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Using a metabolomics data set with 1057 serum samples, we designed and assessed different procedures based on
Monte Carlo resampling schemes to determine the optimal number of components to be included in partial least
squares (PLS) regression models. Corresponding estimates of prediction error were calculated and compared in a
single algorithm comprising i) a single loop Monte Carlo approach repeatedly and randomly splitting samples into
calibration and validation samples, ii) a double loop validation splitting samples into calibration/validation and
prediction sets, and, iii) independent sample sets in a third loop. In order to mimic the common situation with
only a moderate number of samples available for building the model, only a fraction of the 1057 samples analyzed
was randomly selected from the total sample set and used in the algorithm. The results show that if the samples
available for modelling are representative for the future samples to be predicted from the model, the single loop
Monte Carlo procedure consistently provides the same estimates of prediction errors as double loop resampling
procedures and for 75% of the cases these estimates are the same as for independent prediction sets. This has
important implications for optimal use of a training set for component selection and estimation of prediction
error. Two methods were developed and compared for selecting the optimal number of PLS components defined
as the number where no statistically significant improvement in prediction error is observed when additional
components are included in the model. Both methods determine a probability measure and provide similar results
for model selection in this application.
1. Preface – Collaboration and friendship with Yi-zeng Liang

This paper is dedicated to Liang to pay tribute to a lifelong scientific
collaboration and personal friendship. The work was prepared for the
memorial session for Liang at the Chemometrics in Analytical Chemistry
(CAC) conference in Halifax in June, but due to overlap with an impor-
tant soccer tournament where my youngest son participated, I had to
withdraw my presentation.

Liang came to Bergen in June 1990 on a sunny, warm day. I met him
at the airport and the first thing I noticed was his smile and characteristic
laughter that proved to be his trade mark. He came with a suitcase and
100 U$ in cash. On the way to his apartment, we stopped at a super-
market and I bought him the food he needed before he would get his first
salary payment in Norway. Liang was employed on a post doc project
financed by the Norwegian Research Council. After the first year, I
applied for extra funding so that his wife and 7-years old son could come
and live with him. After half a year in the elementary school, his son
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spoke Norwegian fluently with the typical Bergen dialect.
Liang was extremely hard-working and this virtue, combined with his

excellent mathematical and programming skills, made his years in Ber-
gen very productive. Together we developed several methods and
applied them in many problem areas; sometimes in collaboration with
other pioneers in chemometrics, such as Luc Massart and Richard Brer-
eton. The most important development was the HELP method which
together with evolving factor analysis (EFA) developed by Marcel
Maeder and co-workers created a good theoretical and practical foun-
dation for resolution of two-way multicomponent data. Before submit-
ting the work, we realized that we needed a striking acronym for the
method. Bjørn Grung, who was one of my PhD students at that time, and I
had been active in rock and roll bands and we sometimes performed at
karaoke bars when the research group was out partying. My own favorite
performance was HELP with the Beatles and this became the acronym for
the method. Heuristic evolving latent projections fitted to this acronym
and it was also a good description of the method.
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After his post doc project, Liang returned to China with his family to
take up a position at Hunan University at the department where his PhD
supervisor, Ru-Qin Yu, was working. He soon returned to Bergen as a
visiting scientist for a couple of months, first in 1994 and then in 1996-97.
In 1994, hewrote and defended a thesis for theNorwegian doctor degree at
the University of Bergen with another pioneer, Bernard Vandeginste, as
first opponent. Afterwards, Liang and I travelled together to China and he
tookmeon a trip to Zhangjiajie, at that time a 12 h drive by car on a narrow
twisted mountain road from his home town Changsha in the Hunan prov-
ince. This scenic region is famous for the Panda bear, the Yellow Dragon
Cave and, last, but not least, the forest of peaks; hundreds of separated
peaks. We decided that this was a perfect location for a conference, and
with funding from both China and Norway, we organized the 1st Chemo-
metric Conference in China together in 1997 with many distinguished
chemometricians from both North America and Europe attending. On the
excursion to one of the peaks, we had to walk a path consisting of several
thousand steps of stone. A few delegates hired Chinese carriers, but it must
have been a nerve breaking experience to be carried on the steep path.

My collaboration with Liang also resulted in an official agreement of
student exchange between our universities. Three of his students took
their PhD degrees at the University of Bergen and a few others worked for
a year or so as post docs.

My collaboration and friendship with Liang brought me to mainland
China and Hong Kong 15–20 times. Sometimes I came alone, but many
times I was accompanied by collaborators, friends or family. My first visit
with Liang to China was in 1991. It was my first travel to China ever and
my first encounter with Beijing duck and many other exotic meals Liang
wantedme to taste. In Beijing, we visited the Forbidden City, the Summer
Palace and the favorite restaurant of Chairman Deng Xiaoping to enjoy
Sichuan spicy food. Afterwards we travelled to Changsha where I was
appointed consulting professor at Hunan university. At that time the
infrastructure, roads and buildings, and the research facilities were poor.
But each time I returned to Changsha, I was astonished by how quickly
the infrastructure, the working conditions and financial opportunities for
researchers, and their standard of living improved. On a trip to Zhang-
jiajie in 2009, Liang was driving us in his big Japanese car. He was very
proud, but the Chinese driving culture was not the same as in theWestern
part of the world. So when we arrived the five stars hotel Liang had
booked, I needed to take a shower before dinner. And Zhangjiajie was
also completely changed with millions of visitors coming every year
compared to the handful of tourists we observed during the conference in
1997. And the path we had walked in 1997 was no longer used. Lifts
brought us swiftly up to the top of the peaks.

During these years, Liang came several times to Bergen. And we
usually drove to my farm at the Fjord where we had small meetings on
joint projects. During one of these seminars, in 2008, we had a Fjord
excursion with an authentic copy of a Norwegian Viking ship picking us
up and then ten of us, including Liang, had to row. In 2009, Liang spent
time with us at the farm before the Scandinavian symposium on che-
mometric (SSC11) in Loen which I organized together with my wife Tarja
Rajalahti and others from the University of Bergen. Bruce Kowalski was
also staying with us and together we enjoyed a barbeque with good red
wine before driving up to Loen the next day. One of the most exotic
travels I did with Liang, was when we, surrounded by reindeer in a frozen
and snowcovered landscape, visited Santa Claus together in Finnish
Lappland in the winter of 2011.

In November 2013, our mutual friend and collaborator, Prof. Foo-Tim
Chau at Hong Kong Polytechnic University, invited us to a conference on
Chinese Medicine in Hong Kong. Sadly, this conference became our last
meeting. When Liang passed away in October 2016 he had friends all
over the world and a huge scientific production, both in terms of papers
and students.

2. Introduction

Building a calibration model with good predictive performance
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requires many considerations and decisions that are critical for successful
implementation [1] (and refs. therein). Among the tasks that need to be
verified is that the method used to measure the predicted variables (the
responses) provides reliable values over the range projected for future
samples and that the method chosen to characterize the samples provides
variable profiles that possess the information needed for satisfactory
predictions. Often signal from interferences overlaps signal related to the
predicted variables and therefore samples with such characteristics must
be included in the calibration set to obtain reliable predictions from
future samples.

After a representative sample set has been collected and analyzed, the
modeling, i.e. establishing the mathematical relation between predictive
and predicted variables, can be addressed. In analytical applications, the
variables used for prediction are usually either instrumental continuous
profiles or list of peaks that may comprise hundreds or even thousands of
variables. At the same time, the number of available samples for building
the calibration model is usually limited due to analysis costs and/or
availability of samples. Therefore, the number of calibration samples is
often much less than the number of variables used for prediction. This
constraint can be handled by regression methods using linear combina-
tions of the original variables to construct components, termed latent
variables [2], to construct a pseudo inverse that can be used to predict the
desired variables for future samples. Partial least squares (PLS) regression
[3] has become one of the preferred choices for this purpose.

A critical task in PLS modelling is the selection of the number of PLS
components to construct a pseudo inverse which is optimal for predic-
tion. Too few components imply underfitting and too many lead to
overfitting of data. Both outcomes may have a negative impact on the
predictive performance. In order to guard against these situations, vali-
dation procedures simulating real prediction are routinely used in the
modeling process. Validation is commonly done by resampling tech-
niques, e.g., Monte Carlo [4–7] where a part of the calibration samples is
randomly kept out, latent variable regression models built from the
remaining samples with 1,2, …, A components, and the response vari-
ables predicted for the kept-out validation samples from the models. The
procedure is repeated many times and measures derived from the mean
or median root-mean-square error (RMSE) are subsequently used for
model selection. The model with lowest RMSE [5], or the lowest RMSE
after adjusting according to some heuristic [4] or statistical measure of
significance [6,7], is selected as the model with the best predictive ability
for future samples.

In repeated cross validation [6], also termed double cross validation
[8], the samples are split into calibration/validation samples and pre-
diction samples. In a repetitive outer loop prediction samples are
randomly selected under the constraint that all samples in the outer loop
are kept out once and only once for each repetition. The remaining
samples are utilized in an inner loop where they are randomly parti-
tioned into different groups. Each group is kept out once, and only once
in each repetition in the outer loop and used as validation samples in the
inner loop for determination of number of components, i.e. model se-
lection. The RMSE values in the outer loop are utilized for estimation of
prediction error.

The reason for splitting samples into an outer and inner loop is to
separate the estimation of prediction error from the determination of the
optimal number of components. This requires more available samples
than for single loop procedures. Furthermore, all samples are actually
used both as calibration/validation samples to find the optimal model
and as prediction samples to estimate the prediction error although
samples in inner and outer loop are not exchanged in a single repetition.
An alternative approach would be to keep a part of the samples
completely out and use that part to estimate the prediction error from the
model obtained from the remaining samples. However, this may require
even more extensive sampling since it requires a representative inde-
pendent sample set for estimating the prediction error in addition to a
representative sample set for modeling. The question is if such extensive
sampling is necessary or if the prediction error can be estimated from a
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single loop procedure just as well as from a double loop approach with
exchange of calibration and prediction samples or from an independent
sample set. Using Monte Carlo resampling on smaller sized sample sets
randomly selected from a sample set with more than 1000 samples, we
examine different strategies for model selection and calculation of pre-
diction error with the aim to assess if outcomes differ significantly be-
tween the procedures. Although many other methods and strategies exist
for these aims [1] (and refs. therein), the scope of this work is limited to
Monte Carlo resampling strategies.

3. Theory

3.1. Design used to partition samples

By using smaller sized sample sets randomly selected from a set with
more than 900 samples, Martens and Dardenne [4] examined Monte
Carlo resampling procedures for model selection and calculation of
prediction error. They derived RMSE for not only validation samples and
prediction samples, but also for samples not included in the calibration or
validation/prediction sets. We follow a similar idea in this investigation,
but use a more systematic approach to design sample sets in the different
loops. Thus, the algorithm used in this work for estimating the optimal
number of components and the prediction error of the PLS regression
models splits the samples into three parts. First, samples to be used for
inner and outer loop are randomly selected from the total sample set. The
remaining samples are used as a pool to construct independent sample
sets. The samples selected for the inner and outer loop are repeatedly
split with one third of the samples in the outer loop and two thirds in the
inner loop. The samples in the inner loop is further split repeatedly half
and half between calibration and validation samples. Using a probability
measure p to assess the optimal number of PLS components, we showed
recently [7], that the same number of components was obtained by
splitting a sample set half and half as with a ratio of nine to one between
calibration and validation samples. This was ascribed to the fact that the
variation in RMSE values for the validation sets increased with reduction
of validation samples and that this effect counterbalanced the improved
model description obtained by simultaneously increasing the number of
calibration samples. Therefore, splitting a sample set equally between
calibration and validation set is reasonable as long as a sufficient number
of samples is available. As pointed out by Xu et al. [13] this may not be
optimal for smaller sized sample sets. In such cases, the prediction ability
tends to be underestimated byMonte Carlo resampling methods since too
few samples are available for the calibration step.

Only the samples in the inner loop are used for determining the
number of components, while the prediction error is estimated in three
ways: i) from the validation samples in the inner loop, ii) the prediction
samples in the outer loop, and, iii) from the samples randomly selected
from the independent data set. With a large number of samples available,
this algorithm can be used both to mimic sample sets of different size and
to compare the results of the three different strategies for estimation of
prediction error.

3.2. Determining the optimal number of components

In our recent work [7], we developed a strategy to determine the
optimal number of PLS components, Aopt, based on the distributions of
{RMSEval,m,a, m¼ 1,2 …, M; a¼ 1,2 .., A} obtained by Monte Carlo
resampling, by repeatedly splitting a sample set between calibration and
validation samples. The index m runs over the number of repetitions in a
single round in the inner loop with M being the total number of repeti-
tions, while the index a runs over the number of PLS components with A
representing the maximum number of calculated components. The
subscript val implies that only samples in the validation sets are used for
the calculation of RMSE.

Let nval,m be the number of validation samples. For a single selection
of validation samples the mean squared error (MSE) for the segment m
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with a PLS components in the inner loop is then calculated as

MSEval;m;a ¼
Pnval;m

i¼1

�
yval;m;a;i � byval;m;a;i

�2
nval;m

m ¼ 1; 2; :::; M; a

¼ 1; 2; :::; A (1)

The root mean square values {RMSEval,m,a} for the validation samples
is then:

RMSEval,m,a¼√MSEval,m,a m¼ 1,2, …, M; a¼ 1, 2, …, A (2)

Eq. (2) provides a distribution of M RMSE values for each model
dimension a.

The median (RMSEval,a) of the distribution of {RMSEval,m,a, m¼ 1, 2,
…,M} is located for each PLS model dimension a. Median is preferred to
arithmetic mean because the distribution of RMSE values for a model
cannot a priori be assumed normally distributed. The model with the
lowest median RMSE, with Amin components, determines the starting
point for a backward selection to decide the optimal number of PLS
components.

In our previous work [7], we calculated the fraction fval,Amin for which
the {RMSEval,m,Amin, m¼ 1, 2, …, M} values are larger or equal to the
median RMSE for the PLS model with Amin – 1 components, i.e.

median(RMSEval,Amin-1)�RMSEval,m,Amin m¼ 1, 2, …, M (3)

The fraction fval,Amin obtained from Eq. (3) represents a measure p that
can assist in the decision whether component Amin is significant or not
and thus define the optimum number of PLS components, Aopt. If the
decision is that the component is not significant, i.e. the fraction fval,Amin
is smaller than a preselected threshold (see below), we continue with the
previous component and repeat the procedure by comparing the distri-
bution of values {RMSEval,m,Amin-1, m¼ 1, 2, …, M} with the median
(RMSEval,m,Amin-2). This approach quantifies the common heuristic visual
procedure of trying to locate from a plot of RMSE values vs. number of
PLS components when the change in RMSE is levelling off.

We have also implemented an alternative test where we compare the
median RMSE of the model with Amin components with models with
successively one less component:

median(RMSEval,Amin-q)�RMSEval,m,Amin m¼ 1, 2, …, M; q¼ 1, 2, Amin (4)

This approach resembles the procedure used by Filzmoser et al. [6]
where an error term is added to the RMSE of the Amin component before
comparison with the mean RMSE of the previous components to locate
Aopt. A possible drawback of this approach is that it may lead to accep-
tance of components in an almost “flat” region, i.e. when several
consecutive PLS components each provides a small decrease in RMSE
that adds up to exceed the threshold for acceptance. This may lead to
extra components compared to the pairwise comparison (Eq. (3)) and
thus make the model selection more vulnerable to overfitting.

We recently showed [7] that the probability p defined as the fraction
obtained from Eq. (3) could be used to design a formal significance test.
Thus, we choose a critical p-value, pupper, and test the null hypothesis that
component Amin is not significant, i.e. that p calculated by comparing the
distribution of RMSE-values for Amin components with the median RMSE
of the PLS model with one less component using Eq. (3), is larger than
pupper. If p is less or equal to pupper the null hypothesis is rejected and the
model with Amin components is selected as optimal. This probability
enables the opportunity to take an informed decision of optimum number
of components where the user can balance the risk of overfitting against
the risk of underfitting through the choice of pupper. The test is
non-parametric since no distributional assumptions are necessary. Simi-
larly, Eq. (4) can be used to design a similar significance test by
comparing the distribution of RMSE values on component Amin with the
medians of the previous components.

For approximately normally distributed RMSE values, pupper has a
one-to-one correspondence to the standard deviation around the median
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RMSE. Thus, pupper of 0.159, 0.308 and 0.401 corresponds to 1.0, 0.5 and
0.25 standard deviations, respectively, while pupper¼ 0.5 corresponds to
choosing the model with number of components corresponding to min-
imum median, i.e. median (RMSEAmin), as optimal. Lowering the
threshold reduces the risk of overfitting, but increases the risk of
underfitting. Although our test is nonparametric and does not assume
normally distributed RMSEs, we use pupper equal to 0.401 and 0.308 for
model selection in this work since the distributions of RMSEs may often
be approximately normally distributed for a well-designed sample set.

In this work, component selection in the inner loop is performed
multiple times, i.e. in correspondence with the number of repetitions in
the outer loop. This makes it possible to use the distribution of p to assess
how robust Aopt is with respect to the number of samples available for the
resampling procedure and the number of repetitions in the outer loop.
Furthermore, the model evaluation in this work provides indications of
the sensitivity of the model selection to the choice of pupper for the two
criteria (Eqs. (3) and (4)) for backward comparison to decide Aopt dis-
cussed above.

3.3. Estimating the prediction error

When the aim is not to use the regression model for predictions for
future samples, but only to reveal underlying structures and association
patterns that are predictive and not just descriptive in the collected
sample set, it is sufficient to determine the dimension Aopt of the model.
However, when a model is built to be used for prediction for future
samples, predictive performance must be quantified and for this purpose
an estimate of expected prediction error is required.

The design used for partitioning the total sample set in this work,
provides multiple opportunities to estimate the prediction error. Let k be
the index running over the outer loop and K the total number of repeti-
tions in the outer loop. For each repetition, we predict the y-variables for
the samples in the outer loop and calculate the RMSEs for different di-
mensions a of the PLS models, i.e. {RMSEouter,k,a, k¼ 1, 2, …, K; a¼ 1,2,
…, A}. Simultaneously we calculate {RMSEindep,k,a, k¼ 1, 2, …, K;
a¼ 1,2,…, A} for the same number of samples randomly drawn from the
total pool of independent samples for each repetition in outer loop. The
subscript indep is used to imply that RMSE is calculated from samples
drawn from this pool. After execution of the K repetitions, the optimal
model dimension Aopt is obtained from the inner loop and the medians
for the distribution of RMSEs for prediction samples in outer loop and
independent samples are located, i.e. the medians median (RMSEou-
ter,k,Aopt) and median (RMSEindep,k,Aopt). These medians represent ex-
pected prediction errors in similar future samples. The mean and
standard deviation of these medians for the K repetitions can be used to
compare the prediction performance estimated from samples in the outer
loop and samples drawn from the pool of independent prediction
samples.

We can calculate corresponding estimates for the prediction perfor-
mance of the regression model for the validation samples in the inner
loop and compare these with the results obtained for the outer loop and
the independent samples. However, during a single repetition in the
outer loop, the Monte Carlo resampling is repeated M times in the inner
loop and this provides M sets of validation samples that can be used to
obtain the median and error bounds of RMSE. This provides a distribu-
tion of medians for RMSE for each repetition, i.e. {median (RMSE-
val,k,Aopt), k¼ 1, 2,…, K}. This narrows the range of medians in the inner
loop compared to the outer loop and independent samples and thus leads
to a smaller standard deviation of the medians around the mean pre-
diction error calculated for the inner loop.

4. Experimental

4.1. Sampling protocol

Blood samples were collected over a period of 6 weeks in early
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autumn. Sampling was done between 8 and 10 a.m. after overnight
fasting for a cohort of 1057 ten year old Norwegian children from the
rural Fjord region of Western Norway. This is an area with a homoge-
neous population of ethnic Norwegians. Serum was obtained according
to a standardized protocol [9], split into 0.5ml aliquots, and stored in
cryo tubes at �80 �C. At this temperature, the lipoproteins are stable for
several years [10].
4.2. Analyses

Total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C),
low-density lipoprotein cholesterol (LDL-C) and total triglyceride (TG)
were quantified by two different analytical methods: i) proton nuclear
magnetic resonance (NMR) spectroscopy using nuclear Overhauser effect
spectroscopy (NOESY) [11], and, ii) the standard protocol for analysis of
blood samples with LDL-C estimated from TC, HDL-C and TG by the
Friedewald equation [12]. The NMR analyses were performed at NTNU
(Trondheim, Norway), while the standard analyses were performed at
the Endocrine Laboratory of the VU University Medical Center (VUmc;
Amsterdam, the Netherlands). The samples were transported to the
analysis sites in boxes with dry ice to keep the temperature stable at
minus 78.5 �C. During and after transportation the amount of dry ice was
controlled, and, if necessary, dry ice was added.
4.3. Selection of shift regions and data pre-treatment

After baseline correction and spectral alignment using the Alanine
doublet at approx. 1.5 ppm, the NMR profiles for the shift region
1.53–0.60 ppm, comprising 2041 spectral variables, were examined for
use as possible explanatory variables. This shift region embraces the li-
poprotein triglyceride peak at 1.3 ppm and lipoprotein cholesterol peak
at approx. 0.88 ppm. These regions contain quantitative information
about TC, LDL-C, HDL-C and TG. The number of spectral variables was
further reduced by eliminating regions with low intensities or dominated
by interferents. The remaining 1172 variables were selected as de-
scriptors for the triglyceride and cholesterol lipoproteins. Without any
further pretreatment, these profiles were selected as explanatory vari-
ables to the PLS modelling with TC, HDL-C, LDL-C and TG concentrations
determined by the standard method [12] as response variables. Repro-
ducibility was checked by replication of the total analytical procedure at
several timepoints from the first until the last sample analyzed.
4.4. Modelling

By randomly selecting 150 and 300 samples, respectively, from the
total pool of samples available, we created two sample sets to be used in
the inner and outer loop in the Monte Carlo resampling algorithm.
Separate PLS models for TC, LDL-C, HDL-C and TG measured by the
standard method (response) and NMR (exploratory variables) were
calculated for the two sample sets with 1, 2,…, 10 PLS components using
the resampling procedure described in section 2.1. 100 repetitions were
performed in the outer loop repeatedly splitting samples randomly be-
tween outer and inner loop with one third of samples in the outer loop
and two-thirds of the samples in the inner loop. For each repetition in
outer loop, 100 repetitions were performed in the inner loop splitting
samples randomly half and half into calibration and validation samples.
Furthermore, in order to mimic the situation with independent sample
sets, for each repetition in the outer loop, we randomly draw sample sets
of the same size as in the outer loop from the remaining samples in the
pool. This creates an independent sample set with 100 samples and 50
samples for each repetition in the outer loop for the sample sets of size
300 and 150, respectively. This design allows us to assess different ap-
proaches to model selection and estimation of prediction error as well as
the effect of number of samples available on these estimates.
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4.5. Model selection

The two criteria defined by Eqs. (3) and (4) were used for selection of
the optimal model for each response for the two sample sizes defined in
section 3.4. For each repetition in the outer loop, the RMSE values for
a¼ 1, 2, …, 10 components for all the 100 repetitions in the inner loop
were calculated for the validation samples using Eqs. (1) and (2). From
the distributions of 100 RMSE values, the medians were determined for
each model dimension. The minimum median was located, i.e. median
(RMSEAmin) where Amin implies the number of PLS components in the
model with minimum median for the 10 calculated components. Subse-
quently, we calculated probabilities for models using the two criteria
defined by Eqs. (3) and (4). These probability measures were compared
with the threshold, pupper. In this work, we assess pupper equal to 0.308
0.401. With 100 repetitions in the outer loop, we get a distribution of 100
p-values in the inner loop. These distributions provided us with the
possibility to check the stability of p-values by plotting their distributions
for different choices of a.
4.6. Estimation of prediction errors

For all models, the mean prediction error and standard deviation was
estimated for the outer loop, the independent data sets and the validation
samples in the inner loop from the distributions of median prediction
errors as described in the theoretical section.

5. Results and discussion

5.1. Model selection

Table 1 shows the outcome of the 100 repetitions for model selection
for the four responses using the two criteria defined by Eqs. (3) and (4),
respectively, with pupper chosen as 0.401 and 0.308 corresponding to 0.25
and 0.5 standard deviation around the mean p-value, respectively, for
Table 1
Distributions of selected models for the four responses using
independent samples at the two probability levels 0.308 a
Models with less than 5 counts for all 8 combinations are n

TC: total cholesterol; LDL-C: low-density lipoprotein choles
total triglyceride; nLV: number of PLS components.
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normally distributed RMSE-values. Our experience is that when the
majority of the systematic variation has been accounted for by the first
PLS components in the models, the RMSE distributions approximate
normal distribution. So although the test is nonparametric and does not
require normally distributed RMSE-values, choices of pupper corre-
sponding to fractions of the standard deviation for a normal distribution
has the advantage of connecting pupper to a well-known statistical metric.

Using the majority count for model selection, Table 1 reveals that the
two tests for model selection defined by Eqs. (3) and (4) provide the same
Aopt in 13 out of the 16 cases defined by the 4 responses based on either
50 or 100 validation samples in the inner loop and with pupper at two
levels. In the remaining three cases pairwise comparison (Eq. (3)) implies
one PLS component less than comparison of the median RMSE of the Amin
model with models with successively one less component (Eq. (4)). This
behavior is to be expected when the median RMSE corresponding to Amin
is situated in a rather “flat region” of RMSE for adjacent PLS components.
Thus, as expected, the pairwise comparison seems more robust in
guarding against overfitting in this situation.

Table 1 shows that doubling the number of calibration samples from
50 to 100 has little impact on the model selection with pupper¼ 0.308 for
both tests. For pairwise comparison, 3 out of 4 cases provide the same Aopt
for the two sample sizes, while for HDL-C doubling of samples increases
the number of components from 7 to 9. The same increase in model
dimension for HDL-C is observed for the other test. In addition one more
component becomes significant for LDL-C and one less for TG for this test.
For pupper¼ 0.401 doubling the sample size seems to have a larger effect:
Only for TG is there no change in model dimension. In 5 cases the model
dimension increases from 7 to 10 and in one case from 8 to 10. The effect
on model dimension of increasing pupper is similar for both tests.

Increased model dimension accompanying larger sample size is
probably caused by better coverage of the sample variation which pro-
vides calibration and validation sets with increased similarity. This raises
the odds of minor PLS components to become significant. With an
improvement of 1–2% in R2 for the measured and predicted responses for
Eqs. (3) and (4) for 50 and 100 validation/outer loop/
nd 0.401 for pupper. Majority models are highlighted.
ot listed.

terol; HDL-C: high-density lipoprotein cholesterol; TG:
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these models, the choice between models have minor practical conse-
quences for our application, but such improvements may of course be
important in other applications.

Table 1 allows an assessment of the impact of the choice of pupper on
the model selection. For both tests the number of valid components is
increasing by one for 5 out of 8 cases when increasing the pupper from
0.308 to 0.401. For one case for each test, there is no change, while for
the remaining two cases for each test, the number of valid components
increases by 3 or 4. The largest changes are observed for cases with the
largest sample size. Thus, increasing pupper causes a similar effect as
increasing the sample size by leading to acceptance of more of the minor
components. Increasing pupper affects both tests in the same way for our
application.

The overall picture observed in Table 1 is that both tests imply the
same number of valid components. Only for 3 out of the 16 cases did the
test based on Eq. (4) find one additional component compared to pair-
wise comparison probably caused by a flat region of RMSE values adja-
cent to Amin. Further investigations on many data sets are necessary to
decide if one test performs better than the other in the long run. In most
cases, increase of pupper resulted in at least one additional PLS component
for the models.

The choice of pupper may be important for predictive performance.
One way to determine an adequate threshold for pupper is to examine the
distributions of the obtained p-values by plotting them as histograms for
the 100 repetitions performed. Fig. 1 displays these distributions for
A

B

Fig. 1. Histograms displaying the number of models (y-axis) plotted versus the
p-values (x-axis) calculated by pairwise comparison (Eq. (3)) for models with 10,
9, …, 5 PLS components. Total cholesterol (TC) is response variable and 100
estimations were performed with total number of validation samples in inner
loop as 50 (A) and 100 (B).

84
pairwise comparison for different number of PLS components for the TC
with 50 (Fig. 1, upper) and 100 (Fig. 1, lower) calibration samples. By
comparing the fractions of p-values below 0.5 with the fraction above
0.5, it is obvious that a 7-component model is the optimal choice with 50
calibration samples and 10 components is the optimal choice with 100
calibration samples. This complies with the results based on the majority
count of p-values for pupper¼ 0.401, while pupper¼ 0.308 results in
underfitting for TC. Fig. 2 and Supplementary material (S-1 and S-2)
display similar plots for the three other responses. Comparing the frac-
tions of p-values below 0.5 with the fraction above 0.5 for these re-
sponses, it is clear that for all cases pupper¼ 0.308 results in underfitting,
while pupper¼ 0.401 for all cases except HDL-C with a sample size of 50
implies the same number of components using the two tests for model
selection (Table 1) or the histograms.

For HDL-C with 50 samples, the distribution of p-values (Fig. 2) im-
plies 9 valid components implying that even pupper¼ 0.401 may lead to
underfitting by losing one or two minor components using Eq. (3) or 4,
respectively. Note, however, that using Eq. (4), the number of counts is
almost identical for the 8- and 9-component model for HDL-C, 37
compared to 36 counts. Thus, the results from Eq. (4) and the corre-
sponding histogram do not contradict each other. The results from the
histograms may imply that the threshold pupper can be increased for the
pairwise test (Eq. (3)) compared to the one defined by Eq. (4).
A

B

Fig. 2. Histograms displaying the number of models (y-axis) plotted versus the
p-values (x-axis) calculated by pairwise comparison (Eq. (3)) for models with 10,
9, …, 5 PLS components. High-density lipoprotein cholesterol (HDL-C) is
response variable and 100 estimations were performed with total number of
validation samples in inner loop as 50 (A) and 100 (B).
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5.2. Estimation of prediction error

Table 2 shows the estimated mean prediction errors together with
their standard deviations for the validation samples from the inner loop
and the prediction samples in the outer loop and the pool of independent
samples outside the inner and outer loop. We show mean and standard
deviation in Table 2 instead of median and upper and lower bounds to
simplify the comparison and discussion of the prediction results since for
the selected models the RMSE distributions are approximately normal.
Pairwise comparison with pupper¼ 0.401 was used for model selection.

The overall picture from Table 2 is that the prediction errors esti-
mated from the different validation and prediction sets are very similar.
The agreement is particularly striking between estimates from inner loop
and outer loop sample sets. This is maybe not surprising since the
resampling procedures in inner and outer loop use the same pool of
samples and thus represents an exchange of samples between inner and
outer loop selected from the same pool. When repeated and averaged
over a relatively large number of repetitions we should expect the same
prediction estimates from both loops if the samples in the calibration/
validation sets (inner loop) and prediction sets (outer loop) span the same
variation range. If different estimates are obtained in the two loops it may
be a sign of too few samples available to span the variation range in inner
and outer loop simultaneously. We observe (Table 2) that the standard
deviations for the validation samples in the inner loop are always smaller
than for the outer loop prediction samples. As explained in the theory
section, this is expected since the median prediction errors in the inner
loop span a narrower range, since they are calculated from 100 repeti-
tions for each repetition in the outer loop. The standard deviations of
these medians around their mean in the inner loop must therefore be
smaller than the corresponding standard deviations in the outer loop.
Comparison of the estimated mean prediction errors for the independent
samples and the outer loop samples also reveals close similarity for most
models. However, for two cases, LDL-C and TC with respectively 50 and
100 samples in outer loop and independent sample sets, a two-sided t-test
shows that the estimated mean prediction errors are significantly
different (p< 0.001) when making the reasonable assumptions of equal
variance of the two means. All the other prediction errors are statistically
identical (p> 0.1).

For TC with 100 samples and LDL-C with 50 samples, the prediction
error estimated from a pool of independent samples is respectively
9–10% and 17–18% higher than the corresponding estimate from the
inner and outer loop samples. These differences, however, are of little
practical relevance in the application investigated here since the results
for these variables are usually reported with only one significant digit
after comma for the reference method. Thus, the more elaborate sam-
pling implied to obtain a large enough pool of samples to calculate these
prediction measures may not be justified in terms of the possible im-
provements achieved. This will probably often be the case when devel-
oping and validating calibration models. In any case, further validation
and maintenance is usually necessary after putting the models at work
and it may be better to spend extra resources on this step. Furthermore,
independent prediction sets collected and analyzed at a later stage are
important since they can disclose deficiencies in sampling or analysis that
Table 2
Mean prediction errors and their standard deviations (SD) calculated for 50 and 100 va
loop and in the sample sets randomly sampled from the pool of samples outside both i
Superscript a and b implies 50 and 100 samples, respectively.

Var. nLV Inner loopa Outer loopa Independenta

Mean� SD Mean� SD Mean� SD

TC 7 0.198� 0.013 0.193� 0.024 0.202� 0.040
LDL-C 7 0.145� 0.008 0.146� 0.019 0.171� 0.027
HDL-C 7 0.120� 0.008 0.121� 0.014 0.122� 0.027
TG 6 0.055� 0.003 0.054� 0.007 0.053� 0.009

TC: total cholesterol; LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density
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impact the performance of the calibration model.
Table 2 further shows that doubling the number of samples from 50 to

100 increases the number of valid PLS components from 7 to 10 for three
responses. This is caused by better description of sample variation
leading to stabilization of minor PLS components often accompanying
increased number of available samples. A minor but statistically signifi-
cant (p< 0.001 for a two-sided t-test) improvement in mean prediction
error is observed for HDL-C by doubling the number of samples. As dis-
cussed above, this small improvement is of no practical importance for
the present application. For LDL-C the prediction error calculated from
the inner and outer loop with 100 samples increases, while it decreases
for samples from the pool of samples kept outside. This may be caused by
inclusion of samples in the inner loop increasing the variation range, thus
improving the prediction of some samples in the outside pool, but at the
same time leading to a more heterogeneous sample set and model and
thus larger overall prediction error in the inner and outer loop.

6. Conclusions

The two ways of calculating and using a probability measure for
model selection provided identical outcome for more than 80% of the
cases investigated here. For the cases with different outcome, pairwise
comparison (Eq. (3)) suggested one PLS component less than the other
procedure (Eq. (4)) for backward selection. The choice of pupper appears
to have a larger impact on model selection than the choice of test and 0.4
proved to be a good compromise for balancing the risk of overfitting
against underfitting in this application. However, the “best” choice may
be application dependent due to factors such as the number of samples
available and, the complexity and heterogeneity in the composition of
samples so it.

The large sample available here made it possible to estimate and
compare alternative ways of estimating the prediction error: i) estima-
tion from inner loop validation samples, ii) from outer loop prediction
samples, and, iii) from independent prediction samples outside the pool
of inner and outer loop samples. The major finding was that the double
loop procedure provides the same prediction error estimates as the inner
loop validation samples. Thus, our results imply that using samples
resampled from the same pool in double loop procedures may not pro-
vide better estimates of prediction errors than the single loop procedure.
Rather a significant difference between estimates of prediction error
from inner and outer loop may imply that the number of samples is too
small to ensure a satisfactory coverage of sample variations in both inner
loop validation samples and outer loop samples simultaneously. This
breaks with the assumption that the samples collected for calibration
must cover the range and characteristics expected for the future samples
to be predicted reliably from the model. A better approach is to select
true prediction samples from a pool of independent samples to be used
in the outer loop. This may require collection and analysis of extra
samples and thus increase the cost of calibration, but will provide an
estimate of prediction error from samples not used for model selection.
The single loop procedure has the advantages of demanding a smaller
sample set for building a calibration model and being less computer-
intensive.
lidation samples in inner loop and the same number of prediction samples in outer
nner and outer loop. Pairwise comparison (Eq. (3)) was used for model selection.

nLV Inner loopb Outer loopb Independentb

Mean� SD Mean� SD Mean� SD

10 0.183� 0.016 0.186� 0.026 0.202� 0.025
10 0.158� 0.007 0.160� 0.015 0.156� 0.021
10 0.097� 0.004 0.098� 0.009 0.099� 0.012
6 0.053� 0.002 0.054� 0.005 0.050� 0.005

lipoprotein cholesterol; TG: total triglyceride; nLV: number of PLS components.
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