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Background: Metastatic colorectal cancer (mCRC) is a heterogeneous disease where prognosis is dependent both on tumor
biology and host factors. Total circulating cell-free DNA (cfDNA) has shown to harbor prognostic information in mCRC, although
less is known about the biological correlates of cfDNA levels in this patient group. The primary objective was to evaluate the
prognostic value of pretreatment cfDNA in patients receiving the first-line oxaliplatin-based chemotherapy for mCRC, by using a
predefined upper limit of normal (ULN) from a cohort of presumed healthy individuals. The secondary objective was to model
cfDNA levels as a function of predefined tumor and host factors.

Patients and methods: This was a retrospective post hoc study based on a prospective multicenter phase III trial, the NORDIC-
VII study. DNA was purified from 547 plasma samples and cfDNA quantified by a droplet digital PCR assay (B2M, PPIA) with
controls for lymphocyte contamination. Main clinical end point was overall survival (OS).

Results: cfDNA was quantified in 493 patients, 54 were excluded mainly due to lymphocyte contamination. Median cfDNA
level was 7673 alleles/ml (1050–1 645 000) for B2M and 5959 alleles/ml (555–854 167) for PPIA. High cfDNA levels were
associated with impaired outcome; median OS of 16.6 months for levels above ULN and 25.9 months for levels below ULN
(hazard ratio¼ 1.83, 95% confidence interval 1.51–2.21, P< 0.001). The result was confirmed in multivariate OS analysis
adjusting for established clinicopathological characteristics. A linear regression model predicted cfDNA levels from sum of
longest tumor diameters by RECIST, the presence of liver metastases and systemic inflammatory response as measured by
interleukin 6 (F(6, 357)¼ 62.7, P< 0.001).

Conclusion: cfDNA holds promise as a minimally invasive and clinically relevant prognostic biomarker in mCRC before
initiating first-line oxaliplatin-based chemotherapy and may be a complex entity associated with tumor burden, liver metastases
and systemic inflammatory response.

Trial registration: ClinicalTrials.gov, NCT00145314.
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Introduction

Colorectal cancer is the third most common cancer worldwide,

with over 1.8 million new cases and 881 000 deaths every year [1].

Combination chemotherapy is the preferred first-line treatment

of metastatic colorectal cancer (mCRC) [2]. Adding anti-epider-

mal growth factor receptor therapy may provide further clinical

benefit in RAS wild-type [3] and in particular left-sided RAS

wild-type cancers [4]. mCRC is a heterogeneous disease where

prognosis depends both on tumor biology and host factors [5].

There is a need for reliable biomarkers that can aid in clinical de-

cision making throughout the patient’s disease trajectory; select-

ing patients for optimal oncological and surgical strategies.

Small fragments of total circulating cell-free DNA (cfDNA)

can be detected in the blood stream of humans in health and dis-

ease [6, 7]. cfDNA originate primarily from cell turnover repre-

senting cells dying from apoptosis and necrosis [8] and can

readily be detected in patients with advanced cancers [7, 9] and

diseases driven by inflammatory processes [10, 11]. cfDNA has a

short biological half-life and sampling is minimally invasive,

making it an attractive biomarker at multiple decision points.

A negative prognostic significance of elevated cfDNA in

patients with mCRC has been described [12, 13]. The prognostic

role has mainly been investigated in patients before second and

subsequent lines of chemotherapy. It is uncertain if results are

transferable to a first-line setting. Most studies lack external val-

idation and no reference levels have been established.

Details regarding the release and possible biological correlates

of cfDNA in mCRC still remain unclear. There is an association

between tumor burden and cfDNA in human xenograft models

[14]. In what way other tumor characteristics influence cfDNA

levels is uncertain. Since cfDNA is released from both malignant

and non-malignant cells, we hypothesized that additional host

factors including systemic inflammatory response may further at-

tenuate cfDNA levels.

The primary objective was to evaluate the prognostic value of

cfDNA levels in plasma from mCRC patients before initiating

first-line oxaliplatin-based chemotherapy, by using a predefined

upper limit of normal (ULN) from a cohort of presumed healthy

individuals. cfDNA was assessed alone and in combination with

established prognostic clinicopathological and biochemical char-

acteristics used in daily clinical practice [15]. The secondary ob-

jective was to model cfDNA levels in mCRC patients as a function

of predefined tumor and host factors.

Patients and methods

Study designs

We used a retrospective post hoc study design based on a prospective
multicenter phase III trial, the NORDIC-VII study (NCT00145314), of
which the design, conduct and overall results have been reported [16]. In
short, NORDIC-VII investigated the effects of combining cetuximab
with the Nordic FLOX regimen with bolus 5-fluorouracil/folinic acid and
oxaliplatin in the first-line therapy of mCRC. There were no statistically
significant differences in outcome between the treatment arms [16, 17];
in the present study, data were analyzed across all arms. Clinical end
points were progression-free survival (PFS) and overall survival (OS),
additionally overall response rate (ORR) and number of patients with

complete surgical resection of metastases during the study period.
Description of tumor tissue RAS/BRAF mutation analyses and biochem-
ical serum analyses for alkaline phosphatase (ALP), carcinoembryonic
antigen (CEA) and interleukin 6 (IL-6) is specified in supplementary
Methods, available at Annals of Oncology online.

Clinicopathological characteristics

Clinicopathological characteristics were included as recommended for
phase III trials of systemic treatment in mCRC [15], which in this study
included location of primary tumor, resection status of primary tumor,
synchronous versus metachronous metastases, number of metastatic
sites, metastatic location, tumor tissue RAS/BRAF mutation status, age,
gender, body mass index and WHO performance status. Sidedness of pri-
mary tumor was assigned retrospectively for a subset of patients as
described in supplementary Methods, available at Annals of Oncology
online.

cfDNA purification and quantification

cfDNA was purified from �480 ml of EDTA-plasma and quantified by
droplet digital PCR (ddPCR) using a multiplex assay of gPPIA (132 base
pair amplicon) of the peptidylprolyl isomerase A gene (PPIA) and gB2M
(72 base pair amplicon) of the beta-2-microglobulin gene (B2M) as
described in supplementary Methods, available at Annals of Oncology
online.

Control for lymphocyte contamination

A ddPCR assay for detecting immunoglobulin heavy chain rearrange-
ments in B cells was carried out in duplicates for all samples as described
in supplementary Methods, available at Annals of Oncology online.

Defining ULN for cfDNA in a healthy cohort

The cohort of presumed healthy individuals consisted of random plasma
samples (N¼ 93) from the Lolland-Falster Health Study
(NCT02482896). The ULN of gPPIA was estimated to be 4663 alleles/ml
plasma and the ULN of gB2M was 6418 alleles/ml plasma (see supple-
mentary Methods, available at Annals of Oncology online).

Statistical analyses

Values were summarized as median and range for continuous variables
and proportions and percentages for categorical variables. Blood analyte
levels were not normally distributed and hence log transformed. Levels in
different groups were statistically compared using the one-way analysis
of variance. Correlations were investigated using the Spearman’s rho test.
Associations between categorical variables were evaluated using the chi-
square test.

The prognostic value of cfDNA level was initially assessed by log-rank
test and unadjusted univariate Cox proportional hazards model.
Clinicopathological characteristics, CEA and ALP were evaluated for
their prognostic value in combination with cfDNA in bivariate and sub-
sequent multivariate analyses.

A linear regression model was established to predict cfDNA levels
from clinicopathological characteristics, systemic inflammatory response
(SIR) as reflected by IL-6 and sum of longest tumor diameters (SLD) at
baseline by RECIST 1.0 [16]. Explanatory variables were arranged
belonging to the domains of tumor burden (N¼ 3), tumor characteris-
tics (N¼ 8) and host characteristics (N¼ 5). A similar logistic regression
model was established to assess the likelihood of having cfDNA above
ULN.

Univariate, bivariate or multivariate regression models refer to regres-
sion analyses with one, two or multiple explanatory variables, respectively.
Explanatory variables in multivariate regression models were chosen
using a stepwise approach, including significant covariates in models
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with one or two covariates. An unadjusted P-value threshold of P< 0.003
was used to call significance, corresponding to a Bonferroni adjusted
P< 0.05 after correction for N¼ 16 comparisons.

Statistical analyses were computed using SPSS version 25 (IBM Corp.,
Armonk, NY) and R version 3.5.0 (R Foundation for Statistical
Computing, Vienna, Austria). Results are reported according to the
Recommendations for Tumor Marker Prognostic Studies (REMARK)
checklist.

Ethics

The NORDIC-VII study and the Lolland-Falster Health Study were
approved by the national ethics committees and governmental authorities
in each country and conducted in accordance with the Declaration of
Helsinki. All patients and healthy donors gave written informed consent.

Results

Methodological considerations

The median and range of cfDNA as measured by gPPIA was 5959

alleles/ml plasma (555–854 167), whereas there was a tendency of

higher values as measured by gB2M with a median of 7673 alleles/

mL plasma (1050–1 645 000). The two measures were strongly

correlated (Spearman’s rho 0.98, P< 0.001). Hence, further stat-

istical analyses used the level of cfDNA as measured by gB2M due

to high correlation to gPPIA and lower detection limit. Results

indicate that some patients have gained a PPIA allele or lost a

B2M allele which could affect cfDNA count, details are specified

in supplementary Results, available at Annals of Oncology online.

Patient characteristics and cfDNA levels

cfDNA was quantified in 547 baseline samples. Fifty-three samples

were excluded due to contamination of lymphocytes and one sam-

ple due to failed ddPCR assay, leaving 493 patients with a valid re-

sult for further analyses (Figure 1). Clinicopathological and

biochemical characteristics of relevant cohorts are presented in

supplementary Table S1, available at Annals of Oncology online.

Elevated cfDNA levels were associated with poor performance

status, intact primary tumor, synchronous disease, liver metasta-

ses and elevated levels of CEA and ALP (P< 0.001; Table 1).

There was no statistically significant association with respect to

age, gender, body mass index, location of primary tumor (colon

versus rectum), sidedness of primary tumor (right versus left),

number of metastatic sites, RAS/BRAF tumor mutation status or

treatment arms (Table 1; supplementary Table S2, available at

Annals of Oncology online).

Clinical outcome and cfDNA levels

High cfDNA levels were associated with impaired outcome, with

median PFS of 7.7 months for levels above ULN and 8.3 months

for levels below ULN (hazard ratio¼ 1.43, 95% confidence inter-

val 1.18–1.73, P< 0.001) and median OS of 16.6 for levels above

ULN and 25.9 months for levels below ULN (hazard ratio¼ 1.83,

95% confidence interval 1.51–2.21, P< 0.001). Results were com-

parable when using an external ULN or internal cohort quartiles

(Figure 2). The same prognostic OS trend was observed when

stratifying for RAS/BRAF mutation status (supplementary Figure

S1, available at Annals of Oncology online). The independent

prognostic role of cfDNA was confirmed in bivariate (supple-

mentary Table S3, available at Annals of Oncology online) and a

subsequent multivariate Cox model for OS (Table 2).

Numerically more secondary metastasectomies were seen in

patients with cfDNA levels below ULN (N¼ 23/213, 10.8%) than

in patients with levels above ULN (N¼ 16/280, 5.7%, P¼ 0.04),

although the result did not reach the adjusted significance thresh-

old. Confirmed ORR did not differ between patients with cfDNA

levels below versus above ULN (N¼ 90/213, 42.3% versus

N¼ 137/280, 48.9%, P¼ 0.14).

Modelling cfDNA levels as a function of 16
predefined variables belonging to the domains of
tumor burden, tumor characteristics and host
characteristics

Regression models were established as described in Figure 3. Six

of the explanatory variables remained significantly associated

with cfDNA in univariate regression analyses. A multivariate lin-

ear regression model significantly predicted cfDNA levels from

SLD by RECIST, the presence of liver metastases and SIR as meas-

ured by IL-6. These variables in combination accounted for 51%

of the explained variability (F(6, 357)¼ 62.7, P< 0.001), and rep-

resented each predefined domain (supplementary Table S4, avail-

able at Annals of Oncology online). A multivariate logistic

regression model identified the same variables to significantly ac-

count for the likelihood of having cfDNA above ULN (supple-

mentary Table S5, available at Annals of Oncology online;

Figure 3C).

Discussion

We have previously reported in a meta-analysis that high cfDNA

levels are associated with poor prognosis in mCRC [13]. The

meta-analysis included 10 variously sized cohorts, mainly report-

ing data before second or subsequent treatment lines. We hereby

confirm these findings in a large cohort before initiating first-line

Total cohort (N = 566)

Patients analyzed for
baseline cfDNA (N = 547)

cfDNA cohort (N = 493)

cfDNA and tissue
cohort (N = 397)

Blood samples at baseline
not available (N = 19)

Lymphocyte contamination
or assay failure (N = 54)

Tumor RAS/BRAF mutation
status unknown (N = 96)

cfDNA, tissue and
IL-6 cohort (N = 364)

Serum interleukin 6 (IL-6)
status unknown (N = 33)

Figure 1. CONSORT diagram.
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treatment. The long-term follow-up of this study (median

exceeding 7 years) furthermore enabled us to show that normal

cfDNA levels predict long-term survival in this patient group (5-

year survival rate �17%) compared with patients with elevated

levels (5-year survival rate �4.5%). We identified numerically

more metastatectomies in patients with normal cfDNA upfront,

suggesting an enrichment of patients fit for surgery with limited

tumor burden in this group. Based on these findings, we suggest

Table 1. Total circulating cell-free DNA (cfDNA) levels (alleles/ml plasma) as measured by gPPIA and gB2M for different clinicopathological characteristics in
the cfDNA cohort (N 5 493) of patients with mCRC

Characteristics gPPIA, median (IQR),
alleles/ml

P value gB2M, median (IQR),
alleles/ml

P value

Age
Below median 6083 (18 417) 0.835 7750 (18 917) 0.856
Above median 5938 (17 108) 7663 (19 420)

Gender
Male 6167 (19 571) 0.552 7712 (20 676) 0.760
Female 5917 (16 166) 7489 (17 566)

Body mass index
<18.5 7958 (8314) 0.053 9208 (11 850) 0.115
18.5–24.9 6633 (28 125) 8375 (27 813)
25.0–29.9 6167 (18 387) 7837 (18 500)
�30 4783 (4441) 6292 (6057)

WHO performance status
0 5011 (11 619) <0.001 6625 (12 560) <0.001
1–2 11 167 (38 449) 15 500 (43 206)

Location primary tumor
Colon 6612 (19 500) 0.134 9366 (21 222) 0.038
Rectum 5083 (14 660) 6515 (15 826)

Sidedness primary tumora

Right 6333 (10 500) 0.436 8500 (12 583) 0.788
Left 5125 (14 833) 6845 (16 729)

Resection status primary tumor
Resected 4333 (9324) <0.001 6042 (12 080) < 0.001
Not resected 13 417 (56 182) 16 833 (60 625)

Time of metastases
Synchronous 7667 (29 639) <0.001 9702 (31 012) <0.001
Metachronous 3625 (5872) 5277 (7638)

Number of metastatic sites
1 site 5366 (11 917) 0.168 6809 (12 592) 0.101
>1 site 6250 (21 748) 8000 (21 614)

Metastatic location
Non-liver 3083 (3256) <0.001 4291 (4590) <0.001
Liver þ other site 8681 (32 073) 10 833 (34 917)
Liver only 9047 (27 688) 10 750 (27 850)

Tissue mutation statusb

RAS/BRAF wild-type 6417 (17 245) 0.060 7917 (16 333) 0.133
RAS mutation 4589 (9454) 6542 (12 395)
BRAF mutation 4986 (11 622) 7241 (14 780)

Alkaline phosphatase
Below ULN 3417 (3781) <0.001 5082 (4713) <0.001
Above ULN 18 667 (53 390) 20 500 (53 679)

Carcinoembryonic antigenc

Below ULN 3250 (2917) <0.001 4833 (3917) <0.001
Above ULN 7333 (25 301) 9667 (27 167)

Levels in different groups were statistically compared using the analysis of variance test with log transformed values.
aSidedness primary tumor analyzed for N¼ 363 patients.
bTissue mutation status analyzed for N¼ 397 patients.
cCarcinoembryonic antigen analyzed for N¼ 492 patients.
IQR, interquartile range; ULN, upper limit of normal.
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that cfDNA measured at baseline reflects fundamental aspects of

the tumor and host, rather than predicting the effect of first-line

chemotherapy.

Increased cell death and damaged vasculature due to tumor

invasiveness may both be relevant underlying processes leading

to increased cfDNA. Thus, tumor burden is commonly regarded

as a major factor influencing cfDNA, although there is no consen-

sus on how ‘burden’ should be measured. An experimental model

using nude mice xenografted with human CRC cells indeed

showed increasing cfDNA with increasing tumor weight [18].

Human studies on local/locally advanced disease indicate that

surgical removal of the primary tumor results in lower cfDNA

levels [19]. However, the data are conflicting in a metastatic set-

ting. One study on advanced lung cancer found no significant

correlation between cfDNA and metabolic tumor volume or total

lesion glycolysis as estimated by positron emission tomography/

computed tomography [20]. Others have found that baseline

cfDNA levels in treatment naive mCRC patients correlate with

radiologic disease burden, but this trend could not be observed at

time of disease progression and subsequent therapy lines [21].

We established multiple regression models and identified that

cfDNA level variability in mCRC can be explained partly by tumor

burden, but also by other characteristics of tumor and host. Our

findings support that the presence of liver metastases is associated

with high cfDNA levels, which could partly be independent from

tumor burden. Sprouting angiogenesis with dysfunctional and

leaky vasculature is common in liver metastases, and could be a

relevant underlying process leading to increased cfDNA [22].
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Figure 2. Clinical outcome of patients in the cfDNA cohort (N¼ 493). Progression-free survival as stratified according to total circulating cell-
free DNA (cfDNA) below and above upper limit of normal (ULN) (A) and quartiles (B). Overall survival as stratified according to cfDNA below
and above ULN (C) and quartiles (D). CI, confidence interval.
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In contrast, lung and lymph node metastases more often hijack

existing well-functioning vasculature by co-option [23, 24].

Furthermore, we confirm an association between cfDNA and

SIR as measured by IL-6. In non-malignant disease there is a posi-

tive correlation between cfDNA levels and inflammatory states

[10, 11]. An acute phase response increases local and/or systemic

vascular permeability, which intuitively could make cell debris

including DNA rapidly appear in the blood circulation. Contrary,

studies have mechanistically suggested that endogenous cfDNA

may enhance an innate immune response through activation of

toll-like receptor 9 in dendritic cells, monocytes and macro-

phages [10, 25]. Despite a strong association in our study, we can-

not conclude on a causal or temporal relationship between

cfDNA and IL-6/SIR in patients with mCRC.

Our quest for factors influencing cfDNA level variability was

limited to the parameters available within the framework of a

phase III clinical trial. Variables within the categories tumor bur-

den, tumor characteristics and host characteristics are surrogate

markers, with certain overlaps and interactions as highlighted in

our analyses. As an example, tumor burden as characterized by

RECIST is a rather crude measure and could add uncertainty to

our predictions. Furthermore, the molecular orchestra mediating

SIR in colorectal cancer patients is complex. We chose circulating

IL-6 as a marker since it has been proposed as one of the key

mediators of SIR in mCRC as a result of tumor necrosis [26, 27].

Still this is a simplification of reality, and other markers could

have strengthened predictions and complemented interpreta-

tions. Despite these limitations, our final multivariate model

identified one factor from each domain explaining more than

half of the observed cfDNA level variability in mCRC patients.

Our findings suggest a relationship between cfDNA and tumor

burden, the presence of liver metastases, and SIR, all of which are

modes associated with poor prognosis in mCRC. There could

also be a more direct link between cfDNA, tumor biology and

prognosis. A recent CRC cell line study found that the presence of

DNA in the tumor microenvironment promotes tumor cell sur-

vival after cytotoxic insults, through induction of autophagy

[28]. This suggests that cfDNA could exert a disease-modulating

biological function and not only be an innocent bystander.

Further pre-clinical and clinical studies are needed to understand

the different facets of cfDNA, both as a complex biomarker and

potential target during mCRC treatment.

There are several potential clinical implications of our findings.

High cfDNA predicts poor survival in mCRC, and patients with

high cfDNA fit for therapy may potentially benefit from a more

intensive first-line regimen (i.e. triplet chemotherapy;

FOLFOXIRI). One of the keys of ensuring appropriate patient se-

lection for metastasectomy is prediction of long-term survival,

but current risk scores lack sufficient discriminatory accuracy

[29]. Given that normal cfDNA predicts long-term survival,

cfDNA could potentially improve established risk scores used for

stratifying patients based on their likelihood of recurrence.

Despite the fact that the prognostic utility of cfDNA looks prom-

ising, its clinical usefulness must be validated in prospective clin-

ical trials.

Conclusion

cfDNA at baseline is a strong prognostic factor for mCRC before

initiating first-line oxaliplatin-based chemotherapy, even when

adjusting for established clinicopathological and biochemical

prognostic markers. Our findings indicate that cfDNA may be a

complex marker for tumor burden, the presence of liver metasta-

ses and SIR, and that it holds promise as a clinically relevant prog-

nostic biomarker in mCRC.
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Table 2. Adjusted multivariate Cox regression model for overall survival in
the cfDNA and tissue cohort (N 5 397) including total circulating cell-free
DNA (cfDNA) level as measured by gB2M and other prognostic variables
significant in bivariate analyses

HR L 95% CI U 95% CI P value

WHO performance status
0 (N ¼ 269) 1
1–2 (N ¼ 128) 1.64 1.31 2.06 <0.001

Tissue mutation status
RAS/BRAF wild type (N ¼ 171) 1
RAS mutation (N ¼ 182) 1.55 1.24 1.93 <0.001
BRAF mutation (N ¼ 44) 4.50 3.13 6.46 <0.001

Alkaline phosphatase
ALP below ULN (N ¼ 211) 1
ALP above ULN (N ¼ 186) 1.71 1.35 2.16 <0.001

Carcinoembryonic antigen
CEA below ULN (N ¼ 69) 1
CEA above ULN (N ¼ 328) 1.47 1.08 2.01 0.015

cfDNA level
gB2M below ULN (N ¼ 182) 1
gB2M above ULN (N ¼ 215) 1.54 1.21 1.96 <0.001

HR, hazard ratio; L, lower; U, upper; CI, confidence interval; ULN, upper
limit of normal.
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