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Abstract 

This thesis describes several recent advances on the role of the Southern Ocean in past 

global biogeochemical cycling. We focus on the ocean of the Last Glacial Maximum 

(LGM) and the Pleistocene epoch and apply proxies of long-term climate variability 

(particularly the deep-sea sediment records of δ13C and δ18O). Specifically, we aim to 

explore how the physical and biogeochemical state of the Southern Ocean influenced 

past global marine tracer distributions, such that we can better interpret proxy data 

and improve our understanding of the drivers of long-term climate variability. 

The focus on the ocean realm is motivated by the large carbon reservoir in the (deep) 

ocean, which is able to interact with the atmosphere and govern atmospheric pCO2 on 

millennial timescales – particularly through Southern Ocean processes. The LGM and 

Pleistocene represent the most recent glacial extreme and glacial-interglacial cycles, 

respectively. Therefore, relatively many proxy data are available, and their recorded 

climate variability is likely indicative of long-term natural climate variability. 

We applied global ocean models of different complexities (NorESM-OC, HAMOCC2s 

and TMI) to study the drivers that shape the benthic δ13C and δ18O records. Applying 

these, we studied the role of the Southern Ocean in shaping vertical marine δ13C 

gradients (Paper I), as well as its contribution to the δ18O archive of glacial-interglacial 

cycles (Paper IV) using idealized model experiments. Besides these, the LGM ocean and 

its circulation and biological changes are studied to reveal and explore their relative 

importance in a more complex model setup (NorESM-OC; Papers II and III). 

A central conclusion of this thesis is that knowledge of the relevant water mass end-

member characteristics is fundamental for interpretation of the benthic δ13C and δ18O 

records. We show that Southern source waters (waters originating in the Southern 

Ocean) have a particularly large potential to influence the records of both δ13C and 

δ18O, through changes in the biogeochemical or physical state of the Southern Ocean. 

We find that biogeochemical changes in the Southern Ocean (of particularly air-sea gas 
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exchange and nutrient utilisation) have the potential to affect δ13C globally and with a 

magnitude relevant for global δ13C deep-sea records (Paper I). Such major 

biogeochemical changes are indeed implied by the estimated near doubling of the 

global mean biological carbon pump efficiency required to satisfy LGM proxy records 

of δ13C, besides the changes in ocean circulation (Papers II and III). Last, Southern 

source water characteristics are also highly relevant for deep-sea δ18O records – and 

have likely been incompletely archived due to interference with out-of-phase cyclic 

signals from Northern source water during the Early Pleistocene (Paper IV). 

These findings have direct implications for the interpretation of δ13C and δ18O records, 

as well as for (paleo)-modelling efforts of global climate. Regarding the first, we see 

the need for increased (interdisciplinary) efforts to constrain the drivers of long-term 

end-member variability (Papers I-IV) as well as the need for an improved 

understanding of what part of the end-member signal is recorded (Paper IV). Regarding 

(paleo)-modelling, we anticipate that only models that contain the processes and/or 

components that realistically change both ocean circulation and biogeochemistry will 

be able to simulate long-term climate variability in satisfactory agreement with (proxy) 

data. Furthermore, we note that these processes and/or components are currently not 

(fully) represented in Earth System Models. 
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Chapter 1 
 
Introduction 

1.1 (Paleo)-climatology 

A central question in climate science is how the Earth System responds to changes in 

atmospheric CO2 concentrations. Being a greenhouse gas, atmospheric CO2 influences 

atmospheric temperatures (IPCC, 2014), and is involved in many Earth System 

feedbacks (Heinze et al., 2019). Atmospheric pCO2 (pCO2
atm) naturally varied by ~100 

ppm over the past 800 000 years, as recorded in Antarctic ice cores (Lüthi et al., 2008). 

At present, land-use change and fossil emission of carbon alter the contemporary 

global carbon cycle (Le Quéré et al., 2018). pCO2
atm is currently ~130 ppm above pre-

industrial levels and increases by another ~2.5 ppm yr-1 (NOAA ESRL, 2019). Alongside 

the perturbations to the carbon cycle, other biogeochemical cycles such as those of 

oxygen, phosphorus and nitrogen are also affected by anthropogenic perturbations 

on a global scale (Ciais et al., 2013). 

In order to understand these observed changes and our contributions to them, and in 

order to know what to expect for the 21st century (Collins et al., 2013), a major 

challenge is to understand the natural variability of the Earth System. 

Nearly all direct observations have been made at a time where natural systems 

already had been perturbed. The study of past biogeochemical cycling makes it 

possible to extend and interpret observational records beyond the few decades of 

data we have from satellites and direct measurements – and hence into the natural 

state. In paleoclimatology, proxies such as δ13C and δ18O are used to represent the 

variable of interest (e.g., δ18O and temperature). Proxy data thus replace direct 

observational data, under the assumption that they have recorded past climate 

characteristics (such as for example temperature). Proxies generally have large 
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uncertainties and can only be interpreted if the relationship between the variable of 

interest and the proxy is well understood. Continuous proxy-based reconstructions of 

past climate variability are available for up to hundreds of thousands of years back in 

time - for example for pCO2
atm (Zhang et al., 2019), sea surface temperatures 

(McClymont et al., 2013), ice sheet volume (Elderfield et al., 2012) and past nutrient 

distributions (Marchitto and Broecker, 2006). Particularly δ18O and δ13C records, 

obtained from ice cores and/or deep-sea sediments, have provided much information 

about past climate and natural climate variability. Global benthic stacks of δ18O 

(globally compiled δ18O records from different deep-sea sediment cores) for example 

reveal the natural cyclic behaviour of the climate system, and glacial-interglacial 

cycles (Fig. 1) (Ahn et al., 2017; Lisiecki and Raymo, 2005). 

Figure 1 Probabilistic stack of 180 benthic δ18O records, shown from 2 Mya to the LGM and the last 
deglaciation, including the 95% confidence interval in grey shading (Ahn et al., 2017). The three 
distinct phases of the Pleistocene (Early Pleistocene, Mid Pleistocene Transition and the Late 
Pleistocene) are indicated. 

The peak of the most recent glacial period, the LGM (~21 kya), was a time when sea 

level was ~120 meters lower (Peltier and Fairbanks, 2006), land carbon storage 

profoundly less (Jeltsch-Thömmes et al., 2019), pCO2
atm ~100 ppm lower (EPICA 

Project Members, 2004) and ocean circulation different from today (Adkins, 2013). 

The LGM is the most recent example of a vastly different climate state, and is 

extensively studied in order to understand the relative importance of governing 

processes - without obtaining a complete consensus thus far. The studies principally 

all revolve around one main question: What drove the ~100 ppm lower pCO2
atm in the 

LGM as compared to pre-industrial times? This synthesis, and its underlying articles 
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at the end of the thesis, contribute to several central questions in paleoclimatology 

(Chapter Motivation and Objectives): It addresses the interpretation and sensitivity of 

the (marine) δ13C (Papers I and III) and δ18O (Paper IV) proxies, and the state and role 

of the ocean in the LGM (Papers II and III). In the remainder of this introductory 

section, the (past) ocean is introduced, and in specific the Southern Ocean. Last, the 

basic principles of the proxies δ13C and δ18O are described, useful as a broader 

introduction to Papers I, III and IV. 

1.2 (Paleo)-oceanography 

The ocean is the largest reservoir of carbon available for interaction with the 

atmosphere on millennial timescales, and contains ~38 000 Gt of dissolved inorganic 

carbon (Fig. 2). As a comparison, this is at least ~20 times more carbon than what is 

left in global fossil reserves (Fig. 2). 1 ppm pCO2
atm equals about 2.13 Gt C, revealing 

the enormous potential of the ocean to influence pCO2
atm – if carbon is transferred 

between the ocean and atmosphere. In addition, the ocean acts as a major heat 

reservoir – for example taking up ~93% of the excess (anthropogenic) heat (Rhein et 

al., 2013). 

Figure 2 The contemporary global carbon cycle and carbon reservoirs, as estimated in the Global 
Carbon Budget 2018 (republished and adjusted with permission from Le Quéré et al., 2018). As 
shown, ‘anthropogenic’ carbon remains for ~45% in the atmosphere, while ~25% is taken up by the 
oceans, and ~30% is taken up by the land biosphere. 
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Indeed, about 25% of the extra carbon released by human activities is taken up by the 

oceans, while ~45% remains in the atmosphere and ~30% is taken up by the land 

biosphere (Fig. 2) (Le Quéré et al., 2018). The Southern Ocean takes up ~40% of the 

anthropogenic carbon emissions that enter the ocean on average, although its exact 

share varies significantly on seasonal, annual and decadal timescales (Takahashi et al., 

2012; Gruber et al., 2019). The air-sea exchange of carbon is governed by four 

different carbon pumps that influence surface ocean pCO2 and thereby the air-to-sea 

pCO2 gradient and transfer: the solubility pump, the biological soft-tissue pump, the 

biological CaCO3 counter-pump (Heinze et al., 1991; Volk and Hoffert, 1985) and the 

carbon pump related to ocean circulation (Levy et al., 2013). Therefore, some oceanic 

regions are sources of carbon to the atmosphere, while other regions behave as sinks 

(see Fig. 3 for the contemporary ocean). Due to variations in the relative importance 

of the carbon pumps, the exchange between the atmosphere and ocean varies in 

space and time. 

Net exchange between the marine and atmospheric carbon reservoirs also played a 

key role in the ~100-ppm glacial-interglacial pCO2
atm variability (Broecker, 1982a; 

Sigman et al., 2010; Broecker and Peng, 1986). The oceans must have stored extra 

carbon during glacials, as pCO2
atm was lowered and the land carbon reservoir was 

likely smaller during glacials than during interglacials (Jeltsch-Thömmes et al., 2019). 

Figure 3 Contemporary surface ocean pCO2 (climatology for the years 1985-present from 
Landschützer et al. (2017)), for the months January and July. The graph diverges at 420 ppm 
(approximate pCO2

atm). Blue indicates regions where the ocean is a sink for pCO2
atm, while red 

indicates a source region. 

January July 
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On geological timescales (beyond 1000-10000 yrs), also CaCO3 compensation in 

marine sediments and weathering of rocks play a role in the global carbon cycle. The 

relative importance of physical changes (e.g., ocean circulation + solubility) and 

biological changes (e.g., export production, remineralisation rates) in glacial-

interglacial pCO2
atm variability is still under debate. However, there is consensus that 

both must have played a role, as neither can solely explain the full variability observed 

in δ13C, δ18O or other proxy records (Ganopolski and Brovkin, 2017; Buchanan et al., 

2016; Bouttes et al., 2011). 

Model and observational studies show that, of all ocean regions, the Southern Ocean 

has the greatest potential to influence pCO2
atm (Sigman et al., 2010; Gruber et al., 

2019; Toggweiler, 1999; Watson and Naveira Garabato, 2006). Moreover, the 

Southern Ocean has a major influence on lower-latitude nutrient concentrations 

(Marinov et al., 2006; Primeau et al., 2013; Sarmiento et al., 2004). Therefore, this 

work focuses on the role of the Southern Ocean in global biogeochemical cycling. 

1.3 The Southern Ocean 

The Southern Ocean remains a region of many unknowns due to sparse observational 

coverage (Lenton et al., 2013) especially in winter, few sediment cores south of ~60° 

S (e.g., Fig. 4) and large model biases (e.g., Marzocchi and Jansen, 2017; Mongwe et 

al., 2018; Downes et al., 2015). Nevertheless, there are some main characteristics of 

this ocean region that can be introduced here. 

Zonally, the Southern Ocean is well-mixed due to the rigorous mixing by the Antarctic 

Circumpolar Current (ACC) that connects the Pacific, Atlantic and Indian Ocean basins 

in its eddying pathway. The westerly-wind driven ACC is the strongest current in the 

world with a transport of 173.3 ± 10.7 Sv (Donohue et al., 2016), and surface transport 

across the ACC is therefore strongly impeded. Meridionally, sharp physical and 

biogeochemical contrasts exists within the Southern Ocean, separated by oceanic 

fronts (Marinov et al., 2006; Marshall and Speer, 2012). These fronts have a complex 
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spatial structure (Belkin and Gordon, 1996) and contour the different water masses 

in the Southern Ocean. Driven by the strong and diverging winds, upwelling south of 

the ACC along steeply sloping isopycnal surfaces brings up deep waters and thereby 

‘closes’ the global overturning circulation (Tamsitt et al., 2017). These upwelled 

Circumpolar Deep Waters (CDW, which originally are North-Atlantic deep waters, 

mixed with Antarctic water masses) then diverge into an upper northward and a lower 

southward cell component (Speer et al., 2000; Marshall and Speer, 2012). These 

components are altered by air-sea exchange (of for example heat, carbon and 

freshwater), vigorous mixing (along for example bathymetric features or through 

eddying motions) and changes in buoyancy (through precipitation and evaporation, 

sea ice formation, export, and melt). Facilitated by northward Ekman transport and 

buoyancy gain, the upwelled waters in the upper ‘Deacon Cell’ subduct towards the 

north of the ACC as intermediate and mode waters (Speer et al., 2000). Notably, this 

clockwise circulating upper branch of the Southern Ocean meridional circulation is the 

residual circulation of two opposing circulations: the wind-driven circulation and the 

eddy-driven circulation (Marshall and Speer, 2012). Close to the Antarctic continent, 

and predominantly in the Weddell and Ross Seas, downwelling of cold and saline 

water forms Antarctic Bottom Water (AABW) (Marshall and Speer, 2012). The 

occurrence of both up- and downwelling makes the Southern Ocean an important 

region for exchange between deep and surface ocean waters, as well as with the 

atmosphere. 

At present, water originating in the Southern Ocean (‘Southern Source Water’, SSW) 

serves as the end-member for most of the world’s bottom waters (Fig. 5). SSW, 

including its physical and biogeochemical signatures, therefore fill the deep ocean - 

and greatly affect its characteristics (e.g., Rae and Broecker, 2018; Paper I). The SSW 

characteristics also influence the paleoclimatological archive, which accumulates at 

the sediment-bottom water interface (Papers I and IV). Moreover, SSW generally 

expands during glacials (Adkins, 2013) – increasing its influence on interior water mass 

characteristics and paleoclimatic archives. 
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The particulars of the Southern Ocean circulation shape its distinct biogeochemical 

characteristics, relevant for its role in past biogeochemical cycling. First, the upwelling 

CDW water masses bring large amounts of nutrients to the surface. However, 

biological processes are unable to fully utilize these nutrients due to light and 

micronutrient (iron) limitation. Therefore, the Southern Ocean is a so-called high 

nutrient, low chlorophyll (HNLC) region. Consequently, a large fraction of 

macronutrients leaves the Southern Ocean in unused form (referred to as preformed 

nutrients, see also Paper III). These high preformed nutrient concentrations indicate 

the large - but unused - potential of the Southern Ocean to sequester carbon through 

photosynthesis and export production, and draw down pCO2
atm (Ito and Follows, 

2005). The extent to which the Southern Ocean allows communication between the 

(deep) ocean and the atmosphere can be seen as a ‘window’, and depends both on 

the incomplete nutrient consumption by biology as well as vertical mixing of carbon-

rich deep waters to the surface (Sarmiento and Gruber, 2006). This ‘Southern Ocean 

Window’ thus determines the amount of exchange between the ocean and the 

atmosphere, and sets pCO2
atm. Similarly, the cycling of nutrients in the Southern 

Ocean governs lower-latitude productivity (Sarmiento et al., 2004; Marinov et al., 

Figure 4 Location of core locations with δ13C data, as used in Paper III. Note that the cores lie at 
different depths. 
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2006; Laufkötter and Gruber, 2018; Primeau et al., 2013). Thus, variations in the 

Southern Ocean physical and biogeochemical state have a major potential to affect 

global biogeochemical cycles. Indeed, the Southern Ocean played a central role in 

glacial-interglacial pCO2
atm variations (Moy et al., 2019; Sigman et al., 2010). For the 

LGM, the current understanding is that Southern Ocean processes (such as increased 

sea ice cover, iron input, deep-water volume contribution, and stratification) 

facilitated the majority of the extra carbon storage in the interior ocean, allowing 

pCO2
atm drawdown (Sigman et al., 2010; Watson and Naveira Garabato, 2006; Ferrari 

et al., 2014). 

A large part of our understanding of paleo-oceanography and the role of the Southern 

Ocean in past glacial-interglacial cycling comes from δ13C (e.g., Charles et al., 2010; 

Peterson et al., 2014). δ13C is a proxy for past carbon pumping (both physical and 

biological), obtained from deep-sea sediment cores. 

1.4 δ13C 

Both the physical and biogeochemical state of the ocean accumulate in the 13C /12C 

carbon isotope ratio of foraminiferal shells (Zeebe and Wolf-Gladrow, 2001). This 

13C/12C ratio is expressed in standardized form as δ13C, in order to facilitate 

comparison between different studies (Eq. 1). 

δ13C = (
𝐶13 𝐶12⁄

( 𝐶13 𝐶12⁄ )𝑃𝐷𝐵
− 1) ∗ 1000 ‰ (1) 

Standardisation is done to the Pee Dee Belemnite ratio ( 𝐶13 𝐶12⁄
𝑃𝐷𝐵

= 0.0112372),

which reveals that 13C is present at concentrations typically only ~1% of the abundant 

12C (Zeebe and Wolf-Gladrow, 2001). The more recent Vienna-PDB standard is not 

used in this work because the PDB standard is still the most common in recent data 

products relevant for this study (Peterson et al., 2014; Eide et al., 2017). 

Reconstructions of the δ13C of DIC provide valuable information on the past physical 
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and biogeochemical state of the ocean. δ13C can be measured in sediment cores from 

the CaCO3 shells of foraminifera, and are used to reconstruct δ13C of water column 

DIC (δ13CDIC). δ13CDIC is best recorded by the epifaunally-living foraminiferal genus 

Cibicides, and in specific the δ13C from species Cibicides wuellerstorfi (Schmittner et 

al., 2017). Such δ13C records can go back tens of millions of years (Hilting et al., 2008), 

and are available mainly in the Atlantic - with sparser coverage in the Pacific and 

Indian oceans (Fig. 4). The Pacific Ocean basin is relatively underrepresented due to 

CaCO3 under saturation causing dissolution of the CaCO3 shell material. 

Interpretation of the δ13C records (and even more so, process-attribution) is not 

straightforward, exactly because both biogeochemical and physical processes 

influence δ13CDIC (Paper I; Broecker and McGee, 2013). Nevertheless, observational 

and proxy records have provided an idea of typical δ13CDIC values, and quantified their 

variability. Pre-industrial surface ocean values are in the range of 0.5-2 ‰, while 

interior δ13CDIC is lower and in the range of -0.5-1 ‰ (Eide et al., 2017). Atmospheric 

δ13C is about -6.5 ‰, and varies by ~0.5 ‰ during glacial–interglacial cycles 

(Lourantou et al., 2010; Menviel et al., 2015; Bauska et al., 2016; Eggleston et al., 

2016). In addition, glacial-interglacial variations in the vertical marine gradient of 

Figure 5 Volumetric contribution of Southern Source surface waters (≥ 60°S) to the ocean 
bottom wet layer (adjusted from Fig. S1 in the Suppelemnt to Paper IV). 
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δ13CDIC provide evidence for a glacial ocean that was both physically and biologically 

different from today’s ocean (Paper I; Toggweiler, 1999; Curry and Oppo, 2005). 

In order to interpret the reconstructed distribution and variability of δ13CDIC, it is 

fundamental to understand its governing processes. The main processes are i) ocean 

circulation, ii) bulk exchange and thermodynamic equilibration across the air-sea 

interface, and iii) the efficiency of the biological carbon pump (Gruber et al., 1999; 

Lynch-Stieglitz et al., 1995; Toggweiler, 1999; Paper I). Important for processes ii and 

iii, fractionation between the 12C and 13C isotopes occurs during air-sea exchange and 

photosynthesis (Zeebe and Wolf-Gladrow, 2001). The lighter 12C is namely 

preferentially incorporated in organic matter (increasing surface ocean δ13C of DIC, 

and producing low-δ13C organic carbon), and preferentially escapes to the 

atmosphere – both affecting δ13CDIC in interplay with ocean circulation. 

Figure 6 Simplified zonal mean concentration of surface ocean δ13CDIC for actual (blue) and 
equilibrated (red) states, with direction of air-sea equilibration (black arrows) in the Southern Ocean 
and low-latitude oceans. The opposing direction between the response of the SO and low-latitude 
oceans to equilibration is an interplay between the actual surface ocean δ13CDIC and the meridional 
contrast in the strength of air-sea fractionation (ε). Air-sea fractionation depends on latitude due to 
the dependency of air-sea fractionation (ε) on temperature and the CO3

2-/DIC ratio. 
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Ocean circulation (its structure and rates) affects δ13CDIC through redistribution of 

δ13CDIC, as individual water masses often have a typical δ13C signature. Circulation also 

affects air-sea equilibration (through its effect on surface residence times) and the 

time available for organic matter remineralisation (releasing low-δ13CDIC). Bulk 

transfer into the ocean of the low-δ13C atmospheric carbon (-6.5 ‰) decreases 

surface ocean δ13CDIC – and vice versa when released from the ocean. Such exchange 

depends on whether the surface ocean is a source or sink of carbon to the atmosphere 

(Fig. 3) and can cause a ~0.6 ‰ range in surface ocean δ13CDIC (Lynch-Stieglitz et al., 

1995). The amount of thermodynamic equilibration between atmospheric and 

surface ocean δ13CDIC will change surface ocean δ13CDIC in opposite directions 

depending on latitude, due to the strong temperature dependence of air-sea 

equilibration (Zhang et al., 1995) (Fig. 6 and Paper I). Last, the efficiency of the carbon 

pumps determines to what extent surface ocean δ13CDIC is increased, and interior 

δ13CDIC is decreased (which mainly occurs due to the remineralisation of low-δ13C 

particulate organic carbon (POC) at depth). In summary, the reconstructed changes in 

δ13CDIC can only be interpreted if the relative importance of processes i-iii for a certain 

location (i.e., sediment core) is understood. Modelling attempts have shown that both 

physical and biological processes must have played a role in shaping the glacial-

interglacial changes in δ13C (Bouttes et al., 2011; Buchanan et al., 2016). 

This work explores the governing mechanisms of δ13CDIC variations through idealized 

model experiments (Paper I) and presents an LGM simulation with the 

biogeochemical ocean model NorESM-OC with carbon isotopes enabled (Papers II and 

III) – exploring the relative role of physical and biological processes in setting δ13CDIC. 

1.5 δ18O 

As illustrated in Fig. 1, δ18O from deep-sea sediments (the standardized ratio between 

the 16O and 18O isotopes; Eq. 2) is another isotope proxy central to our understanding 

of past climate. Marine δ18O can be measured from foraminiferal shell material in 



Introduction 12 

sediment records, just like δ13C. Again like δ13C, interpretation is based on a good 

understanding of δ18O fractionation processes and other dependencies. 

δ18O = (
𝑂18 𝑂16⁄

( 𝑂18 𝑂16⁄ )𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1) ∗ 1000 ‰ , (2) 

where 𝑂18 𝑂16⁄
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

 is the Vienna Standard mean Ocean Water (VSMOW equals

2005.20 ± 0.43 ppm; e.g. Coplen (1995)). 

Aqueous δ18O changes during phase transitions, and shell material δ18O depends on 

seawater temperature at the time of shell formation (Zeebe and Wolf-Gladrow, 

2001). Based on our understanding of these dependencies, δ18O represents a 

combined signal from temperature as well as evaporation and precipitation – and 

thereby global ice sheet volume. The separation of the effects of temperature and 

global ice sheet volume is however not straightforward (e.g., Elderfield et al., 2012). 

Processes such as diagenesis and vital effects can namely affect fractionation, and 

there are uncertainties involving the paleo-temperature equations and past ocean 

water δ18O (which is needed in the paleo-temperature equations) (Zeebe and Wolf-

Gladrow, 2001). Nevertheless, it is understood that the relatively heavier 18O has a 

higher tendency to precipitate out of a vapor phase than 16O, and temperatures are 

lower when benthic δ18O is higher. 

In paleo context, the temperature dependency and relationship with the hydrological 

cycle make δ18O a useful proxy to understand glacial-interglacial cycling. For example, 

the formation of large ice sheets (containing strongly depleted δ18O ice of -20 to -55 

‰) leave the ocean relatively enriched in 18O (~0 ‰). Larger ice sheets will thus lead 

to higher ocean δ18O, which is recorded in the benthic δ18O records (Fig. 1). The 

variability in Fig. 1 is therefore considered to represent glacial-interglacial cycles. 

Indeed, the pacing of the benthic δ18O record generally agrees well with the 

Milankovitch (Milanković) cycles of solar insolation (Imbrie et al., 1984; Hays et al., 

1976; Milanković, 1920) - that drive the Earth’s temperature and ice sheet volume. 
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The Milankovitch cycles mainly occur with a period of ~100 ky (eccentricity), 41 ky 

(obliquity) and ~23 ky (precession), and influence the length, intensity and timing of 

the seasons. Interestingly however, the Milankovitch cycles cannot explain the 

pronounced change in glacial-interglacial pacing recorded by δ18O during the Mid-

Pleistocene Transition (MPT, Fig. 1) – as this change is absent in the rhythmic solar 

variations. About 35 years after the discovery of the MPT in the sediment core δ18O 

records (Shackleton and Hall, 1984), this conundrum still invites new hypothesis on 

the underlying causes of the MPT (e.g., Paper IV). 
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Chapter 2 
 
Motivation and Objectives 

In the first place, this work is motivated by the wish to understand the global Earth 

System, such that we can understand its sensitivity to change as well as its natural 

behaviour. The global Earth System is relevant to us as its components and their 

interactions shape our climate, and ultimately the weather we experience. Without a 

good understanding of the natural background state of the Earth System, we cannot 

understand the effects of perturbations - such as those by humankind. The study of 

the natural and long-term behaviour of the Earth System inevitably focuses on the 

past. In such study of past climate (paleoclimatology), we rely on proxies instead of 

direct measurement of the variable of interest. Fundamental proxies used to 

understand both past and present climate are isotope ratios, such as δ13C and ∆14C 

for carbon and δ18O for oxygen. The study of these and other proxies has revealed a 

natural cyclic character of the Earth´s climate, and has helped to constrain its 

extremes and governing processes. Furthermore, we know from proxy data that the 

Southern Ocean plays a central role in both past and contemporary climate (e.g., Moy 

et al. (2019); Sigman et al. (2010); Ferrari et al. (2014); Hauck et al. (2015); Gruber et 

al. (2019)). Specifically, the Southern Ocean’s role in the global overturning of water 

masses and biogeochemical cycling strongly influences our climate and its variability 

(Chapter Introduction). The governing processes and their importance for global 

climate are, however, still under debate. There is therefore a strong motivation to 

explore how the physical and biogeochemical state of the Southern Ocean influence 

past global marine tracer distributions, such that we can better interpret proxy data 

and improve our understanding of the Earth System. 

A central problem in the study of the Southern Ocean is the sparsity of field data for 

both the past and present. Therefore, and to isolate individual processes, 
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mathematical models are applied to simulate the Earth System, and compared to 

(proxy) data (Chapter Approach). Specifically, major efforts are made to simulate past 

global biogeochemical cycles in state-of-the-art Earth System Models (such as those 

participating in the Coupled Model Intercomparison Project, CMIP) in agreement with 

proxy records (like the carbon isotopes) (Braconnot et al., 2012). Thanks to the 

advances made in proxy data collection and model development, these efforts 

currently allow the study of underlying processes of the global natural Earth System 

and its climate, and the role of the Southern Ocean therein, in more detail than ever 

before. 

Motivated by the issues and possibilities described above, this work aims to 

contribute to this field of research in the following way: 

I. Aid the interpretation of δ13CDIC reconstructions by constraining the sensitivity

of the marine δ13CDIC distribution to biogeochemical changes, and the role of

the Southern Ocean therein (Paper I);

II. Preparing an LGM minus pre-industrial atmospheric anomaly dataset for use

in atmospheric forcing of LGM ocean models (Paper II);

III. Realising a model simulation of the LGM ocean in NorESM-OC with full

biogeochemistry as well as carbon isotopes (Papers II and III);

IV. Exploring the role of the biological pump efficiency in the LGM ocean, as based

on model-proxy comparison (Paper III);

V. Positioning I-IV in a bigger perspective by evaluating the role of Southern

Ocean water in influencing global deep-sea sediment records of glacial-

interglacial cycling (Paper IV).
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Chapter 3 
 
Approach 

The papers bundled in this work all involve the influence of the Southern Ocean on 

marine biogeochemical tracer distributions, with a focus on two main paleo-

oceanographic proxies - δ13C and δ18O. We studied these tracers using several 

numerical ocean models evaluated and compared to qualitative and quantitative 

proxy data. The models made it possible to perform sensitivity experiments (Papers I 

and IV), in which the relative importance of governing processes and Southern Ocean 

surface conditions for biogeochemical tracer distributions could be explored. 

We applied three models of different complexities: The Hamburg Oceanic Carbon 

Cycle Circulation Model Version 2s (‘HAMOCC2s’: Heinze and Maier-Reimer (1999) 

and Heinze et al. (2016)), the stand-alone ocean carbon-cycle configuration of the 

Norwegian Earth System Model version 1.2 (‘NorESM-OC’: Schwinger et al. (2016); 

Tjiputra et al. (2020)) and the Total Matrix Intercomparison model version 7 (‘TMI’: 

Gebbie and Huybers (2012)). In Papers I and III (δ13C) as well as in Paper IV (δ18O), the 

model results were evaluated against available (δ13C/δ18O) data from sediment cores 

as well as other proxies if available and relevant. This chapter summarizes each 

models’ characteristics (detailed model descriptions are provided in the respective 

Papers and their technical references), and how the models were used to address the 

main objectives of this study. 

In order to guide the work in NorESM-OC, we started with an exploratory sensitivity 

study on the role of the Southern Ocean in global marine δ13C distributions using 

HAMOCC2s (Paper I). HAMOCC2s is a computationally efficient ocean 

biogeochemistry general circulation model that allows for long time integrations of 

hundred thousands of years. HAMOCC2s includes the carbon isotopes, and has a 

constant (modern) circulation field and a resolution of 3.5 × 3.5° with 11 depth layers. 
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The sensitivity of the marine δ13C distribution to biogeochemical changes, and the 

role of the Southern Ocean therein, is explored through four groups of idealized 

model experiments (that cover POC sinking rates, nutrient drawdown efficiencies, sea 

ice extent, and air-sea gas exchange rates).

We then built on the results of Paper I, and focused on simulating and understanding 

the LGM ocean through model simulation using the global stand-alone ocean carbon-

cycle model NorESM-OC coupled to a prognostic atmosphere for pCO2, δ13C and ∆14C 

(Papers II and III). The fully-coupled version of NorESM contributes to major 

international model intercomparisons (e.g., CMIP), and is thereby one of the several 

tens of ESMs in the world that help to inform policy and decision makers through for 

example the IPCC Assessment Reports. NorESM is considered to be a state-of-the-art 

ESM. The stand-alone ocean carbon-cycle configuration of NorESM (that is, NorESM-

OC) allows for (much) longer integration times than the fully-coupled NorESM, as well 

as control over the atmospheric boundary conditions of the ocean. NorESM-OC 

contains the isopycnal ocean circulation model MICOM, and was applied in version 

1.2 with a tripolar grid with 2° nominal resolution and 53 isopycnal layers. The 

latitudinal spacing varies from 0.5° at the Equator to 0.35° in the Southern Ocean 

(Schwinger et al., 2016). The ocean is forced from the atmosphere by CORE Normal 

Year Forcing (CORE-NYF, Large and Yeager, 2004). The biogeochemical model 

HAMOCC in NorESM-OC simulates carbon, nitrogen, phosphorus, silicate, iron, and 

oxygen – as well as several diagnostic versions of these tracers such as saturated O2 

and preformed tracers (Schwinger et al., 2016; Tjiputra et al., 2020). Last, the sea ice 

model CICE is part of NorESM-OC. The simulations done for Paper III exclude the 

ocean sediments, due to their lengthy spin-up times (particularly for the carbon 

isotopes). The control over the atmospheric boundary conditions available in 

NorESM-OC is used to obtain a satisfactory simulation of the LGM ocean circulation 

(Papers II and III), something fully-coupled ESMs simulating the LGM (i.e., the 

Paleoclimate Modelling Intercomparison Project, PMIP) generally do not succeed in 

(Weber et al., 2007; Marzocchi and Jansen, 2017; Muglia and Schmittner, 2015). 
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Comparison with proxy data is used to evaluate the model performance in simulating 

the LGM ocean (see also Braconnot et al., 2012). To facilitate comparison with the 

common δ13C proxy, the carbon isotopes 13C and 14C were implemented and enabled 

in NorESM-OC for Paper III (Tjiputra et al., 2020). Multi-model mean anomalies 

between LGM and pre-industrial PMIP3 simulations (Paper II) were used to adjust the 

CORE-NYF to provide a best estimate for the LGM atmospheric state. In addition, 

reconstructions of LGM dust input to the ocean (Lambert et al., 2015) and tuning of 

the salinity forcing was applied (Paper III). The carbon isotope-enabled NorESM-OC 

setup allowed for model simulations of several thousands of years, enough to create 

an equilibrated time-slice model simulation for the LGM and pre-industrial oceans. 

These two simulations formed the basis for the analysis in Paper III, and made it 

possible to explore the role of the biological pump efficiency in the LGM ocean (Paper 

III). 

In order to put the work presented in Papers I-III in a more long-term perspective of 

glacial-interglacial cycling, we explored the relative roles of Southern and Northern 

end-member water masses in pacing glacial-interglacial cycles in δ18O records of the 

Pleistocene using the TMI model (paper IV). TMI is applied in a resolution of 4° x 4° 

and 33 depth levels. The model is a matrix solution of mean modern arrival times to 

the interior ocean from any surface boundary location, as based on an inverse 

approach using distributions of several biogeochemical tracers. This setup of TMI can 

advect conservative tracers, and allows for varying boundary conditions over long 

timescales (millions of years). In Paper IV, the TMI model is applied to explore the 

effect of different end-member values (i.e., surface boundary conditions) of the deep-

water formation regions in the Northern and Southern Hemisphere on the recorded 

interior signal. Nineteen 200-kyr experiments are performed, and their characteristics 

analyzed using spectral analysis (Paper IV). 
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Chapter 4 
 
Summary of Results 

Paper I: 

Southern Ocean controls of the vertical marine δ13C gradient – a modelling study 

Changes in the marine δ13C distribution and its surface-to-deep vertical gradient are 

an important proxy for past changes in ocean circulation and biogeochemical cycling. 

The interpretation of these changes however, is frustrated by uncertainties in the 

relative importance of circulation and biogeochemical cycling on δ13C. This study 

explores the effects on marine δ13C of Southern Ocean and global changes in 

biogeochemistry. A range of idealized experiments (air–sea gas exchange rates, 

particulate organic carbon sinking rates, sea ice cover, and nutrient uptake efficiency) 

is performed with the ocean biogeochemistry general circulation model HAMOCC2s. 

Ocean circulation in the model is constant, and represents the pre-industrial flow 

field. The results show that biogeochemical changes in the Southern Ocean have a 

relatively large potential to affect global δ13C distributions. This is especially true for 

more efficient Southern Ocean nutrient consumption and changes in air-sea gas 

exchange rates. Moreover, the results show how the regional response to 

biogeochemical changes especially depends on the combination of i) the contribution 

Figure 7 Percentage contributed by biological processes (photosynthesis and remineralization) 
to δ13C at 25 m depth (a) and for a Pacific transect (b). The remainder of the signal is attributed 
to air-sea gas exchange and circulation. As Fig. 2 in Paper I (Morée et al., 2018). 
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of biology to the local δ13C signal (Fig. 7), and ii) the local thermodynamic 

disequilibrium (Fig. 6). We conclude that past variations in the vertical δ13C gradient 

likely were a combination of circulation and biogeochemical changes, and constrain 

the maximum effect of biogeochemical changes on the basin-mean vertical δ13C 

gradient to -0.6 ‰. 

Paper II:  

A Last Glacial Maximum forcing dataset for ocean modelling 

Model simulation of the past ocean in agreement with proxy records can help us to 

understand the drivers of long-term climate variability. Forcing of a stand-alone ocean 

model (omitting e.g. the land and atmosphere as interactive model components) 

drastically reduces model complexity as well as computational costs. This makes it 

more suitable for paleomodelling, which generally requires lengthy runtimes. The 

LGM ocean was the most recent time the ocean was in a very different circulation 

state as compared to now, driven by for example changes in the atmosphere and sea 

surface freshwater budget. In this data paper, we present the atmospheric anomalies 

between the lgm and piControl runs of the third phase of PMIP3 for application in 

LGM ocean modelling. We provide the multi-model mean LGM minus pre-industrial 

(LGM-PI) PMIP3 anomaly for specific humidity (Fig. 8), downwelling longwave and 

shortwave radiation, precipitation, wind (v and u components), temperature and sea 

surface salinity. All data are made available in a format optimized for use with the 

Figure 8 Annual mean 10-meter height specific humidity LGM-PI anomaly (left) and model spread 
(right) in kg kg-1 10-3. As Fig. 1 in Paper II. 
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common CORE ocean forcing, but can be added to any pre-industrial ocean forcing 

dataset. Moreover, the anomalies are presented in such a way that it should be 

straightforward to make changes. The anomaly fields show a colder, less humid 

atmosphere with weakened longwave radiation and precipitation and a generally 

more saline surface ocean. All multi-model mean LGM-PI anomalies show a distinct 

spatial pattern that we expect to be indicative of the LGM-PI changes, as well as a 

large inter-model spread in the amplitude of the change. 

Paper III: 

Evaluating the Biological Pump Efficiency of the Last Glacial Maximum Ocean using 

δ13C 

The 100-ppm lower pCO2 in the LGM atmosphere as compared to pre-industrial times 

has inspired many hypotheses. The marine biological pump efficiency (the ability of 

marine biology to consume surface ocean phosphate) is a central concept in 

understanding this change, as it strongly and linearly correlates with atmospheric 

pCO2. This modelling study explores the relative roles of ocean circulation changes 

and changes in the biological pump needed to simulate an LGM ocean in satisfactory 

agreement with proxy data. Using the forced ocean-ice model setup of the Norwegian 

Earth System Model NorESM-OC, we simulate a steady state LGM and pre-industrial 

ocean. For the LGM simulation, we added the anomalies of Paper II to the standard 

atmospheric and sea surface salinity forcing of NorESM-OC. The modelled LGM-PI 

changes are evaluated against proxy (or model) reconstructions of δ13C, water mass 

circulation, sea surface temperature, salinity, sea ice extent, export production, 

vertical nutrient redistribution, atmospheric pCO2, the change in marine dissolved 

inorganic carbon, and O2. We conclude that our simulation of LGM ocean circulation 

agrees with proxy reconstructions within the uncertainty of the data. However, δ13C, 

O2 and regenerated PO4
3- reveal large model-proxy biases, which we interpret as a too 

weak remineralized signature in our LGM ocean simulation – and hence a too weak 

biological pump efficiency. Recognizing that agreement with the proxy data is 
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obtained through both physical and biogeochemical changes, we explore the 

biological changes that would be required to minimize model-proxy bias in a 

theoretical framework. We find that a near doubling of the global mean biological 

pump efficiency from 38 % (pre-industrial) to 75 % (LGM) reduces the model-proxy 

δ13C bias the most (Fig. 9). The remaining bias may be reduced by further circulation 

changes, with a major potential for Southern Source Water expansion and aging. We 

further conclude that only models that contain the processes and/or components that 

realistically change both ocean circulation and the efficiency of the biological pump 

will be able to simulate an LGM ocean in satisfactory agreement with proxy data – 

and hence be reliable for use in climate projections. 

Paper IV: 

Cancellation of the precessional cycle in δ18O records during the Early Pleistocene 

Deep-sea δ18O records of Pleistocene climate variability show a marked contrast in 

dominant periodicity between the Early and Late Pleistocene. This transition between 

a dominant 41 ky cyclicity and a dominant ~100 ky cycle, referred to as the MPT, 

remains incompletely understood. As deep-sea δ18O records are one of our key 

archives of long-term climate variability, this incomplete understanding suggests we 

have not identified the main drivers of such long-term climate system variability. A 

key feature of the Pleistocene δ18O records is the absence of a precessional signal in 

the Early Pleistocene. This is unexpected, as solar insolation, considered to drive ice 

sheet volume and temperature, continuously contains all Milankovitch cycles 

Figure 9 Adjusted simulated Atlantic δ13C LGM-PI change for a biological pump efficiency of 
75 %, compared to δ13C data from sediment cores. Taken from Fig. 6 in Paper III. 

δ13C
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(precession, obliquity and eccentricity). A specific feature of the precession cycle is 

that it is out of phase between the two hemispheres for a particular season. 

Therefore, the precessional cycles archived in the Northern and Southern hemispheric 

ice sheets have the potential to cancel each other out when interfering – referred to 

as the Antiphase Hypothesis. We applied the TMI model to explore the potential for 

North Atlantic and Southern Ocean cyclic end-member signals to cancel each other 

out in the interior ocean. A large range of relative end-member contributions is 

explored in 19 model experiments. These variations, we assume, are represented by 

variations in sea level equivalents of ice stored in the Northern and Southern 

hemispheric ice sheets. The results show that widespread cancellation of precession 

occurs specifically for end-member contributions typical of the Early Pleistocene (Fig. 

10). Therefore, we conclude that benthic δ18O records incompletely archived the 

precessional cycle during the Early Pleistocene – and show up as an apparent contrast 

in periodicity across the MPT. 

Figure 10 Cancellation of the precessional cycle relative to obliquity hatched in orange, at the 
sediment-ocean interface (bottom) and for a Pacific and Atlantic transect. Relative contribution of 
North Atlantic and Southern Ocean end-members are 0.125 (Late Pleistocene), 0.2-0.5 (Early 
Pleistocene) and 6 (Pre-Pleistocene). 
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Chapter 5 
 
Perspectives and Outlook 

Deep-sea sediment records of δ13C and δ18O are central for our understanding of the 

physical and biogeochemical state of the past ocean, and hence long-term climate 

variability (Chapter Introduction). The work presented in this thesis underlines that 

the interpretation of these records is not straightforward. Specifically, we note several 

factors that contribute to the uncertainties involved in the interpretation of δ13C and 

δ18O records as well as our ability to simulate the past ocean in agreement with such 

records. 

One major uncertainty lies in the reconstruction of end-member characteristics. 

Knowledge of the end-member characteristics is key to unravelling their contributions 

to interior ocean tracers - and therefore benthic δ13C and δ18O. Furthermore, offsets 

between water column δ13C of DIC and the archived benthic δ13C of CaCO3 may result 

in additional uncertainty (Schmittner et al., 2017). Regarding end-member 

characteristics, the specifics of Southern source waters are especially important as 

these occupy most of the world’s interior ocean and have a large potential for 

(biogeochemical) change (e.g., Chapter Introduction; Ito and Follows, 2005). The 

impacts of specifically the Southern Ocean end-member on benthic δ13C and δ18O 

records is explored and discussed in both Paper I, III and IV (Objectives I and V). 

Interior δ13C distributions are especially sensitive to Southern Ocean nutrient uptake 

efficiency (Paper I). We furthermore show that cyclic signals entering the ocean at the 

main interior ocean end-members have the potential to get cancelled out at depth – 

not becoming part of the δ18O records (Paper IV). Nevertheless, both Paper I and IV 

are idealized studies (they for example do not include dynamic ocean circulation), 

which in return has the advantage of low computational cost. Further efforts to 

identify the contributions from the main (North Atlantic and Southern Ocean) end-
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members to the interior ocean, including their biogeochemical signatures (e.g., Oppo 

et al., 2018) will over time likely reveal the LGM ocean structure and characteristics. 

This is particularly true for the Atlantic basin. The limited amount of sediment core 

data for the Pacific ocean basin (e.g., Fig. 4) make the Pacific (and its physical and 

biogeochemical characteristics) a relatively unexplored ocean basin with room for 

new hypotheses (e.g., Jaccard et al., 2009; Umling et al., 2018). Again, Southern 

source waters would play a central role here, as these waters constitute up to 75% of 

the Pacific basin’s volume (Rae and Broecker, 2018). 

Uncertainties related to the relative importance of contributing processes (and 

disentangling their contributions) form a challenge to the interpretation of any proxy 

record, including the benthic archive. For example, records of δ18O need information 

from other proxies to reliably separate temperature and ice sheet volume effects 

(Elderfield et al., 2012). The interpretation of δ13C is aided by separating the effect of 

biological and physical processes – as these are the two main drivers of δ13C, which 

can be done using (proxies for) phosphate (Paper I; Gruber et al., 1999; Schmittner et 

al., 2013). Contributing to Objective I, we constrained the maximum effect of 

biogeochemical changes on the basin-mean vertical δ13C gradient to -0.6 ‰ (Paper I). 

Specifically, we find in Paper I that biogeochemical changes in the Southern Ocean 

(mainly nutrient consumption and air-sea gas exchange rates) have a relatively large 

potential to affect global δ13C distributions. In an effort to simulate and study the past 

ocean in a more complex model setup, we simulate the LGM ocean including carbon 

isotopes using NorESM-OC (Objective III). The approximate doubling of the marine 

biological pump efficiency (the ability of marine biology to consume surface ocean 

phosphate) in the LGM ocean (Paper III) confirm the conclusion of Paper I that both 

major circulation and major biogeochemical changes must have taken place in the 

ocean between the LGM and pre-industrial time. 

We also note several challenges with model simulation of the past ocean. In NorESM-

OC, the implementation of the carbon isotopes (as done for NorESM-OC and 
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described in Tjiputra et al. (2020); Objective III) is an important step towards finding 

model-proxy biases, as they allow direct comparison between the proxy and 

observational record and model simulation (Paper III; Tjiputra et al., 2020). The 

comparison made in Paper III shows that only when additional (biogeochemical) 

processes are included (e.g. ones that can increase the interior regenerated signal), 

satisfactory agreement with proxy data is obtained (confirming results by e.g., 

Ganopolski and Brovkin, 2017; Buchanan et al., 2016; Heinze et al., 2016). A major 

uncertainty in simulating the LGM ocean stems from the limited possibility to 

reconstruct the past atmospheric state. In forced ocean modelling, which is attractive 

because of its computational efficiency relative to fully coupled models (Chapter 

Approach), an atmospheric state needs to be available to drive the ocean model. For 

the LGM ocean however, no global data-based estimate is (or will be) available for all 

relevant atmospheric variables as there exist no (global) quantitative proxy archives 

for them (e.g., humidity, longwave and shortwave radiation, precipitation, wind 

speed). Therefore, we prepared a best estimate of the LGM-PI atmospheric changes 

by compiling the output of fully coupled Earth System Models (Paper II, Objective II). 

All these LGM-PI anomalies show a distinct spatial pattern that we expect to be 

indicative of the LGM-PI changes. Nevertheless, the large inter-model spread in the 

amplitude of the change indicates major uncertainties about the characteristics of the 

LGM atmosphere, and thus the forcing to the LGM ocean. Furthermore, the 

uncertainty and sensitivity to (end-member) sea surface salinity forcing in 

paleomodelling (Papers II and III; Weber et al., 2007) calls for improved simulation of 

the hydrological cycle. Specifically, the effects of meltwater and calving from ice 

sheets on ocean circulation may be central to this improvement – these processes are 

currently forced in PMIP3 (Abe-Ouchi et al., 2015). Excitingly, the first coupled ice 

sheet models are now included in CMIP6 (Nowicki et al., 2016). 

As an outlook, we are particularly interested in the advances in Earth System 

modelling needed to simulate long-term climate variability with confidence. In 

NorESM-OC, we show that simulation of the LGM ocean in reasonable agreement 
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with δ13C records (Objectives III and IV) is only obtained after tuning the model’s sea 

surface salinity, and realising a near doubling of the efficiency of the biological pump 

(Paper III; Objective IV). Identifying specific processes that are i) relevant to the high 

sea surface salinity sensitivity and ii) could drive a near doubling of the biological 

pump efficiency, should be a focus for future marine research. Here, processes that 

affect both circulation and biogeochemical cycling (and carbon storage), such as 

increased LGM Southern Ocean sea ice cover (Jansen, 2017; Ferrari et al., 2014), could 

be the key to simulating an LGM ocean in agreement with proxy data. In addition, a 

better understanding of the sources of iron (e.g. dust, sediments, or the cryosphere) 

and their bioavailability in the Southern Ocean would improve our understanding of 

the iron fertilisation hypothesis and the LGM increase in interior regenerated 

nutrients (Martin et al., 1990; Tagliabue et al., 2017; Lambert et al., 2015). Besides 

these, the importance of imbalances between marine sedimentation and terrestrial 

weathering for long-term global biogeochemical cycling and marine carbon storage 

(Roth et al., 2014; Archer and Maier-Reimer, 1994; Broecker, 1982b; Heinze et al., 

1999; Paper III) encourages the development and inclusion of these processes in ESMs 

(as currently done for NorESM). 

Ultimately, one would want to have Earth System Models available in which the main 

drivers of long-term climate variability are represented. Such models would namely 

allow for greater confidence in their climate projections beyond a few decades. Such 

confidence is highly relevant for decision making on climate adaptation, as well as in 

climate research communication to policy makers (IPCC, 2014).
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Chapter 6 
 
Scientific Results 
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Abstract. 13C, the standardised 13C/12C ratio expressed in per mille, is a widely used 

ocean tracer to study changes in ocean circulation, water mass ventilation, 

atmospheric pCO2, and the biological carbon pump on timescales ranging from 

decades to tens of millions of years. δ13C data derived from ocean sediment core 

analysis provide information on δ13C of dissolved inorganic carbon and the vertical 

δ13C gradient (i.e. Δδ13C) in past oceans. In order to correctly interpret δ13C and Δδ13C 

variations, a good understanding is needed of the influence from ocean circulation, 

air–sea gas exchange and biological productivity on these variations. The Southern 

Ocean is a key region for these processes, and we show here that Δδ13C in all ocean 

basins is sensitive to changes in the biogeochemical state of the Southern Ocean. We 

conduct a set of idealised sensitivity experiments with the ocean biogeochemistry 

general circulation model HAMOCC2s to explore the effect of biogeochemical state 

changes of the Southern and Global Ocean on atmospheric δ13C, pCO2, and marine 

δ13C and Δδ13C. The experiments cover changes in air–sea gas exchange rates, 
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particulate organic carbon sinking rates, sea ice cover, and nutrient uptake efficiency 

in an unchanged ocean circulation field. Our experiments show that global mean 

Δδ13C varies by up to about ±0.35 ‰ around the preindustrial model reference (1.2 

‰) in response to biogeochemical change. The amplitude of this sensitivity can be 

larger at smaller scales, as seen from a maximum sensitivity of about -0.6 ‰ on ocean 

basin scale. The ocean’s oldest water (North Pacific) responds most to biological 

changes, the young deep water (North Atlantic) responds strongly to air–sea gas 

exchange changes, and the vertically well-mixed water (SO) has a low or even 

reversed Δδ13C sensitivity compared to the other basins. This local Δδ13C sensitivity 

depends on the local thermodynamic disequilibrium and the Δδ13C sensitivity to local 

POC export production changes. The direction of both glacial (intensification of Δδ13C) 

and interglacial (weakening of Δδ13C) Δδ13C change matches the direction of the 

sensitivity of biogeochemical processes associated with these periods. This supports 

the idea that biogeochemistry likely explains part of the reconstructed variations in 

Δδ13C, in addition to changes in ocean circulation. 

1 Introduction 

The vertical marine δ13C gradient (Δδ13C) is the surface-to-deep difference in δ13C of 

dissolved inorganic carbon (DIC), where the standardised 13C/12C ratio (δ13C) is 

expressed in per mille (Zeebe and Wolf-Gladrow, 2001): 

δ13C = (
𝐶13 𝐶12⁄

( 𝐶13 𝐶12⁄ )𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1) × 1000 ‰      (1) 

Here, 13C/12Cstandard is the Pee Dee Belemnite standard (0.0112372) (Craig, 1957). 13C 

is slightly heavier than the 12C isotope, which causes a fractionation effect during air– 

sea gas exchange and photosynthesis, thereby changing δ13C and Δδ13C (Laws et al., 

1997; Zhang et al., 1995; Mackenzie and Lerman, 2006). Photosynthetic fractionation 

increases the 13C/12C ratio of surface ocean DIC (i.e. a δ13C increase) due to the 

preferred uptake of the lighter 12C into biogenic matter (which therefore has a low 
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δ13C). The deep sea DIC has a relatively low δ13C signature as a result of the 

remineralisation of low-δ13C biogenic matter at depth. 

The resulting vertical δ13C gradient is in addition influenced by air–sea gas exchange 

and circulation (Zeebe and Wolf-Gladrow, 2001; Emerson and Hedges, 2008; Ziegler 

et al., 2013). Both deep sea and surface ocean δ13C signatures are archived in the 

calcareous shells of foraminifera in the sediments. Such records of δ13C from planktic 

and benthic foraminiferal shell material cover tens of millions of years (Hilting et al., 

2008). Using this archive, δ13C and Δδ13C have been used to reconstruct, for example, 

atmospheric CO2 concentration, ocean circulation, and the strength of the biological 

pump (Broecker, 1982; Shackleton and Pisias, 1985; Zahn et al., 1986; Oppo et al., 

1990; Hollander and McKenzie, 1991; Keir, 1991; Crucifix, 2005; Curry and Oppo, 

2005; Lisiecki, 2010; Broecker and McGee, 2013; Ziegler et al., 2013; Hoogakker et al., 

2015; Bauska et al., 2016). Δδ13C is independent of whole-ocean δ13C shifts (due to 

terrestrial influences), because such influences would affect δ13C equally everywhere. 

This makes Δδ13C a valuable proxy to study the marine carbon cycle independent of 

changes in carbon storage on land. Besides the use of δ13C for understanding the past 

ocean, contemporary measurements of δ13C of DIC support the quantification of 

anthropogenic carbon uptake by the oceans as well as the study of the effects of 

biology and ocean circulation on tracer distributions (Kroopnick, 1980, 1985; Gruber 

and Keeling, 2001; Quay et al., 2003; Holden et al., 2013; Eide et al., 2017b). However, 

major uncertainties remain in the interpretation of foraminiferal δ13C records and 

Δδ13C (Oliver et al., 2010; Broecker and McGee, 2013) as well as in the interpretation 

of the present-day δ13C data (Eide et al., 2017b). 

This article addresses part of these uncertainties by exploring the pre-industrial 

sensitivity of δ13C and Δδ13C to biogeochemical change in idealised model 

experiments. By doing so we can investigate a number of biogeochemical mechanisms 

that could explain (part of) the observed changes in δ13C and Δδ13C. We focus on the 

Southern Ocean (SO), the ocean south of 45° S, because the SO plays an important 
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role in the global carbon cycle by regulating atmospheric CO2 concentrations and 

uptake of anthropogenic CO2 (Broecker and Maier-Reimer, 1992; Heinze, 2002; 

Marinov et al., 2006) as well as influencing the global efficiency of the biological 

pump, global primary production, and preformed nutrients (Primeau et al., 2013). 

Variations in Δδ13C over the past few 100 000 years show that Δδ13C is generally 

increased during glacial periods, due to a higher contrast of deep δ13C with surface 

and mid-depth δ13C (Broecker, 1982; Shackleton and Pisias, 1985; Boyle, 1988; Charles 

et al., 2010; Oliver et al., 2010). Long-term δ13C and Δδ13C variations have been 

explained by ocean circulation changes (Duplessy et al., 1988; Jansen, 2017; Oppo et 

al., 1990; Toggweiler, 1999; Menviel et al., 2016). However, Δδ13C variability cannot 

be explained by ocean stratification or circulation changes alone: an interaction 

between biogeochemical and physical processes must be at play (Keir, 1991; Boyle, 

1988; Mulitza et al., 1998; Charles et al., 2010; Ziegler et al., 2013; Schmittner and 

Somes, 2016). Δδ13C has been used in different ways over time: in earlier studies as 

the contrast between surface and deep water δ13C, derived from planktic versus 

benthic foraminifera (Broecker, 1982; Boyle, 1988; Shackleton et al., 1983; Duplessy 

et al., 1988), and now increasingly as the contrast of deep ocean (benthic) δ13C with 

thermocline or intermediate ocean δ13C (Mulitza et al., 1998; Charles et al., 2010; 

Lisiecki, 2010). 

Here, we explore the sensitivity of δ13C and Δδ13C to changes in the biogeochemical 

state of the Global Ocean and Southern Ocean under a constant circulation field, to 

support the paleo-oceanographic interpretation of δ13C and Δδ13C as well as to 

improve the understanding of the SO role in global carbon cycling and its variability 

and sensitivity. In order to study biogeochemical mechanisms that could influence 

δ13C and Δδ13C, a set of sensitivity experiments is conducted with the ocean 

biogeochemistry general circulation model HAMOCC2s (Heinze et al., 2016). We first 

estimate the contribution of biology versus air–sea gas exchange to marine δ13C of 

DIC (Sect. 3.2). The experiments focus on one or more of the biogeochemical aspects 
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assumed to be important for δ13C and Δδ13C, e.g. the biological pump efficiency 

and/or equilibration at the air–sea interface (Sect. 3.3.1–3.3.4). Together these 

experiments provide a broad spectrum of biogeochemical changes that could 

influence local and global δ13C and Δδ13C. The modelling results of Sect. 3.3.1–3.3.4 

are discussed in context of observational data from sediment cores (Sect. 3.4). As δ13C 

and Δδ13C are used to study changes in atmospheric pCO2 (pCO2
atm), a final section 

will cover the relationship between atmospheric δ13C, Δδ13C, and pCO2
atm under 

different marine biogeochemical states (Sect. 3.5). 

2 Methods 

In this study we employ the ocean biogeochemistry general circulation model 

HAMOCC2s (Heinze et al., 1999, 2016), which simulates the inorganic and organic 

carbon cycle in the water column and in the sediments. The horizontal resolution of 

the model is 3.5° × 3.5° and there are 11 depth layers in the ocean. HAMOCC2s has 

an annual time step and an annually averaged fixed circulation field, as well as a one 

layer atmosphere component (permitting exchange of O2, 13CO2, and CO2 with the 

ocean component), which is assumed to be longitudinally well-mixed. The model is 

computationally very economic and thus an ideal tool for sensitivity experiments over 

long integration times. Biogenic particulate matter in the model is represented as 

particulate organic carbon (POC), calcium carbonate (CaCO3), and biogenic silica 

(opal). These biogenic particles are only modelled as export production due to the 

annual time step of the model. POC and opal export production are described by 

Michaelis–Menten kinetics for nutrient uptake, limited by phosphate and silicic acid 

respectively (Sect. 1A in the Supplement). CaCO3 export production depends on the 

ratio between opal and POC production. POC is carried as a tracer as well as 

transported downwards according to a set of mass balance equations that describe 

POC gain through surface-layer POC production and POC losses through constant 

sinking and remineralisation rates (Sect. 1A in the Supplement). This is done similarly 

for opal and CaCO3 sinking and dissolution. As the model has an annual time step, sea 
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ice is always present south of ~ 60° S and north of ~ 70° N in the control run (Fig. S1 

in the Supplement). A more detailed model description is provided in previous studies 

using a similar configuration of HAMOCC2s (Heinze, 2002; Heinze et al., 2016), as well 

as in Sect. 1A in the Supplement. 

Fractionation between 13C and 12C during photosynthesis is set to a constant value of 

-20 ‰ (Lynch-Stieglitz et al., 1995; Tagliabue and Bopp, 2008), as model results are 

little influenced by the chosen parameterisation (Schmittner et al., 2013; Jahn et al., 

2015). The fractionation during air–sea gas exchange depends on temperature 

according to ε=-9.483*103/T + 23.89 ‰, where temperature (T) is measured in Kelvin 

(K) (Mook, 1986), causing stronger fractionation at lower temperatures (i.e. at high 

latitudes). Fractionation during CaCO3 formation is omitted from the model, as was 

done in previous studies (Lynch-Stieglitz et al., 1995; Marchal et al., 1998; Schmittner 

et al., 2013), as its size is uncertain but likely minor (~ 1 ‰) and effects on δ13C and 

Δδ13C are small (Shackleton and Pisias, 1985). In the version of HAMOCC2s used in 

this study, a fixed weathering input is used for 13C to tune the ocean inventory to 

values comparable to observations. The weathering flux of 13C into the ocean was 

determined by an iterative procedure: The model was run over 100 000 years, 

replacing the weathering rate with the diagnosed burial rate for 13C continuously. 

After this, the model 13C inventory was recalibrated such that the atmospheric value 

for 13C arrived at -6.5 ‰. This procedure was repeated over three iterations. 

Afterwards, the weathering rate of 13C was fixed to the last diagnosed value (0.36 

Tmol 13C yr-1) – which results in a weathering flux δ13C of DIC of -11 ‰ . Another 100 

000-year run was carried out with this constant input rate in order to check whether 

the global 13C distribution was stable in all reservoirs. The sensitivity experiments 

were then restarted from the result of that run. Weathering fluxes are added 

homogeneously over the first ocean layer as dissolved matter and in a fixed 

stoichiometric ratio for CaCO3, organic carbon, PO3
4-, alkalinity, and Si. Annual 

weathering fluxes (Tmol) are 27 for CaCO3, 5 for organic carbon, 5/rC:P for PO3
4-, 2 × 

CaCO3-rN:P × PO3
4- for alkalinity, and 4.5 for Si (with rC:P = 122 and rN:P = 16). These 
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values are within the uncertainties of observational estimates for Si (5.6 Tmol yr-1; 

Tréguer, 2002), CaCO3 (~ 32 Tmol yr-1; Milliman and Droxler, 1996), and organic 

carbon (4 Tmol yr-1; Broecker and Peng, 1987) and have been adjusted to improve the 

fit of the respective modelled marine tracer distributions as well as burial fluxes to 

observational estimates. The spinup procedure described here created a model setup 

with close-to-observed marine and atmospheric δ13C (δ13Catm) values and freely 

evolving atmospheric pCO2 and δ13C. This equilibrated model version is referred to as 

the “control run” in the remainder of this article. We define the vertical δ13C gradient 

(Δδ13C) as follows: 

Δδ13𝐶 = δ13𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − δ13𝐶𝑑𝑒𝑒𝑝, (2) 

where δ13Csurface and δ13Cdeep are the volume-weighted mean δ13C of DIC in the surface 

ocean (< 50 m depth, i.e. the model photic zone) and the deep ocean (lowermost wet 

layer in the model, if the top of the layer is > 3 km depth), respectively. By doing so, 

we can compare the Δδ13C summarised as one number between the different 

sensitivity experiments. 

We conducted a set of sensitivity experiments to explore changes in air–sea gas 

exchange rate, sea ice extent (influencing both biological production and the air–sea 

gas exchange of carbon), and the efficiency of the biological pump through the POC 

sinking rate and nutrient uptake rate (Table 1). We employ the term “efficiency of the 

biological pump” as a measure of the success of phytoplankton to maintain low 

nutrient concentrations in the surface ocean. All experiments are run for 2000 model 

years starting from the end of the spinup. These runtimes allowed for atmospheric 

quasi-equilibrium to establish (Fig. S5), with an exception for the long-term effects 

caused by POC sinking rate changes (as studied in more detail by Roth et al., 2014). 

The equilibration timescale of Δδ13C is much shorter than that of atmospheric δ13C: 

this is the case because (1) the long-term weathering-burial equilibration of δ13C 

affects the whole ocean reservoir simultaneously – thus keeping Δδ13C constant – and 

(2) the processes that potentially influence Δδ13C (changes in biological production
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and air–sea gas exchange) affect Δδ13C on shorter (centennial to millennial) 

timescales. In order to compare effects of SO change and global change, the gas 

exchange rate and POC sinking rate experiments are done twice – once changing the 

respective model parameter for the Global Ocean and once for the Southern Ocean 

only (SO-only). The model parameters were changed in a way that marine 

biogeochemical tracer distributions (e.g. PO3
4-, δ13C) remained reasonable but did 

provide an estimate of the sensitivity of the respective tracer to biogeochemical 

change. The model has a constant sea ice cover (Fig. S1), which permits gas transfer 

through the ice depending on ice cover thickness (the transfer rate is divided by ice 

thickness in centimetres) while light transfer is inhibited at ice thicknesses over 0.01 

cm. The maximum and minimum sea ice cover experiments (“ice large” and “ice 

small”, Table 1) approximate the Last Glacial Maximum winter extent and the modern 

summer extent of SO sea ice, respectively (Crosta, 2009 and Fig. A22 therein) and 

assume full inhibition of gas and light transfer through ice for simplicity.  

Table 1. Description of the sensitivity experiments. The sensitivity experiments on the CO2 gas 
exchange rate and the biological pump have been done twice, once for the Global Ocean and once 
only making changes in the Southern Ocean (south of 45° S). 

 

The experiment on nutrient drawdown (Vmax) alters the Michaelis–Menten kinetics of 

POC production by changing the maximum nutrient (i.e. PO3
4- ) uptake rate (𝑉𝑚𝑎𝑥

𝑃𝑂𝐶  in 

Sect. 1A in the Supplement). The gas exchange experiments alter the specific gas 

exchange rate kw, as described in more detail in Sect. 1B in the Supplement. The POC 

Experiment Experiment setup 

Gas fast CO2 gas exchange rate * 4 

Gas slow  CO2 gas exchange rate / 4 

Efficient biological pump POC sinking rate doubled to 6m/d 

Inefficient biological pump POC sinking rate halved to 1.5m/d 

Vmax High nutrient uptake rate (control*5) in the Southern Ocean 

Ice large Southern Ocean sea ice cover south of 50° S 

Ice small Southern Ocean sea ice cover south of 70° S 
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sinking rate experiments change the sinking velocity constant 𝑤𝑃𝑂𝐶  in the POC mass 

balance equations (Sect. 1A in the Supplement). 

The contribution of biological processes versus air–sea gas exchange to δ13C is 

calculated using the method of Broecker and Maier-Reimer (1992) as done for 

observations by Eide et al. (2017b) and in a modelling context by Sonnerup and Quay 

(2012): 

𝛿13𝐶𝑏𝑖𝑜[‰] =
𝑝ℎ𝑜𝑡𝑜

𝐷𝐼𝐶̅̅ ̅̅ ̅
× 𝑟𝑐:𝑝 × (𝑃𝑂4 − 𝑃𝑂4

̅̅ ̅̅ ̅) + 𝛿13𝐶̅̅ ̅̅ ̅̅ , (3) 

where 휀𝑝ℎ𝑜𝑡𝑜 = −20 ‰, 𝑟𝑐:𝑝 = 122 and the following model control run mean values 

are used: 𝐷𝐼𝐶̅̅ ̅̅ ̅ = 2332.284 µmol kg−1, 𝑃𝑂4
̅̅ ̅̅ ̅ = 2.409 µmol kg−1 and 𝛿13𝐶̅̅ ̅̅ ̅̅ =

0.656 ‰. These values result in the modelled δ13Cbio:PO4
3- relationship δ13Cbio=3.18-

1.05 × PO4
3-. The constant 3.18 is somewhat higher than estimated for observed δ13C, 

for which a constant of 2.8 was found by Eide et al. (2017b). This higher constant 

originates from the over-prediction of the model mean δ13C and PO3
4- at depth, as 

seen in other models (Sonnerup and Quay, 2012). Equation (3) assumes a constant 

biological fractionation as well as a constant rC:P ratio, and these assumptions will 

introduce some error in the partition of biological and air–sea gas exchange signatures 

derived from observed δ13C to PO3
4- ratios (e.g. Eide et al. 2017b). For the purpose of 

determining δ13Cbio in our model, these assumptions are unproblematic, since rC:P and 

휀𝑝ℎ𝑜𝑡𝑜 are actually taken to be constant in the model formulation. The air–sea gas 

signature 13CAS is approximated as the residual (δ13CAS = δ13Cmodel - δ13Cbio). δ13CAS is 0 

‰ when δ13Cmodel = δ13Cbio, i.e. when the δ13C can be explained by biology only. We 

express δ13Cbio as a percentage to aid interpretation of the results (denoted 𝛿13𝐶𝑏𝑖𝑜
𝑝𝑒𝑟𝑐

),

because the values of δ13Cbio in per mille depend strongly on the chosen “reference” 

values, i.e. mean DIC, PO3
4- , and δ13C (compare Broecker and Maier-Reimer, 1992; 

Lynch-Stieglitz et al., 1995; Sonnerup and Quay, 2012; Schmittner et al., 2013; Eide et 

al., 2017b). The conversion from δ13Cbio to a percentage is calculated as follows: 
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𝛿13𝐶𝑏𝑖𝑜
𝑝𝑒𝑟𝑐[%] =

|𝛿13𝐶𝑏𝑖𝑜|

|𝛿13𝐶𝑏𝑖𝑜|+|𝛿13𝐶𝐴𝑆|
×  100 %      (4) 

In our analysis, we define the total amount of air–sea carbon exchange as 

Fu+d=Fup+Fdown, with Fup as the upward annual carbon flux from the ocean into the 

atmosphere and Fdown its downward counterpart (Sect. 1B in the Supplement and 

Heinze and Maier-Reimer, 1999). Fu+d is relevant for understanding the sensitivity of 

δ13C. The net carbon exchange is defined as Fnet=Fup-Fdown. The sign of Fnet indicates 

whether a region is a source or a sink for carbon and is relevant for understanding 

changes in pCO2
atm. 

3 Results and discussion  

3.1 Model control run 

The model reproduces the main features of observed marine δ13C, as shown in Figs. 1 

and S2. The modelled global mean surface ocean δ13Csurface of DIC is higher (1.88 ‰) 

than deep ocean δ13Cdeep (0.67 ‰), creating a mean ocean Δδ13C of 1.21 ‰. In the 

North Atlantic and SO, Δδ13C is the least pronounced (0.9 ‰ and 0.8 ‰ respectively) 

due to vertical mixing between surface and deep water during deep water formation 

and upwelling (Duplessy et al., 1988). Δδ13C increases with water mass age as 

expected from the increased imprint of remineralisation on δ13C. The mean modelled 

ocean δ13C is higher by 0.16 ‰ relative to observations (Eide et al., 2017b), which is 

especially pronounced in the oldest water masses (Fig. S2). This is observed in other 

models as well and attributed to the model’s relative contribution of deep water 

production in the North Atlantic and Southern Ocean (Sonnerup and Quay, 2012). The 

modelled global export POC production is 9.6 Gt C yr-1, of which 18 % is produced in 

the SO, which is within the uncertainty of observational estimates (MacCready and 

Quay, 2001; Schlitzer, 2002; Dunne et al., 2007; Lutz et al., 2007; Nevison et al., 2012). 

The atmosphere has a modelled equilibrium pCO2
atm of 279 ppm and a δ13Catm of -6.50 

‰, which developed in the model from the “best-fit” weathering value 𝐹eq
𝑤 as 

described above in Sect. 2. Net air–sea gas exchange is close to zero (ventilating ~ 2 × 
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10-7 Gt of carbon to the atmosphere annually). The resulting drift of the model control

over 2000 years is 7 × 10-7 ‰ for δ13Catm, and +2 × 10-4 ppm for pCO2
atm. 

Figure 1. Modelled δ13C of DIC [‰] distribution for the model control run: (a) δ13C at 25 m depth, (b) 
Pacific transect of δ13C, (c) zonal transect of δ13C at 26° S, and (d) Atlantic transect of δ13C. 

3.2 Air–sea gas exchange versus biology 

The contribution of biology based on Eqs. (2) and (3) to the δ13C distribution is 

presented in Fig. 2, broadly in agreement with previous studies (Kroopnick, 1985; 

Schmittner et al., 2013). The contribution of biology to the modelled δ13C distribution 

is generally below 45 % and has a steep gradient from the surface to the deep ocean. 

The (thermodynamic) fractionation effect of air–sea gas exchange on δ13C is strongly 

impeded by the long equilibration time of δ13C, which leaves room for biological 

processes to contribute significantly to δ13C and Δδ13C (Lynch-Stieglitz et al., 1995; 

Murnane and Sarmiento, 2000; Schmittner et al., 2013; Eide et al., 2017a). In the 

ocean below 250 m, the influence of biology increases to 35 %–45 % due to the 
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remineralisation of POC, with the exception of the Arctic Ocean, where no POC 

production is modelled due to the sea ice cover (Figs. 2b and S1). 𝛿13𝐶𝑏𝑖𝑜
𝑝𝑒𝑟𝑐

 is close to 

50 % around 1000 m depth in the northern Pacific and Indian oceans, due to the old 

water masses located there, which have accumulated a large fraction of remineralised 

DIC. At the surface, air–sea gas exchange dominates the δ13C signature of DIC, as is 

visible from the low 𝛿13𝐶𝑏𝑖𝑜
𝑝𝑒𝑟𝑐

 (Fig. 2a). The only exception at the surface is in 

upwelling regions, where a relatively high 𝛿13𝐶𝑏𝑖𝑜
𝑝𝑒𝑟𝑐

 is expected due to high POC 

production and upwelled remineralised carbon. High 𝛿13𝐶𝑏𝑖𝑜
𝑝𝑒𝑟𝑐

 generally corresponds 

to a low-δ13C water mass (compare Figs. 1 and 2), as expected from the upwelling of 

13C-depleted DIC and modelled and observed close to the Antarctic continent (Fig. 1a 

and observations by Eide et al., 2017a). The results presented in Fig. 2 appear to be 

quite robust as 𝛿13𝐶𝑏𝑖𝑜
𝑝𝑒𝑟𝑐

 typically does not change by more than 5 %–10 % for the 

wide range of biogeochemical states, as is explored in the sensitivity experiments 

presented below. 

3.3 Sensitivity of Δδ13C and δ13C 

3.3.1 Air–sea gas exchange of carbon 

Atmospheric and marine carbon isotopic ratios are generally in thermodynamic 

disequilibrium due to their relatively long equilibration timescales compared to the 

time of contact of a water parcel with the atmosphere. CO2 equilibration through the 

air–sea interface takes ~ 4 months (Jones et al., 2014) and is inversely related to the 

Revelle buffer factor, and slowed down by a factor of ~ 20 compared to inert gases 

due to carbon speciation (i.e. the adjustment of the bicarbonate pool). Again ~ 10 

times slower than CO2, the air–sea equilibration of the atmospheric isotope ratio 

13CO2 / 12CO2 (i.e. δ13Catm) with marine DI13C / DI12C (i.e. δ13C) takes ~ 4 years (Jones et 

al., 2014). The equilibration timescale of the carbon isotopes is not facilitated by the 

buffering reaction of CO2 with H2O, but instead depends on the DIC : CO2 ratio of 

seawater (Broecker and Peng, 1974; Jones et al., 2014; Galbraith et al., 2015). Over 
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90 % of the surface ocean δ13C signature is set by air–sea gas exchange outside of 

upwelling regions across the world’s oceans (Fig. 2), making the equilibration across 

the air–sea interface important for surface ocean δ13C. Understanding the effects of 

equilibration across the air–sea interface is thus key to understanding global surface 

ocean δ13C signatures. Here we explore two extreme cases, very slow but non-zero 

gas exchange (“gas slow”, gas exchange rate divided by 4) and very fast gas exchange 

to bring the air–sea equilibration close to equilibrium (“gas fast”, gas exchange rate 

multiplied by 4). 

Figure 2. 𝛿13𝐶𝑏𝑖𝑜
𝑝𝑒𝑟𝑐

, the contribution of biology to the local δ13C signal (%), as calculated using Eq. (4) 

at (a) 25 m depth and (b) a Pacific transect. The remainder of 100 % is attributed to air–sea gas 
exchange. The 13Cbio and 13CAS values in per mille are very similar to the values found by Schmittner 
et al. (2013). 

Our results show that the effects of changes in air–sea gas exchange on δ13C mainly 

depend on the prior disequilibrium δ13Cdiseq (δ13Cdiseq = δ13C-δ13Ceq, where δ13Ceq 

represents the δ13C value a water parcel would have had if it would have fully 

equilibrated with the atmosphere; see also Gruber et al., 1999). Full isotopic 

equilibrium with the atmosphere results in a δ13Csurface of ~ 0.5 to ~ 4 ‰ at low and 

high latitudes, respectively (Menviel et al., 2015), where the range is caused by the 

temperature-dependent fractionation (Mook et al., 1986; Zhang et al., 1995). In this 

study, modelled ε is between 7.7 ‰ and 11 ‰. This thermodynamic effect increases 

the difference between δ13Csurface and δ13Ceq at the poles (Menviel et al., 2015), thus 

increasing the potential of high-latitude surface water to be affected by air–sea gas 

exchange fluxes. 
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Our gas exchange experiments (Table 1) show a transient phase where the net global 

air–sea gas exchange flux Fnet is non-zero, which affects pCO2
atm until a new quasi-

equilibrium is established (Fig. S3). We find an increase in pCO2
atm by 10 ppm (slow 

gas exchange) and a decrease by 4 ppm (fast gas exchange) after 2000 years, 

respectively. If gas exchange is only changed in the SO (i.e. for 22 % of the global ice-

free ocean area), an effect of 3.7 and -0.7 ppm is found after 2000 years (Table 2). Gas 

exchange in the SO can thus cause a disproportionate response (~ 30 % of the 

sensitivity) in pCO2
atm. These changes occur in the first ~ 600 years of the sensitivity 

experiments (Fig. S3), with the strongest changes occurring after ~ 100 years. The air–

sea pCO2 difference is smaller at increased gas exchange rates and larger at reduced 

gas exchange rates (Fig. S4). 

Figure 3. δ13C of DIC (‰) difference after 2000 years for the fast gas exchange experiments 
(experiment control): global experiments (a, c) and SO-only experiments (b, d), at 25 m depth (a, b) 
and as a Pacific transect of δ13C difference (c, d). 
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δ13Catm decreases by 0.3 ‰ during fast gas exchange and increases by 0.2 ‰ when 

the gas exchange rate is reduced. This is explained by the increase in the global 

amount of air–sea gas exchange Fu+d in the fast gas exchange experiment (4 times 

more, at 542 Gt C yr-1). Such an increase leads to a smaller thermodynamic 

disequilibrium, which increases the mean marine δ13C and lowers δ13Catm. Slow gas 

exchange reduces Fu+d (by 73 % to 36 Gt C yr-1), thus decreasing the role of air–sea gas 

exchange on surface ocean δ13C. This results in an increased contrast between 

atmospheric and surface ocean δ13C, which explains the increase in δ13Catm. Moreover, 

our SO-only experiments show that these effects on δ13Catm are more pronounced if 

gas exchange only changes in the SO. This indicates that the remainder of the ocean 

offsets part of the atmospheric sensitivity to SO change. 

Table 2. Results of pCO2
atm (ppm) and δ13Catm (‰) for all sensitivity experiments. 

δ13C shows a different response in high latitudes compared to the lower latitudes in 

the surface ocean (Figs. 3a and S5): an increased air–sea gas exchange rate lowers the 

surface ocean δ13C of DIC by 0.2 ‰ to 0.9 ‰ at the lower latitudes and increases 

Global 

experiments 

SO-only 

experiments 

pCO2
atm δ13Catm pCO2

atm δ13Catm 

Control 279 -6.5 - 

Gas exchange 

Fast 275 -6.8 278 -7.0 

Slow 289 -6.3 283 -6.2 

Biological pump 

POC: Efficient 256 -6.3 275 -6.5 

POC: Inefficient 292 -6.7 282 -6.5 

Vmax - 235 -6.1 

Ice 

Large - 287 -6.2 

Small - 272 -6.6 
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surface ocean δ13C at high latitudes by 0.2 ‰–0.5 ‰ (Figs. 3 and 4). The direction of 

the response indicates whether δ13Cdiseq is positive or negative, and is in line with 

previous studies (Schmittner et al., 2013; Galbraith et al., 2015) that show that the 

disequilibrium is negative (δ13C < δ13Ceq) at high latitudes and in low-latitude upwelling 

regions, and positive elsewhere. The sign of δ13Cdiseq, and thus the direction of the 

δ13C response, is understood from the difference between the natural δ13C 

distribution (Fig. 1) and the δ13Ceq, which depends on thermodynamic fractionation 

(Sect. 2). At increased gas exchange rates (i.e. closer to equilibrium), δ13C has to 

increase in cool high-latitude surface waters and has to decrease in warm low-latitude 

surface waters in order to get closer to equilibrium (Menviel et al., 2015; Murnane 

and Sarmiento, 2000). The net effect of a slower gas exchange rate on surface ocean 

δ13C is less pronounced than the effect of an increased gas exchange rate (Figs. S5, 3). 

The smaller effects seen for slow gas exchange indicate that the control model ocean 

is a “slow ocean”, i.e. closer to (very) slow gas exchange than to thermodynamic 

equilibrium (infinitely fast gas exchange). 

The effect of the gas exchange rate on marine δ13C is mostly established in the top 

250 to 1000 m of the water column (Figs. 3c, d, 4). Recording this air–sea gas exchange 

signal thus strongly depends on the reliability of planktic δ13C-based δ13Csurface 

reconstructions and knowledge of the living depth represented by the planktic 

foraminifera. The signal penetrates deepest (to ~ 2000 m depth) into the North 

Atlantic (Fig. 4), where δ13C is strongly influenced by air–sea gas exchange (Fig. 2a). 

However, the interpretation of variations in North Atlantic benthic δ13C as coming 

partly from air–sea gas exchange (Lear et al., 2016) is not supported by our 

experiment. Due to the limited export of the δ13C signal to depth, the sensitivity of 

Δδ13C to the gas exchange rate mainly comes from surface ocean δ13C. Globally, the 

Δδ13C is weakened to 0.87 ‰ when the thermodynamic disequilibrium is decreased 

(i.e. “Gas fast”, Fig. 5) and Δδ13C strengthens to 1.32 ‰ when the thermodynamic 

disequilibrium is increased (“Gas slow”, Fig. 5). The extent to which thermodynamic 

equilibrium can develop is thus an efficient way to change the biologically induced 
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Δδ13C (Murnane and Sarmiento, 2000); however, this is only true at lower latitudes 

where δ13Cdiseq is positive: the direction of the high-latitude SO Δδ13C sensitivity 

mirrors the sensitivity of the low-latitude regions (Fig. 4) as well as the global mean 

due to its negative δ13Cdiseq. 

Figure 4. Volume-weighted basin mean anomaly profiles of δ13C after 2000 years, with respect to the 
control profiles (upper row). Δδ13C denoted per basin in the lower right (control) and lower left 
(sensitivity experiments) corner of each subgraph. Results are presented for the global gas exchange 
and POC sinking experiments. Basin extent is visualised in Fig. S8. 
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Figure 5. Global mean Δδ13C after 2000 years for the different sensitivity experiments (Table 1). “Bio 
– Efficient” represents the high POC sinking rate experiment, “Bio – Inefficient” the slow POC sinking 
rate experiment. The results for the Southern Ocean-only experiments (Sect. 2) are described in the 
text. 

3.3.2 The biological pump: POC sinking rate 

The net effect of a regionally changed biological pump efficiency depends on the 

sequestration efficiency, which depends on the interplay between the biological 

pump and ocean circulation (DeVries et al., 2012). A more efficient biological pump 

(here, a higher POC sinking rate) leads to a loss of carbon to the sediments, which 

affects pCO2
atm and δ13Catm on millennial timescales. Here we present results from a 

2000-year simulation (as for the other experiments), which are thus transient results. 

A full equilibrium of the system could take as long as 200 000 years (Roth et al., 2014). 

On these long timescales other processes and feedbacks would occur (Tschumi et al., 

2011), which complicates the attribution of changes to a primary trigger. A fast POC 

sinking rate leads to a pCO2
atm decrease of 23 ppm and higher (+0.2 ‰) atmospheric 

δ13C after 2000 years (Table 2, Fig. S3) as well as an increase in mean ocean δ13C of 

0.15 ‰, caused by the transient sediment burial of low-δ13C POC. The transient 

imbalance between weathering and burial fluxes can thus cause profound changes in 

both marine and atmospheric δ13C, and moreover provides an important feedback for 

the longterm marine carbon cycle (Tschumi et al., 2011; Roth et al., 2014). In our 
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experiment, an efficient biological pump leads to a global ~ 6 % decrease in the 

amount of air–sea gas exchange Fu+d because of efficient export of carbon to depth, 

thereby lowering the net upward advection of carbon. A mirrored but weaker 

response is modelled for a decrease in biological pump efficiency: halving the POC 

sinking rate leads to a 13 ppm increase in pCO2
atm (of which 23 % can be explained by 

the SO) and a more negative atmospheric δ13C (-6.7 ‰ ) and 7 % increased Fu+d (Table 

2, Fig. S3). 

Surface ocean δ13C is mostly influenced by the changes in productivity and the vertical 

displacement of the POC remineralisation depth. The deepening of the 

remineralisation depth has been extensively discussed in the literature (Boyle, 1988; 

Keir, 1991; Mulitza et al., 1998; Roth et al., 2014) and likely explains lowered mid-

depth glacial δ13C together with changes in ocean circulation (for example, 

Toggweiler, 1999). POC sinking removes nutrients and preferentially light 12C carbon 

from the surface ocean, while exporting them to the deep ocean. If POC sinking rates 

are high, this increases the mean surface ocean δ13C (contributing to the δ13Catm 

increase) by 0.12 ‰ and lowers mean deep ocean δ13C by 0.01 ‰ (Fig. 6) – with values 

corrected for the overall 0.15 ‰ increase in marine δ13C, which occurs due to 

transient imbalance between weathering and sediment burial. Therefore, even 

though the absolute export production is globally reduced by 26 %, the biological 

pump is more efficient as any new nutrients in the surface ocean will immediately be 

used and exported. With a halving of the POC sinking rate, the remineralisation is 

confined closer to the surface ocean (Fig. 4). The net effect is that surface ocean δ13C 

is reduced (by a mean of 0.21 ‰ – corrected for the mean ocean change of 0.04 ‰) 

throughout the ocean (Fig. 4), because the fractionation effect during photosynthesis 

is counteracted by the remineralisation of POC (which would normally have occurred 

at depth). The SO plays a relatively minor role in the sensitivity to the POC 

experiments (Fig. 6b). Changes in deep ocean δ13C depend on the water mass age (Fig. 

6c): old water (North Pacific) has a larger remineralisation signal when the biological 

pump is efficient. Independent of the biological pump efficiency, the relatively young 
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waters of the deep North Atlantic generally adopt about the same δ13C signal as the 

surface ocean δ13C, which is set by air–sea gas exchange. This is in agreement with a 

relatively low 𝛿13𝐶𝑏𝑖𝑜
𝑝𝑒𝑟𝑐

 estimate for the deep North Atlantic (~ 30 %). 

Figure 6. δ13C of DIC (‰) difference after 2000 years for the POC sinking rate experiments 
(experiment control): (a) the global efficient biological pump (high POC sinking rate) experiment for 
a Pacific transect and (b) the SO-only efficient biological pump experiment for a Pacific transect and 
(c) the global efficient biological pump experiment at 3000 m depth. Note the different scales. 

The sensitivity of Δδ13C to changes in POC sinking rate depends strongly on location 

(Figs. 4 and 6). In general, the Δδ13C is strengthened for an increased biological pump 

efficiency (Fig. 5), and this effect is stronger with water mass age (Figs. 6c and 4). The 

downward shift of the remineralisation depth of low-δ13C POC drives this increase in 

Δδ13C, a mechanism discussed by Boyle (1988) and Mulitza et al. (1998), among 

others, to understand glacial Δδ13C increase. Our results show that the vertical 

displacement of the δ13C profile is most pronounced in the North and South Pacific 

(Fig. 4). The North Atlantic Δδ13C is much less affected as these waters are mostly 
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influenced by air–sea gas exchange. Instead, the entire North Atlantic profile is shifted 

more than in the other ocean basins (Fig. 4). Δδ13C weakens for a reduced biological 

pump efficiency (Figs. 4 and 5), especially in older water where 𝛿13𝐶𝑏𝑖𝑜
𝑝𝑒𝑟𝑐

 is higher (Fig.

2a). It is worth noting, however, that the changes in Δδ13C in the SO are comparably 

small because the vertical mixing in the SO of the low-δ13C deep water mostly causes 

shifts in the entire δ13C profile, not a change in the gradient (Fig. 4). 

3.3.3 The biological pump: SO nutrient depletion 

Consistent with previous studies (Sarmiento et al., 2004; Marinov et al., 2006; 

Primeau et al., 2013), we find a large atmospheric impact of our SO nutrient depletion 

experiment. The high SO nutrient uptake efficiency (i.e. an efficient biological pump) 

causes a 44 ppm reduction in pCO2
atm after 2000 years. The Vmax experiment reaches 

quasi-equilibrium after ~ 800 years, as seen from the time evolution of pCO2
atm and 

δ13Catm (Fig. S3). δ13Catm increases to -6.1 ‰ due to the increased surface ocean δ13C 

(Fig. 7a). This 0.4 ‰ increase is high compared to the results of Menviel et al. (2015), 

who found a δ13Catm sensitivity of 0.1 ‰–0.2 ‰ in response to changes in SO nutrient 

utilisation. The different development time compared to the fast POC sinking rate 

experiment is explained by the absence of longterm loss of carbon to the sediments 

in the Vmax experiment, because transport and water-column remineralisation within 

the SO limits an increase in POC burial there. In the SO, net carbon uptake (Fnet) 

increases fourfold to 1.5 Gt C yr-1 (Fig. S6) because the high nutrient and carbon 

consumption transport carbon into the ocean interior and do not permit CO2 to 

escape to the atmosphere. 

SO export production of POC is increased (Fig. S7) by a factor of 2.4, causing global 

POC export production to increase by 15 %, albeit reducing lower-latitude 

productivity (non-SO up to ~ 35° N) by 13 %. This relocation of global POC export 

production in response to SO increased nutrient uptake efficiency is in agreement 

with earlier studies (Marinov et al., 2006; Primeau et al., 2013). The increased surface 

ocean δ13C signature everywhere north of the SO sea ice edge (Fig. 7a) is in the SO 
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attributed to increased POC export production counteracted by a decreased Fu+d 

(which would reduce δ13Csurface in the SO because of the negative δ13Cdiseq; Figs. 3 and 

S5). At lower latitudes, the decreased Fu+d (which increases δ13Csurface in lower latitudes 

because of the positive δ13Cdiseq; Figs. 3 and S5) dominates the effect of the 13 % lower 

POC export production on δ13Csurface. 

Figure 7. δ13C of DIC (‰) difference after 2000 years for the Vmax nutrient depletion experiment 
(experiment control): (a) at 25 m depth and for (b) an Atlantic transect and (c) a Pacific transect. 

At depth and under the sea ice in the Antarctic, where deep water upwells, the imprint 

of additional POC remineralisation at depth decreases δ13C of DIC (Fig. 7). This 

decrease in δ13C is only visible in water masses downstream of the SO (Fig. 7b and c) 
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and is most pronounced in the deep North Pacific (Fig. 7c). The increased nutrient 

uptake rate in the SO increases global mean Δδ13C by 0.4 ‰ (Fig. 5) as well as 

increasing Δδ13C in all ocean basins (Fig. 4), as seen for the fast POC sinking rate 

experiment. Δδ13C is affected more in older waters, where a more pronounced 

remineralisation imprint has developed (Fig. 4). Besides effects on the δ13C 

distribution (Fig. 7), the O2 and PO3
4- distributions change as well: the O2 distribution 

is reorganised such that surface ocean O2 is increased (by up to 20 µmol kg-1, with 

largest changes in the SO), while deep ocean O2 is reduced downstream of the SO (by 

up to 40 µmol kg-1). Surface ocean PO3
4- is reduced mostly in the SO (by up to 0.8 µmol 

kg-1). This signal is, however, too small to significantly increase mean deep ocean PO3
4-

. This implies a reduction in global preformed phosphate governed by the efficient 

nutrient uptake in the SO; see also Primeau et al. (2013). SO nutrient drawdown can 

thus cause negligible mean (deep) ocean PO3
4- and δ13C changes, despite causing large 

changes in local δ13C and Δδ13C through the interplay between biology and air–sea 

gas exchange. Interesting in light of glacial proxy interpretation, the fit to the δ13C : 

PO3
4- relationship is improved throughout the ocean for the Vmax experiment, similar 

to the effects of the “Gas slow” experiment (Fig. 8). Changes in the goodness of fit of 

δ13C and PO3
4- data to the δ13C : PO3

4- relationship (i.e. δ13Cbio = 3.18 - 1.05 ×PO3
4-, 

Sect. 2) are usually interpreted as changes in ventilation or air–sea gas exchange (Lear 

et al., 2016; Eide et al., 2017b). However, here we show that changes in the fit 

represent the relative importance of biology and air–sea gas exchange in determining 

δ13C, as both changes in δ13Cdiseq (i.e. gas exchange rate experiments) and changes in 

the biological pump can affect the goodness of fit to the δ13C : PO3
4- relationship (Fig. 

8). 

3.3.4 Southern Ocean sea ice cover 

The sea ice cover of the SO changes considerably over glacial–interglacial cycles, as 

well as on seasonal timescales (Crosta, 2009) and Fig. A22 therein). In general, the 

model sea ice cover will inhibit light penetration into the surface ocean and limit air–
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sea gas exchange based on its thickness (Sect. 2). In the sensitivity experiments we 

assume complete inhibition of both light and air–sea carbon exchange by the sea ice. 

In this section we thus explore the effect of both biological production and air–sea 

gas exchange in two extreme cases, (i) the largest realistic sea ice cover based on the 

glacial maximum winter extreme (50° S) and (ii) the smallest sea ice cover based on 

the contemporary summer minimum sea ice extent (70° S). 

Figure 8. δ13C versus PO3
4- for the control, Vmax, “gas slow” and “gas fast” experiments for all ocean 

basins except the Nordic Seas (i.e. basins A to F in Fig. S8). Dark blue = A/North Atlantic, Light blue = 
B/South Atlantic, Red = C/Southern Ocean, Yellow = D/South Pacific, Green = E/North Pacific, Orange 
= F/Indian Ocean. The black line is the δ13Cbio = 3.18 - 1.05 × PO3

4- relationship, i.e. the relationship 
between δ13C and PO3

4- expected if only biology affected δ13C (Sect. 2). Deviations from the black line 
represent the relative importance of air–sea gas exchange compared to biology for δ13C. 

Note that there is a constant sea ice cover about north of 70° N and south of 60° S in 

the control run of the model. Therefore, the strongest marine δ13C change is expected 

south of 60° S for a decreased sea ice cover and between 50° and 60° S for an 

increased sea ice cover, as this is the area where ice cover is altered relative to the 

control run. Ocean circulation changes that could result from a changed sea ice cover 

are not taken into account, as we want to study the potential isolated effect of sea ice 

on δ13C through biological and air–sea gas exchange changes. Both local and global 

air–sea carbon fluxes are influenced by a change in the SO sea ice cover, which results 
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in changes in pCO2
atm and δ13Catm. In our experiment, pCO2

atm increases by 9 ppm for 

an increased sea ice cover and decreases by 6 ppm for a decreased sea ice cover (Table 

2, Fig. S3). As noted in Sect. 3.3.1, a change in pCO2
atm is governed by a transient 

change in the net air–sea gas exchange flux Fnet until a new equilibrium is established. 

An extended ice cover causes more CO2 to remain in the atmosphere because the 

additional ice covers a part of the SO that is a sink for CO2 (Fig. S4 – Control). As the 

net global air–sea gas exchange Fnet approaches equilibrium, the non-SO ocean 

therefore becomes a smaller source for carbon. This reduces the net gas exchange 

Fnet inside and outside of the SO by ~ 40 %–50 %. Our results show that the effects of 

a changed sea ice cover on pCO2
atm are yet to be fully understood: Stephens and 

Keeling (2000) for example modelled a strong decrease in pCO2
atm in response to an 

increased sea ice cover south of the Antarctic Polar Front, because they mostly cover 

a part of the SO that is a source of carbon to the atmosphere. In our study, the 

reduction in pCO2
atm by 6 ppm due to a reduced sea ice cover is attributable to the 

POC production in the previously ice-covered area between ~ 60° and 70° S. In a 

sensitivity experiment where the ice cover influences air–sea gas exchange only, the 

sea ice retreat leads to an increase in pCO2
atm because the region below the ice is 

strongly supersaturated in carbon with respect to the atmosphere. The increased sea 

ice cover leads to a complete suppression of air–sea gas exchange south of 50° S. Since 

this region is in negative carbon isotopic disequilibrium with the atmosphere (δ13C < 

δ13Ceq), the ice cover inhibits a δ13C flux into the ocean. As a result, pCO2
atm increases 

to -6.2 ‰, while the opposite happens for a reduced sea ice cover, leading to a 

lowered pCO2
atm (-6.6 ‰). 

The increased sea ice cover over the SO results in a surface ocean δ13C reduction 

relative to the control of -0.5 ‰ to -0.1 ‰ in the SO (Figs. 4 and 9), while δ13C 

increases outside of the SO by 0 ‰–0.2 ‰ (Fig. 9a). The reduction is especially 

pronounced between 40 and 60° S. The ~ 40 % reduced POC export production in the 

SO due to light inhibition by the sea ice cover causes a major part of the SO surface 

δ13C reduction, as the absence of photosynthesis will cause lower surface ocean δ13C. 
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Next to that, the reduced air–sea gas exchange Fu+d in the SO also leads to a lowered 

surface ocean δ13C signature. About the opposite happens when we simulate a 

strongly decreased sea ice cover (only ice south of 70 S): a small reduction of δ13C is 

modelled outside the SO, but the SO δ13Csurface locally becomes up to ~ 0.8 ‰ higher 

relative to the control (Fig. 9b) as the increased amount of air–sea gas exchange Fu+d 

decreases the carbon isotopic disequilibrium and increases POC production in the 

newly exposed area, both acting to increase δ13C of DIC. 

Figure 9. δ13C of DIC (‰) difference after 2000 years for the Antarctic sea ice cover experiments 
(experiment control): the effect of a large (a, c) and small (b, d) Antarctic sea ice cover, for 25 m depth 
(a, b) and an Atlantic transect (c, d). 

The effect of a changed ice cover on deep ocean δ13C is less than ~ 0.1 ‰ (Fig. 9c, d) 

as the surface signal is diluted while it follows the general ocean circulation. As for 

air– sea gas exchange (Sect. 3.3.1), no pronounced deep ocean δ13C signal is found 

outside of the SO due to sea ice cover changes (this is opposed to interpretations by 

Lear et al., 2016). Global mean Δδ13C is not significantly affected by changes in the SO 

sea ice cover (Fig. 5) because the low- and high-latitude effects on δ13Csurface cancel 

each other out. The SO Δδ13C, however, weakens considerably to 0.4 ‰ when the 50–

60° S region becomes covered with sea ice and strengthens to 1 ‰ if the sea ice is 
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removed between 60 and 70° S (Fig. 4). The presence or absence of a sea ice cover 

should thus be clearly visible in especially planktic SO δ13C sediment records. The 

effect on Δδ13C spreads downstream of the SO, where Δδ13C is increased by up to 0.2 

‰ in the Pacific Ocean for an increased SO sea ice cover (Fig. 4). 

3.4 Modelled versus observed Δδ13C variations 

The variations in Δδ13C on glacial–interglacial timescales provide researchers with a 

tracer to study the biogeochemical state of the past global ocean, under the condition 

that we can interpret (variations in) Δδ13C. The idealised perturbations made to the 

(Southern) Ocean in this study show that global mean Δδ13C is particularly sensitive 

to an increased gas exchange rate and changes in the efficiency of the biological 

pump. Global mean Δδ13C varies by up to about ±0.35 ‰ around the pre-industrial 

model reference (1.2 ‰) in response to biogeochemical change (Fig. 5) – under the 

assumption of a constant ocean circulation. However, the sensitivity of Δδ13C to 

biogeochemical changes depends strongly on location for all sensitivity experiments 

(Fig. 4), possibly explaining part of the incoherency of reconstructed planktic and 

benthic foraminiferal δ13C from sediment cores (Oliver et al., 2010). In general, such 

Δδ13C reconstructions show Δδ13C variations in ~ 1 ‰ over the past 350 000 years 

(Shackleton et al., 1983; Shackleton and Pisias, 1985; Boyle, 1988; Charles et al., 2010; 

Oliver et al., 2010; Ziegler et al., 2013). Ocean circulation changes explain at least part 

of these variations in Δδ13C (Oppo et al., 1990; Heinze et al., 1991; Heinze and 

Hasselmann, 1993; Toggweiler 1999; Charles et al., 2010; Jansen, 2017). However, the 

changes in the biogeochemical state of the ocean imposed in our experiments show 

that variations in Δδ13C could be strongly influenced by (SO) biogeochemistry as well. 

Δδ13C is increased during glacials and reduced during interglacials across a large set of 

sediment cores (Boyle, 1988; Charles et al., 2010; Oliver et al., 2010; Ziegler et al., 

2013). Rapid and large changes have been documented for SO Δδ13C records (Ziegler 

et al., 2013), and here we show that biogeochemical changes in the SO affect Δδ13C 

globally. Our results show that an increase in mean Δδ13C could biogeochemically 
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result from slower gas exchange, increased POC sinking rates, or an increased nutrient 

uptake rate in the SO (Figs. 4 and 5). Such biogeochemical changes have been 

associated with glacial periods (for example, Ziegler et al., 2013) and are potential 

candidates to explain part of the Δδ13C increase in interplay with stronger ocean 

stratification. Sedimentcore reconstructions of Δδ13C show that an increased Δδ13C 

can originate from a downward shift of the metabolic imprint of low-δ13C POC, which 

would increase shallow δ13C (Boyle, 1988; Mulitza et al., 1998; Toggweiler, 1999; 

Charles et al., 2010), and/or a deep ocean δ13C decrease (Broecker, 1982; Boyle, 1988; 

Oliver et al., 2010), with little variation recorded for surface ocean δ13C. The absence 

of a clear surface δ13C signal could in the SO be the net effect of an increased sea ice 

cover (locally decreasing δ13C; Figs. 4 and 9a) and an increased biological pump 

efficiency (locally increasing δ13Csurface; Figs. 6a and b, 7a) or increased SO 

thermodynamic equilibrium (Fig. 3a and b) – if these opposing signals get mixed. A 

pronounced deep ocean δ13C decrease is associated with an efficient biological pump 

and older water masses in our study (Fig. 4). Interestingly, large local changes in deep 

ocean δ13C and Δδ13C do not necessarily imply changes in mean deep ocean PO3
4- 

(Sect. 3.3.3). 

The local character of the Δδ13C sensitivity (Fig. 4) implies that correlations between 

sediment core Δδ13C / δ13C variations and global parameters (e.g. pCO2) are not easily 

extrapolated to other sediment cores over large distances. Analysis of SO Δδ13C 

reconstructions from sediment cores, at 42 and 46° S (Charles et al., 2010) for 

example, shows that there is a strong correlation between these cores and Northern 

Hemisphere climate fluctuations. We expect that this strong correlation does not exist 

for cores further south in the SO because our results indicate that the SO south of ~ 

50–60° S often has a different Δδ13C response to biogeochemical change than the rest 

of the ocean. 

Interglacial periods are generally thought to be associated with a decrease in the 

efficiency of the biological pump and increased deep-ocean ventilation via southern-
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sourced water masses (Gottschalk et al., 2016). Increased deep-ocean ventilation 

might be driven by increased winds (Tschumi et al., 2011), which would (apart from 

changing the SO circulation pattern) also increase gas exchange rates. Each of these 

processes indeed reduces mean Δδ13C in our experiments (Fig. 5), although this is less 

pronounced in the SO (Fig. 4). However, the interglacial reduction of Δδ13C seems to 

originate from a deep ocean δ13C increase compared to the glacial deep ocean δ13C 

(Broecker, 1982; Charles et al., 2010; Oliver et al., 2010). Our results show that neither 

an inefficient biological pump nor fast gas exchange can be associated with a 

pronounced deep sea δ13C increase relative to our control, because their effects are 

restricted to the surface ocean. On the other hand, the interglacial decrease in Δδ13C 

is a decrease compared to the glacial state: if glacial SO nutrient uptake was higher 

(Vmax), a return to the “normal” state (i.e. the model control run) would result in a 

major decrease in Δδ13C (Figs. 4 and 5). 

3.5 The relationship between Δδ13C, δ13Catm, and pCO2
atm 

One would expect variations in δ13Catm as well as Δδ13C to correlate with variations in 

pCO2
atm, because similar processes (biology and air–sea gas exchange) steer their 

distribution and concentrations (Shackleton and Pisias, 1985; this article). Δδ13C is 

considered a promising proxy for reconstructions of pCO2
atm for times predating 

icecore records (Lisiecki, 2010). Here we show that a positive linear relationship 

between δ13Catm and global mean Δδ13C (Fig. 10a) holds over a wide range of 

biogeochemical states, as simulated in the sensitivity experiments. However, the 

negative linear relationship between pCO2
atm and global mean Δδ13C (Fig. 10b) is weak 

(R2 = 0.39). Yet, previous studies do show the existence of a correlation between local 

Δδ13C and pCO2
atm (such as found by for example Dickson et al., 2008), and correlation 

of modified Δδ13C between ocean basins with pCO2
atm (Lisiecki, 2010). The effects of 

ocean circulation on glacial–interglacial δ13Catm changes, not studied here, are most 

pronounced in response to Antarctic Bottom Water formation rate variations and are 

of the order of 0 ‰–0.15 ‰ (Menviel et al., 2015). Our results show that δ13Catm varies 



Paper I 63 

by up to about ±0.5 ‰ in response to biogeochemical changes (Table 2). Changes in 

the POC sinking rate lie approximately along a line in δ13Catm : Δδ13C space (Fig. 10a), 

suggesting that changes in the biological pump efficiency are important for the δ13Catm 

: Δδ13C relationship. Likewise, both the gas exchange rate and biological pump 

experiments lie along an approximate lines in pCO2
atm : Δδ13C space (Fig. 10b, albeit a 

different one – leading to a low total correlation). 

Figure 10. Relationships between global mean Δδ13C, δ13Catm, and pCO2
atm. (a) Global mean Δδ13C 

versus δ13Catm of the different sensitivity experiments. R2 of the best-fit line is 0.71, and the line is 
described by y = 1.3x - 8.1. (b) Global mean Δδ13C versus pCO2

atm of the different sensitivity 
experiments. R2 of the best-fit line is 0.39, and the line is described by y = -54x + 341. 

Changes in air–sea gas exchange (as simulated in the gas exchange and sea ice cover 

experiments) affect δ13Catm more than Δδ13C. This confirms the idea that Δδ13C is 

governed by biological processes and will also set δ13Catm, unless air–sea gas exchange 

gets the chance to dominate δ13Catm. The high potential of SO air–sea gas exchange to 

change δ13Catm (Table 2: sea ice and gas exchange rate experiments) complements 

recent studies showing that increased SO ventilation of deep ocean carbon is a likely 

candidate for glacial–interglacial δ13Catm excursions – which are of the order of 0.5 ‰ 

(Lourantou et al., 2010; Menviel et al., 2015; Bauska et al., 2016; Eggleston et al., 

2016). 
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4 Summary and conclusions 

This study addresses the sensitivity of modelled marine and atmospheric δ13C and 

Δδ13C to changes in biogeochemical parameters under constant ocean circulation, 

focusing on the contribution of the SO (the ocean south of 45° S, 22 % of the global 

ice-free ocean area). Variations in Δδ13C recorded in sediment records are sensitive to 

ocean circulation changes as shown in previous studies, but here we show that the 

biogeochemical state of the (Southern) Ocean can also have large effects on Δδ13C 

across all ocean basins. Using the ocean biogeochemistry general circulation model 

HAMOCC2s, a set of sensitivity experiments was carried out, which focuses on the 

biogeochemical aspects known to be important for δ13C and Δδ13C. Specifically, the 

experiments explore changes in air–sea gas exchange rate, sea ice extent (influencing 

both biological production and the air–sea gas exchange of carbon), and the efficiency 

of the biological pump through the POC sinking rate and nutrient uptake rate. 

The results show the important role of the SO in determining global δ13C and Δδ13C 

sensitivities, as well as the strong spatial differences in these. A new quasi-equilibrium 

state developed mostly within the first 100–800 years of the sensitivity experiments, 

except for the POC sinking experiment, where an imbalance between weathering and 

burial causes a long-term drift. The δ13C signature is governed by different processes 

depending on location: air–sea gas exchange sets surface ocean δ13C in all ocean 

basins, contributing 60 %–100 % to the δ13C signature. At depth and with increasing 

water mass age, the influence of biology increases to 50 % in the oldest water masses 

(North Pacific) due to POC remineralisation. This spatial pattern behind the δ13C 

signature of a water parcel results in a non-uniform sensitivity of δ13C to 

biogeochemical change. Global mean Δδ13C varies by up to about ±0.35 ‰ due to 

biogeochemical state changes in our experiments (at a constant ocean circulation) 

(Fig. 5). This amplitude is almost half of the reconstructed variation in Δδ13C on 

glacial–interglacial timescales (1 ‰), and could thus contribute to variations in Δδ13C 

together with ocean circulation changes. However, Δδ13C can have a different 
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response on a basin scale: the ocean’s oldest water (North Pacific) responds most to 

biological changes, the young deep water (North Atlantic) responds strongly to air– 

sea gas exchange changes, and the vertically well-mixed water (SO) has a low or even 

reversed Δδ13C sensitivity compared to the other basins. The amplitude of the Δδ13C 

sensitivity can be higher at decreasing scale, as seen from a maximum sensitivity of 

about -0.6 ‰ on ocean basin scale (Fig. 4). Interestingly, the direction of both glacial 

(intensification of Δδ13C) and interglacial (weakening of Δδ13C) Δδ13C change matches 

changes in biogeochemical processes thought to be associated with these periods. 

This supports the idea that biogeochemistry explains part of the reconstructed 

variations in Δδ13C, in addition to changes in ocean circulation. 

An increased gas exchange rate has the potential to reduce the biologically induced 

Δδ13C through the reduction of surface ocean and atmospheric δ13C. Increased gas 

exchange, however, only reduces Δδ13C in the low latitudes: in high latitudes, 

increased gas exchange will increase Δδ13C (by increasing δ13Csurface) because of the 

negative disequilibrium δ13Cdiseq (i.e. δ13C < δ13Ceq) in this region, and thus potentially 

increase δ13Csurface (Sect. 3.3.1). Notably, pCO2
atm, δ13Catm, and marine δ13C are shown 

to be disproportionally sensitive to SO gas exchange rate changes. 

Changes in the efficiency of the biological pump also have a major potential to alter 

Δδ13C as well as pCO2
atm and δ13Catm. The globally increased POC sinking rate 

experiment shows that Δδ13C strengthens in low latitudes (and more so in older 

waters) by deepening the low-δ13C signature of remineralised POC, while SO Δδ13C is 

not very sensitive to POC sinking rates. The SO effects are comparably small because 

the vertical mixing in the SO of the low-δ13C deep water only causes shifts in the entire 

δ13C profile, not a change in the gradient (Fig. 4). Increased POC sinking causes a 

longterm imbalance between weathering and sediment burial which leads to an 

increase in mean δ13C and δ13Catm (of about 0.15 ‰) after 2000 years. Increased 

nutrient uptake in the SO (Vmax experiment) results in 13 % lower non-SO POC export 

production up to ~ 35° N, in agreement with previous studies on the role of the SO 
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biological pump in lower-latitude productivity. Interestingly, the increase in Δδ13C in 

all ocean basins occurs without significantly changing mean (deep) ocean PO3
4- , which 

advocates for increased SO nutrient uptake to explain (part of) glacial–interglacial 

Δδ13C variations. Furthermore, our results show that improved goodness of fit of the 

model data to the δ13C : PO3
4- relationship can be driven by reduced gas exchange as 

well as biological uptake efficiency in the SO, since both increase the importance of 

biology relative to air– sea gas exchange for δ13C. Caution should thus be exercised 

when interpreting changes in the fit of observations to the δ13C : PO3
4- relationship as 

changes in ocean ventilation or air–sea gas exchange alone. 

A significant linear relationship was found across the sensitivity experiments between 

δ13Catm and Δδ13C (R2 = 0.71), and a weaker one (R2 = 0.39) for pCO2
atm and Δδ13C. This 

result shows that paleo-reconstructions of δ13Catm based on Δδ13C could be valid for a 

wide range of biogeochemical states. Previous studies have shown good correlation 

between pCO2
atm and local Δδ13C, but our results suggest that the relationship may 

not be valid if both biological and gas exchange rate changes occur. The maximum 

response of δ13Catm to the biogeochemical changes imposed in our experiments (up 

to 0.5 ‰) is larger than the idealised maximum effect of ocean circulation changes on 

δ13Catm (0 ‰– 0.15 ‰; Menviel et al., 2015), which underlines the potential 

importance of biogeochemical processes for variations in δ13Catm. The high potential 

of SO air–sea gas exchange to steer δ13Catm (Table 2: sea ice and gas exchange rate 

experiments) complements recent studies showing that increased SO ventilation of 

deep ocean carbon is a likely candidate for glacial–interglacial δ13Catm excursions. 

As an outlook, the use of a more complex model with a higher horizontal and vertical 

resolution and a shorter time step (resolving seasonal variations) could provide 

valuable additional information. For example, the role of different regions within the 

SO on the global δ13C distribution could be better studied with a more complex model. 

Sediment corebased reconstructions of the global carbon cycle could possibly be 

aided by a more complex model with a finer grid and higher time resolution, by 
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providing more detailed information on the contribution of biogeochemical processes 

to local ocean tracers. Next to that, exploring the effect on Δδ13C of a glacial model 

circulation field could provide a way to quantify the maximum combined effect of 

circulation and biogeochemical change on Δδ13C. 
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SI 1A Particulate organic carbon cycling in HAMOCC2s 

Particle export production in the surface layer (the euphotic zone), 𝑃𝑃𝑂𝐶 , 𝑃𝑜𝑝𝑎𝑙  or 

𝑃𝐶𝑎𝐶𝑂3 [mol L-1 yr-1], is described by Michaelis-Menten kinetics for nutrient uptake as 

follows: 

𝑃𝑃𝑂𝐶 =
𝑉𝑚𝑎𝑥

𝑃𝑂𝐶 ∙ [𝑃𝑂4
3−]2 ∙ 𝑟𝐶:𝑃

𝐾𝑆
𝑃𝑂𝐶 + [𝑃𝑂4

3−]
, 𝑃𝑜𝑝𝑎𝑙 =

𝑉𝑚𝑎𝑥
𝑜𝑝𝑎𝑙

∙ [𝑆𝑖(𝑂𝐻)4 ]
2

𝐾𝑆
𝑜𝑝𝑎𝑙

+ [𝑆𝑖(𝑂𝐻)4 ]
 , and 

 𝑃𝐶𝑎𝐶𝑂3 = 𝑃𝑃𝑂𝐶 ∙ 𝑅 ∙ (1 −

𝑃𝑜𝑝𝑎𝑙
𝑃𝑃𝑂𝐶

⁄

𝑆𝑜𝑝𝑎𝑙
), 

where 𝐾𝑆
𝑃𝑂𝐶  𝑎𝑛𝑑 𝐾𝑆

𝑜𝑝𝑎𝑙
are the half saturation constants for POC and opal

respectively, 𝑟𝐶:𝑃 is the Redfield ratio between carbon (C) and phosphorus (P) and 

𝑉𝑚𝑎𝑥
𝑃𝑂𝐶  and 𝑉𝑚𝑎𝑥

𝑜𝑝𝑎𝑙
 [yr-1] are the maximum uptake rate of phosphate and silicic acid 

respectively. R is the maximum rain ratio C(CaCO3):C(POC) and is set to the constant 

value 0.3405. 𝑃𝐶𝑎𝐶𝑂3 increases when 
𝑃𝑜𝑝𝑎𝑙

𝑃𝑃𝑂𝐶
⁄ lowers below threshold value for 

onset of CaCO3 production 𝑆𝑜𝑝𝑎𝑙. Furthermore, 𝑉𝑚𝑎𝑥
𝑃𝑂𝐶 , 𝑉𝑚𝑎𝑥

𝑜𝑝𝑎𝑙
, 𝐾𝑆

𝑃𝑂𝐶  and 𝐾𝑆
𝑜𝑝𝑎𝑙

are

prescribed depending on sea surface temperature following Heinze et al. (2003). 

The sinking of the exported biogenic particles is described by a mass balance between 

gains and losses, for POC: 

𝑑𝑃𝑂𝐶𝑠𝑒𝑡𝑡𝑙𝑒

𝑑𝑡
= 𝑔𝑎𝑖𝑛𝑠 − 𝑙𝑜𝑠𝑠𝑒𝑠. With 

𝑑𝑃𝑂𝐶𝑠𝑒𝑡𝑡𝑙𝑒

𝑑𝑡
= 𝑃𝑃𝑂𝐶 −

𝑤

∆𝑧0
∙ 𝑃𝑂𝐶𝑠𝑒𝑡𝑡𝑙𝑒 − 𝑟𝑃𝑂𝐶 ∙ 𝑃𝑂𝐶𝑠𝑒𝑡𝑡𝑙𝑒  , for the surface layer,

𝑑𝑃𝑂𝐶𝑠𝑒𝑡𝑡𝑙𝑒

𝑑𝑡
= 𝑤 ∙

𝜕𝑃𝑂𝐶𝑠𝑒𝑡𝑡𝑙𝑒

𝜕𝑧
− 𝑟𝑃𝑂𝐶 ∙ 𝑃𝑂𝐶𝑠𝑒𝑡𝑡𝑙𝑒  , for all layers below the surface 

layer 

This is done in the same way for CaCO3, opal, and clay – although clay is considered 

chemically inert and thus not degraded or dissolved. In the above set of equations, 
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gains equal 𝑃𝑃𝑂𝐶 , 𝑃𝑜𝑝𝑎𝑙  or 𝑃𝐶𝑎𝐶𝑂3 and dust input for clay. Losses in the surface layer 

come from sinking and degradation/remineralisation, where the sinking term involves 

the sinking velocity w (3 m d-1 in the control run, adjusted in the POC sinking rate 

experiments) and the thickness of the euphotic zone ∆𝑧0 (50 m). The degradation 

term consists of a constant degradation rate 𝑟𝑃𝑂𝐶  (2.69 yr-1) - with equivalents 𝑟𝑜𝑝𝑎𝑙  

(1.23 yr-1) or 𝑟𝐶𝑎𝐶𝑂3 (6.76 yr-1) for the other biogenic particles. Below the surface layer, 

gains are determined by the input of sinking particles from above (for POC, 𝑤 ∙

𝜕𝑃𝑂𝐶𝑠𝑒𝑡𝑡𝑙𝑒

𝜕𝑧
) and continued losses to inorganic carbon and nutrients through 

degradation/remineralisation (for POC, 𝑟𝑃𝑂𝐶 ∙ 𝑃𝑂𝐶𝑠𝑒𝑡𝑡𝑙𝑒). Remineralisation of POC 

requires oxygen availability above a minimum of 1e-5 moles/l. In addition to 

degradation CaCO3 and opal dissolution is simulated, which depends on carbonate 

saturation and opal saturation respectively. 

Throughout the water column, POC losses are mirrored by source terms for the 

inorganic dissolved species of the water column (for TAlk, DIC, phosphate, and 

oxygen). The remainder of particles which are not subject to degradation within the 

water column are deposited onto the ocean sediments. Here, the lowermost water 

column layer and topmost sediment layer directly interact through a sediment 

balance of deposition and redissolution/remineralisation. 

SI 1B Calculation of gas transfer fluxes 

Separate fluxes Fup and Fdown are calculated by splitting the gas transfer formulation 

into two parts. The gas transfer formulation for CO2 can be described as: FA = kw 

([A]water − [A]air), where for A=CO2, kw is the specific gas exchange rate, [A]water is the 

model surface-ocean free CO2 concentration, and [A]air is the atmospheric CO2 

concentration. In the model, Fup=kw*[A]water and Fdown=kw*[A]air and Fnet = FA = Fup-Fdown. 

This splitting up is useful for the calculation of air-sea fractionation of the carbon 

isotopes, as the equilibrium fractionation factor only needs to be multiplied with Fup 
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when calculating the effects of the air-sea gas exchange on δ13C. It also proved to be 

useful for our discussion, because the total amount of exchange Fu+d influences δ13C.  

The freely evolving atmospheric concentration of O2, 13CO2 and CO2 is modelled by a 

one-layer box over each grid point, for which zonal average atmospheric 

concentrations are calculated at every time-step. Because of the annual model time-

step, gas transport is simulated through meridional diffusion only, where the 

assumption is that the atmosphere is longitudinally well-mixed. 

SI 2 Figures 

Figure S1 Surface map of the annually constant sea ice thickness in the model in meter. 
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Figure S2 Pre-industrial δ13C data based on Eide et al. (2017b) at 200 m depth (top), a Pacific transect 
at 150° W (bottom left) and an Atlantic transect at 30° W (bottom right) 
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Figure S3 Atmospheric development of δ13Catm and pCO2
atm during the (Global) sensitivity 

experiments. Note that the high POC sinking rate experiment was continued for an additional 10 000 
years as compared to the other experiments. Small ongoing drift for 100 000s of years occurs in all 
experiments due to the very long equilibration timescale between burial and weathering for δ13C 
(Roth et al., 2014). 
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Figure S4 The pCO2 difference [ppm] between the surface ocean and the atmosphere for the model 
control run, ‘Gas fast’ and ‘Gas slow’ experiments. Negative values indicate a carbon flux into the 
ocean. The actual flux depends amongst others on the size of the pCO2 difference and the air-sea gas 
exchange rate. 

 

 

Figure S5 Modelled slow gas exchange sensitivity experiment δ13C of DIC [‰] difference with the 
model control run: global experiments (a) and (c) and SO-only experiments (b) and (d), at 25 m depth 
(a) and (b) and as a Pacific transect of δ13C difference (c) and (d). The sign of the change equals the 
sign of the δ13Cdiseq. 
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Figure S6 Air-sea 13C [gC m-2 yr-1] flux for the Vmax experiment (left) and model control run (right). 
Negative values indicate carbon uptake by the ocean. 

Figure S7 POC export production [gC m-2 year-1] for the Vmax experiment (left) and model control run 
(right). 

Figure S8 The basins used to make Fig. 4. A=North Atlantic, B=South Atlantic, C=Southern Ocean, 
D=South Pacific, E=North Pacific, F=Indian Ocean. 
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Abstract. Model simulations of the Last Glacial Maximum (LGM, ~21 000 years before 

present) can aid the interpretation of proxy records, help to gain an improved 

mechanistic understanding of the LGM climate system and are valuable for the 

evaluation of model performance in a different climate state. Ocean-ice only model 

configurations forced by prescribed atmospheric data (referred to as “forced ocean 

models”) drastically reduce the computational cost of paleoclimate modelling as 

compared to fully coupled model frameworks. While feedbacks between the 

atmosphere and ocean-sea-ice compartments of the Earth system are not present in 

such model configurations, many scientific questions can be addressed with models 

of this type. The data presented here are derived from fully coupled paleoclimate 

simulations of the Palaeoclimate Modelling Intercomparison Project (PMIP3). The 

data are publicly accessible at the NIRD Research Data Archive at 

https://doi.org/10.11582/2019.00019 (Morée and Schwinger, 2019). They consist of 

2-D anomaly forcing fields suitable for use in ocean models that employ a bulk forcing

approach and are optimized for use with CORE forcing fields. The data include specific 

humidity, downwelling longwave and shortwave radiation, precipitation, wind (v and 
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u components), temperature and sea surface salinity (SSS). All fields are provided as 

climatological mean anomalies between LGM and pre-industrial times. These 

anomaly data can therefore be added to any pre-industrial ocean forcing data set in 

order to obtain forcing fields representative of LGM conditions as simulated by PMIP3 

models. These forcing data provide a means to simulate the LGM in a computationally 

efficient way, while still taking advantage of the complexity of fully coupled model 

set-ups. Furthermore, the dataset can be easily updated to reflect results from 

upcoming and future paleo model intercomparison activities. 

1 Introduction 

The LGM (~21 kya) is of interest to the climate research community because of the 

relative abundance of proxy data, and because it is the most recent profoundly 

different climatic state of our planet. For these reasons, the LGM is extensively 

studied in modelling frameworks (Menviel et al., 2017; Brady et al., 2012; Otto-

Bliesner et al., 2007). Model simulations of the past ocean can not only provide a 

method to gain a mechanistic understanding of marine proxy records, they can also 

inform us about model performance in a different climatic state of the Earth system 

(Braconnot et al., 2012). Typical state-of-the-art tools to simulate the (past) Earth 

system are climate or Earth system models as, for example, used in the Coupled 

Model Intercomparison Project phase 5 (CMIP5; Taylor et al. (2011)). Besides 

simulating our present climate, these CMIP5 models are also used to simulate past 

climate states (such as the LGM) in the Palaeoclimate Modelling Intercomparison 

Project 3 (PMIP3). However, the computational costs and run-time of such fully 

coupled model frameworks are a major obstacle for their application to palaeoclimate 

modelling. Palaeoclimate modelling optimally requires long (thousands to ten 

thousands of years) simulations in order to provide the necessary time for relevant 

processes to emerge (e.g. CaCO3 compensation) (Braconnot et al., 2007). Complex 

fully coupled models can typically not be run into full equilibrium (which requires 

hundreds to thousands of years of integration) due to computational costs (Eyring et 
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al., 2016). Therefore, the PMIP3 models exhibit model drift (especially in the deep 

ocean, e.g. Marzocchi and Jansen (2017)). The 3rd phase of the PMIP project (PMIP3; 

Braconnot et al. (2012)) limits global mean sea-surface temperature drift to under 

0.05 K per century and requires the Atlantic Meridional Overturning Circulation to be 

stable (Kageyama et al., 2018). 

The use of PMIP output as ocean forcing is an accepted practice in ocean modelling 

(e.g., Muglia and Schmittner (2015)). We refer to a “forced ocean model” as a model 

of the ocean-sea-ice-atmosphere system in which the atmosphere is represented by 

prescribed 2-D forcing fields. It can be used whenever ocean-atmosphere feedbacks 

are of minor importance and has the advantage of reducing the computational costs 

– making longer or more model runs feasible. We present 2-D (surface) anomaly fields

of CMIP5/PMIP3 experiments ‘lgm’ minus ‘piControl’ calculated from monthly 

climatological PMIP3 output. The PMIP3 output is the result of global boundary 

conditions and forcings (such as insolation and ice sheet cover) applied in the fully 

coupled PMIP3 models (Braconnot et al., 2012). Our dataset (Morée and Schwinger, 

2019) is a unique compilation of existing data, processed and reformatted such that 

it can be readily applied in a forced ocean model framework that uses a bulk forcing 

approach similar to Large and Yeager (2004). Since this approach has been 

popularized through coordinated model intercomparison activities (Griffies et al., 

2009), a majority of forced ocean models today uses this approach. The 2-D anomaly 

fields presented here can be added to the pre-industrial forcing of a forced ocean 

model in order to obtain an atmospheric forcing representative of the LGM. The data 

are climatological mean anomalies, and as such suitable for equilibrium LGM ‘time-

slice’ modelling of the ocean. The description of the procedure followed to make this 

dataset (Sect. 3) should support any extension of the dataset with additional (PMIP-

derived) variables if needed. The PMIP4 guidelines (Kageyama et al., 2017) can 

support users in designing a specific model set-up, for example regarding the land-sea 

mask, trace gas concentrations, river runoff or other conditions and forcing one would 
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want to apply to a model. In Sect. 2, a general description of the dataset and data 

sources is provided alongside with an overview of the variables (Table 1). 

Table 1: Summary of the data showing variable description, units, format (lon×lat, time), Notes, 
NetCDF variable name(s) and the original PMIP3 variable name(s). Formats follow CORE conventions 
(Large and Yeager, 2004). The wind component variables are provided in separate files (Morée and 
Schwinger, 2019). In each NetCDF file (i.e., for each variable) the model spread is provided alongside 
the anomaly field named ‘variablename_spread’. 

Variable description Units Resolution 

(lon×lat), time 

Notes Variable 

name 

PMIP3 

variable 

name(s) 

Specific humidity kg kg-1 192×94, 1460 Re-referenced 

to 10 m 

huss_10m huss 

Downwelling 

longwave radiation 

W m-2 192×94, 365  rlds rlds 

Downwelling 

shortwave radiation 

W m-2 192×94, 365  rsds rsds 

Precipitation mm day-1 192×94, 12  pr pr 

Wind (u and v 

components) 

m s-1 192×94, 1460  uas and vas uas and vas 

Temperature K 192×94, 1460 Re-referenced 

to 10 m 

tas_10m tas 

Sea surface salinity psu 360×180, 12  sos so 

 

2 General description of the dataset 

The data presented in this article are 2-D anomaly fields of the LGM versus pre-

industrial state (experiment ‘lgm’ minus experiment ‘piControl’) based on the PMIP3 

(Braconnot et al., 2012). These anomaly fields can be used as atmospheric LGM 

forcing fields for ocean-only model set-ups when added to pre-industrial forcing 

fields, and are optimized for use in combination with Coordinated Ocean-ice 

Reference Experiments (CORE) forcing fields (Griffies et al., 2009). The use of an 

anomaly forcing implies the assumption that no changes in temporal or spatial 
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variability occurred between the lgm and piControl states beyond changes in the 

mean. We note that by adding multi model mean anomalies to forcing fields, 

dynamical inconsistencies (e.g. between wind and temperature fields) could be 

created. A forcing data set would typically be dynamically consistent if the forcing 

would be the outcome of an advanced atmospheric reanalysis. However, the CORE 

forcing is a mixture of reanalysis and observational data products, and we assume 

that the addition of our anomaly fields will be a minor contribution to the dynamical 

inconsistencies already present in the CORE forcing fields (Large and Yeager, 2004). 

The basis of this data is monthly climatological PMIP3 output. Any variables presented 

on sub-monthly time resolution are therefore time-interpolated. Since this is a 

limitation of the available data, we have to assume that any sub-monthly variability 

(e.g. the diurnal cycle) is preserved from the preindustrial climate state to the LGM 

state. The anomalies are calculated as the mean of the difference between monthly 

climatologies of the ‘lgm’ and ‘piControl’ PMIP3 model runs. The calculation of such a 

model mean will dampen uncorrelated variability across the different models. 

However, for the sake of achieving long integration times (e.g., for paleo studies), we 

expect this approach is justifiable. Moreover, the calculated anomalies are generally 

small as compared to the forcing field itself. In cases where modelling groups provided 

more than one ensemble member, we included only the first member in our 

calculations. Even though PMIP3 simulations have limitations and a large inter-model 

spread, PMIP3 is the state of the art for modelling of past climates at present 

(Braconnot et al., 2012; Braconnot and Kageyama, 2015). Furthermore, no global 

proxy-based reconstructions of the variables presented here are available to provide 

a proxy-based LGM forcing dataset. Using mean coupled model output as forcing is 

thus considered the best available option for use in forced ocean models. The data is 

the mean anomaly of five PMIP3 models (CNRM-CM5, IPSL-CM5A-LR, GISS-E2-R, 

MIROC-ESM and MRI-CGCM3: Table 2), as only these models provide output for all 

variables. 
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The variables are i) specific humidity at 10 meters, ii) downwelling longwave radiation, 

iii) downwelling shortwave radiation, iv) precipitation, v) wind (v and u components), 

vi) temperature at 10 meters, and vii) sea surface salinity (SSS) (Table 1). The SSS 

anomaly field can be used to apply SSS restoring in LGM simulations. 

Table 2: PMIP3 models used in this study 

Model name Modelling group Reference Source data reference 

CNRM-CM5 CNRM-CERFACS 

(France) 

Voldoire et al. (2013) piControl: Sénési et al. 

(2014a) 

lgm: Sénési et al. (2014b) 

IPSL-CM5A-LR IPSL (Institut Pierre 

Simon Laplace, France) 

Dufresne et al. 

(2013) 

piControl: Caubel et al. 

(2016) 

lgm: Kageyama et al. (2016) 

MIROC-ESM MIROC (JAMSTEC and 

NIES, Japan) 

Sueyoshi et al. 

(2013) 

piControl: JAMSTEC et al. 

(2015a) 

lgm: JAMSTEC et al. (2015b) 

MRI-CGCM3 MRI (Meteorological 

Research Institute, 

Japan) 

Yukimoto et al. 

(2012) 

piControl: Yukimoto et al. 

(2015a) 

lgm: Yukimoto et al. (2015b) 

GISS-E2-R NASA/GISS (Goddard 

Institute for Space 

Studies, USA) 

Schmidt et al. (2014) piControl: NASA-GISS 

(2014a) 

lgm: NASA-GISS (2014b) 

 

All variables (Sect. 3.1-7) of the monthly climatological PMIP3 output have been 

regridded (Table 3, #1), averaged (Table 3, #2), and differenced (Table 3, #3) to 

calculate the anomaly fields. Additional procedures for each variable are provided in 

the respective part of Sect. 3, together with a figure of each variable’s yearly mean 

anomaly and model spread. Alongside the lgm-piControl anomaly for each variable, 

the model spread across all five models is made available. This inter-model 

disagreement is described for each variable in Sect. 3, and could for example be used 

to guide adjustments of the amplitude of the forcing anomaly for model tuning 
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purposes. Additionally, proxy-base reconstructions are available for some of the 

variables (e.g., temperature), which can constrain potential adjustments to the 

forcing anomaly fields. We leave it to the individual modelling groups to make such 

adjustments to their forcing fields. 

Table 3: Package commands applied in this study. Detailed information on these commands can be 
found in the respective NCO and CDO documentation online. All operations were performed with 
either CDO version 1.9.3 (Schulzweida, 2019) or NCO version 4.6.9. The complete list of commands is 
available in the NetCDF files as global attribute ‘history’. 

# CDO or NCO command 

1 cdo remapbil,t62grid 

2 cdo ensmean 

3 cdo sub 

4 cdo setmisstodis 

5 ncap2 

6 cdo inttime 

All operations were performed with NetCDF toolkits CDO version 1.9.3 (Schulzweida, 

2019) or NCO version 4.6.9. The main functions used are documented in Table 3, and 

referred to in the text at the first occurrence. The atmospheric anomaly data are on a 

Gaussian grid, with 192×94 (lon×lat) grid-points. The SSS fields is on a regular 360×180 

(lon×lat) grid. Regridding any of the files to a different model grid should be 

straightforward (e.g., Table 3, #1), as it was ensured that all files contain the 

information needed for re-gridding. The variables, grid and time resolution are chosen 

to be compatible with the CORE forcing fields (Large and Yeager, 2004), which have 

been extensively used in the ocean modelling community (e.g. Griffies et al. (2009); 

Schwinger et al. (2016)). We anticipate that the variables selected here should be 

useful in different model set-ups as well. We intend to provide a data set that is 

flexible with respect to the use of different land-ocean masks in different models. 

Therefore, we account for changes in sea-level (i.e. a larger land area in the LGM), 

which can affect variables in coastline areas, by applying the following masking 



Paper II 89 

procedure: i) masking the multi-model mean anomaly with the maximum lgm land 

mask across all models, then ii) extrapolating the variable over land using a distance-

weighted average (Table 3, #4), and iii) finally masking the data with a present-day 

land mask (based on the World Ocean Atlas 2013 1° resolution land mask), but with 

the ocean extended in a 1.5 degrees radius over land. This choice ensures that the 

anomaly forcing data can be used with any pre-industrial land-sea mask. Through 

following this procedure, the grid points affected by land-sea mask changes are thus 

filled with the extrapolated model mean anomaly from the LGM coastaln ocean. In 

the case of NorESM-OC (Schwinger et al., 2016), the atmospheric anomaly fields were 

added to its CORE normal-year forcing fields (Large and Yeager, 2004) to obtain an 

LGM normal-year forcing, under the assumption of an unchanged spatial and 

temporal variability for the respective variable. Note that the addition of the anomaly 

fields to the user’s own model forcing could lead to physically unrealistic/not-

meaningful results for some variables (such as negative precipitation or radiation). 

This must be corrected for by capping off sub-zero values (Table 3, #5) after addition 

of the anomaly. 

3 The variables 

3.1 Specific humidity anomaly 

The monthly climatology of near-surface specific humidity is provided at 2 meters 

height in PMIP3. The bulk forcing method of Large and Yeager (2004) requires specific 

humidity (and temperature) at the same height as the wind forcing (10 meters). 

Therefore, specific humidity was re-referenced to 10 meters height for each of the 

four models following the procedure detailed in Large and Yeager (2004). The re-

referencing required the use of wind (u and v components), sea level pressure (CMIP 

variable ‘psl’) and skin temperature (‘ts’, representing sea surface temperature over 

the open ocean), which were taken from the respective ‘piControl’ and ‘lgm’ 

CMIP5/PMIP3 output for each model. The mean anomaly over the four models was 

time interpolated (Table 3, #6) to a 6-hour time resolution from the monthly 
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climatological PMIP3 output. The annual mean lgm-piControl anomaly field (Fig. 1) 

shows a global decrease in specific humidity, as expected from decreased air 

temperatures (Sect. 3.6). The anomaly is most pronounced around the equator, 

where we see a decrease of 2-3 kg kg-1, while the anomaly is near-zero towards both 

poles. The model spread of the anomaly shows a disagreement between the PMIP3 

models generally in the order of 1-2 kg kg-1, without any strong spatial pattern (Fig. 

1). 

Figure 1: Annual mean 10-meter height specific humidity lgm-piControl anomaly (left) and model 
spread (right) in kg kg-1. 

3.2 Downwelling longwave radiation anomaly 

The anomaly for surface downwelling longwave radiation is time-interpolated (Table 

3, #6) to a daily time resolution. The annual mean anomaly field (Fig. 2) shows globally 

decreased downwelling longwave radiation in the ‘lgm’ experiment as compared to 

the ‘piControl’ experiment, in the order of 10-30 W m-2 over most of the ocean due 

to a generally cooler atmosphere (Sect. 3.6). The largest anomalies lie close to the 

northern ice sheets, with up to -90 W m-2 lower radiation in the ‘lgm’ experiment than 

in the ‘piControl’ experiment. Ice is likely also the main contributor to the high (60-90 

W m-2) inter-model spread in North Atlantic and Southern Oceans. The remainder of 

the ocean exhibits a better agreement, with inter-model spreads generally below 20 

W m-2 (Fig. 2). 
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Figure 2: Annual mean downwelling longwave radiation lgm-piControl anomaly (left) and model 
spread (right) in W m-2. 

3.3 Downwelling shortwave radiation anomaly 

The surface downwelling shortwave radiation anomaly field is time-interpolated 

(Table 3, #6) to daily fields as done for downwelling longwave radiation. The annual 

mean anomaly is especially pronounced around the Laurentide and Scandinavian ice 

sheets, where strong positive anomalies of over ~30 W m-2 exist (Fig. 3).  

Figure 3: Annual mean downwelling shortwave radiation lgm-piControl anomaly (left) and model 
spread (right) in W m-2. 

Globally, the annual mean downwelling shortwave radiation anomaly generally falls 

in a range of -15 to +15 W m-2 over the ocean. The anomaly field shows negative 

anomalies as well positive ones in an alternating spatial pattern approximately 

symmetrically around the equator in the Pacific basin. The inter-model spread is 

largest in the North Atlantic region and along the equator (Fig. 3). Due to the large 

model disagreement of up to 50 W m-2 for this variable, the inter-model spread and 
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mean anomaly are of similar magnitude although a consistent pattern is present in 

the anomaly field. 

3.4 Precipitation anomaly 

The anomaly presented here is the lgm-piControl precipitation anomaly at the air-sea 

interface and includes both the liquid and solid phases from all types of clouds (both 

large-scale and convective), and excludes evaporation. The units were converted to 

mm day-1 to comply with the CORE forcing format (causing a deviation from the CF-

1.6 convention). The resulting annual mean anomaly generally falls in the range of -2 

to 2 mm day-1, and is most pronounced along the equator (Fig. 4).  

Figure 4: Annual mean precipitation lgm-piControl anomaly (left) and model spread (right) in mm day-

1. 

The models show a mean increase in precipitation directly south of the equator in the 

Pacific basin, as well as in the Pacific subtropics off the western North-American coast. 

The North Atlantic also receives a mean positive precipitation anomaly, offsetting part 

of the positive salinity anomaly there, which is potentially relevant for the simulation 

of deep water formation in this region (Sect. 3.7). Negative mean precipitation 

anomalies are most pronounced directly north of the equator and north of ~40° N in 

the Pacific basin as well as in the Atlantic Arctic. The inter-model spread is up to ~5 

mm day-1 around the equator, likely due to the model disagreement about the sign 

and location of changes in the inter-tropical convergence zone (Fig. 4). Related to 

precipitation fluxes, river runoff fluxes also changed between the lgm and piControl 
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model experiments. As river routing and flux calculations are very model specific, we 

expect modelling groups to find a suitable solution for their setup themselves, and 

recommend consulting the PMIP guidelines when doing so (Kageyama et al., 2017). 

3.5 Wind anomalies, u and v components 

Both for the u and v component of the wind speed, the lgm-piControl anomaly is time-

interpolated to 6-hourly fields. The annual mean meridional wind velocity (v, 

southerly winds) anomaly shows a pronounced increase (~3-5 m s-1) in southerly 

winds around the NW edge of the Laurentide ice sheet as well as over the NW edge 

of the Scandinavian ice sheet (Fig. 5). Alongside that, a pronounced decrease (~ 3-5 m 

s-1) in southerly winds is simulated along the eastern North American coast and the 

Canadian archipelago. The open ocean anomalies are generally small (at most ±1 m s-

1). The inter-model spread has no pronounced pattern but is sizable, with ~ 1-5 m s-1 

disagreement between the PMIP3 models. The mean zonal wind velocity (u, westerly 

winds) anomaly shows alternating negative and positive anomaly bands with an 

approximate ±2 m s-1 range (Fig. 6). This pattern is stronger in the Northern 

Hemisphere north of ~45° N. The inter-model spread (~1-3 m s-1) has little structure 

except for the ~4-5 m s-1 disagreement in the Southern Ocean south of ~40° S, and 

the ~3-5 m s-1 disagreement in the North Atlantic (Fig. 6).  

Figure 5: Annual mean meridional wind velocity lgm-piControl anomaly (left) and model spread (right) 

in m s-1. 
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Figure 6: Annual mean zonal wind velocity lgm-piControl anomaly (left) and model spread (right) in 
m s-1. 

3.6 Temperature anomaly 

The near-surface atmospheric temperature at 2 m height from PMIP3 is re-referenced 

to 10 meters (as done for specific humidity, Sect. 3.1), and time-interpolated to 

calculate the 6-hourly mean anomaly for temperature. The annual mean anomaly is 

most pronounced in the North Atlantic, where open ocean anomalies exceed 10 K. 

Elsewhere, the annual mean temperature generally is around 2.5 K. There is a clear 

pattern in the model spread: The models show a large spread (>10 K) north of ~45° N, 

as well as south of ~40° S (5-10 K), likely due to the disagreement about ice cover. At 

lower latitudes and over the ocean the model spread is generally smaller (0-3 K) (Fig. 

7). 

Figure 7: Annual mean 10-meter height temperature lgm-piControl anomaly (left) and model spread 
(right) in K. 
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3.7 Sea surface salinity anomaly 

Global mean salinity is initialized in PMIP3 models with a 1 psu higher salinity to 

account for the concentrating effect of the decrease in sea level (Kageyama et al., 

2017). Sea surface salinity however, shows a more variable annual mean lgm-

piControl change due to changes in the global hydrological cycle (Fig. 8). The sea 

surface salinity anomaly is presented on a regular 1x1 grid for ease of use. The 

resulting annual mean SSS anomaly (Fig. 8) shows an increase in sea surface salinity 

(~1 psu) over the Southern Ocean south of ~55° S, as well as in the Arctic (>3 psu) and 

the Northern Indian Ocean (~1 psu). A ~2 psu anomaly is simulated in the Canadian 

Archipelago, the Labrador Sea and across the North Atlantic between what is now 

Canada and Europe (Fig. 8). Freshening is simulated close to some continents, and is 

especially pronounced around Scandinavia (about -3 psu). Simulated ocean 

circulation can be very sensitive to fresh water forcing and thus SSS, especially in the 

North Atlantic (e.g. Rahmstorf (1996), Spence et al. (2008)). Application of SSS 

restoring using the SSS anomaly field should therefore be done with caution and 

attention to its effects on the meridional overturning circulation. Tuning of the salinity 

anomaly in important deep-water formation regions of up to about ±1 psu, such as 

done by for example Winguth et al. (1999), may be required to obtain a satisfactory 

circulation field in reasonable agreement with proxy data. Such adjustments fall well 

within the PMIP3 model spread (Fig. 8), and show the current limitations of fully 

coupled PMIP3 models to simulate the LGM hydrological cycle consistent with proxy 

records of ocean circulation. 

Figure 8: Annual mean sea surface salinity lgm-piControl anomaly (left) and model spread (right) in 
psu. 
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4 Data availability 

The data are publicly accessible at the NIRD Research Data Archive at 

https://doi.org/10.11582/2019.00019 (Morée and Schwinger, 2019). The .md5 files 

contain an md5 checksum, which can be used to check whether changes have been 

made to the respective .nc files. 

5 Summary and Conclusions 

The output of the fully coupled PMIP3 simulations of CNRM-CM5, IPSL-CM5A-LR, 

MIROC-ESM and MRI-CGCM3 is converted to anomaly datasets intended for use in 

forced ocean modelling of the LGM. All anomalies are calculated as the difference 

between the ‘lgm’ and ‘piControl’ PMIP3 experiments. In addition, all data are 

formatted in a way that further conversions (of for example units or the grid) can be 

applied in a straightforward way. The variables are provided in NetCDF format in 

separate files, and distributed by the NIRD Research Data Archive (Morée and 

Schwinger, 2019). A climatological LGM forcing data set can be created for any forced 

ocean model by addition of the presented 2-D anomaly fields to the model’s pre-

industrial forcing. This approach enables the scientific community to simulate the 

LGM ocean state in a forced model set-up. We expect that if additional forcing is 

needed for a specific model, the same approach as described above can be followed. 

This process is simplified by providing all main CDO and NCO commands used in 

creating the dataset (Table 3). All data represent a climatological year, i.e. one annual 

cycle per variable. The application of the data is thus suitable for ‘time-slice’ 

equilibrium simulations of the LGM, and optimised for use with the CORE forcing 

format (Large and Yeager, 2004). 

The uncertainty of our anomaly forcing (approximated by the model spread of the 

PMIP3 models) is generally of similar magnitude as the multi-model annual mean. The 

attribution of the model spread to specific processes is beyond the scope of this 

article, but our results show that there is considerable uncertainty involved in the 
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magnitude of the anomaly for all variables presented here. Nevertheless, all mean 

anomalies show a distinct spatial pattern that we expect to be indicative of the LGM-

PI changes. Finally, there is no other way to reconstruct most of these variables than 

model simulations with state-of-the-art models such as those applied in the PMIP3 

experiments. For modelling purposes, the inter-model disagreement of PMIP3 

provides the user with leeway to adjust the amplitude of the forcing (guided by the 

size of the model spread, which is therefore provided alongside the variables in the 

dataset). Such adjustments can improve model-proxy data agreements, such as 

described for salinity in Sect. 3.7. 
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Abstract. Although both physical and biological marine changes are required to 

explain the 100 ppm lower atmospheric pCO2 of the Last Glacial Maximum (LGM, ~21 

ka) as compared to pre-industrial (PI) times, their exact contributions are debated. 

Proxies of past marine carbon cycling (such as δ13C) document these changes, and 

thus provide constraints for quantifying the drivers of long-term carbon cycle 

variability. This modelling study explores the relative roles of physical and biological 

changes in the ocean needed to simulate an LGM ocean in satisfactory agreement 

with proxy data, and here especially δ13C. We prepared a PI and LGM ocean model 
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state (NorESM-OC) with full biogeochemistry (including the carbon isotopes δ13C and 

radiocarbon) and dynamic sea ice. The modelled LGM-PI differences are evaluated 

against a wide range of physical and biogeochemical proxy data, and show agreement 

for key aspects of the physical ocean state within the data uncertainties. However, 

the lack of a simulated increase of regenerated nutrients for the LGM indicates that 

additional biogeochemical changes are required to simulate an LGM ocean in 

agreement with proxy data. In order to examine these changes, we explore the 

theoretical effects of different global mean biological pump efficiencies on the 

simulated marine biogeochemical tracer distributions. We estimate that (besides 

changes in ocean circulation) an approximate doubling of the global mean biological 

pump efficiency from 38 % (PI) to 75 % (LGM) reduces model-proxy biases the most. 

The remaining absolute model-proxy error in δ13C (which is 0.07 ‰ larger than the 

0.19 ‰ data uncertainty) indicates that additional changes in ocean dynamics are 

needed to simulate an LGM ocean in agreement with proxy data, such as increased 

aging or volume of Southern Source Waters. Besides that, our theoretical approach 

of increasing the biological pump efficiency may be too simplified to capture the 

vertical redistribution of regenerated nutrients – also suggested by a too weak 

chemocline. Our results underline that only those coupled climate models that 

contain the processes and/or components that realistically change both ocean 

circulation and biogeochemistry will be able to simulate an LGM ocean in satisfactory 

agreement with proxy data – and hence be reliable for use in climate projections. 

Therefore, future research should aim to identify the exact physical and 

biogeochemical processes that could have doubled the global mean biological pump 

efficiency (i.e., the interior regenerated signature) between the PI and LGM, with a 

likely central role for Southern Source Waters. 

1 Introduction 

Model and proxy reconstructions of the Last Glacial Maximum (LGM) suggest major 

redistributions of marine biogeochemical tracers and water masses as compared to 
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pre-industrial (PI) times, as well as lower carbon storage in both the land biosphere 

and atmosphere. The culmination of these changes into a ~100 ppm lower LGM 

atmospheric pCO2 concentration (EPICA Project Members, 2004) has driven extensive 

research to identify, understand, and quantify the processes contributing to these 

major atmospheric pCO2 variations (e.g., Broecker, 1982; Broecker and Peng, 1986; 

Heinze and Hasselmann, 1993; Heinze et al., 2016; Sigman et al., 2010; Adkins, 2013; 

Jeltsch-Thömmes et al., 2019). The oceans are of particular interest as they form the 

largest carbon reservoir available for atmospheric exchange on millennial timescales, 

and in addition need to have stored the extra carbon coming from the land biosphere 

and atmosphere during the LGM. Both physical (circulation, solubility) and biological 

processes (biological pump efficiency) likely played a role in the differences between 

the LGM and PI oceans, although their relative importance is under debate: Between 

~25 and ~60 % is attributed to biological processes and the remainder to physical 

changes (Bouttes et al., 2011; Buchanan et al., 2016; Khatiwala et al., 2019). 

Here, we explore the relative roles of marine physical and biological changes needed 

to simulate an LGM ocean in optimal agreement with proxy data. We use the concept 

of the biological pump efficiency (defined as the ability of marine organisms to 

consume surface ocean phosphate, or more specifically the ratio of global mean 

regenerated to total phosphate, Sect. 2.4) to examine its effect on LGM marine 

biogeochemical tracer distributions in concert with physical changes. The global mean 

efficiency of the biological pump is strongly and nearly linearly correlated with 

atmospheric CO2 concentrations (Ito and Follows, 2005) and is considered a key 

concept to understand the atmospheric CO2 drawdown potential of the ocean 

(Ödalen et al., 2018) through its influence on the vertical gradient of marine dissolved 

inorganic carbon (DIC). In our evaluation and discussion, we pay particular attention 

to the role of Southern Source Waters (SSW, waters originating in the Southern 

Ocean), which are thought to be a key component in altering ocean interior tracer 

distributions and glacial atmospheric pCO2 drawdown (e.g., Lynch-Stieglitz et al., 
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2016; Schmitt et al., 2012; Moy et al., 2019; Sigman et al., 2010; Ferrari et al., 2014; 

Morée et al., 2018; Khatiwala et al., 2019). 

Our work represents the first LGM simulation using a forced isopycnic ocean model 

(NorESM-OC; Schwinger et al., 2016; Tjiputra et al., 2020), where all atmospheric 

forcing fields have been adjusted to represent the LGM (Sect. 2). Besides a general 

ocean circulation model (MICOM), NorESM-OC simulates full biogeochemistry 

including the 13C and 14C carbon isotopes (model HAMOCC), as well as dynamic sea 

ice (model CICE) and a prognostic box atmosphere. The simulation of the carbon 

isotopes is particularly useful here as they i) can be directly compared to data from 

sediment cores (e.g., Gebbie et al., 2015; Skinner et al., 2017), ii) are influenced by 

both biological and physical processes (e.g., Broecker and McGee, 2013), iii) give an 

indication which oceanic regions could be most relevant (Schmitt et al., 2012; Morée 

et al., 2018; Skinner et al., 2017) ), and, given the above, iv) are useful in model 

evaluation (Schmittner et al., 2013; Braconnot et al., 2012). We focus on the 

standardized 13C/12C carbon isotope ratio (δ13C; Zeebe and Wolf-Gladrow (2001)), for 

which relatively many LGM data are available (e.g., Peterson et al., 2014; Oliver et al., 

2010). In addition, the 14C/12C carbon isotope ratio (expressed as ∆14C) provides the 

model with an age tracer (radiocarbon age), which can be used to understand water 

mass ventilation and circulation rates, and for comparison with reconstructed ∆14C 

(Skinner et al., 2017; Gebbie and Huybers, 2012). We furthermore evaluate the LGM 

simulation against proxy and/or model reconstructions of water mass distributions, 

sea surface temperature, salinity, sea ice extent, export production, vertical nutrient 

redistribution, atmospheric pCO2, the change in marine dissolved inorganic carbon, 

and O2 (Sect. 3.2). We apply the concept of True Oxygen Utilization (TOU; Ito et al., 

2004) instead of Apparent Oxygen Utilization (AOU) and make use of the explicit 

simulation of preformed biogeochemical tracers in our model (Tjiputra et al., 2020). 

This approach makes it possible to separate physical and biogeochemical drivers of 

the tracer distributions more thoroughly, and accounts for the role of the air-sea 

carbon disequilibrium pump (Khatiwala et al., 2019). We acknowledge that without a 
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land source of C in our simulated LGM ocean (of ~ 850 Gt C, Jeltsch-Thömmes et al., 

2019), nor sediments that could alter CaCO3 cycling and long-term organic matter 

burial (Sigman et al., 2010), we do not expect to simulate the full range of processes 

contributing to glacial-interglacial pCO2
atm changes. Rather, we include estimates of 

these carbon reservoir changes in our evaluation of the LGM biological pump 

efficiency (Sect. 3.3). 

The evaluation against proxy data allows us to evaluate both the physical and 

biological changes needed for simulating the LGM ocean. Notably, in fully coupled 

paleo Earth System Modelling such as in the most recent Paleo Modelling 

Intercomparison Project 3 (PMIP3), only two out of nine Earth System Models 

included marine biogeochemistry in their LGM simulation (IPSL-CM5A-LR (Dufresne 

et al., 2013) and MIROC-ESM (Sueyoshi et al.,2013)). Earth System Models of 

intermediate complexity (and coarse resolution ocean model studies) have shown 

that changes in model (biogeochemical) parameterizations are needed to simulate 

glacial-interglacial cycles in agreement with proxy records (e.g., Jeltsch-Thömmes et 

al., 2019; Ganopolski and Brovkin, 2017; Buchanan et al., 2016; Heinze et al., 1991; 

Heinze and Hasselmann, 1993; Heinze et al., 2016). In our forced ocean model setup, 

we are able to reveal aspects important for modelling the LGM and relevant for 

improving the agreement between fully coupled paleo modelling and proxy data. 

Moreover, our work will help to gain insight in the changes (i.e. physical and 

biological) needed to simulate a different climate state (such as the LGM) - which also 

applies to Earth System Model-based climate projections. 

2 Methods 

2.1 Model description 

We apply the ocean carbon-cycle stand-alone configuration of the Norwegian Earth 

System Model (NorESM) as described by Schwinger et al. (2016), but with several 

modifications for the next generation NorESM version 2 already included. The 
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physical ocean component MICOM (Miami Isopycnic Coordinate Ocean Model; 

Bentsen et al., 2013) has been updated as described in Guo et al. (2019). The 

biogeochemistry component HAMOCC (HAMburg Ocean Carbon Cycle model; Maier-

Reimer, 1993; Maier-Reimer et al., 2005) adopted for use with the isopycnic MICOM 

(Assmann et al., 2010; Tjiputra et al., 2013; Schwinger et al., 2016) has undergone a 

few minor technical improvements (e.g. updated initialisation based on latest data 

products, additional diagnostic tracers) and employs a new tuning of the ecosystem 

parameterization as described in Tjiputra et al. (2020). 

In addition to these changes, the carbon isotopes (13C and 14C) are implemented in 

HAMOCC (Tjiputra et al. (2020)), a prognostic box atmosphere is made available for 

atmospheric CO2 (including 13CO2 and 14CO2; Tjiputra et al., 2020), and an LGM setup 

is made (Sect. 2.2). This is an ocean-only modelling study, where the atmospheric 

forcing is prescribed from a data set (except atmospheric CO2, δ13C and ∆14C, which 

evolve freely; Sect. 2.2). All simulations in this study are done without the sediment 

module of HAMOCC (this is done in order to avoid prohibitively long spin-up times, 

especially for the carbon isotopes; an acceleration method for the model spin-up 

including interactive water column-sediment interaction is work in progress for a 

separate manuscript). Applying the current setup, detritus arriving at the sediment-

water interface is evenly redistributed over the entire water column, while opal and 

CaCO3 are dissolved immediately in the bottom-most mass containing layer. Riverine 

input of carbon and nutrient is also turned off. Furthermore, nitrogen deposition, 

denitrification and nitrogen fixation are excluded from our simulations, as these 

processes cause a long-term drift in the alkalinity inventory of the ocean (and thereby 

the pCO2 of the prognostic atmosphere). 

The two main isotopes of carbon, 13C and 14C, are newly implemented in HAMOCC 

(Tjiputra et al., 2020). The model includes fractionation during air-sea gas exchange 

and photosynthesis, as well as radiocarbon decay. Fractionation during CaCO3 

formation is small as compared to the effects of air-sea gas exchange and 
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photosynthesis, as well as uncertain (Zeebe and Wolf-Gladrow, 2001) and is therefore 

omitted (e.g., Schmittner et al., 2013; Lynch-Stieglitz et al., 1995). Air-sea gas 

exchange fractionation (~8-11 ‰) is a function of surface ocean temperature and the 

CO3
2- fraction of total DIC such that fractionation increases with decreasing 

temperatures (Zhang et al., 1995; Mook, 1986). Biological fractionation (~19 ‰) 

increases surface water δ13C of DIC while producing low-δ13C organic matter. In the 

interior ocean, this light isotope signal from organic matter is released back into the 

water column during remineralization and respiration, thereby creating a vertical 

gradient. HAMOCC applies the parameterization by Laws et al. (1997), where the 

biological fractionation εbio depends on the ratio between phytoplankton growth rate 

and the aqueous CO2 concentration. For 14C, each fractionation factor is set to the 

quadratic of the respective 13C value (i.e., α14C = α2
13C). In addition, 14C is radioactive 

and decays with a half-life of 5730 years to 14N. 

In order to evaluate the carbon isotopes against observations, we derive δ13C and 

∆14C. δ13C is calculated using the standard equation δ13C = (
𝐶13 𝐶12⁄

( 𝐶13 𝐶12⁄ )𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1) ∗

1000 ‰,where ( 𝐶13 𝐶12⁄ )𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 is the Pee Dee Belemnite standard ratio

(0.0112372; Craig (1957)). ∆14C is calculated by standardizing DI14C following δ14C =

(
𝐶14 𝐶⁄

( 𝐶14 𝐶⁄ )𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1) ∗ 1000 ‰, where ( 𝐶14 𝐶⁄ )𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 is the NBS standard

(1.170·e−12; Orr et al., 2017). ∆14C is then calculated from δ14C, following Δ14C =

δ14C − 2 ∗ (δ13C + 25) ∗ (1 +
δ14C

1000
) . ∆14C age presented in this study is derived from

∆14C of DIC following (∆ 𝐶𝑎𝑔𝑒 = −8033 ∗ ln (14 − 8033 ∗ Δ14C/1000) + 1) and is

based on calibrated ∆14C of DIC using an atmospheric value of 0 ‰ for both the LGM 

and PI spinup (Tjiputra et al., 2020). This approach facilitates comparison with the 

radiocarbon disequilibrium data by Skinner et al. (2017). 
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2.2 Last Glacial Maximum setup 

Several adjustments were made to the model in order to obtain an LGM circulation 

field. First, the land-sea mask and ocean bathymetry were adjusted for the ~120 m 

lower sea level in the LGM caused by the increased land ice volume as compared to 

the PI. Following the PMIP4 guidelines in Kageyama et al. (2017) the Bering Strait is 

closed, and the Canadian Archipelago (including Borrow Strait and Nares Strait), 

Barents Sea, Hudson Bay, Black Sea, Red Sea, as well as the Baltic and North Seas are 

defined as land in the LGM. The PI land-sea mask formed the basis for the LGM land-

sea mask, through shifting the PI bathymetry 116 m upwards. If the resulting depth in 

a grid cell was between 0-25 meters, the depth was set to 25 m and negative depths 

were set to land grid points. After this, any channels with a width of only one grid cell 

were closed off as well, as these inhibit sea ice movement in the sea ice model causing 

unrealistic sea ice build-up. LGM freshwater runoff is routed to the nearest ocean grid 

cell but otherwise unadjusted. 

Changes in isopycnal densities and sea surface salinity restoring are applied in the 

LGM model setup in order to ensure an adequate vertical model resolution and ocean 

circulation. A net LGM increase in density due to decreased ocean temperatures and 

increased ocean salinity required increasing all 53 isopycnal layer densities by 1.3 kg 

m-3 in the LGM setup as compared to the PI model setup. NorESM-OC uses salinity 

restoring to avoid long-term drift away from a predefined SSS state. Here, this 

predefined state is chosen, consistent with the atmospheric forcing (see below) as the 

mean of the LGM minus PI SSS anomaly modelled by PMIP3 models added to a PI SSS 

climatology. However, the unadjusted application of the PMIP3-based SSS anomaly 

caused an Atlantic water mass distribution and overturning strength in poor 

agreement with proxy reconstructions (SM 2). Earlier studies have shown a high 

sensitivity of models to SSS restoring, especially in the North Atlantic (Rahmstorf, 

1996; Spence et al., 2008; Bopp et al., 2017). Indeed, the density contrast between 

Northern and Southern source waters drives the simulated Atlantic Meridional 
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Overturning Circulation (AMOC) strength in many of the PMIP2 models (Weber et al., 

2007), and is therefore important for the simulation of overturning strength in 

agreement with proxy records. Therefore, we adjust the SSS restoring present in 

NorESM-OC to obtain a circulation field in better agreement with proxy 

reconstructions: In addition to the PMIP3-based SSS anomaly, we apply a region of -

0.5 psu in the North Atlantic and +0.5 psu in the Southern Ocean (for specifics, see SM 

1), as done similarly by Winguth et al. (1999) or through freshwater fluxes by Menviel 

et al. (2017) and Bopp et al. (2017). 

An atmospheric LGM forcing for NorESM-OC was created by adding anomalies 

(relative to the pre-industrial state) derived from PMIP3 models (Morée and 

Schwinger, 2019; version 1) to the CORE Normal Year Forcing (NYF; Large and Yeager, 

2004). The use of mean PMIP/CMIP anomalies to force stand-alone models is a 

standard approach that has been tested before (Mitchell et al., 2017; Chowdhury and 

Behera, 2019; Muglia et al., 2015; Muglia et al., 2018). Through this approach, the 

effect of the presence of sea ice on the atmospheric state is included in the forcing, 

but the sea ice model handles the actual formation/melt of sea ice. Compared to the 

PI CORE-NYF, the LGM forcing over the ocean has a lower specific humidity (especially 

in the tropics), decreased downwelling longwave radiation, precipitation and air 

temperature, and a heterogeneous change in downwelling shortwave radiation and 

zonal and meridional winds. In addition to the adjustments to the NYF, the dust fluxes 

of Lambert et al. (2015) are used in the LGM model setup, following PMIP4 guidelines 

(Kageyama et al., 2017). The PI setup uses the Mahowald et al. (2006) dust dataset. 

2.3 Initialization and tuning 

All marine biogeochemical tracers were initialized in the LGM as done for the PI spin-

up using the WOA and GLODAPv2 data sets. For the LGM, consistent with the 

decreased ocean volume, all biogeochemical tracer concentration are increased at 

initialization by 3.26 %. Similarly, ocean salinity is uniformly increased by 1 psu, 

following PMIP recommendations. The carbon isotopes (Sect. 2.1) are only enabled 
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after an initial spin-up of the model in order to first obtain reasonably stabilized total 

carbon tracer distributions. DI13C is initialized after 1000 years using the correlation 

between δ13C and apparent oxygen utilization (AOU) in combination with the model’s 

DIC distribution. We applied the δ13C:AOU relationship of the pre-industrial Eide et al. 

(2017) data (δ13C𝑃𝐼 = −0.0075 ∙ AOU + 1.72) and converted to absolute model 13C 

using model DIC and AOU. As this approach uses the model’s ‘native’ AOU and DIC, 

the equilibration time of δ13C was reduced as compared to initialisation with a δ13C 

data product such as that of Eide et al. (2017). Model DI14C is initialized after 4000 

years by first calculating δ14C using a combination of pre-industrial δ13C (Eide et al., 

2017) (with the missing upper 200m copied from 200m depth to all empty surface 

layers) and the observational-based estimate of pre-industrial ∆14C (Key et al., 2004). 

Then, model DI14C is derived from the δ14C by rewriting and solving the 

standardization equation (δ14C = (
𝐶14 𝐶⁄

( 𝐶14 𝐶⁄ )𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1) ∗ 1000 ‰, with model DIC as 

C). Subsequently, isotopic DOC, POC, phytoplankton C, and zooplankton C are 

initialized as done for the corresponding total carbon variable, but multiplied with 

0.98 (as an estimate of the photosynthetic fractionation effect) and the respective 

DI13C/DI12C or DI14C/DI12C ratio. Isotopic CaCO3 is initialized as for total carbon, 

multiplied with DI13C/DI12C or DI14C/DI12C, as we do not consider fractionation during 

CaCO3 formation. 

The prognostic atmospheric pCO2 is initialized at 278 ppm for both spin-ups. At 

initialization of the carbon isotopes, atmospheric δ13C is set to -6.5 ‰ and 

atmospheric ∆14C is set to 0 ‰. Atmospheric pCO2 at the time of initialization is then 

used to calculate the absolute 13C and 14C model concentrations (13Catm and 
14Catm, in 

ppm). 

Two main spin-ups have been made with NorESM-OC: One for the LGM and one for 

the PI, designed as described in Sect. 2.1-2.3. Both the PI and LGM simulations are run 

for a total of 5600 years. 
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2.4 Analysis of the biological pump efficiency 

Here, we explore the effect of an increase in the global mean biological pump 

efficiency (𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅ , Eq. 1), which we define, following Ito and Follows (2005), as the

ratio between global mean regenerated phosphate (𝑃𝑂4
𝑟𝑒𝑔̅̅ ̅̅ ̅̅ ̅̅ ) and global mean total

phosphate (𝑃𝑂4
̅̅ ̅̅ ̅).

𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅ = 𝑃𝑂4

𝑟𝑒𝑔̅̅ ̅̅ ̅̅ ̅̅ /𝑃𝑂4
̅̅ ̅̅ ̅ (1) 

Regenerated phosphate is calculated as the difference between total phosphate and 

preformed phosphate (PO4
pref). PO4

pref is explicitly simulated in the model (Tjiputra et 

al., 2020), and represents phosphate that leaves the mixed layer in inorganic form 

(unutilized by biology). 

We work with the global mean value of 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅  as this governs pCO2

atm (Ito and Follows,

2005; Ödalen et al., 2018). However, we note that major local differences in the ratio 

of regenerated to total phosphate exist in the ocean, for example between North 

Atlantic Deep Water (high-ratio) and Antarctic Bottom Water (low-ratio) (Ito and 

Follows, 2005; DeVries et al., 2012), which thus indicate the differences in potential 

to sequester carbon and nutrients in the ocean interior. Here, changes in 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅  are

calculated in a theoretical framework (off-line) to better understand the LGM 

redistribution of carbon between the land, atmosphere and ocean, and its effects on 

marine biogeochemistry (and corresponding proxy data). Our approach also allows us 

to give an upper estimate of the 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅  of the LGM ocean.

Simulated 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅  can be adjusted to any assumed 𝐵𝑃𝑒𝑓𝑓

̅̅ ̅̅ ̅̅ ̅̅  by changing 𝑃𝑂4
𝑟𝑒𝑔̅̅ ̅̅ ̅̅ ̅̅

(𝑃𝑂4
𝑟𝑒𝑔

𝑛𝑒𝑤
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝐵𝑃𝑒𝑓𝑓𝑛𝑒𝑤

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ × 𝑃𝑂4
̅̅ ̅̅ ̅). The assumed change in 𝑃𝑂4

𝑟𝑒𝑔
 (∆𝑃𝑂4

𝑟𝑒𝑔
) is used to

estimate the effects on DIC, O2 and δ13C using the following relationships: 

𝑂2
𝑛𝑒𝑤 = 𝑂2 − ∆𝑃𝑂4

𝑟𝑒𝑔
× 𝑟𝑂:𝑃 (2) 

𝐷𝐼𝐶𝑛𝑒𝑤 = 𝐷𝐼𝐶 + ∆𝑃𝑂4
𝑟𝑒𝑔

× 𝑟𝐶:𝑃 (3)
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𝛿13𝐶𝑛𝑒𝑤 = 𝛿13𝐶 − 𝑅𝛿13𝐶:𝑃𝑂4
𝑟𝑒𝑔 × ∆𝑃𝑂4

𝑟𝑒𝑔
      (4) 

Model Redfield ratios 𝑟𝑂2:𝑃 and 𝑟𝐶:𝑃 are set to 172 and 122, respectively (following 

Takahashi et al., 1985). 𝑅𝛿13𝐶:𝑃𝑂4
𝑟𝑒𝑔  is the slope of the 𝛿13𝐶: 𝑃𝑂4

𝑟𝑒𝑔
 relationship, which 

is found to be 0.67 in the model (R2=0.76). 

The spatial distribution of ∆𝑃𝑂4
𝑟𝑒𝑔

is an important consideration. We therefore 

explore ∆𝑃𝑂4
𝑟𝑒𝑔

 by applying three different methods: The first method (method ‘add’) 

equally distributes the mean change in ∆𝑃𝑂4
𝑟𝑒𝑔

 over the entire ocean (𝑃𝑂4
𝑟𝑒𝑔

𝑛𝑒𝑤
=

𝑃𝑂4
𝑟𝑒𝑔

𝑚𝑜𝑑𝑒𝑙
+ ∆𝑃𝑂4

𝑟𝑒𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ). The second method (method ‘factor’) takes into account the 

original distribution of 𝑃𝑂4
𝑟𝑒𝑔

𝑚𝑜𝑑𝑒𝑙
 (by calculating ∆𝑃𝑂4

𝑟𝑒𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑃𝑂4
𝑟𝑒𝑔̅̅ ̅̅ ̅̅ ̅̅

𝑛𝑒𝑤
/𝑃𝑂4

𝑟𝑒𝑔̅̅ ̅̅ ̅̅ ̅̅
𝑚𝑜𝑑𝑒𝑙

 

and calculating for every grid cell 𝑃𝑂4
𝑟𝑒𝑔

𝑛𝑒𝑤
= 𝑃𝑂4

𝑟𝑒𝑔

𝑚𝑜𝑑𝑒𝑙
× ∆𝑃𝑂4

𝑟𝑒𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅). The third 

method is as the first, additive, method but only adding the extra regenerated tracers 

to SSW as determined from the conservative PO tracer (method ‘SSW’, see Sect. 3.2 

for the LGM PO tracer distribution). 

It is important to note that 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅  can be changed by several processes: through the 

soft- and hard tissue biological pumps, the solubility pump (Heinze et al., 1991; Volk 

and Hoffert, 1985) and by changes in the physical carbon pump 

(circulation/stratification of the water column). 

3 Results and discussion 

The results presented in Sect. 3.1 and Sect. 3.2 are the annual mean climatologies 

over the last 30 years of the 5600-year PI and LGM spin-ups. We present an evaluation 

of the PI (Sect. 3.1) and LGM (Sect. 3.2) spin-ups and compare the latter to proxy 

reconstructions, and discuss the LGM-PI changes in a theoretical framework exploring 

the efficiency of the biological pump (Sect. 3.3). 
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3.1 The simulated pre-industrial ocean 

The simulated pre-industrial ocean state has a maximum AMOC strength of ~18 ± 0.5 

Sv north of 20° N, which compares favourably to the mean observational estimates of 

17.2-18.7 Sv (Srokosz and Bryden, 2015; McCarthy et al., 2015), especially when 

noting the wide range of modelled AMOC strengths in similar forced ocean setups 

(Danabasoglu et al., 2014). The interannual variability of the simulated AMOC is small 

compared to observations (about ±4 Sv; Srokosz and Bryden, 2015), due to the 

annually repeating forcing. Drake Passage transport is simulated at ~114 Sv, lower 

than recent observational estimate of 173.3 ± 10.7 Sv (Donohue et al., 2016). The 

depth of the transition between the upper and lower overturning cells at 30° S lies at 

~2700 m, comparable to other model estimates (Weber et al., 2007). Temperature 

biases are generally modest (smaller than ± 1.5℃) for most of the ocean above 3000m, 

except for a warm bias related to a too deep tropical and subtropical thermocline. At 

depth (>3000 m) there is a widespread cold bias that originates from the Southern 

Ocean (too much deep mixing and associated heat loss to the atmosphere). Salinity 

biases are generally small, except for a positive bias related to a too strong 

Mediterranean outflow at mid-depth in the Atlantic. Furthermore, the ocean is ~0.2-

0.3 psu too fresh at depths over ~3 km. The mixed layer depth (MLD) is generally 

simulated too deep (compared to the observational estimates of De Boyer Montégut 

et al. (2004)). In the high latitudes, winter month MLD biases in excess of 200 metres 

are present in our model. In low latitudes, MLD is about 20 metres too deep year-

round. The simulated biogeochemistry of the PI ocean is described in more detail in 

Schwinger et al. (2016) although there have been some improvements due to the 

model updates mentioned above as described in Tjiputra et al. (2020). Some features 

of relevance for this study are summarized here: The spatial pattern of primary 

production (PP) compares well with observation-based estimates with the exception 

of the tropical Pacific upwelling, where PP is too high, and the subtropical gyres where 

PP is generally too low. Because of too high PP and export in the equatorial Pacific, a 

far too large oxygen minimum zone (OMZ) with elevated concentrations of 
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regenerated phosphate develops in the model. Otherwise, the global nutrient 

concentrations are in reasonable agreement with modern observations (WOA, 

Glodapv2). 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅  is 38 % for the simulated PI ocean, in good agreement with 

observational estimates of 32-46 % (Ito and Follows, 2005; Primeau et al., 2013). 

3.2 The simulated LGM ocean 

3.2.1 The physical ocean state 

Proxy-based reconstructions describe an LGM circulation that includes a shoaling of 

the upper circulation cell in the Atlantic (Glacial NADW) and expansion and slow-down 

of a cooler and more saline lower circulation cell (Glacial AABW; Adkins, 2013; Sigman 

et al., 2010; Ferrari et al., 2014). In this study, we assume these aspects of the LGM 

ocean to be qualitatively correct, and therefore aim for a model simulation in 

agreement with these features. We note that discussion continues as to the 

magnitude and veracity of these change (e.g., Gebbie, 2014). Most reconstructions 

estimate a weakened AMOC for the LGM as compared to the PI state, although 

estimates vary between a 50 % weakening and an invigoration of AMOC (McManus 

et al., 2004; Kurahashi-Nakamura et al., 2017; Böhm et al., 2014; Lynch-Stieglitz et al., 

2007; Muglia et al., 2018). The maximum overturning strength north of 20° N 

simulated by NorESM-OC is 15.6 Sv (~7 % weaker than simulated for our PI ocean, 

which we attribute to our adjustments and tuning of the salinity restoring). Higher 

uncertainties are involved with reconstructions of the strength of the Antarctic 

Circumpolar Current (ACC), with consensus leaning towards a slight invigoration 

(Lynch-Stieglitz et al., 2016; Lamy et al., 2015; McCave et al., 2013; Mazaud et al., 

2010; Buchanan et al., 2016). We simulate a Drake Passage transport of 129 Sv, which 

is about 13 % stronger than simulated for the PI ocean. The simulated transition 

between the Atlantic overturning cells shoals by ~350m, which falls within the 

uncertainty of reconstructions (Gebbie, 2014; Adkins, 2013; Oppo et al., 2018) (Fig. 

S5). Specifically, the transition lies well above the main bathymetric features of the 

Atlantic Ocean in our LGM simulation (as visible from the transition line in the PO 



Paper III 116 

tracer; Fig. 1). This could have been an important feature of the glacial Atlantic water 

mass configuration due to reduced mixing along topography (Adkins, 2013; Ferrari et 

al., 2014) - i.e., shifting water mass boundaries away from the regions of intense 

internal mixing increases chemical and tracer stratification. The changes in water 

mass circulation cause an increased SSW volume contribution to the Atlantic and 

Pacific basins, as visible from the conservative PO tracer (Fig. 1, and Fig. S4 for Pacific) 

(Broecker, 1974), and in agreement with proxy reconstructions. Radiocarbon age 

increases at depth (Fig. 1c and Fig. S4), with a global volume-weighted mean increase 

of 269 years. This is low compared to the estimate of Skinner et al. (2017) of 689±53 

years, and we find the majority of our radiocarbon age bias to lie at depth in the 

Atlantic (not shown) indicating too strong ventilation and/or biased equilibration of 

these waters (which have a southern source, Fig 1a-b). Furthermore, SSW salinity 

increases (Fig. S6) – also in good agreement with proxy reconstructions (Adkins, 

2013).  

Also relevant for the water mass circulation as well as marine biogeochemistry, are 

the low LGM atmospheric temperatures that cause a mean ocean temperature 

decrease of 1.9 °C in the model. This is less than the 2.57 ± 0.24 °C estimated from 

proxy reconstructions of mean ocean temperature (Bereiter et al., 2018), likely 

because the SSW may not carry a strong enough temperature decrease from the 

atmosphere into the interior ocean in our simulation (Fig. S7) – implying an 

underestimation of negative buoyancy fluxes. While the differences between our 

simulated LGM-PI changes in SST (Fig. S8) do not exhibit the same amount of 

heterogeneity as observed in proxy reconstructions (MARGO Project Members, 

2009), the simulated mean SST change (-1.97 °C) seems reasonable when taking into 

account the uncertainty of SST reconstructions (MARGO Project Members (2009) 

estimate -1.9 ± 1.8 °C; Ho and Laepple, 2015). Further, the general pattern of stronger 

SST cooling outside of the polar regions is captured which is important for the air-sea 

disequilibrium pump (Khatiwala et al., 2019). We simulate an increase in Southern 

Ocean sea ice cover for both summer and winter (Fig. S9), but less than is inferred 
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from proxy-based reconstructions for the LGM (Gersonde et al., 2005) – similar to 

PMIP models (Roche et al., 2012). Southern Ocean sea ice may have played a major 

role in LGM marine biogeochemistry and interior ocean carbon storage (Ferrari et al., 

2014; Marzocchi and Jansen, 2017; Stephens and Keeling, 2000), and could therefore 

explain some of the model biases. Examples are the lack of stratification in the 

Southern Ocean which is thought to be driven by brine rejection from sea ice (Jansen, 

2017), and affect air-sea equilibration of biogeochemical tracers such as DIC and O2 

(Gottschalk et al., 2016a). 

3.2.2. The biogeochemical ocean state 

Proxies for the past biogeochemical state of the ocean (such as export production, 

oxygen concentrations, δ13C) allow us to make a further evaluation of our simulated 

Figure 1 Atlantic zonal mean PO (25-35° W) for (a) the PI and (b) the LGM 
model states. PO = O2 + 172 * PO4 (Broecker, 1974). The line represents the 
respective end-member PO of the Southern source waters (mean Southern 
Ocean surface PO), and thus the extent of Southern source water. (c) The 
change in radiocarbon age between the LGM and PI. See Fig. S4 for the 
corresponding Pacific zonal mean transects. 

(a) 

(b) 

(c) 

PO 
tracer 

PO 
tracer 

∆14C age 
LGM-PI 
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LGM ocean (Fig. 2). The global mean efficiency of the biological pump 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅  decreases

from 38 % in the PI simulation to 33 % in the LGM simulation, as opposed to 

reconstructions which infer an increased regenerated signature in the interior ocean 

(Jaccard et al., 2009; Umling et al., 2018; Freeman et al., 2016). The simulated increase 

in preformed phosphate (Fig. 2) represents an increased (but unused) potential for 

the ocean to draw down atmospheric pCO2 (Ödalen et al., 2018). We can attribute our 

simulated decrease in 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅  to the increase in SSW volume (Fig. 1), as SSW has a low

regenerated signature (Ito and Follows, 2005). Despite the decrease in 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅ ,

simulated pCO2
atm is 21 ppm lower in our LGM setup as compared to the PI setup. We 

attribute this change to the net effect of the i) smaller ocean volume, causing the 

concentration of alkalinity, DIC and salinity and a reportedly ~16 ppm pCO2
atm increase 

(Sarmiento and Gruber, 2006), and ii) the decrease in water temperature, which 

drives a pCO2
atm drawdown of ~30 ppm (Sigman and Boyle, 2000). As we made no 

additional changes to the marine biogeochemical model (except for an LGM dust 

input field), and have no sediment or land model included in our simulation, the ~20 

ppm pCO2
atm drawdown as well as limited changes in regenerated nutrient inventories 

is expected and found in earlier studies (e.g., Buchanan et al., 2016). Similarly, the 

atmospheric δ13C change due to glacial land-vegetation loss is not simulated because 

we only simulate the ocean. 

Simulated changes in Atlantic total phosphate (Fig. 2) agree well qualitatively with 

reconstructed nutrient redistributions, which describe a deep ocean nutrient increase 

and mid-to surface decrease (Buchanan et al., 2016; Gebbie, 2014; Marchitto and 

Broecker, 2006; Oppo et al., 2018). North Pacific waters >2.5 km depth exhibit a lower 

LGM phosphate (and DIC) as compared to the PI, due to the lack of accumulated 

regenerated phosphate (Fig. S10). In agreement with the expectation of increased 

interior carbon storage, simulated interior DIC increases - especially in SSW (Fig. 2). 

As for phosphate, this increase is driven by the physical carbon pump only, through 

higher saturation of surface DIC in the Southern Ocean driven by lower T and 

increased alkalinity (not shown). 
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Figure 2 Atlantic zonal mean (25-35° W) of LGM-PI changes for the original model output. See 
Fig. S10 for the corresponding Pacific sections. Overlay on O2 is qualitative estimates of LGM-
PI changes in O2 within 30° from 30° W, with blue being a decrease, white indicating unclear 
changes and red indicating an increase in O2 (Jaccard and Galbraith, 2011). Simulated LGM-PI 
δ13C is compared to a compilation of LGM minus Late Holocene δ13C data within 30° from 30° 
W (Peterson et al., 2014; Muglia et al., 2018; Molina-Kescher et al., 2016; Sikes et al., 2016; 
Burckel et al., 2016; Gottschalk et al., 2016b-c; Hodell and Channell, 2016; Howe and 
Piotrowski, 2017). 
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However, the biases in simulated O2 and δ13C LGM-PI changes and their respective 

proxy reconstructions are large (Fig. 2). Any mismatch in the absolute values of δ13C 

is not shown here because we compare LGM-PI differences in both the sediment 

cores and model. In line with decreased remineralisation and increased O2 solubility 

due to lower temperatures in the model, O2 concentrations increase throughout the 

ocean (Fig. 2). There is a notable difference between Northern and Southern end-

members in the Atlantic: Northern-source deep waters have increased O2 

concentrations due to physical O2 pumping (colder waters have higher O2 solubility) 

as visible in preformed O2, while SSW O2 increases due to a lack of remineralisation at 

depth due to low oxygen utilization (Fig. 3). The general increase in O2 concentrations, 

Figure 3 Atlantic zonal mean of simulated LGM-PI O2 components True Oxygen Utilization 
(TOU= O2

pref- O2) (Ito et al., 2004) and preformed O2 (O2
pref), which is simulated as the O2 

concentration that leaves the surface ocean, and is thus different from saturated O2 
(Tjiputra et al., 2020). 

TOU 

O2
pref

LGM-PI 
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mostly due to the lack of biological O2 consumption at depth (Fig. 3), is in 

disagreement with proxy reconstructions (Jaccard and Galbraith, 2011) and shows the 

missing regenerated nutrients should mostly come from lacking biological processes 

(remineralization). δ13C of DIC is governed by both ocean circulation (ventilation rate) 

and the efficiency of the biological pump (respiration rate), and their relative 

importance depends on location (Gruber et al., 1999; Schmittner et al., 2013; Eide et 

al., 2017). 

As for O2, the overall increase in simulated δ13C of DIC contradicts δ13C records from 

sediment cores, in which the strengthening of the vertical gradient is a main feature 

(Fig. 2). Deep δ13C and its vertical gradient is for an important part governed by 

biological processes (Morée et al., 2018). As a last comparison, we evaluate our 

modelled changes in export production against proxy data, even though such data 

have poor global coverage and large spatial heterogeneity, and are largely qualitative 

(Kohfeld et al., 2005). LGM export production generally decreases outside of 

upwelling zones in our model (Fig. 4) and increases in upwelling zones (model and 

proxy data, Fig. 4). We conclude that the simulated export production increase may 

Figure 4 Comparison between the simulated LGM-PI change in export production 
at 100m depth and Kohfeld et al. (2005) qualitative data (dots: dark 
purple=decrease, light purple=small decrease, white=no change, light green=light 
increase, dark green=increase). 
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be too weak in the sub-Antarctic and is lacking in the tropical Atlantic (Fig. 4). 

Especially Southern Ocean export production has a large potential to affect interior 

and lower latitude nutrient and DIC concentrations (Sarmiento et al., 2004; Primeau 

et al., 2013), and likely contributes to the simulated low 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅  and low-regenerated

signature in the biogeochemical tracer distributions. Considering the large influence 

of SSW nutrient supply on lower latitude productivity we anticipate a key role for SSW 

here - as supported by proxy data (e.g., Winckler et al., 2016; Costa et al., 2016), 

although local changes in iron fertilization may play an additional role depending on 

local iron limitation (e.g., Oka et al., 2011). 

3.3 The potential of the biological pump 

A decrease in pCO2
atm and increase in regenerated nutrients, despite an increase in 

low regenerated nutrient SSW volume, is likely to occur through the increase of 𝐵𝑃𝑒𝑓𝑓 

(and thus regenerated nutrients) of SSW (Jaccard et al., 2009). In addition, an increase 

in the (Southern Ocean) air-sea disequilibrium of DIC may have kept more carbon 

sequestered in the deep ocean, through increased stratification and inhibition of air-

sea gas exchange by for example sea ice (Jansen, 2017). An increase in the 

regenerated signature of northern source water would have further contributed to a 

global increase in regenerated carbon and nutrients in the interior ocean (Yu et al., 

2019), although occupying a smaller volume. As natural preformed concentrations in 

SSW are high (Ito and Follows, 2005), there is a high potential for these waters to 

obtain a stronger regenerated signature, and thereby facilitate pCO2
atm drawdown 

(Ödalen et al., 2018). Our model results for the LGM-PI change in O2 and δ13C show a 

strong miss-match with proxy records (Sect. 3.2.2 and Fig. 2). Here, we explore the 

effect of a theoretical (‘offline’) increase of regenerated nutrients in the ocean, by 

increasing regenerated phosphate and updating O2, DIC and δ13C accordingly (Sect. 

2.4). The increase is projected on the same simulated physical ocean state presumed 

to represent LGM conditions (i.e. Sect 3.2.1). To the extent that this state represents 

true glacial conditions, it allows for an assessment of the magnitude and nature of 
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marine biogeochemical changes needed for lowering LGM pCO2
atm. In our approach, 

the additional regenerated phosphate is taken from preformed phosphate, thus 

leaving the total phosphate inventory unchanged. Proxy reconstructions of global 

LGM phosphate, however, show that LGM phosphate was redistributed as well as 

elevated (Tamburini and Föllmi, 2009; Filippelli et al., 2007). As we consider a closed 

system (no sediments or land input of phosphate or other elements), only 

redistributions of phosphate can be captured in our model setup. 

We compare the mean error between the model and the δ13C proxy data across a 

wide range of 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅  (20-100 %, Fig. 5), and for the different methods of adding 

regenerated δ13C (Sect. 2.4). Besides the physical and biogeochemical constraints and 

evaluation (Sect. 3.2), we also estimate the LGM-PI change in marine DIC (∆DIC) by 

Figure 5 Efficiency of the biological pump (𝑩𝑷𝒆𝒇𝒇
̅̅ ̅̅ ̅̅ ̅̅ ) versus the mean absolute error between all δ13C 

proxy data and the nearest model grid-cell δ13C, for different methods (Sect. 2.4). Note that the 
original LGM 𝑩𝑷𝒆𝒇𝒇

̅̅ ̅̅ ̅̅ ̅̅  is 33 %. The δ13C sediment core data have an uncertainty of ~0.19‰, shaded 

in grey (Peterson et al., 2014). 
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applying the Bern3D Earth System Model of Intermediate Complexity v.2.0s following 

Jeltsch-Thömmes et al. (2019) (SM 3). Mean ∆DIC is ~4000 Gt C (1 sigma range: 3350 

to 4480 Gt C) based on the constraints given to the Bern3D model (pCO2
atm, δ13Catm, 

marine δ13C of DIC, and deep equatorial Pacific CO3
2-). Contributions to ∆DIC as 

evaluated in the framework of Jeltsch-Thömmes et al. (2019) arise from removal of 

carbon from the ocean by sedimentation-weathering imbalances, coral reef growth, 

increase of the terrestrial carbon storage, and increase in atmospheric CO2 from the 

LGM to PI. The wide spread in the ∆DIC estimate by the Bern3D model highlights 

uncertainties connected to particularly the weathering-burial cycle of carbon over 

glacial-interglacial timescales. 

Using NorESM-OC, the best fit between the modelled and sediment core LGM-PI 

changes in δ13C is found for a 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅  of 75 % (Fig. 5). A 𝐵𝑃𝑒𝑓𝑓

̅̅ ̅̅ ̅̅ ̅̅  of 75 % would lead to

the adjusted tracer distributions shown in Fig. 6 (applying Eq. 2-4). This is true for the 

approach ‘factor’ (described in Sect. 2.4), indicating that taking the distribution of the 

original simulated LGM PO4
reg and strengthening that regenerated signal gives the 

best agreement with sediment core data. The 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅  of 75 % corresponds to an LGM-

PI ∆DIC of ~1850 Gt C. This ∆DIC estimate falls below the overall range (2400 to 5500 

Gt C) given by the Bern3D model and its constraints. If using only one of the above 

constraints, however (pCO2
atm, δ13Catm, marine δ13C of DIC, and deep equatorial Pacific 

CO3
2-), the ∆DIC estimate of ~1850 Gt C lies in the range of Bern3D results (see SM 3 

for details). Furthermore, we expect that values given by the Bern3D model likely lie 

at the high end of estimates (see also discussion in Jeltsch-Thömmes et al., 2019 and 

SM3). Using their idealized model setup, Schmittner and Somes (2016) estimated an 

LGM 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅  of 54-59 % (41 % in PI) and a ∆DIC of 590-790 Gt C by exploring the effects

of a uniform change in the maximum growth rate of phytoplankton. A direct 

comparison between these studies is complicated by the large differences between 

the models, but the differences indicate remaining uncertainties in the magnitude of 

both ∆DIC and LGM 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅ . Nevertheless, LGM 𝐵𝑃𝑒𝑓𝑓

̅̅ ̅̅ ̅̅ ̅̅  seems to have been about 18
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(i.e. 59-41) % and up to 37 (i.e. 75-38) % higher than in the PI. We note that the total 

marine ∆DIC (~1850 Gt C) estimate points towards a central role for the Pacific basin 

to store glacial carbon, if we consider Atlantic LGM storage >3 km depth to be in the 

order of 50 Gt C (Yu et al., 2016). 

In addition to evaluating the model-data fit of δ13C, we evaluate the effect of the 

tracer adjustments on O2. The decrease in O2 for an adjusted 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅  (Fig. 6) shows 

better agreement with qualitative proxy data in the Atlantic (Compare Figs. 2 and 6; 

Jaccard and Galbraith, 2011) as well as the estimated 175±20 μmol kg−1 LGM-PI 

decrease in Sub-Antarctic Atlantic bottom-water (Gottschalk et al., 2016a). Absolute 

LGM O2 (Fig. S11) would decrease to sub-zero O2 concentrations in the North Pacific 

(ca. -100 µmol kg-1), which is of a similar magnitude as the size of the PI model-

observation bias in this area (Tjiputra et al., 2020), but may be too extreme as 

indicated by qualitative proxy data that describe an LGM-PI O2 increase for the North 

Pacific above 3 km depth (Fig. S10; Jaccard and Galbraith, 2011). An increase in 

denitrification could have played a role here, but cannot be evaluated in our model 

setup. Additional (quantitative) estimates of LGM-PI O2 for major water masses would 

thus help to provide further constraints on LGM 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅ . 

Our mean absolute error in δ13C decreases from 0.67 ‰ for the original LGM state 

estimate (Fig. 2) to 0.26 ‰ for the 75% 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅  ocean (Fig. 5 and 6). The remaining 

absolute δ13C error is therefore 0.07 ‰ larger than the proxy data uncertainty. This 

remaining model-data δ13C mismatch of 0.07 ‰ (Fig. 5) as well as the possibly too low 

Pacific O2 (Fig. S10) indicate that projecting changes in 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅  onto the simulated 

glacial circulation field still does not fully align with the actual LGM state - despite 

exploring different approaches for the redistribution of the regenerated nutrients 

(Sect. 2.4). Specifically, even though a 75 % 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅  and the reorganised circulation 

captures most of the magnitude of the LGM-PI δ13C change, the strength of the glacial 

chemocline (the vertical δ13C gradient) remains too weak (Fig. 6). Other modelling 

studies of the glacial ocean show similar biases (e.g., Heinze et al., 2016; Schmittner 
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and Somes, 2016). This suggests additional processes, which would allow stronger 

chemical stratification between intermediate and deep waters, are missing in the 

model(s) and are not explained in a simple way by intensification of the biological 

pump or our simulated changes in circulation. We recognize that optimizing the 

model 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅  to additional (quantitative) proxies such as the nitrogen isotopes could

provide more constraints (Schmittner and Somes, 2016). 

Here, we discuss several processes that could contribute to the remaining model-

proxy error. First, our results may indicate that the water mass production processes 

in the model are not (yet) fully adequate. Interior δ13C is influenced by the source of 

deep waters as well as intermediate waters, the extent of deep convection as well as 

mixing processes between interior water masses (e.g., Duplessy et al., 1988), partly 

on spatial and temporal scales possibly not resolved by our model. The PI simulation 

of a generally too deep Southern Ocean MLD as well as Southern Ocean- attributed 

model-observational biases in biogeochemical tracers (Sect. 3.1; Tjiputra et al., 2020) 

suggest that deep water formation processes indeed are not simulated in full 

agreement with observational data. The lack of a reliable glacial freshwater forcing is 

likely to be partly responsible for errors in the LGM simulation. Too strong exchange 

(mixing) in the LGM ocean between the deep and intermediate waters in models 

could also maintain a too weak glacial chemocline. Our simulated SSW radiocarbon 

ages are too young compared to reconstructions (Fig. 1), consistent with inadequate 

isolation of these waters in the simulation. Aging of these SSW could increase the 

regenerated signature in these waters (consuming O2, and decreasing δ13C of DIC) and 

steepen the chemocline while additionally improving agreement with the Bern3D 

model ∆DIC estimate and radiocarbon age. The simulation of increased Southern 

Ocean sea ice extent and/or formation rate (Nadeau et al., 2019) may be a key player 

for improving simulations of a more stratified and isolated SSW (Ferrari et al., 2014; 

Jansen 2017), which would create older waters with higher regenerated signatures 

and increase the air-sea disequilibrium of biogeochemical tracers such as DIC and O2 

(Gottschalk et al., 2016a) further lowering atmispheric CO2 (Khatiwala et al., 2019). 
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4 Conclusions 

We present a model simulation of the pre-industrial and Last Glacial Maximum (LGM) 

oceans. We use the simulations to explore the relative roles of physical and biological 

marine changes needed to simulate an LGM ocean in satisfactory agreement with 

proxy data. Despite the good agreement between (qualitative and quantitative) proxy 

reconstructions and our simulation of different LGM and pre-industrial (PI) ocean 

circulation, our model is unable to simulate the complete set of biogeochemical 

changes implied by proxy data. Therefore, our results (mainly the lack of increased 

regenerated nutrients) confirm the idea that both biogeochemical (beyond those 

represented by the model) and physical changes must have been at play in the ocean 

to create the LGM pCO2
atm drawdown (Heinze et al., 2016; Bouttes et al., 2011; 

Buchanan et al., 2016). Comparison between a range of qualitative and quantitative 

proxy data and simulated biogeochemical tracers (specifically total dissolved 

inorganic carbon, regenerated phosphate, True Oxygen Utilization, O2 and δ13C) 

reveals that there is a too small signature of regenerated nutrients in our simulated 

LGM ocean. We conduct a theoretical exploration of the effects of changes in the 

global mean biological pump efficiency and quantify its effect on the global mean 

absolute error between simulated δ13C and proxy δ13C data. The smallest error is 

found for an approximate doubling in the global mean efficiency of the biological 

pump 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅  (from 38 % in the PI ocean to ~75 % in the LGM). Such a change minimizes

the simulated global mean absolute error for δ13C from 0.67 ‰ (for the originally 

simulated 33 % 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅  of the LGM) to 0.26 ‰ - only distinguishable by 0.07 ‰ from

the δ13C data uncertainty. It additionally improves the agreement with both 

qualitative and quantitative O2 reconstructions. Much of the remaining model-proxy 

δ13C data mismatch is due to a too weak vertical chemocline in glacial simulations. 

Therefore, scaling of the biological pump efficiency does not fully explain the glacial 

ocean proxy data using the modelled circulation field thought to most closely 

represent the glacial state. We see different explanations of the bias that could 

strengthen the glacial chemocline, such as the further aging (by isolation and 
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stratification) of interior waters through improved simulation of deep-water 

formation, which would increase the regenerated signature of the interior LGM 

ocean. Especially Southern Source Waters would have a large potential (due to their 

large volume contribution) to increase global interior radiocarbon ages and 

regenerated signatures of the interior ocean. 

The estimated 𝐵𝑃𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ ̅̅  increase to 75 % corresponds to an increase in oceanic DIC 

(∆DIC) of ~1850 Gt C. This lies in the range of estimates as derived by the Bern3D Earth 

System Model of Intermediate Complexity constrained by single proxy targets 

(pCO2
atm, δ13Catm, marine δ13C of DIC, or deep equatorial Pacific CO3

2-). If all four 

targets are used as constraints, the range of ∆DIC estimates based on the Bern3D 

model is higher than 1850 Gt C (see Fig. S3 and SM3). In order to disentangle and 

understand the processes contributing to ∆DIC, especially the large contribution from 

sedimentation-weathering imbalances, further work seems necessary.  

The general agreement between our model results and proxy data for ocean 

circulation (within the uncertainty of reconstructions), after adjustments to the sea 

surface salinity field, demonstrates an advantage of our forced ocean model setup, 

and its flexibility, over fully coupled Earth System Models in exploring different 

circulation and biological pump scenarios for explaining glacial CO2 changes. We 

conclude that a large PI-to-LGM increase in the efficiency of the biological pump (from 

38 to ~75 %) as well as a reorganization of ocean circulation/stratification are essential 

for simulating an LGM ocean in optimal agreement with proxy data. Based on this, we 

expect that only fully coupled models that contain the processes and/or components 

that realistically change these aspects will be able to simulate an LGM ocean in 

satisfactory agreement with proxy data. 

Data availability. The model output data for the PI and LGM simulations is available 

at the NIRD Research Data Archive (AT PUBLICATION; DOI). 
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1 Sea surface salinity restoring 

We compare the ocean circulation after 1000 years of simulation in an LGM spinup 

with and without extra adjustments to the sea surface salinity (SSS) reference field 

used for salinity restoring. The adjusted spinup is the one used in our study and 

described in the main text. If unadjusted, the LGM SSS reference field is derived from 

the PI SSS reference field through the addition of a PMIP3-based sea surface salinity 

anomaly (Morée and Schwinger, 2019a; Morée and Schwinger, 2019b) (Fig. S1a). For 

the unadjusted setup NorESM-OC simulated an AMOC of 21 Sv (17 Sv for the adjusted 

spinup), and a Drake Passage through flow of 112 Sv (134 Sv for the adjusted spinup). 

The SSW profoundly decrease their volume in the Atlantic (Fig. S2). As especially the 

retreat of SSW is in disagreement with proxy-based reconstructions (see main text), 

we applied an adjustment to the SSS relaxation of -0.5 psu in the North Atlantic in the 

region where the anomaly was largest, as well as in the Southern Ocean (Fig. S1a). 

The simulated SSS for the adjusted run is shown in Fig. S1b. 

Figure S1 Sea surface salinity anomaly between the LGM and PI, with regions of salinity relaxation 
adjustment. (a) SSS anomaly in model forcing. In addition, the North Atlantic region, which is 
decreased by 0.5 psu, extends between 90°W and 45°W from 40°N to 80°N, and between 45°W to 
10°W from 40°N to 60°N. The additional anomaly is linearly ramped off to zero at the line along 30°N 
and to the point 80°N 10°W. In the Southern Ocean, 0.5 psu is added south of 55°S, and ramped off 
to zero until 40°S. (b) Simulated SSS LGM-PI change. 

(b) (a) 
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2 LGM Normal Year Forcing 

The PMIP3-based atmospheric anomaly fields which were used to obtain an 

atmospheric forcing representative of the LGM (Morée and Schwinger, 2019a; Morée 

and Schwinger, 2019b) received an update (version 2, retrievable in Morée and 

Schwinger, 2019a) after the model simulations for this study were finished. Version 2 

is based on PMIP3 models CNRM-CM5, IPSL-CM5A-LR, GISS-E2-R, MIROC-ESM and 

MRI-CGCM3 for all variables including SSS. In version 1, GISS-E2-R was not included 

and the SSS anomaly was based on CNRM-CM5 and MIROC-ESM. We evaluated the 

differences in the LGM spinup after 500 model years between version 1 and version 

2 of these anomaly fields. We note that the modelled circulation is not fully 

equilibrated yet at this stage, but limit our comparison due to computational costs. 

We conclude that the SSS tuning applied as described in SM1 is specific to version 1 

of the forcing anomaly, and should be adjusted for version 2. 

 

Figure S2 Atlantic PO tracer (as Fig. 1) after 1000 years of spinup without salinity 
adjustment (upper) and with salinity adjustment (lower). 
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3 Calculation of LGM-PI ∆DIC 

We estimate the LGM-PI change in marine DIC content by applying the same approach 

used to estimate ∆land in Jeltsch-Thömmes et al. (2019). To this end, the forcing-

response relationships of seven generic deglacial carbon cycle mechanisms in regard 

to LGM-PI changes in four observational targets (pCO2
atm, δ13Catm, marine δ13C of DIC, 

or deep equatorial Pacific CO3
2-) and DIC are investigated with the Bern3D Earth 

System Model of Intermediate Complexity. The seven processes cover physical 

mechanisms, mechanisms related to oceanic carbonate and organic matter, and 

changes in the land biosphere carbon inventory (for details please see Jeltsch-

Thömmes et al., 2019). These seven generic deglacial carbon cycle mechanisms were 

varied individually by systematic parameter variations in addition to well-established 

forcings such as orbital parameters, greenhouse gas radiative forcing, land ice albedo, 

coral reef regrowth, and North Atlantic freshwater forcing. In a next step, Latin 

hypercube parameter sampling was used to vary the processes in combination and 

probe for nonlinear interactions and use the results to adjust the above forcing-

response relationships. A simple emulator of the form 

∆𝑇 = 𝑎𝑇 + 𝑏𝑇 ∗ (∑ ∆𝑝𝑖 ∗ 𝑆𝑖
𝑇7

𝑖=1 ), 

where 𝑆𝑖
𝑇 = 𝜕𝑇 𝜕𝑝𝑖⁄  is the sensitivity for each target T to each mechanism i and the

corresponding parameter change ∆𝑝𝑖 is derived. 𝑎𝑇 is the offset and 𝑏𝑇  the slope of

the respective linear fit from the multi-parameter adjustment. We use the same half 

a million parameter combinations as used in Jeltsch-Thömmes et al. (2019) and with 

∆DIC as target. The four proxy targets (pCO2
atm, δ13Catm, marine δ13C of DIC, or deep 

equatorial Pacific CO3
2-) are used as constraints. 

Applying single constraints only, yields similar ranges for ∆DIC for each constraint. 

Considering all four proxy targets simultaneously shifts the estimate of ∆DIC to higher 

values (Fig. S3a). We can further disentangle contributions to ∆DIC: Sedimentation-

weathering imbalances contribute the most to ∆DIC and with the largest uncertainty 
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(Fig. S3b). The contribution from corals reflects the uncertainty of the estimated 

amount of coral reef growth. The estimates range from 380 Gt C (Vecsei and Berger, 

2004) to 1200 Gt C and more (Milliman, 1993; Kleypas, 1997; Ridgwell et al., 2003). 

For the discussion of the contribution from the land biosphere the reader is referred 

to Jeltsch-Thömmes et al. (2019). The atmospheric contribution is a result of the 

prescribed LGM to PI CO2 target of 80-100 ppm. The results point to an important role 

and large contribution from sedimentation-weathering imbalances to ∆DIC estimates 

over glacial/interglacial timescales, however, with a large uncertainty. 

It has to be noted that in order to use the cost-efficient emulator and explore a large 

parameter space only the change between LGM and PI was considered. Including the 

spatio-temporal evolution of several proxies in transient model simulations will help 

to further gain understanding into governing processes and narrow down the ∆DIC 

estimate but is beyond the scope of this manuscript. 

 

Figure S3 LGM-PI multi-constraint ∆DIC determined using the Bern3D model. The (a) total estimate 
and (b) contributions from atmosphere, land, coral and sedimentation-weathering imbalances. 
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Figure S4 PO tracer Pacific zonal mean transect for the PI (top) and LGM (middle) simulation as well 
as Pacific change in radiocarbon age (bottom), as Fig. 1. 
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Figure S5 Atlantic stream functions for the PI (top) and LGM (bottom). The depth of the transition 
between the Atlantic overturning cells, as indicated by the depth of the zero Sv contour at 30°S, 
shallowed by ~350 m in our LGM setup as compared to the PI spinup. 
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Figure S6 Simulated LGM-PI change in salinity. 

Atlantic

Pacific 

Figure S7 Simulated LGM-PI change in temperature. 

Atlantic

Pacific 
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Figure S8 Atmospheric forcing (annual mean) (left) and simulated SST anomaly (right) with 
overlay of MARGO SST reconstruction data (Margo Project Members, 2009) 

Figure S9 Southern Ocean sea ice extent (area of sea ice with a concentration 
of >15%) for the PI and LGM simulations. PMIP and observational estimate 
data from Roche et al. (2012) and Marzocchi and Jansen (2017). 
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Figure S10 Pacific LGM-PI changes for the original model output (left-hand column) and adjusted 
to a biological pump efficiency of 75% (right-hand column). Otherwise as in Fig. 2 and 5. 

Figure S11 Simulated LGM O2 concentrations for a 75 % 𝑩𝑷𝒆𝒇𝒇
̅̅ ̅̅ ̅̅ ̅̅ , with a zero 

contour line. 
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Abstract 

The dominant pacing of glacial-interglacial cycles in deep-ocean δ18O records changed 

substantially during the Mid Pleistocene Transition. The precessional cycle (~23 ky) is 

absent during the Early Pleistocene, which we show can be explained by cancellation 

of the hemispherically anti-phased precessional cycle in the Early Pleistocene interior 

ocean. Such cancellation develops due to mixing of North Atlantic and Southern 

Ocean δ18O signals at depth. We explore the cancellation potential for different North 

Atlantic and Southern Ocean deep-water source δ18O values using a tracer transport 

ocean model. Cancellation of precession occurs for all signal strengths and is 

widespread for a signal strength typical for the Early Pleistocene. Early Pleistocene 

precessional power is therefore likely incompletely archived in deep-sea δ18O records, 

concealing the true periodicity of the glacial cycles in the two hemispheres. 

Plain Language Summary 

δ18O records from deep-sea sediments show a pronounced difference in periodicity 

between the Early (~2-1 Million years ago) and Late (~1-0 Million years ago) 

Pleistocene - the Mid-Pleistocene Transition, MPT. Representing changes in ice 

volume and temperature, these δ18O records are an important source for our 

understanding of long-term climate variability. A central conclusion based on these 

δ18O records is that glacial-interglacial cycles considerably changed their rhythm 

during the Mid-Pleistocene. Curiously, the ~23 000 year (precessional) cycle of solar 

insolation is absent in Early Pleistocene δ18O records - despite its presence in solar 

insolation forcing to the ice sheets. Climate feedbacks involving (sea) ice, geological 

processes and carbon cycling may have contributed to the MPT. We, however, show 

that the absence of an Early Pleistocene precession signal in deep-sea δ18O records 

could be the result of destructive interference in the deep ocean, caused by the anti-

phasing of the precessional cycle between the North Atlantic and Southern Ocean 

deep-water sources. We explored the potential for cancellation with an ocean model 

and show that interference can indeed cause widespread cancellation, particularly in 
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the Early Pleistocene. We, therefore, conclude that the δ18O incompletely archives 

climatic cycles, challenging our understanding of long-term climate variability. 

1. Introduction

Changes in the Earth's orbital parameters cause variations in solar insolation, the 

Milankovitch cycles, on the time scales of precession (~ 23 ky), obliquity (~ 41 ky) and 

eccentricity (~ 100 ky) (Milanković, 1920). In the early 1980s, it became clear that the 

orbital parameters strongly correlate with the dramatic variations in marine sediment 

δ18O records during the Pleistocene (Imbrie et al., 1984). As marine δ18O relates to ice 

sheet volume and temperature (Elderfield et al., 2012), Pleistocene glacial-interglacial 

variations were postulated to be driven by the Milankovitch cycles (Hays et al., 1976; 

Imbrie et al., 1984). δ18O proxy records, however, show a pronounced change in 

dominant Milankovitch periodicities from the Early to Late Pleistocene, at the Mid 

Pleistocene Transition (MPT). The Early Pleistocene (here taken as 2-1.2 Ma) is 

referred to as ‘the 41 ky world’ (Raymo & Nisancioglu, 2003) due to the dominance of 

the 41 ky obliquity periodicity in the proxy records. The Late Pleistocene (here taken 

as 0.8-0 Ma) is referred to as ‘the 100 ky world’ because of the dominance of 

periodicities between 80 and 120ky, and has all three Milankovitch cycles represented 

in deep-sea δ18O records. 

The transition from the 41 ky to the 100 ky world (i.e., the MPT) is not yet fully 

understood. Most hypotheses explain the MPT by changes in global or hemispheric 

ice sheet volume, where smaller ice sheets are considered to respond on shorter 

timescales (i.e. 23 and 41 ky cycles), whereas larger ice sheets respond on longer 

timescales (i.e. 100 ky cycles). A higher atmospheric pCO2 is reconstructed for the 

Early Pleistocene as compared to the Late Pleistocene, particularly for the glacials 

(Hönisch et al., 2009; Seki et al., 2010). This comparatively high Early Pleistocene 

atmospheric pCO2 is associated with smaller ice sheets, while lower atmospheric pCO2 

favors colder climates and larger ice sheets in the Late Pleistocene. The relatively 

smaller Early Pleistocene ice sheet volume could also be related to the existence and 
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slow erosion of a relatively soft regolith bed beneath the Laurentide ice sheet, 

inhibiting the build-up of larger ice volume pre-MPT (Clark et al., 2006; Clark & Pollard, 

1998). Sea ice may have played a role: the activation of the ‘sea ice switch’ during the 

MPT due to general Pleistocene climate cooling could have paced a ~100 ky rhythm 

of the ice ages post-MPT through its influence on atmospheric temperature and 

moisture fluxes (Gildor & Tziperman, 2000). Alternatively, the change in periodicity 

could be explained by climate variability on timescales beyond the Pleistocene, where 

the MPT triggered a different cyclic variability through the albedo discontinuity at the 

snow-ice edge (Crowley & Hyde, 2008). Recently however, studies increasingly stress 

the importance of long-term atmospheric pCO2 and temperature decline, interacting 

with regolith removal and/or Southern Ocean iron fertilization as the driver of the 

MPT (Berger et al., 1999; Chalk et al., 2017; McClymont et al., 2013; Willeit et al., 

2019). 

2. The Antiphase Hypothesis  

An alternative view of both ‘the 41 ky world’ and the MPT is that part of the change 

in periodicity observed in the δ18O proxy records is due to the cancellation of the cyclic 

precessional signals in the interior ocean (Raymo et al., 2006). We build on the work 

by Raymo et al. (2006) and test the feasibility of cancellation of the hemispherically 

anti-phased precessional signal in deep-sea δ18O records (the “Antiphase 

Hypothesis”) (Shakun et al., 2016), and note strong spatial variations in the 

occurrence of such cancellation. According to the Antiphase Hypothesis, precessional 

cancellation occurs before the MPT only (i.e., in the Early Pleistocene). This contrast 

in the occurrence of precessional cancellation across the MPT is explained by 

variations in the relative δ18O source signal strengths from the two main deep-water 

formation regions (in the North Atlantic and Southern Ocean) - which influence the 

strength of precession relative to obliquity at depth. Consequently, the change in 

source-signal strengths is recorded in the δ18O of marine sediments as an apparent 

change in dominant periodicity. 
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There are several lines of evidence in favor of the Antiphase Hypothesis. For example, 

one would expect a prominent precessional influence throughout the Pleistocene 

based on classic Milankovitch theory. In addition, evidence for precession-driven 

Northern Hemispheric ice volume (Raymo et al., 2006; Shakun et al., 2016) implies a 

prominent precessional component in δ18O records throughout the Pleistocene. 

Under the Antiphase Hypothesis, both of these dynamical expectations would hold, 

as long as both poles contribute a precession δ18O signal to the interior ocean. Given 

new proxy data, we will be able to verify to what extent deep-sea δ18O indeed 

represents surface climatic oscillations by using proxies of ice volume not influenced 

by interior cancellation of precession - such as δ18O records from Antarctic ice core 

records across the MPT (Dahl-Jensen, 2018). 

3. Results

3.1 Southern versus northern influence 

Assuming that deep-water formation mostly occurs during the winter season in both 

hemispheres, we hypothesize that the mixing of deep-water from the two main deep-

water formation regions (the Southern Ocean and North Atlantic; Figure 1) can lead 

to cancellation of the precessional signal in deep-sea δ18O sediment records. This is 

due to the hemispheric anti-phasing of the precessional signal in insolation for a given 

season (Milanković, 1920), and because of the inflow of meltwater from the ice sheets 

into the Southern Ocean and North Atlantic deep-water formation regions (Figure 1). 

The relative amplitude of the southern versus northern deep-water signals (the S/N 

ratio) is key for the potential of precessional cancellation in δ18O proxy records. The 

S/N ratio depends on the interplay between: i) the respective deep-water volume 

contribution of the northern and southern sources and their overturning rates; ii) the 

δ18O source signature of the northern and southern ice sheets; and iii) the amplitude 

and the variability of the northern and southern ice sheet volumes. We consider the 

net effect of these different aspects through the S/N ratio, as they individually are not 
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well constrained over the course of the Pleistocene. Shifts in the S/N ratio can have 

implications for other water column tracers as well, especially if changes occur in the 

deep-water volume contributions from the northern and southern source regions 

(Marinov et al., 2008). Such changes would induce variations in the interior storage of 

carbon and atmospheric pCO2 (Marinov et al., 2008; Toggweiler, 1999) - and therefore 

the greenhouse effect, which again would influence ice sheet volume and 

temperature. 

Figure 1. Scaled insolation forcing (W m2) at 65°N and 65°S with the corresponding power density 
spectrum (W2 m-4 ky) of the northern (i.e. North Atlantic, within 50-80°N and 100°W-20°E) and 
southern (i.e. Southern Ocean, ≥ 60°S) source regions. These two source regions are named N and S 
on the map. 

As we anticipate that the S/N ratio is key for the potential of precessional cancellation, 

we expect a profound change in the S/N ratio during the MPT – causing precessional 

cancellation in the δ18O records before the MPT, but not after. Indeed, the influence 
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of the southern and northern hemisphere on global climate variability varied greatly 

over the past 35 My (De Vleeschouwer et al., 2017), showing potential for large shifts 

in the S/N ratio. Since deep-sea δ18O records are strongly correlated with sea level 

changes (Spratt & Lisiecki, 2016), reconstructions of glacial-interglacial ice sheet 

volume variability expressed as sea level equivalents (s.l.e.) can be used to understand 

past changes in the S/N ratio. Before the Early Pleistocene ‘41 ky world’ (i.e., > ~2-1.2 

Ma), we expect a large S/N ratio since it precedes the onset of Northern Hemisphere 

glaciation (which occurred ~3.6-2.4 Ma; Mudelsee and Raymo (2005)) (i.e., S/N>>6).  

Figure 2. Concept of the decrease in S/N ratio from the Early to the Late Pleistocene, as based on 
s.l.e. reconstructions. The S/N ratio is determined by the relative contribution of the northern versus 
southern signals (Figure 1).

For the Early Pleistocene, a best (but uncertain) estimate of the S/N ratio is in the 

range of 0.2-0.5: the northern ice sheet contributed ~20-40 m s.l.e. to glacial-

interglacial sea level variability (Berger et al., 1999; Willeit et al., 2015). At the same 

time, total sea level generally varied by at most ~50 m, of which the Antarctic ice sheet 

contributed 4-8 m s.l.e. (Sutter et al. (2019); Figure 2). After the MPT, global ice sheet 

volume increased (Berger et al., 1999; Elderfield et al., 2012), with a glacial-interglacial 

sea level variability reaching ~120 m (Spratt & Lisiecki, 2016) causing a further 

decrease in the S/N ratio (S/N<<0.2). In this period, the Late Pleistocene, the Antarctic 

ice sheet likely did not contribute more than ~15 m s.l.e. to glacial-interglacial sea 
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level changes, due to the relative stability of the West Antarctic ice sheet (DeConto & 

Pollard, 2016; Sutter et al., 2019). 

Using a tracer transport model of modern ocean circulation, we explore how an 

absent precessional signal could develop in the δ18O records, as a function of S/N 

ratios. In order to do so, we prescribe the model’s North Atlantic and Southern Ocean 

surface water end-members with their respective solar insolation (at 65°N and 65°S) 

over the past 200 ky (Figure 1) for a large range of S/N ratios (for details on experiment 

design, see SI Text S1). The range of S/N ratios represents the range of δ18O source 

water properties that could exist over time. Note that the spectrum of the forcing 

contains a similar power for the obliquity and precessional cycles. We apply the Total 

Matrix Intercomparison model (TMI) (Gebbie & Huybers, 2012) to explore the fate of 

the cyclic northern and southern surface forcing signals in the interior ocean (SI Text 

S2). The respective deep-water volume contribution of the northern and southern 

sources to the interior are kept constant and represent over ~75% of the total bottom 

water volume in the model (Figure S1). The importance of boundary conditions for 

the interior tracer distribution has been explored extensively with the TMI model, 

including on palaeoclimatic time scales (Oppo et al., 2018). However, the deep-water 

formation sites and overturning rates may have varied over the Pleistocene 

(Hasenfratz et al., 2019; Kleiven et al., 2003). We evaluate the potential effects of 

changes in circulation strength (advection and diffusion) and find that they do not 

change the basic process behind the Antiphase Hypothesis (SI Text S3). 

3.2 Cancellation of precession  

Cancellation or weakening of the precessional amplitude relative to obliquity 

amplitude occurs in the ocean interior for any non-zero S/N ratio (Figure 3 and S2), 

suggesting that such cancellation could occur at any point in Earth's history where 

deep-waters from the two hemispheres (with an anti-phased signature) mix in the 

interior ocean. Our estimate of the Pleistocene S/N ratio is less than 0.5 based on sea 

level reconstructions (Figure 2). For the Early Pleistocene, the estimated S/N ratio of 
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~0.2-0.5 makes it likely that cancellation of precession played a major role in δ18O 

records, particularly at depth in the Pacific basin (Figure 3 and S2). In the Late 

Pleistocene S/N decreased to values <<0.2, for which we do not expect widespread 

cancellation (Figure 3 and S2), causing precession to re-appear in the post-MPT δ18O 

records. 

A stronger amplitude of the southern sourced signal (i.e., high S/N ratio) generally 

pushes the region of cancellation northward in all ocean basins (Figure S2). At the 

same time, the areal extent of the bottom water cancellation is greatly reduced when 

it migrates from the Pacific into the Atlantic basin. The dominant contribution of the 

southern source waters in the Pacific (Gebbie (2012); Figure S1) results in widespread 

Pacific cancellation only when the amplitude of the southern source is relatively weak 

(S/N<1). For high S/N ratios (S/N>6, as expected before the onset of glaciation in the 

Northern Hemisphere), precessional cancellation is limited to the mid-Atlantic 

interior ocean (Figure 3). Also for an S/N ratio of ~1-2, we expect no cancellation of 

precession in the Pacific and very limited cancellation in the Atlantic and Indian 

Oceans (Figure S2). The amplitude of the southern source signal relative to the 

northern deep-water source is therefore key in the development of cancellation. An 

improved estimate of end-member values (i.e., δ18O from ice released into the ocean) 

for the Early and Late Pleistocene would help to determine the importance of 

cancellation for each of these distinct periods.  

There is a notable exception to the dominance of southern source waters in the mid 

and high latitude North Atlantic. Here, the >75% contribution of northern source 

waters dominates the interior signal and prevents cancellation of the precessional 

signal relative to obliquity north of ~40°N, regardless of the strength of the southern 

source amplitude (Figure 3). Interestingly, a weak precessional amplitude off the 

southwestern African coast is present for nearly any S/N ratio (Figure S2).  

The area prone to cancellation of precession has a vertical structure (Figure 3 and S3, 

S4). This shows that most of the interior ocean is prone to cancellation, or weakening 
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of the precessional signal relative to obliquity, but that the cancellation is not spatially 

uniform.  

Figure 3. Ratio of precessional to obliquity spectral power, as received from the northern and 
southern sources (Figure 1). Data are normalized by the 41 ky obliquity power at each grid point (SI 
Text S1) and presented for the S/N ratios 0.125, 0.2, 0.5 and 6 as denoted to the lower left of the 
respective maps. The area were the spectral power is less than 0.2 is hatched (in orange) to show the 
potential extent of cancellation of precessional power relative to obliquity. White regions received 
no signal from either the northern or southern sources (Figure 1). Data are presented at the bottom 
layer, an Atlantic section (at 30°W) and a Pacific section (at 180°). The vertical axis of the sections is 
in hundreds of meters. The full range of S/N experiments are presented in Figure S2 (bottom layer), 
Figure S3 (Atlantic) and Figure S4 (Pacific). 

We conclude that in the South Atlantic, Indian and Pacific Ocean basins, the Early 

Pleistocene absence of a strong precessional power in δ18O records could be 

explained by the mixing of North Atlantic and Southern Ocean sourced deep-water 

masses. Moreover, this result is robust with respect to changes in circulation strength 

(SI Text S3 and Figure S5). If the S/N ratio decreased during the Pleistocene, as 

suggested by reconstructions of ice sheet volume variability, such cancellation would 

disappear in the Late Pleistocene - explaining the transition from the ‘41 ky’ to the 
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‘100 ky’ worlds observed across the Mid Pleistocene Transition in the deep-sea δ18O 

records. 

3.3 Artificial sediment cores 

Location is fundamental for the potential of any S/N ratio to locally reduce 

precessional power relative to obliquity (Figure 3). Artificial sediment cores taken at 

the locations of ODP849 (mid-Pacific) and DSDP607 (North Atlantic) show the 

asymmetry in basin response to different S/N ratios (Figure 4). The mid-Pacific 

ODP849 core shows cancellation for S/N ratios 0.375 and 0.5. In contrast, the North 

Atlantic DSDP607 core shows no weakening strong enough to explain a cancellation 

of the precessional signal within the Pleistocene range of S/N ratios (Figure 4). This 

asymmetry is a direct consequence of the circulation and water mass contributions, 

with the Pacific dominated by southern source waters, and the North Atlantic 

dominated by northern source waters (Figure S1). Cancellation is more sensitive to 

differences in source signal strengths (Figure 3) than to changes in circulation strength 

(Figure S5) – highlighting that changes in S/N ratio are decisive for the cancellation at 

a particular core location. The basin asymmetry reveals a possible challenge with the 

interpretation of global stacks of δ18O records: if interpreted as a whole (Lisiecki & 

Raymo, 2005), any inter-basin asymmetries in spectral power sensitivity to changes in 

S/N ratio are not considered. The spectra of the ODP849 and DSDP607 sediment core 

δ18O time series show the absence of precessional power at both sites during the Early 

Pleistocene (Figure 4). This appears to be at odds with the Antiphase Hypothesis, 

given that the simulated North Atlantic and mid-Pacific δ18O time series respond 

differently to a change in S/N ratio (Figure 4). We show that cancellation of precession 

played a major role in the interior Pacific during the Early Pleistocene (0.2≤S/N≤0.5, 

Figure 3, Figure S2 and Figure 4). 
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Figure 4. Power spectrum of the model sensitivity experiments and sediment core δ18O data at core 
sites ODP849 and DSDP607, after Figure S1 in Raymo et al. (2006). Cancellation is defined at a 
normalized precessional power < 0.2, and is indicated by the grey area. Spectral noise is subtracted 
from the sediment core data in order to reveal the dominant frequencies (SI Text S4). 

The Atlantic, north of ~40°N, does not exhibit cancellation for typical Pleistocene S/N 

ice volume ratios (S/N≤0.5, see DSDP607 in Figure 4), but this could change if the 

influence of southern source waters increased. Such an increased southern influence 

could develop through shoaling of the upper Atlantic overturning cell – increasing the 

volume contribution of the southern source waters to the North Atlantic. Such a 

shoaling and northward extension of southern source waters is indeed reconstructed 

for cold periods during the Pleistocene (Böhm et al., 2014). Another important factor 

is the potential for changes in the relative strength of the precession and obliquity 

signal in the two end-members. As postulated by (Raymo et al., 2006), the Antarctic 

ice sheet transitioned from a largely land-based ice sheet to a marine-based ice sheet 

at the MPT. This is not only expected to have changed the amplitude of the Southern 

Hemisphere signal, but also the relative strength of obliquity and precession. 

Typically, marine based ice sheets are expected to respond less to precession given 

that the relative contribution from seasonal surface melt is reduced. Thus, the 

absence of a pronounced precessional power in Early Pleistocene deep sea δ18O 
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records is a complex combination of multiple causes, and resolving the changes in the 

glacial cycles at the MPT relies on careful consideration of the location and depth of 

the marine sediment cores.  

Our results show that precessional cancellation, expected from the Antiphase 

Hypothesis, occurs for all S/N ratios and persists across different circulation strengths. 

This causes an incomplete recording of hemispheric anti-phased glacial-interglacial 

cycles in the deep-sea δ18O records. Accounting for this cancellation is therefore 

crucial for the correct interpretation of δ18O records across the MPT at specific core 

locations as well as when stacking different deep-sea sediment records to estimate 

variations in global ice volume. 
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Introduction 

This Supporting Information supplies the reader with additional details on Experiment 

design (Text S1), the TMI model (Text S2), the model experiments on circulation 

changes (Text S3) and the analysis of the artificial and real sediment cores (Text S4). 

All model output was created during the period June-August 2019 and is available in 

NetCDF format. A spectral analysis has been done on these output data (details in 

Text S1), based on which we have presented our results (e.g., Fig. 3) and drawn our 

conclusions. 

Text S1. Experiment design. 

Two main global deep water formation areas are defined, one in the North Atlantic 

and one in the Southern Ocean (Figure 1). At the lowest model layer, the two water 

masses combined account for a majority (>70%) of the surface signal at the bottom 

layer for 86% of the grid cells (Figure S1). The North Atlantic source and Southern 

Ocean source both contribute similar amounts to the Atlantic basin, while the 

Southern Ocean deep water dominates the Pacific basin (Figure S1). 

Model forcing is the May-July (N) mean spring-summer solar insolation at 65°N and 

the November-January (S) mean solar insolation at 65°S, respectively (Figure 1) 

(Huybers, 2018; Berger & Loutre, 1992). The forcing is dominated by the obliquity of 

the Earth's axis and the precession of the equinoxes (~41 and ~23 ky respectively), as 

these have the strongest power of the Milankovitch cycles (36). The insolation is 

scaled by subtracting the mean amplitude such that the mean of the forcing is zero. 

The solar insolation forcing is assumed to represent the respective hemispheric 

seasons that drive temperature and ice sheet volume, and thereby δ18O. We choose 

a reference case (S/N=1) where the amplitude difference is similar (Figure 1). In order 

to explore the effects of the relative contribution (i.e. amplitude) of the Northern and 

Southern source waters (Figure 1), we perform a set of sensitivity experiments across 

a wide range of S:N relative amplitudes (namely 0.125:1, 0.15:1, 0.2:1, 0.25:1, 0.375:1, 
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0.5:1, 0.75:1, 1:1, 1.1:1, 1.2:1, 1.25:1, 1.5:1, 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 6:1). The 

model is run forward for 200 ky using a 200 y time step. The model drift after 200 ky 

is negligible, although the variability in the surface forcing naturally causes cyclic 

behavior for as long as the model is run. After 200 ky of model runtime, we calculate 

the spectral power of the total signal received from the northern and southern 

sources (i.e., Figure 1) and plot the results in normalized form (e.g., Figure 3 and Figure 

S2-5). The spectral analysis is done using function ‘specx_anal’ from NCAR Command 

Language (NCL), which performs a forward Fourier transformation on a given time 

series after de-trending. The results are normalized to the obliquity power at each 

location in order to show the change in relative importance of precession to obliquity 

per grid cell. As the total power received by each grid cell increases with increasing 

S/N, this method facilitates comparison across all S/N experiments. 

Text S2. Model description. 

We apply the global ocean Total Matrix Intercomparison (TMI) transient tracer 

simulation model, version 7 (Gebbie & Huybers, 2011; Gebbie & Huybers, 2012). The 

horizontal resolution is 4° x 4°, and the ocean is vertically resolved in 33 layers, which 

correspond to the 33 vertical levels off the WOCE Global Hydrographic Climatology. 

The solution of TMI method represents the mean water mass age at each ocean 

interior point as based on inverse modelling using data of pre-industrial radiocarbon, 

temperature, seawater δ18O (δ18Osw), PO4
3-, NO3

-, O2 and salinity (δ18Osw from GISS 

(Legrande & Schmidt, 2006); ∆14C from GLODAP (Key et al., 2004); other tracers from 

the WOCE Global Hydrographic Climatology (Gouretski & Koltermann, 2004). The 

ocean circulation in the TMI model is therefore a constant, pre-industrial vector field 

of mean arrival times from any surface source box (2806 potential sources) to any 

point in the ocean interior. TMI version 7 considers the integrated effect of the water 

mass contributions (the sources) to any interior water mass, while in addition allowing 

for transient changes in the surface boundary forcing. As we are interested in a 

conservative tracer in this study (δ18Osw), this transient setup of the model is suitable 
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for testing the effects of variable δ18Osw surface forcing on interior δ18Osw 

distributions. Moreover, it is computationally efficient and thus allows for long model 

runs as well as sensitivity experiments. 

Text S3. Estimate of the effect of circulation changes. 

In order to estimate the effect of a changing circulation on our results, we randomly 

vary the strength of global advective and diffusive fluxes within a 50-150% range of 

the original (pre-industrial) strength (Figure S5). Circulation strength is varied on an 

irregular timescale with a mean timescale of change of ~1600 y. Differences at the 

bottom ocean layer are small. 

Text S4. Core analysis. 

The sediment cores presented in Figure 4 (DSDP607 and ODP849) show benthic δ18O 

records of the Pleistocene as well as artificial model equivalents for these locations. 

P. Huybers dated the sediment records with an age model constrained by

geomagnetic events (Huybers, 2007). This is fundamental as many other cores are 

orbitally tuned (Lisiecki & Raymo, 2005) and can therefore not be used for our type of 

analysis. The sampling resolution of the original dataset was at most 4 ky, which was 

linearly interpolated to a constant 1 ky time step in order to allow Fourier analyses. 

The record average between 0.7 Ma and present was then subtracted to account for 

the local mean offset (Huybers, 2007). We separately analyzed the two periods of 

interest, i.e. the Early Pleistocene (taken as 2-1.2 Ma) and the Late Pleistocene (taken 

as 0.8-0 Ma). The power density spectra are calculated based on the multi-taper 

spectral analysis Matlab routine by P. Huybers, although adapted to Python (package 

scipy.fftpack). For each period, the power density spectrum was best fitted with a 

bending power law to find the density spectrum of the noise (Vaughan et al., 2011). 

The power density spectrum of the noise was then subtracted to reveal the significant 

frequencies. As for the model results, the core spectra were normalized by the periods 

maximum power density of obliquity (in the 30-45 ky range). 
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For the artificial model cores the spectrum was based on each of the full 200 ky model 

runs per S/N experiment at the nearest grid cell to the DSDP607 and ODP849 cores. 

The spectral power was calculated using a standard discrete Fourier transformation, 

without any additional corrections. 

Figure S1. Volume contribution to the bottom layer of the model expressed as fraction of total grid 
cell volume. (A) Total contribution from northern and southern surface source regions, (B) northern 
source contribution, and (C) southern source contribution. 

  

(A) 

(B) 

(C) 
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Figure S2. Bottom layer precessional power of the signal (normalized by the local 41 ky obliquity 
power) for all S/N experiments. A precessional power <0.2 is hatched to show the potential extent of 
cancellation. 
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Figure S3. Atlantic (30° W) precessional power of the signal (normalized by the local 41 ky obliquity 
power) for all S/N experiments. A precessional power <0.2 is hatched to show the potential extent of 
cancellation. The vertical axis of the sections is in hundreds of meters. 
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Figure S4. Pacific (180°) precessional power of the signal (normalized by the local 41 ky obliquity 

power) for all S/N experiments. A precessional power <0.2 is hatched to show the potential extent 

of cancellation. The vertical axis of the sections is in hundreds of meters. 
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Figure S5. Five random variations of ocean circulation strength (advection and diffusion fluxes) for 

the S/N=0.2 experiment. 
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Abbreviations 

AABW  - Antarctic Bottom Water 

ACC  - Antarctic Circumpolar Current 

CMIP   - Coupled Model Intercomparison Project 

CORE   - Atmospheric forcing for ocean models (Large and Yeager, 2004) 

DIC  - Dissolved Inorganic Carbon 

HAMOCC2s - Hamburg Oceanic Carbon Cycle Circulation Model Version 2s (Heinze 

and Maier-Reimer, 1999; Heinze et al., 2016) 

LGM  - Last Glacial Maximum 

LGM-PI  - LGM minus PI 

MPT   - Mid-Pleistocene Transition 

NorESM - Norwegian Earth System Model 

NorESM-OC - Stand-alone ocean carbon-cycle configuration of the Norwegian Earth 

System Model version 1.2 (Schwinger et al., 2016) 

pCO2
atm  - Atmospheric pCO2 

PI   - Pre-Industrial 

PMIP  - Paleoclimate Modelling Intercomparison Project 

POC  - Particulate Organic Carbon 

SO  - Southern Ocean 

SSW  - Southern Source Water 

TMI  - Total Matrix Intercomparison model version 7 (Gebbie and Huybers, 

2012) 

δ13CDIC  - δ13C of DIC, also denoted as δ13C 
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