: An analysis of zinc binding groups using the Protein Data Bank. Eur J Med Chem. 2012;51:271-276. https://doi.org/10.1016/j.ejmech.2012.02.028
45. Hsu KC, Liu CY, Lin TE, et al. Novel Class Ila-Selective Histone Deacetylase Inhibitors Discovered Using an in Silico Virtual Screening Approach. Sci RepUk. 2017;7. https://doi.org/10.1038/s41598-017-03417-1
46. Sicho M, de Bruyn Kops C, Stork C, Svozil D, Kirchmair J. FAME 2: Simple and Effective Machine Learning Model of Cytochrome P450 Regioselectivity. J Chem Inf Model. 2017;57(8):1832-1846. https://doi.org/10.1021/acs.jcim.7b00250
47. Ridder L, Wagener M. SyGMa: combining expert knowledge and empirical scoring in the prediction of metabolites. ChemMedChem. 2008;3(5):821-832. https://doi.org/10.1002/cmdc. 200700312
48. Karabasanagouda T, Adhikari AV, Dhanwad R, Parameshwarappa G. Synthesis of some new 2-(4-alkylthiophenoxy)-4-substituted-1, 3-thiazoles as possible anti-inflammatory and antimicrobial agents. Indian J Chem B. 2008;47(1):144-152.
49. Someya CI, Inoue S, Irran E, Krackl S, Enthaler S. New Binding Modes of 1-Acetyl- and 1-Benzoyl-5-hydroxypyrazolines - Synthesis and Characterization of O,O'-Pyrazoline- and N,O-Pyrazoline-Zinc Complexes. Eur J Inorg Chem. 2011(17): 2691-2697. https://doi.org/10.1002/ejic. 201100248
50. Banoglu E, Caliskan B, Luderer S, et al. Identification of novel benzimidazole derivatives as inhibitors of leukotriene biosynthesis by virtual screening targeting 5-lipoxygenase-activating protein (FLAP). Bioorgan Med Chem. 2012;20(12):3728-3741. https://doi.org/10.1016/j.bmc.2012.04.048
51. Montalbetti CAGN, Falque V. Amide bond formation and peptide coupling. Tetrahedron. 2005;61(46):10827-10852. https://doi.org/10.1016/j.tet.2005.08.031
52. Lemay AB, Vulic KS, Ogilvie WW. Single-isomer tetrasubstituted olefins from regioselective and stereospecific palladium-catalyzed coupling of beta-chloro-alpha-iodo-alpha,beta-unsaturated esters. J Org Chem. 2006;71(9):3615-3618. https://doi.org/10.1021/jo060144h
53. Nicolas J, Bensaid F, Desmaele D, et al. Synthesis of Highly Functionalized Poly(alkyl cyanoacrylate) Nanoparticles by Means of Click Chemistry. Macromolecules. 2008;41(22):8418-8428. https://doi.org/10.1021/ma8013349
54. Li J, Sun CL, Shen R, et al. An electrochemically switched smart surface for peptide immobilization and conformation control. J Am Chem Soc. 2014;136(31):11050-11056. https://doi.org/10.1021/ja5048285
55. Dumas DJ. Total Synthesis of Peramine. J Org Chem. 1988;53(20):4650-4653. https://doi.org/10.1021/jo00255a002
56. lyer P, Srinivasan A, Singh SK, et al. Synthesis and characterization of DNA minor groove binding alkylating agents. Chem Res Toxicol. 2013;26(1):156-168. https://doi.org/10.1021/tx300437x
57. Sharpless KB, Amberg W, Bennani YL, et al. The Osmium-Catalyzed Asymmetric Dihydroxylation - a New Ligand Class and a Process Improvement. J Org Chem. 1992;57(10):2768-2771. https://doi.org/10.1021/jo00036a003
58. Maestrup EG, Fischer S, Wiese C, et al. Evaluation of spirocyclic 3-(3-fluoropropyl)-2-benzofurans as sigma1 receptor ligands for neuroimaging with positron emission tomography. J Med Chem. 2009;52(19):6062-6072. https://doi.org/10.1021/jm900909e
59. Chinchilla R, Najera C. The Sonogashira reaction: a booming methodology in synthetic organic chemistry. Chem Rev. 2007;107(3):874-922. https://doi.org/10.1021/cr050992x
60. Mawani Y, Cawthray JF, Chang S, et al. In vitro studies of lanthanide complexes for the treatment of osteoporosis. Dalton Trans. 2013;42(17):5999-6011. https://doi.org/10.1039/c2dt32373g
61. Normark S, Boman HG, Matsson E. Mutant of Escherichia coli with anomalous cell division and ability to decrease episomally and chromosomally mediated resistance to ampicillin and several other antibiotics. J Bacteriol. 1969;97(3):1334-1342.
62. Clements JM, Coignard F, Johnson I, et al. Antibacterial activities and characterization of novel inhibitors of LpxC. Antimicrob Agents Chemother. 2002;46(6):1793-1799. https://doi.org/10.1128/AAC.46.6.1793-1799.2002
63. Hernick M, Gattis SG, Penner-Hahn JE, et al. Activation of Escherichia coli UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase by Fe^{2+} yields a more efficient enzyme with altered ligand affinity. Biochemistry 2010;49(10):2246-2255.
64. Loppenberg M, Muller H, Pulina C, et al. Synthesis and biological evaluation of flexible and conformationally constrained LpxC inhibitors. Org Biomol Chem. 2013;11(36):6056-6070. https://doi.org/10.1039/c3ob41082j
65. Fukui Y, Oda S, Suzuki H, et al. Process Optimization of Aldol-Type Reaction by Process Understanding Using in Situ IR. Org Process Res Dev. 2012;16(11):1783-1786. https://doi.org/10.1021/op300186p
66. Berthold MR, Cebron N, Dill F, et al. KNIME: The Konstanz Information Miner. Springer Berlin Heidelberg. 2008:319-326.
67. Verhoeven S (2018, February 10). 3D-e-Chem/3D-e-Chem-VM: v1.4.3 (Version v1.4.3). Zenodo. http://doi.org/10.5281/zenodo. 1170588
68. McGuire R, Verhoeven S, Vass M, et al. 3D-e-Chem-VM: Structural Cheminformatics Research Infrastructure in a Freely Available Virtual Machine. J Chem Inf Model. 2017;57(2):115-121. https://doi.org/10.1021/acs.jcim.6b00686
69. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
70. Bertani G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol. 1951;62(3):293-300.
71. McClerren AL, Endsley S, Bowman JL, et al. A slow, tight-binding inhibitor of the zinc-dependent deacetylase LpxC of lipid A biosynthesis with antibiotic activity comparable to ciprofloxacin. Biochemistry. 2005;44(50):16574-16583. https://doi.org/10.1021/bi0518186
72. Tangherlini G, Torregrossa T, Agoglitta O, et al. Synthesis and biological evaluation of enantiomerically pure glyceric acid derivatives as LpxC inhibitors.

Bioorgan Med Chem. 2016;24(5):1032-1044.
https://doi.org/10.1016/j.bmc.2016.01.029
73. Roth M. Fluorescence Reaction for Amino Acids. Anal Chem. 1971;43(7):880882. https://doi.org/ 10.1021/ac60302a020

