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Abstract 

Obesity is a highly prevalent disease underlying several chronic diseases including 

Type 2 diabetes (T2D) and cardiovascular diseases (CVDs). Thus, increasing levels of 

obesity is associated with a series of co-morbidities and elevated risk of premature 

death. Obesity results from a chronic positive energy balance, causing white adipose 

tissue dysfunction, which in turn promotes dyslipidemia, systemic lipotoxicity and 

insulin resistance, eventually leading to ectopic fat accumulation and chronic diseases 

in multiple organs, including the heart, liver, arteries and kidneys.  

 

Unlike white adipocytes, beige fat cells are capable of disposing of excess energy by 

heat dissipation, thus protecting against obesity-related disease. Recently, two 

developmental transcription factors, IRX3 and IRX5, were shown to inhibit beige 

adipogenesis via an obesity associated risk genotype-dependent activation in 

preadipocytes. The aim of this study was therefore to investigate whether reducing 

IRX3 or IRX5 expression in adipose tissue offers protection from obesity, and if so, by 

which mechanisms. 

 

In paper I, we randomized wild type (WT) and Irx5 knock-out (KO) mice to a control 

or high-fat diet, and measured body weight, fat mass and global gene expression in 

adipose tissue. We found Irx5-KO mice to be lean and completely protected from diet-

induced obesity. This was found to be partially attributable to increased mitochondrial 

respiration and thermogenesis due to reduction of Irx5 and App specifically in 

adipocytes. 

 

In papers II and III, we investigated the role of Irx3 in transcriptional regulation of 

adipogenesis, using WT and CRISPR-Cas9 mediated KO of Irx3 in preadipocytes, 

followed by RNA-, ATAC- and ChIP-sequencing. We found Irx3 to be critical for 

adipogenic identity and the ability of precursor cells to differentiate into mature 

adipocytes. Moreover, this lineage control was found to be mediated by direct 

transcriptional regulation of chromatin remodeling factors by Irx3.  
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In conclusion, genetic repression of Irx3 or Irx5 offers strong protection against 

obesity, and reduces adipose tissue mass partially by increasing thermogenesis and 

improving mitochondrial respiration in existing adipocytes, and partially by preventing 

the formation of new adipocytes. 

 

This work has implications for identifying patients with genetic predisposition to 

obesity, who could benefit from potential therapeutic intervention targeting IRX3 or 

IRX5. 
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1. Introduction 

1.1 Obesity 

1.1.1 Body composition and fat storage 

Overweight and obesity are defined by the World Health Organization (WHO) as 

excessive fat accumulation that increases health risk [1]. The most widely used 

population-level measure of body composition is the body mass index (BMI), defined 

as a person’s weight in kg divided by the square of the height in meters (kg/m2). WHO 

defines the following BMI categories of body composition (Table 1): 

Table 1: Definitions of BMI categoriesa 

Category BMI (kg/m2) 

Underweight < 18.5 

Normal weight 18.5-24.9 

Overweight ≥ 25 

Obesity ≥ 30 

Obesity class I 30-34.9 

Obesity class II 35-39.9 

Obesity class III ≥ 40 

a According to WHO guidelines [2]. 

Although useful to estimate body composition on the population level, BMI does not 

take into account lean mass, making it less accurate on the individual level. Moreover, 

BMI does not consider the distribution of body fat, which has a profound impact on 

health risk and can broadly be divided into two main depots (Figure 1); fat stored in 

the trunk (visceral intraabdominal, or omental adipose tissue), which is associated with 

increased mortality and elevated risk of a range of metabolic diseases including T2D, 

hypertension and heart disease, and fat stored under the skin (subcutaneous adipose 

tissue), which is considered less harmful [3–10]. Disease-associated visceral adipose 

tissue normally constitutes only about 10-20% of total body fat in men and 5-10% in 

women [11], but this ratio may vary greatly in different individuals. Thus, subjects with 
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matched BMI and total fat mass may have large variations in visceral adiposity, and 

thereby also in disease risk [5,12].  

  

Figure 1: Main human adipose tissue depots 

Human adipose tissue is distributed into different depots with distinct properties and associations with 

disease risk. Subcutaneous depots include gluteal, femoral and abdominal subcutaneous adipose tissues 

located just below the skin. Visceral depots, also known as omental fat, surrounds the intestines and 

other inner organs deep within the abdomen. Figure adapted with permission from [11]. Copyright 

Elsevier. 

 

To better evaluate visceral adiposity and predict disease risk, measuring waist-hip-ratio 

(WHR) or waist circumference (WC) alone is more accurate than BMI and far more 

feasible than imaging modalities like computed tomography (CT) and magnetic 

resonance (MR) [5–7,13–16]. Sex-specific WC and metabolic risk categories are 

shown in Table 2, although these thresholds are debated [15] and do not take into 

account, i.e., Asian populations that tend to have increased visceral adiposity at lower 

BMI [2,8]. Moreover, WHR and WC fail to distinguish subcutaneous fat in the 

abdominal region from visceral fat [5,8]. Despite these arguable shortcomings, WC is 
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widely used as one of five parameters used to define “metabolic syndrome”, together 

with levels of circulating triglycerides, high-density lipoprotein (HDL)-cholesterol, 

fasting glycaemia and blood pressure [8]. 

Table 2: Waist circumference and metabolic riska,b,c 

Metabolic risk Waist circumference (cm) 

 Men Women 

Increased ≥ 94 ≥ 80 

Substantially increased ≥ 102 ≥ 88 
 

a Categories suggested by Lean et al. [13]. 
b Risk assessment by Han et al. [17]. 
c Adapted from [2]. 

 

 

1.1.2 Prevalence and impact of obesity 

Global prevalence of overweight and obesity has increased with near pandemic 

proportions during the past four decades. Since 1974, the global prevalence of 

overweight in adults has almost doubled from 22% to 39%, and the prevalence of 

obesity nearly tripled from 4.7% to 13% [18,19]. Thus in the world today, more than 

2.1 billion adult individuals are in the overweight BMI range and 650 million have 

obesity [1]. In the USA, 35% of men and 40% of women were classified as obese in 

2014 [20]. In comparison, preliminary data from the most recent Norwegian 

epidemiological study, The Nord-Trøndelag Health Study (HUNT4), suggest that 

23.5% of men and 22.5% of women in Norway were obese in 2018 [21]. These figures 

are supported by WHO estimates for 2016 [22].  

Given the high prevalence of overweight and obesity, what is the impact on affected 

individuals and on the society? Elevated BMI is a well-known risk factor for several 

noncommunicable and chronic diseases, including T2D, osteoarthritis, cancer, 

microvascular diseases (retinopathy, nephropathy, neuropathy) and macrovascular 

diseases like heart disease and stroke, which were the leading cause of death in 2012 

[1].  
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Large epidemiological studies have clearly shown that increases in BMI above 30 is, 

on the population level, associated with an exponential increase in mortality risk [23–

25]. Although the association is indisputable for obesity, it has been debated whether 

the same association also holds for overweight (BMI 25-29.9) as, for instance, a large 

meta study found little evidence for increased mortality risk in this category [26]. 

Clarifying this issue was important owing to the large number of overweight 

individuals that would potentially be at risk. Adams et al. [23] initially made the same 

observations, but when limiting the analysis to non-smokers, the increased mortality 

rate was apparent already in overweight subjects, and this finding was even stronger in 

people 50 years of age (Figure 2). In this subgroup, the risk of death increased by 20-

40% with overweight and 200-300% with obesity [23]. These findings were supported 

by more recent meta-analyses, including 1.5 million people of European ancestry [27] 

and 239 prospective studies from four continents, which both found similar hazard 

ratios [25].  

 

Figure 2: Relative risk of death according to BMI 

Dose-response curve for mortality according to BMI in men, adjusted for age, ethnicity, education, 

alcohol consumption and physical activity. The “All men” category includes smokers and is adjusted 

for number of smoked cigarettes per day. The reference point (relative risk of 1.0) is the midpoint of a 

reference group with BMI between 23.5-24.9. Similar results were obtained for women. The figure is 
adapted with permission from [23], Copyright Massachusetts Medical Society. 
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Apart from increasing the risk of premature death, the abovementioned chronic 

diseases associated with obesity, like CVD, cancer and T2D, are also major causes of 

disabilities and economic burden on health care systems [15]. In European countries, 

overweight and obesity was found to be responsible for 80% of cases of T2D, 35% of 

ischemic heart disease and 55% of hypertensive disease among adults [28,29]. The cost 

for heart disease survivors is large, both in terms of disabilities and requirement for 

costly drugs [15]. However, the far most expensive public health consequence of 

obesity is diabetes, which in the USA alone has tripled, from a yearly cost of 99 to 327 

billion dollars between 1995 and 2017 [30,31]. Patients with diabetes now accounts for 

25% of the entire US health care budget [31]. In Norway, the prevalence of T2D 

increased from 4.9% to 6.1% between 2009 and 2014, but the incidence was reduced 

by about 30% [32], indicating that the disease prevalence is now starting to level out. 

Overall, however, obesity poses a great personal health- and societal economic burden 

[15,33]. 

 

 

1.1.3 Mechanisms underlying co-morbidities of obesity 

Adipose tissue dysfunction 

The mechanisms underlying the co-morbidities of obesity are complex, involving a 

range of metabolic, cellular and physiological pathways that converge on 

cardiovascular diseases, as shown in Figure 3. Chronic excess energy is converted into 

triacyl glycerides (TAG) and stored as lipid droplets in adipocytes, providing a 

reservoir to buffer day-to-day variations in energy balance [34]. However, with a 

constant energy surplus, the demand for lipid-storing capacity increases, promoting an 

increase in both adipocyte size and numbers, resulting in enlargement of adipose tissue 

depots [35]. The ability of such adipocyte expansion depends on the plasticity of the 

extracellular matrix (ECM), a mesh of proteins that maintains the structure of the 

adipose depot. At some point, however, the enlarged adipocytes have no more room to 

expand, leading to a series of pathological effects, including ECM fibrosis, adipocyte 

lipid leakage, hypoxia, inflammation, cell death and changes in secreted adipokines, 
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all promoting local and systemic insulin resistance [35,36]. Recruitment and 

polarization of immune cells to pro-inflammatory M1 macrophages further exacerbates 

the insulin resistance in adipocytes [35,36]. 

 

 
 
Figure 3: Pathways mediating the effect of adiposity on disease and mortality risk  

Chronic energy surplus and adipose expansion leads to adipose tissue dysfunction, which increases the 

risk of chronic diseases (red boxes) and premature death via multiple pathways, including insulin 

resistance, lipotoxicity and dyslipidemia. Adapted with permission from [36], Copyright 

Massachusetts Medical Society. 
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Insulin resistance and ectopic fat accumulation 

Insulin is a strong suppressor of lipolysis [35,37], thus insulin resistance in adipocytes 

results in increased lipolysis, involving hydrolysis of TAG to free fatty acids (FFAs) 

and glycerol, which are released into the bloodstream [36,37]. Subsequent elevation of 

circulating FFAs is a major contributor to the systemic insulin resistance observed in 

people with obesity [36] (Figure 3). One mechanism mediating this effect is hepatic 

lipotoxicity [37]. Adipocyte-derived FFAs and glycerol are taken up by the liver, 

promoting β-oxidation and increased gluconeogenesis, as well as hepatic insulin 

resistance and insulin-independent hepatic TAG accumulation [37]. This mechanism 

serves a protective role in glucose homeostasis during starvation, where its temporary 

activation in response to depleted glycogen stores helps maintain normoglycemia [37]. 

However, with chronic overnutrition, this process turns pathogenic when locked in a 

positive feedback loop with chronic insulin resistance in adipose tissue and in the liver, 

leading to lasting elevated glucose output from the liver. 

 

In addition to promoting glucose production via β-oxidation, excess FFAs and glycerol 

taken up by the liver can be esterified to TAG, resulting in ectopic lipid accumulation 

in the liver (Figure 3). This process, also known as steatosis, results in non-alcoholic 

fatty liver disease (NAFLD). Prolonged steatosis can lead to immune cell infiltration 

and inflammation, a condition characterized as non-alcoholic steatohepatitis (NASH), 

which in turn can progress into fibrosis and cirrhosis, characterized by impaired liver 

function due to cell death and excessive scarring of the hepatic tissue [38]. 

 

A second detrimental effect of chronic elevation of circulating FFAs is insulin 

resistance in skeletal muscles, the major site of glucose disposal. Here, increased 

uptake of FFAs promotes esterification to diacyl- and triacyl glycerides (DAG and 

TAG, respectively). DAG has been shown to translocate to the plasma membrane and 

inhibit the phosphorylation cascade of the insulin receptor (IR) signaling pathway. 

Additionally, other FA intermediates, including ceramides, serve similar inhibitory 

roles on the IR. The resulting impaired insulin sensitivity leads to reduced glucose 
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uptake and glycogen storage in the skeletal muscles, thus further elevating blood 

glucose [37]. 

Type 2 diabetes 

Taken together, chronic overnutrition leads to adipose dysfunction, systemic insulin 

resistance, elevated hepatic glucose secretion and reduced glucose uptake in skeletal 

muscles, which together promotes hyperglycemia [37] (Figure 3). In response, 

pancreatic β-cells secrete more insulin to achieve normoglycemia, until eventually β-

cells exhaustion occurs, leading to impaired insulin output and manifested 

hyperglycemia, a condition referred to as glucose intolerance or prediabetes. With 

progressively deteriorating β-cell function, T2D will eventually develop [39–42]. 

Table 3 summarizes the clinical thresholds for prediabetes and T2D by the oral glucose 

tolerance test (OGTT) or the HbA1c test. In the OGTT test, the fasting plasma glucose 

(FPG) of the patient is measured, followed by oral administration of 75 gram glucose 

and measurement of the plasma glucose after 2 hours [43]. Although commonly used, 

this test only reflects the blood glucose levels at the time of testing, and is therefore 

susceptible to day-to-day variations. Therefore, glycated hemoglobin (HbA1c), which 

reflects the average plasma glucose levels over the past 3 months, is now the 

recommended mean to diagnose diabetes [44]. For both tests, however, a value above 

the diagnostic threshold should be confirmed in a second test on a different day before 

a diagnosis can be made. 
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Table 3: Diagnostic thresholds for prediabetes and T2D 

Category OGTTa,b HbA1ce 

 Baseline (FPGc) 2h (PGd) Average past 3 months 

 mM mg/dL mM mg/dL mmol/mol % 

Normal < 5.6 < 100 < 7.8 < 140 < 39 < 5.7 

Prediabetes 5.6 – 6.9 100 – 125 7.8 – 10.9 140 – 199 39 – 47 5.7 – 6.4 

T2D ≥ 7.0 ≥ 126 ≥ 11.0 ≥ 200 ≥ 48 ≥ 6.5 

a Oral glucose tolerance test. 

b Defined by the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus [43]. 

c Fasting plasma glucose. 

d Plasma glucose. 
e According to WHO guidelines [44]. 

 

 

Vascular complications of obesity and T2D 

Chronic hyperglycaemia, particularly in conjunction with insulin resistance, 

dyslipidaemia, hypertension and obesity, promotes both microvascular as well as 

macrovascular diseases with detrimental effects on multiple organs, including the 

heart, brain, kidneys, skin and eyes, as reviewed in [45].  

Diabetic microvascular complications, involving small blood vessels (capillaries), 

include retinopathy, neuropathy and nephropathy. Retinopathy is characterized by 

visual disabilities and blindness, mediated by loss of the protective pericytes that 

surround endothelial cells of the capillaries, leading to abnormal capillary constriction, 

proliferation and weakening of vessel walls [45]. In the advanced stage of the disease, 

excessive compensatory proliferation of new abnormal blood vessels may lead to 

detachment of the retina, resulting in blindness [45]. Neuropathy affects about 50% of 

diabetic patients [46] and includes peripheral neuropathy, which often manifests as 

lower-limb pain, loss of sensation and foot ulcers, as well as autonomic neuropathy, 

leading to abnormal heart rate [45]. Finally, about 25% of diabetic patients have some 
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degree of elevated albumin levels in the urine, indicating renal dysfunction, or 

nephropathy, which can eventually progress to renal failure [45,47]. 

CVDs include macrovascular complications of the large blood vessels (arteries and 

veins), leading to coronary and peripheral arterial diseases and cerebrovascular disease, 

and is the major cause of death, both in the general population, and particularly  in 

people with T2D [1,45,48]. A common etiology for these diseases is atherosclerosis, 

the narrowing of arteries due to plaque formation, mainly consisting of accumulated 

cholesterol, calcium and immune cells within the arterial walls [49]. Over time, these 

plaques may obstruct blood flow, causing local heart attack or peripheral arterial 

disease, depending on the affected artery. Moreover, plaques may burst and release 

blood clots, which in turn can block the blood flow elsewhere, including the brain and 

heart, causing stroke and heart attack, respectively [45,49]. 

The risk of vascular diseases is exacerbated with increased severity and duration of 

diabetes, through multiple mechanisms (reviewed in [45]). Common for both micro- 

and macrovascular diseases is the accumulation of advanced glycation end products 

(AGE), which have a wide range of adverse effects, including overproduction of 

endothelial growth factors, induction of apoptosis, changes in extracellular matrix 

proteins and inhibition of blood vessel relaxation due to blocked nitrous oxide 

production [45]. Chronic hyperglycaemia also induces abnormal PKC and RAS 

signalling pathways, smooth muscle cell dysfunction, platelet aggregation and 

promotes chronic inflammation, which further promotes vascular disease [45]. 

Ectopic fat deposition in obesity further contributes to CVD. Accumulation in the liver 

and skeletal muscles contribute to local and systemic insulin resistance and lipid 

dysregulation, as described above. Ectopic fat surrounding the heart, coronary and 

peripheral arteries promotes atherosclerosis, and negatively affects cardiac function via 

paracrine signalling, whereas fat in and around the kidneys contribute to increased 

blood pressure and albuminuria [50]. Finally, fat deposition in and around the pancreas 

promotes β-cell dysfunction and impaired insulin secretion [51,52]. 
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1.2 The causes of overweight and obesity 

In its simplest terms, obesity is caused by a chronic positive energy balance where the 

energy intake and/or absorption outweighs the energy expenditure. The aspects 

influencing this energy balance, however, include a complex interplay between 

environmental, genetic and epigenetic factors [36]. 

 

1.2.1 Environmental and lifestyle factors 

During the past 7 decades, the per capita food availability and consumption has 

increased steadily [53], with a particular rise in energy-dense, processed and palatable 

foods, including sugar-sweetened beverages [36,54]. These types of food tend to 

circumvents normal appetite regulation, leading to further elevated energy intake 

[33,55]. The importance of energy intake is highlighted by clinical trials that clearly 

demonstrate the benefit of caloric restriction [56,57]. Coincidingly with increased 

energy intake, the overall energy expenditure has dropped as time spent on physical 

activities at home, work and during leisure has been replaced with time filled with 

sedentary activities [33,36,58,59].  

There is also a range of other environmental, personal and societal factors that 

contribute to obesity, including sleep patterns, socioeconomic status, education, city 

planning/design, gut microbiota and even social networks, as reviewed in [57], as well 

as more frequent use of medicines that have weight gain as a side effect [36].  

 

1.2.2 Genetic contribution to obesity 

Despite exposure to the same environment as obese individuals, many people appear 

resistant to developing obesity, suggestive of protective genetic factors. The heritability 

of obesity was reported already in 1894 [60], and genetic factors have since been 

demonstrated, through family, adoption and twin studies, to explain 70-80% of 

variation in observed BMI [61–64]. Therefore, genetic factors can be considered 

powerful modulators of susceptibility to an obesogenic environment. Evidence for this 
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hypothesis was provided by overfeeding and exercise intervention studies in twins, 

where weight change, and particularly body fat distribution, was strongly correlated 

within twin pairs, but not between pairs [65,66]. Therefore, identifying causal obesity 

genes would be immensely valuable to identify individuals at risk, and ultimately 

provide therapeutic targets.  

Monogenic obesity 

Pinpointing the genes that influence obesity has proved challenging, as only eleven rare 

forms of monogenic obesity have been identified [36]. This form of obesity is typically 

caused by protein-altering mutations in single genes with high penetrance, meaning 

that loss-of-function of these genes almost invariably leads to obesity. The most well-

studied examples include deficiency in the leptin (LEP), leptin receptor (LEPR) and 

melanocortin-4 receptor (MC4R) signaling axis, key components in hypothalamic 

regulation of appetite and energy expenditure [36,67]. Among these, and all the other 

monogenic obesity genes, heterozygous mutations in MC4R are by far the most 

common, occurring in 2-5% of obese children in Europe [34,67–69]. Collectively, 

these monogenic obesity disorders are classified as non-syndromic. In addition, there 

exists about a dozen extremely rare syndromic forms of monogenic obesity [67]. These 

are characterized by mental retardation, dysmorphia and various organ abnormalities, 

with obesity as a secondary feature [67]. Prader-Willi´s syndrome is the most studied 

obesity syndrome, and is mainly caused by genetic deletions in the paternal allele of 

MKRN3. As the maternal allele is usually epigenetically silenced, only truncated 

protein from the paternal allele is expressed, leading to disease [67]. Other examples 

include Bardet-Biedl´s (BBS) and Alström´s syndromes, both caused by mutations 

leading to dysfunctional cilia [67]. Taken together, monogenic obesity accounts for 

only about 5% of total obesity, suggesting that more complex genetic interactions 

explain the majority of genetic contribution to obesity. 
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1.2.3 GWAS – The hunt for elusive obesity gene variants 

Identification of gene variants associated with obesity were long hampered simply 

because most variants in the human genome were unknown. However, the advent of 

large biobanks [70], combined with new genome-wide genotyping technologies and 

the identification of the most prevalent human single-nucleotide polymorphisms 

(SNPs) through the 2003 HapMap project [71], paved way for genome-wide 

association studies (GWAS) of a range of diseases and traits [72], including T2D [73–

76] and obesity [77]. In GWAS, the SNPs of a large number of individuals with a 

specific phenotype, i.e. obesity, are compared with a similarly sized control group with 

a different phenotype, for example normal BMI. If a specific variant is found more 

frequently in case versus control, it is associated with disease. This method 

revolutionized the field of medical genetics and enabled the identification of hundreds 

to thousands of variants associated with obesity and T2D [72,78–81].  

The missing heritability 

In contrast to the rare, high-impact variants causing monogenic disease, the vast 

majority of variants detected by early GWAS studies were common variants, with 

minor allele frequencies of more than 5%, and typically moderate effect sizes, with 

odds ratios between 1.1 and 1.5 [34]. These early GWAS analyses were often 

underpowered and were still only able to explain less than 5% of variations in BMI 

[34,72], which is far from the expected 70-80% that was estimated from the twin 

studies [82]. It was believed that this “missing heritability” was due to missing high-

impact rare variants [83], but with the tremendous increase in GWAS sample sizes in 

recent years, it became clear that there is a very long tail of genetic variants with 

moderate to diminishing allele effects that constitute the genetic predisposition to late-

onset obesity [72,84,85]. 

Limitations of GWAS 

The main challenge today is to make sense out of this newfound knowledge and link 

variants to biological mechanisms [86]. There are a number of challenges and 

limitations with GWAS data, as reviewed in [72,87]. Firstly, 90-95% of the associated 

SNPs are typically located in noncoding regions [88,89], thus not affecting protein 
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sequence, but rather gene regulation through promoter and enhancer elements [72,87]. 

This greatly complicates interpretation of the SNP function, particularly for SNPs in 

enhancers, because most enhancers as well as their target genes are usually unknown. 

Therefore, the effect of each SNP on the expression of nearby genes must be 

computationally predicted and experimentally tested [72]. For variants in promoters 

and some enhancers, this test is straightforward as the closest gene usually is the target. 

However, many enhancers have a regulatory range of hundreds of kilobases, some 

reaching up to 1.5 million, due to chromatin folding [90,91]. In this range, there may 

be tens to hundreds of candidate target genes. Consequently, each of the thousands of 

obesity-associated SNPs may in turn regulate up to hundreds of genes, making 

mechanistic follow-up a daunting task. Chromosome conformation capture techniques 

may give clues as to what chromosome regions interact, but these methods generally 

have low resolution and cannot establish causality [72]. 

Secondly, the reported trait-associated SNP may not be the causal variant, but rather 

merely a tag marking the genomic area associated with the causal variant [72,87]. This 

results from humans being a young species, with many genomic regions in high linkage 

disequilibrium, meaning that despite overall variations in the genome, some stretches 

of DNA always contain the same set of SNPs, so-called haploblocks [72]. For each 

trait-associated SNP, there may therefore be one or several nearby causal variants 

[92,93]. Without knowing the precise genomic location of the associated variant, one 

cannot predict the affected binding site for DNA-binding proteins, thereby hindering 

elucidation of the cis-regulatory mechanism.  

Finally, because GWAS data only point at the genomic location of a trait-associated 

variant, they reveal little about which cells and tissues that are relevant, or when in a 

person’s embryonal and postnatal life the variant has an effect. Taken together, these 

challenges have led to a disappointing progression towards the discovery of novel 

genes and molecular pathways regulating obesity. 
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1.3 The obesity-associated FTO locus 

The FTO locus provides a prime example of the challenges faced when interpreting 

GWAS data, but also how these challenges can be overcome. The locus, harboring 89 

common variants in intron 1 of the FTO gene, shows the strongest GWAS association 

with obesity across age and ethnicity [77,94–98]. Adults homozygous for this risk 

variant alone have an 1.7-fold increased odds of obesity and an average additional 

weight of 3 kg compared to non-risk carriers [77]. Initial analyses focused on regulation 

of FTO itself, which was found to have DNA demethylase activity, be highly expressed 

in hypothalamic regions and be crucial for control of energy balance [99] through 

promoting energy intake [100–106]. Overexpression and knockout studies in mice 

subsequently demonstrated that FTO promoted obesity and glucose intolerance, 

suggesting that FTO itself could be the target gene of the FTO intronic obesity-

associated SNPs [87,96,107–109]. However, human subjects homozygous for a coding 

mutation that inactivates the FTO enzymatic activity did not develop obesity [110], 

suggesting that FTO is not the primary target of these obesity-associated variants [96]. 

Instead, investigators turned to the nearby genes, FTS, RPGRIP1L, IRX3, IRX5 and 

IRX6. 

 

1.3.1 Target genes of the FTO locus 

The RPGRIP1L gene was comprehensively investigated by the Leibel group who 

proposed, through a series of publications, that FTO and RPGRIP1L are co-regulated 

by binding of the homeobox factor CUX1 (also known as CUTL1) to the FTO variant 

locus, leading to modulations of the leptin receptor in hypothalamic cilia, as reviewed 

in [96]. Although interesting, as dysfunctional cilia are already implicated in syndromic 

obesity (refer to section 1.2.2 and [111,112]), conclusive evidence for the causality of 

common obesity is lacking as FTO locus risk alleles have not been correlated with 

changes in expression of neither FTO nor RPGRIP1L [96]. 

In parallel with the Leibel group, Ragvin et al. identified a block of highly conserved, 

noncoding regulatory elements in the FTO locus, and used a zebrafish reporter system 
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to demonstrate that this noncoding region regulated the expression of the distant 

neighbor IRX3 [90]. These findings were confirmed by Smemo et al, who showed, by 

chromatin conformation capture in mice embryonic and adult brain tissue, that the FTO 

locus physically and strongly interacts with the promoter of IRX3 [113]. Moreover, a 

mouse reporter system clearly demonstrated that the IRX3 expression depends on FTO 

locus variants, and expression quantitative trait loci (eQTL) data from the cerebellum 

of the human brain revealed that the obesity-linked SNPs correlated (weakly) with 

IRX3 expression, but not with expression of FTO [113]. Finally, Smemo et al. showed 

that global Irx3 knock-out (KO) mice were protected from obesity compared to wild-

type (WT) mice, with reduced body weight, adipose tissue, and increased expression 

of thermogenic markers. Moreover, hypothalamic overexpression of dominant-

negative (DN) Irx3, resulting in dysfunctional Irx3 specifically in the brain, 

recapitulated the effect by the global KO [113], indicating that the FTO locus exerts its 

effect on obesity through hypothalamic regulation of Irx3 [96]. This finding was 

supported by others studies suggesting that most SNPs associated with BMI are 

primarily active in the brain, controlling appetite and energy balance [79,95]. On the 

other hand, SNPs associated with fat distribution were found to be active mainly in 

peripheral tissues like adipocytes, regulating adipogenesis and insulin signaling [114].  

 

1.3.2 A way of identifying causal SNPs 

As mentioned earlier, the usefulness of GWAS data has been severely limited by the 

inability to pinpoint the causal SNP among several variants in any given locus 

associated with disease. However, in 2014, the field was pushed forward as 

Claussnitzer et al. developed a computational model that could significantly narrow 

down the number of candidate nucleotide variants within a GWAS locus. Coupled with 

functional analyses, the approach can enable the identification of exact causal SNPs 

[115]. The model relies on the nature of transcription factor (TF) binding to regulatory 

motifs of target genes, where, despite extensive evolutionary turnover of TF motifs, 

functionally important motif combinations, i.e., cis-regulatory modules (CRMs), have 

been repeatedly preserved across humans and other species. Such complex co-
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occurring patterns of TF motifs function as enhancers, allowing for combinatorial TF 

binding and hence robust and redundant control of gene expression [116]. However, 

genetic variants can influence the architecture and TF binding affinities in such CRMs 

and thereby modulate basal expression levels of target genes. The method, termed 

phylogenetic module complexity analysis (PMCA), uses libraries of TF binding motifs 

to search for similar modules of TF binding motifs in humans and at least two other 

species, allowing some variation in the distances between motifs and number of motifs. 

Such modules cannot readily be detected from the linear sequence of binding motifs in 

a single species. Based on a scoring algorithm for motif and module similarities across 

species, PMCA classifies any given genomic region as complex or noncomplex [115]. 

In other words, if a genomic region is enriched with evolutionary conserved modules 

of TF binding sites, it is classified as a complex region, a region of particular biological 

significance in terms of gene regulation.  

Claussnitzer et al. demonstrated how PMCA could be used to assess the immediate 

surroundings (120 bp) of each potential causal SNP in linkage disequilibrium with a 

tag-SNP for biological significance, and thereby strongly reduce the number of 

candidates [115]. The candidate SNPs found to be in complex regions are ranked by 

the number of TF binding motifs in the module, thereby further reducing the number 

of variants for functional analyses. Such functional analyses typically involve highly 

laborious work, including testing the effect of risk versus non-risk variant of the SNP 

on binding of each TF predicted to bind the module [115]. Claussnitzer et al. proved 

the usefulness of this approach by revealing a significant enrichment of homeobox 

family of transcription factors (refer to section 1.5 for further reading on homeobox 

factors) at 48 T2D-associated risk loci, including that of PPARG. The PMCA scoring 

together with a positional bias analysis were further utilized to identify a SNP in the 

PPARG locus, hitting a motif for the homeobox repressor protein PRRX1 within a 

CRM, thus inferred to be a strong causal candidate. The specific causal mechanism 

could then be tested experimentally, which revealed that the homeobox repressor 

protein PRRX1 inhibited expression of PPARγ2 in a risk-allele specific manner [115].  
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1.3.3 An FTO locus variant regulates IRX3 and IRX5 in adipocytes 

Equipped with the PMCA method, Claussnitzer et al. next turned to the FTO locus to 

delineate the causal SNP. The highest PMCA score was obtained for rs1421085, a SNP 

in perfect LD with the tag-SNP rs1558902 [117]. In parallel, the investigators sought 

to identify in what tissues and cells the FTO variant locus is active by analyzing 

publicly available data on epigenetic markers in over hundred cell types. In contrast to 

previous findings suggesting a regulatory role in the brain, Claussnitzer et al. identified 

a strikingly long enhancer element specifically in mesenchymal adipocyte progenitor 

cells [117]. Furthermore, by transfecting respective 10 kb subsets of the 50 kb FTO 

locus in adipocyte cultures and performing luciferase reporter assays in a risk versus 

non-risk haplotype manner, the locus containing the active variant that affected gene 

expression was narrowed down to a 10 kb window that harbored the rs1421085 

candidate SNP, but not the tag-SNP [117]. Moreover, when repeating the reporter assay 

using a narrow 1 kb tile centered on the rs1421085, a risk-allele specific activation of 

the enhancer was again observed, and this effect was only seen in adipocytes and not 

in other cell types, including neurons [117]. Taken together, these data strongly pointed 

to rs1421085 as causal and active specifically in adipocyte precursor cells. 

Having identified the potential causal variant and the cell type in which it acts, the 

investigators subsequently investigated which genes might be affected by the risk 

variant. To this end, chromosome conformation capture analysis was performed, which 

identified potential interaction with eight neighbors of FTO, including the previously 

suggested target genes IRX3 and RPGRIP1L [117]. However, eQTL analyses of these 

eight genes revealed that only IRX3, in addition to the closely related, but further 

distantly located gene IRX5, displayed risk variant-dependent changes in gene 

expression during early differentiation of preadipocytes [117]. Thus, IRX3 was 

confirmed, and IRX5 established, as long-range targets of the FTO locus, with 

rs1421085 as a likely causal variant (Figure 4, upper panel).  

To pinpoint the mechanism by which the causal SNP affected IRX3 and IRX5 

expression, the team examined the TF binding sites surrounding the causal SNP in 

greater detail, and found rs1421085 to be situated directly in the binding motif of the  
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Figure 4: The causal variant in the FTO locus regulates IRX3 and IRX5 

Top panel, the enhancer in the FTO locus forms long-range interactions with local enhancer and 

promoters of IRX3 (0,3 MB) and IRX5 (1.2 MB). Bottom panel, in mesenchymal adipocyte precursor 

cells, the obesity-associated risk variant (C) at rs1421085 disrupts binding of the ARID5B repressor, 

leading to increased expression of IRX3 and IRX5, and a resulting repression of thermogenesis and a 

developmental shift from beige heat-dissipating to white lipid-storing adipocytes. Figure adapted with 

permission from [117,118], Copyright Cell Press and Massachusetts Medical Society. 

 

TF ARID5B, which showed the highest expression among different members of the 

ARID family in adipose tissue [117]. EMSA revealed loss of ARID5B binding to this 
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motif specifically for the risk variant, suggestive of a repressive effect on IRX3/5 

expression. Moreover, knockdown of ARID5B in preadipocytes increased IRX3/5 

expression, but only in cells with the protective variant harboring the functional binding 

site. Importantly, whereas CRISPR-Cas9 editing of the protective allele to the risk 

variant increased IRX3/5 expression, a second edit back to protective allele reduced 

IRX3/5 levels, but only in the presence of ARID5B, thus establishing causality [117].  

Finally, Claussnitzer et al. investigated how increased levels of IRX3 and IRX5 could 

mediate the effect of the risk variant on obesity risk (Figure 4, lower panel). IRX3 and 

IRX5 mRNA expression was found to correlate positively with mRNA expression of 

lipid metabolism genes and negatively with mitochondrial function genes like PGC1A 

and UCP1 in human adipose tissue, and to be more highly expressed in white compared 

to brown adipocytes [117]. In agreement, primary adipocytes from risk allele carriers 

(who have higher IRX3/5 levels) had reduced expression of mitochondrial function-

related genes, impaired mitochondrial respiration and uncoupling. In contrast, the same 

cells demonstrated elevated levels of lipid-storing genes and increased adipocyte size, 

indicating a shift from consuming to storing energy. Importantly, the repressed 

thermogenic activity could be restored by CRISPR-Cas9 editing of cells with the risk 

variant back to the protective variant [117].  

The anti-thermogenic, pro-lipogenic effect of elevated IRX3 specifically in adipocytes 

was confirmed on the whole-body level in mice by inactivation of Irx3 solely in the 

adipose tissue [117]. To this end, overexpression of dominant-negative Irx3 driven by 

the adipocyte-specific promoter of Fabp4 (also known as Ap2) was performed. Mice 

devoid of functional adipose Irx3 weighed less, were resistant to diet-induced weight 

gain, had reduced adipose tissue and smaller fat cells, and had increased thermogenesis. 

In summary, the risk variant in rs1421085 was found to disrupt binding of the ARID5B 

repressor specifically in adipocyte precursor cells during early adipogenic 

differentiation, which lead to de-repression of IRX3 and IRX5 and subsequent 

inhibition of thermogenesis and promotion of white adipogenesis at the expense of 

beige adipocyte formation from mesenchymal precursor cells (Figure 4).  
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1.4 White, beige and brown adipocytes 

Adipose tissue serves as a master regulator of energy balance and maintains 

homeostasis of key nutrients, including lipids and glucose [35]. There are two main 

types of adipocytes with opposing functions and different developmental origin that 

act together to achieve energy homeostasis; white and brown fat cells [35,119]. In 

addition, there also exists a third, intermediate cell type, termed beige adipocytes, 

which shares the developmental origin with white adipocytes, but with potential to 

function like brown adipocytes under certain conditions [35,119], as discussed below.  

1.4.1 Opposing metabolic roles of adipocyte types 

White and brown adipocytes 

White adipocytes constitute most of the total adipocyte mass and specialize in energy 

storage by taking up glucose and fatty acids from the circulation and converting it to 

triglycerides which are subsequently stored as large lipid droplets. Conversely, located 

in small, defined depots, brown adipocytes also take up large amounts of nutrients 

[120], but rather funnel this energy to heat production (thermogenesis) instead of lipid 

storage by uncoupling the mitochondrial electron transport chain from ATP production. 

This process is mainly achieved through the action of uncoupling protein 1 (UCP1), 

expressed in thermogenic adipocytes and localized to the inner mitochondrial 

membrane where it short-circuits the membrane potential, leading to free flux of H+ 

back into the inner matrix. This process deprives ATP synthase of its driving force, 

hence preventing production of ATP, while at the same time promoting a compensatory 

increased substrate demand for the electron transport chain.  

Mouse BAT prevents obesity 

Brown adipose tissue (BAT) is readily detected in interscapular and perirenal regions 

in mice, and manipulation of BAT has clearly demonstrated its ability to prevent 

obesity and metabolic disease [119,121–130]. Consequently, brown adipocytes can be 

regarded as metabolic sinks capable of disposing of surplus energy. This ability is 

crucial in preventing white adipocytes from overfilling with lipids, a condition linked 
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to a series of adverse metabolic events, including adipose tissue inflammation and lipid 

spillover, both drivers of local and systemic insulin resistance and metabolic syndrome. 

Human BAT is associated with improved metabolic health 

Human BAT, in contrast, has proved far more elusive. Although well-known to exist 

in human infants, BAT was thought to disappear with age, and was not unequivocally 

detected in adults until 2009, when several independent groups demonstrated the 

presence of functional thermogenic adipocytes in the supraclavicular and spinal region, 

using [18F]-FDG-PET/CT scans [131–137]. Whether these cells should be considered 

brown or beige has been debated, and their ability to affect whole-body metabolic 

homeostasis has been questioned [119]. However, amounting evidence indicates that 

the activity of thermogenic cells, regardless of their classification, is positively 

associated with reduced BMI and improved whole-body metabolism and insulin 

sensitivity in humans [131,133,135,138–146], suggesting an important contribution of 

these cells also in humans. Thus, understanding and controlling thermogenic cells is 

therefore of great therapeutic interest [119,147]. 

Beige adipocytes 

Beige adipocytes are capable of thermogenesis despite having a different 

developmental origin than BAT. While brown fat cells share origin with muscle cells, 

beige cells are derived from a separate precursor pool shared with white adipocytes 

residing in WAT [148,149], thus constituting a larger biomass than BAT. However, 

unlike BAT, which displays high basal expression of UCP1, beige adipocytes must be 

stimulated to express UCP1, which is mainly induced by chronic cold-stimulation 

through adrenalin/β-adrenergic signaling [137]. Once activated, the beige adipocytes 

possess thermogenic activity comparable to that of BAT [137]. In addition to cold 

stimulation, a range of other secreted factors, including natriuretic peptides, Vegf, 

Irisin, and Fgf21, have been found to promote beige and brown adipocyte development 

and function, as reviewed in [119].  

Interestingly, once beige cells have been acquired by cold exposure, they are retained 

during subsequent warm-exposure, where they temporarily lose Ucp1 expression until 
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subsequent cold exposure [150]. This remarkable display of plasticity demonstrates the 

ability of beige cells to operate as either white or brown-like adipocytes depending on 

external circumstances and the shifting needs of the affected organism [35,119,137]. 

However, whether mature beige adipocytes develop by de novo differentiation from 

precursor cells [137,150–152], or by transdifferentiation from mature white adipocytes 

[153] is controversial and a subject of ongoing investigation. For instance, as described 

above and shown in Figure 4, Claussnitzer et al. proposed that the effect of the FTO 

risk allele, and the consequent elevated levels of IRX3 and IRX5, shifts the 

developmental fate of a common white/beige precursor towards the white lineage by 

inhibiting PRDM16 and PGC-1A, key transcriptional activators of thermogenic 

adipocytes. Importantly, this genotype-dependent gene regulatory mechanism appears 

to exert its effect in a specific window early in adipocyte differentiation. This finding 

indicates that altered expression of transcriptional regulators in early differentiation 

can alter epigenetic programs that manifest in persistent metabolic effects in mature 

adipocytes. 

 

1.4.2 Transcriptional and epigenetic regulation of adipogenesis 

Adipogenesis requires two steps, commitment of pluripotent stem cells and precursor 

cells to preadipocytes, and terminal differentiation to mature adipocytes [35,147]. Both 

processes involve interactions between lineage-specific TFs and chromatin landscapes. 

The commitment phase is less studied, but in bone-marrow-derived mesenchymal stem 

cells, which can develop into either bone, cartilage or adipocytes, the commitment 

switch is known to involve Wnt and hedgehog signaling pathways. When activated, 

these pathways inhibit adipogenesis and promote osteogenesis [154]. Conversely, 

insulin signaling promotes adipogenesis [155]. Moreover, during commitment from 

pluripotent stem cells to lineage-specific multipotent cells, the expression of 

pluripotent genes are epigenetically silenced by introduction of repressive tri-

methylation marks on H3K9 and H3K27 histone tails [147,156]. Conversely, lineage-

specific genes become poised for rapid induction by bivalent H3K4me3 activating and 

H3K9me3 repressive marks, causing the RNA polymerase to bind, but pause at these 
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promoters [147,156,157]. During terminal differentiation, these poised regions are 

resolved to contain either the activating or repressive mark, thereby specifying which 

lineage is allowed to differentiate [1].  

Terminal differentiation has been exhaustively studied, and is controlled by the master 

regulator PPARγ and C/EBPα/β/δ family members [35,147]. In preadipocytes, the 

promoter of PPARγ is still poised, which keeps PPARγ levels low [156]. The 

immediate early genes C/EBPδ and C/EBPβ, on the other hand are expressed, but the 

resulting proteins are inactive. However, adipogenic stimulation results in 

phosphorylation and activation of C/EBPδ/β, and at the same time removal of the 

H3K9me3 repressive marks on the PPARγ promoter [147,156]. These two events allow 

C/EBPδ/β to bind to and initiate expression of PPARγ, which in turn forms positive 

feedback loops with C/EBPα and -β [158–160]. PPARγ subsequently binds to and 

promotes the expression of virtually all genes related to adipocyte metabolism 

[35,147].  

Of note, C/EBP family members and PPARγ are adipogenic master regulators of all 

adipocyte types including white, beige and brown [154]. Lineage-specific development 

occurs by differential binding to various target genes, guided by chromatin availability 

and other transcription factors and -cofactors [161,162]. Specifically, activating 

H3K27ac and H3K4me3 marks on target gene enhancers and promoters, respectively, 

specify what genes are available for activation by PPARγ [147,157,163]. For example, 

this epigenetic discrimination underlies the difference between adipocytes and 

macrophages, which both express PPARγ [164] and also between white versus beige 

adipocytes that both require PPARγ, but display differences in available binding sites 

[147,161,162]. Moreover, in thermogenic adipocytes, Ebf2 directs Pparγ to unique sites 

like the promoter of Prdm16, a co-activator that complexes with chromatin remodeling 

factors like Ehmt1 to further specify thermogenic-specific adipogenesis [161,165]. 

Indeed, the difference in transcriptomic profiles between brown and beige adipocytes 

on one hand and white adipocytes on the other, mainly converges on the activities of 

PGC-1α and PRDM16, both positive regulators of UCP1 [35].  
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PGC-1α is a well-known master regulator of mitochondrial biogenesis and oxidative 

function in multiple cell types [119], acting as a co-activator of PPARγ, PPARα and a 

range of other TFs [166,167]. Thermogenic adipocytes rely heavily on mitochondrial 

activity, and therefore have very high PGC-1α expression levels. Additionally, in these 

cells, PGC-1α acts as an essential inducer of cold-stimulated expression of UCP1 and 

other thermogenic genes [167–172]. High PGC-1α expression is therefore widely used 

as a hallmark of thermogenic compared to white adipocytes. 

PRDM16 expression is another key marker of brown and beige cells in mice [123,149] 

and humans [135,173] that has been found to be crucial for maintaining thermogenic 

identity. Overexpression of PRDM16 in white adipocytes is sufficient to convert them 

into beige cells [123,148], and conversely, knock-down of PRDM16 in brown or beige 

cells prevents thermogenesis and increases expression of white fat markers 

[123,148,149,174]. Mechanistically, PRDM16 acts by binding to and modulating the 

activity of other TFs and co-regulators, including C/EBPβ, PPARγ, PPARα and PGC-

1α [148,149,175,176].  

Strikingly, most if not all reported regulators of thermogenesis appear to mediate their 

effect via PRDM16 or PGC-1α [147], including the homeobox factors IRX3 and IRX5 

[117], which our group discovered as novel players in obesity a decade ago [177].   
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1.5 The homeobox factors IRX3 and IRX5 

1.5.1 Homeobox transcription factors 

Homeobox transcription factors, or Homeoproteins, are key transcription factors in 

embryonic and adult development [178,179] that share a common conserved DNA-

binding domain, the homeodomain (HD) [180,181]. Most vertebrates, including 

humans, are found to possess around 250 homeobox genes that can be divided into 16 

classes with diverse target genes and functional roles [178,182]. Among these, the class 

I homeobox genes (HOX) are most well-known, consisting of 39 genes, organized into 

4 clusters (HOX A-D) each located on a different chromosome, [183,184].   

During development, temporal and spatial expression of HOX genes determines the 

identity of different regions along the body axis [185]. For instance, during 

embryogenesis, the Hox genes physically located in the 3’ end are expressed early and 

define the anterior regions, whereas other Hox genes located in the 5’ end are expressed 

later and control the posterior regions of the embryo [186]. Following the 

comprehensive study of HOX genes in embryogenesis, an increasing attention was 

given to the involvement of these genes in adult development [187–189], including 

metabolism [190] and adipogenesis [191]. 

Roles of Homeobox transcription factors in obesity 

In 2003, the Cillo group reported the use of semi-quantitative PCR to assess the 

expression of the 39 class I HOX genes in adult human white and fetal brown adipose 

tissue depots. They found the HOX gene network in general to be active in adipose 

tissue, with several HOX genes being consistently expressed in all samples and depots 

[192]. Moreover, a clear depot-specific expression pattern of other HOX genes was also 

observed, particularly for the group 4 paralogs which appeared to confer lineage 

identity [192]. Specifically, HOXA4 and HOXC4 was found to be markers of white and 

brown adipocytes, respectively, whereas HOXD4 was expressed in every depot and 

HOXB4 in none [192]. 

With later technological advances, including microarrays and quantitative PCR, the C. 

Ronald Kahn lab subsequently identified differential expression of several homeobox 
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genes between visceral and subcutaneous white adipose tissue in mice and humans 

[193]. HOXA5 and HOXC8 were found to be most highly expressed in the visceral 

depots, whereas SHOX2 and HOXC9 and were elevated in the subcutaneous 

compartments. Furthermore, these findings were consistent across whole tissue, 

stromovascular fraction (SVF), isolated adipocytes and after in vitro culture [193]. Of 

note, the fold changes between depots were greater in humans compared to mice. 

Finally, the visceral marker HOXA5 was found to be significantly positively correlated 

with increased BMI and WHR in humans in both genders and both depots, with 

strongest associations in visceral adipose tissue [193].  

In a later follow-up study in mice, where more visceral and subcutaneous white depots, 

as well as a BAT depot was included, Shox2 was confirmed as a general subcutaneous 

marker, and Hoxa5 was more highly expressed in all white visceral depots, but in fact 

highest in BAT. The other Hox genes analyzed in this study, on the other hand, 

displayed low expression levels in BAT [194]. Several subsequent studies by various 

groups have later confirmed depot-specific expression profiles of HOX genes in 

humans [195–198], and found HOXC9 and HOXC10 to be associated with obesity, fat 

distribution and glucose metabolism [198]. This difference in HOX expression pattern 

in WAT and BAT likely reflects the different developmental origin of cells from these 

two depots. Indeed, several investigators have suggested that HOX genes are likely 

drivers of the depot-specific differences in adipocyte differentiation and function, 

although the mechanisms remained to be elucidated [194,198].  

Our group identified up-regulation of several homeobox factors in subcutaneous 

adipose tissue after bariatric surgery, including class I family members HOXA5, 

HOXA9, HOXB5, HOXC6 in addition to EMX2, PRRX1 and IRX3 and IRX5 [177]. As 

described in section 1.3.2, we subsequently elucidated a mechanism whereby PRRX1 

modulates obesity risk by risk allele-specific binding to, and repression of, an enhancer 

of PPARγ2 [115]. We next found adipose IRX3 and IRX5 expression to depend on the 

risk-allele specific abolished binding of another repressor, ARID5B, to the super-

enhancer in intron 1 of FTO, as described in section 1.3.3 and [117]. The resulting 

elevation of IRX levels repressed thermogenic genes, indicative of a developmental 
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shift from beige to white adipogenesis from a common precursor, but the exact 

mechanisms and target genes were not found [117]. 

 

1.5.2 The Iroquois homeobox factors 

The Iroquois class of homeobox factors (sometimes abbreviated IRO, but herein 

termed IRX) constitutes, together with four other evolutionary related classes, the 

Three Amino Acid Loop Extension (TALE) superclass of homeoproteins 

[178,182,199]. As the name indicates, all TALE type homeoproteins are characterized 

by additional residues in the loop between helices 1 and 2 of the HD [179–181,200]. 

The IRX class consists of six family members (IRX1-6) that share a unique and highly 

conserved 9 aa IRO box C-terminal of the HD [199,201,202]. Until recently, the 

function of the IRO domain was unknown, but recent evidence from Drosophila 

suggests this domain is involved in protein-protein interactions [203]. 

Like HOX proteins, the IRX transcription factors are found in all multicellular 

organisms, ranging from sponges to mammals and play essential roles in 

developmental patterning formation via spatial and temporal regulation of target genes 

[201,204–206]. Since their discovery between 1997-2000 [207,208], the IRX genes 

have been implicated in a wide range of developmental processes, including formation 

of the organizer during gastrulation [209], embryonic neurogenesis [207,208,210,211], 

and formation of heart [212–218], kidneys  [219], eyes [202,220–224], ovaries [225] 

and the central nervous system [226]. Despite the evident importance of IRX 

transcription factors, knowledge of their target genes and mechanistic action is limited 

[227]. IRX proteins have most frequently been shown to mediate transcriptional 

suppression [204,205,209,218,228–230], although Matsumoto et al. reported Irx2 to 

also have an activating role depending on phosphorylation status, with MAPK 

signaling promoting the activating form [230]. 

In humans, biallelic mutations in IRX5 leads to defect craniofacial morphogenesis and 

impaired heart, blood, bone and germ cell development [204]. Employing a Xenopus 

model system, these investigators further demonstrated that Irx5 acted as a 
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transcriptional repressor of Sdf1, which codes for a chemokine vital to migration of 

cranial neural crest and gonadal primordial germ cells [204]. Correct temporal and 

spatial repression of SDF1 signaling by IRX5 therefore seems crucial during human 

development [204].  

Evidence for the involvement of Irx5 and Irx3 during both embryonic and adult 

development of the same tissue has been provided by KO studies in mice. Whereas 

constitutive double KO of Irx3 and Irx5 is embryonic lethal, accompanied with severe 

cardiac structural defects [214], constitutively knocking out each factor alone, or 

conditionally deleting both genes postnatally, results in mice that are viable, but with 

specific defects in adult cardiac functions [214,231–234]. These results demonstrated 

that Irx3 and Irx5 are functional redundant during embryogenesis, but have partially 

separate, and sometimes antagonistic roles in adult development [214].  

Further, IRX3 and IRX5 have been implicated in adult cellular proliferation. IRX5 

promotes cell-cycle progression in human prostate cancer cells [235] and vascular 

smooth muscle cells [236], and IRX3 has been found to be frequently derepressed in 

human acute leukemias, leading to changes in cellular identity [237]. Finally, IRX3 has 

been found to have a proangiogenic effect in human microvascular endothelial cells 

[238]. 

Taken together, IRX3 and IRX5 play important roles in both embryonic and adult 

tissues. 
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1.5.3 Roles of IRX3 and IRX5 in obesity 

As delineated above in chapters 1.3.3 and 1.5.1, one of the adult tissues found to be 

regulated by IRX3 and IRX5 is the adipose. Briefly, our group found the expression of 

these factors to increase in subcutaneous human adipose tissue after bariatric surgery 

[177]. Moreover, the Claussnitzer group, in collaboration with us, found IRX3 and 

IRX5 to promote white over beige adipocyte development from mesenchymal 

precursor cells, dictated by a causal risk variant in the obesity-associated FTO locus 

[117]. Recently, several other groups have further investigated the role of IRX3 and 

IRX5 in adipose biology, and regulation of body weight, as discussed below.  

While Claussnitzer et al. measured IRX expression in lean adults, Landgraf et al. 

measured IRX expression in lean and obese children, and found higher expression 

levels of both IRX3 and IRX5 in the mature adipocyte fraction compared to the SVF 

[239]. Interestingly, in the mature adipocytes, IRX3 expression was higher in lean 

compared to obese patients. Moreover, an FTO locus, rs1421085 risk allele-dependent 

increase in both IRX3 and IRX5 expression was observed, but only in mature adipocytes 

of lean children [239]. Although IRX3 mRNA levels were higher in UCP1-negative 

compared to UCP1-positive adipocytes [239], consistent with its reported inhibitory 

effect on UCP1 expression [117], this effect was, again, only seen in lean children 

[239]. Finally, IRX3 was negatively associated with adipocyte size, inflammation and 

insulin resistance. These results appear somewhat counter-intuitive, as one would 

perhaps expect the pro-adipogenic effect of IRX3 to be active in obese individuals, as 

opposed to lean. However, the authors suggest this may be an example of a thrifty allele 

that, in an evolutionary perspective, has undergone positive selection in environments 

where food is scarce [240]. Thus, IRX3 may promote weight gain in lean individuals 

as a protective mechanism against undernutrition [239].  

From studies on mice, it was seemingly clear that having intact Irx3 promotes weight 

gain and increased adipose tissue mass, as global Irx3-KO mice, as well as mice with 

adipocyte- and hypothalamus-specific DN-Irx3 mutants are protected from diet-

induced obesity, displaying reduced body weight, fat mass and increased energy 

expenditure and thermogenic gene expression [113,117]. However, de Araujo et al. 
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recently reported the opposite result when reducing Irx3 levels by 50% specifically in 

the hypothalamus, through lentiviral-mediated knockdown [241]. This effect, however, 

was only seen in mice fed a high-fat diet. Thus, obese mice became even more obese 

following Irx3-knockdown, and this effect coincided with increased energy intake, 

reduced energy expenditure and reduced Ucp1 expression in adipose tissue [241]. 

Therefore, in contrast to previous findings, a positive correlation between Irx3 and 

Ucp1 expression was found in this study. This discrepancy could perhaps be explained 

by difference in Irx3 action in the hypothalamus versus adipose tissue, but another 

study, by Zou et al., made similar observations specifically in adipocytes [242]. Here, 

Irx3 and Ucp1 expression was found to be positively correlated, and moreover, 

knockdown of Irx3 inhibited Ucp1 expression and thermogenesis in beige adipocytes 

from mice and humans [242].  

Of note, in contrast to the debated effects of Irx3 on energy expenditure, fat mass and 

body weight, no studies have assessed these parameters in Irx5-KO mice. 

Taken together, although IRX3 (and to a lesser extent, IRX5) have been shown in 

several studies to promote obesity in mice and humans, these findings have recently 

been challenged by opposite findings in other studies. The reasons for these 

discrepancies are unknown, highlighting the need for further elucidating the function 

and target genes of IRX3 and IRX5 in adipose tissue [243]. 
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2. Aims 

Elevated expression of the homeobox transcription factors IRX3 and IRX5 has been 

found to mediate the strong association between genetic risk variants in intron 1 of 

FTO and obesity. However, the mechanisms involved were not fully understood and 

remained controversial. The overall aim of this study was therefore to elucidate the 

transcriptional roles of IRX3 and IRX5 in adipose tissue and their implications for 

body weight and fat mass. 

 

Specific aims included: 

1) Characterize the effect of Irx5-KO on body weight and fat mass in mice. 

2) Identify adipocyte gene networks and cellular functions under control of Irx3 

and Irx5. 

3) Map genome-wide binding of Irx3 and Irx5 to adipocyte promoters and 

enhancers to determine direct Irx3/5 target genes. 
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3. Comments on methods 

This work is based on a wide range of materials and methods, as described in detail in 

each individual paper. An overview of key methods is presented and briefly discussed 

as follows. 

3.1 Mouse Models (Papers I and III) 

The studies using mouse models in paper I were conducted at The Laboratory Animal 

Facility, University of Bergen, Norway. The study was approved by the Norwegian 

State Board of Biological Experiments with Living animals and carried out in 

accordance with their guidelines.  

Wild-type (WT) and Irx5-KO mice of a mixed 129/Sv and CD1 background were a 

gift from Kyoung-Han Kim and Chi-Chung Hui, The Hospital for Sick Children, and 

Department of Molecular and Medical Genetics, University of Toronto, Canada. 

Briefly, the Irx5-KO mice were generated by introducing a loss-of-function mutation 

in Irx5 [224], in which parts of exon 1 was replaced with a PGK-neo cassette in R1 

embryonic stem (ES) cells [244]. In Bergen, heterozygous Irx5-/+ mice were bred to 

produce homozygous WT and Irx5-KO mice. The mice were kept in a 12h light/dark 

cycle at 20 ± 3oC and relative humidity of 65 ± 15% with free access to tap water. From 

the age of 8-10 weeks, the mice were randomized to either a control or high-fat diet 

(10 and 45 kcal% fat, respectively), containing the same amount of proteins. Body 

weight was measured every week, feed intake was measured after 3.5 weeks, Magnetic 

Resonance Imaging (MRI) of renal white adipose tissue (rWAT) was performed after 

7 weeks, and the mice were sacrificed after 10 weeks of diet intervention. After 

euthanasia, epididymal white adipose tissue (eWAT) was dissected out and weighed 

before RNA isolation. 

The mouse studies in paper III were conducted by our collaborators, Roger Cox, 

Samantha Laber and colleagues, at the MRC Harwell Institute, Oxfordshire, UK, in 

accordance with the UK Animals Act. Mice with C57BL/6NJ (B6N) background were 

housed in a 12h light/dark cycle at 21 ± 2oC and relative humidity of 55 ± 10%, fed ad 
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libitum chow (RM3, 3.6 kcal/g) with free access to water. At 6-10 weeks of age, the 

mice were euthanized and primary preadipocytes from the stromovascular fraction 

(SVF) of inguinal and gonadal white adipose tissues (iWAT and gWAT, respectively) 

were isolated by collagenase treatment and centrifugation, as previously described 

[245]. The cells were subsequently cultured and stimulated to differentiate by addition 

of adipogenic cocktails, as described in detail in paper III. These cells were used for 

ChIP-seq and ATAC-seq analyses. 

 

3.2 Patient samples (Papers I-III) 

The human studies were approved by the Western Norway Regional committee for 

Medical Research Ethics (REK) and each of the subjects gave written informed 

consent.  

In paper I, subcutaneous adipose tissue was collected from 12 severely obese patients 

undergoing bariatric surgery (average BMI of 46) and 12 healthy lean individuals 

undergoing hernia repairs (average BMI of 24). Floating mature adipocytes were 

subsequently isolated from the adipose tissue by collagenase digestion of connective 

tissue, followed by sieving and filtering, as described before [246]. Because mature 

adipocytes cannot be maintained in culture, these cells were immediately lysed for 

RNA purification. 

In papers II-III, subcutaneous adipose tissue was collected from liposuction material 

from 10 patients undergoing plastic surgery. From this material, we isolated the 

pelleted SVF containing preadipocytes and mesenchymal stem cells, following the 

same method as above. These primary cells were maintained in culture, induced to 

differentiate following stimulation by adipogenic cocktails, and treated with siRNA 

against IRX3 and IRX5 before RNA purification. 
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3.3 Cell cultures (Papers I-III) 

Primary preadipocytes were isolated from human and mice white adipose tissue depots 

as outlined above and cultured in vitro in proliferation and differentiation media as 

described in detail in papers I-III. While primary cells have the advantage of close 

resemblance to cells in vivo, these cells can only be cultured for a limited amount of 

time, and should thus be used fresh, ideally without expansion, freezing and thawing. 

Having to isolate cells prior to each downstream analysis is highly costly and laborious, 

and introduces an additional source of variation in the experiments, making the use of 

these cells infeasible for many routine assays. Moreover, some experiments, like 

generation of stable gene KO by CRISPR-Cas9, requires prolonged cultivation 

unsuitable for primary cells. 

Therefore, we have also employed several immortalized cells in this study, including 

white preadipocytes isolated from iWAT of C57BL/6 mice (paper I), beige 

preadipocytes isolated from mouse embryonic fibroblasts (ME3, paper I-III), white 

preadipocytes derived from human subcutaneous adipose tissue (paper III) and simian 

kidney cells (COS-1, papers I and III). The ME3 and COS-1 and cells were used to 

provide adipogenic and non-adipogenic environments, respectively, in luciferase 

reporter assays. Moreover, the iWAT and ME3 cells were subjected to CRISPR-Cas9 

mediated knock-down/out of Irx5 and Irx3, respectively. 
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3.4 CRISPR-Cas9 genome editing (Papers I-III) 

The CRISPR-Cas9 genome editing was performed essentially as described previously 

[247], with the aim of introducing loss-of-function mutations in each target gene. To 

this end, WT cells were transfected in vitro with a plasmid containing both guide RNA 

and Cas9-GFP. The Cas9 enzyme is an endonuclease that originates from the bacteria 

Streptococcus pyogenes where it serves as a defensive mechanism against foreign DNA 

[248]. Cas9 requires two small RNA sequences to function. First, a guide-RNA 

complementary to the genomic target site is necessary to specify the site where Cas9 is 

allowed to cut. Second, a scaffolding RNA, which base-pairs with the guide-RNA and 

binds to Cas9, is required for Cas9 complex formation and activation. In addition to 

the specificity imposed by the guide-RNA, Cas9 must also be directed to a site 

containing a 3-base pair sequence known as the Protospacer Adjacent Motif (PAM) 

[249,250]. These short PAM sequences are found densely interspaced throughout the 

genome. Thus, in genomic engineering, computational methods available online (i.e. 

https://chopchop.cbu.uib.no/) [251–253] are used to identify these CRISPR-compatible 

PAM sequences and design guide-RNAs unique to the nearby genomic sequence. 

Using this tool in combination with basic local alignment search tool (BLAST) [254] 

and pilot experiments, we identified the best performing guide-RNA out of three 

constructs each for Irx3 and Irx5 which were used for subsequent experiments. For 

both genes, the best CRISPR-Cas9 site was found to be in the beginning of exon 2, 

containing the HOX domain.  

DNA-cleavage by Cas9 introduces a double-stranded break, which the cell attempts to 

repair by one of two possible mechanisms; nonhomologous end joining (NHEJ) or 

homology directed repair (HDR). While HDR is precise when a desired repair template 

is provided, it is extremely slow and inefficient. NHEJ, on the other hand, occurs within 

a few minutes and is highly error-prone, often making NHEJ the preferred method, 

especially for generating KO. The error-prone nature of NHEJ frequently leads to 

generation of various indel mutations surrounding the Cas9 cut site, leading to 

frameshift and, in most cases, premature stop codon and truncated protein. In this study, 

we relied on NHEJ. To isolate clones with truncation of either Irx3 or Irx5 protein, 



 53 

flow cytometry followed by Fluorescence-Activated Cell Sorting (FACS) was used to 

identify and seed single cells expressing GFP-tagged Cas9.  

Starting from 100-400 single cells, about 10-24 clones were successfully expanded. 

Sequencing revealed that CRISPR-Cas9 mediated editing had occurred in 90% of the 

clones, although in most cases the allelic events were unclear. Therefore, the individual 

alleles of each clone were amplified by PCR, TOPO cloned in E. coli and sequenced. 

While Irx5 had been edited on one allele only, producing a functional knockdown, Irx3 

was edited to yield frameshift on both alleles, via different indel events, producing a 

complete knockout. Finally, to verify the knockdown/out, the protein levels of Irx5 and 

Irx3 was assessed by Wester Blotting using antibodies recognizing the middle or C-

terminal part of the proteins. In accordance with the sequencing, Irx5 protein levels 

were reduced by 50%, whereas the Irx3 protein was undetectable in the CRISPR-edited 

cells. 

 

3.5 Gene expression analyses (Papers I-III) 

All papers in this study include gene expression analyses, each measuring the relative 

or absolute abundance of mRNA transcribed from a handful to tens of thousands of 

genes. Accurate and precise quantification of mRNA is affected by multiple factors, 

from the biological system and study design to tissue handling, RNA purification, 

conversion to cDNA and finally quantification of the cDNA.  

 

3.5.1 Variation and bias 

Simply put, precision refers to variation or the reproducibility of data. The underlying 

biology of a model system can greatly influence the reproducibility of the data. For 

example, analyzing gene expression in a pool of cells extracted from the adipose tissue 

of different humans introduces several layers of potential variation, including genetic 

and environmental factors, as well as cell composition. For these reasons, working with 
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genetically identical mouse models and, particularly, cell lines, offers a clear 

advantage. Moreover, cell lines can also be kept under highly similar conditions, 

thereby further reducing variation. On the other hand, one must keep in mind that 

results may vary depending on the selected models.  

In paper I, we observed larger variation between individual mice than expected, and 

this was seen for several parameters, including body weight, fat mass and gene 

expression, suggesting the influence of an unidentified environmental factor. These 

observed variations could negatively affect the confidence in the results and make it 

more challenging to draw conclusions. However, by complementing these results with 

Irx5-manipulation in isolated adipocytes in vitro, we were able to identify similar gene 

expression patterns with low variation.  

Accuracy refers to proximity to the true value, or bias, which can be introduced by 

many factors from choice of model system to technical procedures. For example, 

because RNA is highly sensitive to degradation from endogenous and exogenous 

RNases, great efforts were made to preserve and validate RNA integrity in each sample. 

Extracted tissues were immediately snap-frozen in liquid nitrogen and stored at -800C 

until extraction, and during extraction, investigators always wore clean gloves. RNA 

integrity can be assessed using the Bioanalyzer system, where reported RIN values 

range from 0-10, representing completely degraded to perfectly intact RNA, 

respectively. In this study, samples had a RIN value above 9, exceeding the threshold 

for acceptable quality. 

 

3.5.2 Quantitative polymerase chain reaction (qPCR) 

Targeted relative gene expression was quantified by isolation of RNA and reverse 

transcription to cDNA, followed by real-time qPCR using the Roche LightCycler® 480 

system. Briefly, SYBR™ Green, a dye specifically recognizing double-stranded DNA, 

is quantified by fluorescence following each cycle of DNA duplication, using specific 

primers to amplify a short region of the gene of interest. Importantly, because SYBR-

green detects any double-stranded DNA in the reaction, including primer dimers and 
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unspecific amplicons, we carefully designed the primers to avoid such errors. Primers 

were designed using either of the publicly available softwares Roche UPL Assay 

Design Center or Primer-BLAST with stringent criteria. Each primer was further 

assessed in silico for propensity of self- or cross-dimerization using the Premier Biosoft 

Beacon Designer software, and tested in vitro using melting curve analysis. Only non-

dimerizing primers with efficiency above 1.9 were used in subsequent analyses. 

In this study, relative quantification was performed using the delta-delta Ct method, 

where the Ct value of the target gene is first subtracted from the Ct value of the 

reference gene, producing a ΔCt value for each sample. A control sample is then 

assigned as normalizer and its ΔCt value subsequently subtracted from each of the other 

samples, producing normalized ΔΔCt values. Because Ct values are exponentially 

inversely related to original mRNA levels, the ΔΔCt values can be expressed as 2-Ct or 

fold change relative to the normalizer. Finally, these fold change values are normalized 

according to the average of the biological replicates of the control treatment, which are 

centered around the value 1. We used Rps13 as reference gene, which shows superior 

stability across a wide range of cell types and experimental conditions, as demonstrated 

by [255].  

 

3.5.3 Global gene expression analyses 

Global gene expression was mainly measured by RNA sequencing (RNA-seq) in this 

study, and some experiments were performed with microarrays. While the microarray 

approach was an established method for measuring “global” gene expression before 

the advent of modern sequencing technologies, it suffers from the biased use of an a 

priori determined set of probes complementary to mRNA of selected genes [256,257]. 

Moreover, microarrays also display high background and are prone to signal saturation 

of highly expressed genes [257].  

RNA-seq 

RNA-seq relies on deep-sequencing technology where, in this study, the global 

transcriptome (mRNA) was converted into a library of cDNA fragments and directly 
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sequenced using the Illumina platform with a depth of about 40 million reads per 

sample. Importantly, to avoid contamination with DNA, all samples were treated with 

DNase during isolation of RNA. Once sequenced, each fragment, consisting of 75 bp, 

was then mapped to a reference genome, counted and normalized to account for library 

size and transcript length. By directly sequencing all transcripts in a sample, RNA-seq 

eliminates the bias introduced in microarrays. Moreover, RNA-seq is free from 

background signals and has an almost unlimited dynamic range [257].  

 

3.6 Luciferase reporter assays 

Luciferase reporter, or transactivation assays, are convenient and powerful tools used 

to investigate the ability of any given protein, most often a TF or coregulator, to modify 

the expression of any given promoter. First, the promoter to be investigated, for 

example the Ucp1 promoter, must be cloned into a reporter vector harboring a 

luciferase-encoding gene. Next, the reporter is co-expressed with an overexpression-

plasmid encoding the TF, for example IRX5, hypothesized to transcriptionally 

modulate the target promoter. These plasmids are often expressed in cells that are easy 

to transfect and have low endogenous levels of the respective factors to be investigated 

in order to reduce background. For these reasons, COS-1 kidney cells have been the 

major host of transactivation assays in this study. However, when the TF has repressive 

properties, like IRX proteins often have, it can be also be useful to express the reporter 

in a host containing (other) endogenous factors that promote high basal activation of 

the reporter. Therefore, ME3 preadipocytes have also been used as a host in this study. 

Activated by endogenous or overexpressed factors, the promoter of the reporter 

plasmids induces expression of the luciferase enzyme, which catalyzes the conversion 

of luciferin to oxyluciferin, a reaction that releases energy in the form of light that can 

be detected and quantified. Thus, differences in light production in cells with 

overexpression of IRX3 or IRX5 compared to a negative control (empty plasmid) reveal 

whether the IRX proteins transcriptionally regulate the given promoter or not. 
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3.7 ATAC-seq 

Global chromatin accessibility can be conveniently assessed by Assay for Transposase-

Accessible Chromatin using sequencing (ATAC-seq). This assay relies on the activity 

of a hyperactive mutant of the Tn5 Transposase, which binds to any accessible 

chromatin, cleaves it and tags it with sequencing adaptors. These tagged DNA 

fragments, which only originate from open chromatin, are subsequently purified, 

sequenced, mapped to a reference genome and quantified. Thus, the number of reads 

at a specific locus corresponds to degree of chromatin availability.  

 

3.8 ChIP and ChIP-seq 

Chromatin Immunoprecipitation (ChIP) is a powerful method used to experimentally 

map binding sites of any given protein, or protein modification, associated with 

chromatin, including TFs and histone modifications [258]. The method requires 

crosslinking to preserve DNA-protein interactions, most commonly achieved by 

formaldehyde fixation. Further, chromatin is extracted from the nuclei and sheared by 

sonication to produce fragments of about 200-1000 bp. Then, in a critical next step, 

antibodies capable of recognizing the target protein in the native and fixated state are 

used to capture the DNA fragments bound by the target protein. Following reversal of 

crosslinking, the DNA is purified and quantified in a targeted (ChIP) or global (ChIP-

seq) manner. In this study, we performed ChIP-seq to map genome-wide Irx3 and Irx5 

binding sites during differentiation of beige ME3 cells and white adipocytes.  

Unfortunately, no commercially available ChIP-seq grade Irx5 antibodies are currently 

available. We tested multiple candidate antibodies for ability to recognize native and 

crosslinked Irx5, and subjected the best-performing antibody (Cat# SAB2106408, 

LOT# QC6282) to commercial ChIP-seq. However, in a pilot ChIP-seq experiment, 

this antibody did not meet the stringent criteria for ChIP-seq and we could therefore 

not map the direct Irx5 binding sites. 
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In contrast to Irx5, one commercially available Irx3 antibody is rated as ChIP-seq grade 

(Cat # ab25703). This antibody passed the ChIP-seq quality control in our samples 

(commercial service), and full-scale ChIP-seq was therefore performed on ME3, iWAT 

and gWAT samples. While the signal-to-noise ratio in ME3 cells was too low to defend 

subsequent analyses, we obtained peaks of sufficient quality in iWAT and gWAT. 

Finally, we used ChIP followed by targeted qPCR to assess changes in binding of 

Kdm3a, one of the discovered Irx3-target genes, to the promoters of Ucp1 and Pgc-1α 

following Irx3-KO in ME3 cells. We also used ChIP to quantify changes in two histone 

marks on the same loci. In these assays, we enjoyed the benefit of commercially 

available antibodies of high ChIP-seq quality, providing high enrichment of 

precipitated DNA over input. 



 59 

4. Summary of results 

4.1 Paper I: “IRX5 regulates adipocyte amyloid precursor 
protein and mitochondrial respiration in obesity” 

In this study, we addressed the lack of reports on in vivo effects of Irx5 on body weight 

and fat storage. We therefore randomized WT and global Irx5-KO mice to either 

control or high-fat diet for 10 weeks, and observed a strong reduction in body weight 

and fat mass in Irx5-KO compared to WT mice. Moreover, the KO mice were resistant 

to diet-induced weight gain. We next compared the global gene expression in 

epididymal white adipose tissue (eWAT) between the WT and Irx5-KO mice, and 

found networks of differentially expressed genes (DEGs) to center around the amyloid 

precursor protein (App). We also found the thermogenic genes Pgc-1α and Ucp1 to be 

upregulated with Irx5-KO. 

To investigate whether these observed effects could be attributed to lack of Irx5 

specifically in adipocytes, we stably knocked down (kd) Irx5 in immortalized primary 

white adipocytes isolated from WAT of WT mice. We found that knocking down Irx5 

specifically in adipocytes recapitulated the effects of global Irx5-KO on adipose tissue, 

including reduced App expression and elevated expression of Pgc-1α and Ucp1. 

Moreover, luciferase reporter assays confirmed that Irx5 transcriptionally activated 

App, and that both Irx5 and App transcriptionally repressed Pgc-1α and Ucp1. In 

agreement, we found App and Irx5 to impair mitochondrial respiration and uncoupling. 

Finally, we found significant enrichment of Irx5-sensitive genes to be differentially 

expressed between adipocytes from obese and lean humans. 

In conclusion, we found Irx5-KO mice to be protected from obesity, and this could at 

least partially be attributed to ablation of Irx5 specifically in adipocytes, which 

diminished adipocyte App, thereby relieving a dual Irx5/App-mediated inhibition of 

adipocyte mitochondrial respiration and uncoupling. 
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4.2 Paper II: “The homeobox factor Irx3 maintains 
adipogenic identity” 

In this study, we sought to investigate the role of Irx3 specifically in adipocytes capable 

of beiging. To this end, we first performed comprehensive global gene expression 

profiling at five timepoints during differentiation of the beige ME3 cell line, and found 

Irx3 to be co-expressed with genes related to the cell-cycle/mitotic clonal expansion. 

Hypothesizing that Irx3 might control this process, we stably knocked out Irx3 in the 

ME3 cells and assessed the effect on differentiation. We observed a striking lack of 

adipogenic differentiation in the Irx3-KO cells, however, this effect was not 

attributable to changes in clonal expansion. Instead, global gene expression revealed 

altered expression of morphogenic genes early in differentiation, accompanied by 

increased activity of genes related to the extracellular matrix (ECM). In silico cell type 

enrichment analysis suggested loss of preadipocyte identity and gain of chondrocyte-

like identity in the Irx3-KO cells. This finding was confirmed in vitro by stimulation 

of WT and Irx3-KO cells with a chondrogenic cocktail for 19 days, which promoted 

chondrogenesis specifically in the Irx3-KO cells. 

Finally, we observed profound reductions in mitochondrial respiration and uncoupling, 

reactive oxygen species (ROS) generation and proliferation rates in the Irx3-KO cells 

compared to controls, attributable to differential expression of numerous genes 

involved in these processes. 

In conclusion, Irx3 is required for preadipocyte function, identity and ability to 

differentiate into mature adipocytes.  
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4.3 Paper III: “Epigenetic control of adipogenesis by Irx3” 

Having identified a large number of genes to be affected by manipulation of Irx3 in 

adipocytes, we next aimed to identify direct target genes. We therefore performed 

chromatin immunoprecipitation followed by sequencing (ChIP-seq) to map genome-

wide Irx3 binding sites on days 0, 1 and 7 during differentiation of the beiging-

competent mouse ME3 cell line. Furthermore, through collaboration with the Harwell 

Institute, we also received ChIP-seq data for Irx3-DNA interactions in two mouse 

WAT depots on days -1 and 1 of differentiation. In parallel, we performed open 

chromatin profiling (ATAC-seq) in the same cells. 

In WAT we identified over 300 Irx3 binding sites and found virtually all of them to 

occur in open chromatin specifically on proximal promoters of genes related to 

chromatin remodeling, mitochondrial translation and mRNA metabolism. In ME3 

cells, however, the ChIP-enrichment was insufficient to produce meaningful peaks, 

preventing a direct comparison with the binding events in WAT. However, ATAC-seq 

in ME3 revealed that most of the Irx3 binding sites identified in WAT overlapped with 

open chromatin in the ME3 cells. Therefore, it was conceivable that these loci could 

be bound by Irx3 in both cell types. Indeed, we identified 63 Irx3 target genes with 

differential expression between control and Irx3-KO in the ME3 cells. Again, these 

genes were significantly enriched with genes related to chromatin remodeling, 

mitochondrial translation and mRNA metabolism. 

Finally, we performed functional analyses of Kdm3a, one of the differentially 

expressed Irx3 target genes related to chromatin remodeling, that has previously been 

shown to promote Ucp1 expression by removal of repressive H3K9me2 histone marks. 

We found altered protein levels and recruitment of Kdm3a to the Pgc-1α and Ucp1 

promoters, followed by corresponding changes in H3K9me2 marks on these loci in 

Irx3-KO versus control cells. We also found differential expression of KDM3A and 

reduced H3K9me2 marks in primary and immortalized cells from human WAT. 

Furthermore, luciferase reporter assays confirmed transcriptional regulation of Kdm3a 

by Irx3. 
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In conclusion, we found Irx3 to bind directly to the promoters of genes involved in 

epigenetic regulation, mitochondrial function and mRNA metabolism, regulating their 

expression and downstream activities. Collectively, our findings indicate that Irx3 acts 

as a master regulator that coordinately impacts cell fate and metabolism via genetic and 

epigenetic regulation of gene expression. 
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5. General discussion 

5.1 Effect of Irx5 ablation in mice 

In paper I, we provided the first report of the in vivo metabolic effect of Irx5 ablation 

in mice. The global Irx5-KO mice displayed a profound anti-obesity phenotype 

compared to WT littermates, with about 40% reduction in body weight, accompanied 

by nearly 50% and 70% reductions in renal and epididymal adipose tissues, 

respectively. Moreover, whereas the WT mice gained more weight on a high-fat diet 

compared to regular chow, this effect was blunted in the Irx5-KO mice, meaning they 

were protected from diet-induced obesity. These changes were accompanied by 

increased expression of adipose Pgc-1α and Ucp1. Our results are highly similar to the 

effects observed by Smemo et al. in global Irx3-KO mice [113], although the effects of 

knocking out Irx5 in our study appeared to be stronger. Moreover, the phenotype of the 

global Irx5-KO mice closely recapitulated the phenotype of adipose-specific Irx3-DN 

mice reported by Claussnitzer et al. [117].  

Taken together with in vitro data from human cells, demonstrating similar effects of 

IRX3 and IRX5 on regulation of fat storage and thermogenesis [117], our data suggest 

that Irx3 and Irx5 serve cooperative or converging, rather than redundant, roles in 

regulation of energy homeostasis. Of note, Irx-proteins from Drosophila have been 

shown to physically interact to form heterodimers in vitro [205]. Moreover, Irx3 and 

Irx5 have been demonstrated to act cooperatively on specific target genes in the adult 

heart of mice [214]. Thus, it is conceivable that binding of either IRX protein to a target 

gene is stabilized by previous or subsequent dimerization with the other IRX partner. 

Indeed, in luciferase experiments using various target promoters, we have often seen 

more pronounced effects on the reporter when overexpressing Irx3 and Irx5 in 

combination (unpublished data). 

We found reduced expression of the amyloid precursor protein (App) in the adipose 

tissue of the Irx5-KO mice in vivo, and demonstrated in vitro that App expression 

depends on Irx5. Moreover, we provided evidence for both App and Irx5 to reduce 
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mitochondrial respiration. While App is most known for its contributing role to 

Alzheimer’s disease through plaque formation by its amyloid beta (Aβ) cleavage 

products in the brain [259–261], several studies have found positive associations 

between App itself, or its cleavage products, with obesity and adipose tissue function 

[262–269]. Moreover, App-KO mice were recently shown to recapitulate the anti-

obesity phenotype observed in the Irx5-KO mice, demonstrating a causal role of App 

in promoting obesity [270]. 

In neurons, soluble Aβ peptides can accumulate in the mitochondria [271], negatively 

affecting mitochondrial function through a number of mechanisms, including 

inhibition of electron transport chain complexes III and IV [272–275], disruption of 

protein transport into mitochondria [276,277], altered mitochondrial permeability 

[275,278] and inhibition of proton translocation from the mitochondrial matrix to the 

inter-membrane space [276,277,279]. Additionally, secreted Aβ peptides interact with 

a wide array of cell surface receptors, including the calcium-sensing receptor (CaSR) 

[280], which can, through a positive feedback loop, increase intracellular App and Aβ 

levels. Interestingly, the CaSR has also been reported to stimulate adipogenesis 

[281,282]. In our study, we did not quantify Aβ peptides in the circulation or adipose 

tissue of the Irx5-KO mice, and we do not know whether these cleavage products 

contributed to the observed mitochondrial dysfunction. However, full-length App itself 

has also been shown to be translocated to the mitochondria, where it becomes trapped 

between the inner and outer mitochondrial membrane, leading to mitochondrial 

dysfunction [271,283]. Of note, this mechanism was very recently also observed in 

WAT and found to promote obesity [284]. Thus, the pro-adipogenic role of Irx5 is 

likely in part mediated by increased expression of App. In support of this, we also found 

App to inhibit the expression of Pgc-1α and Ucp1, thus negatively targeting both 

mitochondrial respiration as well as thermogenesis.  

Increased thermogenic gene expression following Irx5-KO is further in line with the 

proposed role of IRX3 and IRX5 in promoting white over beige adipocyte 

development, as suggested by Claussnitzer et al. [117]. However, these findings are in 

stark contrast to the report by Zou et al. which suggested that Irx3 promotes 
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thermogenesis [242]. Unfortunately, these authors did not reveal any data on Irx5 

manipulation. Intriguingly, although the lentiviral-mediated reduction in Irx3 clearly 

inhibited transcription of Ucp1 and Pgc-1α, as well as protein levels, at least for Pgc-

1α, these changes did not translate into increased lipid accumulation. Instead, Irx3-kd 

significantly reduced lipid accumulation and Pparγ expression [242], indicating that 

Irx3 might play a role in regulating adipocyte differentiation, independently of its role 

on thermogenesis. Indeed, although displaying increased thermogenesis, the adipocyte-

specific Irx3-DN mice reported by Claussnitzer et al. actually had reduced brown and 

beige (and white) adipose depot sizes, as shown in the supplementary figures S4D-F in 

[117]. 

 

5.2 Gene networks under control of Irx3 

Due to the potential implications of Irx3 in beige adipogenesis, we next focused on 

Irx3 in paper II. Here, we employed the adipocyte cell line ME3, which are mouse 

embryonic fibroblasts committed to the beige lineage by ablation of the retinoblastoma 

(pRb) protein [285,286]. We found these cells to express relatively low levels of Ucp1 

in the basal state, but high levels following β-adrenergic stimulation by isoproterenol 

(iso), thus confirming a classic hallmark of beige adipocytes [137].  

Adipogenic regulators 

Strikingly, we found Irx3 to be critical for adipogenic identity. Stable knock-out of 

Irx3 strongly suppressed adipogenesis, as evident by reduced lipid accumulation and 

abolished expression of the adipogenic master regulators Pparγ and C/ebpα [287]. 

Consequently, a wide range of other adipogenic markers, both general and 

brown/beige-specific genes were also downregulated, including Pgc-1α and Ucp1 

[287]. Thus, when analyzed in isolation, this result resembled the report by Zou et al., 

which claimed that Irx3 promotes browning [242]. However, our results clearly 

demonstrated that Irx3 did not promote browning over white adipogenesis, but rather 

targeted adipogenesis per se¸ as evident by the loss of preadipocyte identity in the 
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Irx3-KO cells [287]. Loss of Irx3 would therefore affect adipogenesis of both white 

and beige cells, thus partially reconciling the reported discrepancies on Irx3 function 

in adipose tissue. In agreement, and as mentioned above, the adipose-specific Irx3-

DN mice displayed reductions in both white and brown fat depots [117]. Still, some 

adipocytes did differentiate in the Irx3-DN mice, and in these cells, Pgc-1α and Ucp1 

were likely upregulated due to relieved transcriptional repression by Irx3, 

independently of its control over adipogenesis. This suggests that there might exist 

certain populations of precursor cells that are capable of developing into adipocytes 

without the presence of Irx3. Whether this relies on developmental origin or 

biological niche is currently unknown.   

Overall though, it appears that the timing of Irx3 (and likely also Irx5) suppression is 

critical for the outcome on adipocyte biology; early repression blocks adipogenesis in 

general by loss of adipogenic identity, whereas later inhibition dictates whether the 

adipocyte will acquire white or beige adipocyte identity. The obesity-associated FTO 

variants that affect IRX3 and IRX5 expression were found to primarily affect 

adipocyte development, as the genotype effect was seen specifically during the first 

two days of adipogenesis of primary human adipose precursor cells from white 

adipose tissue [117].  

Cell-cycle regulation 

While Zou et al. reported increased expression levels of Irx3 during the course of 

differentiation in their beige cells [242], we have only seen this expression profile 

during differentiation of white adipocytes, such as 3T3-L1 and primary white 

adipocytes from mice (unpublished data). In contrast, Irx3 mRNA and protein levels 

peaked during early differentiation (days 0-1) in the ME3 cells [287]. During this early 

phase of differentiation, adipocytes undergo one to two rounds of cell division, a 

process known as mitotic clonal expansion (MCE), which is critical for the ability of 

most preadipocytes to undergo terminal differentiation [288]. Accordingly, we 

observed a spike in cell-cycle gene expression coinciding with peak Irx3 and Irx5 

expression on day 1 of differentiation in the ME3 cells [287]. This observation caught 

our attention, as we previously found cell-cycle genes to be significantly 



 67 

downregulated following siRNA-mediated knock-down of either IRX3 or IRX5 in 

human primary preadipocytes [287,289]. Moreover, other studies have also found 

IRX3 or IRX5 to be involved in cell-cycle regulation [235,236,290] and 

proliferation/cancer development [237]. We therefore hypothesized that Irx3 might 

control adipogenesis via MCE. In support of this hypothesis, we found preadipocytes 

with Irx3-KO to proliferate at a significantly lower rate compared to control cells due 

to increased G0/G1 retention [287]. However, on day 1 of differentiation, cell-cycle 

genes were significantly depleted among differentially expressed genes in Irx3-KO 

compared to control cells, meaning that these genes were significantly protected from 

the effect of Irx3-KO. These results indicate that MCE occurs independently of Irx3, 

at least in the ME3 cells. 

Metabolic and morphogenic genes 

Overall, about 3,500 and 6,700 genes were differentially expressed on days 1 and 7, 

respectively, in Irx3-KO compared to control cells. These genes are involved in a large 

number of pathways, including various developmental or morphogenic processes, 

reflecting the role of Irx3 in development and organogenesis. For example, loss of Irx3 

lead to altered expression of genes involved in cardiac function, in line with its reported 

role in this organ [214,232–234]. Moreover, multiple genes with structural or 

regulatory roles in the extracellular matrix was strongly upregulated in the Irx3-KO 

cells, facilitating chondrogenesis. Finally, a plethora of genes involved in metabolic 

processes were downregulated on day 7 in the KO cells, including genes related to the 

TCA cycle, fatty acid metabolism, amino acid biosynthesis and thermogenesis. 

However, because Irx3 affected adipogenesis per se, we could not, based on gene 

expression data alone, fully establish which genes were directly controlled by Irx3, and 

which genes changed as a downstream, secondary effect of altered cell identity. 

Therefore, identifying direct target genes was needed to dissect specific actions of Irx 

proteins in adipose tissue. 
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5.3 Direct target genes of Irx3 and Irx5 

Gene transcription from promoters are modulated by enhancers, which play a major 

role in dictating when and in which cells a gene is expressed [291–295]. Because 

different enhancers regulate the same gene at specific developmental stages and tissues, 

the total number of enhancers (up to 400,000) greatly outnumbers the protein coding 

genes (~20,000) [291]. We therefore hypothesized that Irx3 would bind to a large 

number of enhancers to regulate lineage determination. Unexpectedly, we found Irx3 

to bind almost exclusively to promoter regions, and these binding sites were strongly 

enriched at transcription start sites (TSS) [287]. Although surprising, this discovery 

enabled us to immediately map virtually all Irx3 binding sites directly to a target gene, 

eliminating the need for complex computational and functional analyses.  

We found that the target genes were related to several biological processes, but a 

particular enrichment was observed for genes involved in chromatin remodeling, 

mitochondrial translation and mRNA processing [287]. Furthermore, when 

overlapping the genes bound by Irx3 with differentially expressed genes following 

Irx3-KO, the same categories were enriched. One such target gene was the chromatin 

remodeler Lysine demethylase 3a (Kdm3a), which removes methyl groups specifically 

from repressive H3K9me2 histone tails. Intriguingly, Kdm3a has previously been 

shown to promote beiging and thermogenesis by removal of this repressive mark from 

the promoter of Ucp1 [284,285]. We observed changes in both mRNA and protein 

levels, as well as catalytic activity of Kdm3a on the Ucp1 promoter in response to 

knockout or knockdown of Irx3 in mouse and human cells, respectively, illustrating 

how Irx3 may exert control over Ucp1, and likely other genes, via epigenetic 

remodeling. 

Irx3 thus appears to indirectly control gene expression and translation at multiple 

levels; first, by manipulation of chromatin remodelers, Irx3 exerts influence over the 

global genetic landscape, potentially dictating lineage specification by determining 

which promoters are available for transcription. Second, by regulating levels of 

transcriptional co-regulators and genes controlling RNA stability, Irx3 appears to fine-
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tune the expression and translation of genes in the open chromatin. Taken together, this 

may explain why perturbation of a relatively low number of direct Irx3 target genes 

(~300) following Irx3-KO could change the expression of more than 6,000 downstream 

genes, resulting in altered cell identity. Moreover, our findings provide compelling 

evidence for Irx3-mediated epigenetic remodeling as a likely explanation for how the 

activity of the enhancer in intron 1 of FTO, which affects IRX3 and IRX5 expression 

only at an early stage of adipogenesis, can lead to altered adipocyte identity and 

thermogenesis specifically in the mature state. 

Additionally, many of the direct Irx3 target genes serve multiple roles. For example, 

the Prohibitin 2 (Phb2) gene encodes a coordinator protein that can translocate between 

different cellular compartments, serving multiple, distinct roles [296]. While Phb2 

located in  mitochondrial are crucial for mitochondrial stability and function, this 

protein can translocate to the nucleus following estrogen signaling to block estrogen-

receptor-mediated transcription by recruitment of epigenetic repressors [296–300]. 

Indeed, Phb2 has been found to mediate cross-talk between different compartments 

and thereby regulate multiple cellular processes, including metabolism, mitochondrial 

biogenesis and function, cell division and survival [297]. Interestingly, Phb2 also 

promotes Pparγ expression, and Phb2 ablation leads to loss of mitochondrial function, 

changes in ROS generation and inhibition of adipogenesis [296], a phenotype highly 

similar to Irx3-KO cells that exhibit reduced Phb2 levels. 
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6. Conclusions 

In the present study, we have found Irx3 and Irx5 to have a profound impact on 

adipocyte biology and whole-body metabolism:  

Mice with global knock-out of Irx5 were lean, with profound fat loss and protection 

from diet-induced obesity. This was partially attributable to improved mitochondrial 

respiration and thermogenesis specifically in adipocytes following changes in gene 

networks centered on App.  

Adipocyte precursor cells with stable knock-out of Irx3 lost their preadipocyte identity, 

were incapable of adipogenic differentiation, and displayed altered cell-cycle 

progression, ROS generation and mitochondrial respiration. More than 6,000 genes, 

enriched in genes with GO terms related to metabolism, ECM regulation, chondrocyte 

differentiation and morphogenic processes, were differentially expressed following 

Irx3-KO. These changes could be attributed to altered expression of about 300 direct 

Irx3 target genes controlling several biological pathways. Among these, chromatin 

remodeling, transcription and translation were most strongly and significantly 

enriched. 

Overall, genetic repression of Irx3 or Irx5 offered strong protection against obesity, 

reducing adipose tissue mass partially by increasing thermogenesis and improving 

mitochondrial respiration in existing adipocytes, and partially by preventing the 

formation of new adipocytes. 
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7. Future perspectives 

While we have shed new light on the functions of Irx3 and Irx5 in adipose tissue and 

whole-body homeostasis in this study, reconciling some of the reported discrepancies, 

further questions remain. Particularly, how some adipocytes depend on Irx3 or Irx5 to 

maintain their identity, whereas others apparently do not, is not clear, although different 

developmental origin of precursor cells might be an explanation. Thus, lineage tracing 

studies in mice could aid in clarifying the context-dependent effects of perturbed Irx3 

and Irx5 expression.  

Moreover, data from additional KO mouse models would be valuable, particularly 

adipose-specific Irx5-KO, and ideally adipose-specific inducible KO of Irx3 and Irx5 

alone or in combination. While embryonic double KO is lethal, inducible double KO 

postnatally results in viable mice. Finally, to better understand the mechanisms 

underlying the enhancer-mediated regulation of Irx3 and Irx5, as well as the effect on 

adipocytes in different depots and whole-body energy homeostasis, generating mouse 

lines that recapitulate the human risk and non-risk genotype at rs1421085 would be 

valuable. 

Identifying the direct target genes of Irx5 has proved challenging due to lack of 

antibodies of sufficient quality. As an alternative, one may use CRISPR-Cas9 to tag 

endogenous Irx5 with, for example, the myk-ddk/FLAG tag for which ChIP-seq grade 

antibodies are available. However, despite the small size of a FLAG tag, it may still 

interfere with protein folding or function, thus careful considerations must be made 

prior to this approach. 

Finally, analyzing more histone marks and chromatin remodeling enzymes by Western 

Blotting, ELISA and ChIP, as well as investigating higher-order chromatin by promoter 

capture Hi-C in multiple adipocyte cell lines with and without Irx3-KO, would further 

substantiate our findings in paper III.  
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Background: Inhibition of Irx3 and Irx5 has been shown to reduce body weight and white adipose tissue (WAT)
mass through cell-autonomous and sympathetic-induced increases in adipocyte beiging and thermogenesis in
mice and humans. However, the underlyingmechanisms of the Irx control over beiging are still largely unknown,
as illustrated by recent reports showing divergent effects of Irx3 on adipocytemetabolism and function. Here, we
investigated the role of Irx3 in controlling beige preadipocyte function and differentiation.
Methods: Stable knock out of Irx3 inME3mouse preadipocytes capable of beigingwas performed using a CRISPR-
Cas9 system, and the effect on cell differentiation was assessed by qPCR, RNA-seq, Oil-red-O lipid staining and
Alcian Blue staining of proteoglycans. Changes in cell identities were validated using cell type enrichment anal-
ysis from RNA-seq data. Proliferation and cell cycle progression in undifferentiated cells weremeasured byWST-
1 and flow cytometry, reactive oxygen species (ROS) generation was determined by fluorescence spectrometry
and mitochondrial respiration was investigated by Seahorse assay.
Results: Irx3was found to be essential for the identity, function and adipogenic differentiation of beige adipocyte
precursors. Irx3-KO impaired proliferation, ROS generation and mitochondrial respiration in the preadipocytes.
We further observed profound changes in numerous genes during both early and late stages of adipogenic differ-
entiation, including genes important for adipocyte differentiation, cell cycle progression, oxidative phosphoryla-
tion (OXPHOS) and morphogenesis. Irx3-KO cells failed to accumulate lipids following adipogenic stimuli, and
cell enrichment analysis revealed a loss of preadipocyte identity and a gain of chondrocyte-like identity in
Irx3-KO cells during early differentiation. Finally, unlike the control cells, the Irx3-KO cells readily responded to
chondrogenic stimuli.
Conclusions: Irx3 is required for preadipocyte identity and differentiation capacity. Our findings suggest that,
while inhibition of Irx3 may be beneficial during later developmental stages to modulate adipogenesis in the
beige direction, constitutive and complete absence of Irx3 in the embryonic fibroblast stage leads to detrimental
loss of adipogenic differentiation capacity.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Obesity has a strong genetic component that accounts for up to 70–
80% of variations in BMI [1–3]. Progressive elevations in BMI associate

with an exponential increase in mortality risk [4–6], and so identifying
causal genes has long been an important focus in medical genetics.
However, obesity is a complex disease whose underlying metabolic
traits are influenced by thousands of common risk variants withmoder-
ate to diminishing allele effects [7]. Moreover, 95% of these variants are
located in putative regulatory rather than coding regions, typically
found in high linkage disequilibrium with nearby SNPs and interacting
with genes up to several millions of base pairs away [7]. Thus, under-
standing the functional importance of these trait-associated loci has
been challenging.

Recently, Claussnitzer et al. were able to pinpoint a causal SNP in the
first intron of the FTO gene [8], the common variant locus most strongly
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associated with obesity [9–12], which has been previously linked to the
distal genes Irx3 and Irx5 through long range enhancer-promoter inter-
actions [13,14]. Moreover, in humans this variant locus wasmost active
in mesenchymal cells, particularly in adipose tissue, where the risk var-
iant increased the expression of IRX3/IRX5, which in turn inhibited
beiging and thermogenesis, promoting white adipogenesis and fat stor-
age [8]. Beige adipocytes are now well established to be present in
human adults, where they are active during cold exposure and posi-
tively associate with reduced BMI, improved whole-body metabolism
and increased insulin sensitivity [15–18]. Therefore, inhibition of IRX3/
IRX5 to promote beiging has emerged as a possible intervention against
obesity. In support of this mechanism, Irx3-KO mice, as well as mice
with adipocyte-specific transgenic expression of dominant-negative
(DN) Irx3, were resistant toweight gain and displayed increased energy
expenditure [8,14]. We recently also demonstrated a similar protection
from obesity in global Irx5-KO mice [19].

However, the mechanisms of Irx action in adipocyte development
are far from fully delineated. For example, IRX3 shows a significant influ-
ence over body weight through the hypothalamus [14], where its func-
tion may be independent of the FTO locus variants which show little
activity in the brain [8]. Further, in contrast to DN Irx3mutants in either
the brain or adipose tissue, lentiviral-mediated knock-down of Irx3 in
either tissue had the opposite effect and promoted obesity [20,21].
The reasons for this discrepancy are unknown, although it has been
speculated that DN mutant proteins may retain some function in com-
plexes with other proteins [22], highlighting the need for elucidating
the transcriptional mechanisms of Irx3 action in adipose tissue using al-
ternative methods. Here, we completely knocked out Irx3 in beiging-
competent preadipocytes using a CRISPR-Cas9 system, and found Irx3
to be critical for both preadipocyte identity and adipogenic potential.

2. Materials and methods

2.1. Mouse cells

Mouse embryonic fibroblast Rb−/− Line 3 (ME3) cells were previ-
ously generated [23] and characterized to be a model of beige/brown
adipocytes [24,25]. Cells were grown in AmnioMAX-C100medium sup-
plemented with 7.5% FBS, 7.5% C100 (all from Thermo Fisher Scientific,
Waltham, MA, USA), 1% penicillin-streptomycin (PEST) (Sigma, St.
Louis, MO, USA) and 2 mM L-glutamine (Sigma) at 37 °C and 5% CO2.
Adipogenic differentiation was initiated three days post confluency
(day 0) by induction medium containing 5 μg/mL Insulin (INS)
(Sigma), 1 μMDexamethasone (DEX) (Sigma), 0.5mM isobutylmethyl-
xanthine (IBMX) (Sigma) and 1 μM Rosiglitazone (ROSI) (Cayman
Chemical, Ann Arbor, MI, USA). From day 2 to day 4 only insulin was
added to the basal medium and from day 4 to 7 cells were grown in
the basal medium. Stable knockout (KO) of Irx3 in ME3 cells was per-
formed by CRISPR-Cas9 as described before [19,26] using guide RNA
MM0000204919 (CCGTCCCAAGAACGCCACCCGG) (Sigma). A non-
targeting guide RNA (Sigma) was used as negative control. Due to re-
duced proliferation rate in Irx3-KO compared to control cells, differenti-
ationwas initiated three days after observed confluence in controls. This
ensured the lagging Irx3-KO cells to be confluent for at least two days,
thereby matching confluency between the two cell lines before induc-
tion of differentiation, to limit a confounding effect on differentiation.
Chondrogenic micromass cultures were generated by seeding 80,000
cells in 5 μL droplets. The micromass cultures were incubated for 2 h
in a CO2 incubator before addition of StemPro osteocyte/chondrocyte
differentiation basal medium with 10% StemPro chondrogenesis sup-
plement (both from Thermo Fisher Scientific) and 1% PEST (Sigma).

2.2. Human cells

Primary human cells were derived from the stromovascular fraction
(SVF) of liposuction material from patients undergoing plastic surgery.

All patients gave written informed consent and the study was approved
by the Regional committee for Medical and Health Research Ethics,
Western Norway (REK Vest) (approval number 2010/502). The
SVF fraction was isolated by collagenase treatment, sieving and centri-
fugation as previously described [27] and cultured in adipogenic basal
medium (DMEM/F-12 GlutaMax (Invitrogen, Carlsbad, CA, USA) in
10% FBS and 50 μg/mL gentamicin (Sigma). Differentiation was induced
by addition of 100 nM cortisol, 66 nM insulin, 10 μg/mL transferring, 33
μM biotin, 17 μM pantothenate, 1 nM T3 (all from Sigma) and 10 μM
ROSI. Cells were treated with siRNA against IRX3 (Origene, Rockville,
MD, USA) from day 0–2 before lysis and RNA purification.

2.3. Oil-red-O lipid staining

Cells were fixated in 4% formaldehyde (Sigma) prepared in PBS for
5 min followed by another 2 h in fresh fixation solution. Cells were sub-
sequently washed twice with water and incubated in 60% isopropanol
(Kemetyl, Trollåsen, Norway) for 5min before incubation in freshly pre-
pared working solution of Oil-red-O (Santa Cruz Biotechnology, Dallas,
TX, USA) (1.8 mg/mL isopropanol) for 25 min. Cells were washed
three times in water and examined under light-microscope. Quantifica-
tion was performed spectrophotometrically at 500 nm by addition of
100% isopropanol.

2.4. Alcian Blue staining of proteoglycans

Cells were fixated in 4% formaldehyde/PBS for 1 h andwashed twice
in water before incubation in 1% Alcian Blue (Molekula, Darlington, UK)
prepared in 0.1NHCl for 30min. Cells werewashed three times in 0.1 N
HCl before examination under light-microscope. Quantification was
performed by incubation in 6 M Guanidine-HCl solution (Sigma) over
night at 4 °C before reading absorbance at 600 nm.

2.5. Immunocytochemistry

ME3 cellswere grown on coverslips coatedwith 0.1% gelatin andfix-
ated by 4% PFA (Sigma) for 15 min. The coverslips were washed in TBS,
blocked in 5% BSA/TBST for 30 min and incubated with rabbit anti-Irx3
(ab25703, Abcam, Cambridge, UK) and/or mouse anti-ATPB (ab5452,
Abcam) diluted 1:500 in 5% BSA/TBST for 1 h at room temperature
(RT). After washing with TBS, the coverslips were incubated with goat
Alexa 546 anti-rabbit and/or goat Alexa 647 anti-mouse (Molecular
Probes, Eugene, OR, USA) diluted 1:500 in 5% BSA/TBST for 1 h before
mounting with Prolong Diamond antifade with DAPI (Thermo Fisher
Scientific).

2.6. Mitochondrial isolation and western blotting

Mitochondria were isolated fromME3 cells using the reagent-based
method of theMitochondrial isolation kit for cultured cells (Thermo Sci-
entific). Whole cells, as well as isolated mitochondria, were lysed in 1X
RIPA buffer supplemented with 1X cOmplete Mini protease inhibitor
cocktail (Roche) and analyzed by western blotting using 12 μg of lysate.
The following antibodies were used: rabbit anti-Irx3 (ab25703, Abcam)
1:800, rabbit anti-Ucp1 (U6382, Sigma) 1:1000 and goat anti-rabbit IgG
HRP (31,460, Thermo Scientific) 1:7500. Blots were detected with
Femto substrate (Thermo Scientific) on a ChemiDoc XRS imager (Bio-
Rad).

2.7. RNA isolation, cDNA synthesis and real-time qPCR analyses

Cells were lysed in RLT buffer (Qiagen, Hilden, Germany), homoge-
nized by centrifugation on QIAShredder columns (Qiagen) and snap-
frozen in liquid nitrogen. RNA was isolated using the RNeasy Mini kit
(Qiagen)with on-columnDNaseI-treatment, andRNA integritywas val-
idated by the RNA 6000 Nano kit on the 2100 Bioanalyzer (Agilent,
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Santa Clara, USA). cDNA was made from 100 ng RNA input with the
High-Capacity cDNA Reverse Transcription kit (Applied Biosystems,
Waltham, MA, USA). Real-time qPCR was performed using the
LightCycler 480 system (Roche) and the delta-delta Ct method relative
to reference gene Rps13. Data was plotted in GraphPad Prism 7 using
backbone tracing. Primers were designed using either the Universal
ProbeLibrary Assay Design Center (Roche) or Primer-BLAST softwares.
Primer sequences shown in Table 1.

2.8. Global gene expression analyses

2.8.1. ME3 cells differentiation time course (RNA-seq)
ME3 cells were differentiated and lysed on days 0, 1, 2, 4 and 7

followed by RNA purification and quality control as described above. Li-
brary preparation and 2x75bp paired-end mRNA sequencing of 400 ng
input RNA was performed using the TruSeq Stranded mRNA kit
(Illumina, Sand Diego, CA, USA) and the HiSeq4000 instrument
(Illumina). Readswere aligned to GRCm38.p5/mm10 reference genome
using HISAT2 2.0.5, and then submitted to featureCounts in R, resulting
in a raw read countmatrix. RPKMnormalizationwas then used for visu-
alization purposes, and TMM normalization was used for statistical
analysis. A regression analysis performed via the R package maSigPro
version 1.54.0 [28] was used to analyze and cluster genes with similar
expression profiles.

2.8.2. ME3 control versus Irx3-KO cells (RNA-seq)
RNA fromME3 control and Irx3-KO cells on day 1 and day 7 of differ-

entiation was purified and subjected to RNA-sequencing as described
above, with 300 ng input. Read alignment and counting was performed
as before. The raw read count matrix was then submitted to DESeq2
(Version 1.24.0), normalized and filtered by expression. Differentially
expressed genes (DEGs) were then identified and selected using a BH-
adjusted p-value b.1 and an absolute log2 fold change N1. These gene
sets were then separated into up- and down-regulated categories and
submitted to gene ontology (GO) analysis.

2.8.3. Gene ontology analysis
Lists of genes that were differentially expressed over time, or be-

tween Irx3-KO and control cells, were subjected to GO analyses using
publicly available databases of known gene function (PANTHER
(pantherdb.org) and KEGG PATHWAY (genome.jp/kegg/pathway.
html). KEGG was accessed via the R package clusterProfiler.

These analyses allowed identification of biological processes and
pathways that were enriched with genes in the submitted gene lists.

2.8.4. siIRX3 in human SVF (microarray)
Global gene expression in human primary SVF-derived cells was

measured by microarray, using the Illumina TotalPrep RNA Amplifica-
tion Kit (Applied Biosystems/Ambion, USA) with 400 ng input. Biotin-
labelled cRNA was hybridized to the HumanHT-12 V4 Expression
BeadChip and detected using the Illumina iScan Reader. A quantile-

normalized intensity matrix was created and subsequently converted
into log2 values, filtered for low intensity genes and the R package
limma (Version 3.40.2) was then used to identify DEGs. Genes with an
adjusted p-value b0.1 and an absolute log fold change N1 were used
for downstream analysis.

2.9. Cell type enrichment analysis

Global gene expression profiles of control and Irx3-KO cells were
compared with gene signatures of thousands of samples from pure
cell types, using the xCell software [29]. Briefly, the software integrated
gene expression profiles from six public databases, including ENCODE
and FANTOM5, to make consolidated gene signatures for 64 cell types.
These signatures were then compared with our submitted gene expres-
sion data, and an adjusted cell type enrichment score was calculated.
This method allows characterization of cell identity based on activity
of biological processes, reflecting coordinated changes in expression of
multiple genes rather than the expression level of single genes.

2.10. Seahorse assay

Cellular mitochondrial respiration was assessed by oxygen con-
sumption rate (OCR) using the Seahorse XF Cell Mito Stress Test kit as
previously described [19] with the following modifications: Cells were
seeded at 7500 cells/well and assayed either before reaching confluence
(undifferentiated), or on day 1 of differentiation. Assay media glucose
levels were 25 mM, and the concentration of CCCP, rotenone and
antimycinwas 2 μMeach. Datawas normalized to cell count byHoechst
stained nuclei.

2.11. ROS assay

Production of reactive oxygen species (ROS) was measured in con-
trol and Irx3-KO cells using the CM-H2DCFDA fluorescent probe
(Thermo Fisher Scientific). On the day of assay, culture media was re-
placed with PBS containing 5 μM ROS probe for 30 min. Cells were sub-
sequently washed twice with Krebs Ringer Buffer (KRB) and assayed in
KRB using a Spectramax fluorescence plate reader (Excitation 488 nm/
Emission 538 nm) for 3 h with 10 min read intervals.

2.12. Proliferation assays

Non-synchronously proliferating cells were seeded at 5000 cells/
well in 96 well plates, left to grow for 72 h and assayed with WST-1
for 1 h using the Quick Cell Proliferation Assay Kit II (Abcam) in 12 rep-
licates. For 2D cell cycle analysis, non-synchronously proliferating cells
were grown for 48 h post seeding, pulse-labelled for 1 h with 30 μM
BrdU (Abcam) and left to grow for 6 h in BrdU-free medium before fix-
ation in 70% ethanol, denaturing by 2 N HCl and neutralization by 0.1 M
NaB4O7 (pH 8.5). Cells were incubated o/nwith 1:100 dilutions of anti-
BrdU (ab6326) or negative control IgG (ab171870) at 4 °C, followed by a

Table 1
Primer sequences.

Target
gene

Forward primer Reverse primer

Irx3 5′-AAAAGTTACTCAAGACAGCTTTCCA-3′ 5′-CGATTTAAAAATGGTTGAAAAGTTAAG-3′
Fabp4 5′-ATCACCGCAGACGACAGG-3′ 5′-TCATAACACATTCCACCACCA-3′
Pparg2 5′-TTATAGCTGTCATTATTCTCAGTGGAG-3′ 5′-GACTCTGGGTGATTCAGCTTG-3′
Pgc-1α 5′-AATTTTTCAAGTCTAACTATGCAGACC-3′ 5′-AAAATCCAGAGAGTCATACTTGCTC-3′
Cidea 5′-TCCTCGGCTGTCTCAATG-3′ 5′-TGGCTGCTCTTCTGTATCG-3′
Ucp1 5′-GGGCATTCAGAGGCAAATCAG-3′ 5′-TTTCCGAGAGAGGCAGGTGTTT-3′
Pparα 5′-CGGGAAAGACCAGCAACA-3′ 5′-GAATCGGACCTCTGCCTCT-3′
Leptin 5′-CTGTGTCGGTTCCTGTGGCT-3′ 5′-GTGACCCTCTGCTTGGCGG-3′
Cpt1b 5′-GACCCAAAACAGTATCCCAATC-3′ 5′-AGACCCCGTAGCCATCATC-3′
Tbx1 5′-CCAAGGCAGGCAGACGAATGT-3′ 5′-GTCATCTACGGGCACAAAGTCCA-3′
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1:2000 dilution of anti-rat Alexa Fluor 488 (ab150157) for 30min at RT.
Counterstaining was performed with 50 μg/mL Propidium Iodide (PI)
(Abcam) in the presence of 100 μg/mL RNase A in the dark at 37 °C for
30 and the cells were analyzed immediately after on a BD Accuri C6
flow cytometer according to manufacturer's instructions. Briefly, cell
populations were gated with FSC-A vs SSC-A to eliminate debris and
FL3-A vs FL3-H to exclude doublets. Live singlets were displayed as bi-
variate contour plots of DNA-content (PI/FL3) against BrdU staining
(FL1) and gated for BrdU content and cell cycle stage.

2.13. Statistical analyses

Gene expression datawere analyzed using R software [30]with indi-
cated packages. Analysis of significance of all other data was performed
in GraphPad Prism 8.1.0 using unpaired Student's t-test, one-way
ANOVA or two-way repeated measures ANOVA with Holm-Sidak cor-
rection for multiple testing as indicated. Data were tested for normality
using Shapiro-Wilk test and heteroscedasticity usingBrown-Forsythe or
Bartlett's test. Data shown as mean ± SD.

2.14. Data deposition

Global gene expression data have been deposited in the
ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress)
under accession numbers E-MTAB-8200 (mouse differentiation time
laps), E-MTAB-8209 (mouse control versus Irx3-KO) and E-MTAB-
8183 (Human SVF with siIRX3).

3. Results

3.1. Irx3 is dynamically expressed during beige adipocyte differentiation

Due to the conflicting results reported on Irx3 function in beiging
[8,14,30,31], we sought to investigate the transcriptional role of Irx3
during the differentiation of beige adipocytes. To this end, we employed
ME3 cells, an immortalizedmouse beiging-competent preadipocyte cell
model (see Materials and methods). To validate the model,
preadipocytes were differentiated for seven days and cell morphology
was assessed. By day 7, cells developed into mature beige adipocytes
with accumulation of multilocular lipid droplets (Fig. S1A) alongside
mitochondrial remodeling and expansion (Fig. S1B). To verify the ex-
pression and subcellular localization of Irx3, we performed ICC, demon-
strating that the Irx3 protein was predominately located in the nucleus,
but is also detectable in the cytoplasm, where its concentration in-
creases throughout differentiation (Fig. S1B).

To further characterize the cells, the gene expression of Irx3, as well
as general and beige-specific adipocyte markers, was measured at days
0, 1, 2, 4 and 7 of differentiation (Fig. S1C). Irx3 expression was found to
peak on day 1,whereas the adipogenicmaster regulator Pparγ2, and the
general mature adipocyte markers Pparα, Fabp4 (also known as Ap2)
and Leptin were all strongly induced on days 4–7. Ucp1 is expressed at
a high basal rate in brown adipocytes, and at a low basal rate, but with
a potential for induction underβ-adrenergic stimulation, in beige adipo-
cytes [31,32]. As such, we treated the cells with either vehicle or 1 μM
isoproterenol (ISO) for 4 h prior to lysis. Accordingly, Ucp1mRNA levels
were low in the basal state and profoundly induced by ISO, indicating
that ME3 cells more closely resemble beige than brown adipocytes.
Moreover, the beige-specific markers Tbx1, Pgc-1a and Cidea and the

mitochondrial marker Cpt1bwere markedly increased throughout dif-
ferentiation (Fig. S1C). In agreement with the reported gene expression
data, Ucp1 protein levels were also strongly induced over the course of
differentiation (Fig. S1D). Taken together, these results indicate that
Irx3 is most highly expressed during early differentiation of the ME3
cells, a cell line that has the capacity to differentiate into beige-like adi-
pocytes with a strong thermogenic capacity.

3.2. Irx3 and cell cycle genes are co-expressed

To identify genes co-expressed with Irx3 and to obtain a detailed
view of the global transcriptional events during differentiation of ME3
cells, we performed RNA-sequencing of the cells at five timepoints dur-
ing differentiation. DEGs were clustered according to expression profile
similarity using unbiased linear regression (Fig. 1 and Supplementary
file 1). About 3000 genes, including C/ebpα and Pparγ (Fig. S1E), were
upregulated during differentiation (cluster F, G and H) and these were
functionally enriched for gene ontology (GO) terms related to funda-
mental adipocytic processes such as differentiation (i.e. PPAR signaling
pathways), insulin signaling and the metabolism of fatty acids, glucose
and branched chain amino acids (BCAAs) (Fig. 1B-C). Conversely,
genes in cluster A and B, which were downregulated over time, were
enriched in adipogenic inhibitory pathways such as Hedgehog signaling
(Fig. 1B-C). These data further indicate that the cells readily differenti-
ated into highly metabolically active thermogenic adipocytes.

Consistent with qPCR analyses, Irx3 peaked at day 1 and was found
to cluster together with 1439 other genes (cluster C) with similar ex-
pression profiles. This cluster was found to be enriched in cell cycle re-
lated GOs (Fig. 1C) and included C/ebpδ, an early response gene well
known to regulate mitotic clonal expansion and induce adipogenesis
[33]. The closely related gene C/ebpβ was not assigned a cluster in the
regression model, but manual inspection revealed a peak expression on
days 1–2 (Fig. S1E). These findings suggest that at least one round of
cell division occurred and that this process is positively associated
with the expression of Irx3.

3.3. Irx3 ablation impairs adipogenesis

Having established the basic characteristics of the beige cell model,
we next set out to determine the effect of Irx3 depletion on global
gene expression. A stable knock-out of Irx3 was generated, using a
CRISPR-Cas9 system to introduce a frameshift mutation upstream of
theHOX domain, resulting in the production of a truncated Irx3 protein,
devoid of its DNA-binding and protein-interaction domains (Fig. 2A).
Successful knockout was verified by Sanger DNA-sequencing and west-
ern blotting (WB) (Fig. 2B). Strikingly, Irx3-KO cells were largely unable
to differentiate, as demonstrated by diminished lipid accumulation
(Fig. 2C) and blunted adipocyte marker gene expression (Fig. 2D).

3.4. Irx3 inhibits adipogenesis independently of the clonal expansion

Because mitotic clonal expansion is often required for efficient adi-
pocyte differentiation, and Irx3 expression coincided with this event,
we hypothesized that loss of Irx3 could impair differentiation by
perturbing cell cycle gene expression. To test this hypothesis, RNA-
sequencing on days 1 and 7 of differentiation was performed in both
the control and Irx3-KO cells. We observed a major impact on global
gene expression during both early and late stages of differentiation,

Fig. 1. Irx3 and cell cycle genes are co-expressed.ME3 cellswere grown to confluence anddifferentiated for 7 days in triplicates in 4 independent experiments. Cellswere lysed at indicated
days followed byRNA-purification and RNA-sequencing. (A) Distribution of DEGs, constitutive andunexpressed genes during differentiation. (B) Heatmap of theDEGs clustered according
to similar expression profile by MaSigPro linear regression. Cluster name and number of genes in each cluster shown. Yellow color indicates highest expression. (C) Average expression
profile, number of genes, gene ontology (GO) and enrichment of each cluster. Expression profilesweremade frommedian expression of all genes in the cluster, meanmedian±SDof the 4
experiments shown. Top enriched KEGG pathway GO shown for each cluster. Dot sizes represent number of genes in each category and color indicates level of statistical significance. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Irx3 ablation impairs adipogenesis. (A) Schematic of CRISPR-Cas9 mediated KO of Irx3. Gene edit led to frameshift mutation and translation of truncated Irx3 protein. HOX,
homeobox DNA-binding domain. IRO, Iroquois domain. Control, cells treatedwith non-targeting guide RNA. (B) Irx3-KOwas verified on protein level bywestern blotting using antibodies
recognizing the C-terminal of Irx3. β-actin was used as endogenous control. n= 2 replicate wells. Images were cut to remove lanes between control and Irx3-KO samples. (C) Oil-red-O
lipid staining of control and Irx3-KO cells differentiated for 7 days. Representative of two independent experiments. Left panel, representative of n=3wells. Middle panels, representative
images from brightfield microscope. Scale bars = 100 μm. Right panel, quantification of n = 3 wells. Individual values and mean ± SD shown. *** p b 0.001, Student's t-test.
(D) Quantification of general and thermogenic adipocyte differentiationmarkers by RT-qPCR against reference gene Rps13 in control and Irx3-KO cells on day 7, normalized to expression
on day 1. Representative of two independent experiments with n=6 replicate wells. Individual values andmean ± SD shown. *** p b 0.001, Student's t-test. (E-F) Distribution of differ-
entially expressed genes (DEGs), constitutive and unexpressed genes between control and Irx3-KO cells on day 1 (E) and day 7 (F) of differentiation. From one experiment with n = 6
replicate wells. Log2-fold change and adjusted p-value for each individual DEG shown as volcano plot. Nc, non-coding. (G) Top enriched KEGG pathways for up- and downregulated
genes on day 7. Dot size represents number of genes in each category and color indicates level of statistical significance. See also Fig. S2 and Supplementary file 2 for complete GO infor-
mation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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with expression of 3000–6000 genes changing N2-fold and of 443 genes
changing N100-fold (Fig. 2E–F and Supplementary file 2). GO of DEGs on
day 7 confirmed the inability of Irx3-KO cells to undergo adipogenic dif-
ferentiation (Fig. 2G). Unexpectedly, cell cycle related GO terms were
significantly depleted among downregulated genes on day 1 (Fig. S2A
and Supplementary file 2), and neither C/ebp isoform was changed on
day 1 above the 2-fold threshold, suggesting that Irx3 regulates adipo-
genesis independently of the mitotic clonal expansion in these cells.

3.5. Loss of Irx3 alters morphogenic genes

Further interrogation of the global gene expression data revealed
that upregulated genes in the Irx3-KO cells on day 1 were highly
enriched for GO terms associatedwith regulation of extracellularmatrix
(ECM) and blood coagulation. Conversely, genes found to be downreg-
ulated on day 1 were enriched for GO terms ranging from interleukin-
1 signaling and proliferation to patterning formation and other
developmental-related processes (Fig. S2A and Supplementary file 2).
Moreover, upregulated genes on day 7 were enriched in GO terms re-
lated to ECM, chondrocyte and osteoblasts differentiation and develop-
mental processes such as morphogenesis of various cells and tissues
including heart, bone, muscle and neurons (Top KEGG pathways
shown in Fig. 2G, see also top enriched Panther GO in Fig. S2A and com-
plete lists in Supplementary file 2). These data suggest that Irx3 control
adipocyte differentiation throughmore fundamental processes control-
ling cell identities.

3.6. Irx3 deprivation reduces expression of adipocyte markers

To investigate the potential role of Irx3 in maintaining adipocyte
identity, we searched for enrichment of Irx3-responsive genes among
those found to change during differentiation. We identified highly sig-
nificant enrichment in all nine clusters (Supplementary Table 1),
supporting a hypothesis that one role of Irx3 lies in controlling genes
that are dynamically expressed during differentiation, and thereby
that Irx3 is an important factor in regulating adipocyte differentiation
and function. For example, fundamental drivers and markers of adipo-
cyte differentiation were downregulated on day 7 in KO cells, including
c/ebpα, Pparγ2, Fabp4, Plin2, Lpl,Mdh1, Gapdh and Fasn (Fig. 3A and Fig.
S2D). Moreover, expression of several other established [34–36]
markers of pre-adipocytes, as well as general brown/beige and white
adipocyte markers, was found to be altered in Irx3-KO cells on both
day 1 and 7, and most of these were downregulated (Fig. 3A).

3.7. Irx3-KO cells lose adipocyte identity

Next,we addressed how Irx3-KOcells responded to adipogenic stim-
uli. Surprisingly, a high number of genes were altered in the Irx3-KO
cells after seven days in adipogenic cocktail, but most of these were re-
lated to the cell cycle (Fig. 3B and Supplementary file 3). Genes that
were uniquely differentially expressed over time in the control cells
were enriched in GOs related to mitochondrial activity and adipocyte
function. Moreover, not only were these genes unchanged in the KO
cells;many genes involved in the same processeswere in fact downreg-
ulated on day 7 as compared to day 1 (Fig. 3B and Supplementary file 3).
Conversely, overlapping genes that were downregulated in the control
cells, but upregulated in the Irx3-KO cells, were functionally enriched
for the GO terms angiogenesis, regulation of cell migration, ECM organi-
zation and negative regulation of mesenchymal proliferation. These
data show that Irx3-KO cells responded to mitogenic agents in the dif-
ferentiation cocktail, and did change significantly over time, but not in
the adipogenic direction.

To better understand thedevelopmental identity of the Irx3-KO cells,
we compared the global gene expression profile of both the control and
Irx3-KO cells with gene signatures of 64 different cell types using cell
type enrichment analysis [29]. As expected, the control cells were

most significantly associated with mesenchymal stem cells, mouse em-
bryonic fibroblasts (MEFs) and preadipocytes on day 1 and with adipo-
cytes on day 7 (Fig. 3C). Strikingly, Irx3-KOcells lacked associationswith
any of these lineages, and were instead strongly associated with im-
mune cells and chondrocytes on day 1 (Fig. 3C). We found the chondro-
cyte association to be particularly interesting because these cells share
the samemesenchymal precursor as adipocytes.We therefore searched
for differential expression of chondrocyte-related genes in KO versus
control cells on day 1, and found strong upregulation of severalmarkers,
including Has1 and Prg4 (Fig. 3D). The former encodes an enzyme cata-
lyzing the formation of hyaluronic acid, a glycosaminoglycan (GAG) and
component of the ECM, whereas the latter encodes Lubricin, a proteo-
glycan produced specifically by chondrocytes [37].

To assess whether the Irx3-KO cells gained a more chondrocyte-like
identity compared to controls in vitro, we quantified proteoglycans
using Alcian Blue staining following either adipogenic or chondrogenic
differentiation (Fig. 3E). The level of proteoglycans was negligible in ei-
ther cell line before differentiation, and the levels remained low during
adipogenic stimulation (Fig. 3E). Oil-red-O lipid stainingwas performed
as a positive control of the adipogenic differentiation (Fig. 3F). In con-
trast, 19 days in chondrogenic medium raised proteoglycan levels 50-
fold in Irx3-KO cells, while having little effect in control cells (Fig. 3E).
These data show that, unlike the adipocyte-committed control cells,
the Irx3-KO cells could be reprogramed to readily form chondrocytes,
thereby supporting the gene expression data. Collectively, these data
further support a crucial role of Irx3 in maintaining preadipocyte iden-
tity and thus permitting adipogenic differentiation.

3.8. Conserved roles of Irx3 in mouse ME3 cells and human primary cells

Wenext sought to compare the observed effects of Irx3 depletion on
global gene expression between mouse and human preadipocytes. We
therefore employed a microarray dataset where primary cells isolated
from the stromovascular fraction (SVF) of liposuction material from pa-
tients with obesity were treated with siRNA against IRX3 on day 0–2 of
adipogenic differentiation.MostDEGswere upregulated (Fig. 4A and Sup-
plementary file 4) andwere functionally enriched for GO terms related to
the immune response, extracellular matrix (ECM) assembly, focal adhe-
sion, glycolysis, and the PI3K-Akt pathway (Fig. 4B and Supplementary
file 4). Interestingly, downregulated geneswere enriched for cell cycle re-
lated processes (Fig. 4B and Supplementary file 4). Because this dataset
was derived fromearly stages of differentiation,we found itmost relevant
to be compared with DEGs on day 1 in mouse ME3.

We found 125 genes to overlap between mouse and human Irx3 de-
pletion during early adipogenesis (day 1–2), with roughly half of the
genes regulated in the same direction in both datasets (Fig. 4C–D and
Supplementary Table 2). GO analysis of consistently upregulated genes
revealed that the most enriched GO terms were involved in ECM organi-
zation, focal adhesion, PI3K-Akt signaling, bone morphogenesis and cho-
lesterol synthesis (Fig. 4E and Supplementary table 3). Of note, ECM-
related genes included Col1a2, which was among the most upregulated
gene in the mouse KO dataset day 1, with an average fold change of
1616. Thus, both mouse and human cells with Irx3 deficiency displayed
increased expression of genes related osteocytes and chondrocytes.

3.9. Knock-out of Irx3 impairs proliferation and mitochondrial respiration
of preadipocytes

Since we found the loss of Irx3 to have a large impact on global gene
expression already at day 1 of differentiation, with a loss of
preadipocyte identity, we reasoned this would also be reflected in the
cell phenotype prior to differentiation. Indeed, undifferentiated Irx3-
KO cells displayed clear signs of mitochondrial dysfunction with re-
duced basal respiration and ATP production, and a strongly diminished
maximal respiration and blunted spare capacity, as measured by
Seahorse XF mito stress analyses (Fig. 5A).
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Reactive oxygen species (ROS) play important roles in regulating
many preadipocyte processes, including proliferation and differentia-
tion [38,39]. We therefore investigated the basal ROS levels in control
and Irx3-KO cells, and found the KO-cells to produce significantly less
ROS (Fig. 5B). Of note, overexpression of Irx3 in the KO cells completely
restored ROS levels back to normal. Moreover, cell proliferation analysis
byWST-1 revealed a strongly reduced proliferative ability in the Irx3-KO
cells which could at least partially be rescued by overexpression of Irx3
(Fig. 5C). However, because the WST-1 assay relies on mitochondrial
dehydrogenase activity, and the KO cells showed reduced mitochon-
drial activity in the Seahorse assays,we could not rule out the possibility
that the observed differences in WST-1 formation may partially be due
to altered mitochondrial activity rather than reduced proliferation. We

therefore performed 2D-cell cycle analysis by flow cytometry to directly
assess cell cycle progression in the control and Irx3-KO cells (Fig. 5D).
Changes in DNA-content were quantified by Propidium Iodide (PI),
whereas actively dividing S-phase cells were labelled with BrdU. BrdU
incorporation was reduced by 45% in the Irx3-KO cells, with an accom-
panying 62% increase in cells retained in G0 and G1 phases (Fig. 5D).
Moreover, the proportion of cells in G1* phase was reduced by 49% in
the KO cells. This population represents the cells that were in the S-
phase during the 1-h BrdU pulse-labelling and that then, during the fol-
lowing 6 h progressed through the cell cycle to the G1-phase. Taken to-
gether, these data demonstrate that lack of Irx3 in beige ME3
preadipocytes impairs fundamental functions including cell cycle and
proliferation, respiration and ultimately differentiation.
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Fig. 4. Conserved roles of IRX3 in ME3 cells and human primary cells. (A) Volcano plot displaying changes in global gene expression following siRNA-mediated knockdown of IRX3 in
human primary SVF-derived preadipocytes on day 0–2 of differentiation. Log2-fold change and adjusted p-value of individual genes shown. Red dots, FC N ±1.2 and adjusted p-value
b0.1. Blue dots, FC b±1.2 and adjusted p-value b0.1. Gray dots, not significant. (B) KEGG pathway analysis of DEGs after siIRX3 in human primary adipocytes. Dot size represents number
of genes in each category and color indicates level of statistical significance. (C) Heatmap showing normalized expression levels of DEGs following IRX3-kd in human primary adipocytes
day 2 compared to Irx3-KO in ME3 cells day 1. (D) Schematic Venn diagram of (C) showing the number of overlapping genes. (E) Overlapping KEGG pathways for upregulated genes in
ME3 cells and human primary adipocytes after reduction of Irx3. Dot size represents enrichment and color indicates statistical significance. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Irx3-KO cells lose adipocyte identity. (A) Log2-fold changes in adipocyte markers in Irx3-KO cells compared to control on day 1 (orange) and day 7 (black). Data plotted as mean±
SD of n=6 replicate wells. See also supplementary file 2. (B) Schematic illustrating overlap of DEGs over time (day 1 to 7) in control and Irx3-KO cells. Top panel, overlap between DEGs
from day 1–7 of differentiation in control (gray) and Irx3-KO (purple) cells. Middle panel, overlapping DEGs stratified into genes changed in the same (green) or opposite (yellow) direc-
tion during differentiation. Bottom panel, overlapping DEGs with opposite direction in control/KO cells (yellow) further stratified according to direction in Irx3-KO cells during differen-
tiation. Complete list of genes andGO terms shown in supplementary file 3. (C) Cell type enrichment analysis comparing the global gene expression on days 1 and 7 in control and Irx3-KO
cells with gene signatures from 64 pure cell types, using the xCell software. Themost significantly associated cell types are shown, with red bars indicating themost relevant hits. (D) Top
upregulated genes in the xCell chondrocyte panel in Irx3-KO cells compared to controls on day 1. See supplementary file 2 for the entire panel. (E) AlcianBlue staining of proteoglycans and
(F)Oil-red-O lipid staining following adipogenesis and chondrogenesis,n=6–12 replicatewells. Left panels, image of one representativewell shown.Middle panel, brightfieldmicroscope
image of cells after 19 days in chondrogenicmedium. Scale bars= 100 μm. Right panel, quantification of all wells. *** p b 0.001, multiple t-test, with Holm-Sidak correction. (G) Log2-fold
changes of ECM-related genes in Irx3-KO compared to control cells. The genes comprised the KEGG pathway category ECM-receptor interaction, as described in Fig. 2 and Fig. S2. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4. Discussion

The present study shows that adipocyte precursor cells depend on
Irx3 to maintain their identity and functions, most notably the ability
to undergo adipogenic differentiation (Fig. 6). Complete and stable abla-
tion of Irx3 in MEFs resulted in a loss of mesenchymal/preadipocyte
gene signatures and a gain of chondrocyte-like and immune-cell related
identities. Moreover, upregulated genes on day 7 in Irx3-KO cells were
functionally enriched for pathways related to morphogenesis of a range
of tissueswhose development is known to be regulated by Irx3, including
the heart [40–43], neurons [44] and blood vessels [45]. Additionally, we
observed a clear enrichment and strong upregulation of collagen-
encoding genes and other genes involved in ECM organization and focal
adhesion. Consistently, these pathways were also upregulated in
human primary SVF-derived cells treatedwith transient Irx3 knockdown.

While Claussnitzer et al. reported effects on adipocyte white versus
beige lineage determination during early mesenchymal differentiation,
when the IRX-controlling enhancer in intron 1 of FTO is active [8], we
show here that manipulating Irx3 in undifferentiated cells may greatly
affect the adipocyte phenotype. Specifically, knocking out Irx3 pro-
foundly inhibited mitochondrial respiration, reduced ROS formation
and impaired proliferation, processes that all promote adipogenesis
under appropriate cellular circumstances [46–48]. In agreement, mito-
chondrial gene expression and respiration remained low in Irx3-KO
cells, even after treatment with differentiation-inducing stimuli (Fig. 2
and Fig. S3).Moreover, increase in ROS levels due to elevatedmitochon-
drial activity has been shown to be required for adipocyte differentia-
tion [38,39], where a delicate ROS balance is required for healthy
adipocyte formation. We observed a significant reduction in ROS in
Irx3-KO preadipocytes that could be completely rescued by
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overexpression of Irx3, likely contributing to the inability of the KO cells
to differentiate. Interestingly, Ucp2, which is known to limit ROS pro-
duction (reviewed in [49]), was upregulated at day 1 in Irx3-KO cells,
likely exacerbating the ROS deficiency.

The proliferation and differentiation of adipocytes are tightly linked
processes [50]. We observed a clear reduction in proliferation rate and
cell cycle progression in Irx3-KO preadipocytes. Moreover, although
we observed no clear effect of Irx3 on mitotic clonal expansion in
mouse cells, cell-cycle genes were highly enriched among DEGs in the
human primary cells after siRNA knockdown of IRX3. Indeed, Irx family
members have been reported to regulate cell cycle progression in other
tissues and organisms [51–53]. Here we noted that one of themost con-
sistently downregulated genes in Irx3-KO cells was Appl2, an essential
gene for cell proliferation which interacts with the nucleosome remod-
eling and histone deacetylase complex NuRD/MeCP1 [54]. Moreover,
Nudt5, was also found to be downregulated in the KO cells. This gene
is utilized in breast cancer cells to produce energy in the nucleus to
drive chromatin remodeling and gene expression, and inhibition of
Nudt5 was shown to impair proliferation [55]. Taken together, these
data indicate that Irx3may impair proliferation and differentiation par-
tially via processes involving chromatin remodeling.

Irx3 deficiency likely inhibits proliferation and differentiation via
multiple pathways. For example, Nmnat2 was found to be downregu-
lated on day 1 in the Irx3-KO cells, and loss of this gene has previously
been shown to inhibit adipogenesis through compartmentalized
NAD+ synthesis [56]. Moreover, Gas1, which was upregulated in re-
sponse to Irx3 depletion in both the mouse and human dataset, is a
cell cycle inhibitor, known to block entry into S-phase. Thus, de-
repression of Gas1 by Irx3 ablation may contribute to the observed
G1-phase retention and reduced S-phase progression observed in Irx3-
KO cells (Fig. 5D). Furthermore, Gas1 is a coreceptor for Sonic Hedgehog
(SHH) signaling [57], a pathway well known to suppress adipogenesis
and promote osteogenesis [58,59], which could partially explain the ob-
served loss of adipocyte identity in Irx3-KO cellswith increasedGas1 ex-
pression/SHH signaling. Indeed, Gli1, a well-known marker of SHH
pathway activation [60] was upregulated in Irx3-KO cells compared to
control and also increased during differentiation.

Our observation that Irx3-deficient adipocyte precursor cells are un-
able to differentiate per se reconcile with Irx3-KO and adipo-Irx3DN
mice having a reduced body weight and total fat mass, as reported by

Smemo et al. and Claussnitzer et al., respectively [8,14]. However,
whereas Irx3 ablation in those studies promoted adipocyte beiging at
the expense of white adipogenesis, we found Irx3-KO to inhibit beige
adipogenesis as well. This discrepancy can be explained at least in the
case of adipo-Irx3DN mice, where the transgenic expression of mutant
Irx3was driven by Fabp4which is expressed primarily inmature adipo-
cytes. Therefore, loss of functional Irx3 in thesemicemay have occurred
primarily late in differentiation, thus leading to a transdifferentiation
from white to beige cells in already differentiated adipocytes.

Interestingly, in contrast to the results by Smemo et al. and
Claussnitzer et al., but in linewith our report, lentiviral-mediated reduc-
tion of Irx3 in mouse SVF-derived beige cells reduced both lipid accu-
mulation and inhibited expression of beige markers including Ucp1,
Pgc-1α and Cidea, although apparently without affecting general adipo-
cyte markers such as Fabp4 or Pparg [21]. Thus, Irx3 may regulate lipid
metabolism and whole body energy homeostasis through a yet undis-
covered mechanism, in addition to its demonstrated control over ther-
mogenesis and adipogenesis. Considering the conflicting effects on
beiging reported for hypothalamic disruption of Irx3 [14,20], it becomes
clear that differences in spatial, temporal and perhaps methodological
repression of Irx3 functionmay all affect the outcome on adipocyte fate.

5. Conclusion

Complete loss of Irx3 in beiging-competent MEFs lead to reduced
cell cycle progression, impaired mitochondrial respiration, loss of
mesenchymal-like cell identity and an inability to undergo adipogenic
differentiation. Therefore, the developmental stage, target cells and
means of manipulation should be carefully considered when interpreting
the role for Irx3 in adipose tissue, including effects on adipocyte beiging.

6. Limitations

Most of the data presented in this studywere generated frommouse
cell line experiments, and the CRISPR-Cas9 system introduced constitu-
tive KO of Irx3.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.metabol.2019.154014.
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Fig. 6. Overall effect of Irx3 ablation in adipocyte precursor cells. In the undifferentiated state and first day of differentiation (left panel), Irx3-KO cells demonstrated profound changes in
gene expression compared to controls, including downregulation of mesenchymal and preadipocyte markers and upregulation of genes promoting chondrocyte identity. Moreover, the
Irx3-KO cells showed reduced ROSgeneration, impairedmitochondrial respiration and lower proliferation rates compared to control cells. After seven days of adipogenic stimulation (right
panel), the control cells developed into mature beige adipocytes (top), whereas the Irx3-KO cells (bottom) completely blocked adipogenic differentiation and instead upregulated genes
controlling morphogenesis towards other cells and tissues.
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Errata 

Page 5 Misspelling: “Nordby” – corrected to “Nordbø” 

Page 9 Ectopic word: “followed by of RNA” – corrected to “followed by RNA” 

Page 23 Missing character: “48” – corrected to “≥ 48” 

Page 26 Misspelling: “account” – corrected to “accounts” 

Page 30 Misspelling: “for” – corrected to “of” 

Page 41 Misspelling: “follow up-study” – corrected to “follow-up study” 

Page 41 Missing word: “specific binding” – corrected to “specific abolished binding” 

Page 42 Switched words: “shift from white to beige adipogenesis” – corrected to “shift from 

beige to white adipogenesis” 

Page 45 Missing word: “by opposite findings other studies” – corrected to “by opposite 

findings in other studies” 

Page 54 Missing word: “most often TF” – corrected to “most often a TF” 

Page 54 Misspelling: “reveals whether the IRX proteins transcriptionally regulates the given 

promoter or not.“ – corrected to “reveal whether the IRX proteins transcriptionally 

regulate the given promoter or not.” 

Page 56 Misspelling: “adipocyte” – corrected to “adipocytes” 

Page 57 Switched word: “downregulated with Irx5-KO” – corrected to “upregulated with 

Irx5-KO” 

Page 63 Missing words: “adipocyte-specific Irx3-DN mice actually” – corrected to 

“adipocyte-specific Irx3-DN mice reported by Claussnitzer et al. actually 
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