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Abstract
The problem of (approximately) counting the independent sets of a bipartite graph
(#BIS) is the canonical approximate counting problem that is complete in the inter-
mediate complexity class #RH�1. It is believed that #BIS does not have an efficient
approximation algorithm but also that it is not NP-hard. We study the robustness of
the intermediate complexity of #BIS by considering variants of the problem parame-
terised by the size of the independent set. We map the complexity landscape for three
problems, with respect to exact computation and approximation and with respect to
conventional and parameterised complexity. The three problems are counting indepen-
dent sets of a given size, counting independent sets with a given number of vertices
in one vertex class and counting maximum independent sets amongst those with a
given number of vertices in one vertex class. Among other things, we show that all
of these problems are NP-hard to approximate within any polynomial ratio. (This is
surprising because the corresponding problems without the size parameter are com-
plete in #RH�1, and hence are not believed to be NP-hard.) We also show that the first
problem is #W[1]-hard to solve exactly but admits an FPTRAS, whereas the other
two areW[1]-hard to approximate even within any polynomial ratio. Finally, we show
that, when restricted to graphs of bounded degree, all three problems have efficient
exact fixed-parameter algorithms.
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1 Introduction

The problem of (approximately) counting the independent sets of a bipartite graph,
called #BIS, is one of themost important problems in thefield of approximate counting.
This problem is known to be complete in the intermediate complexity class #RH�1[8].
Many approximate counting problems are equivalent in difficulty to #BIS, including
those that arise in spin-system problems [12,14] and in other domains. These problems
are not believed to have efficient approximation algorithms, but they are also not
believed to be NP-hard.

In this paper we study the robustness of the intermediate complexity of #BIS by
considering relevant fixed parameters. It is already known that the complexity of #BIS
is unchanged when the degree of the input graph is restricted (even if it is restricted
to be at most 6) [2] but there is an efficient approximation algorithm when a stronger
degree restriction (degree at most 5) is applied, even to the vertices in just one of the
parts of the vertex partition of the bipartite graph [17].

We consider variants of the problem parameterised by the size of the independent
set. We first show that all of the following problems are #P-hard to solve exactly and
NP-hard to approximate within any polynomial factor.

• #Size-BIS: Given a bipartite graphG and a non-negative integer k, count the size-k
independent sets of G.

• #Size-Left-BIS: Given a bipartite graph G with vertex partition (U , V ) and a non-
negative integer k, count the independent sets of G that have k vertices in U ,
and

• #Size-Left-Max-BIS: Given a bipartite graph G with vertex partition (U , V ) and
a non-negative integer k, count the maximum independent sets amongst all inde-
pendent sets of G with k vertices in U .

The NP-hardness of these approximate counting problems is surprising given that the
corresponding problems without the parameter k (that is, the problem #BIS and also
the problem #Max-BIS, which is the problem of counting the maximum independent
sets of a bipartite graph) are both complete in #RH�1, and hence are not believed to be
NP-hard. Therefore, it is the introduction of the parameter k that causes the hardness.

To gain a more refined perspective on these problems, we also study them from
the perspective of parameterised complexity, taking the number of vertices, n, as the
size of the input and k as the fixed parameter. Our results are summarised in Table 1,
and stated in detail later in the paper. Rows 1 and 3 of the table correspond to the
conventional (exact and approximate) setting that we have already discussed. Rows 2
and 4 correspond to the parameterised complexity setting, which we discuss next. As
is apparent from the table, we have mapped the complexity landscape for the three
problems in all four settings.

In parameterised complexity, the central goal is to determinewhether computational
problems have fixed-parameter tractable (FPT) algorithms, that is, algorithms that run
in time f (k) · nO(1) for some computable function f . Hardness results are presented
using the W -hierarchy [10], and in particular using the complexity classes W[1] and
W[2], which constitute the first two levels of the hierarchy. It is known (see [10])
that FPT ⊆ W[1] ⊆ W[2] and these classes are widely believed to be distinct from
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Table 1 A summary of our results

#Size-BIS #Size-Left-BIS #Size-Left-Max-BIS

Exact poly #P-complete even in
graphs of max-degree 3.
(Theorem 1)

#P-complete even in
graphs of max-degree 3.
(Theorem 1)

#P-hard even in graphs of
max-degree 3.
(Theorem 2)

Exact FPT #W[1]-complete.
(Theorem 4)

#W[2]-hard. (Theorem 5) W[1]-hard. (Theorem 6)

FPT for bounded-degree
graphs. (Theorem 14(i))

FPT for bounded-degree
graphs.
(Theorem 14(ii))

FPT for bounded-degree
graphs.
(Theorem 14(iii))

Approx poly NP-hard to approximate
within any polynomial
factor. (Theorem 9)

NP-hard to approximate
within any polynomial
factor. (Theorem 7)

NP-hard to approximate
within any polynomial
factor. (Theorem 6)

Approx FPT Has FPTRAS.
(Theorem 11)

W[1]-hard to approximate
within any polynomial
factor. (Theorem 7)

W[1]-hard to approximate
within any polynomial
factor. (Theorem 6)

Each column corresponds to one of the three problems that we consider (#Size-BIS, #Size-Left-BIS and
#Size-Left-Max-BIS), and each row corresponds to one of the four settings we consider (exact polynomial-
time, exact FPT-time, approximate polynomial-time, and approximate FPT-time)

each other. It is also known [6, Chapter 14] that the Exponential Time Hypothesis (see
[15]) implies FPT �= W[1]. Analogous classes #W [1] and #W [2] exist for counting
problems [9].

As can be seen from the table, we prove that all of our problems are at least
W[1]-hard to solve exactly, which indicates (subject to the complexity assump-
tions in the previous paragraph) that they cannot be solved by FPT algorithms.
Moreover, #Size-Left-BIS and #Size-Left-Max-BIS are W[1]-hard to solve even
approximately. It is known [19] that each parameterised counting problem in the
class #W[i] has a randomised FPT approximation algorithm using a W[i] oracle,
so W[i]-hardness is the appropriate hardness notion for parameterised approxi-
mate counting problems. By contrast, we show that #Size-BIS can be solved
approximately in FPT time. In fact, it has an FPT randomized approximation
scheme (FPTRAS).

Motivated by the fact that #BIS is known to be #P-complete to solve exactly even on
graphs of degree 3 [24], we also consider the case where the input graph has bounded
degree. While the conventional problems remain intractable in this setting (row one of
the table), we prove that all three of our problems admit linear-time fixed-parameter
algorithms for bounded-degree instances (row two). Note that Theorem 14(i) is also
implicit in independent work by Patel and Regts [20].

2 Preliminaries

For a positive integer n, we let [n] denote the set {1, . . . , n}. We consider graphs G
to be undirected. For a vertex set X ⊆ V (G), denote by G[X ] the subgraph induced
by X . For a vertex v ∈ V (G), we write �(v) for its open neighbourhood (that is,
excluding v itself).
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Given a graph G, we denote the size of a maximum independent set of G by μ(G).
We denote the number of all independent sets of G by IS(G), the number of size-k
independent sets of G by ISk(G), and the number of size-μ(G) independent sets of G
by MIS(G). A bipartite graph G is presented as a triple (U , V , E) in which (U , V )

is a partition of the vertices of G into vertex classes, and E is a subset of U × V . If
G = (U , V , E) is a bipartite graph then an independent set S of G is said to be an
“�-left independent set ofG” if |S∩U | = �. The size of amaximum �-left independent
set of G is denoted by μ�-left(G). An �-left independent set of G is said to be “�-left-
maximum” if and only if it has size μ�-left(G). Finally, IS�-left(G) denotes the number of
�-left independent sets of G and IS�-left-max(G) denotes the number of �-left-maximum
independent sets ofG. Using these definitions, we now give formal definitions of #BIS
and of the three problems that we study.

Name: #BIS.
Input: A bipartite graph G.
Output: IS(G).

Name: #Size-BIS.
Input: A bipartite graph G and a non-negative integer k.
Output: ISk(G).
Parameter: k.

Name: #Size-Left-BIS.
Input: A bipartite graph G and a non-negative integer �.
Output: IS�-left(G).
Parameter: �.

Name: #Size-Left-Max-BIS.
Input: A bipartite graph G and a non-negative integer �.
Output: IS�-left-max(G).
Parameter: �.

For each of our computational problems, we add “[�]” to the end of the name of
the problem to indicate that the input graph G has degree at most �. For example,
#BIS[�] is the problem defined as follows.

Name: #BIS[�].
Input: A bipartite graph G with degree at most �.
Output: IS(G).

When stating quantitative bounds on running times of algorithms, we assume the
standard word-RAM machine model with logarithmic-sized words.

3 Exact Computation: Hardness Results

In this section, we prove the hardness results presented in the first two rows of Table 1.
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3.1 Polynomial-Time Computation

We prove that all three problems are #P-hard, even when the input graphs are restricted
to have degree at most 3.

Theorem 1 #Size-BIS[3] and #Size-Left-BIS[3] are both #P -complete.

Proof The problems #Size-BIS[3] and #Size-Left-BIS[3] are in #P, which can be
deduced from their definitions. We show that the problems are #P-hard. Xia, Zhang
and Zhao [24, Theorem 9] show that #BIS[3] is #P-hard, even under the additional
restriction that the input graph is planar and 3-regular.

There is a straightforward reduction from #BIS[3] to #Size-BIS[3]. Suppose that
G is an n-vertex input to #BIS[3]. Then IS(G) = ∑n

k=0 ISk(G). Using an oracle for
#Size-BIS[3] (with the graph G and each k ∈ {0, . . . , n}) one can therefore compute
IS(G), as desired.

Similarly, there is a straightforward reduction from #BIS[3] to #Size-Left-BIS[3],
using the fact that IS(G) = ∑n

�=0 IS�-left(G). Thus, the problems #Size-BIS[3] and
#Size-Left-BIS[3] are both #P-hard. ��
Theorem 2 #Size-Left-Max-BIS[3] is #P-hard.

Proof Vadhan has shown [23, Corollary 4.2(1)] that #Max-BIS[3] is #P-complete.
We now reduce #Max-BIS[3] to #Size-Left-Max-BIS[3]. Let G = (U , V , E) be
an instance of #Max-BIS[3] and let s = |U |. For each j ∈ {0, . . . , s}, let x j be
the number of size-μ(G) (s − j)-left independent sets of G. We wish to compute
MIS(G) = ∑s

j=0 x j , so it suffices to show how to compute the vector (x0, . . . , xs) in
polynomial time using an oracle for #Size-Left-Max-BIS[3]—this is what we do in
the remainder of the proof.

For every non-negative integer i , letGi = (Ui , Vi , Ei ) be the graph formed fromG
by adding a disjoint matching of size s + i . Note that μ(Gi ) = μ(G) + s + i . Also,
Gi has an s-left independent set of size μ(Gi ) (to see this, consider any size-μ(G)

independent set of G, say one that is a-left for some a ∈ {0, . . . , s}, and augment
this with s − a matching vertices from Ui and i + a matching vertices from Vi ).
Let wi be the number of size-(μ(Gi )) s-left independent sets of Gi and note that
ISs-left-max(Gi ) = wi . Since Gi has degree at most 3, wi can be computed using an
oracle for #Size-Left-Max-BIS[3] (using the input graph Gi and setting the input �

equal to s).
From the definitions of x j and wi , we have

wi =
s∑

j=0

x j

(
s + i

j

)

. (1)

Now let M be the matrix whose rows and columns are indexed by {0, . . . , s} and
whose entry Mi, j is

(s+i
j

)
. Let w be the transpose of the row vector (w0, . . . , ws) and

x be the transpose of the row vector (x0, . . . , xs). Then Equation (1) can be re-written
as w = Mx.
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Now [13, Corollary 2] shows that M is invertible (taking k = s + 1, ai = s + i − 1
and b j = j − 1 for 1 ≤ i, j ≤ k, in the language of the corollary), so the vector x can
be computed as x = M−1w. Since it suffices to compute x, and the vector w can be
computed using the oracle, this completes the reduction. ��

3.2 Fixed-Parameter Intractability

We first define the parameterised complexity classes relevant in this paper, namely,
the class W[1] of decision problems, and the counting classes #W[1] and #W[2]. For
simplicity, we do so in terms of complete problems and reductions. The following
definitions are taken from Flum and Grohe [10].

Definition 3 Let F and G be parameterised problems. For any instance x of F ,
write k(x) for the parameter of F and |x | for the size of x . For any instance
y of G, write �(y) for the parameter of y. An FPT Turing reduction from F
to G is an algorithm with an oracle for G that, for some computable functions
f , g : N → N and for some constant c ∈ N, solves any instance x of F in time
at most f (k(x)) · |x |c in such a way that for all oracle queries the instances y of G
satisfy �(y) ≤ g(k(x)).

Now, write F for the set of all instances of F , and for all x ∈ F write F(x) for the
desired output given input x . Likewise, write G for the set of all instances of G, and
for all y ∈ G write G(y) for the desired output given input y. Suppose R : F → G
is a function satisfying the following properties: for all x ∈ F , F(x) = G(R(x));
there exists a computable function f : N → N and a constant c ∈ N such that for all
x ∈ F , R(x) is computable in time at most f (k(x)) · |x |c; there exists a computable
function g : N → N such that for all x ∈ F , �(R(x)) ≤ g(k(x)). If F and G
are decision problems, we call R an FPT many-one reduction from F to G; if F
and G are counting problems, we call R an FPT parsimonious reduction from F to
G.

We define W[1] in terms of the following problem.

Name: Size-Clique.
Input: A graph G and a positive integer k.
Output: True if G contains a k-clique, false otherwise.
Parameter: k.

W[1] is the set of all parameterised decision problemswith an FPTmany-one reduction
to Size-Clique. We say a problem F is W[1]-hard if there is an FPT Turing reduction
from Size-Clique to F . For a proof that this is equivalent to the standard definition of
W[1], see e.g., Downey and Fellows [7, Theorem 21.3.4].

We define #W[1] in terms of the following problem.

Name: #Size-Clique.
Input: A graph G and a positive integer k.
Output: The number of k-cliques in G.
Parameter: k.
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#W[1] is the set of all parameterised counting problems with an FPT parsimonious
reduction to #Size-Clique.We say a problem F is #W[1]-hard if there is an FPTTuring
reduction from #Size-Clique to F . For a proof that this is equivalent to the standard
definition of #W[1], see e.g., [10, Theorem 14.18].

Recall that a set D ⊆ V (G) is called a dominating set of a graph G if every
vertex v ∈ V (G) is either contained in D or adjacent to a vertex of D. We define
#W[2] in terms of the following problem.

Name: #Size-Dominating-Set.
Input: A graph G = (U , E) and a positive integer k.
Output: The number of dominating sets of G of size k.
Parameter: k.

#W[2] is the set of all parameterised counting problems with an FPT parsimonious
reduction to #Size-Dominating-Set. We say a problem F is #W[2]-hard if there is
an FPT Turing reduction from #Size-Dominating-Set to F . For a proof that this is
equivalent to the standard definition of #W[2], see [9, Theorem 19]).

In order to prove our exact fixed-parameter hardness results, we consider the fol-
lowing problem.

Name: #Size-Partitioned-Biclique.
Input: An integer t , a 2t-coloured graph G, and a 2t-coloured balanced biclique H
on 2t vertices (i.e. a 2t-coloured copy of Kt,t ) in which every colour appears exactly
once.
Output: The number SubG(H) of subgraphs K ⊆ G with K 
 H.
Parameter: t .

Theorem 4 #Size-BIS is #W[1] -complete.

Proof We will prove first easiness, then hardness.

#Size-BIS is in #W[1]: We give an FPT parsimonious reduction to #Size-Clique. Indeed,
given an instance (G, k) of #Size-BIS with G = (U , V , E), let V ′ = U ∪ V , E ′ =
{{u, v} | u, v ∈ V ′, (u, v) /∈ E}, and G ′ = (V ′, E ′). Then the size-k independent sets of G
correspond exactly to the size-k cliques of G ′, as required.

#Size-BIS is #W[1]-hard:Wegive anFPTTuring reduction from#Size-Partitioned-Biclique.
Note that the class {Kt,t : t ≥ 1} of all balanced bicliques is recursively enumerable and con-
tains graphs of arbitrarily high treewidths, so #Size-Partitioned-Biclique is #W[1]-hard by a
result of Curticapean and Marx [5, Theorem II.8].

Let (t,G,H) be an instance of #Size-Partitioned-Biclique. Write G = ((V , E), c).
Without loss of generality, suppose the colours {1, . . . , t} appear in one vertex class
of H and the colours {t + 1, . . . , 2t} appear in the other. Let

E ′ = {{u, v} | u, v ∈ V , c(u) ∈ [t], c(v) ∈ [2t] \ [t], {u, v} /∈ E}.
Define a coloured graph G′ = ((V , E ′), c). Then each copy of H in G spans an
independent set in G′ in which every colour appears exactly once and vice versa, so
SubG(H) is precisely the number of such independent sets in G′.
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For any set S ⊆ [2t], let IS be the set of size-2t independent sets in G′ which
contain no vertices with colours in S. By the inclusion-exclusion principle,

SubG(H) =
∣
∣
∣
∣
∣
I∅ \

2t⋃

i=1

I{i}

∣
∣
∣
∣
∣
= |I∅| −

∑

∅�=S⊆[2t]
(−1)|S|−1|IS|. (2)

Moreover, for any set S ⊆ [2t], let GS be the bipartite graph (US, VS, ES) defined by

US = {v ∈ V | c(v) ∈ [t] \ S},
VS = {v ∈ V | c(v) ∈ [2t] \ ([t] ∪ S)},
ES = {(u, v) | u ∈ US, v ∈ VS, {u, v} ∈ E ′}.

Then IS is precisely the set of size-2t independent sets in GS . Our algorithm therefore
determines each |IS| by calling a #Size-BIS oracle with input (GS, 2t), then uses (2)
to compute SubG(H). ��

Next, we turn to the exact parameterised complexity of #Size-Left-BIS. The hard-
ness result we obtain for this problem is a bit stronger than for #Size-BIS: we prove
that it is #W[2]-hard.

Theorem 5 #Size-Left-BIS is #W[2]-hard.

Proof We reduce from the dominating set problem. Let G = (U , E) and k be given
as input for #Size-Dominating-Set whereU = {u1, . . . , un}. The reduction computes
the bipartite split graph of G; formally, let V = {v1, . . . , vn}, let E ′ = {(ua, vb) |
a = b or {ua, ub} ∈ E}, and let G ′ = (U , V , E ′).

For non-negative integers � and r , we define an (�, r)-set of G ′ to be a size-�
subset X ofU that has exactly r neighbours in V . Let Z�,r be the number of (�, r)-sets
of G ′. Note that a size-k subset X of U is a dominating set of G if and only if it is a
(k, n)-set of G ′, so there are precisely Zk,n size-k dominating sets of G.

The algorithm applies polynomial interpolation to determine Zk,r for all r ∈
{0, . . . , n}. We use a special case of the cloning construction from the proof of Theo-
rem 4. For every positive integer i , let Vi = V × [i], let E ′

i = {(u, (v, b)) ∈ U × Vi |
(u, v) ∈ E ′}, and let G ′

i = (U , Vi , E ′
i ). For each (k, r)-set X of G ′, there are exactly

2i(n−r) k-left independent sets S of G ′
i with S ∩U = X . Thus for all i ∈ [n + 1],

ISk-left(G
′
i ) =

n∑

r=0

2i(n−r)Zk,r . (3)

LetM be the (n+1)×(n+1)matrixwhose rows are indexed by [n+1] and columns
are indexed by {0, . . . , n} such that Mi,r = 2i(n−r) holds. Then (3) can be viewed as
a linear equation system w = M z, where w = (ISk-left(G ′

1), . . . , ISk-left(G ′
n+1))

T and
z = (Zk,0, . . . , Zk,n)

T . The oracle for #Size-Left-BIS can be used to compute w, and
M is invertible since it is a (transposed) Vandermonde matrix. Thus the reduction can
compute z, and in particular Zk,n , as required. ��
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Wedefer the proof of theW[1]-hardness of #Size-Left-Max-BIS to the next section,
as it is implied by the corresponding approximation hardness result.

4 Approximate Computation: Hardness Results

In this section, we prove the hardness results in rows 3 and 4 of Table 1. Note that
the reductions from Sect. 3 cannot be used here, since #BIS is not known to be NP-
hard to approximate. In order to state our hardness results formally, we introduce
approximation versions of the problems that we consider.

Name: Deg-c-#ApxSizeLeftMaxBIS.
Input: A bipartite graph G on n vertices and a non-negative integer �.
Output: A number z such that n−c · IS�-left-max(G) ≤ z ≤ nc · IS�-left-max(G).
Parameter: �.

Name: Deg-c-#ApxSizeLeftBIS.
Input: A bipartite graph G on n vertices and a non-negative integer �.
Output: A number z such that n−c · IS�-left(G) ≤ z ≤ nc · IS�-left(G).
Parameter: �.

Name: Deg-c-#ApxSizeBIS.
Input: A bipartite graph G on n vertices and a non-negative integer k.
Output: A number z such that n−c · ISk(G) ≤ z ≤ nc · ISk(G).
Parameter: k.

We first prove the results in the last column of Table 1 and establish the others by
reduction.

Theorem 6 For all c ≥ 0, Deg-c-#ApxSizeLeftMaxBIS is both NP-hard and
W[1]-hard.

Proof Let c be any non-negative integer. We will give a reduction from Size-
Clique to Deg-c-#ApxSizeLeftMaxBIS which is both an FPT Turing reduction and a
polynomial-time Turing reduction. The theorem then follows from the fact that Size-
Clique is both NP-hard [22, Theorem 7.32] and W[1]-hard [7, Theorem 21.3.4].

Let (G, k) be an instance of Size-Clique with G = (V , E) and n = |V |. We use a
standard powering construction to produce an intermediate instance (G ′, k) of Size-
CliquewithG ′ = (V ′, E ′). More precisely, let t = n2c, letC be a set of k new vertices,
and let V ′ = (V × [t]) ∪ C . We define E ′ such that

E ′ = {{(u, i), (v, j)} | {u, v} ∈ E, i, j ∈ [t]} ∪ {{u, v} | u, v ∈ C, u �= v
}
.

From (G ′, k), we construct an instance (G ′′, �) of Deg-c-#ApxSizeLeftMaxBIS
with G ′′ = (U , V ′, E ′′) and � = (k

2

)
. For this, let U = {ue | e ∈ E ′} be a set of

vertices and let E ′′ = {(ue, v) | e ∈ E ′, v ∈ e}. The reduction queries the oracle for
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(G ′′, �), which yields an approximate value z for the number IS�-left-max(G ′′). If z ≤ nc,
the reduction returns ‘no’, there is no k-clique in G, and otherwise it returns ‘yes’. It
is obvious that the reduction runs in polynomial time.

It remains to prove the correctness of the reduction. Let CLk(G) be the num-
ber of k-cliques in G. The �-left-maximum independent sets X of G ′′ correspond
bijectively to the size-� edge sets {e | ue ∈ X ∩ U } of G ′ which span a
minimum number of vertices. Note that any set of � = (k

2

)
edges must span

at least k vertices, with equality only in the case of a k-clique. Since G ′ con-
tains at least one k-clique (induced by C), we have IS�-left-max(G ′′) = CLk(G ′).
Moreover, each k-clique X in G corresponds to a size-tk family of k-cliques
in G ′. Each k-clique in the family consists of exactly one vertex from each set
{x} × [t] such that x ∈ V (X). This accounts for all k-cliques in G ′ except G ′[C].
Thus

IS�-left-max(G
′′) = CLk(G

′) = tkCLk(G) + 1. (4)

Let z be the result of applying our oracle to (G ′′, �). If G contains no k-cliques,
then by (4) we have z ≤ nc · IS�-left-max(G ′′) = nc and the reduction returns
‘no’. Otherwise, we have z ≥ n−c · IS�-left-max(G ′′) ≥ n−c(tk + 1) > nc and
the reduction returns ‘yes’. Thus the reduction is correct and the theorem follows.

��
Theorem 7 For all c ≥ 0,Deg- c -#ApxSizeLeftBIS is bothNP -hard andW[1] -hard.

Proof Let c be any non-negative integer. We will give a reduction from the problem
Deg-(c + 1)-#ApxSizeLeftMaxBIS to the problem Deg-c-#ApxSizeLeftBIS which is
both an FPT Turing reduction and a polynomial-time Turing reduction. The result then
follows by Theorem 6.

Let (G, �) be an instance of Deg-c-#ApxSizeLeftMaxBIS. Write G = (U , V , E),
let n = |V (G)|, and let t = 6n. Without loss of generality, suppose n ≥ 5 and that n
is sufficiently large that nc2−n ≤ 1. Let V ′ = V × [t], let E ′ = {(u, (v, i)) | (u, v) ∈
E, i ∈ [t]}, and let G ′ = (U , V ′, E ′). Let μ = μ�-left(G), and let z be the result of
applying our oracle to (G ′, �).

For any non-negative integers i and j , we define ISi, j (G) to be the num-
ber of independent sets X ⊆ V (G) with |X ∩ U | = i and |X ∩ V | = j .
Each �-left independent set X of G corresponds to the family of �-left inde-
pendent sets of G ′ consisting of X ∩ U together with at least one vertex
from each set {x} × [t] such that x ∈ X ∩ V . Thus by the definition of
μ,

IS�-left(G
′) =

μ−�∑

r=0

IS�, r (G)(2t − 1)r . (5)

Since G contains at most 2n independent sets and IS�, μ−�(G) ≥ 1, we have
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(2t − 1)μ−� ≤ IS�-left(G
′) ≤ 2n(2t − 1)μ−�.

Since nc ≤ 2n ≤ (2t − 1)1/5, it follows that (2t − 1)μ−�−1/5 ≤ z ≤ (2t − 1)μ−�+2/5,
and hence the algorithm can obtain μ by rounding � + lg(z)/ lg(2t − 1) to the nearest
integer. Moreover, by (5) we have

IS�-left(G
′) ≤ IS�, μ−�(G)(2t − 1)μ−� + 2n(2t − 1)μ−�−1 ≤ 2IS�, μ−�(G)(2t − 1)μ−�.

It follows that IS�, μ−�(G) ≤ IS�-left(G ′)/(2t − 1)μ−� ≤ 2IS�, μ−�(G), and hence that

n−c−1IS�, μ−�(G) ≤ z/(2t − 1)μ−� ≤ nc+1IS�, μ−�(G).

The algorithm therefore outputs z/(2t − 1)μ−�. ��
The following well-known Chernoff bound appears in e.g., Janson et al. [16, Corol-

lary 2.3].

Lemma 8 If X ∼ Bin (n, p) is a binomial variable and 0 < ε ≤ 3/2, then

P(|X − E(X)| ≥ εE(X)) ≤ 2e−ε2E(X)/3.

��
Theorem 9 For all c ≥ 0, Deg-c-#ApxSizeBIS is NP-hard.

Proof For all c ≥ 0, we give a polynomial-time Turing reduction from the problem
Deg-(c + 1)-#ApxSizeLeftBIS to the problem Deg-c-#ApxSizeBIS. The result then
follows from Theorem 7.

Fix c ≥ 0 and let (G, �) be an instance of Deg-(c + 1)-#ApxSizeLeftBIS. Suppose
that G = (U , V , E) where U = {u1, . . . , u p}. Note from the problem definition that
n = |U ∪ V | and suppose without loss of generality that � ∈ [p] and that n ≥ 40
(otherwise, (G, �) is an easy instance of Deg-(c + 1)-#ApxSizeLeftBIS, so the answer
can be computed, even without using the oracle).

Let s = 2n6 and t = �s log2 3� − s. For each i ∈ [p], let Ui , Vi and U ′
i be disjoint

sets of vertices with |U ′
i | = |Vi | = s and |Ui | = t . Write U ′

i = {ui,1, . . . , ui,s} and
Vi = {vi,1, . . . , vi,s}. Then let U ′ = ⋃

i∈[p](Ui ∪U ′
i ), V

′ = ⋃
i∈[p] Vi ∪ V , and

E ′ =
⋃

i∈[p]

(
(Ui × Vi ) ∪ {(ui, j , vi, j ) | j ∈ [s]}

)
∪

⋃

(u j ,v)∈E(G)

(Uj × {v}).

Let G ′ = (U ′, V ′, E ′), as depicted in Fig. 1.
Intuitively, the proof will proceed as follows. We will map independent sets X ′ of

G ′ to independent sets X of G by taking X ∩ V = X ′ ∩ V and adding each ui ∈ U
to X if and only if Ui ∩ X ′ �= ∅. We will show that roughly half the independent
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Fig. 1 An example of the reduction from Deg-(c + 1)-#ApxSizeLeftBIS to Deg-c-#ApxSizeLeftBIS used
in the proof of Theorem 9 when G = P3. Each vertex ui ∈ U is replaced by three vertex sets U ′

i , Vi and
Ui in the resulting graph G′. Note that G′ does not depend on the input parameter �

sets of each gadget U ′
i ∪ Vi ∪ Ui have this form. We will also show that within each

gadget, almost all independent sets with vertices in Ui have size roughly (s + t)/2,
and almost all others have size roughly 2s/3. Thus the independent sets in G with
� vertices in U roughly correspond to the independent sets in G ′ of size roughly
� · (s + t)/2 + (p − �) · 2s/3, which we count using a #Size-BIS oracle.

We start by defining disjoint sets of independent sets of G ′. For x ∈ {0, . . . , p}, let
E(x) = 2s

3 (p − x) + s+t
2 x and let

Ax =
{
X ′ ⊆ V (G ′)

∣
∣
∣ X ′is an independent set of G ′ and

∣
∣|X ′| − E(x)

∣
∣ ≤ s

20
+ n

}
.

Note that since n ≥ 3, we have t > 17s/30 and 120n ≤ s. Thus, if x ′ > x ,

E(x ′) − E(x) =
(
t

2
− s

6

)

(x ′ − x) >

(
17

60
− 1

6

)

s = s

10
+ s

60
≥ s

10
+ 2n.

We conclude that the sets A0, . . . ,Ap are disjoint.
Next, we connect the independent sets of G ′ with those of G. Each independent set

X ′ ofG ′ projects onto the independent set (X ′∩V )∪{ui | X ′∩Ui �= ∅} ofG. Given an
independent set X of G, let ϕ(X) be the set of independent sets X ′ of G ′ which project
onto X . If ui ∈ X , then there are 2t − 1 possibilities for X ′ ∩ Ui and 2s possibilities
for X ′ ∩ U ′

i , but X
′ ∩ Vi is empty. If ui /∈ X , then X ′ ∩ Ui is empty and there are 3s

possibilities for X ′∩(U ′
i ∪Vi ). For x ∈ {0, . . . , p}, let F(x) = (2s+t −2s)x ·3(p−x)s . It

follows that, for any x-left independent set X of G, |ϕ(X)| = F(x), which establishes
the first of the following claims.

Claim 1. For any �-left independent set X of G, |ϕ(X) ∩ A�| ≤ F(�).
Claim 2. For any �-left independent set X of G, |ϕ(X) ∩ A�| ≥ F(�)/2.
Claim 3. For any x ∈ {0, . . . , p} \ {�} and any x-left independent set X of G,
|ϕ(X) ∩ A�| ≤ F(�)/2n .
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The proofs of Claims 2 and 3 are mere calculation, so before proving them we use
the claims to complete the proof of the lemma. Recall that (G, �) is an instance of
Deg-(c + 1)-#ApxSizeLeftBIS with � ∈ [p] and n ≥ 2. Together, the claims imply

F(�)

2
IS�-left(G) ≤ |A�| ≤ F(�)IS�-left(G) + F(�), (6)

where the final F(�) comes from the contribution to |A�| corresponding to the (at
most 2n) independent sets of G that are not �-left independent sets. Since � ∈ [p], the
quantity IS�-left(G) is at least 1, which means that the right-hand side of (6) is at most
2F(�)IS�-left(G). Also, F(�) > 0. Thus, (6) implies

IS�-left(G)

2
≤ |A�|

F(�)
≤ 2IS�-left(G).

The oracle for Deg-c-#ApxSizeBIS can be used to compute a number z such that
n−c|A�| ≤ z ≤ nc|A�|. (To do this, just call the oracle repeatedly with input G ′ and
with every non-negative integer k such that |k − E(�)| ≤ s

20 + n, adding the results.)
Thus,

n−c IS�-left(G)

2
≤ n−c |A�|

F(�)
≤ z

F(�)
≤ nc

|A�|
F(�)

≤ 2ncIS�-left(G),

so the desired approximation of IS�-left(G) can be achieved by dividing z by F(�). We
now complete the proof by proving Claims 2 and 3.
Proof of Claim 2: Consider any x ∈ {0, . . . , p} and let X be an x-left independent
set of G. We will show |ϕ(X) ∩ Ax | ≥ F(x)/2, which implies the claim by taking
� = x . In fact, we will establish the much stronger inequality

|ϕ(X) ∩ Ax | ≥ (1 − 3ne−n2)F(x), (7)

whichwill also be useful in the proof ofClaim3.To establishEquation (7)wewill show
that the probability that a random element Y of ϕ(X) satisfies

∣
∣|Y | − E(x)

∣
∣ ≤ s

20 + n

is at least 1 − 3ne−n2 .
So letY be a uniformly randomelement ofϕ(X).Wewill show that,with probability

at least 1 − 3ne−n2 , the following bullet points hold.

• For all i ∈ [p] with ui /∈ X , we have
∣
∣|Y ∩ (Ui ∪ Vi ∪U ′

i )| − 2s
3

∣
∣ ≤ s

n2
, and

• for all i ∈ [p] with ui ∈ X , we have
∣
∣|Y ∩ (Ui ∪ Vi ∪U ′

i )| − s+t
2

∣
∣ ≤ s+t

n2
,

Since n ≥ 40, we have (p−x)s/n2+x(s+ t)/n2 ≤ 2ps/n2 ≤ s/20 and |Y ∩V | ≤ n,
so the claim follows. To obtain the desired failure probability, we will show that, for
any i ∈ [p], the probability that the relevant bullet point fails to hold is at most 3e−n2

(so the total failure probability is at most 3ne−n2 , by a union bound).
First, consider any i ∈ [p]with ui /∈ X . In this case, Y ∩(Ui ∪Vi ∪U ′

i ) is generated
by including (independently for each j ∈ [s]) one of three possibilities: (i) ui, j but
not vi, j , (ii) vi, j but not ui, j , or (iii) neither ui, j nor vi, j . Each of the three choices is
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equally likely. Thus |Y ∩ (Ui ∪ Vi ∪U ′
i )| is distributed binomially with mean 2s/3, so

by a Chernoff bound (Lemma 8), the probability that the first bullet point fails for i is
at most 2e−s/2n4 < 3e−n2 , as desired.

Second, consider any i ∈ [p] with ui ∈ X . In this case, Y ∩ (Ui ∪ Vi ∪ U ′
i )

is chosen uniformly from all subsets of Ui ∪ U ′
i that contain at least one element

of Ui . The total variation distance between the uniform distribution on these subsets
and the uniform distribution on all subsets of Ui ∪ U ′

i is at most 2−t . Also, by a
Chernoff bound (Lemma 8), the probability that a uniformly-random subset ofUi ∪U ′

i
has a size that differs from its mean, (s + t)/2, by at least (s + t)/n2 is at most
2e−2(s+t)/(3n4). Thus, the probability that the second bullet point fails for i is at most
2−t + 2e−2(s+t)/(3n4) ≤ 3e−n2 , as desired.
Proof of Claim 3: Suppose that x ∈ {0, . . . , p} \ {�} and that X is an x-left inde-
pendent set of G. We know from Equation (7) that |ϕ(X) ∩ A�| ≤ 3ne−n2F(x). We
wish to show that this is at most F(�)/2n . Note that t ≥ 1 and 3s−1 ≤ 2s+t ≤ 3s , so
for all y ∈ {0, . . . , p},

F(y) = (2s+t − 2s)y · 3ps−ys ≤ 2y(s+t) · 3ps−ys ≤ 3ps, and

F(y) ≥ 2y(s+t)−y · 3ps−ys ≥ 3ps−2y ≥ 3ps−2n .

The claim follows from F(x) ≤ 3ps ≤ 32n F(�) and from the fact that n ≥ 40. ��

5 Algorithms

In this final section, we give our algorithmic results: An FPT randomized approx-
imation scheme (FPTRAS) for #Size-BIS, and an exact FPT-algorithm for all three
problems in bounded-degree graphs.We define an FPTRAS of #Size-BIS as in Arvind
and Raman [1].

Definition 10 An FPTRAS for #Size-BIS is a randomised algorithm that takes as input
a bipartite graphG, a non-negative integer k, and a real number ε ∈ (0, 1) and outputs a
real number z. With probability at least 2/3, the output z must satisfy (1−ε)ISk(G) ≤
z ≤ (1 + ε)ISk(G). Furthermore, there is a function f : R → R and a polynomial p
such that the running time of the algorithm is at most f (k) p(|V (G)|, 1/ε).
Theorem 11 There is an FPTRAS for #Size-BIS with time complexity O

(
2k · k2/ε2)

for input graphs with n vertices and m edges.

Proof Let (G, k) be an instance of #Size-BIS with G = (U , V , E) and n = |V (G)|.
Let ε > 0 be the other input of the FPTRAS. Let t = 10�2k/ε2�. The FPTRAS
independently samples t uniformly-random size-k subsets of U ∪ V . Let X be the
number of independent sets among the samples. The output z of the FPTRAS is
z = X · (n

k

)
/t .

Note that E(X) = t · ISk(G)/
(n
k

)
. We now show that with probability at least 2/3,

(1 − ε)ISk(G) ≤ z ≤ (1 + ε)ISk(G).
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Since each sample lies entirely withinU or entirely within V with probability at least
2−k , we have E(X) ≥ t2−k ≥ 10/ε2. By Lemma 8, we have

P

(
|X − E(X)| ≥ εE(X)

)
≤ 2e−10/3 < 1/3.

Thus, with probability at least 2/3, we have |X − E(X)| ≤ εE(X), and so |z −
ISk(G)| ≤ εISk(G) holds as required.

Recall that we use the word-RAM model, in which operations on O(log n)-sized
words take O(1) time. Thus for each of the t samples, the algorithm generates the
sample in O(k) time and makes

(k
2

)
queries to the graph to check that the selected set

is an independent set. The running time is therefore as claimed. ��
Wenow turn to our algorithms for bounded-degree graphs.We require the following

definitions. For any positive integer s, an s-coloured graph is a tuple (G, c) where G
is a graph and c : V (G) → [s] is a map. Suppose G = (G, c) and G′ = (G ′, c′) are
coloured graphs with G = (V , E) and G ′ = (V ′, E ′).

We say amapφ : V → V ′ is a homomorphism fromG toG′ ifφ is a homomorphism
from G to G ′ and, for all v ∈ V , c(v) = c′(φ(v)). If φ is also bijective, we say φ is
an isomorphism from G to G′, that G and G′ are isomorphic, and write G 
 G′. For
all X ⊆ V , we define G[X ] = (G[X ], c|X ), and say G[X ] is an induced subgraph of
G. Given coloured graphs H and G, we denote the number of sets X ⊆ V (G) with
G[X ] 
 H by # Ind(H → G). Finally, we define V (G) = V and E(G) = E and we
define �(G) to be the maximum degree of G.

For each positive integer�, we consider a counting version of the induced subgraph
isomorphism problem for coloured graphs of degree at most �.

Name: #Induced-Coloured-Subgraph[�].
Input: Two coloured graphs H and G, each with maximum degree bounded by �.
Output: # Ind(H → G).
Parameter: |V (H)|.

We will later reduce our bipartite independent set counting problems to the
coloured induced subgraph problem. Note that #Induced-Coloured-Subgraph[�] can
be expressed as a first-order model-counting problem in bounded-degree struc-
tures. A well-known result of Frick [11, Theorem 6] would yield an algorithm for
#Induced-Coloured-Subgraph[�] with running time g(k) · n, where k = |V (H)| and
n = |V (G)|. (To our knowledge this fact has not appeared in the literature, but the
proof is not hard.) However, the function g of Frick’s algorithm may grow faster
than any constant-height tower of exponentials. In the following, we provide an algo-
rithm for #Induced-Coloured-Subgraph[�] that is substantially faster: It runs in time
O(nk(2�+3)k).

The algorithm follows the strategy of [4] to count small subgraphs: Instead of
counting (coloured) induced subgraphs, we can count (coloured) homomorphisms and
recover the number of induced subgraphs via a simple basis transformation. Trans-
forming to homomorphisms is useful because homomorphisms from small patterns
to bounded-degree host graphs can be counted by a simple branching procedure–this
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is however not true for small induced subgraphs. The following lemma encapsulates
counting homomorphisms in graphs of bounded degree. Given coloured graphsH and
G, we denote the number of homomorphisms from H to G by # Hom(H → G).

Lemma 12 There is an algorithm to compute #Hom (H → G) in time O(nkk(�+1)k),
where G is a coloured graph with n vertices, H is a coloured graph with k vertices,
and both graphs have maximum degree at most �.

Proof The algorithm works as follows: If H is not connected, let H1, . . . ,H� be its
connected components. Then it is straightforward to verify that

#Hom(H → G) =
�∏

i=1

#Hom(Hi → G) .

Thus it remains to describe the algorithm for connected pattern graphs H.
LetH be connected. A sequence of vertices v1, . . . , vk in a graph F is a traversal if,

for all i ∈ {1, . . . , k−1}, the vertex vi+1 is contained in {v1, . . . , vi }∪�({v1, . . . , vi }).
Let u1, . . . , uk be an arbitrary traversal of H with {u1, . . . , uk} = V (H); the latter
property can be satisfied since H is a connected graph with k vertices. Note that if
f : V (H) → V (G) is a homomorphism from H to G, then f (u1), . . . , f (uk) is a
traversal in G, and this correspondence is injective. Thus the algorithm computes the
number of traversals v1, . . . , vk in G for which the mapping f with f (ui ) = vi for all
i is a homomorphism from H to G. This number is equal to # Hom(H → G), which
the algorithm seeks to compute.

Since the maximum degree of G is �, any set S ⊆ V (G) satisfies |�(S)| ≤ �|S|.
Thus there are at most n ·(�k+k)k−1 traversal sequences inG, which can be generated
in linear time in the number of such sequences. For each traversal sequence, verifying
whether the sequence corresponds to a homomorphism takes time O(k�) (in the
word-RAM model with incidence lists for H already prepared). Overall, we obtain a
running time of O(n · kk · (� + 1)k). ��

Using the above algorithm, we now construct an algorithm that performs a kind of
basis transformation to obtain the number of induced coloured subgraphs.

Theorem 13 For all positive integers�, there is a fixed-parameter tractable algorithm
for #Induced-Coloured-Subgraph[�] with time complexity O(n · k(2�+3)·k) for n-
vertex coloured graphs G and k-vertex coloured graphs H.

Proof Let (H,G) be an instance of #Induced-Coloured-Subgraph[�], write G =
(G, c) and H = (H , c′), and let k be the number of vertices of H. Without loss
of generality, suppose that the ranges of c and c′ are [q] for some positive integer
q ≤ k. Namely, if any vertices of G receive colours not in the range of c′, then our
algorithm may remove them without affecting # Ind(H → G); if any vertices of H
receive colours not in the range of c, then # Ind(H → G) = 0.

For coloured graphsK andB, let # Surj(K → B) be the number of vertex-surjective
homomorphisms fromK to B, i.e., the number of those homomorphisms fromK to B
that contain all vertices of B in their image.

123



3860 Algorithmica (2019) 81:3844–3864

Let S be the set of all q-coloured graphs K such that �(K) ≤ � and, for some
t ∈ [k], V (K) = [t]. Let S′ be a set of representatives of (coloured) isomorphism
classes of S.

Let x be the vector indexed by S′ such that xK = # Ind(K → G) for all K ∈ S′.
This vector contains the number of induced subgraph copies of H in G, but it also
contains the number of subgraph copies of all other graphs in S′ in G. Let b be the
vector indexed by S′ such that bK = # Hom(K → G) for all K ∈ S′; each entry of
this vector can be computed via the algorithm of Lemma 12. Then we will show that
x and b can be related to each other via an invertible matrix A such that Ax = b. By
calculating A and b, we can then output # Ind(H → G) = (A−1b)H.

To elaborate on this linear relationship between induced subgraph and homomor-
phism numbers, let us first consider some arbitrary graph K ∈ S′. By partitioning the
homomorphisms from K to G according to their image, we have

#Hom(K → G) =
∑

X⊆V (G)
|X |≤k

#Surj(K → G[X ]).

In the right-hand side sum, we can collect terms with isomorphic induced subgraphs
G[X ], since we clearly have # Surj(K → B) = # Surj(K → B′) if B 
 B′. Hence,
we obtain

#Hom(K → G) =
∑

K′∈S′
#Surj(K → K′) · #Ind(K′ → G). (8)

Let A be the matrix indexed by S′ with AK,K′ = # Surj(K → K′) for all K,K′ ∈ S′.
Then (8) implies that Ax = b. (Anuncolouredversionof this linear system is originally
due to Lovász [18].)

We next prove that A is invertible. Indeed, given K,K′ ∈ S′, write K � K′ if
K admits a vertex-surjective homomorphism to K′. Since � is a partial order, as is
readily verified, it admits a topological ordering π . Permuting the rows and columns
of A to agree with π does not affect the rank of A, and it yields an upper triangular
matrix with non-zero diagonal entries, so it follows that A is invertible.

The algorithm is now immediate. It first determines S by listing all q-coloured
graphs on at most k vertices with at most ��k/2� edges, then checking each one to see
whether it satisfies the degree condition. It then determines S′ from S by testing every
pair of coloured graphs in S for isomorphism (by brute force). It then determines each
entry AK,K′ of A (by brute force) by listing the vertex-surjectivemapsK → K′. It then
determines b by invoking Lemma 12 to compute each entry bK = # Hom(K → G)

for K ∈ S′. Finally, it outputs # Ind(H → G) = (A−1b)H.
Running time. All arithmetic operations are applied to integers bounded by nk , so

they each fit into O(k)words, and we bound the complexity of each operation crudely
by O(k2). The number of q-coloured graphs on t vertices with at most ��k/2� edges
is at most

k · qk ·
��k/2�∑

m=0

((k
2

)

m

)

≤ k · kk · �k

2
· k2��k/2� = O(k2+(�+1)k) as a function of k,
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so our algorithmdetermines S in timeO(k(�+2)k) and |S| = O(k2+(�+1)k).Moreover,
checking whether two graphs in S are isomorphic by brute force requires O(k2 · k!)
time, so our algorithm determines S′ in time O(|S|2k2 · k!) = O(k(2�+3)k) time. In
determining A, the algorithm checks at most k! possible homomorphisms for each
of |S′|2 pairs of graphs, so it again takes time O(k(2�+3)k). In determining b, the
algorithm computes |S′| = O(k2+(�+1)k) entries in total, each of which takes time
O(nkk(� + 1)k), so in total it takes time O(nk(�+3)k). Finally, it takes O(k2|S′|2) =
O(k(2�+3)k) time to invert A and determine x (since A can be put into upper triangular
form by permuting rows and columns). Overall, the running time of the algorithm is
O(nk(2�+3)k), as claimed. ��

We note that the above algorithm is not limited to host graphs of bounded degree.
That is, the same approach can be taken for any host graph class for which counting
homomorphisms from (vertex-coloured) patterns with k vertices has an f (k) · nO(1)

time algorithm. To this end, simply use this algorithm as a sub-routine instead of
Lemma 12 in the algorithm constructed in the proof of Theorem 13. Examples for
such classes of host graphs are planar graphs or, more generally, any graph class of
bounded local treewidth [11].

Theorem 14 For all positive integers �:

(i) #Size-BIS [�] has an algorithm with time complexity O(|V (G)| · k(2�+3)k);
(ii) #Size-Left-BIS[�] has an algorithmwith time complexity O(|V (G)|·��(2�2+8�+4));
(iii) #Size-Left-Max-BIS[�] has an algorithm with time complexity O(|V (G)| ·

��(2�2+8�+4)).

Recent independent work by Patel and Regts [20] implicitly contains an algorithm
for counting independent sets of size k in graphs ofmaximumdegree� in timeO(ckn),
where c is a constant depending on �. This implies Theorem 14(i). Since our own
proof is very short, we provide it for the benefit of the reader. Subsequent work [21],
published after our original paper [3], includes a version of Theorem 13 with running
time Õ((4�)2kn) (which is essentially best-possible under ETH). Note that using this
result in the proof of Theorem 14(ii) and (iii) in place of Theorem 13 would not yield
algorithms with running times n · �o(�), as the quantity |S ′

�,r | defined in the proof is

�
(�) when � = 3 (for suitable values of r ).

Proof Proof of part (i): This is immediate from Theorem 13, since #Size-BIS[�] is a
special case of #Induced-Coloured-Subgraph[�] (taking G to be monochromatic and
H to be a monochromatic independent set of size k).
Proof of part (ii): For any bipartite graph G = (U , V , E) with degree at most � and
any non-negative integers � and r , let N�,r (G) be the number of sets X ⊆ U with
|X | = � and |�(X)| = r . Let N ′

�,r (G) be the number of pairs of sets X ⊆ U , Y ⊆ V
such that |X | = �, |Y | = r and Y ⊆ �(X). Then we have

N�,r (G) = N ′
�,r (G) −

��∑

i=r+1

(
i

r

)

N�,i (G). (9)

123



3862 Algorithmica (2019) 81:3844–3864

For any bipartite graph J = (UJ , VJ , EJ ), we define the corresponding 2-colouring
by cJ (v) = 1 for all v ∈ UJ and cJ (v) = 2 for all v ∈ VJ .We define the corresponding
coloured graph by φ(J ) = ((UJ ∪ VJ , {{u, v} | (u, v) ∈ EJ }), cJ ). Let S�,r be the
set of all bipartite graphs J = (UJ , VJ , EJ ) withUJ = [�], VJ = {� + 1, . . . , � + r},
degree at most � and no isolated vertices in VJ . Let S�,r be the corresponding set of
coloured graphs, and let S ′

�,r be a set of representatives of (coloured) isomorphism
classes in S�,r . Then N ′

�,r (G) = ∑
K∈S ′

�,r
# Ind(K → φ(G)), and hence by (9) we

have

N�,r (G) =
∑

K∈S ′
�,r

#Ind(K → φ(G)) −
��∑

i=r+1

(
i

r

)

N�,i (G). (10)

Now suppose that (G, �) is an instance of #Size-Left-BIS[�]. Then we have

IS�-left(G) =
∑

X⊆U
|X |=�

2|V |−|�(X)| =
��∑

r=0

N�,r (G)2|V |−r . (11)

To compute N�,��(G), . . . , N�,0(G), our algorithm applies (10). For each r ∈
{��, . . . , 0}, it determines the # Ind(K → φ(G)) terms of (10) using the
#Induced-Coloured-Subgraph[�] algorithm of Theorem 13, and the remaining terms
of (10) recursively with dynamic programming. Finally, it computes IS�-left(G)

using (11).

To determine the time complexity, first note that |S�,r | ≤ (
��2

��

) = O(�3��) holds
for all r ∈ {��, . . . , 0}. The algorithm therefore determines S ′

�,r by brute force in time

O(|S�,r |2(�+��)�+��) = O(��(8�+2)). The algorithm then calculates each N�,r (G)

in time

O(|S′
�,r | · |V (G)| · (� + ��)(2�+3)(�+��)) = O(|V (G)| · ��(2�2+8�+4)).

The overall running time is therefore O(|V (G)| · ��(2�2+8�+4)), so part (ii) of the
result follows.
Proof of part (iii): Finally, suppose that (G,�) is an instance of #Size-Left-Max-BIS
[�]. Letμ = min{r | N�,r (G) �= 0}, and note that IS�-left-max(G) = N�,μ(G). As above,
our algorithm determines N�,��(G), . . . , N�,0(G) using (10), and thereby determines
and outputs N�,μ(G). The overall running time is again O(|V (G)| · ��(2�2+8�+4)), so
part (iii) of the result follows. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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