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Abstract
High mammographic density (MD) is associated with a 4–6 times increase in breast cancer risk. For post-menopausal women,
MD often decreases over time, but little is known about the underlying biological mechanisms. MD reflects breast tissue
composition, and may be associated with microenvironment subtypes previously identified in tumor-adjacent normal tissue.
Currently, these subtypes have not been explored in normal breast tissue. We obtained biopsies from breasts of healthy women at
two different time points several years apart and performedmicroarray gene expression analysis. At time point 1, 65 samples with
both MD and gene expression were available. At time point 2, gene expression and MD data were available from 17 women, of
which 11 also had gene expression data available from the first time point. We validated findings from our previous study;
negative correlation between RBL1 and MD in post-menopausal women, indicating involvement of the TGFβ pathway. We also
found that breast tissue samples from women with a large decrease in MD sustained higher expression of genes in the histone
family H4. In addition, we explored the previously defined active and inactivemicroenvironment subtypes and demonstrated that
normal breast samples of the active subtype had characteristics similar to the claudin-low breast cancer subtype. Breast biopsies
from healthy women are challenging to obtain, but despite a limited sample size, we have identified possible mechanisms
relevant for changes in breast biology and MD over time that may be of importance for breast cancer risk and tumor initiation.
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Background

Breast cancer cells are extensively influenced by their non-
cancerous surroundings, the microenvironment. The microen-
vironment consists of cells (such as fibroblasts, immune cells,
endothelial cells and normal epithelial cells) and extracellular

matrix (ECM) including collagen, which all may influence
initiation and progression of cancer [1, 2]. Mammographic
density (MD) is a measure of radiologic density of the breast
[3]. It varies extensively between individuals and may be seen
as a radiologic reflection of breast tissue composition; epithe-
lial and non-epithelial cells as well as collagen increase MD
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whereas fatty tissue reduces MD [4]. High MD is a strong
independent risk factor for breast cancer, but the underlying
mechanisms are still unclear [5–8]. Reduction inMD has been
linked to a reduction in breast cancer incidence for women
using Tamoxifen as primary prevention [9] and for patients
receiving adjuvant hormonal therapy [10].

Normal breast tissue changes throughout life and is influ-
enced by different hormonal events such as menarche, pregnan-
cy, lactation and menopause [11]. The composition of breast
tissue is also influenced by heritability [12, 13], use of hormonal
therapy [14], nutrition [15, 16] and changes in BodyMass Index
(BMI) [17]. MD decreases with age [18] and continues to de-
crease after menopause [19, 20]. The paradox of decreasingMD
in parallel with increasing breast cancer incidence with age, can
be explained by the model proposed by Pike et al. [11] which
states that biological Bbreast tissue age^ is determined by the
cumulative exposure of damaging events to the breast tissue.
High MD can reflect such damaging exposure, and thus con-
tribute to increased breast cancer risk. It is important to note that
MD is not a single biological state by itself, but recapitulates
complex physiological and pathological conditions [2, 21].

Breast tissue from healthy women not undergoing surgery
is extremely hard to obtain. The women in this study had
previously donated tissue to research when they were exam-
ined at breast diagnostic centers. In order to allow a longitu-
dinal study, these women agreed to undergo a second invasive
procedure, which allowed us to present the first data on gene
expression changes in normal breast tissue over time.

In our previous studies of normal breast tissue [22, 23], we
identified a group of normal breast tissue samples exhibiting
upregulation of mesenchymal and stem cell genes and down-
regulation of epithelial markers and adhesion genes, a trait
identified in tumors of the claudin-low breast tumor subtype.
Furthermore, we identified 24 genes that were negatively cor-
related to MD, including RBL1 (Retinoblastoma-like protein 1,
p107) and three uridine 5′-diphospho-glucuronosyltransferase
(UGT) genes whose protein products are known to inactivate
estrogen metabolites. RBL1 is expressed at high levels in nor-
mal breast epithelium [24], and is thought to have similar tumor
suppressive effects as its cousin gene RB1. In addition to acting
as gatekeepers of the G1-S transition, the RB proteins may play
roles in preservation of chromosomal stability, induction and
maintenance of senescence, and regulation of apoptosis, cellu-
lar differentiation and angiogenesis [25].

The microenvironment is known to be crucial to cancer
initiation and progression [26, 27]. Román-Pérez et al. pro-
posed a method for extratumoral microenvironment subtyping
based on gene expression patterns, classifying tumor adjacent
normal tissue as active or inactive [28]. The active subtype is
characterized by features such as inflammatory response, fibro-
sis and cellular movement; features similar to the claudin-low
breast cancer subtype, proposed by Herschkowitz et al. [29].
The inactive subtype is characterized by maturation,

differentiation of epithelial cells, and high cell adhesion. This
subtype was later shown to correlate with highMD [21]. These
microenvironment subtypes have not been explored in individ-
uals without cancer, but if present in healthy breast tissue, they
could potentially influence breast cancer initiation differently.

The aim of this study was to investigate the changes in gene
expression that take place in normal breast tissue over a time
period of several years, especially in relation to changes in
MD and to validate correlations between gene expression
and MD identified in our previous study. We validated a neg-
ative correlation between RBL1 expression and mammo-
graphic density in postmenopausal women and found an as-
sociation between change in MD and change in expression of
histone-related genes.We also demonstrated that the previous-
ly defined active and inactivemicroenvironment subtypes are
present in normal breast tissue.

Methods

Subjects

Two separate breast biopsies from healthy volunteering
women (i.e. without cancer disease) were obtained with
5–8 years between sample times. The present study is
based on our previous study, Mammographic Density
and Genetics 1 (MDG1) [22], of women attending the
National Breast Cancer Screening Program. The includ-
ed women were referred to one of several breast diag-
nostic centers for biopsies due to suspicious findings on
mammograms or abnormal clinical findings, and biop-
sies from breasts without any malignant disease were
obtained. Only women without signs of malignant dis-
ease were included in this study and biopsies were tak-
en from the contralateral breast of the suspected lesions.
MD was determined from mammograms. A total of 120
healthy women were included. Of these, gene expres-
sion profiles were available for 79 and MD for 113,
with overlapping data for 65 women. Five to eight years
later, women who revisited the breast diagnostic center
were invited to participate in a follow-up study (MDG2)
where new biopsies were obtained, new mammograms
taken and new MD assessments performed. A total of
25 women revisited the center at the second time point.
All women agreed to participate and completed a ques-
tionnaire providing information like height, weight and
menopausal status. With regard to menopause status in
MDG1, the women were estimated to be pre-, post- or
peri-menopausal based on serum levels of FSH, LH and
estradiol as previously described [30]. All women pro-
vided a signed informed consent. The study was ap-
proved by the local ethical committee and local author-
ities (IRB approval no S-02036).
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Biopsies

In both studies, biopsies were obtained as previously de-
scribed [22]. Briefly, ultrasound guided core biopsies using a
14 gauge needle was performed in an area of some MD to
avoid biopsies consisting purely of adipose tissue. Most biop-
sies were sampled in the upper, lateral quadrant at both time
points. The biopsies were snap frozen and stored in -80 °C
until RNA isolation. Since healthy breast tissue express less
mRNA than tumor tissue, the entire biopsy was required for
mRNA extraction. Therefore, no tissue was left for histologi-
cal or immunohistochemical evaluation.

RNA Isolation and Expression Arrays

Gene expression data for the samples from the previous study
(MDG1) are deposited in NCBI’s Gene Expression Omnibus
[31] and are accessible through GEO Series accession number
GSE18672 [32]. Two additional gene expression datasets
were retrieved from GEO: GSE72644 comprises data from
breast cancer patients, where multiple biopsies from unaffect-
ed normal ducts in the same breast were retrieved for several
patients [33]. GSE4823 [34] contains data from normal breast
tissuemicrodissected into epithelium and stroma cellular com-
partments. The platform used for all three datasets was Agilent
Human Gene Expression 4x44K microarrays (G4110A, two
colors) (Agilent, Technologies, Santa Clare, USA).

From the new set of biopsies (MDG2), total RNA was
isolated using Qiagen miRNeasy Mini kit (Qiagen, Hilden,
Germany). The tissue was homogenized bymanually mincing
on ice with a scalpel followed by Mixer Mill for 40 seconds
until complete homogenization. RNA extraction including
DNAse treatment was performed according to the protocol
provided by the supplier. RNA concentrations were measured
by NanoDrop ND-1000 spectrophotometer (Thermo Fisher
Scientific, Wilmington, DE, USA) and RNA quality was an-
alyzed using Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, USA).

To obtain whole genome expression data, Agilent Sureprint
G3 Human Gene Expression 8x60K microarrays (G4851A)
(Agilent, Technologies, Santa Clare, USA) with Low Input
Quick Amp Labeling protocol were used. RNA input was
40 ng and Cy3 was used as fluorophore. Quality Control
was performed in Agilent’s Feature Extraction software. The
microarray expression data for MDG2 have been deposited in
the ArrayExpress database at EMBL-EBI under accession
number E-MTAB-5885 [35, 36].

In the current study, a total of 25 biopsies were obtained. Of
these, three samples were excluded due to too low RNA con-
centration for expression analysis, and three samples failed
Cy3-labeling. Nineteen samples were successfully run on ar-
rays and passed all quality control criteria. For controls, one
sample of commercially available normal breast RNA

(Ambion Human Breast Total RNA, Thermo Fisher
Scientific, Wilmington, DE, USA) and one tumor sample
were included throughout the whole pipeline. Two of the sam-
ples had no associatedMD data. In total, data from 17 samples
were complete with both gene expression and MD data. From
the previous study (MDG1), 65 samples were complete with
gene expression and MD data. For six women, gene expres-
sion data were obtained at time point two only. In total, paired
data were available from 11 women.

Mammographic Density

Digital craniocaudal mammograms were obtained at routine
mammographic centers using a standard protocol.
Mammographic density was estimated using the University
of Southern California Madena assessment method as de-
scribed by Ursin et al. [37]: Using the Madena computer soft-
ware, the reader (GU) outlined the total area of the breast, and
the number of pixels was counted by the software. This rep-
resents the total breast area. MD was assessed as follows:
First, a region of interest that includes all dense areas except
those representing the pectoralis muscle or scanning artifacts
was identified. Then, a yellow tint was applied to all pixels
within the region of interest shaded at or above a threshold
intensity of gray. The software then counted the tinted pixels,
which represent the area of absolute density. Percent density
was determined by dividing the absolute dense area by the
total breast area, and multiplying by 100 [5]. Test-retest reli-
ability was 0.99 for absolute density. For cases with mammo-
grams for both breasts available (14 out of 17), the correlation
of MD was very high between the right and left breast
(Pearson correlation r = 0.97, p < 0,001, n = 14), thus, for
these women the average MD was used. For the remaining
three women, MD was calculated for the breast with available
scans. As a measure of MD change, both absolute
change (MD2 −MD1) and relative change ( MD2−MD1

MD1 ) was
calculated. Since women with low MD in the first study
may potentially have a lower absolute decrease than women
with high MD, relative change was used for comparison to
gene expression and clinical parameters.

Statistical Analysis

Analysis of the relationship between MD at time point one
(MD1) and two (MD2) was performed using Pearson correla-
tion. Out of the 24 genes whose expression were identified as
significantly associated with MD1 in our first study (MDG1),
16 genes, represented by 23 probes, were present on the array
used in the second study (MDG2). To investigate the associ-
ation between gene expression of these genes and MD in the
second study, Pearson correlation was used. Different versions
of whole genome expression arrays were used for MDG1 and

J Mammary Gland Biol Neoplasia (2019) 24:163–175 165



MDG2; notably Agilent Human Gene Expression 4x44K and
8x60K. To avoid introducing bias, the two expression datasets
were analyzed separately and then compared using a rank
based approach: For the 11 samples with expression data at
both time points, after collapsing to gene level using the me-
dian expression of the probes, the genes overlapping in both
datasets (n = 15,107) were extracted. For each time point sep-
arately, the genes in each sample were ranked based on their
expression value. We then calculated rank change as a proxy
for change in expression. Spearman correlation analysis was
performed to investigate the association between relative
change in MD (MD2−MD1

MD1 ) and relative change in rank of gene

expression (Rank2−Rank1Rank1 ). The top and bottom 200 genes from
this analysis were used for gene ontology analyses. As a sen-
sitivity analysis, we checked gene ontology terms associated
with the top 500 genes as well.

The breast microenvironment subtypes (active/inactive)
were calculated using the Chreighton correlation method as
described in Sun et al. [21, 28, 38], separately for the two
datasets: The signature consisting of 3194 genes was retrieved
from Sun et al. with +1 assigned to up-regulated and − 1 to
down-regulated genes. Expression values for genes overlap-
ping with the signature were extracted (for MDG1 2786
genes, for MDG2 2444 genes) and the Pearson correlation
coefficients to the signature were calculated. The samples
were classified as active if the correlation coefficient was pos-
itive, and inactive if it was negative. AWelch two sample t-test
was used to find differentially expressed genes between active
and inactive subtype in MDG1 followed by gene ontology
analyses. The association between microenvironment sub-
types and MD was tested using the non-parametric
Wilcoxon-Mann-Whitney test. This test was also used when
exploring associations between microenvironment subtypes
and relevant genes in both MDG1 and MDG2. All statistical
tests were two-sided with significance level α = 0.05.
Spearman correlation was used where associations between
ranks were explored, otherwise Pearson correlation was used
accompanied by visualization of the data. All statistical anal-
ysis were performed in Rstudio version 1.0.136 [39]. PAM50-
subtypes were estimated using the R Package Bgenefu^ [40]
and for power analyses the R Package Bpwr^ was used [41].
To be able to discover similarly strong correlations between
MD and age/BMI as previously reported (−0.56/−0.21) [42]
with a power above 0.8 and significance level α = 0.05, at
least 174/21 samples would be needed. Thus, the size of our
cohort is too small to draw any firm conclusions of an associ-
ation betweenMD, BMI and age (Online resource 1: Fig.S1 A
and B). These parameters were therefore not adjusted for in
the analyses to prevent introducing unnecessary noise. A pow-
er of 0.66 was obtained in the analyses of the association
between microenvironment subtype and MD (n1 = 28, n2 =
37, d = 0.61 (effect size as reported in Sun et al. [21]), α =

0.05). Gene Ontology (GO) analyses were performed in the
web-based functional annotation tool DAVID 6.8 [43,
44].which performs enrichment analyses on gene sets en-
abling exploration of biological systems and pathways.

Scores for epithelial-to-mesenchymal transition (EMT)
[28], proliferation [45] and fibrosis (gene signature associated
with desmoid type fibromatosis) [46] were calculated using a
standard (Z) score approach: For every gene in each signature,
a standardized expression value was calculated by subtracting
the mean across all samples, then dividing by the standard
deviation. The sample’s score was calculated by taking the
mean of the standardized expression values of all genes in
the signature (Online resource 2).

Gene Set Enrichment Analyses

Gene set enrichment analyses were carried out using the
Hallmark gene sets from the Molecular Signatures Database
(MSigDB [47, 48]) on the MDG1 dataset: For each sample,
genes were ranked by their expression values. Wilcoxon-
Mann-Whitney test was used to test difference in rank be-
tween the genes in each gene set compared to those not in
the gene set. The resulting p value was transformed using this
formula: −10 x log10(p value) and the sign was changed ac-
cording to the direction of enrichment of genes (i.e. whether
the genes were highly or lowly expressed) resulting in an
enrichment score for each sample and each gene set
(Online resource 3). This enrichment score was used for sub-
sequent statistical testing.

Results

Cohort Description

A total of 24 women included in the first MDG study accepted
participation in the second study. For 17 of these, both MD
and gene expression data was available and used for further
analyses. None of the women experienced breast cancer after
they were included in the first study. Relevant clinical infor-
mation is presented in Table 1. Age at second biopsy ranged
from 55 to 66 and all the women were at this time point
postmenopausal. Mammograms were obtained and MD was
estimated as described in Methods. As expected, MD1 and
MD2 were highly dependent (Pearson correlation r = 0.80,
p < 0.001, n = 17) (Online resource 1: Fig.S1 C). MD de-
creased from the first to the second measurement for all but
one woman. There was no difference in relative MD change
between women who had passed menopause between sam-
pling times (n = 5, mean relative MD change = −41.7%) com-
pared to those who already were postmenopausal at the first
time point (n = 8, mean relative MD change = −42.6%).
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Associations between RBL1 Expression
and Mammographic Density Were Validated
in the Second Biopsies

Probes for two of the genes identified in our previous study,were
significantly associated to MD also in our second study:
Retinoblastoma-like protein 1 (RBL1) and Leucine-rich repeat-
containing 2 (LRRC2) (Table 2). RBL1 was represented by two
probes and both confirmed the previously identified negative as-
sociation to MD, however, only one of these reached statistical
significance (Fig. 1). For the UGT genes that were found to be
negativelycorrelatedtoMDinMDG1,anegativeassociationwas
found at the second time point as well, although statistical signif-
icance was not reached. (Online resource 1: Fig.S2).

When stratifying MDG1 based on menopause status, the
correlation between RBL1 expression and MD was evident in
post-menopausal women only (Fig. 1), indicating that processes
relevant for breast tissue composition may change with meno-
pause. To assess the effect of menopausal status on overall gene
expression, we identified differentially expressed genes between
biopsies from post- and pre/peri-menopausal women in the larg-
est cohort (MDG1), and found only five differentially expressed
genes. Next, we correlated overall gene expression with MD
separately in the twomenopausal groups, and found substantial-
ly more genes associated to MD in the postmenopausal group
than the pre−/peri-menopausal (1169 vs. 436 genes) with only
14 genes overlapping between the two groups.

Table 1 Clinical information at time point two including mammographic density at both time points

Sample BMI Menopause
change

Expression
data in both
studies

Months between
biopsies

MD1 (%) MD2 (%) MDAbsolute
difference

MD Relative
difference (%)

NORM-11 28.65 Yes Yes 74 23.16 15.29 −7.87 −33.98
NORM-17 30.46 No Yes 79 13.54 8.6 −4.94 −36.49
NORM-24 28.84 No Yes 76 17.61 9.93 −7.69 −43.64
NORM-26 23.39 Yes Yes 77 34.5 14.58 −19.92 −57.73
NORM-31 21.78 NA No 94 12.72 1.94 −10.78 −84.76
NORM-32 31.25 NA No 89 7.28 3.01 −4.27 −58.65
NORM-33 30.82 NA No 90 20.42 4.12 −16.3 −79.8
NORM-34 26.57 NA Yes 99 20.02 8.53 −11.49 −57.4
NORM-38 23.23 No No 92 32.86 40.07 7.21 21.93
NORM-39 17.99 No Yes 96 25.69 10.8 −14.88 −57.94
NORM-44 27.01 No Yes 96 41.61 22.85 −18.77 −45.1
NORM-49 19.47 Yes Yes 75 15.59 9.44 −6.15 −39.43
NORM-50 34.29 Yes No 72 28.06 10.61 −17.45 −62.17
NORM-56 22.41 No No 78 60.82 34.97 −25.85 −42.5
NORM-61 24.46 No Yes 73 17.08 4.3 −12.79 −74.85
NORM-64 19.37 Yes Yes 69 18.02 14.45 −3.57 −19.82
NORM-66 34.6 No Yes 76 9.94 4.58 −5.37 −53.99
Mean 26.15 82.65 23.47 12.83 −10.64 −48.61
Min 17.99 69 7.28 1.94 −25.85 −84.76
Max 34.60 99 60.82 40.07 7.21 21.93

BMI: Body mass index Menopause change: No = post-menopausal at both time points; Yes = pre−/peri-menopausal at time point one, post-menopausal
at time point two. NA= not available in MDG1.MD1 andMD2: Percent mammographic density at time point 1 and 2, respectively. Age is omitted from
the table as it is considered a sensitive parameter

Summary statistics are written in bold italics

Table 2 Correlation between gene expression and mammographic
density at time point 2 (MDG2, n = 17). Probes included are those
whose expression was correlated with mammographic density at time
point 1 and present on the arrays used at time point 2

Gene Name Probe name r p-value

ATG7 A_24_P944827 −0.1669 0.5220
ATG7 A_23_P143987 0.0589 0.8224
CABP7 A_33_P3348061 0.2097 0.4193
CD86 A_24_P131589 0.1967 0.4491
ESR1 A_24_P383478 0.2055 0.4288
ESR1 A_33_P3379356 0.0806 0.7584
ESR1 A_23_P309739 0.0585 0.8234
H2AFJ A_33_P3379391 0.4062 0.1057
H2AFJ A_23_P204277 0.3783 0.1343
HMBOX1 A_24_P932736 0.254 0.3252
LMOD1 A_33_P3368879 0.291 0.2572
LMOD1 A_33_P3295261 0.1755 0.5005
LRRC2 A_23_P334798 −0.6889 0.0022 *
LRRC2 A_23_P155463 0.1637 0.5302
NPY1R A_23_P69699 0.2385 0.3566
PIK3R5 A_23_P66543 0.2439 0.3454
PPP6R1 A_23_P119448 0.2639 0.3061
RBL1 A_23_P28733 −0.4909 0.0454 *
RBL1 A_24_P276102 −0.3373 0.1855
RPA4 A_23_P254212 0.3781 0.1346
UGT2B10 A_23_P7342 −0.1826 0.4829
UGT2B11 A_23_P212968 −0.1405 0.5906
UGT2B7 A_23_P136671 −0.2846 0.2682

r: Pearson correlation coefficients

* :p-value <0.05)
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Seeing that RBL1-expression showed a consistent negative
correlation to MD over time, prompted us to examine the
association between RBL1 expression and enrichment of
Hallmark gene sets from the Molecular Signature Database
(Online resource 3). We correlated expression values for
RBL1 in the MDG1 dataset with Gene Set Enrichment analy-
sis (GSEA) enrichment scores and found that the enrichment
scores of WNT/β-catenin signaling and MYC-targets were
significantly negatively correlated to RBL1 expression
(Spearman correlation, rho = −0.397, p = 0.0011/rho =
−0.259, p = 0.037). Further, we wanted to investigate whether
MD could be associated with processes relevant for cancer
development. To this end, we correlated enrichment scores
from GSEA to MD for the samples in the MDG1 dataset
and found that gene sets related to Apoptosis and Estrogen
response were significantly negatively correlated to MD
(Spearman correlation, p = 0.0268/0.0343, rho = −0.277/
−0.265), while TGFβ-signaling was marginally not signifi-
cant (Spearman correlation, p = 0.0638, rho = −0.233).

Intra-individual variation of gene expression may be a
complicating factor in all studies where only one biopsy is
analyzed. To assess the intra-individual variability of RBL1
expression, we made use of a separate dataset (GSE72644)
with gene expression data from two biopsies of normal
ductal tissue obtained from different parts of the breast
from several patients. We found low correlation between
RBL1 expression in different ducts of the same patient
(Spearman correlation, p = 0.67, rho = 0.167), indicating
some degree of intra-individual variability of RBL1 expres-
sion; however the inter-individual variability was small, as
demonstrated by a low standard deviation of RBL1 (SD for
RBL1: 0.21 vs. mean SD for all genes: 0.68).

Gene Expression in Normal Breasts Changes
over Time

From 11 of the women, tissue biopsies were obtained at both
time points. A rank-based approach (see Methods section)
was taken to overcome the challenge of analyzing gene ex-
pression data from two different platforms. To identify biolog-
ical processes changing in breast tissue over time in parallel
with changes in MD, normalized gene expression values were
ranked from lowest to highest within each sample, separately
for time point one and two. This was followed by Spearman
correlation to identify genes with positive or negative correla-
tion between relative change of MD and relative change in
gene expression ranks (Online resource 4). Gene ontology
analysis of the top 200 genes with a negative correlation be-
tween change in gene expression and relative change in MD,
revealed involvement of several genes in the histone family
H4. Sensitivity analysis using the top 500 genes confirmed
these results. In other words, breast tissue samples with a large
decrease in MD from the first to the second time point
sustained a high expression of these genes (Online resource
1: Fig.S3).

Identifying Microenvironment Subtypes in Normal
Breast Tissue

To investigate whether the microenvironment subtypes pro-
posed by Román-Pérez [28] could be identified in normal
tissue from healthy breasts, we assigned all tissue samples to
a m ic ro env i r onmen t sub type ( a c t i v e / i nac t i v e )
(Online resource 5). In the MDG1 study, 27 samples
(41.5%) were of the active subtype, while 38 samples

2GDM1GDM

Fig. 1 Expression of RBL1 as a function of mammographic density in
MDG1 (stratified by menopause status) and MDG2 (all post-
menopausal). Pearson correlation: MDG1: Post-menopausal (n = 28),

r = −0.51, p = 0.0061; pre/peri-menopausal (n = 22), r = 0.0039, p =
0.99. MDG2 (n = 17): r = −0.49, p = 0.045
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(58.5%) were assigned to the inactive subtype, whereas for the
MDG2 study, 8 samples (47.1%) were active, and 9 (52.9%)
were inactive. Of the 11 samples with data at both time points,
five kept their subtype (45.5%) (one active and four inactive),
while six samples (44.5%) changed subtype (three from active
to inactive, and three from inactive to active). There was no
difference in distribution ofmenopause status between the two
subtypes (Fisher exact test, p = 0.314).

As previously noted by Sun et al., the two microenviron-
ment subtypes may differ in characteristics such as adhesion,
stem cell features and TGFβ-signalling. We confirmed these
results in our data from normal breasts. In our largest study,
the MDG1 study, 3104 genes were significantly differentially
expressed between the two subtypes (1390 up and 1714 down
in active vs. inactive, Welch two sample t-test, FDR <1%).
Gene ontology (GO) analysis showed enrichment of GO-
terms related to cell-cell adhesion and tight junctions among
the genes that were lower expressed in the active subtype
compared to the inactive, while for genes higher expressed
in the active subtype, we found GO-terms related to stem
cell-like features such as Aldehyde dehydrogenase and Wnt-
signaling (Online resource 6). There was a clear distinction
between the subtypes in both cohorts with regard to the ex-
pression of genes relevant for the claudin-low tumor subtype
[28, 49]; the adhesion genes (e.g. CLDN3, CLDN4, CLDN7,
CDH1 andOCLN) were lower expressed in the active subtype
compared to the inactive, while the EMT-related genes (e.g.
TWIST, ZEB1 and ZEB2) were higher expressed (Fig. 2). To
consolidate these findings, we tested whether gene signatures
from the GSEA analyses were differently enriched between
active and inactive microenvironment subtypes in the MDG1
dataset. As many as 28 (out of 50) Hallmark gene sets were
differently enriched, confirming the extensive differences be-
tween the subtypes (Online resource 3). Most notably were
genes involved in Adipogenesis, TGFβ-signaling and
Epithelial to Mesenchymal Transition higher expressed in
the active subtype compared to the inactive (Mann Whitney
U tests, p < 0.001).

In contrast to the findings in Sun et al. [21], we did not find
a significant association between microenvironment subtype
and MD in any of the cohorts (Online resource 1: Fig. S4).
Neither was RBL1 differently expressed between the subtypes
(Fig. 3). However, since we found a negative correlation be-
tween RBL1 and MD, we wanted to investigate whether genes
that may be influenced by RBL1 expression (through its role
as a co-repressor together with the transcriptional repressor
E2F4) were differentially expressed between the two sub-
types. In this context, MYC is particularly interesting, as it is
highly relevant in cancer and involved in proliferation [50].
We found that MYC was significantly differently expressed
between the subtypes in both cohorts (Fig. 3). There was,
however, no significant correlation between MYC and RBL1
(Spearman correlation, MDG1: p = 0.114, rho = −0.198,

MDG2: 0,503, rho = 0.174). We therefore wanted to identify
E2F4 target genes that were both differentially expressed be-
tween the microenvironment subtypes and negatively corre-
lated to RBL1 expression. Platelet derived growth factor sub-
unit A (PDGFA) fulfilled both these criteria in MDG1 (Fig. 3,
Spearman correlation PDGFA vs. RBL1, p value = 0.007,
rho = −0.33). PDGFA was also differentially expressed be-
tween the subtypes in MDG2. In both cohorts, PDGFA was
higher expressed in the inactive compared to the active
subtype.

To further explore the differences in properties between the
microenvironment subtypes that could be relevant for mam-
mographic density, we calculated standardized z-scores for
EMT, fibrosis and proliferation (Online resource 1, Fig. S5
and Online resource 2). Both EMT- and fibrosis signatures
were significantly higher in the active compared to the
inactive subtype. In MDG2, there were significantly higher
proliferation scores in the inactive subtype and the same ten-
dency was also seen in MDG1, however not significant. In
addition, scores for EMT and fibrosis in MDG1 were signifi-
cantly positively correlated in active, but not for the inactive
samples (Fig. 4).

Since there were extensive differences between the micro-
environment subtypes in the Gene Set Enrichment Analyses,
we wanted to investigate whether the GSEA enrichment
scores were differentially associated with MD between the
two subtypes in MDG1 (Online resource 3). We found that,
in the active subtype, the enrichment scores for the pathway
MYC-targetswere significantly positively correlated withMD
(Spearman correlation, rho = 0.385, p = 0.0476). For the
inactive subtype, several gene sets involved in hormonal pro-
cesses (i.e. Estrogen response and Androgen response) were
negatively correlated with MD. In addition, TGFβ-signaling
was negatively correlated to MD in the inactive subtype, al-
though significance was not reached (p = 0.063). These results
suggest that target genes of the TGFβ pathway may be in-
volved in processes relevant for MD in both microenviron-
ment subtypes.

Spatial Distribution of RBL1 in Normal Breast Tissue

The microenvironment subtypes most likely reflect interplay
between stromal and epithelial cells. In this context, it was of
interest to investigate whether there was a spatial difference in
gene expression of relevant genes between epithelial and stro-
mal cellular compartments. As additional tissue from our co-
hort was not available for analyses, the spatial distribution of
RBL1-expression was studied in a separate dataset (GSE4823)
comprising data from normal breast tissue microdissected into
epithelial and stromal cellular compartments. These data
showed higher expression of RBL1 and a trend toward high
expression of PDGFA in the epithelial cells compared to the
stromal cells (Online resource 1, Fig. S6). ForMYC, there was
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substantial variation of expression in the epithelial cell com-
partment, with higher expression in stromal cells in general.
This difference was, however, not significant. The spatial dis-
tribution of the corresponding proteins were validated using
the Human Protein Atlas where protein expression in epithe-
lial cells were confirmed for all three proteins [51–53].

Discussion

Our study confirmed that low expression of RBL1 in normal
breast tissue in repeated measurements years apart was asso-
ciated with high MD in postmenopausal women. RBL1 close-
ly resembles RB1 and functions as a tumor suppressor gene
involved in cell cycle regulation [54, 55]. The inverse rela-
tionship between RBL1 expression and MD harmonizes with
its presumptive role as a tumor suppressor through regulation
of epithelial cell proliferation and modification of the ECM.
RBL1 acts as a co-repressor of transcription as part of the
SMAD complex downstream of TGFβ in the TGFβ-
signaling pathway [56, 57]. TGFβ has a pleiotropic role in
cancer development, contributing to regulating cell prolifera-
tion, epithelial-to-mesenchymal transition (EMT) and ECM
formation in a highly context dependent manner [58].
Increased TGFβ-signaling in the normal breast is known to
inhibit proliferation of epithelial cells [59] and TGFβ-
signaling has previously been shown to be reduced in dense
mammary tissue [60]. Paradoxically, TGFβ enhances the syn-
thesis of collagen crosslinking enzymes, which increases the
rigidity of the collagen network in the ECM [61] and

contribute to MD [62, 63]. Adding to the complexity, is the
fact that high activity of the TGFβ pathway may have a tumor
suppressive role in the initiation and early progression of can-
cer, and later switch to have a pro-tumorigenic and pro-
metastatic role [64]. Reduced TGFβ-signaling may lead to
decreased repression of several target genes involved in cell
proliferation (possibly affecting MD) and neoplastic transfor-
mation [50, 54]. We did not find a significant correlation be-
tween RBL1 and MYC expression. However, Gene Set
Enrichment Analyses (GSEA) indicated a relationship be-
tween RBL1 and MYC-related pathways as both WNT/β-ca-
tenin and MYC–target gene sets were negatively correlated to
RBL1 expression. These pathways are involved in epithelial
proliferation [50, 65].

In postmenopausal women, the estrogen-mediated cell
proliferation is lower than in pre-menopausal women [66].
In this study, we saw that low expression of RBL1 was
associated with high MD only in postmenopausal women.
The explanation for this may lie in the cross-talk between
the ERα and TGF-β signaling pathways as ERα represses
SMAD3-function in an estradiol-dependent manner [67,
68]. There was a distinct difference in the number of genes
whose expression correlated to MD in postmenopausal
breast tissue compared to the pre/peri-menopausal breast
tissue in the MDG1 cohort. This is in contrast to the low
number of differentially expressed genes between breast
biopsies from post- and pre/peri-menopausal women at a
genome-wide level which has also been reported from
other studies [60, 69]. The low number of genes whose
expression correlated to MD in pre/peri-menopausal
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women may be a reflection of more heterogeneity in genes
relevant for MD as these may fluctuate substantially due
to hormonal changes through the menstrual cycle, poten-
tially masking such associations [70].

Low expression of histones may lead to a more open chro-
matin structure which is thought to cause higher genomic
instability and inappropriate gene expression possibly contrib-
uting to carcinogenesis [71]. In accordance with this, we
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found that breast tissue with a large decrease in MD over time
showed sustained or higher expression of histone proteins of
the H4 family compared to those with a smaller decrease in
MD. Interestingly, high expression of histone genes has been
shown to slow down the aging process in cells as high avail-
ability of histone proteins contributes to a tighter chromatin
structure [71].

The microenvironment subtypes proposed by Sun et al. and
Román-Pérez et al. [21, 28] were observed in the normal
breast samples in our study. The samples classified as active
subtype showed features such as high expression of EMT-
related genes, low expression of genes involved in cell-cell
adhesion and upregulation of GO-terms related to stem cell-
like characteristics similar to what is found in the claudin-low
breast tumor subtype [49, 72–74]. Although the claudin-low
subtype was initially discovered in breast tumors, we have
previously found evidence of claudin-low characteristics in
normal breast tissue from MDG1 [23]. All of these were in
the present study determined as active subtype. There was no
difference in RBL1 expression between the subtypes, but both
MYC and PDGFA were significantly higher expressed in the
inactive samples compared to the active, indicating higher
activation of the TGFβ pathway in the active compared to
the inactive subtype. The samples of the active subtype also
showed enrichment of fibrosis-related genes shown by Beck
et al. to be enriched in a subset of breast carcinomas associated
with longer survival [46]. The presence of increased EMT
features, TGFβ activation and fibrosis in the active subtype
may indicate the presence of a Bwound healing^ phenotype
even without any tumor initiation [75, 76].

In Sun et al. the inactive subtype was associated with
slightly higher MD. We could not detect the same association
between MD and microenvironment subtypes in our data.
However, this may be a question of insufficient power. The
high degree of fibrosis seen in the active subtype does not
harmonize with higher MD in the inactive samples as was
observed by Sun et al., since one would suspect that a high
degree of fibrosis would lead to higher density. However,
normal fibroblasts may inhibit proliferation of epithelial cells
[77], and as mammographic density is a product of both dif-
ferent cell types and ECM constituents, a higher content of
epithelial cells in the inactive subtype could explain this dis-
crepancy. Additionally, the samples analyzed by Sun et al.
were tumor adjacent tissue, while in our study, the biopsies
were normal breast tissue from healthy individuals. This is an
important distinction, as dynamic interactions between tumor
cells, tumor adjacent normal epithelium, and stroma may in-
fluence gene expression patterns.

Mammographic density is a comprehensive measurement
representing the whole breast and may have limited ability of
capturing local differences, whichmay further explain the lack
of association between MD and microenvironment subtype in
our study. Also, intra-breast heterogeneity, such as presence of

stem cell niches [78], may explain differences between two
biopsies from the same breast. We found, however, a low
degree of intra-individual variability of expression of relevant
genes in normal breasts using an external dataset, which
strengthens our finding of a negative association between
MD and RBL1-expression.

Conclusions

This is the first study of gene expression in two normal breasts
biopsies from the same healthy individuals taken several years
apart. We have validated a negative correlation between RBL1
expression and mammographic density in postmenopausal
women, and found that breast tissue samples from women
with a large decrease in mammographic density over time
sustained higher expression of histone family genes. We also
identified the previously defined active and inactive microen-
vironment subtypes and characterized their biological differ-
ences in normal breast tissue. Our data indicated an associa-
tion between MD and target genes in the TGFβ-signaling
pathway regardless of microenvironment subtype. This study
has identified mechanisms relevant for normal breast tissue
biology and MD over time that may be of importance for
breast cancer risk and tumor initiation.
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