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4. ABSTRACT 

Background and aims 

Intracranial aneurysms can rupture and cause an aneurysmal subarachnoid 

hemorrhage (aSAH), a bleeding under the arachnoid meninges covering the brain. 

This is a devastating event, in which delayed cerebral ischemia (DCI) is a major cause 

of death and disability. In this thesis, we assess two possible ultrasonographic 

predictors for aneurysm rupture risk and DCI: carotid intima-media thickness (IMT) 

and cerebrovascular reactivity (CVR). 

Carotid IMT is the combined thickness of the inner two layers of the carotid artery 

wall. IMT provides information about the degree of atherosclerosis and is an 

established risk marker for myocardial infarction and ischemic stroke. Persons with 

atherosclerosis have an increased prevalence of intracranial aneurysms, and smoking 

and hypertension are shared risk factors for aneurysm rupture, myocardial infarction 

and ischemic stroke. We thus hypothesized that IMT also could be associated with 

risk of aneurysm rupture.  

Cerebral arterioles regulate vascular resistance and play an important role in 

maintaining constant cerebral blood flow during variations in cerebral perfusion 

pressure. CVR is defined as the change in cerebral blood flow, or blood flow velocity, 

in response to a vasoactive stimulus. Proximal arterial narrowing in vasospastic 

vessels causes a poststenotic pressure drop and compensatory arteriolar dilation. The 

suggested theory is that when vasospasm develops, pre-existing compensatory 

arteriolar dilation limits the capacity for further arteriolar dilation in a CVR test. 

Literature have indicated that impaired CVR may be a potential predictor for DCI 

after aSAH. Still, sample sizes have been limited and varying methodology and 

inconsistent and outdated definitions of DCI have been used. 
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Material and methods 

Patients treated for unruptured and ruptured intracranial aneurysms at the Department 

of Neurosurgery, Haukeland University Hospital between February 2011 and May 

2013 were included. Clinical, ultrasonographic and radiographic assessment were 

done after aneurysm treatment and at one-year follow up. Carotid ultrasound was 

performed with evaluation of IMT, and CVR was assessed by transcranial Doppler 

and acetazolamide test. Patients were followed prospectively for development of 

delayed cerebral ischemia (DCI), separated into clinical and radiographic findings. 

 

Results 

Carotid IMT was higher in patients treated for ruptured aneurysms than in patients 

with unruptured aneurysms. The probability of belonging to the aneurysm rupture 

group increased with higher IMT values. 

CVR was reduced on the ipsilateral side in all patients after aneurysm treatment, 

regardless of rupture status or DCI development. Patients with clinical deterioration 

due to DCI had lower CVR, and the difference was bigger on the contralateral side. 

Including CVR in a prediction model with established predictors increased the area 

under the receiving operator curve, indicating improved prediction of DCI. 

 

Conclusions 

There is an association between carotid IMT and aneurysm rupture status at the time 

of aneurysm treatment. Carotid IMT is a potential predictor of aneurysm rupture, and 

is a possible adjunct in the assessment of aneurysm rupture risk, and thus a helpful 

tool in patient counseling. 

Impaired CVR is a potential independent predictor of clinical deterioration due to 

DCI, and may assist in identifying patients at risk after aSAH. Our prediction model 

can be useful in clinical practice, but first needs to be validated. Ipsi- and contralateral 

CVR needs to be considered separately. 
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5. GENERAL INTRODUCTION 

An intracranial aneurysm is a localized bulging or ballooning of an artery, caused by 

local weakness of the arterial wall. Aneurysms can rupture and (depending of the 

location) cause a subarachnoid hemorrhage, a bleeding under the arachnoid - one of 

the meninges covering the brain. This is a devastating event, with high morbidity and 

mortality rates for affected patients. Delayed cerebral ischemia (DCI) is a potentially 

severe complication following subarachnoid hemorrhage, and is a major contributor 

as a cause of death and disability after aneurysmal subarachnoid hemorrhage (aSAH). 

This thesis is based on a prospective ultrasonographic study of patients treated for 

saccular intracranial aneurysms. The overall aim was to investigate whether 

neurosonological examinations can aid in assessments of risk of 1) rupture of 

intracranial aneurysms and 2) development of delayed cerebral ischemia. Two 

ultrasonographic parameters were studied: “carotid intima-media thickness” and 

“cerebrovascular reactivity”. 

First, existing knowledge will be presented.  

 

Clarifications 

The literature search in sections 6 to 8 was concluded 01.01.2019.  

The abbreviation aSAH describes only aneurysmal subarachnoid hemorrhage, 

whereas the abbreviation SAH is used for all types of spontaneous subarachnoid 

hemorrhage (aneurysmal and non-aneurysmal). 

TCU is the joint abbreviation for all transcranial ultrasound examinations, whereas 

the non-imaging technique is termed TCD (transcranial Doppler) and the imaging 

technique is termed TCCS (transcranial color-coded duplex sonography). 
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6. INTRACRANIAL ANEURYSMS 

6.1 Intracranial aneurysms 

An aneurysm is a localized bulging or ballooning of an artery, caused by local 

weakness of the arterial wall. Intracranial aneurysms (IAs) are most commonly 

located at the branching points of the major arteries coursing through the 

subarachnoid space at the base of the brain (Figure 1). There are four main types of 

IAs: saccular, fusiform, dissecting, and mycotic. The saccular type accounts for 

approximately 90% of IAs.1 

 

Figure 1. Common locations for intracranial saccular aneurysms.  

Reprinted from Williams, Brown and Broderick2, 3 with permission of Mayo 

Foundation for Medical Education and Research, all rights reserved.  
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The prevalence of IAs is aproximately 3% in the general population.4 In Norway, the 

prevalence of intracranial saccular aneurysms on MRA is 1.9% (95%CI: 1.2-2.9%).5 

IAs are often discovered as random findings in asymptomatic patients. There has been 

a considerable increase in incidentally detected aneurysms due to improved 

availability and sensibility of modern neuroimaging tools such as CT and MRA 

angiography.6, 7  

The process underlying aneurysm formation, growth and rupture is not yet fully 

understood, but inflammation and hemodynamic stress are assumed to play central 

roles in the pathogenesis. The existing theory is that hemodynamic stress induces 

endothelial dysfunction, which is followed by an inflammatory response, involving 

macrophages and smooth muscle cells in the artery wall. Finally, a degradation of the 

extracellular matrix facilitates aneurysm rupture.8-10  

6.2 Aneurysmal subarachnoid hemorrhage  

The majority of IAs remains asymptomatic throughout life.2, 11-14 However, some 

aneurysms rupture and cause a subarachnoid hemorrhage, a bleeding localized under 

the subarachnoid mater. The bleeding can also reach into brain parenchyma 

(intracerebral hemorrhage), the ventricular system, or sometimes even the subdural 

space.15 

The incidence of SAH varies widely from region to region. There is a tenfold 

difference in incidence worldwide, with lowest rates in China (2.0 per 100.000 

person-years) and highest rates in Japan and Finland (respectively 22.7 and 19.7 per 

100.000 person-years).16, 17  

With an incidence rate of 10.3 per 100.000 person-years (13.3 for women and 7.1 for 

men),18 the incidence in Norway is comparable to the overall worldwide incidence 
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(9.1 (95% CI 8.8–9.5) per 100.000 person-years).17, 19 The incidence of SAH 

increases with age and is higher in females,17 and the average age of onset is >50 

years of age.16, 20, 21 

6.3 Risk factors for aneurysm formation, growth and 

rupture 

IAs are acquired lesions that develop throughout life. Female sex, family history of 

SAH (two or more affected first-degree relatives), and autosomal dominant polycystic 

kidney disease are known non-modifiable risk factors for formation of IA.4 Smoking 

and hypertension are major environmental risk factors, and seem to have an additive 

effect.22  

Risk factors for aSAH can be divided into risk factors for aneurysm formation, 

growth and rupture. Most risk factors for aneurysm growth are consistent with risk 

factors for aneurysm rupture.23, 24 This suggests that aneurysm growth and rupture are 

processes with, in part, shared pathogenesis, a suggestion supported by reports of 

markedly increased rupture risk in growing aneurysms.25-27 However, there are some 

differences between risk factors for aneurysm growth and rupture. Although there is 

heterogeneity in reports, multiple IAs may be associated with increased risk of 

aneurysm growth,23 and still have a limited predictive value for aneurysm rupture.28 

Conversely, a family history of SAH and IAs is related to aneurysm rupture,28, 29 but 

has limited predictive value for aneurysm growth.23 In addition, Finnish and Japanese 

populations have reduced risk for aneurysm growth,23 but still a high risk of aneurysm 

rupture.28, 30  

Established risk factors for aneurysm rupture are age >60 years, female sex and 

Japanese and Finnish descent.28, 30, 31 Reported aneurysm-specific risk factors are size 

>5mm,30 location in the posterior circulation30, symptomatic aneurysm,30 and irregular 
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aneurysm shape.32 Whether smoking and hypertension increase the risk of aSAH only 

through an increased risk of aneurysm formation and growth, or also through an 

increased risk of rupture is under debate.11, 12, 22, 28, 30, 33-39 

Additional risk factors have been suggested for aneurysm formation, growth and 

rupture; such as hypercholesterolemia, ischemic heart disease, diabetes mellitus, low 

body mass index, and excessive alcohol consumption. Data is however limited and 

conflicting.11, 12, 22, 28, 34, 38, 40-42  

6.4 Clinical presentation 

Most aneurysms go unnoticed unless they are very large, rupture or are (incidentally) 

discovered with brain imaging. The clinical manifestations of unruptured aneurysms 

(UIAs) are subtle. Only 10-15% of UIAs are symptomatic.11, 14, 43 Symptoms are 

primarily caused by mass effect of large aneurysms, alternatively by minimal leakage 

of blood which irritates the meninges.44 The most common presentation is headache 

or third nerve palsy. Other symptoms and signs include visual field defects, trigeminal 

neuralgia, cavernous sinus syndrome, brain-stem dysfunctions and seizures.45 

Occasionally UIAs can cause arterial embolisms and ischemia.46, 47 Symptomatic 

UIAs carries a higher risk of subsequent rupture (RR 4.4; 95% CI, 2.8-6.8).30 

Headache may be a warning sign of impending rupture. A sentinel headache in the 

three months preceding aneurysm rupture has been reported in 10% to 43% of 

patients with aSAH.48 

The typical symptoms of aSAH result from blood spilling into the cerebrospinal fluid 

(CSF) and the immediately increased intracranial pressure and later the subsequent 

breakdown of blood products. The hallmark feature of aSAH is hyperacute onset of 

severe headache (“thunderclap-headache”, “the worst headache in my life”).44, 49 The 

headache is often accompanied by nausea and vomiting, photophobia, neck stiffness 
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or loss of consciousness.50 Patients may also experience seizures51, or show focal 

neurological deficits52 particularly in cases with parenchymal hematomas.52 

6.5 Diagnostics 

The majority of UIAs are detected incidentally during neuroimaging for unrelated 

conditions.53 Some aneurysms are diagnosed due to relevant symptoms (se section 

6.4), or screening patients with familial aSAH (two or more first-degree relatives with 

SAH).54 Lastly, some patients have multiple aneurysms and UIAs are discovered as 

part of assessment of and/or follow-up after aSAH.54 

Non-contrast cerebral computer tomography (CT) is the first line diagnostic test when 

SAH is suspected, and should be performed as soon as possible after symptom 

onset.54-56 CT has nearly 100% sensitivity for detecting subarachnoid blood if 

scanning is performed within six hours after ictus.57, 58 However, sensitivity decreases 

with resorption and redistribution of subarachnoid blood over time after the initial 

bleeding: five days after the initial bleeding SAH is detectable in approximately 85% 

of cases, and after two weeks in under 30% of cases.59 A negative non-contrast CT is 

thus supplemented with a lumbar puncture if there is a strong suspicion of SAH, 

especially if the patient presents days after ictus.54, 56 Detection of xanthochromia in 

CSF due to metabolites of hemoglobin supports the diagnosis of SAH.60 The term 

xanthochromia comes from the Greek words xanthos (yellow) and chroma (color), 

due to the yellow discoloration of CSF caused by hemoglobin catabolism. 

Xanthochromia can be determined by spectrophotometry (measuring the absorption of 

particular wavelengths of light) or simple visual examination (Figure 2). As blood 

degradation takes some hours, lumbar puncture is recommended performed 6–12 

hours after the initial SAH. 
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Figure 2. Xanthochromic cerebrospinal fluid 

Visual examination shows yellow discoloration of CSF (xanthocromia) in the left 

bottle, and normal CSF in the right bottle. Reproduced with permission from 

Williams,61 copyright BMJ Publishing Group Ltd. 

 

After the diagnosis of SAH is established one needs to identify the source of the 

bleeding. This is usually done by CT angiography (CTA), due to the method’s non-

inasiveness and high sensitivity and specificity for detecting IAs.62, 63 The sensitivity 

is nearly 100% for aneurysms greater than 4 mm,64-66 and 97% for all aneurysm 

sizes.67 Additionally, CTA visualizes the configuration of the aneurysm and 

surrounding blood vessels, which is helpful in deciding which treatment modality to 

use. If CTA is negative, conventional four vessel catheter digital subtraction 

angiography (DSA) is recommended, as this is considered the gold standard for 

imaging IAs.68  

Although MRI with multiple sequences might be equally sensitive as CT/CTA in 

detecting SAH within 24 hours,54 limitations in availability, logistics, predisposition 
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to motion artefacts, patient complicance, longer study time and higher cost cause MRI 

to not routinely being used in the diagnostics of aSAH.56  

6.6 Management 

Individual assessment of patients with UIA to determine the best management is 

challenging, and a thourough assessment of rupture risk versus interventional risks is 

necessary. Multiple factors are considered, including aneurysm size, location, and 

morphology, symptoms, patient age, family or personal history of SAH, comorbidity, 

and patient’s perspective regarding an interventional procedure.2, 3, 54 Ruptured 

intracranial aneurysms (RIAs) should be treated with intervention as early as 

logistically and technically possible to reduce the risk of rebleeding.54, 56 

There are three main strategies in the management of IAs: 1) conservative approach 

with regular neuroimaging follow-ups, 2) endovascular treatment, or 3) surgical 

clipping. Figure 3 illustrates the methods used in aneurysm intervention. Aneurysm 

clipping is performed during an open craniotomy, where the aneurysm is dissected out 

and a metallic clip is placed across the neck to isolate the aneurysm sack from the 

parent artery. The basic endovascular aneurysm treatment is coiling, in which soft 

platinum coils are placed directly into the aneurysm, causing local thrombosis and 

isolation of the aneurysm from the parent blood vessel.69, 70 For some aneurysms, 

other endovascular techniques such as stent-assisted coiling is necessary. The stent 

prevents the coils from becoming displaced from the aneurysm sack and entering the 

parent artery. 
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Figure 3. Aneurysm interventions 

The left side of the figure illustrates craniotomy and clipping of aneurysm. The skin is 

incised and a craniotomy performed (A), before a clip is placed across the aneurysm 

neck (B). The right side of the figure shows endovascular coiling, where a small 

microcatheter is incerted transfemorally (A), and platinum coils are placed into the 

aneurysm sack (B). Reproduced with permission from Brisman, Song, and Newell,71 

copyright Massachusetts Medical Society. 

 

Treatment of aSAH also includes appropriate neurocritical care, and prevention and 

treatment of potential complications.54, 56 

6.7 Complications 

Aneurysm intervention carries a risk of complications, including arterial dissection, 

hemorrhage, cerebral infarction, aneurysm rupture/perforation, cardiac and 

thromboembolic events, infections and acute organ failure. Complications are more 
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common in acute treatment for aSAH compared with elective treatment for UIA, but 

occur in both settings.72-74 

The three most important neurological complications after SAH are aneurysm 

rebleeding, delayed cerebral ischemia and hydrocephalus.55  

Aneurym rebleeding is a feared early complication after aSAH.75 Aproximately 15% 

of patients rebleed in the first few hours after the initial bleeding.76 If patients survive 

the initial 24 hours after the hemorrhage and the aneurysm is not occluded, the risk of 

rebleeding in the following weeks is aproximately 30%.77 Rebleeding is associated 

with high mortality and poor outcome. Aproximately 60% of patients who rebleed 

die, and additional 30% remain dependent in activities of daily living.78, 79 A ruptured 

aneurysm should be occluded early (usually within 24 hours after ictus) to prevent 

rebleeding.54, 56 Antifibrinolytic medications reduces the risk of rebleeding by 35%, 

but since they also increase the risk of cerebral ischemia, there is no proven effect on 

case fatality or clinical outcome.80  

Delayed cerebral ischemia is another major source of disability and death after 

aSAH.81-83 This complication is thouroghly presented in section 7. 

aSAH can also disrupt the production and absorption of cerebrospinal fluid (CSF) and 

cause hydrocephalus (HC). The range of reported incidence of HC after SAH is wide 

(6-67%),84 still most studies report that 20-30% of patients with SAH develop HC.85-

87 The onset can be acute88 (within 72 hours after SAH) or chronic89 (weeks or 

months after the initial event), and HC may complicate aSAH in both the short and 

long term. Symptoms include headache, reduced level of consciousness, urinary 

incontinence and gait disturbances, and neuroimaging (CT/MRI) show enlarged 

ventricles. The excess fluid needs to be drained, and treatment options are either 

lumbare puncture or drainage, or in case of obstruction of CSF flow within the 

ventricular system, external ventricular drainage. Patients with symptomatic chronic 
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hydrocephalus may require permanent ventriculo-peritoneal or ventriculo-atrial 

shunting.54, 56  

Systemic complications are also common after aSAH. Non-neurological 

complications include fever, anaemia, hypertension and hypotension, electrolyte 

disturbances, glucose abnormalities, cardiac failure, arrhythmias, thromboembolism, 

pulmonary oedema, pneumonia and sepsis.56, 90, 91 

6.8 Outcome 

aSAH is a devastating event associated with high rates of morbidity and mortality.18, 

92 Althoug there has been a reduction in mortality in the last decades, case fatality 

rates still remains high.20, 93 Precise outcome statistics vary among publications, but in 

summary approximately one-third of patients with aSAH die, one-third survive with 

significant permanent disabilities, and one-third make a good recovery with little or 

no long-term disabilities.20, 93, 94 Most deaths occur within two weeks after the 

bleeding, with approximately 10-15% occurring before the patient receives medical 

care and 25% within 24 hours after ictus.75, 95, 96 

In addition to focal neurological deficits, survivors of aSAH often have cognitive 

sequelae, with impairment in memory, language, visuospatial and executive 

function.97, 98 Fatigue, sleeping disturbances, and mood disorders are also common.97 

aSAH leads to a substantial decrease in health related quality of life, not only in the 

acute phase, but also the first years after the bleeding.99, 100 However, reports indicates 

improvement in quality of life in the long term after aSAH, despite of persistant 

restrictions in function.100 This indicates that long-term survivors of aSAH apply 

psychological adaptation and coping mechanisms, as described in other chronic 

diseases101 and ischemic stroke.102  
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aSAH cause considerable socioeconomic burden on the society, individual patients 

and their families.103 Although SAH accounts for only 1% to 7% of all strokes,104 the 

loss of productive life years is comparable to that of cerebral infarction (the most 

common type of stroke), due to the poor outcome and relatively young age of onset in 

SAH.17, 104, 105 Overall, SAH accounts for 5% of stroke deaths, but for 27% of all 

stroke-related years of potential life lost before the age of 65.106  

Persons who survive aSAH have increased risk of vascular events and death.107-110  

Possibly due to overlapping vascular risk factors like hypertension and smoking,34 

they have increased risk of ischemic stroke, hemorrhagic stroke and cardiovascular 

events,107, 111 in addition to being at risk for developing new aneurysms112, 113 and 

having new episodes of aSAH.92, 114-117 Prevention of new vascular events after aSAH 

by managing risk factors appears important and cessation of smoking and regular 

blood pressure check-ups are recommended.54, 56 

6.9 Management of patients with unruptured 

intracranial aneurysms 

The number of patients with incidentally discovered IAs is rapidly growing due to 

increasing use of modern neuroimaging tools,6, 7 and incites a challenge in patient 

counselling and clinical decision making. Although as many as up to 3% of the 

worldwide population harbors an UIA,4 the incidence of SAH from aneurysmal 

rupture is relatively low (9.1 per 100.000 person-years).17, 19 This discrepancy 

indicates that the majority of IAs do not rupture. Still, the consequences of aneurysm 

rupture are potentially devastating.18, 92 Treatment of the aneurysm (surgical or 

endovascular) can effectively eliminate the risk of aSAH. However, treatment of all 

UIAs is not prudent, because of the risk of complications caused by aneurysm 

treatment and the high financial cost.118 To decide whether to perform a potentially 

harmful prophylactic procedure or not, tools to predict the risk of rupture in the given 
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individual is needed. Although some predictors are known and prediction models 

have been proposed,28 counselling of individual patients with UIA remains 

challenging and increased knowledge of predictors for aneurysm rupture is needed. 
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7. DELAYED CEREBRAL ISCHEMIA AFTER 

SUBARACHNOID HEMORRHAGE 

7.1 Early descriptions 

The earliest description of delayed cerebral ischemia (DCI) after SAH likely dates 

back to Hippocrates (460-370 BC). «When persons in good health are suddenly seized 

with pains in the head, and straightway are laid down speechless, and breathe with 

stertor, they die in seven days.»119 It took an additional 2000 years before comparable 

descriptions appeared in medical literature. In 1859, the british physician Sir William 

Gull described the first case of neurological deterioration after aSAH consistent with 

DCI.120 A 30-year old female fainted after an episode of acute headache and nausea, 

and was admitted with “increasing coma” and right-sided hemiplegia. Over the next 

few days her clinical status improved, until an acute worsening occurred. Her pupils 

became dilated and fixed, and she died five days after hospital admission. The 

autopsy revealed two aneurysms on the middle cerebral artery, one of which had 

ruptured, subarachnoid blood in the left Sylvian Fissure, and infarction in the left 

hemisphere. Over the next 100 years additional reports were added,121 including the 

first angiographic description of constriction of cerebral arteries after aneurysm 

rupture.122 This firmly established the concept of vasospasm after aSAH. In 1975, 

Fisher illuminated the clinical spectrum and time-course of DCI after aSAH.123, 124 

7.2 Pathogenesis 

For decades, the classic understanding was that arterial narrowing, called vasospasm 

(VSP), was the sole cause and explanation for secondary brain injury after aSAH. 

Blood byproducts from the aneurysm rupture cause contraction of the walls of nearby 

arteries (Figure 4). This leads to cerebral ischemia, and potentially infarction. 



 

 

31 

 

Figure 4. Arterial narrowing due to aneurysm rupture  

Reprinted with permission of Mayfield Clinic, Cincinnati, Ohio. All rights reserved. 

 

The traditional idea of cerebral ischemia secondary to vasospasm has, however, been 

challenged. Patients may have severe arterial narrowing but still maintain adequate 

brain perfusion.125 Reversely, patients can have delayed cerebral ischemia without any 

signs of arterial narrowing on angiography.125 Additionally, clazosentan, an 

endothelin receptor antagonist, was found successful in reversing vasoconstriction, 

but failed to improve patient outcome.126-129 Furthermore, nimodipine, a calcium 

channel antagonist, does improve patient outcome, although it has no impact on large-

vessel caliber.130 These findings led to a paradigm shift, where the pathogenesis of 

delayed cerebral ischemia was presumed to be complex and multifactorial; and not 

exclusively explained by arterial narrowing.131 One is now looking beyond 

vasoconstriction for alternative explanations of cerebral ischemia after SAH.132-134 

The current theory is that several other factors are important in the pathophysiology of 

DCI,135-137 as illustrated in Figure 5. Possible mechanisms besides large vessel 
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vasospasm include microcirculatory constriction,138 microthromboebolism,139-141 

cortical spreading depression,142 failed autoregulation,143 early brain injury,144 

inflammation,145, 146 blood brain barrier disruption,147 oxidative stress,148 and delayed 

cellular apoptosis.149 Despite extensive efforts in elucidating the pathogenic 

mechanisms, the pathogenesis of DCI remains incompletely understood, and research 

is ongoing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Pathophysiology of cerebral ischemia and poor outcome after 

aneurysmal subarachnoid hemorrhage 

The pathophysiology of cerebral ischemia after aneurysmal subarachnoid hemorrhage 

is multifactorial and complex. Adapted from Loch Macdonald150 with permission of 

Springer; all rights reserved.  
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7.3 Definitions 

In medical literature, a variety of terms has been used to describe ischemic 

complications after aSAH. Definitions are based on clinical, radiographic, 

angiographic, sonographic, microdialytic or EEG findings. Table 1 list commonly 

used expressions in literature. 

 

Table 1. Terms used to describe cerebral ischemia after aSAH* 

Delayed ischemic (neurological) deficit (DIND) 

Delayed cerebral ischemia (DCI) 

Secondary cerebral ischemia 

Symptomatic ischemia 

Vasospasm (VSP) 

Clinical vasospasm 

Symptomatic vasospasm 

Angiographic vasospasm 

Sonographic vasospasm 

Microdialytic and EEG vasospasm 

Permanent neurologic deficit (PND)  

Cerebral infarction 

Delayed infarction 

*aSAH: aneurysmal subarachnoidal hemorrhage 

 

Inconsistencies in definitions complicates research in cerebral ischemia after aSAH, 

and makes it difficult to compare results between studies, summarize results in 

metaanalyses, understand the true impact of an intervention, or construct good quality 

guidelines. Each of the definitions has its strengths and limitations. As long as the 

precise pathogenesis of ischemia remains unknown, it is challenging to determine 
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which term is preferable. Consistent use of valid terminology is however essential for 

collecting useful data about cerebral ischemia after SAH.  

 

In 2009, Frontera and colleagues argued that “delayed cerebral ischemia” (DCI), a 

definition that incorporates both symptomatic deterioration and cerebral infarction, 

was the most clinically relevant definition.151 They compared frequently used 

definitions, and found that DCI had the strongest associations with overall poor 

outcome, cognitive impairment and reduced quality of life. 

 

In 2010, a multidisciplinary research group led by Vergouwen proposed uniform 

definitions for “clinical deterioration caused by DCI” and “cerebral infarction”.152 

They recommended that the term “vasospasm” should be reserved for angiographic 

arterial narrowing only. 

 

In 2011, a literature review of consensus panel recommendations and original 

research studies concluded that the use of combined measures with both clinical and 

radiographic assessment should be limited.153 Clinical deterioration and angiography 

results should preferably be reported separately. “Cerebral infarction” (found in 

neuroimaging studies or autopsy) was considered to be the most appropriate definition 

for DCI in clinical trials. Cerebral infarction is strongly correlated with functional 

outcome, neuroimaging can detect ischemia in sedated and comatose patients, and the 

interobserver agreement rate is high. Furthermore, infarction is an objective 

quantification of the ultimate consequences of cerebral ischemia. 

 

In 2015, a variation of the terminology for neurological dysfunction after aSAH was 

proposed.154 Kapinos argues that the aggregate definitions recommended by 

consensus panels152, 153 mixes a heterogenic patient group with neuronal dysfunction 

caused by different mechanisms and processes. In stead, he advocates for a 

terminology based on descriping the clinical impairment, physiological disturbance, 
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or image abnormality, and argues that this is more precise in describing the exact 

abnormality for each subgroup of patients. 

 

In this thesis, the definitions recommended by the literature reviews and international 

consensus panel by Vergouwen and colleagues is used.152, 153 

7.3.1 Delayed cerebral ischemia (DCI) 

The term “delayed cerebral ischemia” (DCI) has been used for neurological 

deterioration or cerebral infarction after SAH, or both.151 The definition thus includes 

clinical and/or radiographic (CT/MRI) evidence of ischemia.  

7.3.2 Clinical deterioration due to DCI  

“Clinical deterioration due to DCI” is defined as a new focal neurological impairment 

or reduction in level of consciousness.152, 153 The precise definition is as follows: 

 Focal neurological impairment or Glasgow Coma Score reduction ≥2 points  

 Duration of the deterioration  ≥ 1 hour 

 Deterioration should not have been apparent immediately after aneurysm 

occlusion  

 Deterioration should not be attributable to other causes by means of clinical 

assessment, cerebral CT or MRI scans, and appropriate laboratory studies 

Patients with aSAH often have spontaneous mild fluctuations in the level of 

consciousness. To reduce the number of false-negative events ascribed to DCI, the 

reduction in the Glasgow Coma Score must be at least 2 points, and the neurological 

deterioration must last for minimum 1 hour. 

Diagnostics of clinical deterioration due to DCI is difficult for several reasons. Firstly, 

the clinical spectrum of DCI is wide. Clinical features of DCI include neurological 
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deficits (such as hemiparesis, aphasia, apraxia, hemianopia and neglect) due to focal 

cerebral ischemia, and reduction in level of consciousness as a result of global 

cerebral ischemia. The clinical features may be subtle or marked. Symptoms and signs 

may appear abruptly or gradually, and typically fluctuates over time. Secondly, 

clinical deterioration due to DCI is a diagnosis per exclusionem. Multiple other 

conditions can cause clinical deterioration after SAH, e.g. rebleeding, hydrocephalus, 

seizures, hypoxia, hypotension, infections, heart failure, and the effect of sedatives. 

Because these other factors often are found in mild degrees, it is difficult to know 

when clinical deteriorations can be truly attributed to DCI. Thirdly, a proportion of 

patients are comatose or sedated after SAH, making them unavailable for clinical 

assessment. Using this definition of DCI that is purely based on clinical features will 

therefore underestimate the true incidence of DCI. 

7.3.3 Cerebral infarction from DCI 

Clinical features of DCI can be reversible and resolve spontaneously or after 

treatment. Alternatively, ischemia can progress to cerebral infarction, which can result 

in long lasting, severe disability or death. 

“Cerebral infarction from DCI” is defined as a new infarction, identified on CT or 

MR scans or autopsy, within six weeks after aSAH.152, 153 The precise definition is as 

follows: 

 Cerebral infarction should be identified on cerebral CT or MR scan within 6 

weeks after SAH, or on the latest CT or MR scan made before death within 6 

weeks after SAH, or proven at autopsy 

 Cerebral infarction should not have been present on CT or MR scan performed 

between 24 and 48 hours after aneurysm occlusion 
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 Cerebral infarction should not be attributable to other causes by means of 

clinical assessment, cerebral CT or MRI scans, and appropriate laboratory 

studies 

 Hypodensities on CT imaging resulting from ventricular catheter or 

intraparenchymal hematoma should not be regarded as cerebral infarctions 

from DCI 

Neuroimaging to detect cerebral infarction due to DCI is recommended performed 

within 6 weeks after the bleeding, as this includes the time window in which DCI 

occurs, and when most patients are in a stable clinical condition. A post-treatment CT 

or MR scan should be performed 24 to 48 hours after aneurysm occlusion to rule out 

edema and infarction related to the surgical or endovascular procedure.155 Other 

causes of hypodensities or infarctions should also be ruled out. 

Two major benefits of using neuroimaging in stead of clinical assessment, is a higher 

interobserver agreement rate and the ability to detect ischemia in sedated and 

comatose patients 

7.3.4 Vasospasm 

The term “vasospasm” (VSP) or “arterial narrowing” is reserved for narrowing of 

large cerebral arteries as evidenced by angiography (computed tomographic, magnetic 

resonance or digital subtraction angiography).152, 153 The term does not apply to 

clinical manifestations of DCI.  

Cerebral vasospasm is sometimes already seen in the acute phase after aSAH, but 

most commonly develops between days 4 and 14 after the hemorrhage, with a peak 

incidence between day 6 and 10, and resolves spontaneously after 2-3 weeks.156, 157  
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Arterial narrowing can be evaluated directly by angiographic studies, or indirectly by 

sonographic studies. Cerebral vasospasm is found on angiography in as many as 70% 

of patients following aSAH,158 whereas only 30% develops DCI.159-162 

Transcranial Doppler ultrasound diagnostics was not included in the definition 

recommended by the multidisciplinary group,152, 153 due to lower sensitivity and 

specificity for angiographic arterial narrowing.163, 164 However, a recent review 

assessed the impact of TCD vasospasm on DCI, defined as clinical or radiological 

(CT/MRI) evidence of ischemia.165 The meta-analysis shows that TCD evidence of 

vasospasm predicts DCI with high accuracy.165 The sensitivity and negative 

predicitive value is high (respectively 90% and 92%), and the specificity is fair 

(71%). 

7.4 Risk factors 

The risk of DCI after SAH is primarily related to the severity of the initial 

hemorrhage. Large amount of subarachnoid blood detected on CT imaging and poor 

neurological status on admission are established predictors of DCI.55, 166-169 Several 

other potential risk factors or predictors have been proposed. A systematic review 

found strong evidence for increased risk of DCI in smokers (pooled OR 1.2).170 Data 

was too sparse to draw conclusions on other suggested predictors. Moderate evidence 

was found for increased risk in patients with hydrocephalus, history of diabetes 

mellitus, hyperglycemia on admission, or early systemic inflammatory response 

syndrome. Moreover, limited evidence was found for increased risk of DCI related to 

female sex, history of hypertension, initial loss of consciousness, previous use of 

selective serotonin reuptake inhibitors, hypomagnesemia, history of migraine, low 

hemoglobin on admission, or high blood flow on early transcranial Doppler. For age, 

history of cardiovascular disease, previous use of statins, and cocaine, evidence was 
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inconsistent. Strong evidence was, however found for absence of an association 

between DCI and the location of the aneurysm. 

In addition, there was no significant difference between aneurysm clipping or coiling 

in the risk of developing cerebral vasospasm or cerebral infarction from DCI.171, 172  

7.5 Detection and diagnosis 

There are three main tools for detection and monitoring of DCI: clinical, 

radiographical, and physiological.  

Clinical monitoring involves frequent neurological assessments to detect new 

neurological deficits caused by ischemia. Not all ischemic events are, however, 

detectable on clinical examination. Asymptomatic infarctions are found in 10-20% of 

patients with aSAH,173-175 and clinically unrecognized infarctions are more common 

in comatous patients.173 Clinical examination is considered adequate in detecting DCI 

in good grade patients, but less reliable in poor grade patients with reduced level of 

consciousness. Poor grade patients may thus require advanced multimodal 

monitoring.  

Radiographical monitoring modalities include conventional digital subtraction 

angiography, CT and MRI with angiography and perfusion techniques.176, 177  

Physiological monitoring modalities include transcranial Doppler ultrasonography, 

cerebral microdialysis, brain tissue oxygenation tension, cerebral blood flow, 

electroencephalography, and near-infrared spectroscopy.176, 178 
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7.6 Treatment 

Treatment options can be divided into three groups: preventive measures to avoid the 

development of DCI, first-line therapy initiated after DCI is established, and rescure 

therapy for medically-refractory DCI.   

7.6.1 Prevention of DCI 

The mainstay of DCI prevention in patients with aSAH is treatment with nimodipine 

and maintenance of normal circulating blood volume. 

Nimodipine, a calsium channel antagonist, is the only drug with class 1 evidence of a 

beneficial effect in the prevention of DCI.179-181 Administration of Nimodipine is 

recommended for all patients with aSAH.54, 56, 176 The drug has has been shown to 

improve neurological outcomes, but has no proven effect on angiographic 

vasospasm.130 

In addition, guidelines from the American Heart Association/ American Stroke 

Association (AHA/ASA) recommends maintenance of euvolaemia and normal 

circulating blood volume to prevent DCI (class I, level B).56  

7.6.2 First-line therapy for new-onset DCI 

Hemodynamic therapy with induced hypertension and volume optimization are the 

foundation in first-line therapy for DCI.178  

A combination of hypervolemia, induced arterial hypertension, and hemodilution, so 

called “triple-H therapy”, has long been advocated as standard treatment for DCI after 

SAH.182 However, limited data are available regarding the efficacy and safety of such 

treatment. Based on recent literature, focus has shifted from triple-H therapy towards 

isolated hypertension and maintenance of euvolemia.183-186 The hypervolemia-
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component offers no definite benefit in DCI-treatment, and expansion of the 

intravascular volume might even be harmful. Complications associated with induced 

hypervolemia include hyponatremia, pulmonary edema, cerebral edema, cardiac 

arrhythmia, and congestive heart failure.185 Still, hypovolemia is associated with 

adverse outcome after SAH, and should be avoided in all patients. The goal should 

thus be to maintain euvolemia, rather than attempting to induce hypervolemia.176 

Hypertension effectively increases cerebral blood flow and is able to reverse ischemic 

neurological deficits in two-thirds of patients.187 In the latest AHA/ASA treatment 

guidelines, induction of hypertension is recommended for patients with DCI as 

tolerated by cardiac output unless blood pressure is elevated at baseline or cardiac 

status precludes it.56 

7.6.3 Rescue therapy for medically-refractory DCI 

If ischemia is not adequately reversed in response to first-line therapy, DCI is 

considered refractory, and second-line “rescue therapy” is indicated. Such rescue 

therapy primarily consist of endovascular intervention and circulatory optimization. 

Endovascular therapy can be divided into mechanical dilation and intra-arterial 

administration of vasodilating drugs. Both methods have been shown to successfully 

reduce angiographic vasoconstriction and improve neurological outcome.188 

According to current guidelines, endovascular therapy can be considered in patients 

with vasospasm-related DCI, particularly those who are not rapidly responding to 

hypertensive therapy (class IIa, level B evidence).56, 176 Percutaneous transluminal 

balloon angioplasty is a procedure where constricted area of cerebral arteries are 

mechanically stretched and dilated. The technique is limited to proximal vessels, and 

main drawbacks include risk of thromboembolism, dissection, and vessel rupture. 

Advantages of intra-arterial vasodilators are better distal penetration, and a favorable 
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safety profile. Limitations include short-lasting effect, and risk of hypotension and 

increased ICP.178, 188  

Augmentation of hemoglobin levels and increasing cardiac output (CO) with fluids 

and inotropes is also feasible and can improve brain perfusion after SAH.176, 178, 189  

If a patient still demonstrates neurological worsening despite the above-mentioned 

measures, the physician is left with the option of engaging nonevidence-based 

therapies, like induced therapeutic hypothermia, aortic flow diversion, or intrathecal 

vasodilators.178 

7.6.4 Ongoing studies and ineffective treatment 

therapies 

There is a lack of high-quality definitive data in several areas regarding treatment of 

DCI. This has led to a large variability in practice patterns in management of DCI.190 

Several novel therapies for preventing and treating DCI after aSAH have been 

assessed, with variable results. Some treatment therapies have failed to show a 

beneficial effect, whereas others have yielded promising results yet warrant further 

investigation.  

Medications like cilostazol, eicosapentaenoic acid, erythropoietin, heparin, and 

methylprednisolone all demonstrate promising results in smaller, non-randomized or 

retrospective studies, yet remain to be tested in larger randomized controlled trials.191 

Topical application of nicardipine implants, a calsium channel antagonist, may also 

reduce angiographic VSP and clinical deterioration due to DCI, but warrant further 

investigation.191-193 In addition, different methods to improve subarachnoid blood 

clearance have been established, but their effect on outcome remains unclear.191  
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Current evidence does not support prophylactic use of clazosentan, magnesium, or 

simvastatin.191  Furthermore, prophylactic angioplasty of the basal cerebral arteries194, 

prophylactic hypervolemia195-197, and antiplatelet prophylaxis198 is also considered 

ineffective in reducing morbidity.178, 188 

7.7 Consequences of DCI 

Most case series have reported that 20-35% of patients develop DCI after aSAH.159, 

162, 199-206 Ischemia can be reversible, but may also progress to cerebral infarction, 

severe disability or death. Next to the initial hemorrhage and rebleeding, DCI is a 

major causes of morbidity and mortality after aSAH.81, 159 Patients with DCI incur 

substantially higher treatment costs and a significantly slower resumption of 

employment compared to those who do not develop DCI.199 The cost difference is 

mainly explained by larger volume of imaging and investigations, longer length of 

stay, and complications and adverse events that are more serious.199 
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8. NEUROSONOLOGY 

Several sonographic methods are used to assess neurological disorders. In this thesis 

the focus is on carotid ultrasound and transcranial Doppler. 

8.1 Ultrasound 

Ultrasounds are sound waves that have a frequency above the limit of human hearing 

(i.e. 20 kHz). In medical ultrasound, also known as ultrasonography, high-frequent 

sound waves are used to determine size, shape, consistency and movement of tissues, 

organs and body fluids. Oscillating piezoelectric elements in an ultrasound transducer 

generates ultrasound by converting electrical pulses to mechanical vibrations. The 

transducer emits sound waves into the body and receives reflected sound returning 

from the body. When ultrasound enters the body, it travels through different tissues. 

Sound waves are reflected back to the transducer (reflection), transmitted to deeper 

structures (transmission), scattered, or partly absorbed and converted to heat. 

Returned mechanical vibrations is converted back into electrical energy, and 

translated into an image on a computer screen. Information about the time interval 

between when the sound was sent and received, as well as the amplitude and the pitch 

of the sound, are used to calculate depths and velocities and produce computer 

images. 

Compared to other imaging techniques, ultrasound has several advantages. The 

method provides real-time information, has low costs, is non-invasive and does not 

involve harmful ionizing radiation. As many ultrasound devices are portable, 

examinations can also be performed bedside. The disadvatages of medical ultrasound 

include limited fields of view due to patient physique or cooperation, and difficulty 

with imaging structures behind bone and air. Furthermore, a skilled operator is 

required for optimal examination and interpretation of findings.  
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The ALARA (As Low As Reasonably Achievable) principle is advocated for all 

ultrasound examinations. This safety principle instructs that the power setting should 

be as low as possible and the scanning time as short as possible, to reduce exposure to 

potentially harmful bioeffects.207 

There are several ultrasound modes:  

A-mode (amplitude mode) is the simplest type of ultrasound imaging. A single 

transmitter emits an ultrasound pulse, and then switches to receiving mode. Reflected 

sound waves are displayed on a screen as spikes on the time (x-) axis. The stronger 

the returned wave, the larger the amplitude of the spike. 

B-mode (brightness mode) is the most common form of ultrasound imaging. The 

strength of the returning wave is recorded as a bright dot instead of a spike. The 

brightness of the dot indicates the intensity of the returning echo. Multiple ultrasound-

emitting crystals are activated sequentially, and a grey-scale image is generated.  

M-mode (motion mode) shows movement by displaying echo strenght on a straight 

line as a function of time.   

Doppler mode is used to examine moving elements, for example blood. Ultrasound 

waves that hit moving structures are reflected with a changed frequency, depending 

on the direction and velocity of the moving object. 

Color Doppler flow imaging combines grey-scale imaging with color codes that 

indicates direction and velocity. The insonated object is displayed with red color 

when it is moving towards the ultrasound probe, whereas the color is blue if the 

direction of movement is away from the probe. 

Power Doppler mode visualizes the strength of the Dopplersignal in color (instead of 

direction and velocity). 
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Duplex imaging is the combination of B-mode two-dimentional grey-scale image to 

visualize tissue, and Color Doppler mode to measure velocities. This allows for 

simultaneous visualization of the anatomy of the area, while assessing blood flow 

velocities. Furthermore, this method enables measurement of the Doppler angle, 

making it possible to correct the frequency shift with the use of cosine of the 

insonation angle.  

Triplex imaging is B-mode combined with two displays of the Dopplersignals; 

within the grey-scale imaging, and graphic flow. 

8.2 Carotid ultrasound and intima-media thickness 

(IMT) 

The carotid artery wall lies close to the surface of the skin, and is easily accessible for 

visualization with ultrasound (Figure 6). 
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Figure 6. Carotid ultrasound with insonation of the vessel wall 

Ultrasound imaging with sagittal view of the carotid artery, showing the three layers 

of the arterial wall. Reprinted with permission of Stephen W. Parcell, all rights 

reserved.208  

 

The arterial wall is composed of three layers: intima, media, and adventitia. Carotid 

intima-media thickness (IMT) was first described in 1986 as the combined thickness 

of the common carotid artery’s innermost and middle layer (the tunica intima and 

tunica media) as measured by ultrasonography.209 Different tissues have varying 

echogenicity, and the interfaces are ultrasonographically detectable. Although 

ultrasound cannot discriminate between the intimal and medial layers because of 

insufficient axial resolution, B-mode imaging displays a visible transition from the 

hypoechogenic lumen of the artery into the hyperechogenic intimal layer (lumen-



 

 

48 

intima border), and the transition from the hypoechogenic medial layer into the 

hyperechogenic adventitia (media-adventitia border). Ultrasonography thus depicts 

the intima-media complex as a double line structure (Figure 7). The ultrasonographic 

observations of IMT have been verified by histology, and show insignificant 

difference between sonographic and histological measurements.210  

 

 

Figure 7. Intima-media thickness visualized by carotid ultrasound 

B-mode imaging of the bifurcation of the carotid artery. CCA indicates common 

carotid artery; ECA, external carotid artery; and ICA, internal caotid artery. The 

intima-media complex is visible as a double echogenic line within the red box at the 

far wall of the CCA. Printed with permission of Annette Fromm, Bergen Stroke 

Research Group, all rights reserved. 

 

IMT provides information about the degree of subclinical atherosclerosis, and is an 

idependent vascular risk marker.211 IMT correlates with a number of traditional 

vascular risk factors such as hypertension, smoking, and hypercholesterolemia.212, 213 

Multiple epidemiological studies have established that increased IMT is associated 

with elevated risk for ischemic stroke214, 215 and myocardial infarction.211, 212, 214-217 

IMT is a valuable tool for assessment of atherosclerosis and cardio- and 

cerebrovascular disease, and is increasingly being used for risk stratification in 

individuals and as an endpoint in interventional studies.218 
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8.3 IMT and intracranial aneurysms 

Persons with atherosclerosis have an increased prevalence of intracranial aneurysms 

(RR 2.3),14 and increased carotid IMT is associated with atheroclerosis.219 

Accordingly, it is conceivable that persons harbouring IAs may have increased carotid 

IMT. However, data available for carotid ultrasound findings in patients with 

intracranial aneurysms are scarce.220, 221  

Individual assessment of rupture risk of cerebral aneurysms is challenging, and 

increased knowledge of predictors for aneurysm rupture sought after. As smoking and 

hypertension are shared risk factors for aneurysm rupture34, myocardial infarction222 

and ischemic stroke,223 IMT may be a shared risk marker. At the start-up time of the 

observational study, which is the basis for this thesis, no reports had assessed if there 

is any association between carotid IMT and rupture status of IAs.  

8.4 Transcranial ultrasound 

Transcranial ultrasound (TCU) is used to evaluate the intracranial vascular system in 

patients with cerebrovascular disease. TCU enables assessment of cerebral 

hemodynamics by measuring blood flow velocities in intracranial blood vessels. The 

technique is based on the Doppler effect which was first described by the Austrian 

physicist, Christian Doppler, in 1842.224, 225 The Doppler effect states that if an 

observer is moving towards or away from the source of sound waves, then a greater or 

lesser number of waves fronts will pass the observer in a given time interval, and so 

the observer will measure a higher or lower frequency than that wich was transmitted. 

The basic of TCU is that a transducer emits low-frequency sound waves (≤2 MHz) 

through the cranium, hence the name “transcranial”. When the ultrasound waves hits 

a moving object, like red blood cells within intracranial blood vessels, they are 

reflected with a different frequency. The difference in ultrasound frequency provides 
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information about the velocity and direction of the blood cells, and is called Doppler 

shift. The mathematical equation and principle of calculating velocitites is illustrated 

in Figure 8. 

 

 

Figure 8. Measurement of blood flow velocitites by means of ultrasonographic 

Doppler examination.  

Blood flow velocity is calculated as v = fd c / 2 ft cosθ, where v = velocity of blood, c 

= velocity of sound, fd = difference in frequency (Doppler shift), ft = transmitted 

frequency, fr = received frequency and θ = insonation angle (angle between sound 

beam and flow axis). If the Doppler shift is positive (increased frequency) the blood 

flow direction is towards the probe, and if the Doppler shift is negative (reduced 

frequency) the blood flow direction is away from the probe. Image by Bergen Stroke 

Research Group, all rights reserved. 

 

In general, the skull bone is too thick to penetrate with ultrasound, but there are a 

number of “acoustic windows” such as natural foramina, or where the bone is 
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sufficiently thin for a significant amount of ultrasound energy to penetrate. Figure 9 

illustrates the main bone windows used in transcranial Doppler ultrasound. 

 

Figure 9. Bone windows and approaches in transcranial Doppler 

The main bone windows used in transcranial Doppler ultrasound enables insonation 

of intracranial vessels through the transtemporal (TT), transorbital (TO), 

transforaminal (TF) and submandibular (SM) approach.226 The transtemporal 

approach is subdivided into three smaller windows: anterior (A), middle (M) and 

posterior (P). Reprinted from Ttitianova and Vastagh227 with permission of 

Cambridge University Press, all rights reserved.  

 

The most commonly used approach is transtemporal, which allows insonation of the 

middle cerebral arteries, anterior cerebral arteries, posterior cerebral arteries and 

intracranial internal carotid artery. The transorbital approach is used to insonate the 

ophthalmic arteries and the carotid siphons. The transforaminal approach allows 

insonation of the vertebral and basilar arteries through the foramen magnum. The 

submandibular approach is used to assess the internal carotid artery as it enters the 

skull. In addition to the four main apporoaches,226, 228-231 a frontal approach is used to 

insonate the origins of the A2 segment of the anterior cerebral artery.232 
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The major disadvantage of TCU is that some persons have poor bone windows 

preventing adequate insonation. The proportion of persons with inadequate bone 

windows varies from 3% to 35% among studied populations.233-236 The insonation 

deficiencies may be bilateral or unilateral. Inadequate or missing bone window is 

associated with advanced age and female sex,233, 237-240 African-American237 and 

Asian241 descent, and cranial bone thickness.234 

Furthermore, it can be difficult to perform TCU examinations in restless or 

uncooperative patients. This may include children, patients with stroke or head injury, 

or in a post-operative setting. Patients with aSAH often have reduced cooperation 

abilities due to confusion and neck stiffness. Additionally, patients often have 

intracranial air after craniotomy with clipping of IAs or evacuation of hematomas, 

which prevents adequate insonation the first days after surgery. 

There are multiple indications for TCU.242-246 Table 2 presents major applications for 

TCU, but is not a complete overview. 

 

Table 2. Indications for transcranial Doppler ultrasound 

Detection and monitoring of vasospasm after subarachnoid hemorrhage 

Assessment of intra- and extracranial occlusive disease 

Intraoperative monitoring of intracranial blood flow 

Evaluation of collateral blood flow 

Sonothrombolysis and assessment of recanalization in acute ischemic stroke 

Detection and monitoring of intracranial vasculopathy in sickle cell disease 

Identification of vascular supply of arteriovenous malformations 

Assessment of cerebrovascular reactivity 

Confirmation of brain death 
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TCU can be performed using either imaging or non-imaging techniques. The two 

techniques are presented in the following sections. 

8.4.1 Transcranial Doppler (non-imaging) 

Conventional transcranial Doppler (TCD) was introduced in 1982 by Rune Aaslid.247 

TCD is performed with small, low frequency sector transducers. The most commonly 

used frequency is 2 MHz, but transmission can be between 1 MHZ and 3 MHz. 

Figure 10 illustrates transtemporal insonation of intracranial arteries by TCD. 

 

Figure 10. Insonation of intracranial arteries by transcranial Doppler 

Image courtesy of Rune Aaslid. 

 

TCD is a non-imaging technique. The insonated blood vessel is not visible, only a 

spectral Doppler waveform is displayed (Figure 11). 
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Figure 11. Spectral Doppler waveform of the middle cerebral artery 

Spectral Doppler recording with time as the horizontal axis and blood flow velocity 

on the vertical axis. Mean flow velocity is 55.8 cm/s. Image by Marianne Lundervik 

Bøthun, all rights reserved. 

 

Acquisition of the Doppler signal from intracranial vessels with this technique 

requires “blind” manipulation of the probe and adjustment of depth of the sample 

volume.226  TCD is therefore often refered to as “blind” Doppler. TCD can be 

technically challenging, particularly for inexperienced operators. 

8.4.2 Transcranial color-coded duplex sonography 

(imaging) 

Transcranial color-coded duplex sonography (TCCS) was introduced in the early 

1990s.248-250 TCCS is performed with a larger sized phased array transducer with 

Doppler frequency from 2 MHZ to 3.5 MHz, and imaging frequency up to 4 MHz.229   

 

Unlike conventional TCD, TCCS allows visualization of anatomic landmarks and 

spatial course of the blood vessels. In TCCS, brightness-mode and color Doppler flow 

is combined to obtain grayscale images of cerebral parenchyma and duplex images of 

intracranial vessels, see Figure 12.  
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Figure 12. Insonation of intracranial arteries by transcranial color-coded duplex 

sonography  

The upper left panel (A) displays the spatial course of blood vessels. The upper right 

panel (B) shows a schematic overview over insonated vessels using the transtemporal 

approach. Red color indicates flow direction towards the probe, and blue color 

indicates flow direction away from the probe. The lower panel (C) shows combined 

grey scale image of brain parenchyma, and Color Doppler of intracranial vessels. 

Time-averaged peak flow velocity (TAPV) in the middle cerebral artery is 82.8 cm/s. 

Image by Bergen Stroke Research Group and Marianne Lundervik Bøthun, all rights 

reserved. 
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TCCS has three major advantages compared with non-imaging transcranial Doppler 

sonography.251 Firstly, TCCS facilitates vessel identification and makes it easier to 

follow tortous vessels and identify arterial branching. Secondly, it offers the 

opportunity for angle correction, resulting in more accurate measurement of blood 

flow velocities. Thirdly, imaging of blood vessels and parenchyma enables more 

precise and detailed diagnostic information. TCCS enables examination of the 

diameter and position of the third ventricle and a potential midline shift. Intracerebral 

hemorrhage, aneurysms, and arteriovenous malformations may also be detected by 

TCCS. Furthermore, both extra- and intracranial vessels can be examined using a 

single Duplex ultrasound device. 

TCCS is less operator-dependent compared with TCD. Still, TCCS have a relative 

insensitivity for low flow signals, and it is important that TCCS operators use their 

knowledge of intracranial anatomy and complete a single-gate spectral analysis even 

if the color visualization is incomplete or suboptimal. Fewer diagnostic criteria for 

intracranial disease are available for TCCS compared with conventional TCD. 

Another limitation of TCCS is that imaging transducers are unsuitable for continuous 

bilateral monitoring by fixation in a headframe; smaller or adabtale transducers are 

required. There is also a lack of software for a variety of specialized TCD tasks, such 

as emboli detection and CVR assessment. Lastly, the machine used for TCCS 

examinations is larger and more expensive compared with conventional TCD 

machines. 

8.5 Transcranial ultrasound and vasospasm 

The knowledge that blood flow velocity is increased in a constricted vessel has led to 

the use of TCU in detection and monitoring of cerebral vasospasm.  
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Hemodynamic principles states that blood velocity (V) is related to flow (Q) and 

diameter of a vessel (D) by the following equation: V = 4Q/πD2. This relationship 

indicates that given a constant blood flow, velocity is inversely proportional to the 

squared diameter of the vessel lumen. An elevated blood flow velocity is thus 

indicative of vessel lumen reduction.  

An example of VSP in the middle cerebral artery (MCA) is shown in Figure 13. For 

the MCA the commonly used threshold levels for vasospasm are >120 cm/s (mild 

VSP), and ≥200 cm/s (severe VSP).163, 165, 244 A rapid increase in velocity (>50 cm/s 

over two consecutive days) is also strongly predictive of symptomatic vasospasm.252-

254 The use of relative velocity changes have been proposed as an alternative indicator 

of VSP,255 but is found inferior in predicting symptomatic VSP compared to 

established absolute thresholds.252 For arteries other than MCA, there is no consensus 

regarding threshold levels. 

A variety of factors influence flow velocities, and must be taken into account when 

interpreting TCU results. Such factors include technical issues, vessel anatomy, 

patient age, intracranial pressure, arterial blood pressure, hematocrit, arterial CO2 

level, collateral flow patterns, and response to therapeutic interventions like triple-H 

therapy.244  

Hyperemia will also present with increased flow velocities. Lindegaard and 

colleagues established a tool to help differentiate hyperemia from vasospasm as a 

cause of elevated velocities.256 Lindegaard index (LI) is defined as the ratio between 

the mean flow velocity in the middle cerebral artery and the mean flow velocity in the 

ipsilateral extracranial internal carotid artery. Elevated velocities with LI < 3 is 

indicative of hyperemia, whereas LI 3-6 and LI > 6 indicates mild and severe 

vasospasm respectively. In published literature, there are several favorable reports for 

the use of the LI to increase the diagnostic accuracy of TCU.256-259 However, some 
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results are less supportive of an added value of using LI compared with uncorrected 

MCA velocities.260, 261 

 

Figure 13. Severe vasospasm in the left middle cerebral artery  

TCCS nine days after aneurysmal subarachnoid hemorrhage displays elevated blood 

flow velocities in the left middle cerebral artery due to severe vasospasm. Time 

averaged peak velocity is 227 cm/s, and the Lindegaard index 7.7. Image by Marianne 

Lundervik Bøthun, all rights reserved. 

 

A recent study suggests an alternative approach for diagnosing vasospasm by 

TCCS.262 Extracranial ultrasonography of the internal carotid artery (ICA) can be 

difficult in an intensive care unit setting. Restricted neck movements and central lines 

in the internal jugular vein can hamper optimal placement of the linear-array probe, 

making assessment of the extracranial ICA technical challenging. Connolly and 

collegues proposes a new index, defined as the ratio between blood flow velocities in 

the MCA and the basal vein of Rosenthal.262 This intracranial arteriovenous index has 



 

 

59 

better practicability and a greater reliability compared with the established LI, and is a 

promising alternative approach. 

TCU has several advantages compared with other methods for detection and 

monitoring of VSP. Firstly, it is non-invasive, and unlike conventional angiography, 

this method has no risk of complications like thromboembolisms, vessel dissection or 

rupture. Secondly, repeated measurements and monitoring is feasible, unlike for DSA 

and CTA, which are restricted due to the use of ionizing radiation and contrast agent. 

Thirdly, the bedside suitabilty reduces the need to transport unstable patients on 

ventilators from the ICU to the radiology department. Lastly, the method has low-cost 

compared with other methods. 

The main limitation of TCU in VSP diagnostics is that a proportion of patients cannot 

be properly insonated due to poor bone window or intracranial air after surgery. 

Furthermore, the method is operator dependent, and like for CTA, TCD has limited 

ability to detect distal VSP. 

The exact sensitivity and specificity of TCU for detecting vasospasm depends on 

which parameters and values are used. Different definitions have been used as TCD 

evidence of vasospasm (absolute thresholds from 120 cm/s to 200 cm/s, or relative 

changes in blood flow velocity). Furtermore, there is also a variation in the predicted 

outcome, e.g. angiographic VSP, symptomatic VSP and DCI. A recent review and 

metaanalysis found that TCD evidence of vasospasm is predictive of DCI with high 

accuracy (threshold 120 cm/s, sensitivity 90%, specificity 71%, positive predictive 

value 57%, negative predictive value 92%).165 The high sensitivity and negative 

predictive value makes it an ideal method for VSP monitoring. The diagnostic 

precision is greatest in MCA, which is also the preferred artery to study due to easy 

accessibility and favorable insonation angle.163 TCCS has similar, or even better, 

diagnostic accuracy for VSP assessment, compared with conventional TCD.259, 263-265  
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According to relevant guidelines, TCD is considered reasonable and useful for 

detection and monitoring of vasospasm after aSAH (Class IIA recommendation/Level 

B evidence).56, 176 For VSP in the middle cerebral artery and basilar artery the level of 

evidence is higher (Class I-II, Level A).244 Still, there is a lack of knowledge about the 

effect of TCD monitoring on clinical outcome, and TCD is thus not a mandated 

standard of care in aSAH. High-quality randomized trials evaluating the impact of 

TCD monitoring on outcome (disability, quality of life, cerebral infarction, mortality, 

etc) are warranted. 

In conclusion, TCU is recommended for detection and monitoring of VSP after 

aSAH, yet added evidence for clinical impact is warranted. 

8.6 Cerebrovascular reactivity 

Cerebrovascular reactivity (CVR) provides information regarding cerebral vasculature 

control of distribution of blood flow. Cerebral arterioles have the ability to regulate 

vascular resistance, and play an important role in autoregulation to maintain constant 

cerebral blood flow throughout variations of cerebral perfusion pressure. Ohm’s law 

states that blood flow (Q) equals difference in pressure (∆P) divided by resistance (R). 

Arteriole dilation reduces peripheral resistance and increases blood flow in proximal 

vessels, whereas arteriole constriction increases resistance and reduces proximal flow. 

CVR is defined as the change in cerebral blood flow, or blood flow velocity, in 

response to a stimulus that makes arterioles dilate or contract. Different vasoactive 

stimuli and measurement methods are listed in Table 3.266 
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Table 3. Different methods used to assess cerebrovascular reactivity266 

Vasoactive stimuli 

CO2 

Hyper-/hypoventilation 

Breath-holding 

Acetazolamide 

Measurement of cerebral blood flow 

CT perfusion 

MR perfusion 

Xenon-enhanced CT 

Positron emission tomography 

Single Photon Emission Computed Tomography 

Near infrared spectroscopy 

Transcranial Doppler* 

* In transcranial Doppler, cerebral blood flow is not measured directly.  

Instead, blood flow velocities are used as an indicator of flow. 

 

By reflecting the vasodilating or -constricting capacity of cerebral resistance vessels, 

CVR provides information about cerebrovascular integrity, hemodynamics and 

pathophysiology in cerebrovascular diseases. There are several applications for CVR 

in neurosonology; still the majority of studies have been performed in patients with 

carotid artery occlusive disease. Impaired CVR is associated with increased risk of 

stroke and transient ischemic attack.267 Moreover, several pathological conditions 

affecting brain microvasculature have a potential association with impaired CVR, 

including hypertension,268 diabetes mellitus,269, 270 and vascular dementia.271, 272  

CVR tests how cerebral flow responds to exogenic vasoactive stimuli (such as CO2 or 

acetazolamide), whereas autoregulation tests investigate how cerebral flow responds 

to changes in systemic blood pressure. The mechanisms of autoregulation are 
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multifactorial, and can be affected by a number of physiological parameters such as 

transmural pressure, CO2, autonomic function, intracranial pressure, etc. CVR on the 

other hand is solely connected with vasodilation or -constriction. When assessing 

cerebral autoregulation several vasomotor mechanisms are tested to see if cerebral 

blood flow levels are maintained at different blood pressure values. In clinical 

practice, CVR tests are easier to perform compared with the more complex testing of 

cerebral autoregulation. 

8.7 Cerebral vasoreactivity and intracranial aneurysms 

Information about CVR can improve the understanding of cerebrovascular integrity in 

patients harboring intracranial aneurysms. Data on CVR in persons with UIA are 

sparse. Few reports have been published for this patient group, and all involved small 

study populations (n ≤ 10) and used CO2 as vasoactive stimuli.273-278 To our 

knowledge, there are no available data on CVR in persons with UIA assessed with 

TCD and acetazolamide test.  

In contrast to the limited number of CVR studies in persons with UIA, there are 

several reports on CVR in patients with RIA. CVR is often impaired in the early 

phase after aSAH,273-275, 277, 279-281 especially in patients with poor clinical grade.276, 277, 

282, 283  

Impaired CVR may also be associated with VSP and DCI. Proximal artery narrowing 

in vasospastic vessels causes a poststenotic pressure drop and compensatory arteriolar 

dilation. The suggested theory is that the when vasospasm develops, pre-existing 

compensatory arteriolar dilation limits the capacity for further arteriolar dilation in a 

CVR test. The capacity for arteriolar dilation is impaired or, in severe cases, 

exhausted. When the peripheral vascular bed reaches its maximum dilating capacities, 

even a minor reduction of the proximal vessel lumen cannot be further compensated 
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and leads to ischemia. According to this hypothesis, vasospastic conditions may not 

become symptomatic in the contrary situation with preserved peripheral vasodilating 

capacity. 

In agreement with this theory, CVR in patients with established cerebral vasospasm 

after aSAH is reportedly different from CVR in healthy subjects.284 When CVR was 

assessed by means of TCD and CO2, patients with VSP had reduced vasodilating 

arteriolar capacity under hypercapnia.284  

If CVR is impaired also prior to ischemic symptoms, it may be able to predict the 

development of VSP and DCI after aSAH. With one exeption,281 the literature 

suggests that impaired CVR may be associated with vasospasm and can be a potential 

predictor for DCI after aSAH.280, 282, 283, 285-293 However, sample sizes have been 

limited, methodology has varied and inconsistent and outdated definitions of DCI 

have been used.  

8.8 Transcranial Doppler and acetazolamide challenge 

A common method of CVR testing is the TCD and acetazolamide test. Acetazolamide 

(AZ) has has been used in CVR testing for nearly 30 years.294, 295 AZ is a 

pharmaceutical substance that inhibits carbonic anhydrase and causes vasodilation of 

the cerebral arterioles, yet the exact mechanism of the drug is not fully understood.296-

298 The vasodilator effect of AZ is primarily confined to the arterioles and precapillary 

sphincters, and AZ has only a minimal effect on the diameter of larger proximal 

arteries.299 Velocity measured by TCD is thus approximately proportional to CBF. 

Reduced arteriolar resistance due to vasodilation causes increased CBF, and increased 

blood flow velocity, in the major cerebral arteries.   

Blood flow velocities (BFV) in an intracranial artery is measured continuously with 

TCD during the test. Usually the transtemporal approach is applied and the MCA is 
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insonated, but other intracranial arteries can also be examined. The probe is kept in 

position with a head strap or a special probe-holding device. BFV is recorded at 

baseline, and for 15-20 minutes after the injection of AZ in a peripheral vein. The 

usual dose of AZ is 1000 mg, but it can be adjusted according to body weight for 

improved standardization. The effect of AZ is apparent after 2 minutes, and velocities 

reaches maximum level 10-15 minutes after AZ is injected.300 CVR is reported as 

absolute change in velocity, or as percentage change. In medical literature, the range 

of CVR in healthy subjects assessed with TCD and AZ is wide. CVR has been 

reported to be between 34 and 65%, with velocity increase from 55 to 72 cm/s at 

baseline, to 76 to 97 cm/s after stimulation with AZ.269, 294, 300-310 A normal response 

with elevated MCA velocitites after AZ injection is illustrated in Figure 14. 

 

Figure 14. CVR test with transcranial Doppler and acetazolamide 

Mean flow velocity (MFV) in the right middle cerebral artery was 57 cm/s at baseline, 

and 87 cm/s after injection of 1000 mg acetazolamide. Cerebrovascular reactivity 

(percentage change in MFV after administration of acetazolamide) is thus 52.6%. 

This result is within the normal range, and indicates an intact vasoregulating capacity. 

*Note that the y-axis has a different scale for velocities in the two images (upper limit 
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of 150 and 200 cm/s before and after AZ, respectively). Image by Marianne 

Lundervik Bøthun, all rights reserved. 

In contrast to the normal response with significantly increased velocities after AZ, 

diminished CVR (lesser velocity increase) or exhausted CVR (no velocity increase), 

are considered to be pathological responses. In severely pathological cases, AZ can 

even cause “steal phenomenon”, a paradoxal reduction of blood flow velocitites in 

severely constricted arteries. Arterioles distal to unaffected arteries have normal 

dilating capacity, whereas arterioles distal to constricted arteries are already 

maximally dilated and have exhausted their ability to dilate further. Velocities in the 

constricted artery will thus be reduced after AZ injection, since blood flow is diverted 

to (or “stolen” by) unaffected arteries. Such hemodynamic steal phenomenon can lead 

to clinical deterioration and worsening of cerebral ischemia.293, 311 

Contraindications for AZ include sulfonamide allergy, severe renal or hepatic disease, 

adrenal or pituitary insufficiency, and elevated intracranial pressure. Possible side 

effects are usually transient and well tolerated, and include facial dysesthesias, 

headache, cranial fullness, flushing, dizziness, and nausea.295  
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9. AIMS 

The overall aim of this thesis was to investigate how neurosonological examinations 

can aid in risk assessment of 1) rupture of intracranial aneurysms and 2) development 

of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Specifically, 

we wanted to study the two ultrasonographic parameters “carotid intima-media 

thickness” (IMT) and “cerebrovascular reactivity” (CVR) in patients with intracranial 

aneurysms. The exact aims of each paper are listed below. 

 

Paper I - Carotid intima-media thickness in patients with intracranial aneurysm 

 Investigate carotid IMT and known risk factors for aneurysm rupture in patients 

treated for ruptured and unruptured intracranial aneurysms  

 Compare carotid IMT in patients with aneurysmal subarachnoid hemorrhage with 

IMT in patients with unruptured intracranial aneurysms, to assess if IMT may be 

associated with aneurysm rupture risk 

 

Paper II - Cerebrovascular reactivity after treatment for unruptured aneurysms 

 Describe CVR in patients after treatment for unruptured intracranial aneurysms, 

assessed by transcranial Doppler and acetazolamide test 

 Assess how characteristics of the patient, aneurysm and treatment modality affect 

CVR 

 

Paper III - Time-course of cerebrovascular reactivity in patients with 

unruptured aneurysms 

 Compare CVR examined within the first week after aneurysm treatment with CVR 

re-examined one year later, in order to elucidate the time-course of CVR in 

patients with unruptured intracranial aneurysms  



 

 

67 

 Assess whether factors like age, sex, smoking, hypertension, body mass index, 

treatment side, or treatment modality are associated with the stability of CVR over 

time 

 

Paper IV - Cerebrovascular reactivity and delayed cerebral ischemia after 

aneurysmal subarachnoid hemorrhage 

 Investigate if impaired CVR can predict delayed cerebral ischemia after 

aneurysmal subarachnoid hemorrhage. 

 Determine the relationship between aneurysm rupture status and CVR assessed by 

transcranial Doppler and acetazolamide test, in order to expand knowledge and 

improve understanding of CVR in this patient group. 
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10. METHODS 

10.1 Hospital structure and study population 

Haukeland University Hospital is a tertitary referral hospital with a catchment area of 

1.1 million inhabitants (2017), located on the southwestern coast of Norway. 

Department of Neurosurgery has 27 beds, including 7 surveillance beds in an 

intermediate unit (NOVA). Approximately 90 patients with intracranial aneurysms are 

treated annually. 

10.2 Selection of patients 

All patients in this thesis are selected from patients treated for saccular intracranial 

aneurysms at the Department of Neurosurgery, Haukeland University Hospital 

between February 2011 and May 2013. Patients with non-saccular aneurysms 

(fusiform, mycotic, blister-like, dissection and traumatic) were not included. The 

selection process for individual papers is presented below.  

Paper I (intima-media thickness) included patients treated for ruptured and 

unruptured aneurysms between February 2011 and August 2012. The single exclusion 

criterion for patients in this study was previous aneurysm treatment. Exclusion criteria 

relevant for CVR-studies (insufficient bone window, contraindications for 

acetazolamide, and treatment with proximal artery occlusion) did not apply for this 

paper.  

This paper also presents data from healthy control subjects. Controls were spouses 

and partners of ischemic stroke patients 60 years enrolled in the Norwegian Stroke 

in the Young Study (NOR-SYS) between September 2010 and August 2012.312 

Exclusion criteria for controls were known cardio- and cerebrovascular disease.  
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The number of patients in the study was 69, of which 41 were treated for ruptured 

aneurysms and 28 were treated for unruptured aneurysms. The number of controls 

was 80. 

Paper II (cerebrovascular reactivity) included patients treated for unruptured 

intracranial aneurysms at our department between February 2011 and May 2013. 

Patients not eligible for CVR-testing due to lack of transtemporal bone window or 

contraindications to acetazolamide (AZ) were excluded from the study. Since CVR-

results can be affected by the presence of moderate to severe carotid stenosis and 

treatment of giant aneurysms with proximal artery occlusion, patients with these 

conditions were excluded. To reduce possible influence of former aneurysm 

treatments on CVR, patients with previous treatment of intracranial aneurysms were 

also excluded. The number of patients in this study was 37.  

Paper III (time-course of cerebrovascular reactivity) was a follow-up study of 

patients in Paper II. Inclusion period, inclusion criteria and exclusion criteria were 

identical to those used in Paper II. The number of patients was reduced from 37 in 

Paper II to 34 in Paper III due to loss of follow-up of three patients.  

In Paper IV (cerebrovascular reactivity and delayed cerebral ischemia) patients 

treated for ruptured and unruptured aneurysms were included. Inclusion period were 

the same as in Paper II and III (from February 2011 to May 2013). In addition to 

previously mentioned contraindications for AZ, increased intracranial pressure due to 

intracerebral hematoma or edema is also relevant for patients with aSAH. Two 

additional exclusion criteria for patients with aSAH were used in Paper IV. Firstly, 

moribund patients were excluded for ethical reasons. Secondly, patients with 

vasospasm or delayed cerebral ischemia present at admission were excluded since 

injection of AZ can cause steal phenomenon and cerebral ischemia in patients with 

established vasospasm. The number of patients in this study was 79, of which 42 were 

treated for ruptured aneurysms and 37 were treated for unruptured aneurysms. 
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10.3 Patient treatment 

Aneurysms were treated with endovascular coiling or surgical clipping. All patients 

with aSAH were given nimodipine to prevent or treat delayed cerebral ischemia,54, 180 

regardless of presence of ischemic symptoms or not. The standard dose of 

Nimodipine was 60 mg given orally every four hours, for a minimum of two weeks. 

In critically ill patients, or in cases with swallowing difficulties, intravenous infusion 

of 2 mg/h was used. Intraarterial administration was applied in patients with severe 

and refractory radiographic vasospasm and clinical deterioration due to DCI.313 

Results of ultrasound examinations did not influence DCI management in patients. 

10.4 Data collection  

The thesis is based on a prospective observational study of patients treated for 

saccular intracranial aneurysms at the Department of Neurosurgery, Haukeland 

University Hospital between February 2011 and May 2013. Patients were readmitted 

for follow-up examinations one year after treatment. Clinical, radiographic and 

ultrasonographic data were obtained. Details on retrieved data are presented in the 

following sections. 

10.5 Clinical assessment 

Information regarding patient demography, aneurysm location, and treatment 

modality (clipping or coiling) was registered for all patients. Traditional vascular risk 

factors were also registered: hypertension (previously diagnosed and treated or 

systolic pressure >140 mmHg and/or diastolic pressure >90 mmHg persistently 

observed during admission and after the acute phase), smoking status (current, 

previous or never), diabetes mellitus, dyslipidemia, and body mass index. During 

hospital stay and follow-up patients underwent neurological examinations to evaluate 
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neurological status, and to detect and monitor clinical deterioration due to delayed 

cerebral ischemia. Clinical assessment included thorough neurological examinations 

and the use of The National Institutes of Health Stroke Scale (NIHSS),314, 315 a 

standardized assessment tool for stroke related neurologic deficit. Neurological status 

was scored routinely three times a day, and more frequent as regarded necessary. The 

Ph.D. candidate (MLB), medical doctors and nurses at the Department of 

Neurosurgery, Haukeland University Hospital performed the clinical assessments, and 

was trained specifically for this purpose. 

In patients with aSAH the clinical status upon admission was evaluated with Glasgow 

Coma Scale (GCS),316 and World Federation of Neurological Surgeons (WFNS) 

scale.317 The doctor on call graded the clinical status upon admission, and the Ph.D. 

candidate (MLB) reviewed results. 

10.6 Radiographic assessment 

All patients underwent cerebral computed tomographic (CT) scans and CT 

angiography prior to aneurysm treatment. Some patients with unruptured aneurysms 

also had digital subtractions angiography and/or MRI with angiography done as part 

of their pretreatment assessment. In patients with aSAH, findings in the cerebral CT 

scan at admission were classified according to the modified CT Fisher scale.286 

During hospital stay we obtained neuroimaging on admission, postoperatively, at the 

time of any clinical change, and before discharge. The imaging modality with best 

suitability according to the clinical situation was used (CT, CTA, MRI, MRA, or 

DSA). 

Angiography (CTA or digital subtraction angiography) was performed upon 

admission to locate the aneurysm, and during the hospital stay to diagnose or treat 

vasospasm. An experienced neuroradiologist (GM) assessed all angiograms, CT and 
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MRI scans retrospectively for the presence of angiographic vasospasm and cerebral 

infarctions. 

In paper III and IV, an experienced neurosurgeon with vascular expertice (CAH) 

measured aneurysm size using the following parameters: maximal diameter of the 

dome- independent of angles and directions (maximal diameter, Dmax), maximal 

diameter of the dome- perpendicular to the aneurysm height (width, W), maximal 

height from dome tip perpendicular to aneurysm neck (height, H), and diameter of the 

aneurysm neck (neck, N). Aspect ratio (H/N) and bottleneck ratio (W/N) were 

calculated.318, 319  

At follow-up 1 year after aneurysm treatment, patients underwent MRI with time of 

flight (TOF) angiography.  

10.7 Ultrasonographic assessment  

In paper I-IV, three ultrasonographic examinations were performed in patients treated 

for intracranial aneurysms: 1) extracranial duplex sonography with measurement of 

carotid intima-media thickness; 2) transcranial color-coded duplex sonography to 

assess blood flow velocities in intracranial arteries; and 3) cerebrovascular reactivity 

testing using transcranial Doppler and acetazolamide. In paper I, carotid intima-media 

thickness was also assessed in healthy partners of young patients with ischemic stroke 

as part of The Norwegian Stroke in the Young Study (NOR-SYS).312 

10.7.1 Carotid intima-media thickness 

In paper I, high resolution B-mode sonography of carotid arteries was performed in 

patients treated for ruptured and unruptured intracranial aneurysms. Healthy partners 

of young patients with ischemic stroke were used as controls, since they were already 
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included in another onoing study (NOR-SYS, The Norwegian Stroke in the Young 

Study, ClinicalTrials.gov Identifier: NCT01597453).312  

 

Patients were examined with a portable Phillips CX50 ultrasound system, and 12-3 

MHz linear array transducer. Controls were examined with a non-portable Phillips 

iU22, and 9-3 MHz linear array transducer (Philips Medical Systems, Bothell, WA, 

USA). 

 

When examined with carotid ultrasound, subjects were placed in the supine position 

with the head rotated 45° to the opposite side of the probe. IMT was measured at the 

longitudinal view of the distal common carotid artery (CCA), carotid bifurcation 

(BIF) and the proximal internal carotid artery (ICA).  

 

The tip of the flow divider (the dividing point of the internal and external carotid 

artery) was used for standard positioning and definition of the ICA, BIF and CCA 

segments. CCA were defined as 20-10 mm proximal to the tip of the flow divider, 

BIF 10-0 mm proximal to the tip of the flow divider and ICA 0-10 mm distal to the 

tip of the flow divider. IMT was measured on the far wall, from the interface between 

blood and tunica intima and the interface between tunica media and tunica adventitia.  

 

We used Q-lab software (Advanced Ultrasound Quantification, Philips Medical 

Systems, Bothell, WA, USA) for semiautomated border detection of IMT as the mean 

value over a 10 mm long segment (Figure 15).  
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Figure 15. B-mode ultrasound image showing a longitudinal view of the carotid 

artery  

Measurement of carotid intima-media thickness (IMT) on the far wall of a 10 mm 

long segment of the common carotid artery using semiautomated border detection 

(yellow outlining). Reprinted with permission of International Journal of Stroke, 

World Stroke Organization and Blackwell publishing; all rights reserved.320 

^ Tip of the flow divider 

ICA: internal carotid artery 

BIF: carotid bifurcation 

CCA: common carotid artery 

 

 

In controls, IMT measurements was obtained at end-diastole to avoid stretching 

effects during systole resulting in IMT reduction,321 and Meijer’s Carotid Arc® (Bio-

Imaging Technologies, B.V., Leiden, the Netherlands)322 was used for standardization 

of measurement angles (Figure 16). Images were taken at 90º, 120º, 150º and 180º in 

the right CCA segment, and at 270º, 240º, 210º, and 180º in the left CCA segment. 
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IMT-measurements in BIF and ICA segments were performed at the angle 

representing the site of maximal IMT thickness.  

 

 

Figure 16. Carotid imaging at prespecified angles 

Meijer’s Carotid Arc® (Bio-Imaging Technologies, B.V., Leiden, the Netherlands)322 

was used to determine measurement angles when imaging the carotid artery of control 

persons. Reprinted with permission of International Journal of Stroke, World Stroke 

Organization and Blackwell publishing; all rights reserved.320 

 

In patients with intracranial aneurysms, a simplified scanning protocol was used due 

to neck stiffness, confusion, reduced patient cooperation abilities, and technical 

challenges in an intensive care unit setting in patients with aSAH. EKG-monitoring to 

assess IMT at specific time points during the cardiac cycles was not performed, and 

images of all segments (CCA, BIF and ICA) were only obtained at the angle 

representing the most significant pathological IMT, and not at prespecified angles.  
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10.7.2 Transcranial color-coded sonography 

Transcranial color-coded duplex sonography (TCCS) was performed in all patients to 

assess the transtemporal bone window, visualize intracranial vessels, and perform 

measurements of blood flow velocities. Patients with aSAH underwent repeated 

TCCS examinations to detect and monitor sonographic vasospasm. Examinations 

were performed as often as possible when the sonographer was available, preferably 

daily and more frequent if neurological deterioration occurred. In patients with UIA, 

TCCS were performed less frequent, usually once or twice during the hospital stay. 

Intracranial cerebral arteries were examined bilaterally through the acoustic windows 

in the squama of temporal bone. A S5-1 probe (iU22, Phillips Medical Systems, 

Bothell, WA, USA) was used to measure blood flow velocities in the major cerebral 

arteries (middle, anterior and posterior cerebral arteries, and internal carotid arteries). 

Lindegaard Index256 was calculated. Angle correction was performed when 

appropriate. For practical reasons, since reduced cooperation skills and neck stiffness 

is common in the acute phase after aSAH, assessment through the foraminal bone 

window was not done. Color images with corresponding Doppler curves and 

velocities were recorded. 
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Figure 17. Transcranial color-code duplex sonography examination using 

transtemporal approach 

Image by Bergen Stroke Research Group and Nicola Logallo, all rights reserved. 

 

10.7.3 Cerebrovascular reactivity assessed by 

transcranial Doppler and acetazolamide  

Cerebrovascular reactivity was examined using the transcranial Doppler and 

acetazolamide test. Patient management was not influenced by CVR results. Patients 

were examined in the supine position, since posture can affect velocity 

measurements.323, 324 Bilateral transtemporal approach and 2 MHz probes (Companion 

III Nicolet Vascular, Madison, WI, USA) were used to assess mean blood flow 

velocities (MFV) in the middle cerebral arteries. The site with the best available 

signal from the MCA was chosen, at an insonation depth between 45 and 60 mm. A 

headband was used to secure the ultrasound probes to the patient’s head (Welder TCD 

Headband, VIASYS Healthcare, Madison, WI, USA) (Figure 18). 
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Figure 18. Headband used for cerebrovascular reactivity testing 

Probes are applied and fixed over the transtemporal windows bilaterally. Image by 

Bergen Stroke Research Group and Marianne Lundervik Bøthun, all rights reserved. 

 

First, stable baseline blood velocities in both MCAs were measured. Then 

acetazolamide (Diamox Goldshield Ltd., Croydon, Surrey, UK; Diamox Sanofi 

Aventis, Paris, France, or Mercury Pharmaceuticals Ltd., Croydon, Surrey, UK) was 

injected intravenously over the time-course of one minute. MFV was monitored 

continuously, and Doppler curve images were saved at baseline and every five 

minutes after the AZ injection. If velocity plateau phase was established, the 

examination was concluded after 15 minutes. If not, monitoring was continued for up 

to 30 minutes. The AZ dose was 1000 mg for patients with body weight <80 kg. For 

patients weighing ≥80 kg AZ was given in a dose of 15 mg/kg bodyweight, with a 

maximum dose of 1500 mg. 
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Cerebrovascular reactivity was calculated as the maximum percentage change in 

MFV in MCA after administration of acetazolamide: CVR (%) = [(MFVAZ –

MFVBASELINE) / MFVBASELINE] x 100, where CVR is cerebrovascular reactivity, 

MFVBASELINE is mean blood flow velocity before acetazolamide and MFVAZ is mean 

blood flow velocity (maximum change) after acetazolamide. In patients with a 

paradoxical velocity reduction after AZ due to a steal phenomenon, CVR will be a 

negative value. 

Blood flow velocities and CVR for the right and left sides were recorded separately. 

The set-up is illustrated in Figure 19. The figure shows blood flow velocity changes 

and Doppler curves during acetazolamide (AZ) test for a single patient treated with 

clipping of an unruptured right middle cerebral artery (MCA) aneurysm. 

 

Figure 19. Timeline and changes in blood flow velocities during the transcranial 

Dopppler and acetazolamide test  

The trend window (a) shows mean flow velocities (MFV) in MCA over time on the 

right (blue line) and left side (green line). MFV was monitored continuously, from the 

beginning (A) to the end of the recording (H). Doppler curve images were saved at 

baseline (B) and 5, 10, 15 and 20 minutes after AZ injection (D, E, F, and G). AZ was 
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given intravenously (C). Shortly after the injection, velocities increased before 

reaching a maximum level and plateau phase. Velocities were symmetrical in the right 

and left MCA throughout the test. Brief spikes misleadingly indicating rapid velocity 

increase approximately two and five minutes after AZ are artefacts caused by change 

of the display velocity range (*). Doppler curves captured at baseline (B) and 20 

minutes after stimulation with AZ (G) are presented in the lower parts of the figure (b 

and c, respectively). Upper Doppler curves correspond to right MCA, lover curves to 

left MCA. MFV increased from 57 cm/s in the right MCA in image b, to 87 cm/s in 

image c. MFV on the left side increased from 59 to 89 cm/s. Note the difference in 

velocity range in the y-scale in the two images (upper limit of 150 and 200 cm/s 

before and after AZ, respectively). Image by Marianne Lundervik Bøthun, all rights 

reserved. 

10.8 Assessment of vasospasm and delayed cerebral 

ischemia  

Patients underwent clinical, radiographic and sonographic examinantions as described 

in previous sections. Results of these examinations were used to determine the 

presence or absence of vasospasm and delayed cerebral ischemia (DCI). We used the 

recommended definitions of clinical deterioration and cerebral infarction due to 

DCI.152, 153 Detailed describtion of the definitons was presented in section 7.3.  

Angiographic vasospasm was defined as arterial narrowing present on CTA, MRA or 

DSA, not attributable to atherosclerosis, catheter-induced spasm, or vessel hypoplasia. 

Angiographic vasospasm was classified as none, mild (1-33% reduction in arterial 

diameter), moderate (34% - 66% reduction) or severe (≥67% reduction). The 

angiographic grading scale ad modum Nathal was also applied,325 where grade 0 is no 

evidence of vasospasm; grade 1 is vasospasm in one vascular axis; grade 2 is 

vasospasm in two vascular axes; grade 3 is vasospasm in three vascular axes; and 
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grade 4 is generalized or diffuse vasospasm. The vascular axes were defined as 

follows: a) internal carotid artery, b) middle cerebral artery, c) anterior cerebral artery 

(pre- and post-communicating segments), d) vertebral artery, e) basilar artery, f) 

posterior cerebral artery, and g) any other arterial territory (e.g. posterior cerebellar 

artery, superior cerebellar artery). 

Sonographic vasospasm was defined as increased blood flow velocities on TCCS, 

with time averaged mean of the peak velocity (TAPV) ≥120 cm/s in any cerebral 

artery and Lindegaard index ≥3.256 Severe angiographic vasospasm was defined as 

TAPV ≥200 cm/s and Lindegaard index ≥6. 

10.9 Neurosonographic setting, training and data 

reliability tests 

In paper I, one sonographer (MLB) performed carotid ultrasound of patients with 

IAs, whereas two other sonographers (AF, UWA) examined control subjects. All 

three sonographers are certified in ultrasound examination of carotid arteries by the 

Vascular Imaging Center, University Medical Center, Utrecht, The Netherlands.  

One sonographer (MLB) performed all transcranial ultrasound examinations and 

CVR-testing in paper II-IV. 

In paper I-IV, TCCS and carotid ultrasound of patients with intracranial aneurysms 

were performed with a portable Phillips CX50 ultrasound system and respectively S5-

1 sector and 12-3 MHz linear array transducer. In paper I, carotid ultrasound of 

control subjects in was performed with a non-portable Phillips iU22, and 9-3 MHz 

linear array transducer (Philips Medical Systems, Bothell, WA, USA). 
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In paper I, intra-observer, inter-observer and interequipment reliability for IMT 

measurements were assessed and found to be satisfactory, with high level of 

reproducibility (correlations between 0.78 and 0.98). 

 

10.10 Data analysis and statistics  

In all papers, we used standard statistical methods, and an α–level of 0.05 as level of 

significance in all calculations. 

In paper I, statistical analysis was performed with R version 2.15.1.326 The main 

analyses were conducted using both unadjusted and adjusted multinomial logistic 

regressions, and relative risk ratios with 95% confidence intervals were calculated. A 

binary logistic regression was also used to analyze the relationship between aSAH and 

UIA with respect to IMT. Odds ratios with 95% confidence intervals were calculated.   

In paper II, statistical analysis was performed with R version 3.2.2.326 A paired t-test 

did not reveal any significant side-difference, mean CVR across right and left side 

was thus used as an overall measure of CVR. (Note that the lack of side-difference, 

and accordingly the use of mean values of both sides, is not consistent with what we 

found in Papers III and IV. See Section 12.4.3 for thorough discussion.) The 

relationships between mean CVR and a number of variables were then assessed using 

simple and multiple linear regression, as well as two-sample t-tests. 

In paper III, statistical analysis was performed with R version 3.4.3.326 We used 

standard and paired t-tests, as well as simple and multiple linear regression. 

In paper IV, statistical analysis was performed with R version 3.4.3.326 To examine 

the relationship between CVR and rupture status, we used standard t-tests and 

multiple regression analyses. We compared a number of properties of patients with 
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and without clinical deterioration using the t-test, chi-squared test or Fisher’s exact 

test, as appropriate. Prediction models for clinical deterioration were created using 

logistic regression. Model discrimination was assessed with area under the receiver 

operating characteristic (ROC) curve, and model calibration with Hosmer-

Lemeshow’s C and calibration plots.327 Results were adjusted for optimism using 

bootstrapping techniques.328  

10.11 Ethical considerations 

All patients or legal representatives received oral and written information about the 

study, and signed a written informed consent form. The study was conducted in 

accordance with the Declaration of Helsinki (2000/2013) of the World Medical 

Association, and was approved by the local ethics committee (the Regional 

Committees of Western Norway for Medical and Health Research Ethics, approval 

number 2011/144).  
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11. SUMMARY OF PAPERS 

In the following, abstracts giving a brief account of the articles included in this thesis 

are presented.  

11.1 Paper I: Carotid intima-media thickness in 

patients with intracranial aneurysms  

Background: Individual assessment of rupture risk of cerebral aneurysms is 

challenging, and increased knowledge of predictors for aneurysm rupture is needed. 

Smoking and hypertension are shared risk factors for atherosclerotic disease and 

cerebral aneurysms, and patients with atherosclerosis have an increased prevalence of 

intracranial aneurysms.  

Carotid ultrasound with evaluation of intima-media thickness (IMT) is a non-

invasive, safe, rapid, well-validated and reproducible technique for quantification of 

subclinical atherosclerosis and assessment of cardio- and cerebrovascular risk. 

Increased IMT is associated with elevated risk for ischemic stroke and myocardial 

infarction, but sparse data exist on carotid ultrasound findings in patients with 

intracranial aneurysms.  

Aims: The purpose of this study was to investigate carotid IMT in patients with 

unruptured intracranial aneurysms (UIA) and aneurysmal subarachnoid hemorrhage 

(aSAH), and to assess if IMT might be associated with aneurysm rupture risk. 

Methods: Patients treated for saccular aneurysms (UIA and aSAH) between February 

2011 and August 2012 were included. Standardized high resolution B-mode 

ultrasound assessment of carotid arteries was done after aneurysm treatment, and 

traditional vascular risk factors were recorded. Healthy partners of young patients 

with ischemic stroke were used as controls. 
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Results: 69 patients treated for UIA (n=28) and aSAH (n=41) were compared with 80 

controls. Mean IMT was higher in patients with aSAH (0.79 mm) than patients with 

UIA (0.65 mm) and controls (0.63 mm). Multiple multinomial regression analysis 

comparing aSAH, UIA and control groups demonstrated that IMT was the only 

variable predicative of aSAH compared to UIA. According to the multiple regression 

model, the probability of having aSAH compared to non-rupture increased by 62% for 

each 0.10 mm increment of mean IMT (RRR=1.62, p=0.017). Taking into account 

only patients harboring intracranial aneurysms, simple binary logistic regression was 

then applied to the UIA and aSAH groups. According to this model the risk of 

belonging to the aSAH group increased with higher mean IMT values (OR=1.40 per 

0.10 mm increase of mean IMT, p=0.024). 

Conclusion: There is an association between IMT and intracranial aneurysm rupture 

status at the time of aneurysm treatment. Carotid IMT can be a potential predictor of 

aneurysm rupture. IMT may thus be a possible adjunct in the risk assessment of 

aneurysm rupture, and a helpful tool in patient risk stratification and counseling.  
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11.2 Paper II: Cerebrovascular reactivity after 

treatment for unruptured aneurysms 

Background: Cerebrovascular reactivity (CVR) is defined as the change in cerebral 

blood flow, or blood velocity, in response to a vasoactive stimulus. There is a possible 

association between impaired CVR and vasospasm after aneurysmal subarachnoid 

hemorrhage. Most studies on CVR and vasospasm have used healthy subjects as 

reference. However, due to potential different vascular features, CVR in persons with 

intracranial aneurysms may differ from CVR in healthy subjects. Therefore, our aim 

was to examine CVR in patients with unruptured intracranial aneurysms (UIA). 

Methods: CVR was examined in 37 patients in the first postoperative week after 

treatment for UIA, using acetazolamide (AZ) test with transcranial Doppler 

monitoring of blood flow velocities. 

Results: Mean blood flow velocity in the middle cerebral arteries was 58.5 (SD 12.8) 

cm/s at baseline, and 94.3 (SD 19.5) cm/s after stimulation with AZ. Mean CVR was 

62.6 (SD 16.8) %. There was no significant difference when comparing right and left 

sides, and treated and untreated sides. A simple regression analysis suggested that 

CVR increased with 0.7 percent points for each year a patient aged (p=0.004). 

However, the significance disappeared in a multiple analysis (increase of 0.6 percent 

points per year, p=0.055). Other possible influencing factors (gender, smoking, 

hypertension, body mass index, aneurysm location and treatment modality) were not 

significantly associated with CVR.  

 

Conclusions: CVR in patients with UIA is not different from normal values reported 

in healthy subjects, and does not indicate a systemically impaired vascular system in 

patients with UIA. We suggest that CVR in age and gender matched healthy controls 

can be used as reference for persons with intracranial aneurysms. 
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11.3 Paper III: Time-course of cerebrovascular 

reactivity in patients with unruptured aneurysms  

Background: Cerebrovascular reactivity (CVR) is often impaired in the early phase 

after aneurysmal subarachnoid hemorrhage. There is, however, little knowledge about 

the time-course of CVR in patients treated for unruptured intracranial aneurysms 

(UIA). 

Methods: CVR, assessed by transcranial Doppler and acetazolamide test, was 

examined within the first postoperative week after treatment for UIA, and re-

examined one year later. 

Results: Of 37 patients initially assessed, 34 were re-examined after one year. 

Bilaterally, baseline and acetazolamide-induced blood flow velocities were higher in 

the postoperative week compared with one year later (p<0.001). CVR on the 

ipsilateral side of treatment was lower in the initial examination compared with 

follow-up (58.9% vs. 66.1%, p=0.041). There was no difference in CVR over time on 

the contralateral side (63.4% vs. 65.0%, p=0.652). When mean values of right and left 

sides were considered together, there was no difference in CVR between exams. 

Aneurysm clipping was associated with 15.5%-points increased change in CVR 

compared with coiling (p=0.025). 

Conclusion: Patients with UIA may have a temporary reduction in CVR on the 

ipsilateral side after aneurysm treatment. The change in CVR appears more 

pronounced in patients treated with clipping. We recommend that ipsi- and 

contralateral CVR should be assessed separately, as mean values can conceal side-

differences. 
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11.4 Paper IV: Cerebrovascular reactivity and delayed 

cerebral ischemia after aneurysmal subarachnoid 

hemorrhage 

Background: Delayed cerebral ischemia (DCI) is a major cause of disability and 

death after aneurysmal subarachnoid hemorrhage. The literature suggests that 

impaired cerebrovascular reactivity (CVR) may be a predictor for DCI; still no CVR 

based prediction model has been developed. Increased knowledge about possible 

predictors of DCI can improve patient management in high-risk patients and allow for 

shorter hospital stay in low-risk patients. 

Methods: CVR was examined in 42 patients with aneurysmal subarachnoid 

hemorrhage and 37 patients treated for unruptured intracranial aneurysm, using 

acetazolamide test with transcranial Doppler monitoring of blood flow velocities. 

Patients were followed for development of DCI, separated into clinical deterioration 

and radiographic infarction. 

Results: For all patients, regardless of aneurysm rupture status, CVR was on average 

5.5 percentage points lower on the ipsilateral side of aneurysm treatment. Patients 

with clinical deterioration due to DCI had lower CVR than patients without DCI, and 

the difference was larger on the contralateral side (33.9% vs. 49.2%). Two prediction 

models were constructed for clinical deterioration due to DCI. The area under the 

receiver operating characteristic curve was 0.82 in the model using established 

predictors, and 0.86 in the model that also included CVR. 

Conclusion: Our findings support the hypothesis that impaired CVR may be an 

independent predictor of clinical deterioration due to DCI, and may assist in 

identifying patients at risk after aneurysmal subarachnoid hemorrhage. Ipsilateral 

CVR reduction occurs in all patients after aneurysm treatment, regardless of DCI 

development, thus highlighting the need to evaluate ipsi- and contralateral CVR 

separately. 
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12. DISCUSSION 

The results of the research included in this thesis are discussed in the separate articles. 

This discussion is therefore mainly limited to a discussion of methodological aspects, 

as well as overall overview of key findings and future perspectives. 

12.1 Study population and selection of patients 

In our study population, the proportion of endovascular treatment was in the upper 

range for Western Norway at the time of the study. In Paper I, 61% of patients were 

treated with coiling, and in Paper II-IV the endovascular proportion was 60-66%. In 

2008-2013, approximately 60% of patients with aSAH admitted in the Department of 

Neurosurgery, Haukeland University Hospital, were treated with endovascular coiling 

and 40% with surgical clipping. For elective aneurysm treatment the proportion of 

patients treated with coiling was somewhat lower (rough estimate 50%). Noteworthy, 

the overall proportion of endovascular treatment has increased to 70% in recent years 

(2014-2017), due to increased availability and advances in this treatment modality. A 

likely explanation for the high proportion of endovascular treatment in CVR studies 

in Paper II-IV is that intracranial air after surgical treatment may hamper ultrasound 

insonation and CVR-testing. In Paper IV, the proportion of endovascular treatment 

was higher in patients with aSAH compared with patients with UIA (71% vs. 60%). 

This reflects the higher rate of endovascular treatment in acute settings. Furthermore, 

patients with hematomas and increased intracranial pressure were excluded from 

CVR-testing. As larger fractions of these patients undergo open surgery with clip 

ligation, this also likely contributed to the high proportion of endovascular treatment.  

Apart from the high proportion of endovascular treatment, the characteristics of 

treatment modality and patient demography in the studied populations seems 
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representative of a typical cohort of patients with IAs. Mean age was 49-55 years and 

the proportion of females was high (58-68%), as was current smoking (54-60%) and 

hypertension (44-49%).  

Furthermore, our study population included a high proportion of patients with severe 

aSAH. In Paper IV as many as 43% of patients with a SAH had WFNS IV-V and 

modified CT Fisher 3-4. Similar clinical grades in treatment populations have been 

described (WFNS grade IV-V: 38%, Hunt and Hess IV-V: 34%),329, 330 although poor 

grade patients often are poorly represented in large trials.331, 332 Our study population 

is representative for patients treated for aSAH in the Department of Neurosurgery, 

Haukeland University Hospital. The high proportion of patients with severe aSAH is 

likely to increase the incidence of DCI, since the strongest predictors of DCI are large 

amount of subarachnoid blood detected on CT imaging and poor neurological status 

upon admission.55, 166-169  

In Paper I, we used healthy partners of patients with ischemic stroke as controls, 

since they were already included in another ongoing study from the Bergen Stroke 

Research Group: The Norwegian Stroke in the Young Study (NOR-SYS). In NOR-

SYS, carotid IMT was examined in spouses and partners of ischemic stroke patients 

≤60 years.312 Ideally, controls should have been selected randomly from a 

representative sample of the healthy population. We cannot be certain that controls do 

not harbor intracranial aneurysms, although we do not expect them to have a higher 

prevalence than the general population. Still, the control group is not ideal, since 

partners of patients with ischemic stroke may have similar lifestyle and social status, 

which can affect their risk of developing IAs. However, controls were significantly 

different from the UIA and aSAH groups regarding prevalence of hypertension and 

smoking. 

Noteworthy, the number of studied patients in all papers is relatively low (34-79 

patients with IAs and 80 controls). A larger study population would increase the 
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statistical power and reduce uncertainties when assessing results. Paper I is a pilot 

study that indicates that IMT is increased in patients with ruptured aneurysms, but the 

validity of the results needs to be re-tested in a larger population. For Paper II-IV, 

the number of patients is also rather low, but nevertheless as expected in CVR-studies 

due to the time- and resource demanding method of investigation. 

12.2 Clinical assessment 

Several scales are used to assess the level of consciousness and clinical status of 

patients with aSAH. Some of the scales are developed or adapted specifically for 

patients with SAH, like the Hunt Hess,333 World Federation of Neurological Surgeons 

(WFNS) scales,317 and Prognosis on Admission of Aneurysmal Subarachnoid 

Hemorrhage (PAASH).334 Whereas others are not designed specifically for this 

patient population, e.g. the Glasgow Coma Scale316 and National Institutes of Health 

Stroke Scale (NIHSS).314, 315 The latter scales are widely used to evaluate and 

document neurological status in patients with cerebral stroke, regardless of stroke 

etiology. The reliability and validity of the scales have been found to be adequate,335-

344 although improved quality of future reliability studies would be of value, and the 

choice of appropriate statistical analyses is of great importance.345 In our study, all of 

the scales above were applied. All examiners underwent specific training in how to 

use the scales.  

Nonetheless, the diagnosis of clinical deterioration due to DCI is difficult because of 

the need to exclude other causes of neurological worsening. In practice, many patients 

have multiple systemic and nervous system dysfunctions that may, or may not, 

contribute to DCI making it difficult to separate the effects. Clinical assessment of 

sedated or comatous patients is even more challenging. 
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12.3 Radiographic assessments 

As a pragmatic choice, there were no pre-arranged routine CT or MRI scans during 

the hospital stay. Imaging was performed whenever clinically indicated, such as after 

neurological deterioration, new infarction on CT, or increased TCCS blood blow 

velocities. Among 42 patients with aSAH, 17 were not evaluated with MRI during 

their primary hospital stay. As CT has lower sensitivity compared with MRI it is 

possible that we underdiagnose infarctions with this set-up. Still, MRI was performed 

in the majority of patients during follow-up. Of the 39 patients alive after one year, 36 

underwent MRI; two were tourists and lost to follow-up; and one patient declined to 

take the exam due to claustrophobia and anxiety. More extensive investigations with a 

preset time-schedule would have been useful, but was not done in our study.  

We used a well-known grading system for classification of cerebral infarctions.174, 346 

Still, it is difficult to determine the cause of infarctions after aSAH347 and one cannot 

be certain whether infarctions are related to DCI or not. To avoid misclassifying 

procedure-related infarcts as vasospasm-induced, it is recommended that CT and MRI 

scans are performed between 24 and 48 hours after aneurysm occlusion.152, 153 In our 

study, this recommendation for timing of postoperative imaging was followed in 33 of 

42 patients. For the remaining patients, imaging was performed later than 48 hours. 

12.4 Ultrasonographic assessments 

Assessment of carotid IMT can be performed quickly and does not involve any 

discomfort or risks. CVR-testing is more time-consuming, especially when performed 

multiple times, and may cause discomfort for some patients. Still, CVR provides 

useful information about vascular regulation, which might guide patient treatment. 

 

The methodological aspects of ultrasonographic assessments are discussed below. 
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12.4.1 Carotid intima-media thickness 

Carotid IMT have been studied in numerous populations using several different 

measurement methods.212, 348 There are considerable variations with regards to 

methods used for image acquisition and analysis. Measurements are performed at the 

near and far wall, or only far wall. IMT is measured in different parts of the carotid 

segment, and the definitions of segments vary. Investigations are done unilaterally or 

bilaterally, mean or maximum values are reported, and measurements are determined 

manually or by the use of automated systems. There are pros and cons for each 

measurement protocol. A standardized protocol is strongly recommended.349, 350  

In our study (Paper I),320 IMT was measured at the far wall. Due to ultrasound 

properties, the far wall can be better visualized compared with the near wall.351-353 

Carotid IMT measurements can be obtained at the common carotid artery (CCA), the 

carotid bifurcation (BIF), and the internal carotid artery (ICA). Obtaining adequate 

images of all segments may be difficult. CCA is perpendicular to the ultrasound beam, 

is thus more easily accessible and the results have higher reliability compared with 

BIF and ICA.209, 354 CCA also yields a lower proportion of missing values compared 

with BIF and ICA which lie at an oblique angle and are more difficult to image.350, 354 

Studies imply that CCA-IMT has better prediction of stroke,355 whereas ICA-IMT 

appears to have better prediction for atherosclerotic cardiac events.356  Due 

to the focal nature of atherosclerosis, IMT measurements at one site can be very 

different from those obtained at another site.357 Hence, measuring IMT at a single site 

can reduce the sensitivity of detecting atherosclerotic changes. In our study, IMT was 

measured bilaterally in all carotid segments (CCA, BIF and ICA), and mean values 

for all sites were used in the regression models. Carotid segments were defined in the 

identical manner as in the ARIC study.214, 216 Since this protocol, like many others, 

uses anatomical landmarks, it is likely that plaques are incorporated in IMT 

measurements. The Mannheim consensus have recommended measurement of IMT in 
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plaque free areas.350, 351 However, carotid plaques and/or IMT incorporating plaques 

in their measurements provide additional prognostic information to traditional 

vascular risk factors, whereas IMT measured in plague-free areas does not.358  

IMT can be determined manually or by an automated system. The former requires 

thorough quality control to reduce intra- and inter-observer variability. The latter 

allows repeated measurements in a short time. In our study, IMT analysis was done 

with semiautomated border detection by Q-lab® software (Advanced Ultrasound 

Quantification, PhilipsMedical Systems, Bothell,WA, USA). Ideally, IMT 

measurements should be obtained at end-diastole since stretching effects due to 

expansion of the lumen diameter of the carotid artery during systole leads to thinning 

of IMT.321, 359 In our study, IMT measurements were only synchronized to the cardiac 

cycle in controls. IMT values in some patients may have been obtained at end-systole, 

potentially causing a minor reduction of IMT in patients compared with IMT in 

controls obtained at end-diastole. 

Imaging IMT from a single angle does not completely evaluate the carotid artery in all 

three dimensions. Extensive ultrasound protocols with examination of IMT at 

multiple prespecified angles allows for improved evaluation of the degree of 

atherosclerotic burden. In our study, Meijer’s Carotid Arc®360 was used for imaging 

of IMR at multiple prespecified angles in control subjects. However, such extensive 

protocols were considered too demanding in patients due to reduced cooperation 

skills, neck stiffness, confusion and distress. Patients were therefore examined with a 

simplified protocol were measurements was obtained at the angle representing the 

visually most significant pathological IMT. 

Patient and controls were examined by different equipment and sonographers. One 

examiner (MLB) investigated all patients using a portable Phillips CX50 ultrasound 

system, and 12-3 MHz linear array transducer. Two examiners (AF, UWA) 

investigated controls using a non-portable Phillips iU22, and 9-3 MHz linear array 
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transducer (Philips Medical Systems, Bothell, WA, USA). CX50 was chosen for 

patient examinations due to its portability and smaller size, making it suitable for use 

in the ICU. Controls were examined with the larger iU22 apparatus as part of the pre-

established protocol for the NOR-SYS study (The Norwegian Stroke in the Young 

Study).312 Still, the same ultrasound algorithm and software was used to measure IMT 

in patients and controls (Q-lab® software), and all sonographers underwent the same 

training and certification in ultrasound examination of carotid arteries by the Vascular 

Imaging Center, University Medical Center, Utrecht, The Netherlands. Intra-observer, 

inter-observer and interequipment reliability were assessed and found to be 

satisfactory, with high level of reproducibility (Table 4). 

Table 4. Reproducibility of IMT measurements 

 Correlation Mean absolute difference in IMT (mm) 

Intra-observer 0.78-0.98 0.02-0.08 

Inter-observer 0.83-0.93 0.04-0.11 

Inter-equipment 0.94 0.04 

 

Shortly after Paper I was accepted for publication, a new report supportive of our 

findings was published. As in our study, Dusak and colleagues found that IMT was 

increased in patient with ruptured IAs.221 They compared mean IMT in the right CCA 

in patients with unruptured (n=23) and ruptured (n=26) IAs, and found that IMT was 

increased in patients with RIA (0.61±0.13 cm) compared with UIA (0.52±0.12 cm), 

p=0.013. We found that mean IMT was higher in patients with aSAH (0.79 mm) than 

patients with UIA (0.65 mm) and controls (0.63 mm).320 Regression analysis 

demonstrated that IMT was predicative of aSAH compared to UIA. The results of 

Dusak and colleagues221 strongly supports our hypothesis that carotid IMT is a 

potential predictor for rupture risk of intracranial aneurysms.320 
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12.4.2 Transcranial ultrasound 

We chose to use TCCS for assessment of sonographic vasospasm instead of TCD, 

since the imaging-method facilitates vessel identification and offers the opportunity 

for angle-correction, resulting in more accurate measurement of blood flow velocities. 

The threshold levels for increased veolocity indicating vasospasm is however defined 

based from results of TCD studies (mean flow velocities), not TCCS (time-averaged 

peak flow velocities). Angle-corrected velocities obtained from TCCS are 

approximately 10% to 30% higher than those obtained from TCD,251, 361 and may lead 

to overestimation of sonographic vasospasm when using criteria established using 

conventional TCD. There is a lack of large studies correlating angle corrected 

velocities to angiographic vasospasm. Acordingly, some sonographers choose not to 

use angle-correction when performing TCCS, but attempt to obtain as narrow an 

angle of insonation as possible using image guidance. In our study, we chose to use 

angle-correction, as we believe this gives a velocity closer to the “true” value.251 Still, 

for CVR testing TCD was used due to the possibility for continuous bilateral 

monitoring of velocities over time with at a fixed position using a headband.  

12.4.3 Cerebrovascular reactivity  

It is challenging to interpret CVR results for several reasons.  

Firstly, the normal range for AZ induced CVR is very wide (see Table 6 in Paper 

II).269, 294, 300-310 A possible explanation is that AZ may induce moderate 

hyperventilation in some individuals, which could counteract the vasodilatory effect 

of the drug. This large variation in velocity response may affect repeatability and 

accuracy of the test. There is a lack of proper reliability studies for AZ-TCD CVR 

testing. Nevertheless, reproducibility of TCD measurements of blood flow velocities 

in MCA have been thouroghly studied and found to be satisfactory,362-365 and AZ has 

been used in CVR studies for decades.295 In our study, one sonographer (MLB) 
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performed all CVR tests and used the same equipment in all examinations. Intra-

observer reliability was however not tested.  

Secondly, the data size is often small and reduces the study power. CVR testing with 

TCD and AZ is time- and resource demanding and it is therefore common with small 

study populations, as is the case in our study. Technical aspects of the method also 

limit the number of patients available for testing after aneurysm treatment, since 

postoperative intracranial air hampers insonation of patients treated with clipping. 

Our interpretation of collected CVR data developed as more data were acquired. In 

Paper II, we concluded that CVR in patients treated for UIA did not differ from 

reported values of healthy subjects and that no significant side-difference was found. 

As mentioned, the normal range of CVR is, however, very wide and the original study 

size was small. In Paper III, we re-tested CVR in the same patients at follow-up one 

year after aneurysm treatment. Doubling the amount of data, with two exams per 

patients instead of one, increased statistical power and provided new insight. 

Supplementary data revealed that there was a side-difference after all, and that CVR 

was temporarily reduced on the ipsilateral side shortly after aneurysm treatment.  

Thirdly, CVR is assessed by multiple measurement methods and vasoactive stimuli, 

266 making it difficult to compare results between studies. In our opinion, the AZ-

TCD method offers several advantages compared with other methods and is more 

convenient to use. Instrumentation and set-up is simpler compared with methods 

measuring cerebral blood flow and/or using CO2 as vasoactive stimuli. Furthermore, 

AZ-TCD test can be performed in non-cooperative patients, and allows for studying 

the time-course of the vascular response. Then again, AZ is contraindicated in 

patients with known elevation of ICP as AZ may further increase ICP by cerebral 

vasodilation.366 We consider this a minor limitations of the method, since patients 

with increased ICP are high-risk patients and are already closely monitored for 

development of DCI. However, in less severe cases improved prediction of DCI is 

very useful, and can support medical and logistic decision making. AZ has potential 
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side effects, but they are usually mild, short lasting and well-tolerated. Another 

drawback is that scalp edema in postoperative patient (after aneurysm clipping, 

hematoma evacuation or drains) makes TCD holding devices like headbands 

cumbersome and reduces patient tolerability for the procedure. 

12.5 Assessment of delayed cerebral ischemia 

In previous reports, there have been large inconsistencies in definitions used for 

delayed cerebral ischemia, making comparison between studies difficult. “Clinical 

deterioration due to DCI”, “vasospasm”, “angiographic vasospasm”, and 

“sonographic vasospasm” are some of the various terms used, all with separate 

definitions. A major strength of our study (Paper IV) is that unlike in the majority of 

previous studies,280, 281, 283, 285, 287-293, 367 we used the standardized, recommended 

definitions of DCI, where outcome was separated into clinical and radiographic 

findings.152, 153 

Clinical assessment to diagnose DCIclinical included frequent, neurological 

examinations and the use of The National Institutes of Health Stroke Scale 

(NIHSS).314, 315 Clinical assessment has already been addressed in chapter 12.2. 

Radiographic assessment to diagnose DCIinfarction included CT and MRI examinations. 

Ideally, MRI should be peformed in all patients since this modality has superior 

sensitivity for detecting subtle ischemic changes compared with CT. During primary 

hospital stay, 17 of 42 patients with aSAH were evaluated only with CT. At one-year 

follow-up, the vast majority of patients (92.3%) were examined with MRI. We used 

an established classification system for cerebral infarction.174, 346 Still, is its 

challenging to accurately assess the etiology of infarctions after aSAH.347 To avoid 

misclassifying procedure-related infarcts as DCI-induced, imaging should be 

performed between 24 and 48 hours after aneurysm treatment. In our study, 
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imaginging was performed after this recommended time-window in nine of 42 

patients (21.4%).  

The high proportion of patients with severe aSAH in our study likely affected the 

incidence of DCI, since the strongest predictors of DCI are large amount of 

subarachnoid blood detected on CT imaging and poor neurological status on 

admission.55, 166-169 Accordingly, the incidence of DCI was also high in our study 

population: as many as 52.4% of patients developed clinical deterioration due to DCI, 

and 45.2% had cerebral infarction from DCI. Furthermore, we did not take into 

account the size or severity of the infarction; minor infarctions were also included, 

further increasing the incidence of DCIinfarction. 

12.6 Timing of examinations 

We did not examine patients after a rigid time schedule. Clinical, radiographical and 

sonographical examinations as well as CVR testing were performed whenever 

possible without coming in conflict with patient investigations and treatment. A strict, 

standardized timeline for CVR-testing and assessments of DCI would have been 

useful, but is ressource demanding and was not feasible in our study.  

For practical and ethical reasons, patients were not examined prior to aneurysm 

treatment. In theory, this would have been an ideal time point for isolating potential 

effects of aneurysm treatment itself. Ultrasound examinations prior to aneurysm 

rupture are possible in a longitudinal study of patients with UIA, with a large number 

of patients and long observation time. Such studies are time- and cost demanding, and 

does not provide information about cerebrovascular integrity immediately before 

aneurysm treatment or rupture. In patients with aSAH, it is crucial with prompt 

treatment to secure the ruptured aneurysm to avoid rebleeding. Treatment should not 

be delayed by inessential examinations, such as IMT or CVR. In patients selected for 
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treatment of UIA, the rupture risk is considered higher than the risk related to 

prophylactic aneurysm treatment. Although unlikely, discomfort and headache due to 

CVR testing can potentially trigger aneurysm (re-)rupture if examinations are 

performed before the aneurysm is secured. All ultrasound examinations were 

therefore done after aneurysm treatment was concluded.  

12.7 Methods of statistical analysis 

In all papers, we used standard statistical methods, and a significance level of 0.05. 

Appropriate methods were chosen according to study aims and sample sizes. The 

limited number of patients makes subanalyses difficult, and affects statistical power. 

Still, positive findings in a study with small sample size give a strong indication that 

observed differences are true. 

12.8 Ethical considerations 

Relatives gave informed consent on patients’ behalf if patients were comatous or 

confused. If patients regained consciousness and ability to give informed consent, 

they were thoroughly informed about the study and asked to verify permission already 

given by relatives. No patients withdrew their consent. 

As discussed in section 12.6, ethical considerations affected our choice for the timing 

of ultrasound examinations in order to avoid harmful consequences for the patients. 

Patients were not examined prior to treatment due to the potential risk of 

examinations causing aneurysm (re-)rupture, and to not cause any delay in the acute 

treatment of a ruptured aneurysm. 
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12.9 Impact of the presented data and future 

perspectives 

Increased knowledge of potential predictors, both for aneurysm rupture and 

development of delayed cerebral ischemia after aSAH, can help improve patient care 

and clinical decision-making. 

Paper I provides the new insight that carotid IMT is a potential predictor for rupture 

risk of intracranial aneurysms. If additional studies221 confirm that there is an 

association between increased IMT and aneurysm rupture, carotid IMT may in the 

future be used for assessment of individual rupture risk and help select patients for 

prophylactical aneurysm treatment. Prospective cohort studies with larger sample size 

and long observation time are needed. Carotid IMT is an established vascular risk 

marker. IMT assessment is quick, inexpensive, and safe to perform, and can easily be 

incorporated into clinical practice.  

 

Furthermore, the results of the IMT study in Paper I is a reminder for clinicians to 

consider the patient as a whole, not simply treating the aneurysm as an isolated 

problem. Intracranial aneurysms are not always an isolated focal disease, but can be 

part of more general blood vessel pathology. The overall vascular status of the patient 

may be relevant for treatment and follow-up. Hypertension and smoking are shared 

vascular risk factors for aSAH, and patients with SAH have increased risk of vascular 

events compared with the general population.108 Information about IMT in patients 

with IAs can improve general vascular risk assessment and help avoid future vascular 

events, like myocardial infarction and ischemic stroke. 

 

Results in Paper I also inspired us to initiate a study of lipoprotein metabolism and 

mitochondrial fatty acid oxidation in patients with intracranial aneurysms. The 

ongoing study is called “Predictors for rupture risk of intracranial aneurysms - Impact 

of lipid metabolism and mitochondrial function: RAPID”.  



 

 

102 

 

Paper II-IV adds to prior knowledge about CVR in patients with intracranial 

aneurysms. Previous studies, using various methodology, have shown that CVR is 

lower in patients with ruptured aneurysms compared with patients with unruptured 

aneurysms.273-275, 277, 278 In Paper IV, we show that this also applies for CVR testing 

by means of TCD and AZ. To our knowledge we are the first to us this method to 

assess CVR in patients with UIA. As in previous CVR reports,273-275, 277, 278, 368, 369 

there is a rather large spread in CVR values between patients, making it challenging 

to interpret results. Additional reports with CVR data from more patients with IAs 

will help us better understand cerebrovascular integrity in this patient group, and 

enable improved interpretation of future results. 

 

Prevention or early intervention of DCI, can improve patient outcome. Measures 

aimed at identifying high-risk patients can be valuable in patient management. Results 

in Paper IV indicates that CVR may be an independent predictor for clinical 

deterioration due to DCI after aSAH. To the best of our knowledge, we are the first to 

include CVR in a prediction model for DCI. If our results are confirmed in validation 

studies, CVR testing may ble implemented as a useful tool for the clinician to help in 

early identification of high-risk patients who may benefit from intensive prophylactic 

treatment, augmented monitoring, or repeat vascular imaging. This can help reduce 

DCI-related poor outcomes, minimize treatment complications, and titrate duration of 

stay in an intensive care unit. 

 

Finally, results of Paper II-IV draw attention to a previously undescribed side-

difference in CVR. Aneurysm treatment seems to cause a temporary reduction in 

CVR on the ipsilateral side, regardless of development of delayed cerebral ischemia. 

We accordingly recommend that CVR should be assessed separately on the ipsi- and 

contralateral sides, and contralateral CVR seems best suited as predictor of DCI. 
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13. CONCLUSIONS 

Neurosonological examinations like carotid IMT and CVR assessed by TCD and AZ 

seems to be a useful supplementary tool in risk assessment in patients with IAs. Key 

findings and conclusion for each paper are presented below. 

 

Paper I - Carotid intima-media thickness in patients with intracranial aneurysm 

 There is an association between carotid intima-media thickness (IMT) and 

intracranial aneurysm rupture status at the time of aneurysm treatment.  

 Carotid IMT is a potential predictor of aneurysm rupture.  

 Carotid IMT may be an adjunct in the assessment of aneurysm rupture risk, and a 

helpful tool in patient risk stratification and counseling. 

 

Paper II - Cerebrovascular reactivity after treatment for unruptured aneurysms 

 Cerebrovascular reactivity (CVR) in patients with unruptured intracranial 

aneurysms does not differ significantly from reported values of healthy subjects.  

 There is a possible association between patient age and increased CVR, whereas 

sex, smoking, hypertension, body mass index, aneurysm location and treatment 

modality are not associated with CVR. 

 

Paper III - Time-course of cerebrovascular reactivity in patients with 

unruptured aneurysms 

 There is a temporary reduction in CVR on the ipsilateral side after aneurysm 

treatment.  

 The change in CVR appears to be larger in patients treated with clipping.  

 Age and treatment with clipping are positively associated with change in CVR, 

whereas there is a negative association between CVR at the first exam and change 

in CVR. Sex, smoking, hypertension, body mass index, treatment side, and body 
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weight difference between exams are not significantly associated with a difference 

in CVR. 

 CVR from ipsi- and contralateral sides should be assessed separately as mean 

values of right and left sides can conceal side-differences in CVR. 

 

Paper IV - Cerebrovascular reactivity and delayed cerebral ischemia after 

aneurysmal subarachnoid hemorrhage 

 In concordance with previous CVR-studies using other vasoactive stimuli and 

measurements, our study shows that CVR assessed by transcranial Doppler and 

acetazolamide test is considerably lower in patients with ruptured aneurysms 

compared with patients with unruptured aneurysms.  

 Impaired CVR is a possible independent predictor of clinical deterioration due to 

delayed cerebral ischemia, and may assist in identifying patients in need of closer 

observation after aneurysmal subarachnoid hemorrhage.  

 An ipsilateral CVR reduction occurs in all patients after aneurysm treatment, 

regardless of development of delayed cerebral ischemia, highlighting the need to 

consider ipsilateral and contralateral CVR separately.  

 Contralateral CVR seems best suited as predictor of delayed cerebral ischemia. 
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Background: Cerebrovascular reactivity (CVR) is defined as the change in cerebral blood flow, or blood velocity, in
response to a vasoactive stimulus. There is a possible association between impaired CVR and vasospasm after an-
eurysmal subarachnoid hemorrhage. Most studies on CVR and vasospasm have used healthy subjects as refer-
ence. However, due to potential different vascular features, CVR in persons with intracranial aneurysms may
differ fromCVR in healthy subjects. Therefore, our aimwas to examine CVR in patients with unruptured intracra-
nial aneurysms (UIA).
Methods: CVRwas examined in 37patients in thefirst postoperativeweek after treatment for UIA, using acetazol-
amide (AZ) test with transcranial Doppler monitoring of blood flow velocities.
Results:Mean bloodflowvelocity in themiddle cerebral arterieswas 58.5 (SD 12.8) cm/s at baseline, and 94.3 (SD
19.5) cm/s after stimulation with AZ. Mean CVR was 62.6 (SD 16.8) %. There was no significant difference when
comparing right and left sides, and treated and untreated sides. A simple regression analysis suggested that CVR
increased with 0.7% points for each year a patient aged (p = 0.004). However, the significance disappeared in a
multiple analysis (increase of 0.6% points per year, p = 0.055). Other possible influencing factors (gender,
smoking, hypertension, body mass index, aneurysm location and treatment modality) were not significantly as-
sociated with CVR.
Conclusions: CVR in patients with UIA is not different from normal values reported in healthy subjects, and does
not indicate a systemically impaired vascular system in patientswith UIA.We suggest that CVR in age and gender
matched healthy controls can be used as reference for persons with intracranial aneurysms.

© 2015 Published by Elsevier B.V.
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1. Introduction

Cerebral arterioles play an essential role in regulating blood flow in
the brain. Arteriole dilation causes reduced peripheral resistance and
thereby increased blood flow in proximal vessels, whereas arteriole
constriction causes increased resistance and reduced proximal flow. Ce-
rebrovascular reactivity (CVR) reflects the vasodilating or -constricting
capacity of the cerebral resistance vessels, and is a marker of cerebro-
vascular integrity. CVR is defined as the change in cerebral blood flow,
or blood velocity, in response to a vasoactive stimulus. Acetazolamide
(AZ) is a drug that inhibits carbonic anhydrase, an enzyme that converts
carbon dioxide (CO2) andwater (H2O) to carbonic acid (H2CO3). AZ is a

potent dilator of cerebral arterioles, and has been used for CVR testing
for decades [1–7]. Changes in blood flow velocity can be measured
using transcranial Doppler (TCD) [7,8].

AZ and TCD have been used to assess CVR in patients with ruptured
intracranial aneurysms [9,10]. To our knowledge, no studies have used
the same method to assess CVR in persons with unruptured intracranial
aneurysms (UIA).

CVR provides information about the hemodynamics and pathophys-
iology of cerebrovascular diseases. Previous studies have hypothesized
an association between impaired CVR and vasospasm after aneurysmal
subarachnoid hemorrhage (aSAH) [11–13]. In these studies patients
with and without vasospasm were compared. If additional reference
groups were used they consisted of healthy subjects or patients with
unrelated disorders [9]. Several CVR studies on healthy subjects exist
[3,4,14–22], but these findings might not be directly applicable to
aSAH patients as persons with intracranial aneurysms may have
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different vascular features and qualities intracranially compared with
the normal population. Smoking and hypertension are known risk fac-
tors for development of intracranial aneurysms, and are prevalent
among persons with UIA as well as aSAH [23–25]. Smoking promotes
atherosclerosis and can affect blood vessel function. Hypertension can
cause vascular hypertrophy andmay result in rigidity of the cerebrovas-
cular system reducing its autoregulatory capacity [26]. Patients with
aSAH and no vasospasm are well-suited as reference group for studies
of vasospasm after aSAH.When assessingwhether CVR is impaired dur-
ing the course of vasospasm or not, it can however also be useful to
know CVR prior to aneurysm rupture. Data on persons with UIA are
sparse [27–31]. Increased knowledge of CVR in patients treated for
UIA can improve the understanding of CVR findings in all patients har-
boring intracranial aneurysms.

The main objective of this study was to describe CVR in patients
treated for UIA, assessed by TCD and AZ. We also aimed to assess how
aspects regarding the patient, aneurysm and treatment modality affect
CVR.

2. Methods

2.1. Participants

From February 2011 toMay 2013we prospectively included consec-
utive patients treated for unruptured intracranial saccular aneurysms in
the Department of Neurosurgery, HaukelandUniversity Hospital. Exclu-
sion criteria were: previous treatment of intracranial aneurysms (rup-
tured or unruptured); non-saccular aneurysms (fusiform, mycotic,
blister-like, dissection and traumatic); giant aneurysms treated with
proximal artery occlusion; carotid stenosis (N50%) or occlusion; lack
of transtemporal bone window in transcranial Doppler examination;
and contraindications to acetazolamide (e.g. sulfonamide allergy, adre-
nal or pituitary insufficiency, kidney or liver failure).

Information regarding patient demography, aneurysm location, and
treatment modality (clipping or coiling) was registered. Body mass
index, smoking status (current, previous, or never), and hypertension
(previously diagnosed and treated or systolic pressure N140 mm Hg
and/or diastolic pressure N90 mm Hg persistently observed during ad-
mission) were also recorded.

The studywas conducted in accordance with the Declaration of Hel-
sinki (2013) of theWorldMedical Association, andwas approved by the
local ethics committee.Written informed consentwas obtained from all
patients.

2.2. Cerebrovascular reactivity

Cerebrovascular reactivity (CVR) testing was performed within a
week after aneurysm treatment, before the patient was discharged
from the hospital. All examinationswere performed by the same sonog-
rapher (MLB). Patients were examined in a supine position.

Before the CVR test, a transcranial color-coded duplex sonography
(TCCS) examination was done to assess the transtemporal bone win-
dow, visualize the circle of Willis, and find a suited insonation depth
for the middle cerebral arteries (MCA). This investigation was done
with a portable Philips CX50 TCCS system, using a 5–1 MHz sector
array probe (Philips Medical Systems, Bothell, WA, USA).

CVR testing was then performed using acetazolamide (AZ) and
transcranial Doppler (TCD) monitoring of blood flow velocities. Mean
blood flow velocities (MFV) in both MCAs were measured using a por-
table TCD system (Companion III Nicolet Vascular, VIASYS Healthcare,
Madison, WI, USA) with 2 MHz probes applied over the transtemporal
window. The site with the best available signal from the MCA was se-
lected, at an insonation depth between 45 and 60 mm. Doppler moni-
toring probes were secured to the patient's head using a head band
(Welder TCD Headband, VIASYS Healthcare, Madison, WI, USA).

After establishing stable baseline blood velocities, acetazolamide
(Diamox Goldshield Ltd., Croydon, Surrey, UK; or Diamox Sanofi
Aventis, Paris, France) was administered intravenously over one min-
ute. MFV in both MCAs was monitored continuously, and Doppler
curve images were saved at baseline and every five minutes after the
AZ injection. If velocity plateau phase was established after 15 min,
the examination was concluded, if not, monitoring was continued for
up to 30 min. The AZ dose was 1000 mg for patients with body weight
up to 79 kg. For patients weighing 80 kg or more AZ was given in a
dose of 15 mg/kg bodyweight, with a maximum dose of 1500 mg.

Cerebrovascular reactivity was calculated as the percentage change
in MFV after administration of acetazolamide: CVR (%) = [(MFVAZ −
MFVBASELINE) / MFVBASELINE] × 100; where CVR is cerebrovascular reac-
tivity, MFVBASELINE is baseline mean blood flow velocity (before acet-
azolamide), and MFVAZ is maximal mean blood flow velocity after
acetazolamide.

2.3. Statistical analysis

All variables were assessed for symmetry around the mean by con-
sidering the range and quartiles. Symmetric variableswere summarized
with mean and standard deviation (SD), and non-symmetric with me-
dian and interquartile range (IQR). A paired t-test suggested that there
was no difference in CVR on the right and left side (p = 0.643). There-
fore, the average of the two sides (mean CVR)was used as outcome var-
iable in regression analyses. Two categories for treatment side were
applied in the regression analysis; right and left. Patients with midline
aneurysms were allocated according to chosen side of approach. First,
simple linear regression was applied to assess the relationships be-
tween mean CVR and age, gender, BMI, hypertension, smoking, treat-
ment modality and treatment side. Then, a multiple regression
analysis was run with the same outcome and covariates. The following
relationships were examined using standard t-tests:

• CVR ipsilateral to aneurysm treatment (treated side) vs. CVR contra-
lateral to aneurysm treatment (untreated side)

• CVR for patients treated forMCA aneurysms vs. CVR for patients treat-
ed for aneurysms in other locations

• CVR for patients with a history of stroke vs. CVR for patients with no
history of stroke

• CVR for patients examined using Diamox Goldshield vs. CVR for pa-
tients examined using Diamox Sanofi Aventis

Statistical analysis was performed with R version 3.2.2.

3. Results

3.1. Patients, aneurysm and treatment

Of the 53 patients consecutively recruited during the study period,
16 were excluded; 5 with previous aneurysm treatment, 3 with proxi-
mal artery occlusion treatment; 3 with contraindications to AZ (sulfon-
amide allergy, adrenal and pituitary insufficiency); 4 due to lack of
temporal bone window; and 1 because the hospital pharmacy could
not provide AZ in time. This left us with a study population of 37
patients.

Table 1 shows patient characteristics, and Table 2 shows aneurysm
and treatment characteristics. MCA aneurysms were most common
(45.9%), followed by ACOM (16.2%). Multiple aneurysms were identi-
fied in 12 of 37 patients (32.4%). Treatment of a single aneurysm was
performed in 33 of 37 patients (89.2%). The remaining four patients
underwent treatment for two aneurysms each. Of 37 patients, 22
(59.5%) were treated with coiling, and 15 (40.5%) with clipping.
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3.2. Cerebrovascular reactivity

Median time between aneurysm treatment and CVR testing was
51.8 (IQR28.4) hours (range 27.2–146.5). Of 37 patients, 26 successfully
underwent bilateral CVR testing. In 11 patients CVR testing was unilat-
eral due to insufficient temporal bone window or postoperative intra-
cranial air. Of 37 patients, 23 (62.2%) weighed b80 kg and therefore
received 1000 mg AZ. The remaining 14 patients (37.8%) weighed
≥80 kg, andwere given 15mgAZ per kg bodyweight. Mean bodyweight
was 77.2 (SD 15.8) kg (range 40–106), and mean AZ dose per
bodyweightwas 15.0 (SD 2.2)mg/kg. Therewas no correlation between
AZ dose per kg and CVR (Pearson's R = 0.08, p = 0.657).

Table 3 shows blood flow velocities and CVR results. Data is present-
ed according to laterality relative to hemisphere and treatment. Mean
blood flow velocity (MFV) in the MCA ipsilateral to the treated aneu-
rysm was 59.6 (SD 13.6) cm/s at baseline and 93.6 (SD 17.7) cm/s
after stimulation with AZ. Mean CVR on the ipsilateral side was 59.4
(SD 19.1) %. On the contralateral side MFV was 57.8 (SD 14.4) cm/s at
baseline and 93.4 (SD 22.9) cm/s after AZ, giving a CVR of 63.0 (SD

17.2) %. There was no significant difference in CVR between the right
and left sides (p = 0.643), or between treated and untreated sides
(p = 0.160). Data seemed to be symmetrically distributed, and mean
and median values for CVR were very similar.

Fig. 1 shows the timeline with MCA velocity changes during the AZ
test. The highest absolute velocity after AZ injection was 90.7 cm/s
[95% confidence interval (CI) 83.9–97.4] and 91.3 cm/s (95% CI 83.4–
99.2) in the ipsi- and contralateral MCA respectively. The highest per-
centage velocity increase compared with baseline was 54% (95% CI
47–62) and 59% (95% CI 53–65) on the ipsi- and contralateral side re-
spectively. Velocity plateau phase was established in all patients within
20 min after AZ injection.

Table 4 shows the results of the simple andmultiple regression anal-
yses, assessing possible relationships between mean CVR and age, gen-
der, BMI, hypertension, smoking, treatment modality and treatment
side. Only CVR and age were significantly associated in the simple anal-
ysis (CVR increased with 0.7% points per year, p = 0.004). In the multi-
ple model, no covariates were significant, including age (CVR increased
with 0.6% points per year, p = 0.055). Still, females had a tendency for
higher CVR than males (6.5% points with p = 0.266 in the simple
model, and 9.1% points with p = 0.147 in the multiple model). Regres-
sion analyses were repeated after stratification for gender, age
(≤50 years vs. N50 years), and treatmentmodality (coiling vs. clipping),
this did not change results notably. Still, in the simple analyses of male
patients and patients treated with coiling, hypertension was negatively
associated with CVR. In males the reduction in CVR was 27.4% points
(p = 0.001), and in patients treated with coiling the reduction was
20.1% points (p= 0.004). The significances disappeared in themultiple
analyses; the reductions were 21.9% points (p= 0.316) and 4.2% points
(p = 0.526) in the male subgroup and in patients treated with coil,
respectively.

A t-test showed no significant difference in CVR betweenMCA aneu-
rysms and aneurysms located in other arteries (p = 0.201).Three pa-
tients had a history of stroke prior to the aneurysm treatment; one
pontine infarction, one basal ganglia hemorrhage and one minor MCA
infarction. Mean CVR were 66.2%, 64.3% and 95.4% in these patients, re-
spectively. A t-test showed no significant difference between CVR in pa-
tients with and without history of stroke (p = 0.302). Diamox
Goldshield was used for CVR testing in 23 patients (62.2%), and Diamox
Sanofi Aventis was used in 14 patients (37.8%). There was no significant
difference in mean CVR for the two AZ manufacturers (p = 0.943).

3.3. Side effects using acetazolamide

Themajority of patients, 34 of 37 (91.9%), experienced oneor several
side effects of AZ. Facial and extremity paresthesia, flushing, cranial full-
ness and headacheweremost common (see Table 5 for details). Side ef-
fects were mild, short lasting and self-limiting.

Table 1
Patients characteristics.

Age, yearsa 50.5 (10.6)
Height, cma 169.4 (8.5)
Weight, kga 77.2 (15.8)
BMI, kg/m2a 26.8 (4.9)
Femaleb 24 (64.9)
Hypertensionb 18 (48.6)
Smokingb

Current 20 (54.1)
Previous 13 (35.1)
Never 4 (10.8)

n = 37

BMI: Body mass index.
SD: Standard deviation.

a Mean (SD).
b n (%).

Table 2
Aneurysm and treatment characteristics.

Multiple aneurysm 12 (32.4)
Location treated aneurysms
MCA 17 (45.9)
ACOM and anterior complex 6 (16.2)
Pericallosa 1 (2.7)
Carotid top 2 (5.4)
Intradural ICA 1 (2.7)
Extradural ICA 3 (8.1)
Ophthalmic 3 (8.1)
PCOM 1 (2.7)
Basilar top and cerebelli superior 2 (5.4)
PICA, VB, distal posterior 1 (2.7)

Treatment modality
Coil 22 (59.5)
Clip 15 (40.5)

Treatment sidea

Left 19 (51.4)
Right 18 (48.6)

n = 37

All variables are reported as n (%).
MCA: Middle cerebral artery.
ACOM: Anterior communicating artery.
ICA: Internal carotid artery.
PCOM: Posterior communicating artery.
PICA: Posterior inferior cerebellar artery.
VB: Vertebrobasilar arteries.

a One patient treated with combined clipping of an ACOM aneurysm and a
right MCA aneurysm in one procedure was allocated to the right side. Eight pa-
tientswithmidline aneurysms (ACOMand basilar top)were allocated to the cho-
sen side of approach.

Table 3
Blood flow velocities and cerebrovascular reactivity.

MFVBASELINE

(cm/s)
MFVAZ

(cm/s)
ΔMFV
(cm/s)

CVR (%) MV
(n)

Right 60.2 (12.8) 97.1 (19.7) 36.9 (11.3) 62.8 (18.6) 2
Left 57.2 (15.0) 89.6 (21.6) 32.4 (8.9) 59.7 (17.5) 9
Mean 58.8 (12.5) 94.5 (19.4) 35.7 (10.1) 62.6 (16.8)
Ipsilateral 59.6 (13.6) 93.6 (17.7) 34.0 (9.1) 59.4 (19.1) 9
Contralateral 57.8 (14.4) 93.4 (22.9) 35.6 (11.1) 63.0 (17.2) 2
Mean 58.5 (12.8) 94.3 (19.5) 35.7 (10.1) 62.6 (16.8)

Mean flow velocities and CVR are reported as mean (SD).
SD: standard deviation.
MFVBASELINE: Baseline mean blood flow velocity (before acetazolamide).
MFVAZ: Maximal mean blood flow velocity after acetazolamide.
ΔMFV: Absolute change in mean flow velocity after acetazolamide.
CVR: Cerebrovascular reactivity (relative change in mean flow velocity after
acetazolamide).
MV: Missing value.
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4. Discussion

4.1. Main findings

Mean CVR, evaluated by AZ test with TCD, was 62.6 (SD 16.8) %.
There was no significant difference in CVR when comparing right and
left sides (p = 0.643), and treated and untreated sides (p = 0.160).

The simple regression for CVR vs. age suggested an increase in CVR of
0.7% points per year (p = 0.004), but the significance disappeared in
the multiple regression (increase of 0.6% points per year, p = 0.055).
Other possible influencing factors like gender, smoking, hypertension,
body mass index, aneurysm location and treatment modality were not
significantly associated with CVR.

4.2. Strengths

To the best of our knowledge, no previous studies have used AZ test
and TCD to assess CVR in patients with UIA. Our sample size ismoderate
to high compared with previous CVR studies in healthy subjects. All ex-
aminations were performed by the same sonographer (MLB).

Fig. 1.Absolute and relative changes in bloodflowvelocity after acetazolamide (AZ) injectionUpper part of thefigure shows timelinewith absolutemean flowvelocities inmiddle cerebral
arteries ipsilateral (a) and contralateral (b) to the treated aneurysm at baseline and after AZ injection. Lower part of the figure shows percent change in velocity on the ipsilateral (c) and
contralateral (d) side compared with baseline. 95% confidence intervals are indicated by the shadowed area.

Table 4
Regression results.

Simple Multiple

Estimate p Estimate p

Age, years 0.7 0.004 0.6 0.055
Female 6.5 0.266 9.1 0.147
BMI, kg/m2 0.4 0.501 0.3 0.634
Hypertension −9.0 0.105 −4.2 0.526
Smoking

Current ref – ref –
Previous −2.1 0.737 −3.1 0.597
Never −10.5 0.266 −11.3 0.219

Treatment modality
Coil ref – ref –
Clip 3.9 0.499 0.7 0.910

Treatment side
Left ref – ref –
Right −3.2 0.566 −7.9 0.165

BMI: Body mass index.
ref.: Reference.

Table 5
Side effects of acetazolamide, n (%).

Facial and extremity paresthesia 24 (64.9)
Warm/flushing 22 (59.5)
Cranial fullness 21 (56.8)
Headache 13 (35.1)
Nausea 4 (10.8)
Tinnitus/fullness of the ear 4 (10.8)
Dizziness 3 (8.1)
Altered taste 0 (0)
Acidosis 0 (0)
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4.3. Limitations

Gender and age matched case-controls would be useful when
interpreting results, but it was not part of our study design. Although
the sample size is large comparedwith previous CVR studies, the limited
number of patients makes it difficult to draw definite conclusions re-
garding regression and subgroup effects. Results must thus be
interpreted with caution, especially for the smallest subgroups
concerning aneurysm location and history of stroke.

The aneurysm treatment itself may affect CVR. Patients were exam-
ined after treatment, not before. The study does thus not provide absolute
information regarding the potential effects of aneurysm treatment on
CVR. However, the post-treatment timing makes results better suited
for comparison with aSAH patients as they also undergo aneurysm treat-
ment. An additional reason for no pre-treatment CVR testingwas to avoid
test-induced aneurysm rupture, a highly unlikely yet feared complication.

For CVR testing anAZ dose of 13 to 18mg/kg is recommended [15,32].
For a simple and practical setup 1 g AZ is commonly used.We used 1 g AZ
for themajority (59.5%) of patients. To avoid submaximal vasodilation, an
increased dose was given to patients with high bodyweight. Patients
weighing ≥80 kg received 15 mg/kg, since this dose is considered suffi-
cient for causing maximum vasodilatory effect [15]. Mean AZ dose in
our study was 15.0 (SD 2.2) mg/kg. The recommended AZ dose was
achieved for the vast majority of patients. Of 37 patients, 34 (91.9%) re-
ceived an AZ dose between 12.7 and 17.2 mg/kg. The doses for the re-
maining three patients were 10.6, 11.0 and 25 mg/kg. There was no
correlation between AZ dose per kg and CVR (Pearson's R = 0.08, p =
0.657). This did not changewhen removing individuals who had received
doses lower than 12.7mg/kg or higher than 17.2 mg/kg. Our choice of AZ
dosage is not ideal, but has the advantage of better suited doses than the
commonly used setup of 1 g AZ regardless of bodyweight, and a simpler
setup compared with a rigorous bodyweight-based dosage.

CVR studies are done using variousmethods. CO2 inhalation or intra-
venous AZ are commonly used as vasodilatory stimuli [1,3,5,15,33], and
cerebral blood velocities or flow aremeasured with brain perfusion im-
aging, using Doppler, CT, MRI or nuclear medicine techniques. In our
study CVR was examined using AZ and TCD. The benefits of AZ are the
simpler instrumentation setup compared with CO2, and its suitability
for non-cooperative patients. Main drawbacks are side effects, and the
chance of hyperventilation counteracting the vasodilatory effect of AZ.
Furthermore, CO2 is a more physiologic stimulus and adverse effects
are more easily terminated. Although application can be dangerous for
prolonged periods and in critical ill patients, it has been suggested
that CO2 may be safer compared with AZ [34]. The benefits of TCD are
low-cost, bedside applicability, no use of ionizing radiation or contrast
agent, and the possibility of continuousmonitoring. Themain drawback
is that 10–15% of the population lack bone window. Velocity measure-
ments with TCD are an indirectmeasure of blood flow changes. Accord-
ing to the law of Hagen-Poiseuille, blood flow velocity will be
proportional with flow if the vessel diameter is constant. AZ predomi-
nantly affects arterioles and precapillary sphincters, whereas basal cere-
bral arteries seemingly are not much affected [35]. It is therefore
accepted that changes in MCA velocity can be used as an indirect mea-
sure for relative changes in blood flow.

4.4. Healthy subjects

Persons without intracranial aneurysms were not examined in our
study, but previous reports in healthy subjects can be used for compar-
ison. The use of different methods to examine CVRmakes it challenging
to compare results between studies. Direct comparison is feasible be-
tween our study and previous studies using the same method to assess
CVR, i.e. TCD and AZ. A well-known TCD manual is commonly referred
to when interpreting CVR results [36]. The authors of the book state
that the normal value for CVR assessed with TCD and AZ is 38 ± 15%,
yet point out that a single report with CVR of 62% differs from other

available literature at the time [37]. An updated literature search iden-
tifies additional studies on CVR in healthy subjects assessed using TCD
and AZ. Table 6 summarizes major findings of all studies [3,4,14,15,
18–22,37–40]. CVR is reported to be between 34 and 65%, with velocity
increase from 55 to 72 cm/s at baseline, to 76 to 97 cm/s after stimula-
tion with AZ. We found a mean CVR of 62.6 (SD 16.8) %, with velocity
increase from 58.5 (SD 12.8) cm/s to 94.3 (SD 19.5) cm/s. Our data for
patients treated for UIA are thus within the normal range compared
with previous results for healthy subjects, specifically in the upper
part of the spectrum. This indicates that CVR is not worse in patients
with UIA than the reported normal values in healthy subjects. The re-
ported wide range of CVR in the normal population can be explained
by shortcomings in the reliability of the assessment method, or a genu-
ine large variation between individuals. Case–control studies with age-
and gender matching are advisable for interpreting patients' CVR re-
sults, but were not done in our study. A possible explanation for CVR
being in the high normal range in our study is a temporary increase of
reactivity due to vessel manipulation during the clipping or coiling pro-
cedure. Alternatively, it is conceivable that patients with UIA may have
different vessel features and qualities compared with healthy subjects.

A prospective cohort study of 1695 individuals belonging to the gen-
eral population in Rotterdam, The Netherlands, demonstrated that a
lower CVR was associated with higher risk of death. The association
was independent of cardiovascular risk factors and incidence of stroke.
This suggests that a lower CVR reflects a systemically impaired vascular
system [41]. Onemight expect a lower CVR in patientswith UIA because
of the high prevalence of general vascular risk factors like hypertension
and smoking. Surprisingly we found the opposite. Our results of CVR in
the upper high normal range do thus not indicate a systemically im-
paired vascular system in patients with UIA.

4.5. Unruptured intracranial aneurysms

Our study is one of few studies on CVR in patients with UIA, and is to
our knowledge the first to use AZ test and TCD to assess CVR in this pa-
tient group. In previous studies using CO2 as vasoactive stimuli nomore
than ten patients with UIA has been examined [27–31]. Abe et al. exam-
ined the effects of prostaglandin E1 induced hypotension on local cere-
bral blood flow and CO2 reactivity in patients during surgery of
intracranial aneurysms [27,28]. They studied 34 patients with ruptured
and nine patients with unruptured aneurysms, and found lower intra-
operative CVR in patients with ruptured aneurysms compared with
unruptured ones. Dernbach et al. used intraoperative measurement of
local CBF to evaluate pressure autoregulation and CO2 reactivity in pa-
tients who underwent aneurysm clipping [29]. They examined 14 pa-
tients with aSAH and 10 patients with UIA. They found significant
reduction in CO2 reactivity in aSAH patients after early surgery, com-
pared with patients treated for UIA and patients treated more than a
week after aSAH. In their study of the effect of nimodipine on CVR, Seiler
et al. used TCD and CO2 to examine nine patients with aSAH, two pa-
tients with UIA, and five patients with unruptured arteriovenous
malformations (AVM) [30]. They found a significant reduction of CVR
in the second week after aSAH. When reexamined six to eight weeks
after aSAH, CVR values were equal to preoperative values found in pa-
tients with UIA and AVM. Schmieder et al. used TCD with CO2 as
vasodilatory stimuli to compare CVR in 27 patients 10 months after
aSAH, 5 patients treated for incidental aneurysms, and 20 volunteers
without cerebrovascular disease [31]. They found normal CO2 reactivity
and no right to left differences in all three groups, with no significant
differences between the groups. This is in accordance with our findings
of CVR of patients treated for UIA being within the normal range.

4.6. Aneurysm location and treatment

Only one other study has looked at CVR in relation to aneurysm local-
ization and treatmentmodality. Jarus-Dziedzic et al. found that aneurysm
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localization and treatment method (surgical or endovascular) did not af-
fect CVR after aSAH [10], which is in accordance with our findings.

4.7. Other possible influencing factors

It has been suggested that age, gender, smoking and hypertension
may affect CVR. Studies that have addressed this issue have produced
varied results; both positive and negative correlations as well as no sig-
nificant association are reported [19,21,42–57]. In our study the only
factors significantly associated with CVR were age (in all patients) and
hypertension (in males and coiled patients). The correlations were
however only significant in the simple regression model and can be ex-
plained by confounding or random variation.

Thewide range of CVR in healthy subjects (Table 6)makes it difficult
to use reported normal values as referencematerial. The studied normal
populations have different demographic compositions [3,4,14,15,18–
22,37–40], and difference in possible influencing factors like age and
gendermay explain variations between studies. Although no significant
association was found between CVR and gender in our study, age- and
gender matching is strongly advisable in CVR studies as this can help
eliminate potential confounding factors, and may make studies more
accurate.

5. Conclusions

Our study provides novel information about CVR after treatment for
UIA. To the best of our knowledge, this is the first study that uses TCD
and AZ test to assess CVR in this patient group. CVR was in the upper
high normal range, and does not indicate a systemically impaired vascu-
lar system in patients with UIA. We suggest that CVR in age and gender
matched healthy subjects can be used as reference for persons with in-
tracranial aneurysms.
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Corrigendum

Corrigendum to “Cerebrovascular reactivity after treatment of unruptured
intracranial aneurysms - A transcranial Doppler sonography and
acetazolamide study” [Journal of the Neurological Sciences 363 (2016)
97–103]
Marianne Lundervik Bøthuna,b,⁎, Øystein Ariansen Haalandc, Nicola Logallod, Frode Svendsenb,
Lars Thomassend,a, Christian A. Hellandb,a
a Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
bDepartment of Neurosurgery, Haukeland University Hospital, 5021 Bergen, Norway
c Department of Global Public Health and Primary Health Care, University of Bergen, 5020 Bergen, Norway
dDepartment of Neurology, Haukeland University Hospital, 5021 Bergen, Norway

The authors regret that there were three errors in the published version
of this paper. These errors and their corrections are detailed below:

1) The interquartile range (IQR) for the median time between an-
eurysm treatment and cerebrovascular reactivity (CVR) testing was
incorrectly reported as 28.4 h. The correct value is 43.7 h. (Page 99,
Chapter 3.2.)

2) A typing error for a single patient caused minor inaccuracies in re-
ported velocities. Data were corrected before statistical analysis was
performed, but unfortunately Table 3 contained five uncorrected
velocity values.

Published velocities (cm/s):

MFVBASELINE MFVAZ ∆MFV

Right 60.2 (12.8) 97.1 (19.7) 36.9 (11.3)
Left 57.2 (15.0) 89.6 (21.6) 32.4 (8.9)

Corrected velocities (cm/s):

MFVBASELINE MFVAZ ∆MFV

Right 59.7 (13.2) 96.2 (19.9) 36.5 (11.1)
Left 57.2 (15.0) 90.1 (21.3) 32.9 (8.9)

The revised version of Table 3 is presented below. (Page 99,
Table 3.)

Table 3 Blood flow velocities and cerebrovascular reactivity.

MFVBASELINE
(cm/s)

MFVAZ (cm/
s)

∆MFV (cm/
s)

CVR (%) MV
(n)

Right 59.7 (13.2) 96.2 (19.9) 36.5 (11.1) 62.8
(18.6)

2

Left 57.2 (15.0) 90.1 (21.3) 32.9 (8.9) 59.7
(17.5)

9

Ipsilateral 59.6 (13.6) 93.6 (17.7) 34.0 (9.1) 59.4
(19.1)

9

Contralateral 57.8 (14.4) 93.4 (22.9) 35.6 (11.1) 63.0
(17.2)

2

Mean 58.5 (12.8) 94.3 (19.5) 35.7 (10.1) 62.6
(16.8)

Mean flow velocities and CVR are reported as mean (SD).
SD: standard deviation.
MFVBASELINE: Baseline mean blood flow velocity (before acetazolamide).
MFVAZ: Maximal mean blood flow velocity after acetazolamide.
∆MFV: Absolute change in mean flow velocity after acetazolamide.
CVR: Cerebrovascular reactivity (relative change in mean flow velocity after
acetazolamide).
MV: Missing value.

3) Table 6 incorrectly states that the report of Mancini and colleagues
was published in 1996. The correct year of publication is 1993.
(Mancini M, De Chiara S, Postiglione A, Ferrara LA. Transcranial
doppler evaluation of cerebrovascular reactivity to acetazolamide in
normal subjects. Artery. 1993;20:231–241) (Page 102, Table 6.)

The authors would like to apologise for any inconvenience the
above errors may have caused.
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Background. Cerebrovascular reactivity (CVR) is often impaired in the early phase after aneurysmal subarachnoid hemorrhage.
There is, however, little knowledge about the time course of CVR in patients treated for unruptured intracranial aneurysms (UIA).
Methods. CVR, assessed by transcranial Doppler and acetazolamide test, was examined within the first postoperative week after
treatment for UIA and reexamined one year later. Results. Of 37 patients initially assessed, 34 were reexamined after one year.
Bilaterally, baseline and acetazolamide-induced blood flow velocities were higher in the postoperative week compared with one
year later (𝑝 < 0.001). CVR on the ipsilateral side of treatment was lower in the initial examination compared with follow-up
(58.9% versus 66.1%, 𝑝 = 0.04).There was no difference in CVR over time on the contralateral side (63.4% versus 65.0%, 𝑝 = 0.65).
When mean values of right and left sides were considered there was no difference in CVR between exams. Larger aneurysm size
was associated with increased change in CVR (𝑝 = 0.04), and treatment with clipping was associated with 13.8%-point increased
change in CVR compared with coiling (𝑝 = 0.03). Conclusion. Patients with UIA may have a temporary reduction in CVR on the
ipsilateral side after aneurysm treatment.The change in CVR appears more pronounced for larger-sized aneurysms and in patients
treated with clipping. We recommend that ipsilateral and contralateral CVR should be assessed separately, as mean values can
conceal side-differences.

1. Introduction

Constriction and dilation of cerebral arterioles regulate cere-
bral blood flow. Cerebrovascular reactivity (CVR) reflects
this regulating capacity and is a marker of cerebrovascular
integrity. Impaired CVR is associated with increased risk
of cerebro- and cardiovascular disease and death [1]. The
temporal development of CVR has been studied in healthy
subjects and in patients with cerebrovascular disease. In
healthy persons, CVR is stable over time [2]. In the early
phase after aneurysmal subarachnoid hemorrhage (aSAH),
CVR is often impaired [3–8], especially in patients with
massive hemorrhage, poor neurological status at admission,

and vasospasm [9–15]. It has been suggested that transient
reduction of CVR after aSAH may be associated with devel-
opment of delayed cerebral ischemia and poor outcome [9,
16, 17]. There is, however, little knowledge regarding the
time course of CVR in patients with unruptured intracranial
aneurysms (UIA). It is unknownwhether, andhow, aneurysm
treatment affects CVR. Information on the time course of
CVR in patients treated for UIA may help in differentiating
between potential effects of aneurysm treatment and the
impact of an aneurysm bleeding.

The main objective of this study was to evaluate the time
course of CVR in patients treated for an UIA by comparing
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CVR within the first week after aneurysm treatment with
CVR one year later. We further wanted to assess whether
other factors like age, sex, smoking, hypertension, body mass
index, aneurysm size, treatment side, or treatment modality
were associated with the stability of CVR over time.

2. Methods

2.1. Participants and Time Scheme. In a previous study, we
analyzed early postoperative CVR data from patients treated
for UIA in the Department of Neurosurgery, Haukeland
University Hospital, between February 2011 and May 2013
[18]. The patients were treated with either endovascular
coiling or surgical clipping, and they were examined within
the first week after aneurysm treatment. In the present
study, CVR was reevaluated in the same patients one year
after aneurysm treatment. Exclusion criteria were iden-
tical to those used in the previous study: former treat-
ment of intracranial aneurysms; nonsaccular aneurysms;
giant aneurysms treated with proximal artery occlusion;
carotid stenosis (>50%) or occlusion; lack of transtem-
poral bone window in transcranial Doppler examination;
and contraindications to acetazolamide (e.g., sulfonamide
allergy, adrenal or pituitary insufficiency, and kidney or liver
failure).

Demographics, aneurysm location, and treatment were
recorded, as well as body mass index, smoking status, and
hypertension (previously diagnosed and treated or systolic
pressure > 140mmHg and/or diastolic pressure > 90mmHg
persistently observed during admission). Aneurysm size
was measured using the following parameters: maximum
diameter of the dome, independent of angles and directions
(maximum diameter, Dmax), maximum diameter of the
dome, perpendicular to the aneurysm height (width, 𝑊),
maximum height from dome tip perpendicular to aneurysm
neck (height, 𝐻), and diameter of the aneurysm neck (neck,
𝑁). Aspect ratio (𝐻/𝑁) and bottleneck ratio (𝑊/𝑁) were
calculated [19, 20].

The study was conducted in accordance with the Declara-
tion of Helsinki (2013) of the World Medical Association and
was approved by the local ethics committee. All patients gave
written informed consent.

2.2. Cerebrovascular Reactivity. CVR testing was performed
using transcranial Doppler (TCD) monitoring of blood flow
velocities in the middle cerebral arteries (MCA) before,
during, and after intravenous injection of acetazolamide
(AZ). The method has previously been described in detail
[18]. Except for an additional manufacturer of AZ, the
method of CVR testing was identical to the initial study [18].
The AZ manufacturers used in this study were Goldshield
Ltd., Croydon, Surrey, UK; Sanofi Aventis, Paris, France; and
Mercury Pharmaceuticals Ltd., Croydon, Surrey, UK. The
AZ dose was 1000mg for patients weighing < 80 kg, and
15mg/kg for patients weighing ≥ 80 kg. The maximum dose
was 1500mg. All examinations in the initial and follow-up
study were performed by the same sonographer (MLB).

Cerebrovascular reactivity was defined as the maximum
percentage change in mean blood flow velocity (MFV)

after administration of AZ: CVR (%) = [(MFVAZ −
MFVBASELINE)/MFVBASELINE] × 100, where CVR is cere-
brovascular reactivity, MFVBASELINE is baseline mean blood
flow velocity (before AZ), and MFVAZ is maximum mean
blood flow velocity after AZ.

2.3. Statistical Analysis. Two measures of central tendency
and dispersion were used: mean and standard deviation (SD)
for variables that were symmetric around the mean, and
median and interquartile range (IQR) for those that were
nonsymmetric. In cases where patients underwent treatment
for multiple aneurysms during the same procedure, averaged
aneurysm size was used in the analyses. The relationships
between blood flow velocities and CVR at the time of
initial examination and one year later were studied using
paired 𝑡-tests. Paired 𝑡-test was also used to assess possible
differences in velocities and CVR related to side (right/left
and ipsilateral/contralateral to the aneurysm treatment).
Regarding treatment modality (clipping or coiling), two-
sample 𝑡-tests were used. To simplify analyses, patients with
midline aneurysms were allocated to the side chosen for
endovascular or surgical approach. As in the previous study
[18],meanCVRof the two sides (right and left)was calculated
for all individuals. If the measurement on one side was
missing, the mean CVR was set to the nonmissing value.
Simple linear regressions, stratified on treatment modality,
were conducted on mean CVR at follow-up versus mean
CVR at first examination. Also, difference in mean CVR
between first exam and follow-up was the outcome in a
multiple regression and a set of simple linear regressions.
Covariates were age, sex, hypertension, smoking, body mass
index, weight difference from initial exam to follow-up,
treatment modality, maximum aneurysm diameter (Dmax),
mean CVR at the time of initial examination, and difference
in mean AZ dose per kg from initial exam to follow-
up. Lastly, maximum aneurysm diameter was included as
covariate in a simple linear and multiple regression with
CVR at the time of the initial examination as outcome, in
addition to the covariates tested in a previous report (age,
sex, hypertension, smoking, body mass index, and treatment
modality) [18]. The regression analyses were repeated with
ipsilateral CVR as outcome variable instead of mean CVR,
and with stratification for age, sex, and treatment modality.

All statistical analyses were performed with R version
3.4.3 [21].

3. Results

3.1. Patients, Aneurysm, and Treatment. Of 37 patients exam-
ined in the initial study, two patients chose to abstain from
the follow-up test due to side effects of AZ at the initial
examination, and one patient did not meet for follow-up
due to long travel to the hospital. This left us with a study
population of 34 patients.

Table 1 shows patient characteristics. Weight difference is
the difference in body weight from the first examination to
follow-up. All other variables listed in the table were recorded
at the time of aneurysm treatment.Mean agewas 49.0 (SD9.6,
range 27–65) years. In 20 of the 34 patients (58.8%) the body
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Table 1: Patients characteristics.

(𝑛 = 34)

Age, yearsa 49.0 (9.6)
Height, cma 169.2 (8.6)
Weight, kga 76.1 (15.5)
BMI, kg/m2a 26.5 (4.8)
Weight difference, kga 0.4 (4.7)
Femaleb 22 (64.7)
Hypertensionb 15 (44.1)
Smokingb

Current 19 (55.9)
Previous 11 (32.4)
Never 4 (11.8)

amean (SD); bn (%); BMI: body mass index; SD: standard deviation.

weight was different at the time of follow-up compared with
the first examination (range 10 kg reduction–13 kg increase).
In 11 patients (32.4%) the weight difference was >2 kg. Table 2
shows aneurysm and treatment characteristics.

3.2. Cerebrovascular Reactivity. In total, 56 bilateral and 12
unilateral examinations were performed in the 34 patients.
Unilateral examinations were more common in the initial
exams (23.5%) compared with follow-up (11.8%), presumably
because postoperative intracranial air can cause insufficient
insonation. Median time between treatment and initial exam
was 51.0 (IQR 39.5) hours. Median time between treatment
and follow-up exam was 376.5 (IQR 31.8) days. Median time
between initial examination and follow-up was 374.5 (IQR
29.3) days.

Of 68 examinations, 42 (61.8%) were performed using
1000mg AZ. The remaining 26 examinations (38.2%) were
donewith 15mgAZper kg because of high bodyweight.Mean
bodyweightwas 76.1 (SD 15.5, range 40 to 110) kg at the time of
the first examination and 76.6 (SD 17.2, range 40 to 118) kg at
follow-up. Mean AZ dose was 15.1 (SD 2.3) mg/kg in the first
examination and 15.1 (SD 2.4) mg/kg at follow-up. There was
no correlation between AZ dose per kg and CVR (Pearson’s
𝑅 = 0.08, 𝑝 = 0.66 in the first examination, and 𝑅 = −0.11,
𝑝 = 0.52 at follow-up).

Table 3 shows blood flow velocities and CVR results. In
the initial examination MFV in the middle cerebral arteries
was 58.6 cm/s before stimulation with AZ and 94.3 cm/s after,
giving amean CVR of 62.7%. Follow-up testing showedMFV
51.4 cm/s before AZ, 84.4 cm/s after, andmeanCVRof 65.6%.
Bilaterally, baseline and AZ-induced blood flow velocities
were higher in the postoperative week compared with 1 year
after aneurysm treatment (𝑝 ≤ 0.009 in all situations).
When assessing mean values of the right and left sides, no
difference between CVR at first examination and follow-up
was found (𝑝 = 0.31). When assessing CVR according to
treatment laterality, there was no difference over time on the
contralateral side (65.0% at follow-up versus 63.4% at the
initial examination, 𝑝 = 0.65). However, on the ipsilateral
side of aneurysm treatment there was an apparent change
in CVR over time. Ipsilateral CVR was 58.9% (SD 19.3) in

the initial examination versus 66.1% (SD 18.5) at follow-up
(𝑝 = 0.04), corresponding to an absolute increase of 7.2%
and relative increase of 12%. Subgroup analyses for treatment
modalities had lower sample sizes, and the significance
disappeared (𝑝 = 0.16). CVR change on the ipsilateral side
seemed larger in patients treatedwith clipping comparedwith
patients treated with coiling (absolute increase 10.5 versus
4.7%, and relative increase 17 versus 8%), yet the number of
patients in each subgroup is low (𝑛 = 12 for clipping and
𝑛 = 22 for coiling) and results are inconclusive (𝑝 = 0.42).
The same trend was found for mean CVR values of the right
and left side, with an absolute and relative increase of 8.7%
and 13% in patients treatedwith clipping versus 0.2% absolute
reduction and 0% relative change in patients treated with
coiling (𝑝 = 0.18). The tendency of larger CVR difference
between exams was present for all patients treated with
aneurysm clipping, regardless of whether temporal clipping
of a parent artery was performed or not. However, despite
similar values for CVR difference between exams, patients
treated with temporal clipping appeared to have higher
CVR values compared with patients treated with “standard”
clipping (without the need for temporary clipping), at both
the initial exam and follow-up. Due to few observations,
statistical power is however insufficient to evaluate potential
differences within the clipping subgroup.

Table 4 shows the results of the regression analyses
regarding the relationship between difference in mean CVR
from the first examination to follow-up and several different
variables. In the simple analysis, maximum aneurysm diam-
eter and CVR in the first examination were associated with a
change in CVR. An 1mm increase in the maximum diameter
of the aneurysm dome was associated with an increase in
CVR difference by 3.2 and 2.5 percentage points in the simple
and multiple regressions, respectively (𝑝 = 0.005 and 𝑝 =
0.04). For every percentage point increase in CVR in the first
examination, the change in CVR from initial exam to follow-
up was reduced with 0.3 percentage points (𝑝 = 0.05). The
association was stronger in the multiple model, where the
reduction in CVR change was 0.5 percentage points for every
percentage point increase in CVR in the first examination
(𝑝 = 0.01). In the multiple analyses age and treatment
modality were also associated with change in CVR. For age,
the change in CVR increased with 0.8 percentage points
per year (𝑝 = 0.03). For treatment modality, the multiple
model showed that patients treated with clipping had 13.8
percentage points increased change in CVR compared with
patients treated with coiling (𝑝 = 0.03). There were no
associations between change in CVR and sex, body mass
index, body weight difference between exams, hypertension,
and smoking. There were no major changes in the results
when regression analyses were repeated after stratification for
sex, age (≤50 years versus >50 years), and treatment modality
(coiling versus clipping).

Regression analyses were also repeated with ipsilateral
CVR as outcome variable instead ofmean CVR. Patients with
missing CVR values on the ipsilateral side, at the time of
either the first exam or follow-up, were excluded.This applied
to 7 of 34 (20.6%) patients: 2 of 22 (9.1%) patients treated
with coiling and 5 of 12 (41.7%) patients treated with clipping.
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Table 2: Aneurysm and treatment characteristics.

𝑛 = 34

Multiple aneurysms, 𝑛 (%) 12 (35.3)
Treatment modality, 𝑛 (%)

Coil 22 (64.7)
Clipa 12 (35.3)

Treatment side, 𝑛 (%)b

Left 18 (52.9)
Right 16 (47.1)

Location of treated aneurysms, 𝑛 (%)
MCA 14 (41.2)
ICA, incl. ophthalmic artery and PCOM 10 (29.4)
ACOM, anterior complex, and pericallosal artery 7 (20.6)
Basilar top, cerebelli superior, PICA, VB, and distal posterior 3 (8.8)

Size of treated aneurysms, mean (SD)c

Maximum diameter (𝐷max), mm 6.3 (2.4)
Height (𝐻), mm 6.4 (2.8)
Neck (𝑁), mm 4.1 (1.8)
Width (𝑊), mm 5.4 (2.2)
Aspect ratio (𝐻/𝑁) 1.6 (0.5)
Bottleneck ratio (𝑊/𝑁) 1.4 (0.5)

aIn four of twelve patients temporal clipping of a parent artery was performed; bone patient treated with combined clipping of an ACOM aneurysm and a
right MCA aneurysm in one procedure was allocated to the right side. Eight patients with midline aneurysms (ACOM and basilar top) were allocated to the
chosen side of approach; cthe majority of patients received treatment for a single aneurysm. For the 4 of 34 patients (11.8%) that underwent treatment for
two aneurysms during the same procedure, aneurysm size was averaged; ACOM: anterior communicating artery; ICA: internal carotid artery; MCA: middle
cerebral artery; PCOM: posterior communicating artery; PICA: posterior inferior cerebellar artery; VB: vertebrobasilar artery; maximum diameter (𝐷max):
maximum diameter of the dome (independent of angles and directions); height (𝐻): maximum height from dome tip perpendicular to aneurysm neck; neck
(𝑁): diameter of the aneurysm neck; width (𝑊): maximum diameter of the dome, perpendicular to the aneurysm height (𝐻).

The lower sample size in the analyses with ipsilateral CVR
as outcome yielded more uncertainty. Apart from higher 𝑝
values, findings were primarily consistent with the results
of the original regressions using mean CVR as outcome.
Maximum aneurysm diameter and CVR at first exam were
still associated with change in ipsilateral CVR between exams
in the simple analysis (𝑝 = 0.05), whereas the multiple
analysis provided weaker evidence for such associations (𝑝 =
0.22 for aneurysm diameter and 𝑝 = 0.10 for first CVR).
The positive association between change in CVR and age and
clipping found in the regression with mean CVR was less
obvious in the regression with ipsilateral CVR. The estimate
for age was 0.7 (𝑝 = 0.10) versus 0.8 (𝑝 = 0.03) in the
regression with mean values. The estimate for clipping was
9.8 (𝑝 = 0.19) in the regression with ipsilateral values versus
13.8 (𝑝 = 0.03) in the regression with mean values.

Finally, regression analyses were performed to assess if
larger aneurysm diameter was correlated with lower initial
CVR. When only results from the initial exam were included
in the statistical analyses, fewer observations yielded high 𝑝
values.Maximumaneurysmdiameter had an estimate of−0.6
in the simple analysis (𝑝 = 0.61) and −1.7 in the multiple
analysis (𝑝 = 0.15). Few observations hamper the assessment
of a possible association between larger aneurysm size and
reduced CVR in the first week after aneurysm treatment.

Figure 1 shows a scatter plot of mean CVR at first exam
and follow-up. The regression lines for the two treatment

modalities are almost parallel, with the line for patients
treated with clipping shifting up about 8 to 15 percentage
points. This is in accordance with Table 4.

Figure 2 shows box plots comparing change in mean
CVR from first exam to follow-up in patients treated with
coiling and clipping. Although there was little evidence for
difference in mean CVR change in patients treated with
coiling compared with clipping (𝑝 = 0.14), Figure 2 hints
that patients treated with clipping had a greater difference
between the initial examination and follow-up. Still, the
evidence is inconclusive.

Diamox Goldshield Ltd. was used in 44 CVR tests
(64.7%), Sanofi Aventis in 20 tests (29.4%), and Mercury
Pharmaceuticals Ltd. in 4 tests (5.9%). There did not seem
to be any important differences in CVR between the three
manufacturers (Mercury versus Goldshield: 𝑝 = 0.07;
Mercury versus Sanofi Aventis: 𝑝 = 0.84; Goldshield versus
Sanofi Aventis: 𝑝 = 0.46).

4. Discussion

4.1. Main Findings. In this study, we found a lower CVR
on the ipsilateral side of aneurysm treatment in the post-
operative week compared with one-year follow-up. There
was no evidence of any difference in CVR over time when
mean values of the right and left sides were assessed. Larger
aneurysm size is associated with increased change in CVR.
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Table 3: Blood flow velocities and cerebrovascular reactivity at baseline and follow-up.

First exam Follow-up Absolute
difference

Relative
difference 𝑝

mean (SD) mean (SD)
MFVBASELINE (cm/s)

Ipsilateral 59.8 (13.8) 51.2 (13.3) −8.6 0.86 <0.001
Contralateral 57.7 (14.7) 52.0 (12.1) −5.7 0.90 0.003
Mean 58.6 (13.2) 51.4 (11.7) −7.2 0.88 <0.001

MFVAZ (cm/s)
Ipsilateral 93.6 (18.0) 84.4 (20.2) −9.2 0.90 0.001
Contralateral 93.4 (23.3) 85.0 (20.1) −8.4 0.91 0.009
Mean 94.3 (20.0) 84.4 (18.5) −9.9 0.90 <0.001
ΔMFV (cm/s)

Ipsilateral 33.8 (9.2) 33.1 (9.8) −0.7 0.98 0.43
Contralateral 35.7 (11.2) 33.0 (11.8) −2.7 0.93 0.15
Mean 35.7 (10.2) 33.1 (9.9) −2.7 0.93 0.09

CVR (%)
Ipsilateral 58.9 (19.3) 66.1 (18.5) 7.2 1.12 0.04
Contralateral 63.4 (17.5) 65.0 (23.6) 1.7 1.03 0.65
Mean 62.7 (17.2) 65.6 (19.4) 2.9 1.05 0.31

MV (𝑛)
Ipsilateral 7 3
Contralateral 1 1

CVR: cerebrovascular reactivity;MFVBASELINE: baseline mean blood flow velocity (before acetazolamide);MFVAZ: maximummean blood flow velocity after
acetazolamide; ΔMFV: absolute change in mean flow velocity after acetazolamide; MV: missing value; 𝑝: 𝑝 value from paired 𝑡-test (follow-up–first); SD:
standard deviation. Note that if one side had a missing value, the mean is just the remaining value. This is why the mean is not simply the mean of ipsilateral
and contralateral values. Patients with MV were excluded from the paired 𝑡-test. The sample size was therefore reduced in the analyses of ipsilateral and
contralateral values (ipsilateral 𝑛 = 27, contralateral 𝑛 = 33, mean 𝑛 = 34).

Table 4: Regression results: difference in mean CVR between exams versus a number of variables.

Simple Multiple
Estimate 𝑝 Estimate 𝑝

Age, years 0.1 0.68 0.8 0.03
Female −4.9 0.42 −4.5 0.46
BMI, kg/m2 −0.2 0.78 −0.1 0.84
Weight difference, kg 0.3 0.63 0.3 0.81
Hypertension 1.7 0.78 3.3 0.58
Smoking

Current ref - ref -
Previous −2.8 0.67 −2.8 0.62
Never −5.2 0.59 −0.7 0.94

Treatment modality
Coil ref - ref -
Clip 9.0 0.14 13.8 0.03

Maximum aneurysm diameter (Dmax) 3.2 0.005 2.5 0.04
Mean CVR at first exam, % −0.3 0.04 −0.5 0.01
Difference in AZ dose per kg −2.4 0.49 −1.9 0.81
AZ: acetazolamide; BMI: body mass index; CVR: cerebrovascular reactivity; Dmax: maximum diameter of the aneurysm dome (independent of angles and
directions); ref: reference.

In addition, results suggest that the difference in CVR may
be greater in patients treated with clipping compared with
coiling, but evidence is inconclusive.

In a previous study, where CVR was examined in the first
week after aneurysm treatment, we did not find any difference

when comparing treated and untreated sides (59.4% versus
63.0%, 𝑝 = 0.16) [18]. We concluded that CVR in patients
with UIA did not differ from normal values reported in
healthy subjects and that findings did not indicate a system-
ically impaired vascular system in patients with UIA. New
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Figure 1: Scatter plot of mean cerebrovascular reactivity (CVR)
at the time of initial examination and follow-up, together with
regression lines. Results for patients treated with coiling are marked
with red triangles, and results for patients treated with clipping are
marked with black dots.
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Figure 2: Box plots comparing change in mean cerebrovascular
reactivity (CVR) from the first examination to follow-up in patients
treated with coiling and clipping. Boxes extend from the 25th to the
75th percentile. Horizontal bars represent the median, and whiskers
extend to the most extreme point that is less than 1.5 times the
interquartile range from the box. Mean values are marked with
crosses, and a single outlier is depicted as a circle.

information based on results from follow-up testing one year
later now indicates that theremay be a side difference in CVR
after aneurysm treatment after all. Ipsilateral CVR was 58.9%
after treatment versus 66.1% one year later, and contralateral

CVR was 63.4% after treatment versus 65.0% one year later.
The postoperative CVR of 58.9% seems to stand out as lower
than the other CVR values, indicating a temporary reduction
in CVR on the treated side. Even though we could not rule
out the fact that the trend with lower CVR on the ipsilateral
side was due to chance when only postoperative results were
assessed (𝑝 = 0.16) the difference was more pronounced
when follow-up resultswere included (difference in ipsilateral
CVR over time, 𝑝 = 0.04). Still, the sample size is limited and
results must be interpreted with caution.

Furthermore, this study showed higher baseline and AZ-
induced blood flow velocities in the postoperative week
compared with one year after aneurysm treatment. The
increased velocities can be explained by postoperative hyper-
emia. Transient hyperemia is common after craniotomy [22].
However, hyperemia has previously only been found in the
first postoperative hour [22], and themedian time for the first
CVR testing in our studywas 51.0 (IQR 39.5) hours after treat-
ment. To our knowledge, there have been no reports about
transient hyperemia after endovascular aneurysm treatment.
Alternatively, posttreatment spasm could be the cause of
elevated blood flow velocities at the initial exam. Moreover,
comparison of absolute blood flow velocities is problematic
as the probe positioning and insonation angle probably were
different at the time of the initial and follow-up exam. Still,
there is no reason why altered insonation angle and probe
positioning should only cause increased velocities. In theory,
changes in technical insonation aspects could just as well
cause a reduction of measured velocities.

Our finding of reduced CVR on the ipsilateral side
after aneurysm treatment may be related to postoperative
hyperemia. It is possible that a transient hyperemia in
response to aneurysm clipping or coiling affects the arteriolar
vasodilating capacity and thus influences CVR. Baseline
velocities (MFVBASELINE) were higher at first exam compared
with one-year follow-up (59.8 cm/s versus 51.2 cm/s, 𝑝 <
0.001), whereas the absolute change in velocity (ΔMFV) was
the same at the two examination times (33.8 cm/s versus
33.1 cm/s, 𝑝 = 0.43). Since CVR is defined as percentage
change in velocity after AZ compared with baseline, the same
ΔMFV yields lower CVR values when baseline velocities are
increased (unchanged numerator and higher denominator
of the fraction). An alternative explanation for decreased
CVR after aneurysm treatment may be that harboring an
aneurysm in itself impairs CVR. This effect may still be
present in the first postoperative days, while vasodilating
capacity can be restored after aneurysm treatment and CVR
normalized one-year later. Since TCD and AZ testing were
not performed prior to aneurysm treatment it is difficult to
say if the reduction in CVR is caused by the aneurysm itself
or by aneurysm treatment.

4.2. Time Course of CVR in Healthy Subjects. Schwertfeger
et al. (2006) assessed the time course of CVR in healthy
subjects [2]. TCD and AZ were used to investigate CVR in
33 healthy subjects at baseline and after 1 to 3 years (mean
21.6 months). They performed unilateral testing and found
no changes in CVR over time. Like in our study, they did
not find any association between sex and smoking and CVR
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change. Unlike their findings, we found a positive association
between age and change in CVR from first examination to
follow-up (𝑝 = 0.03 in the multiple regression model). The
possible influence by age on CVR is unclear, and studies in
healthy subjects have shown varying effects [23–30].

4.3. Time Course of CVR in Patients with Intracranial
Aneurysms. Several studies have assessed the time course of
CVR in patients with ruptured intracranial aneurysms. CVR
is often impaired in the early phase after aSAH [3–6],
especially in patients with massive hemorrhage, poor neu-
rological status at admission, and vasospasm [9–15]. There
is a possible association between progressive impairment
in CVR in the early phase after aSAH and subsequent
development of delayed cerebral ischemia [9, 16]. Transient
reduction of CVR may also be associated with poor outcome
[17]. Follow-up studies months and years after aSAH have
shown normalization of CVR, regardless of the severity of
hemorrhage and presence of vasospasm in the acute phase
[31–33]. In contrast to the numerous studies on CVR in
patients with aSAH there are few studies addressing CVR in
patients with UIA. To our knowledge only one study has used
AZ test and TCD to assess CVR in this patient group [18],
and six reports have used CO2 as vasoactive stimuli [3, 4, 7,
14, 15, 33]. In these studies, CVR testing was performed either
at a single time-point after aneurysm treatment [18, 33] or at
multiple time-points within 24 hours in close relation to the
time of aneurysm surgery [3, 4, 7, 14, 15]. To our knowledge,
this is the first study to investigate within-subject differences
over time in patients treated for UIA. We found evidence in
favor of a transient reduction of CVR on the ipsilateral side
of aneurysm treatment, and recommend separate assessment
of ipsilateral and contralateral CVR as mean values of right
and left sides can conceal side-differences. Our finding of
possible transient reduction of CVR also after treatment for
unruptured aneurysms provides valuable insight and may
enable better interpretation of CVR results after aneurysm
treatment.

Studies with measurement of CVR at a single time-point
have not shown any association between CVR and aneurysm
treatment modality [18, 31], whereas in this follow-up study a
possible association between treatment modality and change
in CVR was found. Patients treated with aneurysm clipping
appeared to have a larger difference in CVR between exams.
This tendency was present for all patients treated with
aneurysm clipping, regardless of whether temporal clipping
of a parent artery was performed or not. Still, the number
of patients in the subgroups for treatment modality is low.
In particular, the number of observations in patients treated
with clipping is reduced due to missing values, presumably
related to postoperatively intracranial air. Results should thus
be interpreted with caution.

4.4. Technical Considerations. Blood flow velocities demon-
strate diurnal variations [34].The follow-up examination was
not performed at the identical time of day as the initial
CVR test, but the time differences between exams were small
(median 2.25 hours, IQR 2.56 hours) and we consider their
influence as negligible. Mean AZ dose was the same in the

first examination and follow-up (mean 15.1mg/kg, SD 2.3
and 2.4mg/kg, respectively). A third of the patients had
a weight difference of >2 kg from first exam to follow-up.
Nonetheless, the weight difference was small (mean 0.4 kg,
SD 4.7 kg) and there was no association between weight
difference and change in CVR (𝑝 = 0.93). We used different
brands of AZ, but there was no differences in CVR between
the three manufacturers. As expected, insufficient insonation
due to postoperative intracranial air was more common on
the ipsilateral side of aneurysm clipping compared with the
contralateral side, or compared with patients treated with
coiling.

4.5. Strengths and Limitations. To our knowledge, this is the
first study to investigate within-subject differences in CVR
over time in patients treated for UIA.The sample size is in the
upper range compared with CVR studies in healthy subjects
[2, 35–46]. The method of testing was identical at initial
examination and follow-up. We used the same sonographer
(MLB) in all examinations to reduce operator variability, as
the intrarater reproducibility for TCD examinations has been
found superior to interrater [47, 48].

The AZ dose should ideally have been bodyweight-based
in all patients in the study, not only in patients weighing
≥80 kg. Still, the recommended AZ dose of 13 to 18mg/kg
[39, 49] was achieved for the vast majority of patients (91.2%).
Bloodflowvelocities are affected by physiological factors such
as hematocrit, arterial CO2 tension, heart rate, and mean
arterial pressure [50], and hyperventilation can theoretically
counteract the vasodilatory effect of AZ.We did not routinely
monitor these parameters in our study.

Even though the sample size is rather large comparedwith
other CVR studies, the limited number of patients makes
it difficult to draw definite conclusions regarding regression
results and subgroup effects, especially for treatment modal-
ity. The regression analyses based on ipsilateral CVR were
hampered by missing values in several patients, especially in
patients treated with clipping. Subgroup analysis based on
laterality and treatment modality should be considered when
planning the sample size of future studies.

To best assess the effect of aneurysm treatment on CVR
it would have been preferable to examine patients before
and after the procedure. Patients were not examined before
aneurysm treatment in our study, partly because this study
was part of a larger study where the set-up was designed
for comparison of CVR in patients treated for ruptured and
unruptured aneurysms, and partly because we wanted to
avoid test-induced aneurysm rupture, a highly unlikely yet
serious complication.

5. Conclusions

This study implies that patients with UIA may have a
temporary reduction in CVR on the ipsilateral side after
aneurysm treatment. The change in CVR is associated with
larger aneurysm size and is possibly more pronounced in
patients treated with clipping. We recommend that results
from ipsilateral and contralateral sides should be assessed
separately as mean values can conceal side-differences in
CVR.
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A B S T R A C T

Introduction: Delayed cerebral ischemia (DCI) is a major cause of disability and death after aneurysmal sub-
arachnoid hemorrhage. The literature suggests that impaired cerebrovascular reactivity (CVR) may be a pre-
dictor for DCI; still no CVR based prediction model has been developed. Increased knowledge about possible
predictors of DCI can improve patient management in high-risk patients and allow for shorter hospital stay in
low-risk patients.
Method: CVR was examined in 42 patients with aneurysmal subarachnoid hemorrhage and 37 patients treated
for unruptured intracranial aneurysm, using acetazolamide test with transcranial Doppler monitoring of blood
flow velocities. Patients were followed for development of DCI, separated into clinical deterioration and
radiographic infarction.
Results: For all patients, regardless of aneurysm rupture status, CVR was on average 5.5 percentage points lower
on the ipsilateral side of aneurysm treatment. Patients with clinical deterioration due to DCI had lower CVR than
patients without DCI, and the difference was larger on the contralateral side (33.9% vs. 49.2%). Two prediction
models were constructed for clinical deterioration due to DCI. The area under the receiver operating char-
acteristic curve was 0.82 in the model using established predictors, and 0.86 in the model that also included
CVR.
Conclusion: Our findings support the hypothesis that impaired CVR may be an independent predictor of clinical
deterioration due to DCI, and may assist in identifying patients at risk after aneurysmal subarachnoid hemor-
rhage. Ipsilateral CVR reduction occurs in all patients after aneurysm treatment, regardless of DCI development,
thus highlighting the need to evaluate ipsi- and contralateral CVR separately.

1. Introduction

Delayed cerebral ischemia (DCI) is a major cause of disability and
death after aneurysmal subarachnoid hemorrhage (aSAH) [1,2]. Iden-
tification of patients at high risk of developing DCI can improve patient
management, and valid predictors of DCI could allow for shorter hos-
pital stay in patients at low risk. Large amount of subarachnoid blood
and poor clinical admission status are known predictors for DCI [3–7].
Other predictors, like smoking and hydrocephalus have been suggested
[8]. Still, additional information is needed to make prediction more
accurate.

Cerebrovascular reactivity (CVR) is often impaired in the early

phase after aSAH [9–15], especially in patients with poor clinical grade
[12,16–18]. Several test methods have shown reduced CVR in patients
with aSAH compared with unruptured intracranial aneurysms (UIAs)
[9–12,19], but this has not been confirmed for the transcranial Doppler
(TCD) and acetazolamide (AZ) test (TCD-AZ test) [20]. With one ex-
ception [14], the literature suggests that impaired CVR may be asso-
ciated with vasospasm and can be a potential predictor for DCI after
aSAH [15–17,21–30]. However, sample sizes have been limited,
methodology has varied and inconsistent and outdated definitions of
DCI have been used. To our knowledge, no CVR based prediction model
has yet been developed.

The main objective of this study was to assess if impaired CVR can
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be a predictor for DCI after aSAH. In adjunct, we wanted to assess the
relationship between aneurysm rupture status and CVR assessed by
TCD-AZ test, in order to improve understanding of CVR in this patient
group.

2. Methods

2.1. Participants

Patients treated at the Department of Neurosurgery, Haukeland
University Hospital between February 2011 and May 2013 were pro-
spectively included. Inclusion criteria were: age≥ 18 years and treat-
ment for saccular intracranial aneurysms with endovascular coiling or
surgical clipping. Exclusion criteria were: previous treatment of in-
tracranial aneurysms, giant aneurysms treated with proximal artery
occlusion, carotid stenosis (> 50%) or occlusion, lack of transtemporal
bone window in TCD examination, DCI present at admission, moribund
patients, and contraindications to acetazolamide.

2.1.1. Clinical, sonographic and radiographic assessment
In all patients demographics, body weight, smoking status, hy-

pertension, aneurysm location, and treatment modality was recorded.
In patients with ruptured aneurysms, the clinical status upon admission
was evaluated with Glasgow Coma Scale (GCS) [31] and World Fed-
eration of Neurological Surgeons (WFNS) scale [32]. Admission com-
puted tomographic (CT) scan was classified according to the modified
CT Fisher scale [33].

Patients were monitored clinically, sonographically and radio-
graphically for development of DCI, vasospasm and cerebral infarction.
Neurological status was scored routinely three times a day, and more
frequent as regarded necessary. As a pragmatic choice, sonographic
examinations were performed whenever possible, in order to avoid
conflicts with patient investigations or treatment. Blood flow velocities
in major intracranial arteries were assessed with transcranial color-
coded sonography (TCCS) using a portable Philips CX50 system
(5–1MHz sector array probe) and Lindegaard Index was calculated
[34]. TCCS was performed daily and more frequent if neurological
deterioration occurred. Neuroimaging, i.e. CT or magnetic resonance
imaging (MRI) with or without angiography and digital subtraction
angiography (DSA) was performed tailored to the clinical situation. An
experienced neuroradiologist (GM) assessed all angiograms, CT and
MRI scans retrospectively for vasospasm and cerebral infarctions.

2.1.2. Cerebrovascular reactivity
CVR testing was performed with acetazolamide (AZ). The AZ dose

was 1000mg for patients weighing<80 kg, and 15mg/kg for patients
weighing ≥80 kg. The maximum dose was 1500mg. CVR testing was
performed after aneurysm treatment to avoid risk of (re-)rupture.
Patients treated for unruptured intracranial aneurysms (UIA) were ex-
amined once, whereas patients treated for aSAH underwent serial
testing during the hospital stay. The time interval between examina-
tions was minimum 24 h. To avoid steal phenomenon and neurological
deterioration, CVR testing was not performed after a patient was di-
agnosed with DCI. TCD was used to monitor blood flow velocities in the
middle cerebral arteries (MCA) after intravenous injection of acet-
azolamide (AZ) [20]. Cerebrovascular reactivity was calculated as the
maximum percentage change in MFV in MCA after administration of
acetazolamide: CVR (%)= [(MFVAZ –MFVBASELINE) / MFVBASELINE] x
100, where MFVBASELINE is mean blood flow velocity before acet-
azolamide and MFVAZ is mean blood flow velocity (maximum change)
after acetazolamide. In patients with a paradoxical velocity reduction
after AZ due to a steal phenomenon, CVR will be a negative value.

2.1.3. Clinical deterioration and cerebral infarction due to delayed cerebral
ischemia

All patients with aSAH, regardless of presence of ischemic

symptoms or not, were given 60mg nimodipine orally every four hours
to prevent DCI [35,36]. Critically ill patients and patients with swal-
lowing difficulties were given nimodipine as intravenous infusion
2mg/h. Patients with severe and refractory radiographic vasospasm
and clinical deterioration due to DCI were given intraarterial nimodi-
pine [37]. Patient management was not influenced by CVR results.

We distinguished between clinical deterioration and radiographic
infarction due to DCI [38,39].

Clinical deterioration (DCIclinical) was defined as a new focal neu-
rological impairment or≥ 2 points reduction in Glasgow Coma Score,
lasting for minimum 1 h, and not appearing immediately after an-
eurysm occlusion. Other causes of deterioration were excluded by
clinical assessment, cerebral CT or MRI, and laboratory analyses.

Radiographic infarction (DCIinfarction) was defined as a new infarc-
tion identified on CT or MR scans during the hospital stay, within six
weeks after aSAH. Infarctions present on the admission or immediate
postoperative CT, and hypodensities resulting from the clipping or
coiling procedure, ventricular catheter placement or intraparenchymal
hematoma were not regarded as cerebral infarctions from DCI.

Angiographic vasospasm was defined as arterial narrowing present
on CTA, MRA or DSA, not attributable to atherosclerosis, catheter-in-
duced spasm, or vessel hypoplasia. Angiographic vasospasm was clas-
sified as none, mild (< 33% reduction in arterial diameter), moderate
(34–66%) or severe (≥67%), and was also categorized with the Nathal
grading scale [40].

Sonographic vasospasm was defined as time-averaged peak velocity
(TAPV) ≥120 cm/s in any cerebral artery and Lindegaard index ≥3

Table 1
Patient, aneurysm and treatment characteristics.

aSAH (n=42) UIA (n=37)

Age, yearsa 53 ± 13 50 ± 11
Height, cma 171 ± 9 169 ± 8
Weight, kga 76 ± 18 77 ± 16
BMI, kg/m2a 26 ± 5 27 ± 5
Female 24 (57.1) 24 (64.9)
Hypertension 19 (45.2) 18 (48.6)
Smoking
Current 27 (64.3) 20 (54.1)
Previous 8 (19.0) 13 (35.1)
Never 7 (16.7) 4 (10.8)

Multiple aneurysm 9 (21.4) 12 (32.4)
Aneurysm diametera,b 7 ± 3 7 ± 3
Location treated aneurysms
Middle cerebral artery 12 (28.6) 17 (45.9)
ACOM, anterior complex and pericallosa 17 (40.5) 7 (18.9)
ICA, incl. ophthalmic artery and PCOM 6 (14.3) 10 (27.0)
Basilar top, cerebelli superior, PICA, VB, distal
posterior

7 (16.7) 3 (8.1)

Treatment modality
Coil 30 (71.4) 22 (59.5)
Clip 12 (28.6) 15 (40.5)

Treatment sidec

Left 21 (50.0) 19 (51.4)
Right 21 (50.0) 18 (48.6)

ACOM: anterior communicating artery; aSAH: aneurysmal subarachnoid he-
morrhage; BMI: body mass index; ICA: internal carotid artery; PCOM: posterior
communicating artery; PICA: posterior inferior cerebellar artery; UIA: un-
ruptured intracranial aneurysms; VB: vertebrobasilar arteries.

a Mean ± standard deviation. All other variables are reported as n (%).
b Maximum diameter of the aneurysm dome. For patients with aSAH the size

of the ruptured aneurysm is reported. For patients that underwent treatment for
multiple UIA during the same procedure, aneurysm size was averaged.

c Twenty-four patients with midline aneurysms (ACOM and basilar top) were
allocated to the chosen side of approach. One patient treated with combined
clipping of an ACOM aneurysm and a right middle cerebral artery aneurysm in
one procedure was allocated to the right side. The coiling procedure failed to
adequately secure the aneurysm in one patient, so clipping was performed in-
stead.
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[34]. Severe sonographic vasospasm was defined as TAPV ≥200 cm/s
and Lindegaard index ≥6.

2.1.4. Ethics
The study was conducted in accordance with the Declaration of

Helsinki (2013) of the World Medical Association, and was approved by
the local ethics committee (the Regional Committees of Western
Norway for Medical and Health Research Ethics, approval number
2011/144). Written informed consent was obtained from all patients or
a legal representative.

2.2. Statistical analysis

We reported CVR separately as ipsilateral and contralateral values
to avoid that mean values could obscure side differences [41]. Due to
the wide range of reported CVR measured by TCD and AZ in healthy
subjects [42–54] and patients with UIA [20], we studied CVR as a
continuous variable. Effects are reported per percentage point change in

CVR. Midline aneurysms were allocated according to chosen side of
approach for treatment. Standard t-tests and multiple regression ana-
lyses (adjusted for age, sex, hypertension, smoking, aneurysm diameter
and treatment modality) were carried out to examine the relationship
between CVR and rupture status.

We then compared clinical, radiographical and sonographical vari-
ables of patients with and without DCIclinical, with chi-squared or
Fisher's exact test, as appropriate. Next, we assessed the predictive
potential of both contralateral and ipsilateral CVR for DCIclinical and
DCIinfarction, to decide which measure of CVR was most appropriate to
use in patients with multiple measurement (first, lowest, or within-
patient average of all exams). A priori, we chose the lowest or first
measured CVR as the exposure (more convenient in clinical use). t-test
was used to compare CVR in aSAH patients with and without DCIclinical
or DCIinfarction, and to assess side differences. Simple logistic regression
analyses were conducted for both DCIclinical and DCIinfarction versus both
within-patient average CVR and lowest measured contralateral CVR.
Further, box plots were constructed, based on the lowest measured

Fig. 1. Box plots comparing cerebrovascular reactivity (CVR)
in patients with unruptured intracranial aneurysms (UIA),
aneurysmal subarachnoid hemorrhage (aSAH) without clin-
ical deterioration due to delayed cerebral ischemia (DCI), and
aSAH with clinical deterioration due to DCI. For patients with
aSAH serial measurements of CVR were performed, and the
lowest measured value is presented. Ipsilateral CVR are
shown in dark grey boxes, and contralateral CVR in light grey
boxes. Boxes extend from the 25th to the 75th percentile.
Horizontal bars represent the median, and whiskers extend to
the most extreme point that is< 1.5 times the interquartile
range from the box. Mean values are marked with white
crosses, and outliers are depicted as points.

Table 2
Blood flow velocities and cerebrovascular reactivity in patients with ruptured vs. unruptured aneurysms.

UIA (n=37) aSAH (n= 42)

Singel exam First exam Lowest value Average of all exams p-values UIA vs. aSAH

MFVBASELINE (cm/s)
Ipsi 60 ± 14 57 ± 20 55 ± 19 61 ± 18 0.54, 0.25, 0.79
Contra 58 ± 14 59 ± 18 53 ± 18 60 ± 19 0.79, 0.18, 0.59

MFVAZ (cm/s)
Ipsi 94 ± 18 80 ± 28 76 ± 27 86 ± 25 0.02, 0.003, 0.15
Contra 93 ± 23 86 ± 29 79 ± 29 89 ± 29 0.25, 0.02, 0.42

ΔMFVAZ (cm/s)
Ipsi 34 ± 9 23 ± 21 18 ± 17 25 ± 17 0.004, < 0.001, 0.01
Contra 36 ± 11 28 ± 19 22 ± 15 29 ± 16 0.03, < 0.001, 0.03

CVR (%)
Ipsi 59 ± 19 43 ± 35 33 ± 28 45 ± 30 0.02, < 0.001, 0.02
Contra 63 ± 17 48 ± 27 40 ± 23 51 ± 25 0.008, < 0.001, 0.01
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iCVR and cCVR for UIA, aSAH without DCIclinical, and aSAH with
DCIclinical.

From this, two prediction models for DCIclinical were created. Model
I included WFNS, modified CT Fisher scale, age, sex, smoking, and
hydrocephalus, all variables suspected to affect risk of DCIclinical. Model
II included all variables from Model I plus contralateral CVR. Model
discrimination was assessed with area under the ROC curve (AUC), and
model calibration with Hosmer-Lemeshow's C and calibration plots
[55]. Results were adjusted for optimism using the bootstrapping
techniques [56]. Uniformity of fit was evaluated across clinical grade
(WFNS I-III vs. IV-V).

Statistical analysis was performed with R version 3.4.3 [57]. The
data that support the findings of this study are available from the
corresponding author upon reasonable request.

3. Results

3.1. Patients, aneurysm and treatment

An overview of the source population is available in the online
supplement (Table S1). Of 136 patients consecutively recruited during
the study period, 57 were excluded, leaving a study population of 79
patients. In total, 37 patients were treated for UIA and 42 patients had
aSAH (Table 1).

3.2. Cerebrovascular reactivity

In total, 101 bilateral and 20 unilateral examinations were per-
formed. In patients with aSAH, 84 examinations were done. Median
time for first exam was 3.2 (IQR 3.2; range: 1.3–15.0) days after ictus
and 2.3 (IQR 2.9; range: 0.8–10.8) days after aneurysm treatment.
Median time for the exam with the lowest CVR value was 5.3 (IQR 4.5;
range: 1.8–20.2) days after ictus and 4.7 (IQR 3.9; range: 0.8–19.8)
days after aneurysm treatment. In patients with UIA, a single ex-
amination was performed a median of 2.2 (IQR: 1.8; range: 1.1–6.2)
days after aneurysm treatment.

3.3. Ruptured versus unruptured aneurysms

Patients with aSAH had lower CVR compared with patients with
UIA (Fig. 1). There was no difference in baseline velocities (MFVBASE-

LINE) between aSAH and UIA patients (Table 2). Increase in velocity
after AZ (ΔMFVAZ) was however smaller in patients with aSAH, yielding
lower both ipsilateral and contralateral CVR. For all patients, regardless
of aneurysm rupture status, CVR was on average 5.5 percentage points
lower on the ipsilateral side (p= .04). Regression analyses (adjustment
for age, sex, hypertension, smoking, aneurysm diameter and treatment
modality) confirmed that CVR was lower in patients with aSAH. Pa-
tients with UIA had a single CVR measurement, whereas aSAH patients
were subject to several measurements. There are thus several ap-
proaches to calculate individual CVR: the first exam, the lowest value
across exams, or the within-patient average for all exams, on both the
ipsilateral and contralateral side. Using the first exam, the adjusted
ipsilateral CVR was 19.6 percentage points lower in patients with aSAH
(p= .005), and the contralateral CVR was 16.6 percentage points lower
(p= .002). Using the lowest value across exams, the adjusted difference
between the aSAH and UIA groups was 31.1 percentage points on the
ipsilateral side (p < .001), and 23.6 percentage points on the con-
tralateral side (p < .001). Using the within-patient average, CVR was
19.6 percentage points lower among patients with aSAH on the ipsi-
lateral side (p= .002) and 14.7 percentage points lower on the con-
tralateral side (p= .004).

3.4. Delayed cerebral ischemia and cerebral infarctions

Of 42 aSAH patients, 22 (52.4%) developed DCIclinical. Median time
from ictus to diagnosis of DCIclinical was 9 days (IQR 4.8, range 5–19).
Furthermore, 19 patients (45.2%) developed DCIinfarction, and five pa-
tients (11.9%) developed infarctions from other causes (Table 3). Four
patients with severe, refractory radiographic vasospasm and DCIclinical
were given nimodipine intrarterially as rescue therapy and survived
with DCIinfarction. In all patients, angiographic vasospasm and
DCIinfarction were located bilaterally or on the same side as the ruptured
aneurysm. No patients had isolated vasospasm or infarctions on the
contralateral side of the ruptured aneurysm. The overall prevalence of
poor grade patients and thick bleedings was high; with WFNS grade IV-
V in 42.9% of all patients with aSAH, and modified Fisher grade 3–4 in
66.7%. The proportion of patients with excellent clinical admission
status (WFNS grade I) was lower (p= .02) and hydrocephalus was more
prevalent (p= .007) in patients with DCIclinical.

The different approaches to CVR (first exam, lowest value and

Table 3
Characteristics of patients with aneurysmal subarachnoid hemorrhage.

Total
(n=42a)

Clinical DCI
(n=22)

No clinical
DCI (n=19)

p-Value

GCS on admissionb 11 ± 4 11 ± 4 12 ± 4 0.44
WFNS
I GCS 15 8 (19.0) 1 (4.5) 7 (36.8) 0.02c

II GCS 13–14, without
neurological deficit

14 (33.3) 9 (40.9) 5 (26.3) 0.51

III GCS 13–14, with
neurological deficit

2 (4.8) 1 (4.5) 1 (5.3) 1.00c

IV GCS 7–12 10 (23.8) 7 (31.8) 3 (15.8) 0.29c

V GCS 3–6 8 (19.0) 4 (18.2) 3 (15.8) 1.00c

Modified CT Fisher
1 Thin SAH without
IVH

6 (14.3) 1 (4.5) 5 (26.3) 0.08c

2 Thin SAH with IVH 8 (19.0) 4 (18.2) 3 (15.8) 1.00c

3 Thick SAH without
IVH

15 (35.7) 7 (31.8) 8 (42.1) 0.72

4 Thick SAH with IVH 13 (31.0) 10 (45.5) 3 (15.8) 0.09
Hydrocephalus (during

primary stay)
30 (71.4) 20 (90.9) 9 (47.4) 0.007

Cerebral infarction due to
DCI

19 (45.2) 13 (59.1) 5 (26.3) 0.07

Angiographic vasospasm
None 22 (52.4) 6 (27.3) 16 (84.2) < 0.001
Mild 3 (7.1) 2 (9.1) 1 (5.3) 1.00c

Moderate 12 (28.6) 9 (40.9) 2 (10.5) 0.07
Severe 5 (11.9) 5 (22.7) 0 (0.0) 0.05c

Angiographic scale ad
modum Nathald

No vasospasm 22 (52.4) 6 (27.3) 16 (84.2) < 0.001
One axis 5 (11.9) 2 (9.1) 2 (10.5) 1.00c

Two axes 1 (2.4) 1 (4.5) 0 (0.0) 1.00c

Three axes 6 (14.3) 5 (22.7) 1 (5.3) 0.19c

Generalized/diffuse
vasospasm

8 (19.0) 8 (36.4) 0 (0.0) 0.004c

Sonographic vasospasme

None 20 (48.8) 1 (4.8) 18 (94.7) < 0.001
Mild to moderate 14 (34.1) 13 (61.9) 1 (5.3) < 0.001
Severe 7 (17.1) 7 (33.3) 0 (0.0) 0.009c

aSAH: aneurysmal subarachnoid hemorrhage; CT: Computer Tomography; DCI:
Delayed cerebral ischemia; GCS: Glasgow Coma Score; IVH: intraventricular
hemorrhage; SAH: subarachnoid hemorrhage; WFNS: World Federation of
Neurosurgical Societies score.

a Missing information regarding presence or absence of clinical DCI in one
patient due to sedation

b Mean ± standard deviation. All other variables are reported as n (%)
c Due to few observations Fishers exact is used instead of chi-squared test
d The vascular axes were defined as follows: a) internal carotid artery, b)

middle cerebral artery, c) anterior cerebral artery, d) vertebral artery, e) basilar
artery, f) posterior cerebral artery, and g) any other arterial territory.

e Missing sonographic information in one patient.

M.L. Bøthun, et al. Journal of the Neurological Sciences 407 (2019) 116539

4



within-patient average) were compared for patients with and without
DCIclinical or DCIinfarction (Tables S2-S3). For DCIinfarction, there was no
difference in ipsilateral or contralateral CVR between groups across all
approaches (Table S2). For DCIclinical (Table S3), there was no difference
in ipsilateral CVR between groups. However, the lowest contralateral
CVR was lower in patients with DCIclinical than without (33.9% vs.
49.2%, p= .05) and the difference in within-patient average CVR was
even larger (43.2% vs. 61.9%, p= .02). Differences in first-exam CVR
were less apparent (44.0% vs. 56.2%, p= .19). Mean combined values
of the right and left side masked side-differences between the groups.
Fig. 1 shows box plots illustrating the difference between ipsi- and
contralateral sides.

Because CVR on the ipsilateral side was similar between patients
with and without DCIclinical and DCIinfarction, contralateral CVR was se-
lected as the exposure variable in logistic regressions (Fig. 2). CVR did
not predict DCIinfarction, but did predict DCIclinical. For DCIclinical, OR was
0.96 for both the lowest value (95% CI 0.93–1.00, p= .05) and within-
patient average (95% CI 0.93–1.00, p= .03). This corresponds to a 4%
reduction in the odds of developing DCIclinical per percentage point in-
crease in CVR. Hence, DCIclinical risk increased with lower contralateral
CVR. The risk of developing DCIclinical is 28.3% when the lowest CVR on
the contralateral side is 75%, whereas the risk is 49.0% with CVR 50%
and 70.1% with CVR 25%.

The prediction models using lowest value and within-patient

Fig. 2. Probabilities of developing clinical deterioration (A, B) and cerebral infarction (C, D) due to DCI for different CVR values, as predicted by logistic regression.
CVR on the contralateral side of aneurysm treatment is used in the models, and the lowest measured CVR (A, C) and within-patient-average CVR of all exams is
presented (B, D). The solid black line shows the estimated regression line. Uncertainty is indicated by the shadowed area (95% confidence band). Two patients,
marked with a solid grey and black dot, had a paradoxical velocity reduction after AZ.
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average were similar for DCIclinical, even though the p-value for the OR
was slightly lower in the second model. Still, the lowest measured CVR
is more convenient to use in clinical practice, and the time of the lowest
CVR reflects the typical time period for onset of DCI. The lowest value
on the contralateral side was therefore chosen as the CVR predictor for
DCIclinical in the following analyses.

In prediction Model I the area under the receiver operating char-
acteristic curve (AUC) after correction for optimism was 0.82, and in
Model II the corresponding AUC was 0.86 (Table 4). Confidence in-
tervals for AUC for the two models were overlapping. Receiver oper-
ating characteristic curves and calibration plots are shown in Fig. 3.
Hosmer and Lemeshow's C statistics were C=15.33 (Model I), and
C=9.41 (Model II). Stratification for clinical grade (WFNS I-III vs. IV-
V) did not cause any major changes in the prediction models.

Two patients had a paradoxical velocity reduction after AZ. One
patient with a single contralateral CVR of −14.9% (grey dot, Fig. 2)
developed both DCIclinical and DCIinfarction. Another patient with a ne-
gative CVR recovered without ischemic symptoms or infarction (black
dot, Fig. 2). Notably, the CVR reduction was transient, with CVR of
−15.4% in the first exam and 37.4% when re-tested a week later,
making the within-patient average CVR 11.0%.

4. Discussion

To our knowledge, this is the first study that has used TCD and AZ to
compare CVR in patients with aSAH and UIA. The study indicates that
contralateral CVR may be an independent predictor for clinical dete-
rioration due to DCI after aSAH, but CVR is not able to predict radio-
graphic infarction due to DCI.

Various methods are used to assess CVR [58]. It is unclear if CVR
results are consistent for different methodologies. Comparing results by
multiple methods could elucidate potential differences, but has not
been done. The TCD-AZ test is widely applied for CVR testing. The
method has some advantages compared with other methods (easier set-
up, reduced need for patient co-operation, high safety profile), but also
some disadvantages (potential side effects, dose-dependent effects, and
contraindications for AZ) [58]. We found that CVR was considerably
lower in patients with ruptured aneurysms compared with patients with
unruptured aneurysms and this difference appeared to be bigger on the
ipsilateral side of aneurysm treatment. This is in concordance with

previous CVR-studies using other vasoactive stimuli and measurement
methods [9–12,19].

Since the 1970s, literature has suggested that impaired CVR may be
associated with DCI after aSAH [14–17,21–30]. With the exception of
one study [14], these findings are consistent across different meth-
odologies, study designs, sample sizes, and definitions of DCI. Study
sizes have however been small, and CVR has not been integrated as
standard assessment after aSAH [35,59–61]. In clinical work, a CVR
based prediction model of DCI would be valuable.

In our prediction models, the confidence intervals for the coeffi-
cients of the established predictors all included the value 1 by quite
some margin, whereas the confidence interval for the coefficient of CVR
was 0.89 to 1.00 (Table 4). Note also that 0.94 is the OR per unit change
in CVR, which corresponds to an OR of about 0.54 per change of 10,
and an OR of 0.05 per change of 50. Among patients in our study, CVR
ranges from less than zero to>90. Hence, contralateral CVR appears to
be the strongest predictor of DCI in the model. The confidence intervals
of the AUCs were overlapping, which indicates that CVR did not have
additional value in the prediction of DCI after aSAH. Still, including
CVR in the model caused a substantial increase of optimism adjusted
AUC from 0.82 to 0.86. This warrants further investigation, especially
as a more accurate prediction model for DCI is needed.

Practical considerations such as ease-of-use and patient comfort are
arguments in favor of single CVR testing. Serial testing is time con-
suming and can be challenging due to reduced patient co-operation,
postoperative intracranial air, drains and monitoring equipment in the
intensive care unit. Still, DCI has a dynamic nature, the first measured
CVR had very low predictive power, and serial CVR-measurements
provided added information regarding the dynamic changes in CVR
throughout the acute phase after aSAH.

Overall, 52.4% of patients with aSAH in this study developed DCI.
In comparison, the reported incidence of DCI is 20–35% in larger case
series [1,62–70]. The high frequency of DCI may reflect the high pro-
portion of poor grade patients in our cohort, as poor clinical grade upon
admission is associated with higher risk of developing DCI. Given the
high proportion of patients with large bleedings and poor clinical
conditions in our study, results may not be fully valid for other popu-
lations. Still, stratification for clinical grade (WFNS I-III vs. IV-V) did
not cause any major changes in the prediction model.

In a previous report we argued that ipsi- and contralateral CVR
should be assessed separately, as mean values can conceal side-differ-
ences [41]. One-year follow-up study indicated that patients with un-
ruptured aneurysms had a temporary reduction in ipsilateral CVR. The
present study indicates that ipsilateral CVR is reduced also after treat-
ment for ruptured aneurysms. Ipsilateral CVR reduction thus seem to
occur in all patients after aneurysm treatment, regardless of DCIclinical
status. Acknowledging this side-difference enables improved inter-
pretation of CVR after aneurysm treatment. Aneurysm treatment in it-
self does not induce a substantial CVR reduction on the contralateral
side, making the contralateral CVR more suitable as a predictor since
any DCI-related CVR reduction will be more pronounced on this side
compared with the already reduced CVR on the ipsilateral side.

In concordance with the pre-existing hypothesis that CVR can pre-
dict DCI, we found impaired CVR in patients with DCIclinical.
Surprisingly, we did not find an equivalent reduction in CVR in patients
with DCIinfarction. This is quite a conundrum as one would expect im-
paired CVR for both categories of DCI, assuming clinical symptoms and
infarctions are two time-points in a continuum of the same disease. The
statistical power in our study may be insufficient to detect CVR im-
pairment in patients with DCIinfarction. Still, as DCIinfarction is presumably
associated with more advanced ischemia one would also expect CVR
impairment to be more advanced in patients with DCIinfarction compared
with DCIclinical. However, the pathophysiology of cerebral ischemia
after aSAH is multifactorial and complex [71], and it is possible that
there are differences in the pathogenesis for clinical and radiographical
presentations. Furthermore, we used DCIinfarction as a dichotomous

Table 4
Multivariable predictors of clinical deterioration due to delayed cerebral
ischemia after aneurysmal subarachnoid hemorrhage.

Odds ratio (95% Confidence Interval)

Model I (without
CVR)

Model II (with
CVR)

Candicate predictors
CVR – 0.94 (0.89, 1.00)
Smoking (current vs. former/never) 0.33 (0.04, 2.63) 0.20 (0.01, 3.2)
Hydrocephalus 0.30 (0.02, 4.40) 0.06 (0.00, 4.0)

Established predictors
Modified CT Fisher I-II ref ref
Modified CT Fisher III-IV 3.1 (0.40, 23) 2.1 (0.13, 31)
WFNS I ref ref
WFNS II-III 24 (0.71, 836) 3.2 (0.03, 303)
WFNS IV 69 (1.07, 4450) 31 (0.16, 5892)
WFNS V 5.9 (0.14, 251) 1.0 (0.01, 162)

Demographic characteristics
Male sex 13 (1.14, 150) 37 (2.0, 666)
Age 0.90 (0.82, 0.99) 0.95 (0.85, 1.05)

AUC, crude 0.90 (0.80, 1.00) 0.96 (0.90, 1.00)
AUC, adjusted for optimisma 0.82 (0.69, 0.90) 0.86 (0.70, 0.94)

AUC: area under the receiver operating curve; CT: computed tomography; CVR:
cerebrovascular reactivity; ref.: reference; WFNS: World Federation of
Neurological Surgeons Scale.

a Adjusted for optimism with bootstrapping techniques
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Fig. 3. Discrimination and calibration plots for predictive models with and without CVR. A, The crude receiver operating characteristic (ROC) show the dis-
crimination of the predictive model with and without CVR, not adjusted for optimism. See Table 4. B, The plot shows the calibration (actual outcome versus predicted
outcome) analyzed in four equal groups for both predictive models.
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variable, not taking into account the size or severity of the infarction.
For ethical reasons, moribund patients and patients with increased ICP
were excluded (Table S1), this probably reduced the number of patients
with severe infarctions that was tested and left a higher proportion of
minor infarctions in the studied population. Additional studies with
larger study sample and more comprehensive radiographical ex-
aminations including assessment of infarction size could help clarify if
impaired CVR is associated with DCIinfarction or not.

There are limitations to our study. The study population is small,
although the number of patients (n=42) is higher than in other neu-
rosonological studies (median n=27, range 18–34)
[14,16,19,22,30,72,73]. Further limitations are the lack of external
validation of the prediction model. We did not examine patients ac-
cording to a rigid time schedule. To better compare the aSAH and UIA
groups, and overcome the dynamic nature of CVR over time, CVR
should ideally have been examined in all patients at the same time
intervals after treatment. All patients underwent cerebral imaging with
CT and/or MRI after aneurysm treatment. Among 42 patients with
aSAH, 17 were only evaluated with CT/CTA during their primary
hospital stay. Still, MRI was performed in the majority of patients
during follow-up. Of the 39 patients alive after one year, 36 underwent
MRI; two were tourists and lost to follow-up; and one patient declined
to take the exam due to claustrophobia. We used a well-known classi-
fication system for cerebral infarction [74,75]. Still, the attribution of
infarction etiology after aSAH is difficult and not easily validated [76],
and one cannot be certain whether infarctions are related to DCI or not.
To avoid misclassifying procedure-related infarcts as vasospasm-in-
duced, CT and MRI scans should be performed between 24 and 48 h
after aneurysm occlusion. This was only done in 33 of 42 patients. The
diagnosis of sonographic vasospasm and clinical deterioration due to
DCI was set without blinding of CVR-results. Ideally, the AZ doses
should have been bodyweight-based in all patients in the study, not
only in patients weighing ≥80 kg. Still, the recommended AZ dose of
13 to 18mg/kg [46,77] was achieved in 91.7% of CVR tests. We used
different brands of AZ, yet no difference in CVR has been found when
the three manufacturers were compared [41].

A strength of our study is the methodology. Unlike the majority of
previous studies [14,15,17,21–29], we used standardized definitions of
DCI separated into clinical and radiographic findings [38,39]. We
performed serial testing, which is better adjusted to the dynamic nature
of vasospasm and DCI. We also tested CVR in patients treated for UIA to
increase our general understanding of CVR in patients with intracranial
aneurysms. One sonographer (MLB) performed all ultrasound ex-
aminations and CVR-tests to reduce operator variability. One neuror-
adiologist (GM) diagnosed angiographic vasospasm and cerebral in-
farction, unaware of the patient's clinical and sonographic status.

Central drawbacks with regards to clinical use is that CVR testing is
time consuming and that a number of patients experience side effects
related to AZ, like headache, flushing, nausea or paresthesia [20]. Still,
potential side effects are usually transient and well tolerated [78].
Results are promising, but does not provide firm confirmation that
impaired CVR predicts DCI. There are still unresolved issues, and it is
too soon to recommend routine use of CVR in clinical practice. Results
needs to be externally validated, and the conundrum regarding CVRs
relation to DCIinfarction needs to be investigated. If validation studies
confirm our findings, CVR testing may assist clinicians in early identi-
fication of patients who may benefit from aggressive prophylactic
treatment, closer monitoring, or repeat vascular imaging. Determining
those at greatest risk can help reduce DCI-related poor outcomes while
minimizing treatment complications and titrate length of stay in an
intensive care unit.

Pretreatment CVR testing could assess potential effects on CVR
caused by aneurysm treatment itself. Still, patients were not examined
prior to treatment because of the potential risk of causing aneurysm (re-
)rupture, and to avoid delay in the acute treatment of a ruptured an-
eurysm. CVR can be assessed at an earlier time in patients with UIA

with assumed low rupture risk and no planned treatment, but this will
not give any information about the status of cerebrovascular integrity
immediately before aneurysm treatment or rupture. We did not take
into account variations of intracranial pressure (ICP) or systemic blood
pressure in patients with aSAH. AZ does not cause major changes in
systemic blood pressure [43,79], but may lower ICP by reducing cere-
brospinal fluid secretion [80]. AZ may also increase ICP by cerebral
vasodilation [81] and may not be well suited for patients with increased
ICP. These high-risk patients are closely monitored for development of
DCI and AZ testing might be of less importance. In less severe cases,
however, improved prediction of DCI is highly useful, and can assist
medical and logistic decision making.

5. Conclusions

Impaired CVR on the contralateral side may be an independent
predictor of DCIclinical, and may assist in identifying patients in need of
closer observation after aSAH. An ipsilateral CVR reduction occurs in all
patients after aneurysm treatment, regardless of DCIclinical status,
highlighting the need to consider ipsilateral and contralateral CVR se-
parately. This study underscores the value of serial CVR measurements,
and future studies aiming to investigate the relationship between CVR
and DCI after aSAH should take this into account. Our prediction model
can be useful in clinical practice, but needs to be validated.
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