
Tone Hoel Lende

Proliferation in operable breast
cancer
Aspects of prognostication and relevance of carbohydrate metabolism

2020

Thesis for the degree of Philosophiae Doctor (PhD)
University of Bergen, Norway



at the University of Bergen

Avhandling for graden philosophiae doctor (ph.d )

ved Universitetet i Bergen

.

2017

Dato for disputas: 1111

Tone Hoel Lende

Proliferation in operable
breast cancer

Aspects of prognostication and relevance of
carbohydrate metabolism

Thesis for the degree of Philosophiae Doctor (PhD)

Date of defense: 06.03.2020



2 

Scientific environment 

The present work was conducted during the period of January 2009 to November 2019 

at the Department of Breast and Endocrine Surgery and Department of Pathology at 

Stavanger University Hospital  

and the Department of Clinical Medicine, University of Bergen. 

© Copyright Tone Hoel Lende

The material in this publication is covered by the provisions of the Copyright Act.

Print: 

        Tone Hoel Lende

    Skipnes Kommunikasjon / University of Bergen

Name:

Title: 

          2020

Proliferation in operable breast cancer

Year:



3 

Acknowledgments 

Firstly, I extend my gratitude to my family, friends, supervisors, and colleagues. I would 

not have been able to complete this thesis without your support. 

To my main supervisor, Professor Håvard Søiland, MD, PhD, I am grateful for all 

the work you have done with this thesis. I am also glad that you believed in me, 

encouraged me, pushed me, and shared your thoughts with me. You even got up early on 

Saturday mornings to work with me. I think you must be one of the most generous persons 

I have ever met, wishing other people, me included, all the best. You have taught me 

research and science and the importance of working carefully and exactly. Every time we 

met for supervision, you gave me small pieces of knowledge worth remembering. My 

gratitude also extends to your wife Marit. Quite a lot of your time has been spent on me 

and this thesis, but I and my family have always felt welcome in your home. Previously, 

we worked together as surgeons, and I hope that we will continue our collaboration in the 

research field.  

To my co-supervisor, Professor Emiel Janssen, PhD, I am thankful for your help 

and support. We have had many meetings, and you have always been available for 

questions. Your knowledge in a field that was new for me has been very valuable, and I 

have learned a lot from your contribution to this thesis. Your efforts reviewing the samples 

and validating the results have also been of great help. 

To my co-supervisors, Professor Lars Akslen, MD, PhD, and Professor Jan P. A. 

Baak, MD, PhD, I am grateful for your support and constructive feedback. I especially 

want to acknowledge Dr. Baak; thank you for letting me work with your research ideas. 

This thesis would never have been done without your enthusiasm and knowledge.  



4 

A tremendous amount of work was done by Anne Elin Varhaugvik, Marie Austdal, 

and Kristin Jonsdottir. Anne Elin helped with the inclusion of patients, drawing blood 

samples, and the logistics of handling the samples, in addition to reviewing some of the 

slides, among other things. Marie contributed to the last two articles, and taught me about 

metabolomics, a field I knew hardly anything about. I also received a lot of help from both 

Marie and Kristin with the IPA analyses, which I had no previous knowledge about. 

Also, many thanks to the coauthors for their support and feedback. A special thanks 

to Jan Terje Kvaløy for support with some of the statistical analyses. Many thanks to Ottar 

Bjerkeset, my former chief in the surgical department, letting me start with this project. 

The collaboration with the Department of Pathology has been very important, and I thank 

the former department chief, Kjell Kjellevold, for providing us resources for this project 

and for all his support. I am also grateful to my chief Anne Ree Jensen and my colleagues 

Børge Løge and Knut Harboe for helping take care of my work when I was on leave to 

complete this thesis. My gratitude also comprises Stein Tore Nilsen, former chief of the 

Research Department. You comforted and guided me and taught me a lot about how to 

handle different issues.  

I especially want to give thanks to my colleagues in the breast and endocrine 

surgery unit. I highly appreciate your support and care for me over these years. Very much 

appreciated is the help I got from Ottar Bjerkeset, Lene Johnsen, and Håvard Søiland with 

the inclusion of patients in one of the studies. I also appreciate all the help from the former 

matron Margareth Heggland and the present matron Marianne Kro Gausel and their staff.  

My gratitude extends to the patients who participated in the research. You were all 

so kind and eager to participate, even though you went through hard times, in order to 

benefit other women in the future. I really admire your courage.   



5 

Good friends, who have supported me through the years, you are all remembered and 

appreciated.  

My encouraging family, my mother and father. Since I was a small child, you have 

always told me that you loved me. I never had to prove that I was worth loving, and I am 

grateful for that. Gunnlaug and Ragnhild, my dear sisters, I think we learned a lot in our 

childhood about values and teamwork, and I am happy for your care of me throughout my 

life.  

Last, but not least, my dearest husband Sigurd Olav and our four children, Knut 

Roar, Ane, Sondre, and Magnus. You are the most important part of my life. Sigurd Olav, 

you have encouraged and pushed me at times when I was thinking I would have to quit 

the work on this thesis. You always had arguments for why you thought I should continue. 

Knut Roar, Ane, Sondre, and Magnus, I know you think that I was too busy with work at 

times, but you did not complain that much. You comforted me, sometimes joking that you 

really wanted me to finish because you wanted to go to the dinner held after the 

disputation. Now, we are there.   

Stavanger, November 2019 

Tone Hoel Lende 



6 

Abbreviations 
AI: Aromatase Inhibitor 

ASIR: Age-standardized incidence rate 

ATP: adenosine triphosphate  

AUC: Area under the curve 

BC: Breast cancer 

BCSS: Breast cancer-specific survival 

BCT: Breast conservative therapy 

CAMS: Cell-to-cell adhesion molecules 

CI: Confidence interval 

CISH: Chromogenic in situ hybridization 

CTC: Circulating tumor cell 

CV: Coefficient of variance 

DCIS: Ductal carcinoma in situ 

EGFR: Epidermal growth factor receptor 

EMF: Electromagnetic field 

EMT: Epithelial mesenchymal transition 

ER: Estrogen receptor 

ERAS: Enhanced Recovery After Surgery 

FISH: Fluorescence in situ hybridization 

GG: Guanine-guanine gene variant    

GLOBOCAN: Global Cancer Observatory 

HER-2: Human epithelial growth factor receptor 2 

HES: Hematoxylin-eosin-saffron staining 

HGH: Human growth hormone 

HR: Hazard rate 

HR-MAS: High resolution magic angle spinning 

IDC: Invasive ductal carcinoma 

IGF-R: Insulin-like growth factor receptor 

IGF-1: Insulin-like growth factor 1 

IGF-1R: Insulin-like growth factor 1 receptor 



7 

IHC: Immunohistochemistry 

Invasive carcinoma NST: Invasive carcinoma no special type 

IPA: Ingenuity Pathway Analysis 

IR: Insulin receptor 

LOH: Loss of heterozygosity 

MAI: Mitotic activity index 

MC: Metabolic cluster 

MET: Mesenchymal to epithelial transition 

MINDACT: Micro array In Node Negative and 0-3 Positive Lymph Node Disease May Avoid 

Chemotherapy Trial 

MMMCP: Multicenter Morphometric Mammary Carcinoma Project 

MRI: Magnetic resonance imaging 

NBCG: Norwegian Breast Cancer Group 

NSD: Norwegian Center for Research Data 

OR: Odds ratio 

OS: Overall survival 

PAM50: Prediction Analysis of Microarray 50 (Prosigna) 

PCA: Principal component analysis 

PLS: Partial lest square 

PLS-DA: Partial least squares discriminant analysis 

PPH3: Phosphorylated phospho-histone 3 

PR: Progesterone receptor 

PROM: Patient-reported outcome measure 

QoL: Quality of Life 

RCT: Randomized controlled trial 

REK: Regional ethical committee 

RFS: Relapse-free survival 

ROC: Receiver operating characteristic 

ROR: Risk of recurrence 

ROS: Reactive oxygen species 

RTK: Receptor tyrosine kinase 



8 

SEER: Surveillance, Epidemiology and End Results 

SN: Sentinel node 

TCA: Tricarboxylic acid cycle 

TDLU: Terminal ductal lobular unit 

TIL: Tumor infiltrating leukocyte 

VIP: Variable Importance in Projection score 

WHO: World Health Organization  



9 

Abstract 

Breast cancer is the most common malignant disease among women in the Western world. 

In Norway and the Netherlands, the incidence has more than doubled in the last 50 years, 

likely due to increased estrogen exposure, higher levels of alimentary carbohydrates and 

fat, and reduced physical activity, the so-called Western lifestyle. Treatment of breast 

cancer is based on an additive multimodal approach comprising surgery, radiation therapy, 

and adjuvant systemic therapy (i.e., chemotherapy, anti-estrogen therapy, and biological 

therapy). However, the disease is heterogeneous with different molecular gene expression 

profiles, phenotypes, and risk profiles. Thus, it is important to optimize treatment to avoid 

over- and under-treatment; to achieve this, prognostic and predictive factors must be 

explored further.  

The first study is a retrospective population-based study in which we used the 

original Multicenter Morphometric Mammary Carcinoma Project (MMMCP) data set from 

the Netherlands and introduced new exposure variables. We compared the prognostic 

power of tumor proliferation to classical prognostic factors in treatment-naïve patients with 

lymph node-negative BC aged < 55 years. Several tools are available for clinicians making 

decisions regarding adjuvant systemic treatment. Among these tools, we used the 

Norwegian Breast Cancer Group treatment guidelines from 2010 and Adjuvant! Online v 

8.0. Compared to the grouping obtained by these tools, MAI-3 identified 40% of the 

patients as under-treated and 20% of the patients as over-treated, which shows the 

importance of proliferation as a prognostic and predictive factor that should be included in 

the decision-making process for treatment. Later, Ki-67 was added to the Norwegian Breast 

Cancer Group (NBCG) guidelines with changes to the treatment regimen for luminal breast 

cancer patients.  

The second study is a randomized controlled trial in which we examined the 

influence of pre-operative carbohydrate load compared to standard fasting procedures 

regarding tumor proliferation and clinical outcome in operable breast cancer patients. The 



10 

 

Enhanced Recovery After Surgery (ERAS) protocol is used for patients going through 

major surgery with pre-operative carbohydrate loading. To the best of our knowledge, no 

studies have explored the effects of such carbohydrate loading in tumor tissue. In our study, 

we observed an increase in the number of luminal breast cancer patients with MAI≥10 in 

the group receiving pre-operative carbohydrate load. The proportion of PR-negative 

patients was also increased in the carbohydrate group. No differences were found regarding 

the well-being of patients after surgery. Both relapse-free survival (RFS) and breast cancer-

specific survival (BCSS) were inferior among the ER+/T2 patients in the carbohydrate 

group. 

 

In the third study, we performed an explorative study based on the patient material 

from the second study. The metabolic consequences were explored in the tumor and liquid 

biopsies from operable breast cancer patients receiving pre-operative carbohydrate loading. 

Pre-operative carbohydrate loading increased the systemic lactate and pyruvate content in 

patients with high-proliferation tumors. Tumor tissue with high proliferation had high 

glutathione content, which is an intratumoral protection factor. The metabolic signature or 

pathway is the same as in the Warburg effect. Regarding microRNA involved in endocrine 

resistance, four out of seven microRNAs were recruited after carbohydrate loading. High 

levels of systemic lactate and pyruvate and tissue glutathione were associated with 

decreased RFS, BCSS, and overall survival (OS). Integrated pathway analysis in serum 

revealed the activation of five major anabolic metabolic networks contributing to 

proliferation and growth. These findings agree with previous studies showing that 

metabolic profiling of serum samples can provide prognostic information in operable breast 

cancer.   

 

Future research comprises the calibration of MAI against the gold standard PAM-

50 (Prosigna) test through the nationwide EMIT study endorsed by the NBCG, which has 

added the Prosigna test to their 2020 treatment guidelines. However, the inexpensive and 

standardized MAI may serve as a good proxy for costly gene expression methods, 

especially in developing countries. We also suggest performing a new randomized 
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controlled trial in ER+/T2 patients with a metformin arm, a metformin + endocrine therapy 

arm and placebo arm. The metformin or metformin + endocrine therapy should be 

introduced after diagnostic biopsy, but before surgery. Moreover, glutathione should be 

pursued for the purpose of targeted therapy. The above-mentioned strategies seem to be 

only a small step for biomarker research but will undoubtedly bring the clinical knowledge 

regarding the relevance of metabolic networks a giant leap forward. 
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1.0 Introduction 

The first written report on breast cancer dates to around 3000 BC (1). The 

Egyptian architect and physician Imhotep described the findings in a male breast 

cancer patient: “[I]f thou puttest thy hand upon his breast upon these tumors, (and) thou 

findest them very cool, there being no fever at all therein when thy hand touches 

him; they have no granulation, they form no fluid, they do not generate secretions of 

fluid, and they are bulging to thy hand. Thou shouldst say concerning him, ‘One having 

tumors. An ailment with which I will contend.’ Treatment: There is no treatment.” (1).  

Importantly, this knowledge has paved the way for an understanding of the inner 

biology of malignancy and provided new ways to treat breast cancer, 5000 years after 

Imhotep (Fig. 1).     

Over the years, breast cancer has been a disease in which new scientific knowledge has 

been applied and tested first. This is probably due to the easy access to the tumor and a 

yearning to heal a mother/wife/sister/daughter from a dreadful ailment. Therefore, breast 

cancer can be regarded as a ‘model disease’ — always being in the front row when new 

treatment concepts are to be tested (Table 1). 

The 5000-year long road from Imhotep’s Surgical Syntax (A) via Jan Baak’s Mitotic Activity Index (B) to Therese Sørlie’s 

Molecular Codex (C) — and towards a modern understanding of breast cancer.  

Figure 1. Evolution of Breast Cancer knowledge 

1.1 History of Breast Cancer
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Line When Who What Ref 

1 460 - 375 BC Hippocrates Breast cancer: due to surplus of black bile.  
First written description of the natural course of 
breast cancer. Father of the ‘additive treatment 
principle’ in breast cancer. 

(2) 

2 300 BC Leonides of Alexandria ‘Karkinoma’: cancer is like the crab, bites itself 
onto the surrounding tissue. Difficult to remove. 

(2) 

3 1580 AD Cervinius Importance of the axillary nodes and first case 
of their removal. 

(2) 

4 1630 Nicolas Tulp Surgery: ‘The sole remedy is a timely 
operation’.  

(2) 

5 1655 Johann Schulteus Painful, swift amputation of the breast. (2) 

6  1838 Johannes Muller First microscopic view of cancer cells within 
the breast tumor. 

(2) 

7 1889 Stephen Paget Paradigm: Soil and seed hypothesis for 
metastasis. Certain cancer cells need certain 
‘soil’ to seed and grow.  
e.g., breast cancer cells and skeleton

(2) 

8 1894 William Halstead Centrifugal Paradigm: Breast cancer is a local 
disease that spreads centrifugally.  
First mastectomy in general anesthesia. 

(2, 3) 

9 1895 Wilhelm Conrad 
Roentgen 

Discovery: X-rays. (3) 

10 1896 George T Beatson Ovarian ablation leads to tumor reduction in 
locally advanced breast cancer. 

(4) 

11 1919 EB Krumbhaar & HD 
Krumbhaar 

Discovery: Cytotoxic effect of custard-based 
and phosgene-based war gases used in battle in 
World War 1. 

(5, 6) 

12 1925 Otto Warburg Discovery: Cancer cells ferment glucose to 
lactate despite the presence of oxygen.  

(7) 

13 1925 RB Greenough Level of differentiation and mitosis matter in 
categorization of malignancy in cancer.  

(8) 

14 1926 Stafford L Warren Mammography (9) 

15 1957 Bloom HJ &  
Richardson WW 

Histological grading of breast tumors. (10) 

16 1957-1959 Dora Richardson Commenced the synthesis of triphenyl 
ethylene, which ends up with tamoxifen.   

(11) 

17 1965 Roar Nissen Meyer Randomized study of peri-operative 
chemotherapy (cyclophosphamide) for breast 
cancer patients. 

(3, 12) 

Table 1. Cornerstones in the history of breast cancer. 
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18 1966 Elwood Jensen Discovery: Estrogen receptor. (13) 

19 1967 Bernard Fischer Systemic Paradigm: Breast cancer regarded as 
a systemic disease. 

(14) 

20 1972 V. Craig Jordan Tamoxifen first used in breast cancer trials. (15) 

21 1973 U. Veronesi 
B. Fischer 

Commenced trials of breast conservative 
therapy. 

(16) 

22 1980s Several Combined Paradigm: Loco-regional   control of 
primary tumor + systemic adjuvant treatment. 

23 1990 NCI (National Cancer 
Institute) 

Approval of breast conservative treatment. 

24 1994 PA Friedman  
 & PA Futeral  

Detection of BRCA 1 germ line mutation 
transmission and risk of breast and ovarian 
carcinoma. 

(17, 18) 

25 1995-97 AE Guilliano Establishment of sentinel node biopsy in breast 
cancer staging.  

(19) 

26 1998/2006 Several Trastuzumab approved as anti-HER-2 agent. In 
2006, approved in treatment of HER-2-positive 
breast cancer patients. 

(20-22) 

27 2000 - 2001 Chuck Perou et al 
Terese Sørli et al 

Molecular subtyping of breast cancer. (23, 24) 

28 2005 Jan PA Baak Mitotic Activity Index (MAI-10) strongest 
prognostic factor in LN negative breast cancer 
patients (after > 25 years of research). 

(25) 

29 2006 Emiel AM Janssen  MAI-3 predicts effect of chemotherapy (26) 

30 2015-2018 Peter Schmid et al. Immunotherapy success in triple-negative 
breast cancer.  

(27) 

31 2018 PI: Bjørn Naume Embarking on the first study in Norway using 
the gene expression test PAM-50 (Prosigna) for 
decision-making in adjuvant treatment (EMIT-
study).    

(28) 
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1.2 Breast Cancer Epidemiology 

1.2.1 The World 

Breast cancer is the most frequent female malignancy worldwide. Globally, breast cancer 

accounted for approximately 2.1 million new cases (11.6% of all cancer types) and 0.63 

million deaths (6.6% of all cancer deaths) in 2018 (Fig. 2) (29). The incidence is highest in 

Western Europe, North America, and Australia (30), with standard incidence rates of 92.6 

per 100,000 persons, 84.8 per 100,000 persons, and 94.2 per 100,000 persons, respectively 

(29). In 2018, the number of new cases in Europe was 562,500 (31), with the standard 

incidence rates varying from 22.6 per 100,000 inhabitants/year in Uzbekistan to 113 per 

100,000/year in Belgium (32). Thus, breast cancer is a major challenge to the women and 

families who are affected, but also for society to arrange diagnostic units and handle the 

treatment burden. Therefore, it is of utmost importance to have reliable biomarkers to 

optimize treatment and develop new treatment methods and regimens. 

Figure 2. Worldwide breast cancer incidence 

Estimated age-standardized worldwide incidence rates for female breast cancer at all ages in 2018 (29). 
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1.2.2 The Netherlands 

The Netherlands has the fourth highest incidence of breast cancer worldwide, with an age-

standardized incidence rate (ASIR) of 105.9 per 100,000 inhabitants (33). There is no 

pronounced spatial occurrence of breast cancer in the Netherlands (34). From 1989 to 2003, 

the breast cancer incidence increased from 73 to 91 per 100,000 in habitants/year. In 

addition, during this period, there was a trend of spatial difference towards higher incidence 

in rural areas, but no temporal trend differences were observed (35).   

1.2.3 Norway 

 In Norway, the breast cancer incidence has more than doubled over the last 60 years, and 

the ASIR reached 87.7 per 100,000 inhabitants/year in 2018 (34) (i.e., 131.0/100,000/year 

according to the Norwegian Standard; Fig. 3A).  

The median age of breast cancer patients in Norway is 62 years, with a peak age of 

65 years (Fig. 3B) (36). The prevalence of a recent or former breast cancer diagnosis was 

47,568 women in 2017, 21,363 of whom survived more than 10 years (36). In 2017, 629 

deaths were attributed to breast cancer, whereas the overall relative survival during the 

period 2013-2017 was 90.4% (36). However, the Norwegian Breast Cancer Registry does 

not report long-term survival (i.e., >10 years). In 2017, this incidence translated into 3589 

women and 34 men affected with breast cancer in Norway. There is a substantial spatial 

distribution of new cases in Norway (Fig. 3C). 
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Figure 3.Overview of cancer types and breast cancer in Norway 

A. Incidence of various cancer types in Norwegian women from 1958 to 2017. Time in 5-year intervals 
on the X-axis and incidence rate (number of new cases per 100,000 inhabitants/5-year period) on the Y-axis. Breast 
cancer is denoted by a pink arrow. 

B. Age-specific incidence rates of breast cancer in Norwegian women. Notably, the incidence curve 
has a steep increase in the mid-50s, when women normally enter menopause. Years of women on the x-axis and age-
adjusted incident rate on the Y-axis (number of cases per 100,000 inhabitants/year).  

C. Spatial distribution of the estimated age-standardized incidence rates in Norway for female breast cancer at all ages in 2018 (29). 

1.3 Etiology and Risk Factors in Breast Cancer 

1.3.1 Target: the breast 

The breast develops when the embryo is 4-5 mm long in the 5th-6th week of gestation, with 

formation of an ectodermal fold on the ventral side of the embryo, the so-called milk rim 

(37). Formation of the breast buds occurs on this rim by stem cells that start to sprout and 

form the breast bud. In human embryos, only the thoracic bud remains and develops into a 

specialized apocrine sweat gland. Thus, the stem cells in terminal ductal lobular units 

(TDLUs) may be influenced by hormonal (i.e., estrogen) changes in utero, during 

development in adolescence, and during the mature life of the woman (Fig. 4A). 
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A. Sagittal section of the female breast. 1. Intercostal muscles; 2. M. pectoralis major; 3. 
parenchymal tissue, with approximately 18 lobes in each breast; 4. nipple; 5. areolar skin; 6. large milk collection 
sinuses; 7. subcutaneous and intra mammary adipose tissue; 8. inferior mammary fold (38).   

B.  Microscopic details of a breast lobe showing the smallest functional unit in the breast, the terminal 
ductal lobular unit (TDLU), where the luminal and basal stem cells reside. ER, estrogen receptor; PR, progesterone 
receptor. Modified from (39).    

In the TDLUs, luminal stem cells are more numerous than other stem cells (Fig. 4B). 

Moreover, the fibroblasts, macrophages, and adipocytes in the microenvironment of the 

TDLU are co-actors in carcinogenesis and the promotion of breast cancer (39).  

Figure 4. Anatomy of the breast 
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1.3.2 Genetic factors 

For many years, the estimated 

fraction of new breast cancers 

arising from germline 

mutation has been reported to 

be 5-10% (40, 41). Recently, 

next generation sequencing 

technology has detected up to 

13% germline mutations in 

breast cancer (42). Women 

with a genetic risk for 

developing breast cancer are 

divided into three groups (43). 

(The first group compriseswomen who are at the absolute highest risk of developing 

breast cancer during their lifetime. These women   carry the highly penetrant BRCA-1 or 

BRCA- 2 mutations, which comprise 20-30% of all hereditary breast cancers. The 

BRCA-1 and -2 proteins are involved in the repair of double DNA strand lesions. Thus, 

the penetrance is quite high, with a lifetime risk of developing breast cancer of 50% to 

70% (44). Consequently, younger breast cancer patients < 40 years of age account for 

more of these mutations (43). In the second group, there are several low-frequency and 

less penetrant genes, such as ATM, CHEK2, PALB2, CDH 1, and STK11 (Fig. 5) (45). 

The third group comprises patients with a family history of breast cancer only, with no 

gene mutations in genetic tests (45).    

Upper left: Low frequency/high risk. Lower right: High frequency/ low relative (46) 

Figure 5. Overview of breast cancer susceptibility loci and genes. 
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1.3.3 Environmental factors 

Women who have undergone thoracic ionization radiation against mediastinal lymphoma 

are at higher risk of developing breast cancer (46). In addition, living under elevated high-

voltage cables is associated with a higher risk of breast cancer due to exposure to 

electromagnetic fields (EMFs). A Norwegian study reported a 39% increase in breast 

cancer risk when living closer than 40 m from a 33 kV cable and 300 m from a 420 kV 

cable (47). Furthermore, light exposure at night is known to raise the risk of breast cancer 

among night workers, 8% to 40% depending on the study design (48-50). The effects of 

both EMFs and ‘light at night’ are probably mediated through the melatonin signaling axis, 

which converges on a gain in estradiol synthesis and ER production (51).  Environmental 

pollution (air and food) with organochlorides (i.e., polychlorinated biphenyls [PCPs], 

dioxins, and aromatic hydrocarbons) are known to create DNA adducts and mimic estradiol 

at the ER level (i.e., endocrine disruptors) (52, 53).  

1.3.4 Lifestyle factors 

 Ecological studies suggest that lifestyle factors play an important role in breast cancer 

carcinogenesis and a complex interaction between nutrients, hormones, and genetic factors 

(54). Women who moved from Asia to the USA and adapted to the American lifestyle have 

been shown to have a several-times increased risk of breast cancer. Moreover, 

postmenopausal weight gain is a known risk factor, probably through increased estrogen 

synthesis in adipose tissue (55, 56). 

On the other hand, postmenopausal weight loss leads to a reduction in breast cancer 

risk, with an odds ratio (OR) of 0.88 (95% CI 0.78 to 0.98) (57). In addition, breast cancer 

risk is related to adipocyte-derived adipokines (e.g., leptin and adiponectin) and 

inflammatory cytokines, which all contribute to carcinogenesis through the activation of 

leptin receptor on the breast parenchymal cell and through microenvironment signaling (58-

60). Approximately one in five Norwegian women are obese (body mass index (BMI) ≥ 30 
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kg/m2) (61) and at higher risk of developing breast cancer (62, 63). There is also an 

association between daily fat intake and the lethality of breast cancer (54). Furthermore, 

alcohol consumption is known to increase breast cancer risk in both pre- and post-

menopausal women (64). The modern Western lifestyle comprises a high intake of 

carbohydrates, which increases the levels of insulin and insulin-like growth factor 1 (IGF-

1) (65), which has a proliferative effect on the stem cells in the TDLUs. Lessons learned

from an ecological study in 1995 indicated that Asian emigrants to USA have a 50% to 

75% lower risk of breast cancer than US-born Asian American women (66). In 2010, 

however, only Chinese and Philippine-born women had lower breast cancer risk than their 

US-born counterparts (67). In a recent study from 2019, Asian immigrants who have lived 

50% of their life in the US had a higher breast cancer risk than their US-born counterparts 

(68). Thus, diet is an important risk factor for both developing breast cancer and prognosis 

in breast cancer patients. Recently, high intake of meat was shown to increase the risk of 

acquiring breast cancer, whereas fruit intake reduced breast cancer risk in a large UK cohort 

study (69). Women with diabetes mellitus type 2 have an increased risk of getting breast 

cancer, but the disease mechanisms may vary in different subgroups (70). Importantly, 

physical activity decreases the risk of breast cancer in both pre- and post-menopausal 

women (64). Furthermore, prebiotics (i.e., dietary fiber, short chain fatty acids) assist the 

growth of beneficial microbiota in the gut (71), which in turn may reduce breast cancer 

progression, including preventing the formation of metastatic niches and metastases (72). 

Combined with physical activity and weight management, a healthy diet is an important 

way to reduce breast cancer risk (73). 

1.3.5 Endocrine factors 

Endocrine risk factors are connected to the total accumulated estrogen impact on stem cells 

in TDLUs. In breast cancer etiology, the molecular mechanism of estrogens includes two 

routes: the 4-OH quinine metabolites of estrogens create DNA adducts and mutations (74), 

and/or estrogens activate the ER, which is involved in the transcription of more than 1000 

genes involved in cell proliferation, growth, and reduced apoptosis. This dual action is 

unique for estrogens. Estrogens pass the placental barrier and affect the mammary 
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epithelium of the fetus in utero. Early menarche (<12 years), first pregnancy > 30 years of 

age, no breast feeding, nulliparous status, and late natural menopause (> 55 years of age) 

increases the number of years with high circulating estrogen levels (64). The development 

of breast cancer is also associated with greater birthweight, adult attained height (via HGH 

axis  (Fig. 6), and adult weight gain and obesity, which are proxies for increased intrauterine 

estrogen exposure and early endogenous estradiol production, respectively (74).     

1.3.6 Integrative models of risk factors in breast cancer 

Notably, most of the above-mentioned risk factors converge towards estrogen or estrogen 

receptor as a central factor (75). This underscores the importance of controlling the ER 

pathway in both the prevention and treatment of breast cancer (Fig. 6).     

Figure 6. An integrative model of risk factors in breast cancer 
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1.4 Tumor Biology —Hallmarks of Cancer 

Despite the various types of cells, genes, and effector molecules that act in concert in 

the development of cancer, some common features have emerged during the last two 

decades, such as in the research by Hanahan & Weinberg in 2000 (76) and 2011 (77) 

(Fig. 7).

The extended version of Hallmarks of Cancer from 2011(77).

These converging characteristics have been the basis of an increased focus on cellular and 

subcellular mechanisms for what was previously only seen with a clinical eye. These ‘10 

commandments of cancer’ both explain the nature of cancer and point out weaknesses that 

can be utilized as treatment targets.    

Figure 7. Hallmarks of cancer 
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1.4.1 Alteration of the genome of neoplastic cells is the 

underlying factor in the various hallmarks of cancer. Certain 

mutant genotypes confer a selective survival advantage of 

subclones and enable them to become dominant in a local 

tissue environment. Three basic ways by which a gene can be changed are known: direct 

action on the DNA (e.g., single base alteration, deletion, addition, or frameshift mutation); 

a change in whole genes (e.g., copy number amplification  or chromosome translocation), 

which will lead to an increased number of key factors in various signaling pathways; 

transcription of genes, which may be influenced by epigenetic changes (i.e., methylation 

or demethylation of histones, leading to silencing or activation of DNA transcription, 

respectively). Importantly, defects in the DNA repair machinery result in the accumulation 

of genomic changes and lead to genomic instability. 

1.4.2. Cells are normally dependent on a stimulus from the external 

environment to divide, grow, and move. Cancer cells sustain their 

own growth signals and become independent of the exterior 

surroundings. In breast cancer, overproduction of estrogen receptor 

(ER) and the transmembrane tyrosine kinase receptor human epithelial growth receptor 

HER-2 by amplification of their genes, ESR-1 and HER-2-neu, respectively, are typical 

examples of this hallmark. The widely used drugs tamoxifen and trastuzumab block the 

ER and HER-2 pathways, respectively. Furthermore, all stimulatory signal pathways are 

counteracted by an inhibitory system to avoid overstimulation. Cancer cells often have 

defects in such important suppressor mechanisms. Mutations in PTEN leads to a defect, 

removal of PIP3, by failing to attenuate the PI3-kinase. This important signaling pathway 

is downstream of Receptor Tyrosine Kinases (RTKs), and upstream activation of Protein 

Kinase B (Akt) prepares the cancer cell to grow and thrive by increasing protein synthesis. 

In endocrine-resistant breast cancer, a PTEN mutation may be one of the underlying 

mechanisms.       
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1.4.3 In normal tissue, multiple anti-proliferative signals 

operate in concert to maintain cellular quiescence and 

tissue homeostasis. The retinoblastoma (Rb) and TP53 

proteins comprise central prototypical tumor suppressors 

and represent two complementary regulatory circuits that decide whether the cell will 

proliferate, senescence will be activated, or the apoptotic program will be induced. 

Mutations in the TP53 gene will lead to a failure in the induction of apoptosis or cellular 

senescence, increasing cancer cell longevity. Mutation of TP53 may occur up to 50% (30 

out of 69) of Norwegian breast cancer patients (23). Moreover, breast cancer with TP53 

mutation are more prone to respond to platinum cytotoxic drugs given as pre-operative 

down-staging in T3 breast cancer tumors.  

1.4.4 Evasion of programmed cell death is another 

way to increase cancer cell longevity. The apoptotic 

machinery consists of both sensory receptors and 

effector signal pathways. The sensors monitor the 

intracellular and extracellular conditions and act as 

sentinels of the cell fate. Important life-promoting systems are the insulin-like growth 

factors (IGF-1/IGF-2) and the corresponding receptor IGF-1R. These survival factors are 

frequently expressed in breast cancer cells. External death signals are mediated through the 

FAS-ligand/FAS-receptor and TNFα/TNF-R1 systems, whereas nuclear DNA and 

mitochondrial damage (cytochrome C release) are strong internal cellular sentinel 

pathways. The ultimate apoptotic effectors are the potent proteolytic caspases, which 

induce cell autophagy without any necrotic responses. Both chemotherapy and radiation 

therapy induce apoptosis through such mechanisms. 
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 1.4.5 All cells require nutrients and oxygen. 

Initially, cancer cells rely on diffusion, but they soon 

demand a larger and more reliable nutritional supply 

via their own blood vessels. Cancer cells release 

vascular endothelial growth factor (VEGF) and 

fibroblast growth factors (FGFs), which skew the ‘angiogenic shift equilibrium’ in the 

endothelial cells and pericytes towards the formation of new blood and lymphatic vessels. 

In breast cancer, VEGF is released from pre-invasive ductal carcinoma in situ lesions, 

which stimulates adjacent blood vessels to proliferate prior to invasion. Moreover, neo-

angiogenic vessels are more leaky than normal ones. This is utilized in MRI and contrast-

enhanced digital mammography (CEDM) to detect the presence of immature vessels in 

breast cancer based on leakage of the contrast material.    

1.4.6 In contrast to apoptosis, necrosis leads to tumor 

cell ‘explosion’ and the release of contents into the 

local tissue environment. This process recruits 

inflammatory cells, which release tumor-promoting signals, such as IL-1α, into the tumor 

microenvironment. Such recruitment of immune cells will do more damage than good to 

the patient.  

1.4.7 Most of the hallmarks of cancer lead to an uncoupling of the 

cell growth program. All mammalian cells carry an inherited 

intrinsic mammalian cell-autonomous program that limits the 

replicative potential of the cell. Disruption of this trait leads to 

limitless replicative potential and growth of the tumor to clinically 

detectable sizes. Telomeres on the end of the chromosomes secure replication, whereas a 

lack of telomeres activates the senescence and apoptosis machinery in the cell. Telomeres 
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are kept viable and maintained by a specialized DNA polymerase, telomerase, which is 

up-regulated in virtually all types of cancer cells. Targeting the telomerase is a potential 

treatment option in cancer. 

1.4.8 During cancer development, some cells 

become programmed to leave the primary 

tumor, travel to distant sites, and grow new 

distant metastases. A complex interplay 

between various cell-to-cell adhesion 

molecules (CAMs), such as integrins, b-catenin, and E-cadherin, is activated to achieve 

metastatic ability. The metastatic process comprises three processes: 1) epithelial to 

mesenchymal transition (EMT), which transforms the broad and large epithelial cancer 

cell into a smooth muscle cell-like cell type, which can move between cells like a parasitic 

worm; 2) the journey in the peripheral blood or lymphatic vessels to distant sites and 

leaving the vessel; and 3) mesenchymal to epithelial transition (MET), which is the 

opposite of the EMT process.  

1.4.9 Normally, the immune system will destroy 

incipient cancer cells, but natural selection towards 

weakly immunogenic cancer cells over time is thought 

to create cancer cells that avoid detection by immune 

cells. Other mechanisms for avoiding immune detection include the secretion of 

immunosuppressive factors and recruitment of immune cells that suppress the action of 

cytotoxic lymphocytes. Both the innate and adaptive cellular arms of the immune system 

are involved in tumor cell surveillance. Two main strategies are exploited in 

immunotherapy: 1. Checkpoint inhibitors (e.g., PD-L1, PD1, CTL4  inhibitor therapy in 

breast cancer), which allow the antigen-presenting cell to detect cancer cells, and 2. CAR 
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T-cells, which are ex-vivo chimera-modulated cytotoxic T cells that attack the targeted 

epitopes.  

1.4.10 Cancer cells need both ATP, for the 

various cellular reactions, and DNA-building 

elements such as ribonucleic acids. The so-

called Warburg effect is a metabolic switch 

that allows aerobic production of lactate and 

the production of ribose via the pentose phosphate shunt for the synthesis of all DNA and 

RNA nucleotides (See 1.10 and Fig. 31 for further details). 

1.4.11 Integrative signaling pathways – the functional circuits 
The above-mentioned hallmarks of cancer are all based on various cellular signaling 

pathways working in concert (Fig. 8A). Such cascades work together to form functional 

circuits assigned to specific tasks (e.g., proliferation and motility) (Fig. 8B) (76). 

Furthermore, considerable crosstalk is seen between these functional units to increase the 

autonomy of the cancer cell (77). 
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Figure 8. Signaling networks and pathways 

A. Overview of autonomous cellular signaling networks in cancer cells. Signal molecules with functionally 
altered genes are marked in red (76). 

B. Signaling pathways from Fig. 8A work in concert forming functional circuits, such as proliferation, motility, 
viability and cytostasis, and differentiation (77). 
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1.5 Carcinogenesis of Breast Cancer  

Carcinogenesis is a multistep process in which the inherited genetic susceptibility and 

cumulative acquired influence of carcinogens on the stem cells in TDLUs over many years 

produce a cancer stem cell (Fig. 9). These cancer stem cells harbor the various hallmarks 

of cancer discussed in chapter 1.3.   In breast cancer, amplification of c-myc and c-erbB2 

are typical genetic changes that make the stem cell insufficient in growth factors. 

Inactivation of tumor suppressor genes (TP53) and repair genes (BRCA-1) by mutation or 

loss of heterozygosity (LOH) is an important carcinogenic step. Obviously, if a woman has 

a germline mutation in BRCA-1 (i.e., first hit) she will be much more vulnerable to various 

genetic events during life (e.g., LOH; the second hit) that may end result in a non-functional 

BRCA protein in the cell (78). As double-strand DNA repair depends on a functional 

BRCA-1 molecule, all kinds of DNA damage start to accumulate in the cancer stem cell 

(79); a critical mutation level may be achieved earlier in life compared to women without 

this germline mutation (80). Finally, epigenetic changes, such as methylation or 

demethylation of the promoter region of various genes, may silence tumor suppressor genes 

Figure 9. Main steps in carcinogenesis of breast cancer (80) 
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and activate oncogenes (81).  The cancer stem cells in TDLUs create new cell populations 

that may grow into cellular arrangements that are possible to detect on mammography and 

are visible under a light microscope (Fig. 9) (78). Typically, such cellular alterations are 

benign proliferative changes, columnar cell changes, columnar cell hyperplasia, atypical 

hyperplasia, flat    epithelial atypia, ductal carcinoma in situ (DCIS)  type I, II, and III, and 

various invasive carcinomas (78, 82-85). 

1.6 Treatment of Operable Breast Cancer 

Treatment of operable (i.e., early) breast cancer has one ultimate goal: cure through 

removal of the primary tumor and eradication of putative minimal residual disease outside 

the breast (86)(91).  The current regimens for early breast cancer ‘stand on the shoulders’ 

of two important historical paradigms: the loco/regional (Table 1, pt. 8) and systemic 

paradigm (Table 1, pt. 19). Thus, the primary treatment has two main components with a 

common objective: to achieve locoregional control in the breast and axilla (surgery and 

adjuvant radiotherapy), and to eradicate any systemic minimal residual disease at the time 

of diagnosis (systemic adjuvant treatment) (Fig. 10).     

Figure 10. Algorithm of 

 breast cancer treatment 
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1.7 Prognostic and Predictive Factors in Breast Cancer 

Treatment of breast cancer may create both life-threatening and cumbersome side effects, which 

may last many years. On the other hand, breast cancer is a potentially lethal disease that 

requires potent treatment options to eradicate it. Thus, it is of utmost importance to avoid 

both over- and under-treatment. Prognostic and predictive factors help clinicians in the 

decision-making process (Fig. 11) (87). A prognostic factor identifies subgroups with an 

inferior/good prognosis (Fig. 12A and 12B) and is available at the time of surgery, 

correlating with the natural course of the disease (88). Moreover, such factors must be 

decided using materials from treatment-naïve patients, i.e., they have not received any 

active treatment besides surgery (87).        

Therefore, prognostic factors will indicate who needs adjuvant treatment (Fig. 11). 

In contrast, predictive factors foretell which subgroup will respond to a certain treatment 

and which will not (Fig. 12C and 12D). Thus, research on predictive factors must be based 

on a solid biological hypothesis (87). Taken together, the prognostic and predictive factors 

form the basis for personalizing the treatment of breast cancer. In particular, there is a need 

for more reliable predictive factors, as more treatment options are available than predictive 

factors (Fig. 11) (86). From (89) based on (87). 

Unifying algorithm of the use of prognostic and predictive factors in the management of   breast cancer patients (89). 

A

A

A

Figure 11. Prognostic and 

predictive risk factors 
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To find the ‘correct’ balance between escalating or de-escalating treatment strategies 

in breast cancer, international consensuses provide helpful insight (90). National guidelines 

are based on such agreement (Fig. 13). An overview of the treatment details in Norway is 

provided in the Appendix (Appendixes 1-5). Furthermore, the various prognostic and 

A. Kaplan-Meier survival curve in a certain patient population that did not receive any adjuvant 
treatment. More than 50% of the population relapsed/died during the observation period. Prognostic 
subgroups? 

B. Same population as in A, but a prognostic factor divides the main population (brown) into a better 
(red) and worse (blue) prognostic subgroups (e.g., axillary lymph node metastases in breast 
cancer). 

C. Treatment is given to both prognostic subgroups as in B. Prognoses are improved in both 
subgroups, indicating that this factor is a pure prognostic factor (e.g., axillary lymph node 
metastases in breast cancer). 

D. Treatment is given to both prognostic subgroups in B, but only the red subgroups respond, whereas 
the prognosis for the blue group remains unchanged. This factor is both prognostic and predictive. 
(e.g., only estrogen receptor-positive breast cancers respond to tamoxifen or aromatase inhibitors, 
not the estrogen receptor-negative subgroup).   

Figure 13. Interpretation of prognostic and predictive factors.

E. Kaplan-Meier survival curve in a certain patient population that did not receive any adjuvant
treatment. More than 50% of the population relapsed/died during the observation period. Prognostic
subgroups?

F. Same population as in A, but a prognostic factor divides the main population (brown) into a better 
(red) and worse (blue) prognostic subgroups (e.g., axillary lymph node metastases in breast
cancer).

G. Treatment is given to both prognostic subgroups as in B. Prognoses are improved in both
subgroups, indicating that this factor is a pure prognostic factor (e.g., axillary lymph node
metastases in breast cancer).

H. Treatment is given to both prognostic subgroups in B, but only the red subgroups respond, whereas

Figure 12. Interpretation of prognostic and predictive factors (91) 
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predictive factors and information on comorbidity may be utilized by web-based tools to 

evaluate the contribution of each treatment option to the estimated 10-year survival (Fig. 

13). Gene expression tests provide both prognostic and predictive information, whereas the 

classical factors provide overlapping or uncertain information (Fig. 13) (91).  

Overview over prognostic and predictive methods available in decision making process of breast cancer patients. 
Figure 13. Tools in adjuvant decision making 
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1.7.1 Tumor size 

In breast cancer, tumor size and lymph node metastases are the two strongest prognostic 

factors (TNM classification; Appendix 1, (92)). Tumor size measured in the surgical 

specimen (pT) correlates with both lymph node status (lymph node negative vs. positive) 

and the number of metastatic lymph nodes (93). In treatment-naïve patients, there is a linear 

relationship between tumor size and the risk of distant metastases (93, 94). In one cohort, 

20-year relapse-free survival (RFS) was 88% for tumors <10 mm, 72% for those 11-30 mm, 

and 59% for tumors with diameters between 31 and 50 mm (95). Median time to 

progression also decreased with increasing tumor size. In another cohort, the 20-year 

disease-free survival was 50% for all pT1 tumors and 30% for all pT2 tumors (Fig. 14A ) 

(93).There is a logistic relationship between tumor size and the percent of patients with 

positive lymph nodes (Fig. 14B)(96).For lymph node-negative patients, pT is particularly 

important, as it alone can trigger recommendations for systemic adjuvant treatment when 

other factors are unchanged (91). This is also reflected in the risk classification according 

to the St. Gallen criteria, in which one sees that, to belong to the low-risk group, the tumor 

must be <2 cm (90, 97). 

A.  Prognostic information from tumor size as analyzed in treatment naïve BC- patients in the 
      Netherlands (93). 
B.  The logistic correlation between tumor size in mm (X-axis) and percent of patients with positive 

 lymph nodes (Y-axis) (96). 

Figure 14. Prognostic information from tumor size 
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1.7.2 Axillary lymph nodes 

The strongest prognostic factor is pathological lymph node status (pN). A strong correlation 

exists between the number of lymph nodes with metastasis and survival (93). Metastasis to 

regional lymph nodes (i.e., pN-positive status) always triggers adjuvant systemic treatment. 

The 5-year survival was 82.8% in treatment-naïve patients without proven metastases to 

axillary lymph nodes (pN-negative), 73% for pN1-3, 45.7% for pN4-12, and 28.4% for 

pN≥13 (98). However, the 20-year disease-free survival is remarkably worse in treatment-

naïve patients (Fig. 15A) (93). 

A.  Prognostic information from number of positive lymph node categories in treatment naïve BC-
patients in the Netherlands (93). 

B. The prognostic effect of tumor size on various groups of lymph node categories (96). 

As pN is such a strong prognostic factor, it is important to establish robust prognostic and 

predictive factors for pN-negative (N0) patients (e.g. tumor size in Fig. 15B(96)) in order 

to avoid over- and under-treatment.  

Figure 15. Prognostic information from lymph node status 
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1.7.3 Morphological subtypes 

The various histological subtypes (Fig. 16) (99-104) provide prognostic information in 

univariate analysis.  However, in multivariate analysis, they exhibit no independent 

prognostic value, with the exception of the lobular subtype (105), but they have no 

predictive value. Invasive tubular cancer has the best prognosis. Lobular and mucinous 

carcinomas have a fairly good prognosis, whereas the invasive ‘no special types’ (NST), 

medullary carcinomas, and signet cell carcinomas have an inferior outcome (106). The 

reason why the histological subtypes, other than lobular, exhibit no independent prognostic 

information is due to sharing some overlapping features that are much stronger 

prognosticators, such as histological grading and proliferation.  Moreover, breast cancer 

lacking both ER, PR and HER-2 expression are called triple negative breast cancers. These 

cancers have a particular inferior prognosis the first five years of follow up, due to lack of 

treatment targets (107). 

Figure 16. Morphological features of six invasive breast carcinomas 

A. Invasive tubular carcinoma (101), B. Invasive lobular carcinoma (102), C. Invasive mucinous carcinoma (105), 

D. Invasive carcinoma, no special type (NST) (103), E. Invasive medullary (104), F. Invasive signet cell carcinoma (106). 
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1.7.4 Histological grading 

Histological subtyping focuses on differences between the tumors, but three common 

features may stratify breast tumors according to the degree of tumor differentiation i.e.  

tubular formation, nuclear pleomorphism, and mitotic count (Table  1, pt. 15 and Table 2) 

(10). 

Table 2. The algorithm of histological grading.  (Based on (10)) 

The histological grade serves as a proxy for proliferation (7). In multivariable 

analysis, only the mitotic index component of the histological grade remains in the final 

model. Thus, histological grade is a good prognosticator (108) and  serves as an important 

predictive factor when the decision-making process between luminal A vs. luminal B 

cannot be aided by other factors (Appendix 5) (91). A drawback of histological grading is 

the poor reproducibility (kappa = 0.44 to 0.69) due to great individual assessment of tubular 

Key feature Single 

scores 

Adding 

scores 

Sum 

score 

Histological 

grade 

Differ- 

entiation 

Typical 

picture 

Tubular formation 3-5 

points 

Grade 1 High/good 

‘the good’  >75% of the tumor 1point 

10%-75% of the 

tumor 

2points 

<10% of the tumor 3points 

Nuclear 

pleomorphism 

6-7 

points 

Grade 2 Intermediate 

‘the bad’ 

Uniform 1point 

Some variation 2points 

Marked variation 3points 

Mitotic Index  

(10 HPF, 0.44 mm)

8-9 

points 

Grade 3 Low/poor 

‘the ugly’ 

0-5 mitoses 1point 

6-10 mitoses 2points 

≥ 11 mitoses 3points 
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formation and nuclear pleomorphism, as well as where and how to count mitoses. Grades 

1 and 3 have good reproducibility, whereas grade 2 is poorly reproducible. Multivariable 

analysis has shown that the mitotic count has prognostic and predictive ability, not the other 

two features (25). Thus, tubular formation and nuclear pleomorphism ‘dilute’ the 

prognostic power of the mitoses in the histological grade.  Interestingly, gene expression 

analysis revealed that histological grade 2 tumors are mixtures of grade 1 and grade 3 

cancers (109). 

1.7.5 Hormonal receptors: Estrogen receptor (ER) and progesterone receptor (PR) 

The two hormonal receptors, ER and PR, are members of the nuclear receptor family and 

have versatile effects on gene regulation that belong to several hallmarks of cancer (110). 

The prognostic information they provide is based on the degree of tumor differentiation. 

Grade 1 tumors often follow strong expression of both ER and PR (Fig. 17A+ 17C), 

whereas poorly differentiated tumors may lack one or both two hormone receptors (Fig. 17 

B). Expression of these two receptors also provide information on endocrine sensitivity and 

thus predict the efficacy of endocrine treatment (i.e., tamoxifen and aromatase inhibitors 

(AI)) (Fig. 12D). There is a correlation between the amount of ER and response to anti- 

estrogen therapy, but tamoxifen and AIs have the same effect for all levels of ER 

expression. Thus, there is no level of ER that can distinguish between a better predictive 

effect of AI or tamoxifen (111, 112). The degree of ER positivity (ER+) may determine 

when endocrine therapy can be given alone, or when one needs to be supplemented with 

chemotherapy (Appendix 5).  
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As ER transcribes the PR, the presence of PR is a marker of a functional ER receptor 

pathway and endocrine sensitivity (Fig. 19, pkt. 11). The response to tamoxifen in the 

ER+/PR+ subgroup is 50%-70%, but it decreases to 30-40% when PR expression 

disappears (88). The mechanisms underlying endocrine resistance (endocrine switch) is 

phosphorylation of ER, mutations in the ESR1 gene (113), perturbation of the equilibrium 

between co-activators (CoAs)/co-repressors (CoRs), hyperactivity in the Cycline 

D/CDK4/6 (114) or a switch in signaling through the ER/PR pathway to membrane-bound 

tyrosine kinase activating receptors (e.g., EGFR/IR/IGF) (Fig. 19 pkt. 3 and 7) (115-118). 

In the clinical setting, it is important to identify whether such resistance is present, as this 

has direct implications on the choice of treatment. Thus, reliable predictive markers for 

endocrine resistance need to be identified (see 1.12).  

Figure 17. Estrogen and progesterone receptor expression in breast cancer 

A. Estrogen receptor positive. B. Estrogen and Progesteron receptor negative.  C. Progesterone receptor positive (91).

Tumors that are: A. Estrogen receptor positive, B. Estrogen receptor negative, and C. progesterone receptor positive. 
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1.7.6 HER-2 

HER-2 is a typical example of breast cancer cells becoming enough for their own growth 

signals. It is a transmembrane receptor with an extracellular domain and an intracellular 

tyrosine kinase unit capable of activating downstream signaling pathways through the ras-

Raf-Mek-Erk cascade and with cross-linking to the Akt/m-TOR pathway (Fig. 19). 

Approximately 15% of women with breast cancer over-express HER-2 at the genomic 

and/or protein level. HER-2 protein is detected in tissues by immunohistochemistry, 

whereas situ hybridizations (FISH/CISH) detects amplification on the gene level (17q12) 

(Fig. 18).  

Gene amplification results in 10-100 times more HER-2 molecules per breast cancer cell. 

As a result, signal transmission is enhanced and leads to increased proliferation, growth, 

and survival. In addition to be a prognosticator, HER-2 is also an independent predictive 

factor regarding the effect of chemotherapy and monoclonal antibody trastuzumab (22, 119, 

120) and tyrosine kinase inhibitor lapatinib (121). 

Figure 18. HER-2 protein expression and gene amplification 

A. HER-2 highly over expressed on the protein level located in the outer cytoplasmic membrane.  
    Detected  by IHC with a score of +++. 

.    B Amplification of the HER-2 gene at 17q12 (red dots) detected by FISH. Up to 6 x amplification.              
  Reference are the centrosomes stained as  green dots.

C. HER-2 protein detected in the outer cytoplasmic membrane.

D. Amplification of the HER-2 gene at 17q12 (red dots). Centrosome: 

green dots. 
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In Fig. 19, the downstream intracellular signal pathways from HER2, EGFR and 

ER/PR are depicted. Also, the targets of various drugs toward these pathways are 

indicated. 

Overview of signaling transduction through the HER-2, EGFR, and estrogen receptor (ER) pathways. 

E2, estradiol, normal endocrine responsive signal pathway. Developed from (116) and (89). 

1. Trastuzumab binds to the extracellular domain of HER-2 receptor, which does not have a natural

ligand.

2. Intracellular tyrosine kinase autophosphorylates downstream targets.

3. Signal transduction via various intracellular pathways, such as the Ras-Raf Erk pathway.

4. Downstream signaling from both HER 2 and EGFR ends up in the nucleus, where gene

transcription is stimulated.

5. Cetuximab inhibits EGFR signaling by binding to extracellular domain.

6. Lapatinib inhibits the intracellular tyrosine kinase of both HER 2 and EGFR.

Figure 19. Overview of HER-2, EGFR and ER signaling transduction 
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7. Signal transduction via various intracellular pathways, such as the Akt/mTOR pathway.

8. Aromatase converts androgens to estrogens.

9. Aromatase inhibitors (C) shut down this conversion.

10. Selective estrogen receptor degrader (SERD) (D) stimulates proteasomal degradation of ER.

11. Selective estrogen receptor modulator (SERM) (E) modulates the binding of co-activators (CoAs)

and co-repressors (CoRs) to decide whether ER transcribes genes or inhibits such gene

transcription.

12. SERM has bound CoR to the ER, which inhibits transcription.

13. ER has bound CoA, which activates transcription, especially Progesterone Receptor (PR) as a

sign of endocrine sensitivity.

14. EGFR and HER-2 signaling inhibit PR transcription. Thus, a low or negative PR is a sign of

endocrine resistance.

1.7.7 Biomarkers of proliferation 

Proliferation is one of the most important features of a mammalian cell, replacing cells 

thatdie during the life cycle. The proliferation rate is much higher in cancer than in 

normal tissue. The cell cycle is divided into five phases: G0 

(non-dividing/functional state/senescence), G1 

(Gap1), S (synthesis and doubling of DNA content), 

G2 (Gap 2), and the M (mitosis) phase (Fig. 20). 

Histological grade is the oldest surrogate marker of 

proliferation. Here, mitotic index is built into the 

algorithm (Table 2). Immunohistochemistry (IHC) 

detects biomarkers at the protein level, which are 

surrogate biomarkers for gene expression on the 

mRNA level (122). In the Western World, the luminal 

subgroups comprise 75% of all breast cancers. 

Figure 20. Cell cycle Proliferation is the feature that best separates 

 luminal A from luminal B cancers. In situations in which genetic tests (e.g. Prosigna/

PAM50) are not available, surrogate markers of proliferation are used to distinguish 

between luminal A 
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and luminal B cancer. As the luminal B cancer status is predictive of the effect of 

chemotherapy, it is important to accurately draw a line between luminal A and luminal B 

tumors in order to avoid under- or over-treatment of breast cancer patients (Fig. 26).   

1.7.7.1 Ki-67 
In 1983, in Kiel, a protein was detected in well #67 of a myeloma cell culture that 

correlated with proliferation (123) and was called ‘Ki-67’. It is found in all phases of the

cell cycle except G0 (Fig. 21). Ki-67 protein 

expression has been regarded as a good 

proxy for all proliferation-related genes in 

the genetic tests (PAM50/Oncotype). It is 

measured as the percentage of positive tumor 

cells among all cells in the measurement 

area. Over the last decade, Ki-67 has become 

the most used marker of proliferation in 

breast cancer cells (124). It has also been 

included in the St. Gallen treatment 

guidelines (90, 97, 125, 126). Using this 

biomarker, several pitfalls have been found 

in various clinical settings (127-130), various 

technical laboratory settings (131, 132), and 

when deciding the threshold between ‘low’ 

and ‘high’ proliferation (133-135). However, it has been one of the most important 

biomarkers in the NBCG guidelines for distinguishing between luminal A and B cancers 

and the use of chemotherapy in luminal breast cancers (91). The great between-lab 

variation in Ki-67 has led to a vague definition of luminal A vs. B. The recent St. Gallen 

guidelines recommend using the median value from the local laboratory as the reference 

value. Low proliferation is defined by a value lower than the median value -10%, and high 

proliferation as a value higher than the median value + 10%. In between values are 

KI-67 is present in all phases of the cell cycle, 
except the G0 phase (shadowed area).  
Center: Immunohistochemistry of Ki-67 with 
brown nuclei   expressing Ki-67 (arrows).  

.
KI-67 is present in all phases of the cell cycle,
except the G0 phase (shadowed area).
Center: Immunohistochemistry of Ki-67 with
brown nuclei expressing Ki-67 (arrows). 

Figure 21. Ki-67 in cell cycle 
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‘intermediate’ scores (90). In such cases, the pT and histological grade are useful for 

finding the most probable luminal status (136).    

1.7.7.2. PPH3  

The phosphorylated form of phosphohistone 3 (PPH3) correlates well with cells being in 
the G2M phase (Fig. 22A). On IHC sections, the cancer cells stand out, and it is easy to 

determine which cells should be counted. 

Additionally, apoptotic figures do not express PPH3, which make the differentiation 

between mitotic figures and apoptotic figures very easy (137). A cut-off of 13 positive 

PPH3 cells per 1.59 mm2 in the invasive front of the tumor (see 1.8.8.3) (138) has been 

validated (139) as being highly prognostic in all breast cancer subtypes (Fig. 22B). 

However, international consensus has not been reached for its inclusion in any treatment 

algorithm or recommendations.  

A. PPH3 is present in G2 and M phase only (G0, G1 and S-phases are shadowed) (135). 
B. Prognostic information form PPH3 </≥ 13. 

Figure 22. PPH3 in cell cycle 
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1.7.7.3 MAI 
The Mitotic Activity Index (MAI) is a reproducible proliferation marker that selectively 

assesses the mitotic activity in the periphery (i.e., invasive front) (Fig. 23A) of the tumor. 

The measurement protocol is strictly standardized. Briefly, an area of 3 to 5 mm in the 

invasive front of the tumor is carefully selected. The MAI is the number of all 

unequivocal mitoses in 10 adjacent high-power fields in a total area of 1.59 mm2. A MAI 

of 3 means 3 mitoses per 1.59 mm2.  

Obviously, only cells in the M-phase should be counted (Fig. 23A). To avoid sources of 

error, one should stick to the check list below (140). The threshold of 10 mitoses/1.59 mm2 

is highly prognostic in both lymph node-negative (25, 140, 141) (Fig. 23B) and lymph 

node-positive breast cancers. It is also the surrogate marker that best separates luminal A 

tumors from luminal B tumors (142).  Moreover, using the threshold of an MAI </> 3 is a 

good predictor of the effect of chemotherapy (26). 

A. MAI exclusively assesses cells in M-phase (arrow) All other phases are shadowed. Center: HE-staining of whole section 

from a tumor with one unequivocal mitotic figure (arrow). 
B.    Prognostic information from MAI </≥10.

Figure. MAI in cell cycle
C. MAI exclusively assesses cells in M-phase (arrow). Center: HE-staining of whole section from a tumor with one

unequivocal mitotic figure (arrow). 
D. Prognostic information from MAI </≥10

.  

Figure 23. MAI in cell cycle 
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Rules for MAI assessment (Fig. 24) (140) 

1. General

A. Never count under time pressure 

B. Carefully adjust the microscope (light, 

condenser, diaphragm) for optimal 

microscopic images 

C. Carefully define the objective and field 

diameter, and apply a calculation factor when 

deviating from 450 μm 

D. Disregard poor quality sections. 

E. Ignore carcinoma in situ and micro-invasive 

cancer < 2 mm 

F. Count mitoses in the periphery of the tumor only, disregard the center of the tumor 

G. In the periphery, disregard 

a. Necrotic areas
b. Inflamed areas
c. Areas close to the skin

H. In the tumor periphery, at low magnification select the area with the highest subjective 

mitotic activity 

I. Demarcate this area (minimally 2 x 2 mm, maximally 5 x 5 mm) as the measurement 

area 

2.Within the measurement area

J. Change to the 40x objective (field diameter 450 μm/0.45 mm) 

K. Count all unambiguous mitotic figures in this field of vision (FOV) 

L. Move to the neighboring field of vision and repeat the procedure until 10 FOVs have 

been analyzed 

M. The MAI is the total number of mitotic figures in 1.59 mm2 of breast cancer tissue 

3. Pitfalls resulting in erroneous MAI values

N. Random counts 

O. Inaccurate selection and demarcation of the measurement area  

Figure 24. MAI assessment in tumor periphery. 
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1.7.8 Adjuvant! Online: A web-based tool to integrate prognostic and predictive 
factors   

Adjuvant! (version 8.0) is available online at http://www.adjuvantonline.com (143).  The 

data sources, assumptions, calculations, and theoretical background have been described 

previously (144). 

 Estimated prognoses are calculated based on the population-based Surveillance, 

Epidemiology, and End Results (SEER) registry from the United States. Age, comorbidity, 

tumor size (pT), histological grade, ER status, LN status, and treatment were entered into 

the database program. From this information, the Adjuvant! program calculates the 

predicted outcome, breast cancer death rate, and breast cancer–specific survival (BCSS; 

100 – breast cancer death rate). RFS and overall survival may also be calculated (Fig. 25). 
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Figure 25. The Adjuvant! Online algorithm 

Fig. 25 shows two examples of how two different patients are scored in the Adjuvant! Online program. Age, comorbidity, 

ER status, Tumor grade (histological grade), tumor size, nodal status for each patient are punched into the program. Then 

the program calculates the various outcomes.   

Green bar indicates the chance of being alive in 10 years.  

Red bar represents the risk of dying from breast cancer. 

Blue bar shows the risk of dying of other causes.  

Yellow bar depicts the reduction in risk of dying of breast cancer if chemotherapy, hormonal therapy, or combination of 

the two are administered.   

A. Patient 1 with a good 10-year prognosis (95,3%) without adjuvant therapy. However, hormonal or chemotherapy 

will not improve the prognosis significantly (i.e. 0.3% and 0.2% respectively). 

B. Patient 2 with a clearly reduced 10-year survival (65,3%) Importantly, in this patient hormonal therapy will improve 
10 -year survival with 8.8%, chemotherapy with 4.3 % and the combination will improve the 10-year prognosis with 
12 %. 
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1.7.9 Molecular subtyping 

Through unsupervised hierarchical cluster analysis of the molecular profile of breast 

cancers (24), with a completely new taxonomy, breast cancer patients may be grouped 

according to the molecular clustering patterns: luminal A, luminal B, HER 2-positive, basal, 

and normal-like subgroups (Fig. 26A) (23).  This new paradigm has also increased our 

understanding of prognosis (Fig. 26B) (23), treatment prediction, and the clinical 

management of breast cancer patients (145). Luminal A and B tumor cells express ER/PR 

and comprise 75% of all breast cancers in the Western World. Similarly, HER-2-positive 

breast cancers comprise 15% of tumors. The basal type and normal-like are the triple-

negative subgroup (i.e., they lack ER/PR and HER-2) and comprise 10% of cancers in the 

Western World.   

A. Molecular subtyping of breast cancer by unsupervised hierarchal cluster analysis into luminal A,
 luminal B, HER-2 (ERBB2+), normal-like, and basal genotype (23). 

B. Relapse-free survival of the molecular subtypes described in A (23).   

Figure 26. Molecular subtyping 
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Both HER-2 and basal-like subtypes indicate poorer outcomes than the luminal 

groups (Fig. 27) in these HER-2 treatment naïve patients. The triple-negative breast cancers 

have a higher incidence in younger women and BRCA-1 mutation carriers (146).   

In a Norwegian long-term observational study (147) in which the patients were 

grouped according to the new molecular paradigm, the luminal A subgroup had an inferior 

prognosis over a median 20 years and up to 50 years of follow-up. Due to this long 

timeframe, there is a heterogeneity in treatment schedules. Some patients are adjuvant 

systemic treatment naïve while others have received adjuvant systemic treatment according 

to the national guidelines at time. Even though this study uses surrogate markers at the 

protein level, the report clearly indicates that luminal A and B tumors should be treated 

(Fig. 27). Furthermore, one of the recurrent questions in the last decade was how to 

distinguish between luminal A and luminal B cancers. Studies have shown that luminal B 

patients are good responders to chemotherapy, whereas luminal A cancers gain no benefit 

from it. The most accurate approach for separating luminal A from luminal B tumors is 

large-scale tumor gene expression profiling by microarray technology (see 1.7.7) (23, 24). 

Further development of this analytical principle has resulted in an assay using a reduced 

gene set built into a classifier, termed PAM50 (148-150). 

Figure 27. Long term prognostic information of molecular subtypes 

Long-term prognosis in treatment-naïve breast cancer patients in a Norwegian historical study cohort. (136) 

Figure. The Prosigna Score Chart Long-term prognosis in treatment-naïve breast cancer
patients in a Norwegian historical study cohort. (136)
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1.7.10 A useful candidate gene test: Prosigna (PAM50) 

The centroid-based Prediction Analysis of Microarray 50 (PAM50) method utilizes 50 

classifier genes and 5 housekeeping genes out of the 456 genes from the original cluster 

analysis (24) to classify various tumors into luminal A, luminal B, HER-2, or basal type 

(triple-negative). Moreover, based on the proliferation-related genes included in the 

PAM50, a prognostic model (risk of recurrence (ROR) score) (Fig. 28) is available to 

estimate clinical outcome. The ROR score may be utilized as a continuous parameter that 

indicates the percentage risk of systemic (distant) recurrence over a 10-year period, or to 

define three distinct risk groups: low risk (ROR < 40), intermediate risk (ROR = 41-60), 

and high risk (ROR > 60). These scores may be used in treatment guidelines when 

considering chemotherapy (Appendix 2). In several studies, the ROR score was superior to 

conventional parameters, IHC-based assays, and other multigene expression tools (151-

154). Data from the TransATAC study comparing Clinical Treatment Score, IHC4, 

Recurrence Score (Oncotype DX™), EPclin, BCI, and Prosigna™, indicates that EPclin 

and Prosigna™ are the strongest predictors of distant recurrence in both node-positive and 

node-negative, hormone receptor-positive breast cancer patients. In particular, these 

markers are promising for identifying patients at low risk of distant recurrence (155) (see 

Appendix 2). The various candidate gene tests share a common trait, the proliferation genes 

that make up the basis for calculating the various recurrence scores (155, 156). Thus, in 

situations in which such gene tests are not available, various surrogate markers may be 

used.  
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Upper and lower scale: The patient is scored based on a ‘risk of recurrence’ (ROR) and grouped into low risk (0-40), 
intermediate risk (40-60), and high risk (60-80). On the lower scale, the estimated absolute 10-year probability of distant 
recurrence in the various risk groups: low risk=2-6%, intermediate risk=7-14%, and high risk=11-22%. In addition, the Prosigna 
test provides the molecular subtype: luminal A, luminal B, HER-2, and basal (TNBC). (157) 

Figure 28. The Prosigna Score Chart 



61 

1.8   Insulin, Insulin-c-peptide, IGF-1, and IGFBP3 in Breast Cancer 
Risk, Progression, and Prognosis 

The most important analytes related to the regulation of blood sugar are insulin, insulin-c-

peptide, IGF-1, IGFBP-3, lactate, pyruvate, and fructosamine (158). They have a complex 

interaction as explained below.  

1.8.1 Insulin   
Insulin is produced in the beta cells of the Langerhans islets in the pancreas. This peptide 

hormone is regarded as the most important anabolic hormone in the body (159) and 

facilitates the transportation of glucose into the cells through the GLUT4 glucose 

transporter in the outer cell membrane (160, 161). Inside the cells, insulin stimulates the 

formation of glycogen, lipogenesis, and protein synthesis, confirming the true anabolic 

nature of this hormone (159, 161). The production is a multistep process starting with 

transcription of INS, a gene located on chromosome 11p15.5, forming the poly peptide 

‘pre-proinsulin’ (162). Pre-proinsulin is anchored to the rough endoplasmic reticulum by a 

signal peptide for its transportation to the Golgi apparatus. Here, the signal peptide is 

cleaved to form proinsulin, which adopts its tertiary structure through three disulfide 

bridges (163, 164). Proinsulin consists of three peptide chains coupled together: the -

chain, -chain, and connecting peptide (c-peptide) between the - and -chains. Proinsulin 

is stored in intracellular vesicles in the beta cells (164). At this point, the production of 

insulin is independent of the blood sugar level. When the blood glucose concentration 

increases, an enzyme cleaves the c-peptide from proinsulin to form the biologically active 

insulin and c-peptide. Both are excreted into the portal vein in equimolar amounts (Fig. 29) 

(163, 164). 

Insulin binds to the transmembrane homodimer insulin receptor (IR), which has 

intracellular tyrosine kinase activity that activates the downstream Akt (PKB) pathway 



62 

(Fig. 29). The IR is also targeted by IGF-1/2 signaling molecules. Insulin release from the 

pancreas oscillates with a period of 3–6 minutes. This oscillation prevents downregulation 

of IR in the target organs (165). Recently, a meta-analysis concluded that blood glucose 

levels in non-diabetic women are associated with a small increase in breast cancer risk 

(RR=1.11; 1.0 – 1.23) (166).  

1.8.2 Insulin-C-peptide 

C-peptide is the connecting peptide between the α- and β-chains in proinsulin. This 

polypeptide consists of 31 amino acids and is cleaved from proinsulin, forming insulin and 

c-peptide in equimolar amounts (164). The c-peptide has two main functions. First, it serves 

as a marker of the endogenous production of insulin, as c-peptide is much more stable and 

has a longer half-life in serum than insulin. Second, it  has its own biological activities, 

including activating G-protein coupled receptors to release intracellular Ca++, which targets 

downstream PKC and MAP kinase (Raf/ERK 1/2) (Fig. 29) (167). Reduction of apoptosis 

is one putative action in breast cancer cells.  
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Production of insulin by the Langerhans islets (blue dots) in the pancreas, and IGF1 and IGFBP3 in the hepatocytes of the 
liver. Insulin, IGF1, IGFBP3, and insulin c-peptide are all active in the breast cancer cell, promoting several of the hallmarks of 
cancer. 
HGH, human growth hormone; IGFBP3, insulin growth factor binding protein 3; IR-1, insulin receptor 1; IGF1-R, insulin 
growth factor 1 receptor; EGFR, epidermal growth factor receptor; PI3K, phosphatidyl inositol 3 kinase; Akt, protein kinase 
B; ER, estrogen receptor; E2, estradiol. Ras, Raf, and Erk1/2 are mitogenic activating phosphatase (MAP) kinases 
downstream of IGF1R and EGFR. Ca++, Calcium ions; PKC, protein kinase C (Ca-dependent protein kinase). In breast cancer 
cells with fully developed IRs and IGF1Rs, the intracellular pathways will overrule the blocking effect of endocrine treatment 
(tamoxifen and aromatase inhibitors). Insulin-C-peptide has been shown to activate PKC through G-protein coupled 
receptors in several types of cells and to inhibit apoptosis. It is likely, but not yet proven, that this is the case in breast cancer cells. 
Based on (128-167).  

Figure 29. The effect of insulin, IGF-1 and IGFBP3 on breast cancer cells

Fig.34
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In line with this, c-peptide is associated with all-cancer mortality (168) and the outcome of 

breast cancer (169). Serum levels of c-peptide seem to increase the risk of breast cancer in 

postmenopausal women (170, 171), but not in pre-menopausal women (172),(173). 

1.8.3 IGF-1 

Insulin-like growth factor 1 (IGF-1) is a 70-amin-acid peptide hormone resembling insulin. 

It is produced in the hepatocytes after transcription of IGF1 on 12q23.2 (174), which is 

stimulated mainly by insulin and the human growth hormone (HGH) (Fig. 29). IGF-1 is 

responsible for sulfating the glycosaminoglycan matrix in the growing cartilage, bone, and 

connective tissue (175). Like insulin, it is an anabolic hormone involved in the growth 

process in the body. IGF-1 is produced throughout life, from in utero until old age (176). 

Serum levels of IGF-1 are dependent on insulin levels, genetic make-up, the time of day, 

age, sex, exercise status, stress levels, nutrition level and body mass index (BMI), disease 

state, ethnicity, and estrogen status (177). 

Approximately 98% of the IGF-1 is bound to one of the transporter proteins insulin-like 

growth factor-binding protein (IGFBP)-1 to -6, of which IGFBP-3 is the most abundant 

(178, 179). On the target cells, IGF-1 binds primarily to IGF-1R, and to IR with a 0.1-times 

affinity compared to IGF-1R. Downstream from these receptors, the Akt-pathway is 

activated, which induces cell proliferation and growth, and strongly inhibits apoptosis (180, 

181). IGF-1 is also involved in angiogenesis (182). In breast cancer, IGF-1 seems to play a 

role in both carcinogenesis (183-186) and prognosis (187), and may be a novel way of 

treating breast cancer patients (188). Notably, IGF-1 plays a role in estrogen receptor-

positive cancers only (189). Both vegan diets and intermitting fasting (5:2 diet) 

downregulate circulating IGF-1 levels (190). 
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1.8.4 IGFBP-3 

IGFBP-3 is the most abundant transporter protein among the six isoforms produced in the 

liver. Enhanced by insulin and HGH (ref), it transports IGF-1 and IGF-2 from the liver to 

the target cells (191). IGF-1/IGFBP-3 may reflect the bioavailability of IGF-1. At the 

cellular level IGFBP-3 can reduce available free IGF-1, interact with cell surface proteins, 

and enter the nucleus to bind to nuclear hormone receptors (192). In breast cancer, IGFBP-

3 may bind to and activate EGFR. High levels of IGFBP-3 within tumors are associated 

with increased cancer severity (or worse outcome) for some cancers, but decreased severity 

or better outcome for others. 

Estrogen inhibits IGFBP-3 production, and its tissue levels are lower in ER-positive 

breast cancers than in ER-negative cancers. In breast cancer, IGFBP-3 is also involved in 

DNA repair mechanisms (193) and thought to increase the longevity of cancer cells. 

Moreover, IGFBP-3 seems to have a differential effect on various cell types. In breast 

cancer, IGFBP-3 may interact directly with EGFR and stimulate proliferation (194). It can 

also trap IGF-1 at the outer cell membrane and increase signaling through IGF-1R (195). 

Furthermore, the presence of IGFBP-3 in breast cancer tissue has been correlated with an 

inferior prognosis (196). However, this may vary between various tissue types (197). 

1.9 The ERAS Concept 

Enhanced Recovery After Surgery (ERAS) has been introduced in peri-operative care in 

patients undergoing longstanding surgery (198). In gastrointestinal surgery, ERAS reduces 

both recovery time and postoperative complications (199). The ERAS concept comprises 

almost 20 different elements distributed over the pre-operative, intra-operative, and post-

operative phases (Fig. 30) (200). Pre-operative fasting and fasting during surgery bring the 

body under systemic stress, which leads to the release of adrenaline, noradrenaline, and 

cortisol (201). 
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These hormones are catalytic in action (198), i.e. they stimulate the degradation of 

glycogen depots, proteins, and triglycerides to produce energy (ATP). Insulin counteracts 

all the above-mentioned actions by modifying the activity of numerous enzymes (164). The 

actions of insulin on the global human metabolism include increased cellular intake of 

certain substances, most prominently glucose in muscle and adipose tissue (approximately 

two-thirds of body cells) (202). Insulin also inhibits fatty acid release by hormone-sensitive 

lipase in adipose tissue and increases DNA replication and protein synthesis via control of 

amino acid uptake (203). Thus, one of the most important components in ERAS is to avoid 

pre-operative fasting, which leads to low insulin levels and turns on the catalytic state of 

the body. By giving the patients two doses of carbohydrates and glucose-enriched juice pre-

operatively, insulin levels increase and the surgery occurs while the patient is in an anabolic 

state (200). 

The concept of Enhanced Recovery After Surgery (ERAS) includes carbohydrate loading (red asterix) (From 198). 

Figure 30. Enhanced Recovery After Surgery 
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1.10 The Warburg Effect: Deregulation of Cellular Energetics and 
Metabolic      Reprogramming as Putative Prognostic and Predictive 
Factors in Breast Cancer   

The Warburg effect described in 1924 (Table 1, pt. 12) comprises several metabolic 

changes that occur simultaneously (7, 204-208), including changes in carbohydrate, lipid, 

and protein metabolism (Fig. 31). The Warburg effect fulfills many of the metabolic 

requirements that a proliferating cancer cell demands (209). The Warburg effect and 

metabolic reprogramming are  emerging hallmarks of cancer (see 1.4.10) (77). Cancer cells 

mutate to alter several metabolic pathways to their advantage, ultimately leading to 

malignancy and mortality for the host. In rapidly proliferating cells, such as cancer cells, 

some metabolic pathways may be enhanced or inhibited to facilitate growth, mutation, and 

resistance to apoptosis. This characteristic of cancer makes it uniquely suited for metabolic 

analyses (210). The Warburg phenomenon is due, at least in part, to the upregulation of 

genes coding for glucose transporters and glycolytic and regulatory enzymes mediated by 

the increased activity of transcription factors c-MYC and HIF-1 in cancer cells, and the 

coordinated loss of regulatory proteins due to the loss of p53 function. Loss of p53 function 

also leads to the activation of GLUT-3 transcription via NFκB (Fig. 31) (208).   
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Overview of the various aspects of the Warburg effect in a breast cancer cell regarding deregulated cellular energetics, an important 
hallmark of cancer. Glucose metabolism is altered in cancer cells. First, the amount of glucose transport molecules in the cell 
membrane is up regulated. Normally, oxidative phosphorylation follows glycolysis and yields CO2 and 36 adenine triphosphate (ATP) 
via the tricarboxylic acid (TCA) cycle. Lactate production occurs only in the presence of a lack of oxygen (O2). In the Warburg effect, 
glycolysis is up regulated and reduction of pyruvate to lactate occurs despite the presence of O2. This shift in the equilibrium of the 
various steps of glycolysis backwards (red arrows), which opens the PPP and initiates the production of ribose-6-P for nucleotide 
synthesis. MCT1, mono-carboxylate transporter no. 1 (i.e., lactate, pyruvate, etc.); GLUT1-2-3-4, glucose transporter molecule 1-2-3-4; 
TCA, tri-carboxyl acid; ATP, adenosine triphosphate; 3PG, glyceraldehyde-3-P; FA, fatty acid; HIF, hypoxia induced factor. Based on 
(7, 196, 204-208).

1. In cancer cells, glucose transporters are up-regulated.
2. Glucose is converted to the polymer glycogen for intracellular storage.
3. Glycolysis yields two ATP molecules for energy demanding biochemical processes.
4. Glycolysis creates precursors for amino acid synthesis (alanine, glycine, and several other amino acids for protein

synthesis).
5. Despite the presence of oxygen, pyruvate is converted to lactate.
6. Lactate is excreted from the tumor cells through MCT-4 ports.
7. Cancer cells may take up lactate and pyruvate from other sources via the MCT-1 ports.
8. LDH creates an equilibrium between lactate and pyruvate.
9. Pyruvate and acetyl CoA enter the mitochondrion to start the tri carboxyl acid (TCA) cycle.
10. TCA cycle yields 36 moles of ATP per mole of glucose trough the electron transport chain.

Figure 31. The Warburg effect 
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11. Glucose-6-P functions in the pentose phosphate pathway (PPP) to produce ribose.
12. Ribose is a vital part of the nucleotides comprising the backbone of both DNA and RNA.
13. In the PPP, NAD+ and NADP+ are reduced to NADH and NADPH, which are used to reduce glutathione (GSSG)

to GSH, protecting against ROS.
14. PI3K is an important pathway to balance glucose intake in the cancer cell and glycolysis, glycogen storage, and the

PPP.
15. Regulation of glucose uptake via GLUT3 ports and the PI3K-> Akt-> p53 axis.
16. Fatty acid metabolism through the beta-oxidation pathway is stopped.
17. Synthesis of fatty acids and formation of bio-membrane are stimulated, and choline transport for phospholipid

synthesis (211).
18. Uptake of glutamine via special ports.
19. Glutamine is converted to glutamate, which enters the mitochondrion.
20. Glutamate feeds into the TCA cycle at the -ketoglutarate level.

1.11 Metabolomics in Breast Cancer 

Metabolomics is the study of small molecules, such as substrates, intermediates, and end 

products of cellular metabolism, including carbohydrates, amino acids, and small organic 

acids. Metabolomics studies can give valuable insight into breast tumor biology, the 

metabolic status of the patient, and how the metabolic status of the patient is affected by 

treatment (212-215). The metabolic state of cancer cells is substantially altered compared 

to normal cells (77, 216), a fact that can be utilized for diagnostic purposes. Specific 

metabolic signatures in tumor tissue have already been coupled to breast cancer subtypes 

and prognosis (210). Earlier metabolomic analyses of primary tumors found several factors 

relating to prognosis, treatment response, and survival (213, 214). For example, increased 

tumor lactate and glycine levels are related to poor prognosis in patients with ER-positive 

cancer (212). 

High-resolution magnetic resonance spectroscopy (HR MRS) can be used to 

measure the concentrations of metabolites in biological samples, such as biofluids and 



70 

tumor tissue (217). MRS offers precise 

identification of substances and high throughput, 

automated quantitative analysis. HR MRS analysis 

in this thesis was performed at the MR Core 

Facility, Dept. of Circulation and Medical 

Imaging, NTNU (Fig. 32). The MR Core Facility 

hosts two new state-of-the-art spectrometers with 

ultra-shielded magnets operating at 600 MHz for 

proton detection. One spectrometer is dedicated to 

high-throughput biofluid analysis, with a sample 

jet enabling automated sample loading, barcoded 

Approximately 30 metabolites can be detected and quantified in serum spectra, and 

approximately 60 in urine spectra. Another spectrometer is dedicated to tissue analysis by high-

resolution magic angle spinning (HR MAS) MRS for increased sensitivity in semisolid samples. 

In tissue samples, approximately 30 metabolites can be detected and quantified. The MR Core 

Facility collaborates with the vendor (Bruker BioSpin GmbH, Germany) to ensure efficient and 

validated acquisition protocols, making the method feasible for high-throughput analysis and 

implementation in the clinic.  

1.11.1 Metabolomic studies of carbohydrate metabolism in cancer cells 

Metabolic reprogramming of glucose metabolism in cancer comprises glycolytic 

fermentation to pyruvate and, despite the presence of oxygen, conversion to lactate (Fig. 

31, pt. 5). This upregulation of aerobic glycolysis leads to increased cellular acidity, 

providing resistance to acid-induced cell toxicity and a powerful growth advantage (216). 

Moreover, upregulation of glucose transporters in the outer cell membrane via the Akt-

pathway enhances glucose consumption, which is utilized in positron emission transmission 

(PET) imaging. The hexokinase conversion step from glucose to glucose-6-P is the rate-

MR Spectrometer for high-throughput analysis of 

tissue and biofluids. Photo Geir Mogen

Figure 32. MR spectrometer sample tracking, and cold storage (4°C) and cap-
able of running up to 100 samples a day.
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determining step in glycolysis. Activation of PI3K and Akt stimulates formation of the 

hexokinase enzyme, which increases glucose-6-P that enters the pentose phosphate 

pathway. This shunt leads to production of pentose ribose-6-P for nucleotide synthesis (Fig. 

31, pt.11 and 12).  

1.11.2 Metabolomic studies of lipid and fatty acid metabolism in cancer cells 

Lipid metabolism is also altered in tumor cells (218) (Fig. 31, pt. 16 and 17). The beta-

oxidation of fatty acids is blocked, and circulating lipoproteins are also affected by cancer 

(219, 220). Serum lipoprotein sub-fractions have been associated with breast cancer 

characteristics, such as proliferation (221). An increase in long-chain fatty acids is a marker 

of increased biosynthesis of bilayer cellular membranes.  Thus, a cancer cell has increased 

levels of various fatty acids and precursors of the phospholipid bilayer membrane (e.g. 

choline) (222). 

In breast cancer cells previous findings have shown metabolic alterations of choline 

and choline containing compounds (222). Choline is a precursor for phosphatidylcholine, a 

phospholipid in cellular membranes, and a strong correlation between choline metabolites 

and cellular turnover and tumor growth is detected (223). Metabolites containing choline 

act as signal transducers and second messengers for growth factors in the ras-raf-MAPK 

pathway and protein kinase C pathway. Choline phospholipids seem to be regulated by 

receptor tyrosine kinase pathways.   

1.11.3 Metabolomic studies of amino acid metabolism in cancer cells 

A rapidly proliferating cell requires intracellular proteins for vital cellular processes. 

Glycolysis also provides precursors for amino acid production (Fig. 31, pt. 4), for glycine 

and alanine. Metabolomic analysis of the tumor tissue can measure the levels of lactate, 

glycine, cysteine, serine, arginine, glutamine, proline, asparagine, and aspartate (222).  

Glutamine, a non-essential amino acid, is in addition to glucose an energy source in cancer 

cells. It is hydrolyzed to glutamate and ammonium by the enzyme glutaminase (GLS). High 

GLS expression is found in breast cancer associated with high grade and metastatic disease. 
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Glutamate acts in protein synthesis, enters the tricarboxylic acid cycle (TCA) for ATP 

production and is a precursor for glutathione, an important cellular antioxidant.  Oxidative 

stress is important for the cancer cell to achieve the various hallmarks of cancer including 

angiogenesis, invasion and proliferation (224). However, glutathione, a tripeptide of 

glutamate, cysteine and glycine, is furthermore important for breast cancer cells to resist 

external attacks comprising superoxides and oxidative stress overload associated with rapid 

metabolism according to the following generic equation 2 GSH + O2-  → GSSG + H2O 

(225).  

1.11.4 Metabolomic profiling of breast cancer 

Ex vivo MRS provides insight into the underlying biochemical processes associated with 

the malignant transformation of normal cells or tissue. While MRI presents tumor 

morphology, HR-MRS provides the biochemical information about the sample to 

understand the physiology and metabolism of the disease (226) (Table 3). The readout 

spectra from such analyses reveal component-specific peaks in which the spectral regions 

on the x-axis indicate the substance. The area under the peaks represents the concentration 

of the component in the medium (Fig. 33) (222).  
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A. Spectrum from high-resolution magnetic resonance spectroscopy (HR-MRS) analysis of body fluids (e.g., serum). 

The spectral region on the x-axis is from 0.8 to 3.8 ppm (226). 

B. Spectrum from high-resolution magic angle spin magnetic resonance spectroscopy (HR-MAS-MRS) analysis of 

  breast tissue with a spectral region of 3.3 to 3.6 (222).

Both plots: The spectral region (ppm) on the X-axis indicates the substance, whereas the area under the curve represents the 

amount/concentration of each component.  

C. Spectrum from high-resolution magnetic resonance spectroscopy (HR-MRS) analysis of body fluids (e.g., serum). 

The spectral region on the x-axis is from 0.8 to 3.8 ppm (214). 

D. Spectrum from high-resolution magic angle spin magnetic resonance spectroscopy (HR-MAS-MRS) analysis of

breast tissue with a spectral region of 3.3 to 3.6 (211).

Both plots: The spectral region (ppm) on the X-axis indicates the substance, whereas the area under the curve

represents the amount/concentration of each component.

Figure 33. MR spectrum from HR-MRS and HR-MAS-MRS 

A. Spectrum from high-resolution  magnetic resonance spectroscopy (HR-MRS) analysis of body fluids (e.g. serum).
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Table 3. Molecular structure and their corresponding NMR spectrum.  

The relationship between the molecular structure and the NMR specter of some key 
components in the present thesis (227). 

Component Molecular structure NMR specter 

Lactate 

Pyruvate 

Choline 

Glutathione 

Lactate and glycine are promising biomarkers in ER-positive breast cancer, with tumors 

containing high lactate and glycine levels having the worst prognosis (228).  Comparing 

information from metabolomics, proteomic and genetic analyses has shown that 
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metabolic expression correlates to protein expression, while genetic subtypes were evenly 

distributed across metabolic subgroups. Consequently, metabolic aberrations may present 

additional information to explain breast cancer heterogeneity. (222) 

1.11.5 Brief overview of tools and methods used in analysis of metabolomic data 

Metabolomics is the study of small molecules, i.e. < 1000DA. The metabolites are affected 

by medication, diseases, sex, age, diet among others. They represent the downstream of 

genes, RNA, and proteins, and are regarded as the link between the genotype and phenotype 

of the cells (222). MRS metabolomics of BC has shown different metabolite profiles 

between breast cancer patients and healthy controls, and certain metabolite profiles are 

linked specifically to breast cancer.  

1.11.5.1 Technical aspects 
The MR spectroscopy technique is based on what happens with specific nuclei in a 

magnetic field (223). The spin configuration of the nuclei depends on the number of protons 

and neutrons the nucleus harbors. The Larmor frequency is the frequency (Measured in Hz) 

that is specific for different nuclei, dependent on the magnetic field (Tesla) that is applied. 

The nuclei are excited by a radio frequency that is the same as the frequency related to the 

nucleus that is of interest. When the radio frequency is switched off, the nucleus loses 

energy and the spectrum obtained is dependent on the chemical surroundings to the nucleus 

and the amount of sample that is examined (229). 

In tissue the molecules are anisotropic: they are less mobile than in liquid, giving 

broad and overlapping peaks. Magic Angle spinning mimics the molecular motion found 

in liquids, giving spectra with narrower peaks.  

The signal from the protons in different molecules are distinctly separated in MR specter, 

plotted as a function of the resonance frequency. 
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Chemical shift is the difference of resonance frequency (of the molecule of interest) 

and the reference frequency (TSP – trimethylsilylpropionic acid). The resonance difference 

is often 1 million times less than the actual resonance frequency and is therefore expressed 

as parts per million (ppm) (Fig. 33). PH and temperature might change the chemical shift.  

1.11.5.2 Preprocessing of the metabolomic data 
The reference compound has chemical shift zero by definition. The signal in NMR spectrum 

is proportional to the concentration of molecules of which the nuclei producing the signal 

is portion of. That means that the components also can be quantified. 

There are a lot of variables that must be handled in metabolomics. This requires 

preprocessing of the raw data material to get a proper format for statistical analysis. 

Multivariate analyses in Paper III were performed in R V.3.5 and MetaboAnalyst. 

Dependent of pH and temperature the peaks might shift left and right. These and other 

challenges require preprocessing of the data. The baseline is adjusted, the peaks are aligned, 

the samples are normalized to account for dilution or sample weight differences, and auto 

scaled (mean-centered and divided by variance) to account for fold- and variance 

differences between the metabolites (230). 

1.11.5.3 Statistical analysis of the metabolomic data 
PCA is an unsupervised method used to find naturally occurring patterns.  By PCA new 

variables and coordinate systems are generated to reduce the dimensions. In a PCA biplot, 

PC scores of samples (one dot for each sample) and loading variables (vectors) are obtained. 

These show what kind of influence each score and loading has on PC1 and PC2. PC1 

represents the maximum of variation between the data points on the rotation line, with 

minimal error. PC2 represents the second most variation between the datapoints. The angle 

between the vectors in loading plots shows how the different variables are correlated to 

each other. Small angle means positive correlation, an angle 90 of degree means no 

correlation and an angle > 180 means a negative correlation.  
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To find differences in metabolic profiling amongst categories Partial Least Squares 

Discriminant analysis (PLS-DA) was used. Partial least squares regression (PLS-R) was 

used to find correlations between metabolic profile and continuous variables.  

One challenge in multivariate analysis is overfitting that means that latent variables 

that represent noise are included, leading to prediction models which will not fit new data. 

This is the most serious problem. If too few numbers of latent variables are included in the 

model, problem with underfitting will arise.   

To validate the results regarding quality and robustness, cross validation and 

permutation testing were performed. Cross validation is a resampling technique. The 

dataset is divided into new groups or “folds”, and one by one the folds are excluded while 

the test is run. By permutation test the classes or groups are rearranged before being entered 

in the model, to simulate the “null hypothesis” that no difference exists between the groups. 

If equal or better models can be created by random data, the conclusion is that the model is 

not valid. 

1.11.5.4 Deriving of the metabolomic data into functional pathway analysis 
Metabolite Set Enrichment Analysis (MSEA) is a web-based tool that makes it possible to 

investigate metabolites and by help of this get suggested biological pathways or disease 

conditions that can be explored (231). It was used to investigate the metabolic pathways 

affected by the carbohydrate intervention.  

Ingenuity pathway analysis (IPA) is also a platform that is available to identify 

biological pathways (232). In addition, this program makes it possible to identify key 

regulators and activity to explain expression patterns, predict downstream effects on 

biological and disease processes and provide targeted data on genes, proteins, chemicals 

and drugs. By using this tool, we identified the top five functions enriched in the dataset, 

and the metabolites connected to four microRNAs involved in tamoxifen resistance (Paper 

III).   
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1.12 Endocrine Resistance — The Ultimate Hallmark of Breast Cancer 

Relapse in a luminal breast cancer patient occurs due to the development of endocrine 

resistance in micro-metastases, leading to a failure of endocrine treatment to eradicate these 

cells. The reasons for a reduced effect of endocrine treatment in breast cancer can be 

grouped into three main categories: 1) metabolic: inherited genetic polymorphisms in the 

drug metabolism of tamoxifen, leading to low serum concentrations of active tamoxifen 

metabolites; 2) intrinsic/de-novo/primary: inborn resistance to tamoxifen by the cell before 

tamoxifen is administered; and 3) acquired resistance: gradual reduction of the effect of 

tamoxifen/aromatase inhibitor, leading to increased estrogen sensitivity under ongoing 

treatment with tamoxifen/aromatase inhibitor.  

Intrinsic and acquired resistance may share some common pathways/mechanisms, 

with a difference in time of appearance. Acquired resistance is likely a multigene 

phenomenon, involving a network of inter-related signaling pathways. Endocrine resistance 

in breast cancer may be regarded as a separate hallmark and is the cause of development of 

distant metastases in luminal breast cancer. Endocrine resistance increases the defiance of 

the cancer cells against endocrine treatment (i.e., tamoxifen and aromatase inhibitors). It 

also involves a shift in cellular vulnerability from endocrine treatment to chemotherapy. 

Thus, endocrine resistance is about identifying the luminal B subtype, which will benefit 

from chemotherapy up-front. Therefore, it is important to understand the main mechanisms 

of endocrine resistance, which are depicted in Fig. 34. The numbers in the following text 

correspond to the numbers in Fig. 34. 
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Overview of the mechanisms of endocrine resistance. See the text for explanation. *, gene polymorphism; E2, estradiol; ERα, 
estrogen receptor α; ERβ, estrogen receptor-β; AIB-1, amplified in breast cancer-1; N-CoR, nuclear receptor co-repressor; Z-
endoxifen, Z-4-OH-N-desmethyl tamoxifen; MMP, matrix metalloproteinase; IGF-R, insulin growth factor receptor; Tam, 
tamoxifen; RbBP8, retinoblastoma binding protein 8; PR, progesterone receptor; VEGF, vascular epithelial growth factor; ERS1, 
estrogen receptor 1 gene; CTC, circulating tumor cell; miR, micro-RNA; ctDNA, circulating tumor DNA. The red cylinder depicts a 
blood vessel; rectangular shape with a blue oval ring depicts an object glass for microscopic analysis of tissue by 
immunohistochemistry, etc. Numbers in small circles correspond to the text.  

1. Metabolic resistance: Both polymorphisms of certain alleles in the activation of tamoxifen (CYP2D6 and
CYP3A5) and the inactivation of enzymes SULT-1A1 will lead to greater inter-individual variation in the concentrations of active 
metabolites (4-OH tamoxifen and 4-OH-N-desmethyl-tamoxifen). Reduced disease-free survival is seen in patients with CYP2D6 
*4, *5, *10, and *40 alleles (233). 

2. Change in ERα protein and/or the ERα responsive element (ERE) in the target genes, increasing the
sensitivity for estradiol (116). 

3. Activation of the MISS-ERα pathway. Tamoxifen may act as an agonist of ER, causing cross-talk between
the MAP and Akt pathway. These pathways phosphorylate ERα, with activation and stimulation of cell proliferation as a 
consequence (234). 

4. MISS-ERα signaling activates src, which activates matrix metalloproteinases (MMPs), releasing
epidermal growth factor from heparin binding epidermal growth factor (Hb-EGF). The released EGF activates EGFR 
(234). 

Figure 34. Endocrine resistance of breast cancer 
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5. Amplification of HER-2 has two effects: increased activation of MAP/Akt, which gives the same effect as
in 3. Mutations in HER-2 receptor may lead to downstream activation of pathways (e.g., PIK3CA) (235). Increased levels of 
AIB -1 are also seen.   

6. Increased AIB-1/SRC1 (co-activator) leads to increased ERα genomic signaling. If this co-activator
becomes amplified at high levels, it can activate ERα, even if tamoxifen is bound to ERα. Thus, tamoxifen acts as an agonist 
instead of an antagonist (236). 

7. Decreased levels of co-repressor NCoR in the nucleus will reduce the antagonistic effect of tamoxifen on
ERα (116, 117). 

8. Lack of PR expression, a marker of intrinsic resistance, probably due to altered ERα signaling (see Fig.
29) (237).

9. Tamoxifen has an agonistic effect on ERβ, which counteracts ERα. ERβ1 in the cell will improve disease-
free survival and overall survival (116, 234). 

10. Ligand-independent activation of ERα through cross-talk with other RTKs, such as EGF, IR, and IGF-
1R. Activation of ERα occurs via phosphorylation (117, 238-240). 

11. Change in gene expression in multiple genes, e.g., the cyclin D1-retinblastoma axis (e.g., RbBP8), p21,
NFkB, and c-fos, and the activation of CDK4/6 kinases (114). 

12. Shift from ER+ to ER– cells in the tumor, which may include population remodeling or transcriptional
repression of ER. The latter includes mutation (241) or splice variants of ERα, resulting in a non-functional ER (115). 

13. Conversion of androgens from the adrenals into estrogens by aromatase in adipose tissue (both located
peripherally and adjacent to the tumor cells) (242). 

14. Adiponectin from adjacent adipose cells activates adiponectin receptor in breast cancer cells, which
activates the Akt-pathway and increases proliferation (243). 

15. Leptin from adipocytes activates leptin receptor type B In cancer cells, which activates the JAK/STAT 3
pathway and reduces apoptosis (243). 

16. Adipocytes secrete VEGF, which enhances angiogenesis (243).

17. CTCs in peripheral blood are a marker of endocrine resistance, as the treatment has not eradicated the
micro metastases (244). 

18. Circulating tumor DNA (ctDNA) may reveal mutations in the ERS1 gene pointing out that a change in
the ER protein leads to a lack of interaction with tamoxifen metabolites and the ligand estradiol, and these issues lead to 
endocrine resistance (245). 

19. Micro-RNAs in the tumor and circulation up- and down-regulate genes, which then alter the relationships
between the ER, CoA, and CoR, which ultimately causes tamoxifen resistance (156, 246). 

20. Letrozole resistance due to high expression of Let-7f in the tumor (247).
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1.13 Rationale for the Present Thesis 

Almost 75% of all new breast cancers in the Western World belong to the luminal breast 

cancer subgroup. The adjuvant drugs of choice are the anti-estrogen tamoxifen and 

aromatase inhibitors. However, one-third of luminal cancers belong to the luminal B 

subgroup, which has developed endocrine resistance with increased proliferation and 

gained susceptibility to chemotherapy. Luminal A cancers have preserved sensitivity for 

endocrine treatment.   Therefore, it is important to be able to distinguish between luminal 

A and luminal B in order to avoid under- and over-treatment of patients. The most accurate 

method is the PAM-50 candidate gene method (154). However, most countries and 

hospitals cannot afford such advanced gene expression analysis for each luminal patient. 

Thus, a less expensive, reproducible, and fully reliable alternative is needed to identify the 

luminal B patients. We wanted to measure the prognostic power and accuracy of the MAI 

against Adjuvant! Online and the NBCG 2010 guidelines to determine whether the MAI 

may be a candidate method for identifying under- and/or over-treated subgroups of breast 

cancer.  

During the last 50 years, the alimentary content of carbohydrates has increased. 

ERAS protocols have been established for many surgical procedures (200) and include high 

doses of oral carbohydrates pre-operatively to increase post-operative well-being. We 

wanted to perform a randomized controlled trial (RCT) to examine differences in the MAI 

and PR in an intervention group compared to a control group to examine whether pre-

operative carbohydrates increase the MAI, in line with the ERAS protocol, or reduces PR, 

i.e. creating endocrine resistance. No prognostic or predictive factors from the metabolism 

of glucose have been established in breast cancer. Therefore, we also wanted to perform an 

explorative metabolomic study of the serum and tissues from the RCT to find putative 

prognostic and predictive biomarkers of endocrine resistance in luminal breast cancer 

patients.  
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2.0 Objectives, Aims, and Hypotheses of the Present 
Study/Thesis 

2.1 Overall Objectives 
2.1.1 Compare the prognostic power of tumor proliferation and classical prognostic 

factors in a treatment-naïve patient population (Paper I). 

2.1.2 Study the effect of pre-operative carbohydrate load in operable breast cancer 

patients (Paper II). 

2.1.3 Explore the metabolic profile in the tumor and liquid biopsies in operable breast 

cancer patients administered pre-operative carbohydrate loading (Paper III). 

2.2 Specific Aims & Hypotheses 

2.2.1 Paper I 
Aim: To compare the prognostic power of MAI in relation to Adjuvant! and NBCG 

guidelines (2010) in a treatment-naïve population of lymph node negative (pN0) 

breast cancer patients <55 years old with a long-term follow-up.  

Null Hypothesis (H0):  MAI does neither add prognostic information to Adjuvant! 

nor the NBCG 2010 guidelines.   

2.2.2 Paper II 
Aim 1: To study the influence of pre-operative carbohydrate load on tumor 

proliferation in operable breast cancer patients. 

 Null Hypothesis (H0): There is no correlation between proliferation (MAI-10) and 

pre-operative carbohydrate load.  

Aim 2: To study the influence of pre-operative carbohydrate load on insulin 

characteristics in operable breast cancer patients. 

Null Hypothesis (H0): There is no correlation between insulin characteristics and 
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pre-operative carbohydrate load in operable breast cancer patients. 

Aim 3: To study the influence of pre-operative carbohydrate load on general well-

being in operable breast cancer patients.  

Null Hypothesis (H0):  There is no correlation between pre-operative carbohydrate 

load and patient well-being in operable breast cancer patients.  

Aim 4: To study the influence of pre-operative carbohydrate load on survival in 

operable breast cancer patients. 

 Null Hypothesis (H0): There is no correlation between pre-operative carbohydrate 

load and breast cancer survival in operable breast cancer patients.  

2.2.3 Paper III 

Aim 1: To explore the metabolic profile in liquid biopsies (serum) from patients who 

received pre-operative carbohydrates and correlate it to proliferation and survival in 

operable breast cancer patients. In addition, we sought to identify putative circulating 

exposure variables that add to understanding differences in clinical outcome between 

the two study groups.   

Null Hypothesis (H0): There is no correlation between pre-operative carbohydrate 

load and the metabolic profile in serum in estrogen receptor positive patients. 

Aim 2: To explore the metabolic profile in tumor tissues from patients who received 

pre-operative carbohydrates, serving as a proxy for clinical outcome in operable 

breast cancer patients.   

Null Hypothesis (H0): There is no correlation between pre-operative carbohydrate 

load and the metabolic profile in tumor tissue in estrogen receptor positive patients. 
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3.0 Synopsis of the Studies 

This thesis comprises three studies. One observational study, one randomized controlled 

trial and one study with an explorative design. The latter study is a continuation of the 

second study, where the same patients were used.  An overview of the papers is presented 

in Fig. 35 below.  

The presentation of the papers in the synopsis includes key tables and figures   in order to 

give the reader a more comprehensive overview of the papers at this point. All details are 

found in the individual PDF-files in the end of the thesis. 

Figure 35. Overview of the three studies in the thesis 

Overview of the three papers comprising the present thesis.  Emphasis is made on patient selection. 
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3.1 Paper I   
In Patients Younger Than Age 55 Years with Lymph Node–Negative Breast Cancer, 

Proliferation by Mitotic Activity Index Is Prognostically Superior to Adjuvant! 

Journal of Clinical Oncology 2010; 29(7): 852-8. 

Background: Guidelines based on multimodal prognosticators result in under- and over-

treated patients. We wanted to test whether MAI could improve clinical categorization.   

Design: We applied a historical prospective observational design. 

Patients: We used an anonymized dataset comprising 516 systemic treatment-naïve patients 

with LN-negative status and age less than 55 years, with a median follow-up of 118 months.  

Controls: No controls were included.  

Methods: 10-year breast cancer specific survival (BCSS) was obtained from Adjuvant! v. 

8.0.  Using the NBCG guidelines at the time (January 2010), the patients were re-

characterized into either an NBCG no adjuvant systemic therapy (NBCG–No-AST) group 

or an NBCG adjuvant systemic therapy (NBCG+AST) group and the outcome evaluated in 

Adjuvant! Online. MAI was assessed according to the standardized protocol (see 1.7.7.3). 

The threshold for Adjuvant!, MAI, and NBCG was the cut-off value that distinguished 

when the patients were supposed to benefit from systemic adjuvant therapy (i.e., 

chemotherapy; see Table 4).     
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Table 4. Overview of variables representing low and high risk BC (Paper I). 

We used Adjuvant 95% (Adjuvant!-95%) and MAI 3 (MAI-3) as thresholds for benefit 

from systemic adjuvant therapy.   

Results: To further investigate the prognostic interaction of Adjuvant! -95% and MAI-3, 

we created a new interaction variable consisting of the product of MAI-3 and Adjuvant! - 

95%. MAI-3 identified ~40% of patients as under-treated and ~20% of the patients as over-

treated, which holds for both Adjuvant! and NBCG-2010 (Fig. 36A, table 4 and 5). This 

has a direct impact on survival (Fig. 36B). 

Variable Low risk (No AST) High Risk (+ AST) 

Adjuvant! ≥ 95% BCSS < 95% BCSS 

MAI < 3 mitoses/1.59 mm2 ≥ 3 mitoses/1.59 mm2 

NBCG -2010 pT1+G1, all ages or 

PT1a-b, Grade 2-3, ≥ 35 

years 

All pN0 and ER+ or PR+  

(NBCG No-AST group) 

All other 

(NBCG +AST group) 
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A. This table is equivalent to Table 1 in Paper I, which shows that MAI-3 identifies prognostic subgroups among Adjuvant! and 
NBCG guidelines.  

B. This figure is equivalent to Figure 2 in Paper I, which shows that MAI-3 overrules the prognostic information on BCSS  for

Table 5. Influence of Adjuvant! and MAI-3 on NBCG

Patient subgroup defined by the 

following interaction variables 

10 y 

BCSS 

Number 

/Total 

patients 

AST 

Recom-

mended 

% Patients 

Under-

treated 

% Patients 

Over-treated 

[Adjuvant! ≥ 95% * MAI ≥ 3] 79% 48/122 No 39% – 

[Adjuvant! < 95% * MAI < 3] 92% 86/394 Yes – 22% 

[NBCG – No-AST * MAI ≥ 3] 82% 40/100 No 40% - 

[NBCG + AST * MAI < 3] 93% 100/416 Yes - 24% 

Conclusion: These data strongly suggest that MAI adds valuable prognostic information 

otherwise not captured by Adjuvant! or the NBCG guidelines. MAI or another reliable 

proliferation marker should be added to both guidelines for LN-negative patients aged < 55 

years.  

Figure 36. Prognostic information of MAI-3 

Adjuvant! ≥ 95% (A) and Adjuvant! < 95 % (B).
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3.2 Paper II  
Influence of pre-operative oral carbohydrate loading vs. standard fasting procedure on 

tumor proliferation and clinical outcome in breast cancer patients — a randomized trial.  

BMC Cancer 2019 Nov 8;19(1):1076 

Background: Knowledge of carbohydrates in breast cancer is conflicting. We wanted to 

study the effect of carbohydrates on proliferation in breast cancer tumors.  

Design: Randomized control trial (RCT).   

Patients: We included 26 patients who received a dose of pre-operative carbohydrates 12 h 

and 2 h before surgery in the intervention arm (carbohydrate group).  

Controls: The 35 patients in the control group (fasting group) followed a standard fasting 

procedure with free drinking water per os.   

Methods: Insulin characteristics, MAI, and other conventional prognosticators were 

assessed in all patients. Patients’ post-operative well-being was assessed by a questionnaire 

developed by the Department of Anesthesiology in our hospital. The median follow-up was 

88 months. 

Results: Among luminal patients (ER+), the carbohydrate group included more patients 

with MAI≥ 10 (p=0.035; r= 0.301, Kendall Tau-b). In addition, the carbohydrate group 

comprised more PR-negative tumors than the control group (p=0.014). Moreover, pre-

operative insulin and c-peptide levels were significantly higher in the carbohydrate group, 

whereas IGFBP3 was reduced in ER-negative patients. IGF was unchanged in all patients. 

In the luminal patients, the RFS was 71% in the carbohydrate group and 97% in the fasting 

group (p=0.012; HR=9.1, 95% CI 1.1-77.7) (Fig. 37A). This survival difference was 

confined to luminal patients with T2 tumors (RFS of 33% in T2 tumors and 100% in T1 

tumors; p=0.031; HR=inf)(Fig. 37B). The same pattern was seen for BCSS in luminal 

breast cancer patients with a BCSS of 30% in ER+/T2 tumors and 100% in ER+/T1 tumors 

The effect on well-being was scarce, with only some reduced pain on day 5 after surgery. 

No adverse reactions were noted. 
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Figure 37. Relapse free survival in ER+ and ER+/T2 tumors. 

This figure is equivalent to Figure 3a and 3d in Paper II.  

Conclusion: These data indicate that pre-operative high carbohydrate loading correlates 

with increased proliferation, reduced PR, and reduced RFS and BCSS. The time from 

diagnosis to adjuvant systemic therapy may be more important than we think today, 

especially peri-operatively when CTCs are liberated from the tumor. More studies are 

needed to further elucidate on this hypothesis.   

3.3 Paper III 
Metabolic consequences of peri-operative oral carbohydrates in breast cancer patients — 

an explorative study Submitted BMC Cancer September 2019 

Background: Systemic and local metabolic patterns in breast tumors following an oral 

carbohydrate load are not well elucidated.  

Design: Explorative study. Based on paper II, our hypothesis was that metabolic changes 

were most likely to be found in the luminal (ER+) patients. 

Intervention patients: Serum samples were available from all 26 patients in study II, and 

tumor tissue from 16 patients in the carbohydrate group in study II.  
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Controls: Serum samples were available from all 35 patients and tumor tissue from 13 

patients in the control (fasting) group in study II.  

Methods: HR-MRS analysis was performed in the serum samples, followed by PLSD 

analysis. HR-MAS-MRS analysis was performed in the tumors.  

Results: Scores plot showed that the carbohydrate and fasting groups had significantly 

different metabolic profiles (Fig. 38). Fourteen of 28 metabolites explained the differences 

between the carbohydrate and fasting groups (Fig. 38). S-lactate and S-pyruvate were 

increased in the carbohydrate group, while ketone bodies were increased in the fasting  

group compared to the carbohydrate group.  

In the carbohydrate group, there was a positive linear correlation between 

proliferation (Ki-67) and tumor size (r=0.782, p=0.038). When Ki-67, PPH3 and MAI were 

included in a forward and backward stepwise linear regression MAI was the only 

independent factor explaining increment in tumor size with a Beta=0.530 (95%CI, 0.201 to 

0.875) P = 0.009. In the fasting group, there was no correlation between tumor size and 

proliferation. 

In ER+ tumors, we measured a higher glutathione content in the tumors from the 

carbohydrate group, and increased glutamate in tumors with high proliferation. In ER+ 

tumors, the choline content was significantly higher in T2 tumors than T1 tumors. Ingenuity 

Pathway Analysis (IPA) and metabolite set enrichment analysis (MSEA) showed that the 

main functions of the involved metabolites were connected to cellular growth and 

proliferation, lipid metabolism, small molecule biochemistry, carbohydrate metabolism, 

and amino acid metabolism. Moreover, four out of seven microRNAs involved in endocrine 

resistance regulated the same metabolic pathways. 
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In ROC analysis, the optimal thresholds for RFS as outcome were S-lactate = 54.6,  

S-pyruvate = 12.5, and T-glutathione = 1.09. The results from the univariable analyses are 

given in Table 6 and Fig. 39. 

This figure is equivalent to Figure 2 in Paper III.

Table 6. Overview of Relapse free survival and Breast cancer specific survival 

In the multivariable analysis for RFS, S-pyruvate was the only factor left in the final model 

(HR=13.6; 95% CI 2.61 to 70.6), and only S-lactate remained in the final multivariable 

model for BCSS (HR=10.4; 95% CI 1.04 to 103). 

Exposure variable 

Outcome variables 

RFS (%) P BCSS (%) P 

Lactate <56.9 93 0.002 98 0.002 

Lactate ≥56.9 56 67 

Pyruvate <12.5 95 <0.0001 100 <0.0001 

Pyruvate ≥12.5 50 60 

Glutathione <1.09 100 0.038 100 0.038 

Glutathione ≥1.09 63 63 

Figure 38. PCA and VIP sore from the serum samples 



93 

Relapse free survival (RFS) in ER+ patients with the following explanatory variables:  
A. Tissue Glutathione. B. Serum Lactate and C. Serum Pyruvate. 
These figures are equivalent to Figure 5 a, b and c in Paper III.  

Conclusion: Carbohydrates seem to increase two important factors from which cancer cells 

may benefit:  

A.  Better ’fuel supply’: increased lactate, pyruvate, and glutamate in the systemic 

circulation.   

B. Better cellular protection: increased glutathione content in the tumor. 

Figure 39. Relapse free survival in ER+ patients 
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4.0 Discussion of the main findings 

4.1 MAI Predicts Under- and Over-treatment in Breast Cancer 

Introducing MAI as a prognosticator and predictor of outcome seems to add valuable 

information. Alarmingly, MAI-3 revealed that as many as 40% of the lymph node negative 

patients as under-treated according to both Adjuvant! Online and NBCG-2010 guidelines 

(Paper I). Adjuvant! Online is based on SEER (248-250), which uses information from the 

treatment and observation of American breast cancer patients with long-term follow-up. As 

SEER regions in the US recruit patients from areas with a low proportion of ethnic white 

people, the population includes greater economic disadvantages and greater minority 

diversity (251). In Asian breast cancer patients, Adjuvant! online seems to be 

overoptimistic in predicting survival (252). Thus, Adjuvant! online has a reduced external 

validity and limitation regarding world-wide clinical use.   Also, SEER patients may be 

more under-treated than Norwegian patients. However, MAI-3 identified the same 

proportion of under-treated patients when the NBCG 2010 guidelines were applied to 

MMMCP patients (Paper I). Both Adjuvant! and the NBCG guidelines are multivariable, 

utilizing conventional prognosticators (age, pT, pN, grade, ER) comprising overlapping 

prognostic information; for example, histological grade has modest interobserver 

agreement (kappa = 0.4-0.5). Thus, the various conventional factors may neutralize each 

other and lose prognostic power. In contrast, the MAI captures cells that have survived 

the cell cycle and entered M-phase (Fig. 23). Thus, MAI is regarded as a functional 

readout of cell signaling pathways belonging to all  hallmarks of cancer, which change the 

dynamics in the cell cycle and lead to increased mitotic activity (140). Moreover, MAI-10 

has been shown to be a reliable and robust prognostic factor in lymph node negative 

patients < 55 years old (25), and later  < 70 years (253).   

Many of the under- and over-treatment questions are raised in the luminal breast 

cancer subgroup, which comprises 75% of all breast cancers in the Western World (23). 

Luminal B patients have tumors with increased proliferation and will probably benefit from 
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chemotherapy. Thus, much of the discussion regarding gene profiling in luminal breast 

cancers is to identify luminal B patients. At San Antonio Breast Cancer Symposium 2012, 

Focke et al. presented a poster (PD06-04) (142) showing that MAI-10 is superior to various 

Ki-67 thresholds to differentiate luminal A patients (2/3) from luminal B patients (1/3) 

(132). Thus, MAI could be a reliable biomarker to identify the Luminal B patients.  

Several gene expression studies have used a different approach. MammaPrint™, 

PAM-50 (Prosigna™), and Oncotype DX™ have based their analyses on 70, 50, and 21 

genes, respectively.  PAM-50 is based on the 456 genes from the original publication by 

Chuck Perou and Therese Sørlie in 2000 (24). Interestingly, these gene expression tests all 

showed that genes related to cell cycle and proliferation are prognostically the most 

important genes (24, 111, 254, 255). Various consensus meetings have recognized 

Oncotype DX (90) and Prosigna (151) as reliable tests for identifying patients among 

lymph node negative patients using a risk of recurrence score. Therefore, these tests give 

clinicians enough support in decision-making regarding the addition of chemotherapy to 

minimize both under- and over-treatment as shown in the TailorX study (256, 257) and 

MINDACT study (258). 

However, many hospitals and national health care services cannot afford these 

expensive tests. Therefore, surrogate variables have been established. Ki-67 is the one that 

has gained the most attention, and various thresholds for luminal A and luminal B (15%, 

30%, median ±10%) have been suggested over the years (90, 125, 126). Interestingly, MAI 

has not gained enough support in consensus meetings to become a proxy for proliferation. 

The strict guidelines for its measurement (140) and the fact that mitotic figures may be 

difficult to distinguish from apoptotic figures leads to pathologists having to do the job. In 

contrast, Ki-67 is an immunohistochemical method with better contrast between negative 

and positive cells, making it feasible for lab technicians to score. Another issue contributing 

to the hesitant introduction of MAI as a proxy for luminal A vs. luminal B, and high 

recurrence vs. low recurrence is the fact that there are two clinical thresholds for MAI: 

MAI-10 as the prognostic cut-off point and MAI-3 as the predictive threshold. MAI-3 was 
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superior to MAI-5 and MAI-10 in   predicting the effect of chemotherapy (26). 

Classification and regression tree analysis in MMMCP patients showed that MAI-3 was the 

most important threshold and MAI-10 the second most important threshold, which was 

confirmed in the present thesis (Paper I). Therefore, there is a need for well-designed 

prospective studies to establish a more robust platform for the use of MAI (see chapter 6).  

In Paper I, MAI was the strongest prognosticator, whereas in Papers II and III, it did 

not reach significance. The reason for this difference is likely due to MAI being tested in a 

pure treatment-naïve cohort of only lymph node negative patients in Paper I, whereas the 

patients in Papers II/III had received the maximum systemic treatment according to 2009-

2010 guidelines. Furthermore, the patients in Papers II and III were a mixture of lymph 

node negative and positive. In Paper I we also had a much longer observation time, which 

gains more endpoints to increase the power in the survival analysis. Finally, the explanatory 

variables in Papers II and III were all optimized through ROC analysis and minimal p-

values in Cox analysis.  

Interestingly, only a few hallmarks of cancer translate into prognostic and/or 

predictive factors. Self-sufficiency in the growth signal provides only four factors: ER, PR, 

HER-2, and Ki-67 (91) (Appendix 3 &4). One reason for this is that a putative factor cannot 

be tested in a treatment-naïve population due to a lack of material. Thus, new factors are 

tested in patient cohorts that have already received treatment based on other 

prognostic/predictive factors. In addition, most of the factors are related to other factors, 

creating prognostic information in the univariate analysis, but are removed from the 

multivariable model. Thus, the existing prognostic and predictive markers are robust and 

reproducible (89). 
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4.2 Increased MAI in the carbohydrate group. 

In Paper II, we found the increased MAI after only 18 hours of the carbohydrate loading 

commenced. This may be regarded as a too short time. However, our observation is 

supported by the preclinical study of MCF-7 cells which have been given glucose  (259)  In 

that study, an increase of proliferation was seen already after 12 hours. Increased signaling 

was also compatible with the metastatic process. Both these cellular responses were driven 

by impairment of the angiotensinogen expression. 

Moreover, others also found increment in proliferation after glucose exposure to 

three different cancer cells lines (MCF-7, SKBR3 and MDAMB231). High glucose 

regulated EGFR activity through GTPase signaling (260) Phosphorylation of the EGFR 

increased the longevity of the receptor and thus sustained EGFR signaling with an increased 

proliferation and growth as a consequence (260).  

 In preclinical mouse models (261) increased carbohydrate and calorie diet showed 

increased EMT progression in the breast tumors mediated through insulin related signaling  

(262). Also, animal models simulating metabolic syndrome demonstrate increased 

proliferation in breast cancer tumors when the mice are fed with high carbohydrate diets 

(263).  

Thus, there is a body of evidence that support our observation in paper II that 

increased proliferation follows a carbohydrate load. The question is more how we interpret 

this finding in the clinical setting and how we proceed and what do next (see chapter 6.0, 

Future Perspectives).   
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4.3 Progesterone Receptor as a Concomitant biomarker of Increased 
Proliferation, Increased IGF Signaling, and Increased Endocrine 
Resistance in Luminal Breast Cancer 

In Paper II, we observed a concomitant reduction in PR with increased proliferation. The 

reason for this observation is probably the shift in cell signaling pathways away from the 

ER-directed systems, which stimulates PR towards cell membrane-localized RTKs such as 

IR and IGFR (Fig. 19, pt. 14 and Fig. 34 pt. 8) (237). These RKTs stimulate growth and 

protein synthesis, depriving the transcription of PR to avoid redundancy. Thus, a lack of 

PR expression is a sensitive marker of endocrine resistance, indicating increased signaling 

through cell membrane receptors with reduced survival (237). In contrast, PR positivity in 

Ki-67-positive cells was associated with ER signaling and ER-regulating genes, a low 

Oncotype DX recurrence score, and better survival.   

The high carbohydrate content of the Western diet leads to increased insulin-

dependent cellular signaling, which may lead to increased breast cancer mortality. In ER-

positive cancers, increased signaling through the IGF signaling pathways (IGFs and 

IGFBPs) is associated with a worse clinical outcome (264, 265). In a recent Danish study, 

such a relationship could not be established for short-term prognosis but were more 

probable for long-term prognosis (266). 

4.4 Insulin-related Pathways and Metformin in Breast Cancer 

In Paper II, we observed no increased proliferation in ER-negative cancers, only in ER-

positive breast cancers. Interestingly, in triple-negative breast cancer, high expression of 

IGFBP-3 in the nucleus was associated with poor survival in both preclinical models (267) 

and a clinical setting (268). Thus, the reduced IGFBP-3 in the carbohydrate group (Paper 

II) may explain the lack of proliferation response in ER-negative patients. In  triple-negative

breast cancer, IGFBP-3 may potentiate the action of IGFs (269). Thus, targeting both the 
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EGFR and IGFBP-3 (i.e., through sphingosine kinase) pathways in a preclinical setting has 

been promising (268). 

The prognosis is poorer in breast cancer patients with type 2 diabetes than non-

diabetic population cohorts (270, 271), probably due to insulin resistance and the 

hyperinsulinemic state (272). Interestingly, the drug metformin plays an important role as 

both an oral anti-diabetic drug and an anti-cancer drug. In type 2 diabetes, metformin 

reduces gluconeogenesis in the liver and increases cell sensitivity for blood glucose, 

reducing the absorption of glucose in the intestines (273, 274). In cancer, metformin 

suppresses oncogenic cell signaling pathways, such as RTKs, PI3K, Akt, and mTOR (275). 

There is also a positive correlation between COX-2 and IGF-1R in both ductal carcinoma 

in situ (DCIS) and invasive ductal carcinoma (IDC), which implies cross-talk between these 

signaling pathways in breast carcinogenesis (276).  Moreover, metformin is thought to 

attenuate cancer stem cells by targeting pathways involved in cell differentiation, renewal, 

metastasis, and metabolism (275).  

In breast cancer, metformin has been shown to reduce the risk of acquiring breast 

cancer, and the cancers that arise in metformin users are both ER and PR-positive (277), 

meaning that the RTK and Akt/mTOR pathways are suppressed, allowing PR transcription. 

Thus, breast cancers in metformin users maintain or regain their endocrine sensitivity. In 

non-diabetic breast cancer patients, there is contradicting epidemiological evidence 

regarding whether metformin increases survival (278). However, in breast cancer patients 

with type 2 diabetes, here is an association between metformin use and improved clinical 

outcome (278). Moreover, adjuvant metformin appears to improve the prognosis in diabetic 

ER+ breast cancer patients (279, 280). In breast cancer patients with diabetes metformin 

had a salutary effect on prognosis (281). This clinical effect may be due to metformin 

diminishing the unfavorable impact of Nrf2 (282). Notably, in triple-negative breast cancer, 

metformin has not demonstrated improved outcomes (283). 
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4.5 Increased Tumor Size in the Carbohydrate Group 

In the carbohydrate group, the mean tumor size was 19.4 mm, compared to 15.0 mm in the 

fasting group, but this difference was only borderline significant (Paper II). In Paper III, we 

found a positive correlation between tumor size and proliferation in the carbohydrate group 

only, and not in the fasting group.  The explanation for this could be that the increment of 

proliferation due to carbohydrate loading (Paper II) will increase the size of the tumor cells, 

as Ki67-positive cells are on average larger than Ki67-negative cells (284). Thus, the 

carbohydrate load may have increased the tumor size despite the short time span between 

carbohydrate exposure and measurement of the tumor size (approx. 18 hours) (Paper II and 

Paper III).  This hypothesis should be tested by quantitative pathology methods 

(QPRODIT) by measuring the size of the nuclei in both study groups.    

 4.6 Metabolomic Changes after Carbohydrates and Fasting   

The increased systemic levels of lactate and pyruvate we observed in Paper III could come 

from peripheral metabolism, or from the primary tumor via Warburg effect. This is a 

metabolic shift to aerobic glycolysis and lactate production despite the presence of oxygen 

(216). However, lactate and pyruvate are excreted from the cells through MCT membrane 

transporters (Fig. 31, pt. 6 and 7). This may be why we could not detect increased 

lactate/pyruvate in the tumor tissue (Paper III). However, the increased systemic levels of 

lactate and pyruvate serve as supportive energy for CTCs exfoliated from the tumor during 

surgery (285) 

The metabolic switch to the Warburg effect and lactate excretion, with acidic 

conversion of the cell and extracellular environment, has another important effect. Tumor 

acidosis was recently detected as a spatial phenomenon. Cellular regions with acidic 

environments may alter gene expression in a way that makes the cancer cells more 
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aggressive (e.g., invasion and migration of malignant cells) (286). Interestingly, tumor 

acidosis may also communicate with the microenvironment outside the cell, which also 

turns acidic. Moreover, the Warburg effect increases the intracellular glutathione content 

(Fig. 31, pt. 13), which we observed in the ER+ tumors of the carbohydrate group (Paper 

III). Thus, CTCs from these tumors are loaded with a cellular protection system necessary 

for cell survival (209), including cancer stem cells (287). 

Another consequence of the Warburg effect is increased uptake of glucose in cancer 

cells (Fig. 31, pt. 1 and 15). Importantly, this cellular feature may be visualized by positron 

emission tomography (PET) with increased uptake of the tracer 18-FDG-glucose (288) 

one hour after injection. Importantly, there is a relationship between PET, tumor biology 

features, and the prediction of distant metastases (289). Thus, metabolic coupling and the 

reverse Warburg effect in cancer has become a novel strategy for treating cancer (290). 

In Paper III, we found another important difference between the carbohydrate and fasting 

groups (i.e., increased ketone bodies in the fasting group). Ketone bodies are cytotoxic 

(291) and will contribute to eradicate CTCs in patients. Thus, Paper III demonstrates the 

differential effect between a ketogenic/cytotoxic fasting context and a carbohydrate/cell 

supportive context.  This is supported in a recent RCT of using ketogenic diet as adjuvant 

treatment in one of the study arms. They observed a better overall survival in the group that 

received ketogenic diet (292).  Also, in a mouse model with xenografted breast cancer tissue 

they found a profound effect of ketogenic diet with increased ketone bodies and also 

increased amino acids (293). The latter is also in line with our observations in Paper III. 

Intermittent fasting (i.e. caloric restriction for 16-48 hours) (294) in animal studies have 

demonstrated reduction of tumor size (295).  As tumor heterogeneity increases with size, 

the development of more therapy-resistant cell clones with greater metastatic potential may 

explain the poor survival in patients with ER+/T2 tumors who received carbohydrates 

(Paper III). Therefore, ketogenic diet/intermittent fasting may counteract tumor growth and 

also shed of CTCs out from the tumor.   In addition, intermittent fasting improves insulin 

sensitivity and thus reduces insulin and IGF-1 related signaling in over weighted 
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individuals (295, 296). Thus, the ketones derived from intermittent fasting decreases cancer 

cell viability by attacking several hallmarks of cancer (297).  

An important question is whether the 4 to 6-week time period between diagnosis 

and the introduction of systemic treatment is enough time for the primary tumor to seed 

CTCs to establish micro metastases. The window for the effect of carbohydrates and 

fasting is even shorter, only 2 days. One explanation for how carbohydrate loading 

creates differences in survival is that the carbohydrate load stimulates cancer cells to 

excrete exosomes with miRNA that regulate both systemic metabolism (Paper III) and 

the metabolism in micro metastases (i.e., glutathione formation) that are already formed 

before the operation. The effect of the microRNA is longer than 1-2 days (246). Thus, 

micro RNAs may be the missing link between our metabolic and clinical observations.  
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5.0 Validity and Methodological Considerations    

The validity of a study can be divided into internal and external validity, which are like two 

sides of a coin; they reflect whether the results of a study can be relied upon and are 

meaningful. Internal validity relates to how well a study is constructed and conducted and 

depends largely on the methodological procedures of a study and how rigorously it is 

performed (298). Internal validity is the extent to which a study establishes a 

trustworthy cause-and-effect relationship between an exposure variable and an outcome 

variable. Thus, internal validity focuses on accuracy and strong research methods, and the 

extent to which it is possible to eliminate alternative explanations for a finding. Internal 

validity focuses on showing a difference that is due to the independent variable alone, 

whereas external validity indicate that the results can be translated to the world at large 

(298). Notably, better internal validity often comes at the expense of external validity and 

vice versa. The type of study we choose reflects the priorities of the research (299). 

5.1 Factors Contributing to Internal Validity 

5.1.1 Research designs  

In general, data from prospective studies may give an answer as to whether there is an 

association between risk factors and disease outcomes (300). In Paper I, we use the term 

‘historical prospective’, or retrospective, because the exposure (i.e., independent) variables 

applied in the present study were not available when the study protocol was written (300). 

Instead, we introduced the new exposure variable (Adjuvant! and NBCG-2010) after the 

follow-up had ended and the data set was anonymized. The advantage of this design is to 

‘re-use’ the original MMMCP data set (Paper I). Thus, we ‘bypass’ the 12-15 years of 

follow-up and get answers to our research questions straight away. In addition, treatment-

naïve cohorts are very difficult to obtain. Therefore, this design is appropriate to the 

research questions in the study.    
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In Paper II, we performed a randomized controlled trial. The participants were 

randomly allocated to each treatment group and then compared with respect to a measured 

response (i.e., MAI, well-being, and clinical outcome) (301). A well blinded RCT is 

regarded as the gold standard for clinical trials (302). Our trial was blinded for the pathology 

lab, meaning that the patient’s ID was not known to those who performed the various 

analyses on the patient material. However, it was impossible to blind the trial for the 

patients as the pre-operative carbohydrate is very sweet and water is not. This design 

reduces selection bias, confounders, and allocation bias and balances both known and 

unknown prognostic factors between the intervention group and control group (303). 

Admittedly, adding a pre-operative needle biopsy to the design would have made it possible 

to let the patients be their own control and we could use paired statistics. In such a case, 

more confounders would have been sorted out. However, proper determination of the MAI, 

Ki-67, and PPH3 requires a whole section through the tumor. Thus, this design solves one 

problem but creates others.    

The exploratory study in Paper III sought to explore the research questions and does 

not intend to offer final solutions to the problem. This type of research is usually conducted 

to determine the nature of the problem more than provide conclusive evidence (304). 

Notably, exploratory research may be regarded as the initial research, forming the basis of 

future research. Thus, exploratory research tends to tackle new problems on which little or 

no previous research has been done (304). Despite being explorative, our lessons learned 

from paper II turned the focus towards the luminal breast cancer patients. Thus, we had a 

working hypothesis also for this study; the metabolomic changes were most likely to be 

found in this subgroup.   
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5.1.2 Sample size and statistical power  

In Paper I, we included 516 of the 3500 patients from the MMMCP study. This created 

subgroups with 48, 74, 86, 308, 160, 356, 122, 394, 100, and 416 patients, combined with 

a 10-year follow-up time that created a minimum of 10 events in the subgroup with 48 

patients and many more in the other subgroups. Ten events per exposure variable is an 

optimal number in the survival analyses (305). Thus, the number of patients in Paper I 

seems to be sufficient.  

In Paper II, we had a slightly different situation. Here, a power calculation was 

performed based on the primary endpoint. We anticipated a 20% increase in MAI in the 

intervention group compared to the control group. Based on the mean MAI value in patients 

belonging to the catchment area of Stavanger University Hospital and the reproducibility 

of the method to assess MAI, a total of 30 patients in each study group (i.e. 60 patients) was 

necessary to achieve 80% power. We decided to randomize 80 patients to allow for a 10-

15% drop-out rate. Statistical analyses were performed using SPSS statistical software v.22 

(SPSS, Inc., Chicago, II, USA). T-tests, Fisher’s exact test, or chi-squared tests were used, 

as appropriate, to test for differences between the intervention groups. In the survival 

analyses, we did not fulfill the criteria with 10 events per exposure variable in the Cox 

regression (306). In a Cox regression analysis, we should include all known variables 

deemed clinically relevant, and new variables with a p-value < 0.15 are reasonable to 

include (307). Especially, when the number of endpoints is less than 10 per exposure 

variable one should be careful to include too many variables in Cox analyses to avoid both 

type I and type II errors. 

5.1.3 Representativeness 

Representativeness regarding internal validity refers to the extent to which the differences 

identified between the two randomized arms are a result of the intervention being tested 

(e.g. Carbohydrate load in Paper II).  Thus, this type of representativeness seeks to make 
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the trial results valid for the original study population, and depends on good design, conduct 

and analysis of the trial with minimal bias.   

In Paper I, out of 3500 patients, we included 516 patients with lymph node negative 

breast cancer aged < 55 years, which is 15% of all cancers. This is about the same 

proportion as we have in Norway (91). Importantly, these patients are not randomly 

selected, rather selected on a biological hypothesis. Thus, the relatively high number of 

endpoints (approximately 30%) allows for subgroup analysis without increasing the risk of 

introducing bias.   

In paper II, 80 patients were included for randomization, which is approx. 1/3 of a 

‘year-cohort’ of breast cancer patients at Stavanger University Hospital. The most 

important issue for internal validity is that the fasting group and carbohydrate group were 

comparable to each other, thus reducing the risk for selection bias and confounders. Other 

factors that influence the external validity are discussed in chapter 5.2. 

In paper III, the analysis in serum comprised all patients from paper II. Together 

with highly precise and accurate methods, the internal validity is also good for this part of 

the study. The analysis methods of the tumors are also precise, accurate and highly 

reproducible. The tumors are, however, skewed towards the larger tumor sizes due to the 

difficultness of sample tissue for metabolomic analyses when the tumors are less than 10-

15 mm in diameter.   

5.1.4 Random and systematic errors 

A random error is due the variability in the measured data that arise purely by chance. A 

random error produce uncertainty whether the results obtained in one trial are real or arose 

by chance i.e. it is possible for the play of chance alone to have led to an inaccurate estimate 

of the treatment effect.  Systematic errors result from flaws in either selection of study 

participants or gathering of information (i.e. data collection).  Both these errors may hamper 



109 

the internal validity. To avoid both random and systematic errors, we need to have precise, 

accurate and reliable methods in the data collection phase (i.e. MAI assessment, 

immunohistochemistry, insulin measurements, quality of life assessment and 

metabolomics) (see 5.1.5).  

5.1.5 Randomization 

The main purpose of randomization is to eliminate selection bias / systematic errors and 

create a control group that is similar as possible to the treatment group .  In Paper II, we 

applied an in-house randomization method and performed 1:1 block randomization of 

patients aged < 55 years and ≥ 55 years. We made two boxes, and in each of box was an 

equal number of folded paper notes concealing ‘fasting’ or ‘carbohydrate’. The patients 

were examined completely before they draw a note and read the allocation group. Thus, the 

study was not blinded for the patients. However, it was blinded for the surgeon who 

operated on the patient and the various laboratories that received the various specimens for 

analysis. A better randomization method would have been to arrange an out-house method, 

e.g., the randomization schedule could be generated by a computer by an independent party

at the Department of Clinical Science, University of Bergen, Norway. Here, the patients 

could be included with 1:1 randomization in blocks of 8 patients. From the randomization 

schedule, sequential numbers would be assigned and kept in sealed envelopes. When one 

of the surgeons wanted to include a patient at SUS, he/she would make a telephone call to 

the Department of Clinical Science in Bergen to receive the allocation group. Baseline data 

should be collected before randomization takes place.   
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5.1.6 Data collection 

5.1.6.1   Immunohistochemistry  
ER, PR, HER-2, Ki-67, and PPH3 are determined by IHC, giving the method a central place 

in this thesis. This method has both advantages and weaknesses. The key steps in the IHC 

process are highlighted and explained in Table 7 and Fig. 40.  

Table 7. Key steps in the IHC process 

Key Step/Issue Explained Comment Refs 
Fixation of tissue Penetration distance (d) in mm: 

d=k*√t  
k (liver, formalin) =0.78 
5 mm tissue takes 3.7 h.  
10 mm tissue takes 41.1 h. Formalin 
fixation is a gelating process and is slow.  

Too short a fixation time leads to 
incomplete preservation of the 
central parts of the tissue and the 
proteins are fixed by the alcohols 
in the tissue dehydration process  
(denaturizing fixation). 
Antigenicity disappears and 
tissue morphology is poor. 

Antigen (epitope) 
retrieval 

Optimal antigen retrieval dependent on 
detergent, temperature, and pressure. 
Antigen retrieval breaks the crosslinks, 
rehydrates the tissue for better penetration 
of the antibody, chelates Ca++ (EDTA), 
and restores the “original” conformation 
of the epitope 

Computer surveillance of 
temperature and pressure to 
ensure the optimal retrieval 
important in IHC used for 
quantitative determination. 

311 

312 

Antibody (Ab) 
specificity and affinity 

The optimal dilution of the antibody must 
be titrated in the lab to ensure clear and 
crisp staining. Non-specific mAb binding 
will disappear with higher dilutions.   

Monoclonal antibodies (mAbs) 
tend to be the most specific. 
Mouse mAb: high specificity, 
low to high affinity.  
Rabbit mAb: high specificity and 
high affinity.   
Polyclonal antibody: low 
specificity. 

pH The antigenicity depends on the pH of the 
buffer used. 

pH 9 will retrieve most antigens.   313 

Detection system 2-layer polymer technique. Polymers do not react with 
endogenous biotin. Polymers can 
be too large to penetrate tissue. 
Requires an optimal retrieval 
method.   

False-positive staining Biotin (liver, kidney, breast, thyroid, 
intestine). Endogen peroxidase (EP) 

Biotin and EP are  
removed/neutralized in the 
process to avoid false-positive 
staining. 

Scoring systems Many different systems exist: Percentage 
positive, Allred Score, H-score. 

Challenging issue. Cut-off 
values. Random selection in 
quantitation. Observer variation  
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Figure 40. Overview of the main steps in the IHC method 

The key steps in modern immunohistochemistry methodology. Step 0.  The antigen is retrieved from the 
formalin fixed tissue sections by water heating. Step 1. The primary antibody directed against the target 
protein is applied. Step 2.  A secondary antibody against the primary antibody has a coupling to a polymer 
with horse raddish peroxidase (HRP) units (blue circles) bound to it.       Step 3. The substrate ‘reduced 
colorless DAB’(Diaminobenzoate) will be oxidized around the HRP units into a crispy deep brown color. 
Step 4. The rest of the tissue is contrast stained by hematoxylin (light blue color).  (Courtesy: Dr. Ivar 
Skaland) 

Modern IHC uses sensitive and specific antibodies and makes crispy-clear sections 

which are quite easy to score. This translates into a quite good inter observer agreement e.g. 

HER-2 scoring has a kappa of 0.82 to 0.86 (308), which is comparable to the inter observer 

variability for ER (kappa = 0.84) (309). For PR, however, the concordance is lower with a 

kappa value between 0.56 and 0.71 (310). 

5.1.6.2 Proliferation 
Proliferation assessment is standardized (140) but dependent on correct fixation of the 

tissue to optimize counting. In contrast, Ki-67 and PPH3 are proteins that can be retrieved 

in the antigen retrieval step of IHC. Superheating (311, 312) and optimizing the pH (313) 

enhance antigen retrieval, improving the sensitivity of the IHC method. Consequently, the 

IHC method has become very sensitive and can detect small amounts of the protein of 
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interest. Therefore, in poorly fixed tissue, IHC may be a better method than tissue 

morphology (i.e., MAI). This could have led to a type II error for the MAI assessment with 

only borderline significance (P=0.05), whereas the IHC methods for PPH3 and Ki-67 were 

significant. In the MMMCP project in Paper I, the mean correlation of the reproducibility 

of MAI was   very good with an r= 0.91 (0.81-0.96) (314). The reproducibility of the Ki-

67 index is dependent on the range (class) of the positivity i.e. the intra-class interobserver 

correlation is perfect in sections with a Ki-67 index < 10% (kappa =1.00; CI95%=1.00 to 

1.00), only modest in sections with a Ki-67 index 10-30% (kappa = 0.415; CI95%=0.300 

to 0.541) and very good correlations in sections ≥ 30% (kappa=0.800; CI95%=0.730 to 

0.861 (315). 

5.1.6.3. Insulin characteristics 
Insulin is measured in serum by well-established lab methods using built-in standards. The 

pre-analytical conditions were optimized by putting the blood samples in ice water (i.e., 

0°C) to preserve the hormones. Furthermore, the samples were centrifuged at 4°C and 

frozen at –80°C before sending them to the Hormone Laboratory in Bergen on dry ice (-

70°C) in batches for analysis. The method for insulin, c-peptide, IGF-1, and IGFBP3 is 

based on chemiluminescent immunoassay (CLIA) methodology. The intra-assay 

coefficient of variation (CV) for insulin was 1.8 – 2.4% and inter-assay CV 3-7.1% (316), 

which is good reproducibility.  

5.1.6.4 QoL / PROM data 
Our questionnaire was not validated. It was used as an in-house questionnaire developed 

by the Department of Anesthesiology to score patients after general anesthesia in day 

surgery. We found it appropriate to use, as it addressed the same items that we wanted to 

explore (Appendix 7). 

However, by using a non-validated patient-reported outcome measure (PROM) 

instrument, there is an increased chance of type II errors (Paper II). Thus, using a validated 
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instrument, we could have a better chance of detecting changes in well-being between the 

carbohydrate group and the fasting group (Paper II). Regarding PROMs, there are two main 

types of validity: content validity and construct or convergent validity (317). Content 

validity deals with the ability of the PROM to measure what we intend to measure. 

Construct or convergent validity focuses on whether the PROM instrument provides scores 

based on existing knowledge about the construct.     

5.1.6.5 Metabolomics  
Pre-analytical conditions of both serum and tissue metabolomics were optimized by 

freezing both the serum and tissue as soon as possible after sampling. Metabolites were 

analyzed in serum and tissue after carefully thawing frozen samples to 4°C. HR MRS 

analysis of serum samples has a CV between 0.26 and 1.19% (318), whereas HR MAS 

MRS of tissue has a CV of 2.0% for alanine, 9.2% for choline, and 9.8% for lactate (319). 

5.1.7 Survival analysis 

The Kaplan-Meier approach to survival analyses was first published in 1958 (320). The 

advantage of this method is its ability to compare incomplete observations (321). The Cox 

model allows for multiple regression for time-dependent variables (322). In Paper II, 

survival analysis with the Kaplan-Meier method could have gained more events with a 

longer follow-up time. However, we had 10% events (n=8), which is what we can expect 

with the current treatment schedules and a follow-up of only 8 years in luminal breast 

cancer patients (Fig. 37). If we wanted survival as the primary endpoint, and the proportion 

of exposed and unexposed patients were equal (q1=q0=0.5), the number of events needed 

would have been 191, 65, 26, and 16 for an expected HR of 1.5, 2.0, 3.0, and 4.0, 

respectively. For example, if we aim for a HR of 2.0, we would need 65 events and 199 

patients in each group, assuming a median survival time of 17 years in the unexposed group 

and a 15-year follow-up (323). 

However, the Kaplan-Meier method overestimates the survival difference between 

two groups. In a recent meta-analysis, the Kaplan-Meier survival estimates were compared 

to the cumulative incidence function (CIF) approach, and the Kaplan-Meier method 
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overestimated survival with a HR of 1.41 (1.36 to 1.47) (324). Thus, the survival estimates 

in the Cox regression must be regarded as more reliable. In Paper III, S-lactate and S-

pyruvate were significant as both continuous and categorical variables in the Cox 

regression. Therefore, these observations in Paper III strengthen the finding of a 

dichotomous carbohydrate/fasting variable in Paper II.   

5.1.8 Bias 

Bias results in non-random errors in the data and calculations (325). Bias is not evenly 

distributed between study subgroups, as it unintentionally favors one of the groups (326).  

Typically, bias may lead to type I errors, meaning that the H0 is erroneously rejected. There 

are several types of bias (327) , and the main types relevant to this thesis are discussed 

below.  Bias may produce differences that may be attributable to factors other than 

treatment being investigated and lead to an over- or underestimation of the true beneficial 

or harmful effect of an intervention.  

5.1.8.1 Selection bias   
In Paper II, the randomization groups were not evenly distributed between the 61 patients 

(26 in carbohydrate group and 35 in the fasting group). This may introduce selection bias. 

However, all other factors were evenly distributed, which reduces the chance of bias.    

5.1.8.2 Recall bias 
When patients were completing the questionnaires, they may have not been able to 

remember all the various symptoms well enough. In particular, it may have been difficult 

to remember changes in the various symptoms and scoring them if they filled them out at 

the end of the observation period. Typically, this bias would have affected our in-house 

questionnaire in Paper II. This bias may contribute to the type II error; we could not report 

many differences except pain. On the other hand, the time frame was only daily for 7 

days. Thus, recall bias might not be a big issue in Paper II.   
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5.1.8.3 Confounding/spurious factors 
In Paper I, the information on HER-2 status was not available; thus, HER-2 may act as a 

confounder and correlate with the outcome and another factor (i.e., ER negativity, which 

also correlates with the outcome). Moreover, in Paper II, we found a correlation between 

carbohydrate/fasting as the exposure variable and MAI-10 as the outcome variable. 

However, we could not demonstrate the same correlation using MAI as a continuous 

variable in a Mann Whitney U test or student t-test. Thus, there is a possibility that the 

correlation between carbohydrate/fasting and MAI is spurious, and a type I error may exist 

between MAI-10 and the exposure to carbohydrate and fasting. Even if all the various 

variables of interest were evenly distributed among the carbohydrate and fasting groups in 

Paper II, other factors may contribute to the difference between the exposure variables and 

outcome. Thus, is it impossible to have a situation that is 100% free of confounding factors. 

Furthermore, in Paper II there may be other confounders than we should correct for in the 

analytical phase. Here, multivariable regression, stratification, standardization, and 

propensity score are possible methods (328). In Papers I, II, III, we applied multivariable 

regression. In addition, we used stratification in Paper II.    

5.1.8.4 Attrition 
This challenge did not affect the papers equally. In Paper I, the number of participants 

included in the analysis was already decided at the beginning of the study In the RCT, we 

lost eight patients in the carbohydrate group at the beginning of study (Consort flow 

diagram, Paper II), as well as three patients during the 8 years of follow-up. In Paper III, 

the number of patients included in the study were those who had serum (n=61) and tumor 

tissue (n=29) available. Thus, attrition was not the case in this study.  

5.1.9 Handling of data and statistical analyses 

5.1.9.1 Missing values 
In Paper II, the various variables were complete, so the multivariable analyses contained 

most of the patients. However, if we had replaced the missing variables, we could have 

increased the power in the multivariable analysis. A recognized method of correcting for 
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missing data is the multiple imputation approach (329). Here, a computer program replaces 

a missing value with the weighted mean values of the variable. Regarding missing data in 

Paper III, see 5.2. 

5.1.9.2 Treatment of variables and assumptions for regression 
We applied parametric methods for normally distributed variables and non-parametric tests 

when the distribution deviated from the normal. In Paper I, we used the well-recognized 

MAI-3, MAI-5, and MAI-10 thresholds in the analyses. In Papers II, III, we first used the 

continuous variable in the various correlation tests. In addition, we applied well-recognized 

thresholds (e.g., MAI=10, Ki-67=30). In the survival analyses, the continuous variables 

were analyzed directly in the Cox analysis. We then applied the ROC-detected thresholds 

to the Cox models. A rule of thumb was that we needed 10 events per exposure variable 

included in the Cox model (305, 306). This was achieved in Paper I, but not in Paper II and 

III. Thus, the validity of the Cox regression is lower in the latter two papers.

5.1.9.3 Biomarkers: C-statistics and the search for optimal thresholds 
The C-statistic, or ‘concordance statistic’, is a measure of goodness of fit for binary 

outcomes. A value < 0.5 is a poor model, = 0.5 not better than random chance, > 0.7 

indicates a good model, >0.8 is a strong model, and = 1.0 is a perfect model (330). One 

limitation of C-statistics is that it only measures discrimination and not calibration (331). 

Furthermore, several challenges have been recognized in the development of new and 

useful cancer biomarkers (332). Biological factors, including heterogeneity in the 

expression of a biomarker in various cells at a given time and during tumor growth, and 

development within a certain time period, are important background factors that may 

influence threshold values. Possible age variations, associations with other diseases, and 

understanding of the pathology or biology of the marker being evaluated are of great 

importance. Moreover, the standardization of determination methods, including thresholds 

or cut-off points, is important. The ROC method is a useful C-statistic tool for evaluating 

cut-off points for continuous variables, as it offers more than simple discrimination. 
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Moreover, the ROC method measures the balance between the sensitivity and specificity 

of each observed test result (333). Six stepping-stones to understanding the ROC analysis 

are presented in the table below: 
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Table 8. Components of the ROC statistics 

Topic Interpretation Comment 

1 Sensitivity The ability of a test to detect a person with the studied 
condition. 

 True positive rate  

2 Specificity The ability of a test to exclude the condition studied. Also 
denoted as (1- false positive rate). 

True negative rate 

3 Positive 
predictive 
value 

The probability of having the condition if you have a positive 
test result. Depends on the prevalence of the condition. 

 PPV 

4 Negative 
predictive 
value 

The probability of not having the condition if you have a 
negative test result. Depends on the prevalence of the 
condition. 

NPV 

5 Likelihood 
ratio 

An estimate of the relative predictive value of a test 
(true positive/false positives). The LR of a test indicates the 
increase from pre-test probability (prevalence) to post-test 
probability (having the condition). 

A high LR (>10) indicates 
that a test can discriminate 
between “sick” and 
“healthy” persons. The 
LR very much depends on 
the chosen cut-off point 
but does not depend on the 
prevalence of the 
condition under study. 

6 Accuracy The proportion of all tests that give the correct result (true 
positive and true negative) divided by all results. 

In the ROC analysis, sensitivity and specificity are compared. Typically, the test 

variable is a continuous variable and the endpoint a dichotomous variable (healthy/sick, no 

cancer/cancer, etc.). The cut-off value for the continuous variable with the highest 

sensitivity and specificity regarding the endpoint studied is identified. To obtain this, a plot 

is constructed with the false-positive rate (1- specificity) on the X-axis and the true positive 

(sensitivity) on the Y-axis (Fig. 42) (334). There is a relationship between the ROC curve 

and the likelihood ratio (LR). The slope of the curve at any point is dY/dX=true 

positive/false positive= LR. The rationale for the optimal ROC curve is that it captures the 

trade-off between sensitivity and specificity over a continuous range. This trade-off is 

achieved at the upper left corner of the curve (333).  
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In addition, the area under the ROC curve (AUC; plot of false-positives, x-axis, 

against true positives, y-axis) is a measure of the diagnostic accuracy of the test independent 

of disease prevalence. An AUC > 0.5 indicates that the test has the ability to discriminate 

between positive and negative test results according to a chosen classification variable 

(335). The odds ratio (OR) can be directly derived from the AUC of the actual classifier: 

OR = AUC/(1-AUC). This last observation is the support for using the AUC as a singular 

indicator of a classifier's performance; it represents the classifier's ability to move the bias 

away from 0.5 and closer to 1.0 (334). 

Use of ROC analysis is helpful for evaluating thresholds for biomarkers (i.e., 

dichotomous variables) that are not time dependent. For time-dependent endpoints, 

including “relapse from breast cancer” or “death from breast cancer” (Paper III), which are 

commonly evaluated by the Kaplan-Meier method (univariate) or a multivariate Cox 

regression analysis, a time-dependent ROC analysis (survival ROC) is also available (336). 

However, as reported in a recent study, this time-dependent ROC analysis did not provide 

any further information than traditional ROC analysis (337). Calculations made with 

Survival ROC software changed neither the cut-off values nor the AUC. Therefore, the 

traditional ROC analysis seems to be feasible in the evaluation of time-dependent variables, 

but confirmation and additional calculations with other methods is recommended (338). 

For time-dependent variables, the minimal p-value or maximal likelihood ratio in either the 

univariate setting (log-rank) or multivariate setting (Wald values) can be used to obtain 

optimal cut-offs (Paper III). Pitfalls exist, including variations in the underlying patient 

distribution under study (339). Therefore, internal and external validation is necessary to 

ensure that a reasonable cut-off value has been identified (340). 
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The ROC curve. Optimal threshold (star) is achieved by balance between a low false-positive rate and a high true positive rate = 
upper left corner of the curve (circle) When the number of observations and endpoints are sufficient the optimal threshold value 
will be locatd on or close to the threshold line. Situations with few patients and endpoints the ROC-curve will not be smoothed as 
in the figure, but more crude, and the optimal cut off value will often be located outside the threshold line.  In diagnostics, a very 
low false-positive rate is desirable, whereas a very high true positive rate is of value in a screening setting. AUC = area under the 
curve = the accuracy of the cut-off value for discriminating between the two states of the dichotomous variable (healthy /sick). If 
AUC > 0.5(i.e., above the reference line), the accuracy is significant. Notably, the ROC curve also has a 95% confidence interval. 
The slope of the ROC curve is (True positive/False positive) = likelihood ratio (LR). 

5.1.9.4 Correction for multiple significance testing 
In Paper I, we did not apply correction for multiple testing, as there were only eight 

variables in the Cox-regression model (MAI, pT, grade, nuclear atypia, tubule formation, 

ER, Adjuvant!, and NBCG-2010). We regarded Paper II as small explorative studies with 

a higher risk of type II than type I error. In addition, the number of variables was less than 

20 in the various analyses. Therefore, we did not apply p-value correction. However, in 

Paper III, we tested numerous metabolites. Therefore, we applied the Benjamini-Hochberg 

method for correction of p-values for multiple testing with a false discovery rate of 0.05. 

Figure 41. ROC curve 
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5.2. External Validity 

External validity relates to how applicable the findings are to the real world; from clinical 

trials to practice i.e. how generalizable the findings are. The outcomes can also apply to 

practical situations and be translated into another context. Ecological validity, an aspect of 

external validity, refers to whether a study's findings can be generalized to the real world 

(298). External validity refers to the degree to which within-study interferences generalize 

or can be generalized to a target population. Also, it refers to the extent to which study 

results can be applied to other individual or setting (i.e. generalizability).  The following 

moments influence the external validity: 1. The setting of the trial; 2. Study population; 3. 

Types of intervention used; 4. Duration of follow up; and 5. Types of outcome (341). 

5.2.1. Relations between external and internal validity 

Rigorous research methods can ensure internal validity, which can be very high, but the 

external validity may be hampered by several factors and be as low as 34% (342) or lower 

(343). However, external validity may only be improved by a few methods. Pre-study 

considerations to standardize time of day, location, researcher characteristics, and how 

many measures are used can affect the external validity. Moreover, the inclusion and 

exclusion criteria used should ensure a clearly defined study population. Also, the study 

should be replicable (i.e., with different samples or in different settings you should get the 

same results). Furthermore, reprocessing and calibration are statistical methods for 

adjusting to problems related to external validity. For example, if a study has uneven groups 

for some characteristic (such as age), reweighting might be used (298). 

In Paper I, out of 3500 patients, we included 516 patients with lymph node negative 

breast cancer aged < 55 years, which is 15% of all cancers. This is about the same 

proportion as we have in Norway (91). Thus, the selected patients into the study are 

probably representative for the Norwegian population. Therefore, we believe that the 

external validity is good in this study and can be applied into Norwegian context.   
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In Paper II, we randomized 80 patients during a year. The groups were evenly 

distributed regarding the various variables. The internal validity is therefore good. In the 

catchment area for Stavanger University Hospital approximately 250 patients are yearly 

diagnosed with breast cancer. Thus, we have included 1/3 of the patients possible to include. 

As the selection of patients were at random, we believe that also the patients are 

representative for the population they are recruited from. Thus, the external validity is most 

probably acceptable.      

In Paper III, the serum analyses were available from nearly all the patients from 

study II and share thus the same external validity. However, the selection towards larger 

tumors introduces a selection bias in this part of the analyses. Due to technical challenges 

and the fact that the clinico-pathological examinations have priority, sampling of tissue for 

metabolomic analysis is not possible for tumors less than 10-15 mm depending on the 

growth pattern of the tumor. Thus, this part of the study may only be applicable for ER-

positive T2 tumors.   

5.2.2 Participation bias 

Participation bias is a type of selection bias that hampers the representativeness and external 

validity because the participants disproportionately possess certain traits different from the 

target population, affecting the outcome in the subgroups differently (299). These traits 

mean the sample is systematically different from the target population, potentially resulting 

in biased estimates (344).  

In Paper II, patients who declined to participate in the study may represent a different 

cohort with, for example, higher sugar content in the diet and lower level of physical 

activity than those who accepted invitations to the study. They might be afraid that the study 

would reveal their ‘unhealthy’ lifestyle. Thus, we may have selected towards healthier 

women.  
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Moreover, in Paper III, we miss 32 tumors in the explorative study, which must be 

regarded as a substantial number. Moreover, this high number of missing tumors introduced 

bias towards the larger tumors because the smallest tumors were impossible to harvest from 

the samples without jeopardizing the diagnostic process. Thus, the smallest tumors are not 

included, reducing the external validity of the study. As this study is purely explorative, 

this bias must be considered, but it does not ruin the study.  

5.3 Ethical Considerations 

Paper I is based on anonymized data and is therefore outside the legal requirement for a 

REK approval. The reason for this, is that information from studies on this data set can 

never be used back on the patients. The patients have already received all the treatments 

according to the guidelines at the time they were enrolled in the study. However, the 

connection between the single patients and the study variables is forever cut.  Now, we find 

that 40% of the patients were under-treated. Patients that may read this publication may 

feel it unpleasant to receive this information 20 years after.  Those who were undertreated 

according to our results are already dead. Thus, the results in Paper I are not applicable to 

those patients who are still alive after all these years. These patients are true breast cancer 

survivors.  Thus, the results from paper I cannot benefit the patients in the study but is 

extremely important for the women with breast cancer today. From this perspective, it was 

both ethical and necessary to do the study.  

In Papers II and III, we informed the REK that the knowledge on carbohydrates in 

breast cancer is conflicting. In addition, pre-operative carbohydrates are in regularly use 

according to the ERAS protocol (200). The results, however, are concerning, with an 

increased number of relapses and deaths in the carbohydrate group. These studies raise the 

question of whether the 4-6 week time period from diagnosis to commencement of systemic 

treatment is not as innocuous as we think. Therefore, it may be difficult to repeat this finding 

in a larger cohort. However, Paper II and Paper III may become the background for unique 



124 

intervention studies targeting the insulin signaling pathways (see Chapter 6.0, Future 

Perspectives) 
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6.0 Future Perspectives 

As MAI identified subgroups of patients that, according to the NBCG 2010 guidelines, 

would be over- (20%) or under-treated (40%) (Paper I), it is a promising tool for 

discriminating between high- and low-risk patients. However, since 2010, several gene 

expression tests have been introduced in a clinical setting, with analytical validation (345) 

and clinical verification (346) of the PAM-50 (Prosigna TM) test (Appendix 3).  

The Prosigna TM test classifies luminal patients into luminal A and luminal B using 

many of the same genes as in the original publication by Peroue & Sørlie in 2000 

(24). Moreover, Prosigna TM calculates a ROR score on a continuous scale, but may also 

classify the patients into low, intermediate, and high-risk categories for recurrence. This 

test may be regarded as the ‘gold standard’ for the detection of luminal breast cancer 

patients that are at high risk of recurrence and s should receive chemotherapy.  

One of the downsides of ProsignaTM  is the high cost, which is approximately 20 000 NOK 

per test. 

Recently, NBCG supported the launch of a nationwide project, the EMIT 

(Establishment of Molecular profiling for Individual clinical routine Treatment decision 

in Early Breast cancer) study (347) in which ProsignaTM is being tested in the clinical 

Norwegian setting as a classifier of luminal A and luminal B patients. Thus, the NBCG 

guidelines in 2020 will include ProsignaTM as an alternative for distinguishing luminal A 

and luminal B cancers (Appendix 4). However, for those who cannot afford the Prosigna 

test, a version of the NBCG-2020 guidelines with Ki-67 as the proliferation biomarker 

(Appendix 5) is still available. Notably, the St Gallen consensus conference of 2015 implied 

that not all luminal B patients should receive chemotherapy (97). Thus, Prosigna meets this 

implication as it can also calculate the ROR score for patients and group the patients into 

low, intermediate, and high risk (Fig. 29). The ROR is implemented in the NBCG 2020 

guidelines (Appendix 3) (28). Thus, the EMIT study serves as an excellent opportunity to 

evaluate MAI as a proxy for PAM-50/ProsignaTM and verify the most relevant clinical cut-
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off value. Calibration of MAI against a gold standard molecular expression platform like 

PAM-50 has not been done previously. As MAI is a functional readout of all cellular signal 

pathways that drive the cell cycle towards mitosis, and ProsignaTM is based on a platform 

of gene expression related to the cell cycle, validation of MAI against ProsignaTM will 

become very useful. As such within the EMIT study, measurements of MAI in substudy 3 

is included. As both ROR score and MAI are continuous variables, there is an opportunity 

to calibrate MAI against ROR and establish two thresholds for MAI: low/intermediate risk 

and intermediate/high risk thresholds. This may lead to more robust thresholds of the 

calibrated MAI to predict whether a patient would benefit from adjuvant chemotherapy. If 

so, MAI will have its renaissance as a predictor in decision-making in the clinical setting. 

Notably, as the analytical costs for MAI are extremely low (~20 NOK per test – salary costs 

are not included), this is an affordable option. Therefore, in low-income countries, the 

calibrated MAI will serve as a reliable proxy for a gene expression test like Prosigna test. 

Moreover, introduction of digital pathology in Norway  (348) will ease consensus in 

difficult cases. To achieve the highest reproducibility possible, a national center in Norway 

should determine the calibrated MAI in all new luminal breast cancers, approximately 2500 

cases per year. This will minimize under- and over-treatment. Alternatively, learning and 

test sets can be made available online for those who want to do the analysis of MAI 

themselves.       

The results from Paper II and Paper III imply that pre-operative high carbohydrate loading 

is associated with increased proliferation, reduced PR, increased lactate, pyruvate, which 

may translate into the reduced RFS and BCSS. As we observed the abovementioned 

changes in only the ER+/T2 patients, this calls for reflection. It is possible that these patients 

reacted the most to the carbohydrates given. Thus, ER+/T2 tumors may be more sensitive 

to the systemic effect of carbohydrates on the cellular signal systems we have detected in 

Paper II and III (i.e. insulin/insulin C-peptide/IGF-1/lactate/glutathione) (Fig. 37 and Fig. 

39). These traits can be utilized by administering metformin (274). Metformin has a ‘Kinder 

egg effect’ (i.e. 3 additive effects) by acting through endocrine mechanisms (278), paracrine 

effects (58) and intracrine / intracellular actions (349). The latter includes reduction in 
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insulin and IGF-1 signaling (350), which can benefit the patients by neutralizing the 

endocrine resistance. Furthermore, the time from diagnosis until commencing the adjuvant 

systemic therapy (i.e. 4-6 weeks) may be more important than previously thought.  There 

is a saying in breast cancer treatment: ‘What you do first ─ matters the most’.  On the 

background of the abovementioned biological effects of metformin (351) and the fact that 

the patients are left untreated for 6 weeks after diagnosis, we suggest to design a randomized 

controlled study addressing these challenges. In this study, patients with ER+/T2 tumors 

will be randomized just after the diagnosis into 3 study groups; 1. Metformin, 2. Metformin 

+ endocrine therapy and 3. Placebo upfront preoperatively (= the setting of today) (Fig. 42). 

All patients need a pre-operative needle biopsy to decide whether they are ER+ or not. 

Thus, effect of metformin on PR expression in the post-operative tumor specimen can be 

evaluated in comparison to the preoperative biopsy.  This would allow the patients to be 

their own controls. Also, a better panel of circulating biomarkers must also be included: 

CTCs, ctDNA, exosomes, and microRNA.   
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Suggested study: Overview of the Preoperative Metformin Study in ER+/T2 tumors are randomized ® at the 
point of diagnosis and given treatment in the ‘window of opportunity’ as shown. Then, they will be followed for 10 years. RFS, 
relapse free survival; BCSS, breast cancer specific survival; y, years 

All patients will of cause receive additional standard adjuvant treatment according 

to the treatment guidelines.  The patients will be followed for 10 years. Relapse free 

survival may be analyzed at 5 years of follow-up and Breast Cancer Specific Survival after 

10 years. Of course, the patients should also be followed for 20 years to assess the effect of 

Metformin on long-term survival. Of good scientific reasons, such a study should be 

sufficiently powered and be a multicenter study.    

To come to a close, of the more than 100 prognostic factors being discovered the last 

decades (87), only a handful are in daily use in the prognostication and prediction of the 

effect of treatment (Appendix 3 and Appendix 4). The main objective with the present thesis 

was to detect novel reliable prognostic and predictive biomarkers that can be used in breast 

Figure 42. Overview of the Preoperative Metformin Study in ER+/T2 

tumors
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cancer. MAI-3 seems to be a promising predictive factor for adjuvant chemotherapy (Paper 

I).  Systemic metabolic changes (i.e. insulin (Paper II) and lactate/pyruvate (Paper III) and 

local metabolic effects in tumor (i.e. glutathione: Paper III)) after preoperative carbohydrate 

are putative indicators for increased endocrine resistance and relapse in ER+/T2 tumors.   

Therefore, a novel future project will be to examine the use of metabolic profiling 

for early detection of breast cancer recurrence (352). This is also the topic for the Stavanger 

Breast Cancer Research Group, which includes several sub-studies (353). Thus, in our 

research group, metabolic biomarkers will be elaborated on in the years to come.  The 

above-mentioned strategies seem to be only a small step for biomarker research but will 

undoubtedly provide a giant leap for use of metabolic networks in the clinical setting. 
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7.0 Conclusions 

7.1 Individual papers 

7.1.1. Paper I 

We rejected our null hypothesis as MAI-3 contributes with significant independent 

prognostic information to LN-neg breast cancer patients aged < 55 years. MAI-3 identified 

40% of patients as under-treated and 20% of patients as over-treated compared to the 

prognostic grouping by Adjuvant! Online and the NBCG 2010 guidelines. Clearly, there is 

a need to include a proliferation biomarker in both guidelines to improve adjuvant systemic 

treatment in these patients. After this paper was published in 2010, Ki-67 was added to the 

NBCG guidelines. Luminal patients with a high Ki-67 level were offered chemotherapy.   

7.1.2 Paper II 

In this RCT, the four null hypotheses derived from our aims (2.2.2, page 80) were all 

discarded in the statistical analyses. Firstly, we observed an increase in luminal breast 

cancer patients with MAI≥10 among patients who received pre-operative oral carbohydrate 

load. In addition, the proportion of PR-negative patients increased in the carbohydrate 

group compared to the fasting group. The RFS and BCSS were inferior in the carbohydrate 

group. This paper shows that a high pre-operative oral carbohydrate load influences 

proliferation, PR expression, and survival. Thus, the 4-week timespan from diagnosis to 

commencement of systemic adjuvant treatment may be more important than currently 

known.  

7.1.3 Paper III   

This study utilized the patient material from Paper II. Thus, the null-hypotheses in this 

paper were generated on the basis of paper II (2.2.3, page 81). We found that oral 
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carbohydrate load increased the systemic lactate and pyruvate content, the tumor 

glutathione content, and glutamate in patients with high proliferation. Moreover, the 

recruited metabolic pathways are seen in the Warburg effect. Four out of seven microRNAs 

involved in endocrine resistance were recruited after carbohydrate influence. High levels 

of lactate, pyruvate, and glutathione were associated with decreased RFS, BCSS, and OS. 

An oral carbohydrate load seems to activate metabolic routes that favor the cancer cells and 

not the host.   

7.2 Overall Conclusions 

The following conclusions can be drawn from this thesis: 

I. Proliferation (MAI) adds valuable prognostic and predictive information to lymph node-

negative luminal patients. According to Adjuvant! v 8.0 and NBCG-2010, MAI-3 identified 

40% of the patients as under-treated and 20% as over-treated.      

II. Pre-operative oral carbohydrate loading seems to increase proliferation in luminal breast

cancers and reduce the expression of progesterone receptor. 

III. Explorative metabolic studies of pre-operative carbohydrate loading are probably linked

to the Warburg effect with increased systemic levels of lactate and increased intratumoral 

protection factors (e.g., glutathione) in luminal cancers.  

IV. All the above-mentioned changes contribute to inferior breast cancer survival in ER+

tumors. 
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Appendix 1. Simplified TNM-Classification in Breast Cancer  

Reference: (92) 

T/pT Tumor size 
(clinical and 
pathological) 

Nodes 
(clinical 

assessment) 

pN 
(number nodes 

affected) 

T0 No tumor 
evident 

Tis DCIS/LCIS 

T1/pT1 ≤ 20 mm N0 No mets. in 
regional LNs 

pN0 0 positive LNs 

T2/pT2 21 to 50 mm N1 Mets. to 
ipsilateral 
movable 
axillary LNs 

pN1 1-3 positive 
LNs 

T3/pT3 > 50 mm N2 Mets. to 
ipsilateral fixed 
axillary LNs 

pN2 4-9 positive 
LNs 

T4/pT4 Any T/pT 
involving 
skin/chest wall 

N3 Mets. to 
ipsilateral 
movable 
axillary LNs + 
supraclav LNs 

pN3 ≥ 10 positive 
LNs 

M0 No distant mets. LN= lymph node, p= pathological, 
pos=positive, mets. = metastases. 

M1 +Distant mets. 
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Appendix 2.  Primary Treatment of Operable (early) Breast Cancer 
Primary 
treatment 

Main level Category  Method Objective/ 
Rationale 

Duration Ref 
 
(94)  

Central Local Surgery BCT Remove primary tumor 
  

1 h  
Mastectomy 2 h  

Regional Sentinel node 
biopsy 

Staging of LN in axilla ½ h Table1, 
pt. 23 

Axillary lymph 
node dissection 
(ALND) 

Remove metastatic LNs  1 h  

Adjuvant Local Radiotherapy Whole breast Destroy additional 
premalignant lesions and 
small tumors in the breast  
  

3 weeks  
Boost to tumor bed 8 days  

Regional Axilla, levels I, II, 
and III 

Destroy regional LN 
metastasis 

3weeks  

Axillary + supra 
axillary fossa + 
intrathoracic LN 

3 weeks  

Systemic Endocrine

 

Tamoxifen Block ER signaling in 
micro metastasis → 
apoptosis 

5-10 y (43) 

AIs Block peripheral estradiol 
synthesis → apoptosis 

5 y (43) 

Chemotherapy 
 

 

Epirubicin Cytotoxic antibiotics 
Anthracycline; binds to 
DNA, blocks topo-
isomerase II.  
Induces apoptosis in 
micro metastatic cancer 
cells 

4 courses 
3 weekly 
(12 weeks) 
  

 

Cyclo-phosphamide Alkylating agent  
DNA cross-binding 
Induces apoptosis in 
micro metastatic cancer 
cells 

4 courses 
3 weekly 
(12 weeks) 

Table1, 
pt. 11. 
 

Taxanes  Blocks microtubule 
function in micro 
metastatic cancer cells    
→ apoptosis  

4 courses  
3 weekly 
 (12 weeks) 
 

(43) 

Biological

 

Trastuzumab Monoclonal antibody 
blocks the HER2HER-2 
receptor in micro 
metastatic cancer cells    
→ apoptosis 

17 courses 
3 weekly 
(1 year) 
 

(354) 

Zoledronic acid Block osteoclast activity 
in bone and block 
formation of metastatic 
niche (‘soil’) to avoid 
harboring of micro 
metastases in bones     

1 injection 
every 6 
months for 
5 years 

Table1, 
pt. 7 
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Appendix 3: NBCG guidelines June 2009 to February 2012  

 
 

Reference: (93) 
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Appendix 4. NBCG recommendations for AST with Gene profiling test 
NBCG Recommendations for Adjuvant Systemic Treatment (AST) Nov. 14, 2018 

+  WITH GENE PROFILING TEST (Prosigna =PAM-50) 

Main group Prosigna™ test Subgroup Treatment Ref 
HR+ 

HER-2 —

Lum A 

ROR low 

(0-40) 

pT1a-b No AST 

pT1c Endocrine + zoledronic acid if postmenopausal 

pT2 Endocrine + zoledronic acid if postmenopausal 

Lum A   

ROR intermediate 

(41-60) 

pT1a-b No AST 

pT1c Endocrine + zoledronic acid if postmenopausal 

pT2 Endocrine + zoledronic acid if postmenopausal 

LumB   

ROR intermediate 

(41-60) 

pT1a-b ER≥50%: Endocrine 

ER<50%: EC90x4 

+ zoledronic acid if postmenopausal 

pT1c ER≥50%: Endocrine 

ER<50%: EC90x4 

+ zoledronic acid if postmenopausal 

pT2 ER≥50%: EC90x4 → Endocrine 

ER<50%: EC90x4→Taxan→Endocrine 

+ zoledronic acid if postmenopausal  

ROR high (>60) 

(independent of 

luminal status) 

pT1a-b ER≥50%: Endocrine 

ER<50%: EC90x4 

+ zoledronic acid if postmenopausal 

pT1c EC90x4→Taxan→Endocrine 

+ zoledronic acid if postmenopausal 

pT2 EC90x4→Taxan→Endocrine 

+ zoledronic acid if postmenopausal 

Reference: (91) 
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Appendix 5.  NBCG recommendations for AST without gene test.  
Recommendations for Adjuvant Systemic Treatment (AST) Nov. 14, 2018 

—— WITHOUT GENE PROFILING TEST 

Main group Surrogate markers Subgroup Treatment Ref 
HR+ 

HER-2 — 

LumA like: 

Low proliferation*, Grade 

1-2, 

ER>50%   

pT1a-b, pN0 No AST 

pT1c, pN0, Grade1 No AST 

pT1c, Grade 2, pN0 

pT2, pN0 

pT1-2, pN1 

Endocrine + zoledronic acid if 

postmenopausal  

pN2-3 EC90x4 → Endocrine + zoledronic 

acid if postmenopausal  

LumB like: 

High proliferation ** 

AND  

Grade 2 -3 OR 

HR< 50% 

pT1a-b, pN0 Endocrine + zoledronic acid if 

postmenopausal 

pT1c-pT2, pN0 

pT1-2, pN1-3 

EC90x4 → Endocrine  

Zoledronic acid if postmenopausal 

HR+ 

HER-2+ 

pT1, pN0 Taxan/Trastuzumab 

→Trastuzumab+endocrine 

Zoledronic acid if postmenopausal 

All others EC90x4→ Taxan/Trastuzumab 

→Trastuzumab+endocrine 

Zoledronic acid if postmenopausal 

HR— 

HER-2+ 

pT1,pN0 Taxan/Trastuzumab →Trastuzumab 

Zoledronic acid if postmenopausal  

All others 

HR — 

HER-2 — 

EC90→ Taxan 

Zoledronic acid if postmenopausal 

*Ki-67 low: lab median

value - 10%             

When Ki-67 has an intermediate value: Use the other 

prognostic and predictive factors to decide 

e.g., Grade 3 = high proliferation (LumB)

     Grade 1 = low proliferation (LumA) 

**Ki-67 high: lab median 

value + 10% 

Reference: (93) 
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Appendix 6. Endocrine Treatment of Breast Cancer Patients 

Norwegian Breast Cancer Group (NBCG) 2015 [93] and based on international recommendations 
(St. Gallen, 2017). Premenopausal patients have two options (1 and 2 on the left side) and 
postmenopausal patients five options (1–5 on the right side) comprising aromatase inhibitor (AI), 
tamoxifen (TAM), and ovarian function suppression (OFS) alone or in combination. Total duration 
of endocrine treatment for a premenopausal patient that becomes postmenopausal after 2 or 5 years 
on TAM (example) is illustrated in brackets. The choice between alternatives 1–5 is made 
individually based on tumor biology, side effects, and preferences among clinicians and patients. 
Peri: perimenopausal; Yrs.: years; Dotted line: years on tamoxifen; Solid line: years on AI. 

Reference: (246) 
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Appendix 7.  PROM of Well-being  
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Appendix 8.  EMIT Protocol  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References: (28, 347) 

Patients with node-negative early breast cancer who have completed surgery and are classified as ER and/or PgR 

positive (HR-positive) with ≥1% receptor expression are candidates for this study. Patients can be included after 
written informed consent is obtained and eligibility has been established and approved. An overview of the study 

is illustrated in Figure 3. It will be organized as a multi-center study and run as a one-armed trial. Patients with 

appropriate primary tumor characteristics will be informed at the first postoperative visit. 

Treatment recommendations will be based on the Prosigna test results, in addition to conventional 

clinicopathological parameters. The Prosigna test will be performed after study inclusion. 

 
The study will recruit a total of 2150 patients, including approximately 1500 who will not be recommended for 

chemotherapy. After inclusion, the patients will be followed for breast cancer-related events for at least 5 years.  

 
 

Patients with node-negative early breast cancer who have completed surgery and are classified as ER and/or PgR 

positive (HR-positive) with ≥1% receptor expression are candidates for this study. Patients can be included after 
written informed consent is obtained and eligibility has been established and approved. An overview of the study 

is illustrated in Figure 3. It will be organized as a multi-center study and run as a one-armed trial. Patients with 

appropriate primary tumor characteristics will be informed at the first postoperative visit. 

Treatment recommendations will be based on the Prosigna test results, in addition to conventional 
clinicopathological parameters. The Prosigna test will be performed after study inclusion. 
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Influence of pre-operative oral
carbohydrate loading vs. standard fasting
on tumor proliferation and clinical outcome
in breast cancer patients ─ a randomized
trial
Tone Hoel Lende1,2* , Marie Austdal3,4, Anne Elin Varhaugvik4,5, Ivar Skaland4, Einar Gudlaugsson4,
Jan Terje Kvaløy3,6, Lars A. Akslen2,7, Håvard Søiland1,8†, Emiel A. M. Janssen4,6† and Jan P. A. Baak4,9,10†

Abstract

Background: Conflicting results have been reported on the influence of carbohydrates in breast cancer.

Objective: To determine the influence of pre-operative per-oral carbohydrate load on proliferation in breast
tumors.

Design: Randomized controlled trial.

Setting: University hospital with primary and secondary care functions in South-West Norway.

Patients: Sixty-one patients with operable breast cancer from a population-based cohort.

Intervention: Per-oral carbohydrate load (preOp™) 18 and 2–4 h before surgery (n = 26) or standard pre-operative
fasting with free consumption of tap water (n = 35).

Measurements: The primary outcome was post-operative tumor proliferation measured by the mitotic activity
index (MAI). The secondary outcomes were changes in the levels of serum insulin, insulin-c-peptide, glucose, IGF-1,
and IGFBP3; patients’ well-being, and clinical outcome over a median follow-up of 88 months (range 33–97
months).
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Results: In the estrogen receptor (ER) positive subgroup (n = 50), high proliferation (MAI ≥ 10) occurred more often
in the carbohydrate group (CH) than in the fasting group (p = 0.038). The CH group was more frequently
progesterone receptor (PR) negative (p = 0.014). The CH group had a significant increase in insulin (+ 24.31 mIE/L,
95% CI 15.34 mIE/L to 33.27 mIE/L) and insulin c-peptide (+ 1.39 nM, 95% CI 1.03 nM to 1.77 nM), but reduced
IGFBP3 levels (− 0.26 nM; 95% CI − 0.46 nM to − 0.051 nM) compared to the fasting group. CH-intervention ER-
positive patients had poorer relapse-free survival (73%) than the fasting group (100%; p = 0.012; HR = 9.3, 95% CI, 1.1
to 77.7). In the ER-positive patients, only tumor size (p = 0.021; HR = 6.07, 95% CI 1.31 to 28.03) and the CH/fasting
subgrouping (p = 0.040; HR = 9.30, 95% CI 1.11 to 77.82) had independent prognostic value. The adverse clinical
outcome of carbohydrate loading occurred only in T2 patients with relapse-free survival of 100% in the fasting
group vs. 33% in the CH group (p = 0.015; HR = inf). The CH group reported less pain on days 5 and 6 than the
control group (p < 0.001) but otherwise exhibited no factors related to well-being.

Limitation: Only applicable to T2 tumors in patients with ER-positive breast cancer.

Conclusions: Pre-operative carbohydrate load increases proliferation and PR-negativity in ER-positive patients and
worsens clinical outcome in ER-positive T2 patients.

Trial registration: CliniTrials.gov; NCT03886389. Retrospectively registered March 22, 2019.

Keywords: Breast cancer, Carbohydrate load, Proliferation, Insulin, Insulin c-peptide, IGF-1, IGFBP3, Tumor size,
Relapse-free survival, Breast cancer-specific survival

Background
Breast cancer is the most frequent malignancy among
women [1], representing 12% of all new cancer cases
and 25% of all cancers in women worldwide [2, 3]. In
Norway, the incidence of breast cancer has doubled dur-
ing the last 50 years. The lifetime risk for a Norwegian
woman developing the disease is 10–12% [4]. A total of
570,000 women across the globe died of breast cancer in
2015, comprising 15% of cancer deaths among women
[3]. Approximately 75% of all new breast cancers are
luminal breast cancer subtypes, which express estrogen
receptor (ER) and/or progesterone receptor (PR) [5].
The etiological factors of breast cancer comprise genetic,
hormonal, environmental, and lifestyle-related elements
[6]. Risk factors relating to the Western lifestyle, includ-
ing lack of physical exercise, being overweight, certain
hormonal and dietary factors, and diabetes mellitus type
2, have recently gained increased attention [2].
The effect of carbohydrate consumption on breast can-

cer incidence and outcome is probably mediated through
three parallel routes. One route is through stimulation of
the insulin/ insulin-like growth factor-1 (IGF-1) axis in
epithelial breast cells, which comprises the insulin recep-
tor (IR) [7] and IGF1 signaling pathways [8]. This results
in crosstalk between cellular signaling systems and endo-
crine resistance in luminal breast cancers (i.e., ER-positive
tumors) [9, 10]. Secondly, a substantial part of the insulin
effect is mediated by paracrine signaling in the tumor
micro-environment between adjacent adipocytes, fibro-
blasts, and the epithelial cancer cell. Signaling factors, such
as ER, IR, IGF1-R, adiponectin, and leptin are involved
[11]. Thirdly, alimentary glucose may affect cancer cells

directly through the Warburg effect, which is an expedient
switch that changes cellular energy metabolism from
oxidative mitochondrial ATP production to cytoplasmic
aerobic glycolysis [12]. This transition enables the prolifer-
ative cancer cells to produce both ATP for energy and
ribose for DNA synthesis [13].
In human breast cancer patients, studies on the rela-

tionship between carbohydrate/glucose content in food
and quantitative insulin characteristics are lacking. Insu-
lin is a growth factor that increases proliferation and
decreases apoptosis, and elevated levels of insulin are as-
sociated with different cancers, including breast cancer
[14]. In breast cancer patients without diabetes, high in-
sulin levels have been associated with a poor prognosis
[15]. Insulin receptors have been detected on breast can-
cer cells [16], though there is conflicting evidence on
whether insulin directly regulates cancer proliferation,
and how fast such an effect will occur. Also, there is a re-
search deficit on the influence of carbohydrates on clinical
outcome or prognostic endpoint biomarkers such as pro-
liferation. Generally, proliferation is measured by the mi-
totic activity index (MAI), phosphohistone-H3 (PPH3),
and Ki-67 [17, 18]. The MAI and PPH3 estimate the num-
ber of cells in M phase (mitosis) and G2M phase, respect-
ively, whereas Ki-67 detects all cells outside the G0phase.
Notably, insulin influences cell cycle kinetics by more
rapid transit through the G1 phase in ER-positive cells [7].
A meta-analysis has shown that, in patients undergo-

ing abdominal surgery, administration of two per-oral
carbohydrate loads administered 12–18 h, and again 2–
4 h, before elective surgery reduces postoperative insulin
resistance and leads to enhanced recovery after surgery
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(ERAS) [19]. During surgery, however, breast cancer
cells are pushed into the circulation [20]. Moreover, due
to the pre-operative oral carbohydrate load used in
ERAS protocols, these cells may have a much better
chance of survival and of forming viable metastatic foci
[21, 22]. Pre-operative oral hyperglycemic loading may
bring breast cancer cells into a favorable state to escape,
divide, thrive, and survive during surgery, which may
then lead to an inferior long-term prognosis for breast
cancer patients [23]. Therefore, it is of great importance
to gain more insight into the effects of pre-operative
carbohydrate administration in breast cancer regarding
insulin-related characteristics, proliferation, and clinical
outcomes.
The cell cycle in breast cancer is fast enough to be

influenced by the two pre-operative oral carbohydrate
loads in ERAS protocols [24, 25]. We chose to use the
MAI as our primary endpoint for proliferation. Our
hypotheses were that an ERAS protocol comprising two
oral carbohydrate loads will improve post-surgical recov-
ery in breast cancer patients, the oral carbohydrate load
will stimulate cellular signaling and increase proliferation
as measured by the MAI, and pre-operative carbohy-
drate loading will lead to an adverse prognosis in breast
cancer patients. A subgroup analysis of ER-positive pa-
tients was planned before the study was started.
Thus, the aim of this study was to investigate whether

a pre-operative carbohydrate load according to a stand-
ard ERAS protocol influences tumor proliferation, post-
surgical recovery, and/or clinical outcome.

Methods
This population-based cohort of operable breast cancer
patients was randomized into an intervention group re-
ceiving pre-operative per-oral carbohydrate loading or a
control group comprising the standard fasting pre-
operative protocol with unlimited access to drinking
water. The investigation was an open-labeled study for
the patient and breast surgeon. However, all researchers
at the Department of Pathology and hormone laboratory
were blinded to the intervention.

Patients
A total of 253 patients were assessed for eligibility be-
tween May 12, 2009, and June 23, 2010, in the catch-
ment area of Stavanger University Hospital in South-
West Norway. The exclusion criteria were clinical or
radiological T3–4 tumors at clinical examination, overt
systemic metastases, ductal carcinoma in situ (DCIS),
micro-invasive cancer < 2 mm, or comorbidity, including
diabetes mellitus type I and II, Cushing syndrome, previ-
ously diagnosed cancer, or being unable to co-operate in
the study (e.g., dementia, other serious psychiatric ill-
nesses, language barriers, or unwillingness to sign the

informed consent papers). A total of 80 patients with
unequivocal operable breast cancers (Stage I and II) di-
agnosed by fine needle aspiration cytology (FNAC)
agreed to participate in the study and were randomized
(Fig. 1). The last follow-up date was June 28, 2017. A lar-
ger proportion of dropouts in the intervention group for
various random reasons created an imbalance in the
numbers of patients between allocation groups (Fig. 1).

Randomization and intervention
Randomization was performed after the patients pro-
vided written consent to participate in the study. The
randomization procedure was organized as an in-house
procedure with concealed envelopes generated and dis-
tributed in two boxes by the study nurse. The allocation
sequence was performed by the trial administration
committee. The sequence was balanced according to age
by choosing between two boxes, one for age < 55 years
(i.e., possible and certain premenopausal) and one for
age ≥ 55 years (i.e., most probably postmenopausal), each
with 1:1 block randomization regarding the carbohydrate
(intervention) and fasting (control) groups in each box.
The surgeon in the out-patient clinic enrolled consecu-
tively operable breast cancer patients who agreed to par-
ticipate in the trial.

Intervention
Patients who were randomized to pre-operative carbohy-
drates drank 400 ml pre-Op™ (Nutricia, Netherlands)
containing 12% carbohydrates, 2% glucose, and 10%
polysaccharides the evening before (i.e., 18 h before sur-
gery) and in the morning on the day of the operation
(i.e., 2–4 h before surgery). Each patient was asked be-
fore surgery if they had been able to finish the carbohy-
drate drink or if they were fasting according to the
randomization. The control group followed the standard
fasting procedure with free intake of tap water.

Blinding
The study was not blinded for the patients due to use of
the carbohydrates and tap water by the participants. The
information on the grouping was known only to THL,
who was head of the clinical part of the trial, and this in-
formation was kept in a locked safe. Others involved in
the study had no access to this information. Thus, the
investigation was blinded for the laboratory personnel
performing various assessments (MAI, PPH3, Ki67,
histological grading, insulin, C-peptide etc.).

Primary treatment
The primary surgery was performed according to the
recommendations of the Norwegian Breast Cancer
Group (NBCG) [4]. The surgery was either breast con-
serving treatment (BCT) or mastectomy, and sentinel
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node (SN) diagnostic or axillary lymph node clearance of
level I and II. Adjuvant chemotherapy was also given
based on the NBCG guidelines [4]. Notably, we found
no differences between the two allocation groups regard-
ing the type of primary treatment received (Table 1).

Safety issues
The patients were hospitalized for 1–2 days after sur-
gery. Any complications, such as hemorrhage, infection,

or others, were recorded on the Case Report Forms. No
patients died or experienced any serious complications
from the pre-operative treatment.

Blood sampling for serum analysis
Five blood samples were obtained from the participants:
1) at the time of diagnosis, 2) at admission (the day be-
fore surgery), 3) pre-operatively before surgery, after the
second pre-Op™ carbohydrate dose, 4) the day after

Fig. 1 Study flow diagram
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Table 1 Baseline characteristics of patients in the two study groups

Variable Carbohydrate group
(n = 26)

Missing data (Intervention group) Fasting group
(n = 35)

Missing data
(Control group)

P

n (%) n (%)

Age

< 55 12 (46) 0 16 (46) 0 0.973

> 55 14 (54) 0 19 (54) 0

BMI (kg/m2) 25.0 (3.9) 4 25.1 (3.0) 3 0.868

BMI < 25a 14 (64) 4 17 (53) 3 0.443

BMI≥ 25 8 (36) 15 (47)

BMI < 75 percentileb 18 (82) 4 23 (76) 3

BMI≥ 75 percentile 4 (18) 13 (24) 0.401

Menopausal status

Premenopausal 4 (17) 1 7 (22) 1 0.627

Postmenopausal 20 (83) 1 25 (78) 2

HRT - yes 8 (35) 3 10 (32) 4 0.937

HRT – no 14 (61) 19 (61)

HRT- not relevant 1 (4) 2 (7)

HRT use (years) 4.7 (4.3) 16 7.9 (5.8) 25 0.176

Tumor size (mm) 19.4 0 15.0 0 0.094

Tumor category

T1 16 (62) 0 29 (83) 0

T2 10 (38) 0 6 (17) 0 0.061

Histological Gradec 0.157

1 4 (15) 0 7 (20) 0

2 10 (39) 0 20 (57) 0

3 12 (46) 0 8 (23) 0

pN negative 18 (69) 0 25 (71) 0 0.852

pN positive 8 (31) 0 10 (29) 0

Number LNs removed 5.5 2 5.8 0 0.843

Number positive LNs 0.38 2 0.86 0 0.191

Estrogen receptor

Positive (≥1%) 21 (81) 0 29 (83) 0 0.834

Negative (< 1%) 5 (19) 0 6 (17) 0

Progesterone receptor

Positive (≥ 10%) 13 (50) 0 28 (80) 0 0.014

Negative (< 10%) 13 (50) 0 7 (20) 0

HER2

Positive 3 (12) 0 1 (3) 0 0.176

Negative 23 (88) 0 34 (97) 0

MAI (median, IQR) 7 (2–9) 1 5 (2–9) 0 0.647

MAI < 10 14 (56) 1 27 (77) 0

MAI≥ 10 11 (44) 8 (23) 0 0.083

Ki67 (mean, SD) 30.4 (28.2) 0 28.0 (26.5) 1 0.747

Ki67 < 15% 9 (35) 0 17 (50) 1

Ki67≥ 15% 17 (65) 0 17 (50) 0 0.233
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Table 1 Baseline characteristics of patients in the two study groups (Continued)

Variable Carbohydrate group
(n = 26)

Missing data (Intervention group) Fasting group
(n = 35)

Missing data
(Control group)

P

n (%) n (%)

Ki67 < 30% 14 (54) 0 24 (71) 1 0.182

Ki67≥ 30% 12 (46) 0 10 (29) 0

PPH3 (mean, SD) 20.2 (24.7) 0 20.5 (26.9) 0 0.966

PPH3 < 13 14 (54) 0 21 (60) 0 0.631

PPH3≥ 13 12 (46) 0 14 (40) 0

TILs (mean %, SD) 4.7 (10.7) 0 4.3 (7.3) 1 0.137

TILs

Positive (> 10%) 2 (8) 0 4 (11) 0 0.663

Negative (< 10%) 24 (92) 0 31 (89) 0

Luminal typed

Luminal A 16 (62) 0 23 (66) 0

Luminal B 10 (38) 0 12 (34) 0 0.737

Glucose

Admissione| 5.4 (1.1) 0 5.3 (0.6) 0 0.864

Pre-operativef 5.2 (1.8) 0 5.1 (0.6) 0 0.739

S-Insulin

Admissione 9.4 (8.5) 0 9.1 (6.6) 0 0.886

Pre-operativef 33.7 (20.2) 0 9.1 (5.9) 0 < 0.0001

S-insulin-c-peptide

Admissione 0.69 (0.32) 0 0.75 (0.32) 0 0.517

Pre-operativef 2.10 (1.05) 0 0.75 (0.27) 0 < 0.0001

Surgery

BCT 15 (58) 0 23 (66) 0

Mastectomy 11 (42) 0 12 (34) 0 0.523

Axillary staging

SN 21 (81) 0 28 (80) 0

ALND 5 (19) 0 7 (20) 0 0.940

Reoperation - 1

-Breast 1 (20) 0 1 (50) 0

-Axilla 4 (80) 0 1 (50) 0 0.427

Chemo therapy

Yes 12 (46) 0 17 (47) 0

No 14 (53) 0 18 (51) 0 0.852

Radiation therapy

Yes 17 (68) 0 26 (74) 0

No 8 (32) 1 9 (26) 0 0.594

Endocrine therapy

Yes 17 (65) 0 22 (63) 0

No 9 (35) 0 13 (37) 0 0.839

Smoking status 5 4

-Never smoked 5 (24) 10 (32) 0.650

-Former smoker 9 (43) 14 (45)
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surgery, and 5) 4 weeks post-surgery. Immediately after
being drawn, the blood samples were put in ice water
for transport to the in-house medical laboratory. The
samples were spun and the serum frozen for transport
to the Hormone Laboratory, Haukeland University Hos-
pital, Bergen, Norway, where insulin, insulin c-peptide,
IGF-1, and IGFBP-3 were measured by the IMMULITE
2000 two-site chemiluminescent immunometric assay
(Siemens Medical Solutions Diagnostics).

Histology
Tumor size was measured macroscopically in fresh spec-
imens following excision. The tissues were cut into 0.5-
cm slices. The axillary lymph nodes from sentinel node
biopsy, or axillary fat from axillary dissection were ex-
amined macroscopically by a pathologist. All detectable
lymph nodes (median 3 per patients, range 1–21) were
prepared for histological examination. No lymph nodes
were detected in two patients. For hematoxylin–eosin–
saffron (HES) staining, the tissues were fixed in buffered
4% formaldehyde, embedded in paraffin, and sectioned
(4 μm). The histological type and grade were assessed
according to World Health Organization criteria (by two
pathologists, EG and JPAB) [26].

Immunohistochemistry
Immunohistochemistry (IHC) was performed to identify
ER, PR, PPH3, Ki-67, and human epidermal growth
factor receptor 2 (HER2) in whole sections. The antigen
retrieval and IHC techniques were based on DAKO
technology [27]. Formalin-fixed paraffin-embedded
(FFPE) sections (4-μm thick) were serially sectioned after
the preparation of HES sections and mounted onto sili-
conized slides (#S3002, DAKO, Glostrup, Denmark). A
highly stabilized retrieval system (ImmunoPrep; Instru-
mec, Oslo, Norway) was used for antigen retrieval with
the retrieval buffer (10 mM Tris/1 mM EDTA, pH 9.0).
Sections were heated for 3 min at 110 °C, and then 10
min at 95 °C, before cooling to 20 °C. The following anti-
bodies and dilutions were used: ER (clone SP1,

Neomarkers/LabVision, Fremont, CA, USA), 1:400; PR
(clone SP2, Neomarkers/LabVision), 1:1000; rabbit poly-
clonal anti-PPH3 (ser 10) (Upstate #06–570; Lake Placid,
NY), 1:1500; and Ki-67 (clone MIB-1, DAKO, Glostrup,
Denmark), 1:100. All antibodies were incubated for 30
min at 22 °C. Visualization was achieved using the
EnVision™ FLEX detection system (DAKO, K8000). Sec-
tions were incubated with the peroxidase-blocking re-
agent (SM801) for 5 min, followed by the primary
antibody for 30 min, EnVision™ FLEX/HRP Detection
Reagent (SM802) for 20 min, EnVision™ FLEX DAB+
Chromogen (DM827)/EnVision™ FLEX Substrate Buffer
(SM803) mix for 10 min, and EnVision™ FLEX
Hematoxylin (K8008) for 5 min. Next, the slides were
dehydrated, mounted, and stained using a Dako Auto-
stainer Link 48 instrument and EnVision™ FLEX Wash
Buffer (DM831). To assess HER2, the DAKO HercepT-
est™ was used according to the manufacturer’s protocol.

Quantitative measures
MAI was assessed as the total number of mitotic figures
in 10 consecutive fields of vision at 400× magnification
(objective 40, specimen level field diameter 450 μm) in
the most poorly differentiated periphery of the tumor,
representing a total area of 1.59 mm2. Areas with necro-
sis or inflammation were avoided. This was performed
as a routine diagnostic procedure, but controlled by EJ
as described elsewhere [28]. We assessed the PPH3
index as described previously [29] and evaluated PPH3
expression using the fully automated VIS analysis system
(Visiopharm, Hørsholm, Denmark) and previously de-
scribed image processing principles [27]. The semi-
automatic interactive computerized QPRODIT system
(Leica, Cambridge) was used to measure the percentage
of Ki-67-positive cells as described elsewhere [30]. A
total of 250–350 fields of vision were systematically se-
lected at random for each measurement. The Ki-67 per-
centage was defined as [(Ki-67 positive)/ (Ki-67 positive
+ Ki-67 negative)] × 100. ER-positivity was the presence
of nuclear staining in > 1% of the cancer cells and ER-

Table 1 Baseline characteristics of patients in the two study groups (Continued)

Variable Carbohydrate group
(n = 26)

Missing data (Intervention group) Fasting group
(n = 35)

Missing data
(Control group)

P

n (%) n (%)

-Ongoing smoking 7 (33) 7 (23)

Tumor size category analyzed as T1 vs. T2
aBMI-25 represents a dichotomized BMI < 25 or ≥ 25 on the BMI scale
bBMI-75p represents a dichotomized BMI with cut off < /≥ 75 percentile, i.e., </≥ 26.8 on the BMI scale
cHistological grading was performed according to the Nottingham algorithm
dLuminal A = ER+/HER2−/Ki67 < 15% and Luminal B = ER+/HER2−/Ki67 ≥ 15%
eBlood samples taken in the fasting state at the time patients were admitted in the hospital approx. 24–30 h before surgery
fPre-operative blood samples taken 1–2 h before the surgical procedure commenced
BMI Body mass index, HRT Hormonal replacement therapy, pT Pathological tumor size in mm or category, pN Pathological lymph node status, LN Lymph node,
HER-2 Human epidermal growth factor receptor 2, MAI Mitotic activity index, TILs Tumor infiltrating leucocytes, PPH3 Phosphorylated phospho-histone 3, SN
Sentinel node, ALND Axillary lymph node dissection
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negative when < 1% of the cells were stained. For PR,
positive was defined as nuclear staining present in > 10%
of the cancer cells, borderline as 1–10% of the cancer
cells exhibiting nuclear staining, and negative as < 1% of
the epithelial breast cancer cells exhibiting nuclear stain-
ing. The DAKO Hercep-Test scoring protocol was used
to score HER2, with 2+ and 3+ cases considered to be
positive. Two of the authors (BH and EJ) scored all
sections independently.
The relative number of stromal tumor-infiltrating lym-

phocytes (TILs) was assessed according to Salgado et al.
[31]. HE-stained tissue sections were scored semi-
quantitatively according to the presence or absence of
stromal TILs. The degree of infiltration was scored from
0 to 100%, with positive TILs defined as ≥10%. Tumors
were also classified as luminal A (ER+/HER2−/Ki67 <
15%) or luminal B (ER+/HER2−/Ki67 ≥ 15% or ER+/
HER2+ regardless of Ki67) cancers according to the St.
Gallen 2013 recommendations [32].

Main outcome measures
The main primary outcome measure was the difference
in proliferation (measured by MAI) in the primary
tumor between the study groups. The secondary out-
come measures were differences in insulin-related char-
acteristics (i.e., insulin/c-peptide, IGF1, and IGFBP3)
between the intervention and control groups. Patient-
reported outcome measures (PROMs) on the following
complaints and symptoms were also regarded as second-
ary outcomes: nausea, pain, mobilization, dizziness,
insecurity, and bleeding. We applied an in-house ques-
tionnaire with which the patients were asked to score
the six variables on a 4-step Likert scale (1 = ‘no’, 2 = ‘lit-
tle’, 3 = ‘moderate’, and 4 = ‘very much’) on days 1, 2, 3,
4, 5, 6, and 7 after the operation.
For long-term outcome measures, we looked at

relapse-free survival (RFS), defined as the time from sur-
gery until the time the patient was diagnosed with a re-
lapse in any location (i.e., locoregional, systemic, or
contralateral). The time from surgery until death due to
breast cancer was the breast cancer-specific survival
(BCSS). The time from surgery until death from any
cause constituted overall survival (OS). For both the
primary and secondary outcomes, a subgroup analysis
was planned for the ER-positive (luminal) breast cancer
subtype.

Statistical analysis
Power calculations were performed on the basis of the
primary endpoint. We anticipated a 20% increase in
MAI in the intervention group compared to the control
group. Based on the mean value of MAI in patients be-
longing to the catchment area of Stavanger University
Hospital [33, 34] and the reproducibility of the method

to assess MAI, a total of 30 patients was needed in each
study group (i.e., 60 patients) to achieve 80% power. We
decided to randomize 80 patients to allow for a 10–15%
drop-out rate.
As ER- positive breast cancer comprises approximately

75% of all breast cancer cases, there should be a reason-
able number of patients to perform a subgroup analysis
of luminal breast cancers. Statistical analyses were per-
formed using SPSS statistical software v.22 (SPSS, Inc.,
Chicago, IL, USA). Differences in the clinical variables
between the intervention groups were determined using
T-tests, Fishers exact test, or chi-squared tests as appro-
priate. Kaplan-Meier survival curves were constructed,
and the log-rank test was used to evaluate survival dif-
ferences between groups. Cox proportional hazard ana-
lysis was used to test the relative importance of potential
prognostic variables. In multivariable Cox regression, a
backward stepwise model selection procedure was used,
in which all covariates deemed clinically relevant were
included in the initial model.
The proportion of patients reporting at least mild

problems on each of the items on the PROM question-
naire each day for the first 7 postoperative days was
analyzed using a mixed effects logistic regression model.
Using this model, we tested for differences between the
intervention and control groups. If a significant differ-
ence was found, a post-hoc analysis was performed using
chi-squared tests for each of the days. We did not apply
any correction for multiple testing due to the pilot and
exploratory nature of the study. A two-tailed P-value of
0.05 was considered the threshold for significance.

Manuscript reporting
We ensure that the manuscript reporting adheres to
CONSORT guidelines for reporting clinical trials, in-
cluding sticking to the CONSORT check list.

Results
The various characteristics of the two allocation groups
are shown in Table 1. Fifty patients had ER-positive tu-
mors and 11 ER-negative tumors. Of the latter, 8 were
HER2-negative (ER-, HER2-) and 4 were triple-negative
(ER-, PR-, HER2-) based on IHC profiling. Notably, we
found no differences in the distribution of the basic co-
variates between the carbohydrate-intervention group
and the fasting group (Table 1).

Proliferation markers
In the total study cohort, none of the continuous vari-
ables (MAI, Ki67, or PPH3) were different between the
carbohydrate and fasting groups. However, when apply-
ing the robust and well-established prognostic threshold
for MAI (< 10/≥10), among the ER-positive patients (n =
50) significantly more patients in the carbohydrate
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intervention (70%) had high proliferation (MAI ≥ 10)
than in the fasting group (30%; p = 0.038; Table 2). The
same trend was found when all tumors were considered
(58% vs. 42%, carbohydrate vs. fasting; p = 0.083). In
lymph node-negative luminal patients, the same correl-
ation was stronger with a Kendall’s tau-b r = 0.488 (p =
0.017), Gamma r = 1.000 (p = 0.017), and Pearson chi-
squared = 7.62 (p = 0.006; Fischer exact = 0.014 (two-
sided); Table 3).

Progesterone receptor
Significantly more patients in the carbohydrate group had
PR-negative tumors (50%) compared to the fasting group
(20%; p = 0.014), independent of luminal A/B status.

Serum glucose and insulin responses
The response to pre-operative carbohydrate loading was
assessed by the difference between the pre-operative
serum values and the values obtained at admission (i.e.,
serum levels after carbohydrate loading minus fasting
baseline values in both groups; Table 4). As expected,
the intervention group had a significant increase in both
S-insulin (+ 24.31 mIE/L, p < 0.0001, 95% CI 15.34 mIE/
L to 33.27 mIE/L) and S-insulin c-peptide (+ 1.39 nM,
p < 0.0001; 95% CI 0.21 nM to 0.97 nM). The upper
quartile (Q4) border value of 2.40 nM was equal to the
upper value of the normal range of insulin c-peptide
(Table 4), indicating that 25% of the patients had c-
peptide values compatible with insulin resistance. Re-
garding IGFBP3, a significant reduction of − 0.43 nM
was measured after carbohydrate loading (p < 0.0001,
95% CI − 0.56 nM to − 0.27 nM) and − 0.26 nM com-
pared to the control group (p = 0.015, 95% CI – 0.46 nM
to – 0.051 nM). We found no changes in S-glucose or S-
IGF-1 values within or between the two study groups
(Table 4, Fig. 2a-f).

Quality of life data
In the carbohydrate intervention group, fewer patients
reported mild and moderate pain during the first 7 post-
operative days than in the fasting group (p < 0.001),

which in post-hoc analysis was significant on postopera-
tive day 5 (28% vs. 47%; p = 0.038) and day 6 (28% vs. 50%;
p < 0.001). Otherwise, there were no significant differ-
ences between the two groups regarding the other items
from the PROM questionnaire (nausea, mobilization, diz-
ziness, insecurity, and bleeding) (data not shown).

Long-term clinical outcome
The median follow-up for RFS was 88months (range 33
to 97months) and for BCSS 88 months (range 45 to 97
months). Eight patients experienced a relapse: one loco-
regional, six systemic, and one contralateral. Five of
these patients died of breast cancer.

Relapse-free survival
Randomization to intervention with pre-operative carbo-
hydrates had a weak and borderline influence on RFS
when analyzed in the whole study cohort (Table 5).
However, in the ER-positive patients who received car-
bohydrates pre-operatively, a reduced RFS of 71% com-
pared to 97% in the control group (p = 0.012, HR = 9.3,
95% CI 1.1 to 77.7; Table 5 and Fig. 3a) was observed.
The covariates tumor diameter between 2 and 5 cm (T2)
and the proliferation marker Ki67 (both ≥15% and ≥
30%) had a significant negative influence on RFS in both
the whole cohort and in the ER-positive cohort (Table 5).
In the ER-negative subgroup, there was no influence of
the carbohydrate/fasting grouping on RFS (Fig. 3b). The
following co-variates were deemed clinically relevant:
tumor size, nodal status, histological grade, PR and
HER2 status, Ki67–15%, Ki67–30%, PPH3–13, MAI-10,
TILs, luminal A/B status, carbohydrate/fasting grouping,
chemotherapy, radiotherapy and endocrine therapy,
BMI-75p, BMI-25, and smoking status. In the multivari-
able analysis, tumor size (T1/T2; p = 0.021, HR = 6.07,
95% CI = 1.31 to 28.03) and carbohydrate/fasting group-
ing (p = 0.040; HR = 9.30, 95% CI 1.11 to 77.82) were the
only two variables left in the final Cox model. As T2 tu-
mors were more frequent in the intervention group, we
performed a Kaplan Meier analysis of the influence of

Table 2 Cross table MAI and allocation groups in ER+ patients

Carbohydrate Fasting Total

MAI < 10 Count 13 26 39

% 65.0% 89.7% 79.6%

MAI≥ 10 Count 7 3 10

% 35.0% 10.3% 21.4%

Total Count 20 29 49

% 100.0% 100.0% 100,0%

Pearson chi-squared: 4.430, df = 1, p = 0.035
Fischer exact: 0.041 (one-sided) and 0.068 (two-sided)
r (gamma) = 0.647 (p = 0.042)
r (Kendall’s tau-b) = 0.301 (p = 0.042)

Table 3 Cross table MAI and allocation groups in ER+ /LN
negative patients

Carbohydrate Fasting Total

MAI < 10 Count 8 20 28

% 66.7% 100.0% 87.5%

MAI≥ 10 Count 4 0 4

% 33.3% 0.0% 12.5%

Total Count 12 20 49

% 100.0% 100.0% 100.0%

Pearson chi-squared: 7.619, df = 1, p = 0.006
Fischer exact: 0.014 (one-sided) and 0.014 (two-sided)
r (gamma) = 1.000 (p = 0.017)
r (Kendall’s tau-b) = 0.488 (p = 0.017)
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Fig. 2 (See legend on next page.)
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the carbohydrate intervention on RFS stratified for T1
vs. T2. This analysis showed that the unfavorable prog-
nostic effect of carbohydrate loading was not present in
the T1 (≤ 2 cm) patients, but was strongly prognostic in
the T2 patients (Fig. 3c and d). In the T2 group, the
carbohydrate-loaded and fasting patients had an RFS of
33 and 100%, respectively (p = 0.031; HR = inf). In the T2
subgroup, there was a significantly higher mean serum
level of pre-operative insulin c-peptide among patients
who experienced a relapse versus those who were
relapse-free (2.02 nM vs. 0.838 nM, p = 0.025). Notably,
there was an even distribution of luminal A and luminal
B tumors among the patients with T2 tumors who expe-
rienced a relapse versus those who did not (p = 0.47).

Breast cancer-specific survival
In the unadjusted analysis of BCSS, intervention with
carbohydrates resulted in a significantly inferior BCSS in
ER-positive patients compared to the control group
(Table 6; Fig. 4a). In ER-positive T2 tumors, the carbo-
hydrate intervention group had the worst BCSS (30%),
compared to 100% in the control fasting group (p =
0.031, HR = infinite, due to zero relapses in one of the
two groups; Fig. 4b). In addition, tumor size, nodal
status, and Ki67–30% provided significant prognostic
information in the unadjusted analysis (Table 6). In the
multivariable analysis, only Ki67–30 remained in the
final model. In general, the small number of patients and
endpoints hampered a robust multivariable analysis.

Overall survival
The univariate analysis of OS in ER+ patients showed
only a borderline significance of OS for the carbohydrate
group (81%) compared to the fasting group (99%; p =
0.068; HR = 6.02; 95% CI 0.672–53.8; Fig. 5a). Only
tumor size remained as an explanatory factor in the final
Cox model (HR = 17.1; 95% CI 17.1–153). In the ER+/
T2 patients, the corresponding OS was 33% vs. 100%, re-
spectively (p = 0.031; HR = inf; Fig. 5b). In the Cox
model, carbohydrate/fasting status was entered in the
last step, but the model was considered too unstable for
a reliable report.

Adverse events
No adverse events were recorded in either of the two study
arms. No signs of pathologically elevated fasting blood
sugar levels (i.e., > 6mmol/L) was noted. Furthermore, in

the carbohydrate arm, no signs of occult diabetes mellitus
were seen (i.e., blood sugar levels > 10mmol/L) after carbo-
hydrate loading.

Discussion
Glucose has been correlated with cancer for nearly a
century. Warburg (1925) was the first to describe the
phenomenon that cancer cells have a much stronger
tendency to take up glucose [35], for which (amongst
other findings) he received the Nobel prize in 1932 [36].
However, to the best of our knowledge, the current
study is the first prospective randomized trial to evaluate
the effects of pre-operative carbohydrate loading on
tumor proliferation and outcome (short-term vs. long-
term) in operable breast cancer patients. In patients with
ER-positive tumors (i.e., luminal tumors), significantly
more patients with MAI ≥ 10 were observed in the
carbohydrate group than the fasting group. Luminal
cancers have, on average, a lower proliferation rate than
ER-negative and triple-negative cancers [37]. As such,
the proliferation-increasing effect of carbohydrate load-
ing in luminal cancers understandably leads to a higher
percentage increase in patients crossing the prognostic-
ally essential MAI-10 threshold. Most ER−/triple-nega-
tive breast cancer patients already have an MAI greatly
exceeding 10. Therefore, carbohydrate loading will prob-
ably not increase proliferation in a clinically significant
manner, as they have an a priori high risk of distant me-
tastases [38]. In addition, the luminal A patients exposed
to excess carbohydrates may turn into luminal B tumors,
thereby statistically increasing their risk for recurrence.
This is in agreement with luminal breast cancers
responding directly to an increase in circulating insulin
through altered transmembrane IRs [39]. Thus, in the
present study, the observation of an increase in insulin/
c-peptide in the intervention group could explain the in-
creased MAI and Ki67 in the ER-positive group. Simi-
larly, as triple-negative cancers better utilize the IGFBP3
pathway in EGF1-signaling [40], the observed reduction
in IGFBP3 after carbohydrate loading may account for
the lack of response to proliferation in the ER-negative
group. This could suggest that the differential responses
to the insulin/IGF1 axis between luminal and triple-
negative cancers [41] explain our observed differences in
response to per-oral carbohydrate loading and mitotic
activity between the ER-positive and ER-negative groups.

(See figure on previous page.)
Fig. 2 Scatterplot of the various insulin-related measures in serum in the two study groups. a S-insulin. b S-insulin c-peptide. c S-IGF. d S-IGFBP3.
e S-glucose. The center of the centroid reference lines represents the mean value in each group (dotted lines). P-values were determined using t-
tests. Units are given by the x-axis and y-axis. All values on the x-axis are at admission, and the y-axis values represent pre-operative
measurements. Red, carbohydrate group; blue, fasting group; S, serum; Preop., pre-operatively; IGF, insulin-like growth factor; IGFBP3, IGF-binding
protein 3
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Table 5 Univariable analysis of relapse-free survival

Whole cohort (n = 61) ER positive patients (n = 50)

Characteristics Event/at risk (% survival) Log rank P HR 95% CI Event/at risk (% survival) Log rank P HR 95% CI

Pre-operative randomization

Fasting 2/35 (94) 0.049 1 1/29 (97) 1

Carbohydrates 6/26 (77) 4.4 0.9 to 21.7 6/21 (71) 0.012 9.3 1.1 to 77.7

Nodal status

N0 3/43 (93) 1 3/33 (91) 1

N+ 5/18 (13) 0.03 9.8 1.10 to 88.1 4/17 (77) 0.16 2.8 0.63 to 12.6

Tumor size

T1 3/45 (93) 1 3/39 (92) 1

T2 5/16 (69) 0.009 5.5 1.3 to 23.2 4/11 (64) 0.008 6.0 1.3 to 27.0

Nottingham gradeb 0.33 0.31

Grade 1 0/11 (100) 1 0/11 (100) 1

Grade 2 5/30 (83) – Inf. Inf. 5/30 (83) Inf. Inf.

Grade 3 3/20 (85) – inf. Inf. 2/9 (78) inf. Inf.

Estrogen receptor – – – –

Positive (≥ 1%) 7/50 (86) 1 – – – –

Negative (< 1%) 1/11 (91) 0.67 1.6 0.2 to 12.7 – – – –

Progesterone receptor

Positive (≥10%) 4/41 (37) 1 3/37 (92) 1

Negative (< 10%) 4/20 (80) 0.27 2.1 0.5 to 8.6 4/13 (69) 0.048 4.0 0.90 to 18.1

HER2

Negative (0 to 1+) 7/57 (88) 1 6/49 (88) 1

Positive (2+ to 3+) 1/4 (75) 0.46 2.1 0.3 to 17.5 1/1 (0) 0.005 11.7 1.3 to 105.1

MAI

< 10 5/41 (88) 1 4/39 (90) 1

≥ 10 3/19 (66) 0.66 1.4 0.3 to 5.8 3/10 (70) 0.09 3.4 0.8 to15.2

MAI

< 3 2/16 (88) 1 2/16 (88) 1

≥ 3 6/44 (86) 0.89 1.1 0.2 to 5.5 5/33 (85) 0.80 1.2 0.2 to 6.4

PPH3

< 13 3/35 (91) 1 3/35 (91) 1

≥ 13 5/26 (81) 0.26 2.2 0.5 to 9.4 4/15 (73) 0.12 3.1 0.7 to 14.0

Ki67

< 15 0/26 (100) 0/25 (100) 1

≥ 15 8/34 (77) 0.008 – – 7/24 (71) 0.003 a a

Ki67

< 30 3/38 (92) 1 3/37 (92) 1

≥ 30 5/22 (77) 0.093 3.2 0.8 to 13.4 4/12 (67) 0.023 4.8 1.1 to 21.8

TILs

Negative (< 10%) 2/13 (85) 7/55 (87) 1

Positive (≥10%) 6/48 (88) 0.77 1.4 0.2 to 3.9 1/6 (83) 0.75 2.2 0.24

Luminal statusc

Luminal A 3/39 (92) 2/28 (93)

Luminal B 5/22 (77) 0.091 3.2 0.77 to 13.5 5/22 (77) 0.11 3.5 0.68 to 18.1
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The observed inferior RFS for ER-positive T2 tumors
suggests that larger tumor size may influence the extent to
which cancer cells activate all necessary features to pro-
mote the epithelial-mesenchymal transition (EMT) [42]
and seed out micro-metastases. These processes turn into
clinically overt relapses after some years [43]. This is in
line with other research that has found a positive correl-
ation between tumor size and relapse [44], and between
tumor size and the development of endocrine resistance
[45]. A crucial question is to what extent the pre-operative
carbohydrate load to patients in the present study pro-
moted the EMT process in the T2-T3 tumors and created
more micro-metastases [46, 47]. Importantly, increased
signaling through the insulin/IGF axis is known to pro-
mote both the EMT process [48] and chemotaxis [49],
which increases the risk for minimal residual disease to
occur. Furthermore, the pre-operative carbohydrates may
have been administered in a critical window of the can-
cer’s life cycle. The number of liberated circulating tumor
cells (CTCs) from the primary tumor sharply increases
during surgery [50]. Thus, the administered carbohydrates
may have given the CTCs systemic biological support with

a triple survival benefit through the Warburg effect [12],
the insulin/IGF-1 axis [51], and paracrine signaling with
distant adipocytes [11]. Furthermore, increased IR/IGF-
signaling promotes protein synthesis in the same way the
PR pathway does. Consequently, the upregulation of IR/
IGF-signaling will suppress the transcription of PR in the
cell [52], which is considered to be part of the endocrine
switch. Moreover, dietary carbohydrates may down-
regulate the gene expression of PR through epigenetic
mechanisms [53]. These mechanisms support our finding
of less PR-positivity in the carbohydrate arm. Taken to-
gether, these components of the endocrine switch make
CTCs more resilient to the adjuvant endocrine treatment
following surgery [9, 54]. The present study seems to sup-
port the novel principle of manipulating the perioperative
nutrient status for adjuvant treatment purposes. Recently,
the complete opposite situation with a postoperative low
carbohydrate/ketogenic diet was advocated in pancreato-
biliary cancer surgery as an option for adjuvant anti-
cancer therapy [55].
As the distribution of larger tumor sizes was skewed

to the carbohydrate group, there may be another

Table 5 Univariable analysis of relapse-free survival (Continued)

Whole cohort (n = 61) ER positive patients (n = 50)

Characteristics Event/at risk (% survival) Log rank P HR 95% CI Event/at risk (% survival) Log rank P HR 95% CI

Chemotherapy

Yes 6/29 (79) 1 5/20 (75) 1

No 2/32 (94) 0.096 0.28 0.06 to 1.4 2/30 (93) 0.069 0.25 0.05 to 1.3

Radiotherapy

Yes 6/43 (86) 1 5/38 (87) 1

No 2/17 (88) 0.90 0.91 0.18 to 4.5 2/12 (83) 0.72 1.4 0.26 to 7.0

Endocrine Therapy

Yes 7/39 (82) 1 6/36 (83) 1

No 1/22 (96) 0.15 0.24 0.03 to 2.0 1/14 (93) 0.38 0.40 0.05 to 3.3

BMI-25d

< 25 3/31 (90) 1 3/26 (89) 1

≥ 25 4/23 (83) 0.40 1.9 0.42 to 8.4 3/20 (85) 0.70 1.4 0.28 to 6.8

BMI-75pe

< 75p 4/41 (90) 1 4/36 (89) 1

≥ 75p 3/13 (77) 0.201 2.57 0.57 to 11.5 2/10 (80) 0.417 1.99 0.36 to 10.9

Smoking

-Never smoked 4/15 (73) 1 3/12 (87) 1

-Former smoker 1/23 (96) 0.22 0.025 to 2.00 1/20 (95) 0.26 0.027 to 2.5

-Ongoing smoking 1/14 (93) 0.065 0.14 0.015 to 1.22 1/12 (92) 0.15 0.17 0.017 to 1.6

BMI Body mass index, HRT Hormonal replacement therapy, T Tumor size in mm or category, N Pathological lymph node status, LN Lymph node, N0 Node
negative, N+ Node positive (assessed by pathologists), HER-2 Human epidermal growth factor receptor 2, MAI Mitotic activity index, TILs Tumor infiltrating
leucocytes, PPH3 Phosphorylated phospho-histone 3
aHR (95% CI) was not computed, as the equation did not converge, and no events occurred in one or more categories
bHistological grading was performed according to the Nottingham algorithm
cLuminal A = ER+/HER2−/Ki67 < 15% and Luminal B = ER+/HER2−/Ki67 ≥ 15% or ER+/HER2 +
dBMI-25 represents a dichotomized BMI < 25 or ≥ 25 on the BMI scale
eBMI-75p represents a dichotomized BMI with cut off < /≥ 75 percentile, i.e., </≥ 26.8 on the BMI scale
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explanation than statistical chance. As the carbohydrates
affected proliferation, they may have also affected the
growth of tumor cells in the tumor periphery, where the
MAI is measured. This may have resulted in more blurry
demarcations of the tumor, which then interferes with
the accuracy of measuring the tumor size. Thus, the in-
creased tumor size in the carbohydrate group may have
a biological basis.
The inferior prognosis of patients who received the

carbohydrate load and had T2 tumors requires some re-
flection. Patients with higher levels of insulin c-peptide
may be more responsive not only to the carbohydrate
loading they received in the present study, but also to
carbohydrates in every meal they consume during the
period in which they receive adjuvant therapies and
thereafter. These patients may have a subclinical insulin-
resistant state, which is known to be a risk factor for
relapse from breast cancer in non-diabetic women [56].
Therefore, tumor size combined with insulin c-peptide
status may predict an increased effect of adjuvant metfor-
min or other insulin-lowering drugs in the treatment of
breast cancer patients. Metformin attenuates the systemic

biological effect of IR/IGF on tumor-promoting signaling
by improving insulin sensitivity and suppressing liver glu-
cose output, which leads to reduced levels of systemic cir-
culating insulin [14]. This further mitigates paracrine
signaling, overcoming endocrine resistance [51, 57] and
improving prognosis in breast cancer [58–61]. The
present study supports the hypothesis that adjuvant met-
formin or other insulin-lowering therapeutic interactions
may have their greatest effect in breast cancer patients
with ER-positive T2 tumors. In addition, the greatly in-
creased glucose consumption by cancer cells as measured
by positron emission tomography (PET) with the tracer
18F-deoxy-glucose (FDG) [62] identifies patients with an
inferior clinical outcome [63]. This may also serve as a
promising proxy for insulin/metformin responders.
The effect of carbohydrate loading on well-being had a

very limited clinical subjective effect in the present study
(i.e., only reduced pain on the 5th and 6th day after sur-
gery). Notably, no difference in mobilization or
hospitalization was found. This is probably due to the
short duration of the operation and the extraperitoneal
nature of the surgical procedure in breast cancer

Fig. 3 Relapse-free survival (RFS) in the carbohydrate and fasting groups. a In all ER-positive patients. b In all ER-negative patients. c In ER-
positive, T1 patients. d In ER-positive, T2 patients. Fasting group, blue solid line; carbohydrate group, red dotted line. Patients at risk are above the
X-axis with the same color coding as the treatment groups. Censored patients are marked with a + sign on the survival curves
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Table 6 Univariable analysis of breast cancer-specific survival

Variable Whole study cohort (n = 61) ER-positive patients (n = 50)

Event/at risk (% survival) Log rank P HRa 95% CI Event/at risk (% survival) Log rank P HRa 95% CI

Pre-operative randomization

Fasting 1/35 (97) 1 0/29 (100) 1

Carbohydrates 4/26 (85) 0.086 4.4 0.88 to 21.7 4/21 (81) 0.015 a a

Nodal status

N0 1/43 (98) 1/33 (82) 1

N+ 4/18 (78) 0.012 4.4 1.05 to 18.5 3/17 (82) 0.080 2.80 0.63 to 12.6

Tumor size – –

T1 0/45 (100) 1 0/40 (100) 1

T2 5/16 (69) < 0.0001 5.5 1.32 to 23.1 4/10 (60) < 0.0001 a a

Nottingham grade b 0.556 0.352

Grade 1 0/11 (100) 1 0/11 (100) 1

Grade 2 3/30 (90) a a 3/30 (90) a a

Grade 3 2/20 (90) a a 1/9 (89) a a

Estrogen receptor – – – –

Positive (≥ 1%) 4/50 (92) 1 – – – –

Negative (< 1%) 1/11 (91) 0.852 0.64 0.079 to 5.21 – – – –

Progesterone receptor

Positive (≥10%) 4/41 (90) 1 3/37 (92) 1

Negative (< 10%) 1/20 (95) 0.543 0.51 0.057 to 4.59 1/13 (92) 0.94 0.93 0.1 to 8.9

HER2

Negative (0 to 1+) 4/57 (93) 1 3/49 (94) 1

Positive (2+ to 3+) 1/4 (75) 0.248 3.37 0.38 to 30.2 1/1 (0) 0.001 11.7 1.31 to 105.1

MAI

< 10 3/41 (93) 1 3/39 (92) 1

≥ 10 2/19 (90) 0.645 1.5 0.25 to 9.1 2/10 (80) 0.23 4.1 0.6 to 29.3

MAI

< 3 1/16 (94) 1 1/16 (88) 1

≥ 3 4/44 (91) 0.735 1.46 0.16 to 13.0 3/33 (85) 0.76 1.4 0.15 to 13.8

PPH3

< 13 2/35 (94) 1 2/35 (94) 1

> 13 3/26 (89) 0.426 2.0 0.34 to 12.2 2/15 (87) 0.40 2.3 0.32 to 16.1

Ki67

< 15 0/26 (100) 1 0/25 (100) 1

≥ 15 5/34 (82) 0.040 – – 4/24 (83) 0.014 a a

Ki67

< 30 1/38 (97) 1 1/37 (95) 1

≥ 30 4/22 (82) 0.033 7.5 0.84 to 67.5 3/12 (75) 0.023 9.9 1.03 to 95.3

TILs

Negative 4/55 (93) 1 3/45 (93) 1

Positive 1/6 (83) 0.479 2.16 0.24 to 19.4 1/4 (75) 0.24 3.6 0.37 to 34.6

Luminal statusc

Luminal A 3/39 (92) 1 2/28 (93) 1

Luminal B 2/22 (91) 0.847 1.2 0.20 to 7.41 2/22 (91) 0.777 1.33 0.19 to 9.42

Lende et al. BMC Cancer         (2019) 19:1076 Page 17 of 22



Table 6 Univariable analysis of breast cancer-specific survival (Continued)

Variable Whole study cohort (n = 61) ER-positive patients (n = 50)

Event/at risk (% survival) Log rank P HRa 95% CI Event/at risk (% survival) Log rank P HRa 95% CI

Chemo therapy

Yes 5/39 (87) 1 3/20 (85) 1

No 0/22 (100) 0.089 0.22 0.024 to 1.95 1/30 (97) 0.15 0.22 0.023 to 2.10

Radiation therapy

Yes 3/43 (93) 1 2/38 (95) 1

No 2/17 (88) 0.499 1.84 0.33 to 11.0 2/12 (83) 0.19 3.9 0.48 to 24.1

Endocrine therapy

Yes 5/39 (87) 1 4/36 (89) 1

No 0/22 (100) 0.089 0.024 0 to 46.4 0/14 (100) 0.20 0.03 0 to 262

BMI-25d

< 25 1/31 (97) 1 1/26 (96) 1

≥ 25 3/23 (87) 0.177 4.19 0.44 to 40.3 2/20 (90) 0.398 2.70 0.25 to 29.8

BMI-75pe

< 75p 2/41 (95) 1 2/36 (94) 1

≥ 75p 2/13 (85) 0.218 3.20 0.45 to 22.8 1/10 (90) 0.622 1.81 0.16 to 20.0

Smoking

-Never smoked 3/15 (80) 1 2/12 (83) 1

-Former smoker 0/23 (100) 0.003 Inf. 0/20 (100) 0.003 Inf.

-Ongoing smoking 0/14 (100) 0.020 0.003 Inf 0/12 (100) 0.052 0.003 Inf.

BMI Body mass index, HRT Hormonal replacement therapy, T Pathological tumor size in mm or category, LN Lymph node, N0 Node negative, N+ Node positive
(assessed by pathologists), HER-2 Human epidermal growth factor receptor 2, MAI Mitotic activity index, TILs Tumor infiltrating leucocytes, PPH3 Phosphorylated
phospho-histone 3
aHR (95% CI) was not computed, as the equation did not converge and no events occurred in one or more categories
bHistological grading was performed according to the Nottingham algorithm
cLuminal A = ER+/HER2−/Ki67 < 15% and Luminal B = ER+/HER2−/Ki67 ≥ 15%
dBMI-25 represents a dichotomized BMI < 25 or ≥ 25 on the BMI scale
eBMI-75p represents a dichotomized BMI with cut off < /≥ 75 percentile, i.e., </≥ 26.8 on the BMI scale

Fig. 4 Breast cancer-specific survival (BCSS) in the intervention and control groups. a In all ER-positive patients. b In ER-positive, T2 patients
Fasting group, blue solid line; carbohydrate group, red dotted line. Patients at risk are above the X-axis with the same color coding as the
treatment groups. Censored patients are marked with a + sign on the survival curves
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patients. The health authorities in Norway recently in-
troduced new national guidelines for a more standard-
ized trajectory in breast cancer, without preoperative
carbohydrate loading included [64]. Day-care surgery
comprising anesthesiology medication with a short half-
life, leading to fewer side effects for the patients and an
optimized pain relief regimen, has been introduced since
this trial was performed. Thus, the present study does
not support introducing carbohydrate loading in this pa-
tient group, especially due to the worrying inferior RFS
observed in the carbohydrate group.
The strengths of the biological model described above

are that it allows changes in the breast tumor to be
assessed after manipulating the metabolic environment
pre-operatively; thus, it combines the assessment of pri-
mary tumor characteristics in concert with systemic
metabolic changes. The stable nature of insulin c-
peptide also compensated for the more short-lived insu-
lin and IGF. This may explain the more robust nature of
insulin c-peptide in the various analyses.
The present study has some weaknesses. First, the

number of patients in the intervention arm turned out
to be lower than calculated in the power analysis. This
may have introduced a type II error in the various statis-
tical analyses. Furthermore, the low number of events
and patients at risk in the various survival analyses re-
quires caution in interpreting the results. Moreover, the
unbalanced number of participants in the carbohydrate
group and fasting group may have introduced con-
founders. However, as all basic characteristics were
evenly distributed between the two study arms, the risk
for such confounders is probably quite low. In addition,
the proportion of missing data was very low, which con-
tributes to strengthening the study. Regarding tumor
markers, a pre-operative biopsy of the tumor would have

turned the patients into their own controls. Thus, we
could have addressed several questions raised in the dis-
cussion, such as the increased PR-negativity in the
carbohydrate group. In future studies, pre-operative
biopsy must be included to improve the internal validity
of the trial.
Finally, the external validity of the present study is lim-

ited to luminal breast cancers with T2 tumors. Thus, the
present study should be expanded in a multicenter man-
ner, but only in luminal type breast cancers without the
PROM quality of life questionnaire. Moreover, a high in-
sulin c-peptide response to a carbohydrate load may pre-
dict high risk for relapse. Future research should pursue
this clue by adding metabolomic studies to future re-
search on predictive/prognostic circulating biomarkers
for systemic relapse in the minutest state possible [65].

Conclusion
The goal of this study was to investigate the influence of
carbohydrates on the biological characteristics of breast
cancer. Our working hypothesis was that pre-operative
carbohydrate loading affects proliferation and clinical
outcome. In the carbohydrate-loading group, the levels
of insulin and insulin-c-peptide were increased, whereas
those of IGFB3 were decreased. We found that there
were more ER+ patients with MAI ≥ 10 among patients
who received pre-operative carbohydrate loading than
among those who fasted. In addition, the proportion of
PR- patients was higher in the carbohydrate group. In
ER+ patients with tumors larger than 2 cm (T2), carbo-
hydrate loading seemed to affect clinical outcome with
significantly decreased RFS, BCSS, and OS. Only RFS
had enough events to enter into a Cox regression model,
in which carbohydrate/fasting status and tumor size
were the only independent explanatory factors. However,

Fig. 5 Overall survival (OS) in the intervention and control groups. a In all ER-positive patients. b In ER-positive, T2 patients. Fasting group, blue
solid line; carbohydrate group, red dotted line. Patients at risk are above the X-axis with the same color coding as the treatment groups.
Censored patients are marked with a + sign on the survival curves
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because this study was not powered for survival out-
comes, these analyses must be regarded as suggestive. In
addition, caution is needed when interpreting the results
due to the small sample size and relatively short follow-
up. Intriguingly, the decreased expression of PR in the
carbohydrate-loaded group suggests the development of
endocrine resistance through signaling via membrane-
bound receptors, opening up another possibility for the
change in clinical outcome than increased proliferation.
Taken together, the results of this study indicate that
per-oral carbohydrates given pre-operatively may influ-
ence both systemic and tumor biology to the benefit of
breast cancer cells. Thus, explorative metabolic investi-
gations that focus on identifying novel biomarkers asso-
ciated with the observed impairment in clinical outcome
are warranted.
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Background: The metabolic consequences of preoperative carbohydrate load in breast cancer 

patients are not known. The present study investigated the systemic and tumor metabolic 

changes after preoperative per-oral carbohydrate load and their influence on tumor 

characteristics and survival.  

Design: Explorative study. 

Setting: University hospital with primary and secondary care functions in south-west Norway. 

Interventions and Outcome Measures: Serum and tumor tissue were sampled from a 

population-based cohort of 60 patients with operable breast cancer who were randomized to 

either per-oral carbohydrate load (preOp™; n=25) or standard pre-operative fasting (n=35) 

before surgery. Magnetic resonance (MR) metabolomics was performed on serum samples 

from all patients and high-resolution magic angle spinning (HR-MAS) MR analysis on 13 

tumor samples available from the fasting group and 16 tumor samples from the carbohydrate 

group. 

Results: Fourteen of 28 metabolites were differently expressed between fasting and 

carbohydrate groups. Partial least squares discriminant analysis showed a significant difference 

in the metabolic profile between the fasting and carbohydrate groups, compatible with the 

endocrine effects of insulin (i.e., increased serum-lactate and pyruvate and decreased ketone 

bodies and amino acids in the carbohydrate group). Among ER-positive tumors (n=18), 

glutathione was significantly elevated in the carbohydrate group compared to the fasting group 

(p=0.002), with a positive correlation between preoperative S-insulin levels and the glutathione 

content in tumors (r=0.680; p=0.002). In all tumors (n=29), glutamate was increased in tumors 

with high proliferation (t-test; p=0.009), independent of intervention group. Moreover, there 

was a positive correlation between tumor size and proliferation markers in the carbohydrate 

group only.  Patients with ER-positive / T2 tumors and high tumor glutathione (≥1.09), high S-
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lactate (≥56.9), and high S-pyruvate (≥12.5) had inferior clinical outcomes regarding relapse-

free survival, breast cancer-specific survival, and overall survival. Moreover, Integrated 

Pathway Analysis (IPA) in serum revealed activation of five major anabolic metabolic networks 

contributing to proliferation and growth.  

Conclusions: Preoperative carbohydrate load increases systemic levels of lactate and pyruvate 

and tumor levels of glutathione and glutamate in ER-positive patients. These biological changes 

may contribute to the inferior clinical outcomes observed in luminal T2 breast cancer patients.   

Keywords: breast cancer, carbohydrate load, proliferation, insulin, insulin c-peptide, S-lactate, 

S-pyruvate, tumor glutamate, tumor glutathione, fasting state, ketonic bodies, clinical outcome  

Registration of trial: CliniTrials.gov; NCT03886389. Retrospectively registered March 22, 

2019. Available at: 

https://clinicaltrials.gov/ct2/show/NCT03886389?cond=Breast+cancer+diet&rank=1 

Full project title: ‘The Effects of Insulin and Insulin-related Characteristics, and Short-Term 

Low-glycemic and High-glycemic Carbohydrate Intervention on Breast Cancer Biomarkers 

and Survival.’ 
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Introduction 

Breast cancer is the most common female malignancy and one of the most frequent causes of 

death among women in the Western world [1]. Breast cancer incidence has more than doubled 

in the last 50 years, probably due to increased estrogen exposure and a change towards high 

levels of alimentary carbohydrates and fat [2, 3]. Even though breast cancer originates locally 

in the breast, circulating tumor cells (CTCs) may spread to the systemic circulation before and 

during surgery [4] and establish distant micrometastases [5]. These CTCs must thrive and 

survive attacks from the innate and adaptive immune system. Thus, tumor cells have to establish 

a favorable metabolism that can produce energy, protection mechanisms, and the necessary 

biomass to survive the journey from the breast tumor to remote locations, including 

transformation into dormancy [6]. The luminal breast cancer subtype, which express estrogen 

receptor (ER) and/or progesterone receptor (PR) in the tumor cells, comprise the largest 

subgroup, accounting for approximately 75% of all breast cancers. Endocrine resistance in this 

subtype can creates micrometastases that escape anti-estrogen therapy and can hibernate for 

many years before they become clinically overt [7]. The molecular features underlying these 

cellular characteristics are driven by hallmarks of cancer [8], including changes in cellular 

energetics and metabolism, followed by a vast number of necessary metabolic modifications to 

strengthen the metabolic needs of breast cancer cells [9]. A well-known cellular characteristic 

of tumor cells is increased glucose consumption and glycolysis towards lactate despite the 

presence of oxygen, a feature called ‘the Warburg effect’ [10, 11]. This metabolic switch 

includes the production of ribose for DNA synthesis and allowing amino acids to be a source 

for ATP production [12]. Furthermore, the Warburg effect extends to increased choline 
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metabolism for cell membrane synthesis and increased amino acid turnover for protein 

synthesis [10, 13]. 

 

Even though much is known about metabolism in breast cancer cells [14], little is known about 

the influence of carbohydrate loading  in the early recovery after surgery (ERAS) program [15]  

on peri-operative metabolism in the systemic circulation and  locally in the breast tumor.    We 

recently conducted a randomized controlled trial (RCT) in which operable breast cancer 

patients were treated with either two oral loads of enriched carbohydrate solution or a standard 

fasting procedure comprising free drinking of tap water before surgery [16]. In this study, 

luminal breast cancer patients, who received oral pre-operative carbohydrates, had a higher 

tumor proliferation and an adverse survival. The goal of the present paper, using the same 

patients, was to further explore the metabolic differences in serum and the tumor.  Based on our 

previous findings, we hypothesize that the metabolic changes after carbohydrate loading will 

correlate with proliferation and outcome in  patients with ER positive tumors. Also, we also 

wanted to study whether such metabolic alterations correlate with other tumor characteristics 

or translate into differences in clinical outcome.  

 

Methods 

Ethics statement 

This paper is an explorative study based upon a recently published randomized controlled trial 

(RCT) approved by the Regional Ethics Committee in Western Norway (#2015/1445) and was 

retrospectively registered at Clinicaltrials.gov (NCT03886389). 
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Patients 

Details on these patients have been described previously [16]. In short, between 12 May 2009 

and 23 June 2010 a population-based cohort of 61 operable breast cancer patients (Stage I and 

II) were randomized into an intervention group receiving preoperative per-oral carbohydrate 

loading (n=26) or a control group (n=35) receiving the standard preoperative fasting protocol.  

The patients in the carbohydrate group drank 200 mL pre-OpTM (Nutricia, the Netherlands). 

This non-carbonated carbohydrate enriched drink contained 100 kCal per bottle containing 4.2 

g (2.1 %) glucose and 20g (10%) polysaccharides. A loading dose of two bottles pre-OpTM  

were given 18 hours before surgery (i.e., the evening before surgery) and another 2 bottles were 

administered 2-4 hours before surgery (i.e., the morning of the operation day). In contrast, the 

control group practiced the standard fasting procedure with free intake of tap water 12-14 hours 

before surgery. From this cohort, patients with available fresh frozen tissue and serum samples 

were included in the present study (Figure 1). The patient characteristics are given in Table 1.   

 

Blood sampling 

Blood samples were drawn immediately before surgery. In total three serum gel tubes and one 

EDTA plasma tube were drawn in this study. One serum gel tube and one EDTA plasma tube 

were delivered within an hour to the department of medical biochemistry for standard analysis. 

For metabolomics analyses, two serum gel tubes were centrifuged within one hour at 4°C,      

2500 x g in 10 minutes. After centrifugation, the serum of the two tubes were mixed and a 

minimum of 1.1mL serum were sent for analyses in Haukeland University Hospital, Bergen, 

Norway, the rest of the serum were stored in 1mL cryotubes at -80°C in the biobank at 

Stavanger University Hospital, Stavanger, Norway. 
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Tumor tissue sampling   

Immediately after removal of the surgical specimen from the systemic circulation, it was 

transported to the Department of Pathology for further sampling. To avoid necrotic areas, 

cancerous tissue from the invasive front of the tumor (i.e. tumor periphery) was immediately 

snap-frozen in liquid nitrogen and stored at -80ºC until assayed for tissue metabolomics. Before 

HR-MAS analysis,  tissues from all of the patients were analyzed consecutively for 

histopathology and immunohistochemistry as described preciously [16].   

 

Serum hormone and protein analyses 

Serum was transported to the Hormone Laboratory, Haukeland University Hospital, Bergen, 

Norway. Insulin, insulin c-peptide, insulin growth factor 1 (IGF-1), and insulin growth factor 

binding protein 3 (IGFBP-3) were measured by the IMMULITE 2000 two-site 

chemiluminescent immunometric assay (Siemens Medical Solutions Diagnostics).  

 

Serum metabolomics analyses 

A separate aliquot of serum was transported to the MR Core Facility at NTNU, Trondheim, 

Norway for metabolomics analyses. Thawed samples (100 µL) were mixed with bacteriostatic 

buffer (100 µL; pH 7.4, 0.075 mM Na2HPO4, 5 mM NaN3, 5 mM TSP), transferred to 3-mm 

NMR tubes, and stored at 5°C until analysis (<15 hours). The MR analysis was performed using 

a Bruker Avance III Ultrashielded Plus 600 MHz spectrometer (Bruker Biospin GmbH, 

Germany) equipped with a 5 mm QCI Cryoprobe with integrated, cooled pre-amplifiers for 1H, 

2H, and 13C. Experiments were fully automated using the SampleJetTM in combination with 

Icon-NMR in TopSpin 3.1 software (Bruker Biospin). One-dimensional 1H Nuclear Overhauser 

effect spectroscopy (NOESY) and Carr–Purcell–Meiboom–Gill (CPMG) spectra with water 
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presaturation were acquired at 310.15 K. The spectra were Fourier transformed to 128 K after 

0.3 Hz exponential line broadening and automatically phased and baseline-corrected.  

Spectra were further processed in Matlab 2013b (The Mathworks Inc., Natick, MA, USA). The 

CPMG spectral region between 0.1 and 4.2 ppm was selected for further processing. Chemical 

shifts were referenced to the left alanine peak at 1.47 ppm. Metabolites were identified based 

on previous assignment. [17, 18] Twenty-eight metabolites were identified as measurable and 

their areas calculated by integrating the area under the signal curve.  

 

Breast tumor tissue metabolomics analyses 

In the 29 patients with available tissue, the tumors were larger (45% vs. 9% pT2/3/4, p=0.003), 

had a higher histological grade (52% vs. 18% grade 3, p=0.022), were more often ER-negative 

(35% vs. 3%, p=0.002), and had higher proliferation (59% vs. 27% PPH3-positive, p=0.002) 

than those without tissue. Thus, we had a selection bias of larger, non-luminal and a more 

proliferative tumors into the present study compared to the original study[16]. Tissue was 

transported on dry ice to the MR Core Facility at NTNU, Trondheim, Norway, for 

metabolomics analyses. Tissue samples were prepared frozen on a metal plate bathed in liquid 

nitrogen to minimize tissue degradation. Biopsies (11.0 ± 2.3 mg) were cut to fit 30 µL 

disposable inserts (Bruker Biospin Corp, USA) filled with 3 µL D2O containing 25 mM 

formate. The insert containing the frozen sample was placed in a 4-mm diameter zirconium 

rotor (Bruker, Biospin GmbH, Germany) and kept at -20°C until analysis (<8 hours). Spin-echo 

spectra were acquired on a Bruker Avance DRX600 spectrometer with a 1H/13C magic angle 

spinning (MAS) probe with gradient (Bruker Biospin GmbH, Germany) using the following 

parameters: 5 KHz spin rate, 5°C probe temperature, 5-minute temperature acclimatization 

before shimming and spectral acquisition, CPMG pulse sequence (cpmgpr1d; Bruker) with 4s 
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water suppression prior to a 90° excitation pulse, total echo time 77 ms, 256 scans, and spectral 

width 20 ppm. Spectra were Fourier transformed into 64 K following 0.3 Hz line broadening. 

Phase correction was performed automatically for each spectrum using TopSpin 3.1. 

Spectra were preprocessed in Matlab 2013b as follows [19]. The spectral region between 1.4-

4.70 ppm, which contained the majority of the metabolite signals, was selected for further 

processing. Chemical shifts were referenced to the creatine peak at 3.03 ppm. The spectra were 

baseline-corrected using asymmetric least squares [20] with parameters λ = 1e7 and p=0.0001, 

setting the lowest point in each spectrum to zero. Lipid peaks at 4.34-4.27, 4.19-4.14, 2.90-2.7, 

2.31-2.18, 2.11-1.92, and 1.68-1.5, and ethanol at 3.67-3.62, were excluded. The resulting 

spectra were normalized to the total area to correct for differences in sample size and tumor cell 

content. Metabolite peak assignment was based on previous identification [21]. Twenty 

metabolites were identified as measurable, and the area under the signal curve in the 

preprocessed spectra was used to calculate their relative intensities. The metabolite integrals 

were log10 transformed to satisfy prerequisite assumptions of normality. 

 

Endpoints 

Proliferation differences between the carbohydrate and fasting groups were evaluated by Ki67 

(<15% or ≥15% and <30% or ≥30%), mitotic activity index (MAI; <10 or ≥10), and PPH3 (<13 

or ≥13). The metabolic response to preoperative oral carbohydrate loading was evaluated in 

serum (preoperative) by 1H NMR and in tumor tissue by HR-MAS MRS.  

 

Univariate analysis 

Metabolite differences between groups were assessed by student T-tests. Correlations between 

continuous variables were assessed by Pearson correlation. Categorical variables were 
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compared by Chi square tests.  P-values were considered significant when p<0.05. When 

multiple variables were compared, the resulting p-value tables were corrected for multiple 

testing by the Benjamini-Hochberg method [22].  

 

 

Multivariate analyses (serum and tissue) 

Multivariate analyses were performed in R V.3.5 [23] using the package PLS  [24] and 

MetaboAnalyst [25]. Metabolite values were auto-scaled (mean-centered and divided by 

variance) before multivariate analysis. Principal component analysis (PCA) was performed to 

evaluate the data sets for outliers. Partial least squares discriminant analysis (PLS-DA) was 

performed to explore differences in serum and tissue metabolic profiles between categories: 

carbohydrate loading vs fasting. Partial least squares (PLS) was used to find correlations 

between the tissue metabolic profile and variables (MAI, PPH3, Ki67, serum (S)-glucose, S-

insulin, S-insulin c-peptide, S-IGFR, S-IGFPB3, S-estradiol). Metabolites were evaluated by 

Variable Importance in Projection (VIP) score. The VIP score is a measure of how important 

each variable was for creating the discrimination model. It is calculated as a weighted sum of 

squares of the PLS loadings, where the weights are based on the amount of y-variance explained 

in each dimension [26]. PLS and PLS-DA classification parameters were evaluated by ‘leave-

one-out’ cross validation due to the limited sample numbers. Permutation testing was carried 

out as an additional model validation; sample classes or responses were shuffled, and the model 

rebuilt with the same numbers of latent variables as the original model. One thousand 

permutations were performed, and models were considered significant if the final accuracy (of 

classification models) or R2 (of regression models) were >95% of the permuted accuracy values 

(p<0.05). 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

12 

 

12 

Thresholds in survival analyses 

Relapse-free survival (RFS) was defined as the time from surgery until a relapse from any site. 

Breast cancer-specific survival (BCSS) was defined as the time from surgery until death from 

breast cancer, whereas overall survival (OS) was until death from any cause. Receiver-operator 

characteristic (ROC) analysis identified optimal thresholds for the various continuous 

metabolite variables using relapse ‘Yes/No’ as the categorical variable (Appendix Table 1). The 

cut-off values obtained in RFS analysis were also used in the BCSS and OS analyses. In ER-

negative patients, none of the explanatory variables with ROC-derived thresholds were 

significant for analysis of RFS, BCSS, or OS. Therefore, further analyses were limited to ER-

positive patients. The ROC-obtained thresholds were confirmed with the minimal p-

value/maximal Wald-value in a Cox model. In the multivariabel Cox analyses the ‘Forward 

Wald’ method was primarily used. In cases of an unstable model, a stepwise backward analysis 

was performed.   

 

Metabolite Set Enrichment Analysis and Ingenuity pathway analysis (IPA)  

Serum metabolite levels were uploaded to the Enrichment module of MetaboAnalyst to explore 

the pathways affected by the carbohydrate intervention. Pathway-associated metabolite sets 

with sets containing at least two metabolites were used. Pathways with p-values ≤0.05 (after 

FDR correction) were interpreted as significant. 

Serum metabolites with significantly different expression (p=0.05) and their corresponding fold 

changes were imported into the Ingenuity Pathway Analysis (IPA) software (Ingenuity, 

Redwood City, USA) to explore which biological and molecular functions these metabolites 

were involved in and how these and their direct and indirect target molecules were connected, 

using the network function in IPA. Additionally, we examined if there were a direct or indirect 
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connection between the top network and seven microRNAs related to tamoxifen resistance from 

our previous paper [27], using the grow function with a moderate or experimentally observed 

confidence level. 
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Results 

Systemic metabolism 

The results of the quantification of serum metabolites in the carbohydrate and fasting groups 

are given in Table 2. Fourteen out of 28 metabolites were significantly altered between the 

groups. PLS-DA revealed a significant difference in metabolic profiles between the two 

groups.; (one component, classification accuracy = 0.85; p<0.001; Figure 2A). The main 

increased markers were increased serum (S) lactate and S-pyruvate in the carbohydrate group 

(p<0.0001; Figure 2A and 2B). Among the patients in the fasting group, the levels of ketone 

bodies, such as S-acetate, S-acetoacetate, and S-3-hydroxybutyrate, were increased (Table 2). 

In addition, we observed increased S-N-acetylated groups, S-leucine, S-valine and S-isoleucine 

in the fasting group (all p<0.05; Figure 2B). We found positive correlations between tumor size 

and S-lactate (r=0.344; p=0.016) and tumor size and S-pyruvate (r=0.370; p=0.009).  

In the carbohydrate group, there was a positive linear correlation between proliferation (Ki-67) 

and tumor size (r=0.782, p=0.038). When Ki-67, PPH3 and MAI were included in a forward 

and backward stepwise linear regression MAI was the only independent factor explaining 

increment in tumor size with a Beta=0.530 (95%CI, 0.201 to 0.875) P = 0.009. In the fasting 

group, there was no correlation between tumor size and proliferation.’ 

 Serum glucose and insulin responses 

The mean fasting glucose and insulin values at admission were 5.4 mmol/L (95% CI 5.1 to 

10.0) and 9.4 mIU (95% CI 6.8 to 32.5), respectively (normal ranges: glucose, 4.0 to 6.0 

mmol/L; insulin, 6.0 to 27.0 mIU; c-peptide, 0.3 to 2.4 nmol/L). In the carbohydrate group, the 

mean preoperative insulin value was 35.6 mIU (26.7 to 106 mIU), compared to 9.1 (8.6 to 22 

mIU) in the fasting group (student`s t-test p<0.001). For C-peptide, the mean values in the 

carbohydrate and fasting groups were 2.10 nmol/L and 0.76 nmol/L, respectively (p<0.001). 
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We found significant univariate correlations between the serum concentrations of preoperative 

insulin (Table 3), Insulin C peptide (Appendix Table 2) IGFBP3 (Appendix Table 3), but not 

to IGF1 (Appendix Table 4). Multivariate analysis with leave-one-out cross-validation showed 

significant correlations between the serum metabolic profile and insulin (Cross-validated (CV) 

(R2=0.33, p<0.001), Insulin C-peptide (CV R2 = 0.35, p <0.001), IGFBP3 (CV R2=0.11, p < 

0.001), but not IGF-1. (Figure 3) For both insulin and insulin C-peptide, the most important 

metabolites for predictions were increased S-glucose, S-lactate and decreased S-Leucine. For 

IGFBP3, the most important metabolites were increased S-Acetone, S-Glycoprotein, and S-

Leucine. We also found positive correlations between S-lactate and the preoperative increase 

in S-insulin and S-insulin / c-peptide (r=0.57; p<0.001 and r=0.61; p<0.0001), and between S-

pyruvate and the increase in preoperative S-insulin and S-insulin c-peptide (r=0.54; p<0.001 

and r=0.60; p<0.001). 

  

Tumor metabolism 

Metabolites included in the analysis are presented in Table 4. PLS-DA did not result in a 

significant model discriminating between fasting and carbohydrate-fed patients, and no 

metabolites were significantly different in univariate testing when all tumors were analyzed 

(Figure 4A). However, for ER-positive tumors (n=18), glutathione was significantly elevated 

in the carbohydrate group compared to the fasting group (p=0.002; Figure 4 B), even after 

adjusting for tumor size. In the ROC analysis, we found an area under the curve (AUC) of 0.894 

(95%CI=0.687-1.000, p=0.0015) for glutathione in discriminating between fasting and 

carbohydrate-fed patients with ER-positive tumors (Figure 4 C). The difference was also 

significant in the ER-positive tumors with low proliferation (MAI<10; n=7). Moreover, we 

found a positive correlation between preoperative S-insulin levels and the glutathione content 

in tumor tissue (r=0.680; p=0.002).   Furthermore, we observed a higher level of tissue 
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glutamate in tumors with a high proliferation as measured by Ki67</≥ 15% (p=0.004). This 

association remained significant when adjusted for intervention group using a general linear 

model with intervention status as fixed factor, Ki67</≥ 15% as random factor, and tissue 

Glutamate as dependent variable (p=0.009).  Also, choline (p=0.002) and phosphoethanolamine 

(p=0.019) were increased in T2 tumors compared to T1 tumors. 

 

Survival analysis 

First, we used S-lactate, S-pyruvate, and tissue (T) glutathione as continuous variables in a 

univariate Cox model for RFS, BCSS and OS. Both S-pyruvate and S-lactate, but not T-

glutathione reached significance with a hazard ratio (HR) for RFS of 1.53 (95% CI, 1.11 to 

2.11; p=0.009) and 1.08 (95% CI, 1.01 to 1.17; p=0.029), respectively. For BCSS the HR for 

the continuous variables of S-pyruvate and S-Lactate were 1.85 (95%CI, 1.15 to 2.97; p=0.011) 

and 1.13 (95%CI, 1.01 1.26; p=0.028) respectively. The corresponding observations for OS 

were 1.63 (95%CI, 1.11 to 2.40; p=0.014) for lactate and 1.10 (95%CI, 1.002 to 1.20; p=0.045) 

for pyruvate.   Thereafter, the following independent variables were dichotomized according to 

the optimal ROC-derived thresholds: S-lactate, S-pyruvate, preoperative S-insulin, 

preoperative S-insulin-c-peptide, and tissue glutathione. In addition, the well-established 

prognostic factors tumor size, nodal status, histological grade, MAI 10, Ki-67-30 and PPH3-13 

were deemed clinically relevant and included as explanatory variables in the multivariable 

analyses. The results of the univariate RFS, BCSS, and OS analyses are given in table 5 ,6 and 

7, respectively.  

Patients with a high glutathione content in the tumor (≥1.09) had a 37% risk of experiencing a 

relapse and 37% risk of dying of breast cancer compared to no relapses and no deaths in patients 

with a low glutathione content in the tumor (both comparisons: p=0.038; HR=Inf.; Figure 5A 
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and 5D). Patients with high S-lactate (≥56.9) had RFS of 71% compared to 97% for those with 

lower S-lactate (p=0.002, HR=7.47; 95% CI 1.66-33.6; Figure 5B). Patients with S-pyruvate 

≥12.5 had an adverse RFS of 50% compared to 95% for the patients with S-pyruvate <12.5 

(p<0.0001; HR=13.6; 95% CI 2.61-70.6; Figure 5C). The same pattern was observed in the 

BCSS and OS analyses for these three prognostic variables (Figure 5E-I). Notably, only one 

contralateral relapse occurred in the fasting group – all others were in the carbohydrate group.  

Even though the relapses were restricted to patients with T2 tumors, tumor category was not an 

independent prognostic factor in the multivariable analyses. In the multivariable analysis for 

RFS, S-pyruvate was the only factor left in the final model (HR=12.8; 95% CI, 2.47 to 66.8), 

and only S-lactate remained in the final multivariable model for BCSS (HR=14.8; 95% CI 1.54 

to 142). Furthermore, S-pyruvate was the sole factor to reach significance in the multivariable 

model of the OS analysis (HR=18.2; 95% CI 2.03 to 164).  

 

Pathway analyses 

In the Pathway analyses, MetaboAnalyst and IPA showed complimentary information. 

Quantitative metabolite set enrichment analysis (MSEA) identified biologically meaningful 

patterns in serum metabolite concentration changes (Figure 6A and Appendix Table 5). 

Significantly enriched pathways included energy associated metabolic pathways (amino sugar 

metabolism and pyruvate metabolism which links to glutamate metabolism, the citric acid 

cycle, gluconeogenesis and the Warburg effect). IPA showed the main functions of the involved 

metabolites as cellular growth and proliferation, molecular transport, small molecule 

biochemistry, carbohydrate metabolism and amino acid metabolism (Figure 6B). Interestingly, 

the metabolites showed a pattern congruent with growth of organism (Figure 6C) with 

metabolites increased in carbohydrate-fed patients activating growth pathways, and 
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downregulation of metabolites acting as inhibitors of growth. Finally, four (miR-26a-5p, miR-

30c-5p, miR126-3p  and miR-210-3p) out of the seven microRNAs found to be involved in 

resistance to tamoxifen in our previous review [27] could indirectly be associated with the    

metabolic network through insulin signaling pathways (Figure 6D). The same metabolic 

pathways were evident when only ER positive patients were considered. 

 

Discussion 

We present the first study to examine the effect of per-oral preoperative carbohydrate load on 

perioperative metabolism in operable breast cancer patients. Among the 15 different serum 

metabolites that distinguished fasting from the per-oral carbohydrate load, we observed 

increased systemic lactate and pyruvate, decreased ketone bodies, increased glycerol, and 

reduced amino acids in the patients who received the carbohydrate load. Moreover, we found 

highly significant positive correlations between S-insulin and S-lactate and S-pyruvate. Thus, 

changes in these 15 key metabolites are consistent with increased glycolysis, increased ketolytic 

activity, reduced lipolysis, and reduced proteolysis, which are exactly the same metabolic 

modifications seen after carbohydrate challenge in healthy persons [28]. Being able to capture 

these well-known metabolic effects of insulin increases the reliability of our model to detect 

other changes that may follow a carbohydrate load.  

It may be considered that 18 hours is too short to expect effect of the carbohydrate load on 

tumor cell proliferation and metabolism. However, in vitro studies show that glucose fed MCF-

7 cells increase their proliferation after 12-24 hours [3] .Others found the same pattern in three 

different breast cancer cell lines [29]. As the cell lines lack the in vivo endocrine response to 

glucose the increased proliferation was based on GTP-ase driven phosphorylation of EGFR 

with increased activity and longevity of this receptor as a consequence. Also, animals fed with 
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a diet containing increased glucose  show an increased epithelial mesenchymal transition 

(EMT) [30] 

’  The increased S-lactate and S-pyruvate in the carbohydrate patients stems primarily from two 

sources. Firstly, lactate is the product of glycolysis, especially in muscle cells, and is transported 

to the liver for conversion back to glucose, known as the Cori cycle [31].  The intended effect 

of preOP is to contra act and reduce insulin resistance that follows surgical stress[32]. This 

stressor leads to reduced mitochondrial ATP production and lactate formation[33, 34].  In 

healthy individuals, an oral glucose tolerance test (OGTT) showed a negative correlation 

between differences in S-glucose concentrations and differences in S-lactate levels (i.e. a rise 

in S-glucose leads to a reduction in S-lactate) [35]. Moreover, during 180 minutes after a OGTT 

among non-insulin dependent diabetic mellitus (NIDDM) patients there was no significant 

alteration in S-lactate levels [36]. Thus, it is unlikely that preOp itself creates a systemic lactate 

production.  Therefore, S-lactate in our patients may come from excretion of intracellular lactate 

and pyruvate produced in the breast cancer cells. Consequently, lactate and pyruvate  in the 

present study are probably translocated into the systemic circulation via mono carboxylate 

transporter type 4 (MCT-4), which is a known part of the Warburg effect [13].  Despite the fact 

that systemic metabolite concentrations are functional read outs of the numerous homeostatic 

reactions in the body, which will blur the contribution from the cancer cell metabolism to the 

serum levels[18], our present observation of  positive correlation between larger tumor size and 

increasing S-lactate is supported by Hui S et al. [37].. Also, the positive correlation between 

proliferation and tumor size solely occurs in the carbohydrate group this suggests that 

carbohydrate exposure to larger tumors (i.e.T2 tumors) increases both proliferation and S-

lactate. Thus, this indicates that lactate from the Warburg effect in the tumor cells may have a 

substantial contribution to the systemic lactate and pyruvate levels. This observation also 

adheres to the lack of correlation between intra tumor lactate/pyruvate and fasting/carbohydrate 
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status in the present study, as the former are probably excreted from the cells into the systemic 

environment.  

Moreover, tumor cells not only produce lactate for excretion through MCT-4, they are also able 

to take up systemic circulating lactate and pyruvate via the MCT-1 transporters [38]. Regardless 

of the source, systemic lactate and pyruvate will certainly benefit the free CTCs shed from the 

tumor during surgery that are on their way to distant tissue to form micrometastases [39], but 

may also benefit the preoperatively established occult micrometastases [40, 41]. Lactate and 

pyruvate are the most preferred substrates for lactate/pyruvate dehydrogenase (LDH/PDH), 

ensuring a 1:1 ratio between lactate and pyruvate when equilibrium is reached. Thus, LDH 

provides substrate for both the production of ATP via the tricarboxylic acid (TCA) cycle [37] 

and also increased gluconeogenesis for the production of ribose for nucleotide synthesis via the 

pentose phosphate pathway (PPP) [38]. Notably, increased levels of serum LDH [42] and 

increased expression of LDH in breast cancer tissue [43] and lung tumors [44] are associated 

with an inferior prognosis.  

In line with other studies [45], we observed a positive correlation between higher proliferation 

and increased glutamate content in tumor tissue. Glutamate is a metabolic product of 

glutaminolysis, which drives membrane trafficking to promote breast cancer cell invasiveness 

[46]. In addition, the expression of glutaminase genes GLS and GLS2 correlates with increased 

tumor growth rates [47]. Many tumors become glutamine-dependent, as it serves as a direct 

route into the TCA cycle at the alpha-ketoglutaric acid level with consequential ATP 

production. Together with glycine and cysteine, glutamate is a precursor to the tripeptide 

glutathione, which is an antioxidant molecule that serves to 'buffer' superoxide insults 

encountered in the tumor microenvironment [45]. Glutathione is the major thiol-containing 

endogenous antioxidant and serves as a redox buffer against various sources of oxidative stress. 

In tumors, maintaining a supply of glutathione is critical for cellular survival because it allows 
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cells to resist the oxidative stress associated with rapid metabolism, DNA-damaging agents, 

and inflammation, among others [48, 49]. Glucose metabolism and biosynthesis of glutathione 

are often modulated by the PI3K/Akt pathway, which is often dysregulated in breast cancer 

tumors [50, 51]. Importantly, one of the effects of targeting the PI3K/Akt-pathway upstream 

[52] and downstream [19] is reduced glutathione content in tumor cells. In the PPP-pathway, 

NAD+ and NADP are converted into NADH and NADPH, respectively, which contribute to 

maintaining glutathione (GSSG) in the reduced state (GSH) [53]. Thus, the PPP-pathway in the 

Warburg effect secures a high intracellular level of glutathione, which is regarded as the most 

important cellular protection system against attack from reactive oxygen species (ROS) in both 

dividing and hibernating luminal cells [10], and also in cancer stem cells [54]. Thus, 

preoperative carbohydrate loading seems to create a doubly favorable environment that will 

probably serve  the CTCs liberated during surgery [39] more than the already established 

micrometastases  [55]. First, CTCs have a surplus of cellular fuel via lactate and pyruvate 

available systemically. Second, they benefit from an increased level of intracellular protection 

systems against ROS via increased tumor glutathione. Both effects will increase the probability 

of CTCs thriving and surviving as micrometastases, which then may erupt as clinical relapse 

years later, compatible with the tumor biology of luminal breast cancers. However, our 

observed clinical endpoint between 3 to 7 years must be regarded as ‘early relapses’ when 

coming to luminal cancers [56]. Thus, we need a much longer follow up to capture the late 

recurrences in order to get the correct picture of the clinical outcome of the present study. 

Several attempts have been made to reverse the above-mentioned metabolic pathways for 

treatment purposes. The first attempt was to reverse the Warburg effect with the polyphenol 

resveratrol, which blocks PDH/LDH. In colon cancer cells, resveratrol inhibits proliferation, 

gluconeogenesis, and PPP [57]. By blocking PDH, resveratrol promotes mitochondrial electron 

transport chain overload with increased ROS production, ultimately resulting in apoptosis [58]. 
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Secondly, a ketogenic diet has been shown to be effective in preclinical studies [59]. A 

ketogenic diet produces a large amount of intracellular ketone bodies that have a direct 

cytotoxic effect. Furthermore, the ketogenic state inhibits insulin/IGF signaling and 

downstream signaling pathways, such as PI3K/Akt/mTOR [60]. Interestingly, in the present 

study, the patients in the fasting group reached a ketogenic state with increased ketone bodies, 

which may have created an unfavorable environment for the cancer cells in the tumor and for 

the liberated CTCs.  This is in line with a recent RCT of using ketogenic diet as adjuvant 

treatment in one of the study arms. They observed a better overall survival in the group that 

received ketogenic diet[61].  Others have recently shown a profound effect of ketogenic diet in 

a xenografted breast cancer mouse model with increased ketone bodies and increased 

aminoacidic [62], which is in line with our observations. The authors hypothesize that the anti-

cancer effect may be mediated through immunological mechanisms[62]. Thus, use of a 

ketogenic diet as adjuvants to conventional therapy is rooted in several studies [63].  

Likewise, physical activity is known to prevent and improve survival in several cancer forms 

and is thus recommended as a measure to both  prevent and treat breast cancer [64] [65].One 

of the mechanisms behind these observation is a change in the estrogen metabolism after 180 

minutes exercise pr. week.  They found an increased 2 hydroxy-estrone level known to 

antagonize the estradiol action [66]    This observation is important for both in the preventive 

setting as breast cancer risk is correlated to total life exposure of estrogens [67]. Also, changes 

in diet affect the cancer incidence [68],  and also  prognosis in breast cancer patients [69].  

  A combination of calorie restriction and physical exercise in postmenopausal women did also 

reduce insulin levels [70]. In our patients, we found that metabolic changes after the 

carbohydrate load affected the ER-positive breast cancer patients. Thus, ketogenic diet 

combined with physical exercise would probably be beneficial for our patients as this approach 

will affect both the ER and insulin signaling pathways.   
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  Interestingly, intermittent fasting (i.e. caloric restriction for 16-48 hours [71] has been proven 

to affect the metabolism and disease process in a beneficial manner.   Notably, intermittent 

fasting in animal studies have demonstrated reduction of tumor size [72]. In humans, 

intermittent fasting improves insulin sensitivity and thus reduces insulin and IGF-1 related 

signaling in over weighted individuals.[72, 73] Preclinical studies show that intermittent fasting 

more than 2 days is as effective as chemotherapy to reduce cancer load [74]. Thus, the ketones 

derived from intermittent fasting decreases cancer cell viability by attacking several hallmarks 

of cancer [75]  

The IPA-analyses confirmed that the systemic response to the carbohydrate load converge 

towards pathways involved in proliferation and growth of the organism. Moreover, other 

pathways related to the Warburg effect were also involved. Thus, peroral preoperative 

carbohydrate load shifts the systemic metabolism towards a very fortunate and beneficial 

environment for CTCs liberated from the tumor under the operation. Interestingly, four out of 

seven microRNAs related to endocrine resistance [27] also regulate the same metabolic 

pathways through insulin signaling pathways, which are known to be involved in endocrine 

resistance with reduced effect of tamoxifen and aromatase inhibitors. Thus, it seems plausible 

to introduce metformin early on as adjuvant treatment to regain the endocrine sensitivity.   

Intriguingly, circulating microRNAs from the tumor in exosomes [76] can perform cell-

independent microRNA biogenesis and promote tumorigenesis away from the primary 

tumor[77]. Thus, we may speculate that one of the steps in the metastatic process is to control 

the systemic metabolic pathways to ensure a beneficial environment and survival of the 

liberated cancer cells. [54]   Moreover, increased cellular uptake of glucose via the Warburg 

effect [10] favor differentiating glycosylation of intracellular proteins included 

paucimannosylation [78].   Intriguingly, the metastatic Epithelial-Mesenchymal-Transition 

(EMT)  process is regulated through glycosylation of key regulator proteins, that are frequently 
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modulated via the insulin /IGF signaling [79].  Thus, glycosylation opens up a connection 

between the glucose/insulin signaling and increased survival of CTCs trough enhancement of  

the EMT-processes.   

Taken together, this explorative study indicates that the carbohydrate loading state and fasting 

state have opposite systemic and micro-environmental effects, which may explain why the 

relapses in the present study were skewed towards the carbohydrate group, with an inferior 

RFS, BCSS, and OS in patients with high tissue glutathione, high S-lactate, and high S-

pyruvate. The favorable macro- and micro-environmental changes for the tumor that come from 

carbohydrate loading reflect the Warburg effect, which serves the CTCs and micrometastases 

more than the patient [80]. In luminal cancers, the Warburg pathway enzyme PFKFB4 acts as 

a molecular fulcrum that couples sugar metabolism to transcriptional activation by stimulating 

the ER co-activator SRC-3 to promote aggressive metastatic tumors [81].   

The present study has several weak points. First, it is a post hoc explorative analysis of an RCT. 

Therefore, the various analyses are not sufficiently powered regarding the various endpoints. 

In addition, tissue samples were not available for all patients, which reduces the number of 

patients in the various analyses. Thus, this creates  a greater risk of a type II error than a type I 

error. Furthermore, the tissue analyses were skewed towards patients with larger tumors. This 

could introduce systematic error in the analysis. However, tumor size was not included in the 

final Cox models in any survival analysis, indicating that this error was not strong enough to 

blur the effects of the metabolites. Also, including diet recalls and demographic data of the 

patients would have strengthened the study. Detecting the well-known endocrine metabolic 

fingerprint of insulin strengthens the method and the reliability of the various findings in this 

study. However, the study is too small to conclude on preoperative preparation guidelines; 

fasting or carbohydrate loading. Moreover, the pilot nature of the present study calls for 

validation in a larger study with a long-term follow-up. Introducing a ketogenic diet as a third 
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study arm may test out whether ketone bodies could wipe out the liberated CTCs and thus 

improve survival.     

 

Conclusion 

Preoperative oral glucose loading increases systemic levels of lactate and pyruvate, and tumor 

levels of glutathione and glutamate in luminal breast cancer patients. In fasting patients, the 

proapoptotic ketone bodies are increased. These biological changes may contribute to the 

survival differences observed between these two study groups.  Integrated Pathway Analysis 

(IPA) in serum revealed activation of five major anabolic metabolic networks contributing to 

proliferation and growth mainly through insulin signaling pathways. 
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ATP: adenosine triphosphate 

AUC: area under the curve 

BCSS: breast cancer specific survival 

CI: confidence interval  

CPMG: Carr–Purcell–Meiboom–Gill spectra 

CTC: circulating tumor cell  

ER: estrogen receptor 

EMT: epithelial mesenchymal transition  

ERAS: enhanced recovery after surgery 

GSSG: glutathione, oxidized form 

GSH: glutathione, reduced form 

HER2: human epithelial growth factor receptor 2  

HR: hazard ratio 

HR-MAS-MR: high-resolution magic angle spinning - magnetic resonance   

IGF1: insulin-like growth factor 1 

IGF1R: insulin-like growth factor 1 receptor 

IGFBP3: Insulin-like growth factor 1 binding protein 3 

IHC: immunohistochemistry 

IPA: Ingenuity Pathway Analysis 

IR: insulin receptor 

LDH: lactate dehydrogenase 

MAI: mitotic activity index 

MCT-1: monocarboxylate transporter 1 
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MCT-4: monocarboxylate transporter 4 

MR: magnetic resonance  

MRI: magnetic resonance imaging 

MSEA: Metabolite Set Enrichment Analysis 

NAD: nicotinamide adenine dinucleotide 

NADP: nicotinamide adenine dinucleotide phosphate 

NOESY: One-dimensional 1H Nuclear Overhauser effect spectroscopy 

NSD: Norwegian Center for Research Data 

OS: overall survival 

PHD: pyruvate dehydrogenase 

PLS: partial least square 

PLS-DA: partial least square discriminant analysis 

PPH3: phosphorylated phosphohistone 3 

PPP: pentose phosphate pathway 

PR: progesterone receptor 

RCT: randomized controlled trial 

ROS: reactive oxygen species 

RFS: relapse free survival 

S: Serum 

SRC-3: steroid receptor co-activator  3 

TCA-cycle: tri carboxyl acid cycle 
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Tables  

Table 1  

 Clinical variables in the randomized groups 

 Carbohydrate 

group (N=26) 

Fasting 

group (N=35) 

Carbohydrate 

group with tissue 

(n=16) 

Fasting group with 

tissue (n=13) 

Age     

<55 12 (46%) 16 (46%) 9 (56%) 7 (53%) 

≥ 55 14 (54%) 19 (54%) 7 (44%) 6 (46%) 

Lymph Node status     

 Negative 19 (70%) 25 (71%) 11 (69%) 9 (69%) 

 Positive 8 (30%) 10 (29%) 5 (31%) 4 (31%) 

Tumor size (pT)     

 pT1 (<2cm) 16 (61%) 30 (85%)* 7 (44%) 9 (69%) 

 pT2 (≥2cm) 10 (39%) 5 (14%) 9 (57%) 4 (31%) 

Grade     

 1 4 (15%) 7 (20%) 2 (13%) 2 (15%) 

 2 10 (37%) 20 (57%) 4 (25%) 7 (53%) 

 3 13 (48%) 8 (23%) 10 (63%) 4 (31%) 

ER status     

 Positive 21 (81%) 29 (83%) 11 (69%) 9 (69%) 

 Negative 5 (19%) 6 (17%) 5 (31%) 4 (31%) 

PR status*     

 Positive 13 (50%) 28 (80%)** 7 (44%) 11 (85%) 

 Negative 13 (50%) 7 (20%) 9 (56%) 2 (15%) 

HER2 status     

Negative  23 (88%) 34 (97%) 13 (81%) 12 (92%) 

Positive  3 (12%)   1 ( 3%)  3 (19%) 1 (8%) 

MAI      

 <10 14 (56%) 27 (77%) 6 (38%) 10 (77%) 

 ≥ 10 11 (44%) 8 (23%) 10 (62%) 3 (23%) 

PPH3      

 <13  14 (56%) 21 (60%) 7 (44%) 6 (46%) 

 ≥ 13 12 (44%) 14 (40%) 9 (56%) 7 (54%) 

Ki67      

 ≥ 15 17 (65%) 17 (50%) 3 (19%) 5 (42%) 

 <15 9 (35%) 17 (50%) 13 (81%) 7 (58%) 

 ≥ 30 12 (46%) 10 (29%) 6 (38%) 8 (67%) 

 <30 14 (54%) 24 (71%) 10 (62%) 4 (33%) 

TILs     

 <10% 24 (92%) 31 (89%) 15 (94%) 13 (100%) 

 ≥10% 2 (8%) 4 (11%) 1 (6%) 0 (0%) 

End of follow-up status     

 No distant metastasis 22 (85%) 33 (94%) 11 (67%) 11 (85%) 

 Distant metastasis 4 (15%) 2 (6%) 3 (20%) 1 (7%) 

*Significantly different between fasting and carbohydrate group (Fisher’s exact test) 

** p=0.052 in tissue subset 

Tables Click here to access/download;Table;BCAN-D-19-02829-
R1_Tables_111119.docx



 

Table 2  

Serum metabolites with p-values from t-tests, fasting group versus 

carbohydrate (CH), for all patients and for the ER positive subset. 

Metabolite p-value* Fold change  p-value* 

ER+ 

Fold change 

ER+ 

3-Hydroxybutyrate 0.010 -1.06 0.010 -1.07 

Acetate <0.001 -1.22 <0.001 -1.21 

Acetoacetate <0.001 -1.25 <0.001 -1.20 

Acetone 0.250 -1.18 0.508 -1.11 

Alanine 0.692 1.01 0.544 -1.02 

Asparagine 0.237 -1.05 0.376 -1.04 

Citrate 0.503 1.03 0.726 1.01 

Creatine 0.905 -1.01 0.704 -1.02 

Creatinine 0.066 -1.06 0.039 -1.07 

Dimethylsulfone 0.319 -1.09 0.154 -1.15 

Glucose 0.969 1.00 0.972 1.00 

Glutamine 0.005 -1.06 0.013 -1.07 

Glycerol 0.065 -1.05 0.054 -1.06 

Glycoprotein 0.243 -1.06 0.408 -1.05 

Isoleucine <0.001 -1.26 0.001 -1.22 

Isopropyl alcohol 0.009 -1.12 0.038 -1.10 

Lactate <0.001 1.36 <0.001 1.26 

Leucine <0.001 -1.20 0.002 -1.17 

Lysine <0.001 -1.12 <0.001 -1.11 

Methanol 0.495 -1.04 0.511 -1.04 

Methionine 0.052 -1.11 0.062 -1.11 

N-acetylated groups <0.001 -1.15 <0.001 -1.15 

Phenylalanine <0.001 -1.12 <0.001 -1.13 

Proline 0.298 -1.03 0.236 -1.03 

Propylene Glycol <0.001 -1.13 0.004 -1.10 

Pyruvate <0.001 1.27 <0.001 1.23 

Threonine 0.035 -1.07 0.016 -1.08 

Valine <0.001 -1.31 <0.001 -1.29 

Abbreviations: ER+, Estrogen Receptor positive.  

*Significant at p≤0.016 after Benjamini-Hochberg correction for multiple testing 

 

 

 



Table 3  

Serum metabolite values correlated to insulin (Pearson’s correlation) for the 

total study population, and the carbohydrate and fasting    groups separately. 

Metabolite R (All) P (All)* R (CH) P (CH)  R (F) P (F) 

Lactate 0.57 <0.001 0.31 0.136 0.70 <0.001 

pyruvate 0.54 <0.001 0.26 0.203 0.54 0.001 

Acetate -0.53 <0.001 -0.40 0.046 -0.22 0.212 

N.acetylgroups -0.41 0.001 -0.06 0.788 0.10 0.576 

Acetoacetate -0.34 0.008 -0.04 0.847 0.21 0.221 

Valine -0.31 0.016 0.31 0.137 0.28 0.105 

Lysine -0.29 0.027 0.01 0.947 0.43 0.010 

Citrate 0.28 0.029 0.27 0.192 0.50 0.002 

Isoleucine -0.28 0.030 -0.03 0.881 0.36 0.035 

Glucose 0.26 0.043 0.40 0.047 -0.09 0.622 

Propylene_Glycol -0.24 0.062 0.07 0.748 0.21 0.219 

Creatine -0.23 0.075 -0.39 0.054 -0.18 0.292 

Leucine -0.23 0.079 0.17 0.425 0.25 0.149 

Phenylalanine -0.19 0.149 0.43 0.033 0.24 0.163 

Glycerol -0.19 0.152 -0.12 0.555 0.11 0.541 

Alanine 0.15 0.262 0.18 0.386 0.30 0.076 

Isopropyl alcohol -0.12 0.344 0.20 0.331 0.12 0.500 

3-Hydroxybutyrate -0.10 0.442 0.12 0.562 0.36 0.035 

Methanol -0.10 0.457 -0.06 0.778 -0.05 0.761 

Glutamine -0.09 0.506 0.30 0.150 0.06 0.737 

Creatinine -0.08 0.543 0.23 0.263 -0.05 0.755 

Threonine -0.08 0.567 0.10 0.627 0.32 0.062 

Acetone 0.04 0.780 0.15 0.489 0.39 0.019 

Proline -0.04 0.789 0.11 0.593 -0.03 0.880 

Glycoproteins 0.02 0.873 0.06 0.787 0.49 0.003 

Asparagine -0.01 0.923 -0.05 0.818 0.47 0.005 

Methionine 0.01 0.941 0.37 0.067 0.08 0.653 

Dimethylsulfone 0.00 0.997 0.17 0.404 0.05 0.777 

Abbreviations: CH, carbohydrate group; F, Fasting group; P, Pearson’s correlation p-value;      

R, Pearson’s correlation R value. 

*Significant at p ≤ 0.043 after Benjamini-Hochberg correction  

** Significant at p ≤ 0.03 after Benjamini-Hochberg correction 

*** Significant at p ≤ 0.035 after Benjamini-Hochberg correction 

 

 



Table 4  

Tumor metabolites with fold changes and t-test p-values in carbohydrate vs 

fasting groups 

Tumor metabolite P (All)* FC (All) P (ER+) ** FC (ER+) 

Acetate 0.844 -1.030 0.620 -1.095  

Alanine 0.322 1.038 0.163 1.067  

Ascorbate 0.300 -1.099 0.991 -1.001  

Aspartate 0.385 1.100 0.545 1.088 

Choline 0.136 1.056 0.547 1.027  

Creatine 0.418 -1.062 0.558 -1.051  

Glucose 0.495 -1.151 0.500 -1.201  

Glutamate 0.172 1.047 0.146 1.055  

Glutamine 0.955 1.003 0.816 -1.015  

Glutathione 0.006 1.082 0.002 1.103  

Glycerophosphocholine 0.712 -1.018 0.762 -1.018  

Glycine 0.186 1.063 0.162 1.090  

Lactate 0.862 1.006 0.922 1.004  

Leucine 1.000 1.000 0.947 -1.004  

Myoinositol 0.445 -1.038 0.768 -1.018  

Phosphocholine 0.517 1.027 0.291 1.051  

Phosphoethanolamine 0.211 1.050 0.544 1.031  

Scylloinositol 0.926 -1.007 0.565 1.060  

Succinate 0.788 1.022 0.503 1.067  

Taurine 0.982 1.001 0.902 1.004  

Abbreviations:, ER+, Estrogen receptor positive; FC, fold change, P, t-test p-value. 
* Significant at p ≤ 0.001 after Benjamini-Hochberg correction  

** Significant at p≤0.030 after Benjamini-Hochberg correction 

  



Table 5.  

Univariate analysis of Relapse Free Survival in ER+ patients 

Variable Events / 

At risk 

% 

Survival 

P HR 95% CI 

Fasting 

/Carbohydrate 

     

Fasting 1/29 97    

Carbohydrate 6/21 71 0.012 9.34 1.12 –77.7 

S-Pyruvate *      

< 12.5 2/39 95    

≥ 12.5 5/10 50 <0.0001 13.59 2.61– 70.6 

S-Lactate*      

< 56.9 3/40 93    

≥ 56.9 4/9 56 0.002 7.47 1.66 – 33.6 

S-Preoperative 

Insulin 

     

< 18.3 I.U. 1/29 97    

≥ 18.3 I.U. 6/21 71 0.012 9.34 1.12 – 77.7 

S-Preoperative 

C-peptide 

     

< 1.22 nM 1/29 97    

≥1.22 nM 6/21 71 0.011 9.51 1.14-79.0 

Tumor 

Glutathione 

     

< 1.09 0/10 100    

≥ 1.09 3/8 63 0.038 Inf.  

Tumor size      

T1 3/40 93    

T2 4/10 60 0.003 7.09 1.57-31.9 

Nodal status      



N0 3/33 91    

N+ 4/17 73 0.160 2.80 0.625-12.6 

Grade      

1 0/11 100    

2+3 7/39 82 0.136 31.1 0.019 – 50547 

MAI*      

<10 4/39 90    

≥10 3/10 70 0.092 3.38 0.751–15.2 

Ki67*      

<30% 3/37 92    

≥30% 4/12 67 0.023 4.84 1.08 – 21.8 

PPH3      

<13 3/35 91    

≥13 4/15 73 0.116 3.13 0.699-14.0 

*Missing information on one patient in the ER+ group leading to n=49 patients analyzed  for 

this variable 

 

 

 

 

 

 

 

 

 



 

 

  



Table 6.  

Univariate analysis of Breast Cancer Specific Survival in ER+ patients 

Variable Events / 

At risk 

% 

Survival 

P HR 95% CI 

Fasting /Carbohydrate      

Fasting 0/29 100    

Carbohydrate 4/21  81 0.015 Inf.  

S-Pyruvate      

< 12.5 0/40 100    

≥ 12.5 4/10 60 <0. 0001 Inf.  

S-Lactate*      

< 56.9 1/40 98    

≥ 56.9 3/9 67 0.002 14.8 1.53-142 

S-Preoperative Insulin      

< 18.3 I.U. 0/29 100    

≥ 18.3 I.U. 4/21 81 0.015 Inf.  

S-Preoperative  

C-peptide 

     

< 1.22 nM 0/29 100    

≥1.22 nM 4/21 81 0.015 103 0.025-

429676 

Tumor 

Glutathione 

     

< 1.09 0/10 100    

≥ 1.09 3/8 63 0.038 Inf.  

Tumor size      

T1 0/40 100    

T2 4/10 60 <0.0001 Inf.  

Nodal status      



N0 1/33 97    

N+ 3/17 82 0.080 5.92 0.615 – 

56.9 

Grade      

1 0/11 100    

2+3 4/39 90 0.277 30.1 Inf. 

MAI*      

<10 2/39 95    

≥10 2/10 80 0.124 4.12 0.580- 29.3 

Ki67*      

<30% 1/37 97    

≥30% 3/12 75 0.014 9.91 1.03-95.3 

PPH3      

<13 2/35 94    

≥13 2/15 87 0.399 2.27 0.320 – 

16.1 

 *Missing information on one patient in the ER+ group leading to n=49 patients analyzed for this 

variable 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 7.   

Univariate analysis of Overall Survival in ER+ patients 

Variable Events /At 

risk 

% survival P HR 95% CI 

Carbo/Faste      

Faste 1/29 97    

Carbohydrate 4/21 81 0.068 6.02 0.675–53.8 

S-Pyruvat*      

< 12.5 1/39 97    

≥ 12.5 4/10 60 <0.0001 19.2 2.14–172 

S-Lactate*      

<  56.9 2/40 95    

≥  56.9 3/9 67 0.009 7.58 1.26–45.4 

S-Preop 

Insulin 

     

< 18.3 I.U. 1/29 97    

≥ 18.3 I.U. 4/21 81 0.068 6.016 0.672–53.9 

S-Preoperative 

C-peptide 

     

< 1.22 nM 1/29 97    

≥1.22 nM 4/21 81 0.068 6.02 0.672–53.9 

Tissue 

Glutathione 

     

≤1.0855 1/10 90    

>1.0855 3/8 63 0.140 4.72 0.488–45.7 

Tumor size      

T1 1/40 98    

T2 4/10 60 < 0.0001 19.2 2.20 –176 

Nodal status      

N0 2/33 94    



N+ 3/17 82 0.205 3.01 0.502–18.0 

Grade 

1 0/11 100 

2+3 5/39 87 0.222 30.2 0.004–

223736 

MAI* 

<10 3/39 92 

≥10 2/10 80 0.235 2.83 0.471–16.9 

Ki67* 

<30% 2/37 95 

≥30% 3/12 75 0.049 5.040 0.842–30.2 

PPH3 

<13 3/35 91 

≥13 2/15 87 0.641 1.53 0.255–9.13 

*Missing information on one patient in the ER+ group leading to n=49 patients analyzed for

this variable 



Appendix Table 1 

ROC – analysis with ‘Relapse / No relapse’ as dichotomous variable in ER+ patients. 

Test variable AUC 95% CI Sens Spec P Threshold 

S-lactate 0.769 0.609 – 0.929 57 88 0.024 56.9 

S-pyruvate 0.765 0.541 – 0.989 71 86 0.026 12.5 

Tumor-

Glutathione 

0.711 0.485 – 0.938 100 66 0.260 1.09 

S-preoperative 

Insulin 

0.724 0.554 – 0.896 86 67 0.059 18.3 I.U./L 

S-preoperative 

insulin c-peptide 

0.735 0.566 – 0.903 86 67 0.049 1.22 nM 



Appendix Table 2 

Metabolites correlated to serum insulin C peptide (Pearson’s correlation) for 

all patients, carbohydrate group, and fasting groups. 

Metabolite R All P All* R CH P CH* R F P F** 

Lactate 0.611 <0.001 0.401 0.047 0.577 <0.001 

Pyruvate 0.596 <0.001 0.395 0.051 0.431 0.010 

Acetate -0.513 <0.001 -0.344 0.092 -0.092 0.598 

N-acetylgroups -0.398 0.002 -0.092 0.663 0.397 0.018 

Valine -0.366 0.004 0.189 0.366 0.385 0.023 

Acetoacetate -0.352 0.006 -0.058 0.781 0.348 0.041 

Isoleucine -0.333 0.009 -0.166 0.428 0.488 0.003 

Lysine -0.301 0.020 -0.064 0.763 0.646 <0.001 

Propylene Glycol -0.260 0.045 0.044 0.833 0.305 0.075 

Citrate 0.244 0.060 0.262 0.205 0.348 0.041 

Leucine -0.242 0.063 0.125 0.551 0.416 0.013 

Glucose 0.233 0.074 0.345 0.092 0.187 0.282 

Creatine -0.209 0.110 -0.444 0.026 0.005 0.978 

Phenylalanine -0.206 0.115 0.357 0.080 0.503 0.002 

Methanol -0.185 0.157 -0.162 0.438 -0.269 0.118 

Glycerol -0.152 0.246 -0.111 0.596 0.323 0.059 

Glutamine -0.152 0.248 0.216 0.300 0.058 0.740 

Alanine 0.150 0.252 0.207 0.320 0.303 0.077 

Isopropyl alcohol -0.134 0.307 0.185 0.375 0.222 0.199 

Threonine -0.108 0.409 0.000 1.000 0.462 0.005 

3-Hydroxybutyrate -0.098 0.455 0.153 0.464 0.439 0.008 

Creatinine -0.077 0.557 0.176 0.399 0.158 0.365 

Dimethylsulfone 0.076 0.565 0.264 0.202 0.332 0.051 

Acetone 0.027 0.835 0.078 0.710 0.530 0.001 

Proline -0.014 0.913 0.154 0.462 0.049 0.778 

Asparagine -0.012 0.927 -0.126 0.547 0.624 <0.001 

Glycoproteins 0.012 0.928 0.003 0.989 0.606 <0.001 

Methionine 0.010 0.938 0.412 0.041 0.138 0.430 

*Significant at p≤ 0.045 after Benjamini-Hochberg correction

**Significant at p≤0.041 after Benjamini-Hochberg correction 



Appendix Table 3 

Metabolites correlated to serum Insulin Growth Factor Binding Protein 3 

(IGFBP3) (Pearson’s correlation) for all patients, carbohydrate group, and 

fasting groups. 

Metabolite R (All) P (All)* R (CH) P (CH)*  R (F) P (F)* 

Isoleucine 0.424 0.001  0.414 0.040  0.351 0.039  

Glycoproteins 0.410 0.001  0.224 0.282  0.478 0.004  

Asparagine 0.401 0.001  0.364 0.073  0.399 0.018  

Leucine 0.393 0.002  0.107 0.612  0.440 0.008  

Acetone 0.383 0.003  0.298 0.148  0.397 0.018  

Lysine 0.378 0.003  -0.017 0.937  0.459 0.006  

N.acetylgroups 0.342 0.007  -0.241 0.247  0.484 0.003  

Phenylalanine 0.322 0.012  0.114 0.586  0.314 0.066  

Propylene-Glycol 0.321 0.012  0.044 0.833  0.349 0.040  

Isopropyl-alcohol 0.319 0.013  -0.079 0.706  0.434 0.009  

Alanine 0.310 0.016  0.100 0.635  0.413 0.014  

Acetoacetate 0.243 0.062  0.036 0.866  0.192 0.268  

Threonine 0.206 0.114  -0.250 0.228  0.395 0.019  

Valine 0.196 0.134  0.050 0.814  0.082 0.640  

Acetate 0.180 0.169  0.079 0.707  0.066 0.707  

Lactate -0.166 0.205 -0.347 0.090 0.207 0.232 

pyruvate -0.164 0.211  -0.287 0.164  0.131 0.453  

Methionine -0.158 0.228  -0.484 0.014  -0.066 0.704  

Glycerol 0.137 0.296  -0.384 0.058  0.360 0.034  

Proline -0.124 0.345  -0.358 0.079  0.004 0.982  

Creatine 0.103 0.435  0.175 0.401  0.051 0.773  

Creatinine 0.084 0.522  -0.189 0.365  0.146 0.403  

Methanol 0.079 0.549  0.288 0.162  -0.110 0.528  

Glutamine 0.075 0.569  -0.176 0.399  0.123 0.481  

Glucose 0.055 0.678  0.007 0.972  0.186 0.285  

Citrate 0.031 0.812  -0.052 0.804  0.134 0.442  

Dimethylsulfone -0.005 0.967  -0.255 0.219  0.096 0.584  

3-Hydroxybutyrate -0.001 0.993  -0.320 0.119  0.046 0.794  

Abbreviations: CH, carbohydrate group; F, Fasting group; P, Pearson’s correlation p-value;      

R, Pearson’s correlation R value. 

*Significant at p≤0.01 after Benjamini-Hochberg correction for multiple testing 

** Significant at p≤0.037 after Benjamini-Hochberg correction for multiple testing 

*** Significant at p≤0.04 after Benjamini-Hochberg correction for multiple testing 



Appendix Table 4 

Metabolites correlated to serum Insulin Growth Factor 1 (IGF1) (Pearson’s 

correlation) for all patients, carbohydrate group, and fasting groups. 

Metabolite R (All) P (All)* R (CH) P (CH)* R (F) P (F)* 

Methionine -0.318 0.013 -0.591 0.002 -0.135 0.438 

Isopropyl_alcohol -0.314 0.015 -0.318 0.121 -0.330 0.052 

Creatinine -0.302 0.019 -0.381 0.061 -0.265 0.124 

Proline -0.274 0.034 -0.465 0.019 -0.095 0.585 

Valine -0.251 0.053 -0.122 0.563 -0.406 0.015 

Propylene_Glycol -0.230 0.077 -0.159 0.446 -0.291 0.089 

Acetoacetate -0.230 0.077 -0.168 0.421 -0.308 0.072 

Methanol -0.218 0.094 -0.001 0.996 -0.400 0.017 

Acetone -0.184 0.159 -0.061 0.772 -0.247 0.152 

pyruvate -0.173 0.186 -0.271 0.191 -0.179 0.303 

Leucine -0.160 0.222 -0.090 0.670 -0.208 0.231 

3.Hydroxybutyrate -0.157 0.230 -0.231 0.266 -0.114 0.515 

Dimethylsulfone 0.155 0.238 0.032 0.880 0.245 0.155 

Threonine -0.152 0.248 -0.397 0.050 0.013 0.941 

Lactate -0.139 0.289 -0.323 0.115 -0.026 0.882 

N.acetylgroups -0.131 0.320 -0.385 0.057 -0.038 0.830 

Glycerol -0.125 0.342 -0.430 0.032 0.075 0.668 

Lysine -0.118 0.370 -0.169 0.418 -0.104 0.551 

Glutamine 0.100 0.447 -0.053 0.801 0.257 0.136 

Isoleucine -0.096 0.468 0.116 0.582 -0.225 0.193 

Acetate -0.092 0.483 0.031 0.883 -0.148 0.395 

Creatine -0.087 0.507 -0.002 0.994 -0.154 0.378 

Glycoproteins -0.081 0.539 -0.059 0.779 -0.088 0.614 

Citrate 0.063 0.631 0.115 0.584 0.014 0.936 

Alanine -0.048 0.717 -0.070 0.738 -0.048 0.783 

Glucose 0.017 0.899 -0.008 0.969 0.079 0.652 

Phenylalanine 0.011 0.931 0.253 0.222 -0.080 0.648 

Asparagine -0.006 0.962 0.393 0.052 -0.163 0.349 

* Significant at p≤0.002 after Benjamini-Hochberg correction for multiple testing.

Abbreviations: CH, carbohydrate group; F, Fasting group; P, Pearson’s correlation p-value; 

R, Pearson’s correlation R value. 



Appendix Table 5 

Results from Quantitative Metabolite Set Enrichment Analysis 

Metabolic pathway Total Cmpd Hits Statistic Q 
(Expected 1.613) 

Raw p FDR 

Amino Sugar Metabolism 33 3 24.50 0.000 0.000 
Propanoate Metabolism 42 1 44.09 0.000 0.000 
Valine, Leucine and Isoleucine Degradation 60 4 31.60 0.000 0.000 
Pyruvate Metabolism 48 3 28.66 0.000 0.000 
Phenylalanine and Tyrosine Metabolism 28 2 31.54 0.000 0.000 
Fatty Acid Biosynthesis 35 3 25.58 0.000 0.000 
Aspartate Metabolism 35 3 16.23 0.000 0.000 
Ethanol Degradation 19 1 33.64 0.000 0.000 
Tyrosine Metabolism 72 1 32.22 0.000 0.000 
Butyrate Metabolism 19 1 32.22 0.000 0.000 
Lysine Degradation 30 1 31.52 0.000 0.000 
Biotin Metabolism 8 1 31.52 0.000 0.000 
Carnitine Synthesis 22 1 31.52 0.000 0.000 
Ammonia Recycling 32 3 14.09 0.000 0.000 
Warburg Effect 58 5 13.16 0.000 0.000 
Cysteine Metabolism 26 1 27.23 0.000 0.000 
Pyruvaldehyde Degradation 10 1 27.23 0.000 0.000 
Urea Cycle 29 3 13.38 0.000 0.000 
Glutamate Metabolism 49 3 13.38 0.000 0.000 
Gluconeogenesis 35 3 17.45 0.000 0.000 
Ketone Body Metabolism 13 2 17.24 0.000 0.000 
Glycolysis 25 2 13.61 0.000 0.000 
Citric Acid Cycle 32 2 14.00 0.000 0.001 
Glycine and Serine Metabolism 59 5 8.26 0.000 0.001 
Alanine Metabolism 17 2 13.75 0.000 0.001 
Transfer of Acetyl Groups into Mitochondria 22 3 9.34 0.001 0.001 
Glucose-Alanine Cycle 13 3 9.17 0.001 0.002 
Pyrimidine Metabolism 59 1 12.64 0.005 0.008 
Nicotinate and Nicotinamide Metabolism 37 1 12.64 0.005 0.008 
Purine Metabolism 74 1 12.64 0.005 0.008 
Phenylacetate Metabolism 9 1 12.64 0.005 0.008 
Threonine and 2-Oxobutanoate Degradation 20 1 7.42 0.035 0.048 
Methionine Metabolism 43 1 6.38 0.052 0.065 
Betaine Metabolism 21 1 6.38 0.052 0.065 
Spermidine and Spermine Biosynthesis 18 1 6.38 0.052 0.065 
Glycerolipid Metabolism 25 1 5.74 0.065 0.080 
Galactose Metabolism 38 2 2.87 0.184 0.219 
Arginine and Proline Metabolism 53 2 0.94 0.575 0.665 
Glutathione Metabolism 21 1 0.27 0.692 0.743 



Selenoamino Acid Metabolism 28 1 0.27 0.692 0.743 
Tryptophan Metabolism 60 1 0.27 0.692 0.743 
Sphingolipid Metabolism 40 1 0.00 0.969 0.969 
Lactose Synthesis 20 1 0.00 0.969 0.969 
Lactose Degradation 9 1 0.00 0.969 0.969 



Legends to figures 

Figure 1 

Flowchart of study participants 

Figure 2 

Partial Least Square Discriminant Analysis (PLS-DA) in serum. 

A) Scores plot showing serum samples from the fasting group (green) and carbohydrate group

(red). The carbohydrate and fasting groups have significantly different metabolic profiles as 

evidenced by permutation testing. 

B) Variable Importance in Projection (VIP) scores showing the top 15 14 metabolites

contributing to differences between the groups. The right column indicates increased (red) or 

decreased (green) metabolite in the indicated group. 

Figure 3 

Correlation between serum metabolic profile and serum insulin, insulin C-peptide, and 

IGFBP3. Samples from carbohydrate-fed patients are shown in red, while samples from fasting 

patients are shown in blue. Metabolites are colored according to their variable importance in 

projection (VIP) score and labeled when VIP≥1. 

A) Measured insulin vs. predicted insulin levels based on metabolic profile (cross-

validated measurements). 

B) Metabolites versus regression coefficient for insulin. Increased S-glucose, S-lactate, and

decreased S-Leucine are important to prediction of serum insulin from the metabolic 

profile. 

Legends to figures + figures Click here to access/download;Figure;_Lende et
al_Figures_111119.docx_R1.docx



C) Measured insulin C peptide vs. predicted insulin C-peptide levels.

D) Regression weight plot showing metabolites versus the regression coefficient for insulin

C-peptide. Increased S-Glucose, S-Lactate, and decreased S-Leucine are important to 

prediction of serum insulin C-peptide from the metabolic profile. 

E) Measured Insulin Growth Factor Binding Protein 3 (IGFBP3) vs. predicted IGFBP3

based on metabolic profile. 

F) Regression weight plot showing metabolites versus the regression coefficient for

IGFBP3. Increased S-Acetone, S-Glycoproteins, and S-Leucine are important to 

prediction of serum IGFBP3 from the metabolic profile. 

Figure 4 

A) Principal Component Analysis (PCA) of tumor metabolites. No grouping of fasting vs

carbohydrate groups observed. 

B) Glutathione levels in ER positive tumors.

C) ROC curve for classification into carbohydrate or fasting group by glutathione concentration

in ER-positive tumors. AUC= 0.894; 95%CI=0.0.687-1.000, P=0.002. 

Figure 5 

Survival analyses for Tumor-Glutathione, Serum-lactate and Serum-pyruvate. 

A-C: Relapse Free Survival (RFS);   D-F: Breast Cancer Survival (BCSS); 

G-I: Overall Survival  (OS). 



Figure 6 

Pathway analyses in serum metabolites 

A) Metabolite Set Enrichment Analysis of serum metabolism. Significantly enriched pathways

are annotated in the pathway network. The circle size denotes significance of the pathway, and 

lines denote at least 25% shared metabolites in the pathways.  

B) Ingenuity pathway analysis (IPA) bar chart showing the top 5 functions enriched in the

dataset. 

C) IPA pathway network showing the metabolites connected to four microRNAs found to be

involved in tamoxifen resistance. Metabolites in green are downregulated in carbohydrate-fed 

patients, while metabolites in red are upregulated. MicroRNAs are colored purple. 

D) IPA Function plot showing metabolites involved in organismal growth. Orange arrows

indicate activation, while blue arrows indicate inhibition. 



Appendix Figure 1  

Receiver operating characteristics (ROC) analysis with ‘fasting / carbohydrate load’ as the 

dichotomous variable and T-glutathione (A), S-lactate (B) and S-Pyruvate (C) as the continuous 

variables. The area under the curve (AUC), sensitivity, specificity, p-values and criterion 

(threshold) value are listed under the reference line in each figure. The criterion is visualized 

with a red asterix on the ROC-curve. 

Appendix Figure 2  

Receiver operating characteristics (ROC) analysis with ‘relapse/no relapse’ as the dichotomous 

variable and T-glutathione (A), S-lactate (B) and S-Pyruvate (C) as the continuous variables. 

The area under the curve (AUC), sensitivity, specificity, p-values and criterion (threshold) value 

are listed under the reference line in each figure. The criterion is visualized with a red asterisk 

on the ROC-curve. 
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