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Abstract 

Antibiotic resistance (AR) is a major global health concern, especially in clinical and 

veterinary settings. Environmental niches, including the aquatic environment, serve as 

a source of and/or a dissemination route for antibiotic resistance genes (ARGs) and 

resistant bacteria. Bivalves are suspension feeders that actively filter, retain and 

concentrates particles from their surrounding water, including free living or particle-

bound bacteria. 

The main aim of this thesis was to evaluate bivalve mollusks as tools for monitoring 

Escherichia coli and associated AR, in the marine environment in Norway. Sampling 

of bivalves were conducted from several sites along the Norwegian coast and the 

samples were examined for the presence of E. coli, according to the most probable 

number (MPN) EU reference method. More than half (61%) of the samples were 

positive for E. coli, and a selection of 200 E. coli isolates were further identified by 

matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-

TOF MS). The majority (90%) were confirmed as E. coli, while the remaining isolates 

(10%) were identified as other species mostly belonging to the Enterobacteriaceae 

family. The isolates were antibiotic susceptibility tested (AST) using the disk diffusion 

method recommended by the European Committee on Antimicrobial Susceptibility 

Testing (EUCAST). Seventy-five bacterial isolates (38%) showed phenotypic 

resistance to at least one antibiotic, while multidrug-resistance was observed in eight 

isolates (4%). Based on resistance phenotypes, selected E. coli isolates were subjected 

to whole-genome sequencing (WGS). Two isolates revealed to carry CTX-M-type 

extended-spectrum β-lactamases (ESBLs). Accordingly, the two E. coli isolates were 

subjected to long-read sequencing, and a hybrid de novo assembly using long-reads 

and short-reads to obtain complete and closed genome sequences. One isolate harbored 

four identical chromosomal copies of the blaCTX-M-14 gene, while the other isolate 

carried the blaCTX-M-15 gene on a conjugative plasmid. 

Another aim of this thesis was to generate knowledge regarding the prevalence of 

antibiotic and heavy metal resistance, and associated resistance genes, among 
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environmental bacteria isolated from marine bivalves. Bivalves were collected from 

multiple sites along the Norwegian coast and the samples were subjected to quantitative 

and qualitative examinations. Quantitative examination involved growth of 

environmental bacteria on agar with and without antibiotics, while qualitative 

examination involved selective growth of bacteria in broths with antibiotics. A total of 

205 bacterial isolates were identified by MALDI-TOF MS. Most of the bacterial 

species belonged to the genera Pseudomonas (36%) and Vibrio (11%). The bacterial 

isolates were AST by applying the EUCAST disk diffusion method. Accordingly, 

majority of the isolates revealed to be intrinsic resistant to a wide range of the 

antibiotics tested for. In addition, phenotypic susceptibility to the heavy metals copper, 

zinc and cadmium were examined by determining the minimum inhibitory 

concentration. Selected isolates were subjected to WGS. Among the isolates, clinically 

relevant ARGs, such as qnrVC, aph(3’) and catB, were detected. Moreover, several 

heavy metal resistance genes, including copA and copB, were present. 

Overall, the results presented in this thesis suggests that bivalves represent an important 

tool for the monitoring of clinically relevant ARGs and pathogens in the marine 

environment, especially in a low prevalence setting like Norway. It also strengthens 

the notion that the marine environment contributes to the dissemination of clinically 

important ARGs and pathogens. 
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1. Introduction 

1.1 Antibiotics 

Antibiotics are powerful drugs and have an essential role in treatment of previously 

untreatable infections, such as severe wound infections or sepsis (Aminov, 2010). Most 

of the antibacterial substances utilized are structural derivatives of natural compounds 

produced by soil bacteria and filamentous fungi (Lewis and Bush, 2015). Antibiotics 

are a group of agents that must be able to destroy or inhibit the growth of the bacteria, 

and simultaneously not be unacceptably harmful for the host. The term antibiotic means 

“against life” and these agents can be classified as broad- or narrow-spectrum. Broad-

spectrum antibiotics are applied to treat a wide range of bacterial infections, while 

narrow-spectrum antibiotics are applied to treat a limited range of infections (van Saene 

et al., 1998). Antibiotics can either inhibit bacterial growth (bacteriostatic), or kill the 

bacterial cell (bactericidal) (Patel and Richter, 2015). Antibiotics acts on the bacterial 

cell by inhibiting various biochemical pathways, which are important for the 

biosynthesis of essential components, including cell wall synthesis, membrane 

structure, DNA replication, and protein or folate synthesis (Fig. 1) (Kohanski et al., 

2010; Wright, 2011).  

 

 

 

 

 

 

 

Figure 1. Antibiotics function by targeting various biochemical pathways, including cell wall 

synthesis, membrane structure, DNA replication, and protein or folate synthesis. PABA; para-

aminobenzoic acid, DHF; dihydrofolate, THF; tetrahydrofolate 
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The effect of an antibiotic depends on the concentration, i.e. the lowest concentration 

of a specific drug needed to inhibit growth of a target bacterium under standard 

laboratory conditions (Mouton et al., 2012). In the course of antibacterial treatment the 

concentration needs to be higher than the minimum inhibitory concentration (MIC) of 

the given strain in the host for long enough time to clear the infection without having 

severe toxic effect (McKenzie, 2011; Asín-Prieto et al., 2015).  

1.2 Antibiotic resistance 

The development of antibiotic resistance (AR) is a natural process among bacteria 

(Davies and Davies, 2010). Genes conferring resistance to β-lactams, glycopeptides 

and tetracyclines have been isolated from 30,000-year-old Beringian permafrost 

sediments (D’Costa et al., 2011). In nature, certain bacteria have evolved to produce 

antibacterial substances to outcompete other bacteria for the same resource. 

Accordingly, the susceptible bacteria, as well as the producers, have developed or 

acquired antibiotic resistance genes (ARGs) in order to protect itself from the inhibitory 

effect (Martínez, 2008; Aminov, 2009). A bacterial strain can be defined as resistant 

when it is able to resist the effect of an antibiotic, which previously could successfully 

kill the strain (Martínez et al., 2015). At present, almost all employed antibacterial 

agents are becoming ineffective to certain bacteria due to rapidly evolving antibiotic 

resistance (Fig. 2) (Karaiskos and Giamarellou, 2014; Baker, 2015; Tagliabue and 

Rappuoli, 2018). 

 

 

 

 

 

 

Figure 2. Selection of resistance on exposure to antibiotics. 
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Mechanisms of AR include; reduced permeability, enzymatic inactivation or 

degradation, altered target site, or upregulation of efflux pumps (Fig. 3) (Blair et al., 

2014; Martinez, 2014). Certain bacteria can have an innate ability to resist different 

antibacterial agents, termed intrinsic resistance, due to amongst others cellular 

impermeability or active efflux pumps (Fajardo et al., 2008; Martinez et al., 2008). In 

addition, bacteria can have increased tolerance to antibiotics during formation of 

biofilm (Hoffman et al., 2005; Jones et al., 2013).  

 

 

 

 

 

 

 

Figure 3. Mechanisms of antibiotic resistance includes decreased uptake, enzymatic 

inactivation or degradation, altered target site, or active efflux pump. 

 

1.3 Acquisition and transmission of antibiotic resistance genes 

Susceptible bacteria can acquire AR due to spontaneous mutations or through 

horizontal gene transfer (HGT) (Fig. 4). Mutation-mediated resistance depends on the 

mutation rate and the bacterial population size (Perron et al., 2015). The presence of an 

antibiotic triggers SOS responses in bacteria stimulating genetic changes, including 

recombination and mutation, and thereby inducing the potential for resistance (Fig. 4a) 

(Hastings et al., 2004; Michel, 2005; López et al., 2007; Blázquez et al., 2012). The 

SOS response function as a defense mechanism by temporarily inhibiting cell division 

during repair of DNA damage (Miller et al., 2004; Michel, 2005). Resistance properties 

due to mutations are usually transferred from one generation to the next by clonal 
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expansion, while gene exchange allow various bacterial species to grow in the presence 

of antibacterial substances.  

 

 

 

 

 

 

 

Figure 4. The mechanisms of development or acquisition of antibiotic resistance genes. Two 

mechanisms for development of antibiotic resistance: (a) mutation, or (b) horizontal gene 

transfer. Horizontal gene transfer includes uptake of free DNA (transformation),  incorporation 

of genetic elements via bacteriophages (transduction), or exchange of plasmid between bacteria 

(conjugation). Reprinted with permission from Sommer et al. (2017). Prediction of antibiotic 

resistance: Time for a new preclinical paradigm? Nat. Rev. Microbiol. 15, 689-696. 

http://dx.doi.org/10.1038/nrmicro.2017.75 

 

Transfer of resistance by HGT can occur through either transformation, conjugation or 

transduction (Fig. 4b) (Aminov, 2011). Transformation involves the uptake of naked 

DNA from the environment. Conjugation requires the exchange of mobile genetic 

elements (MGEs) between bacterial cells. Transduction refer to the incorporation of 

genetic elements by a bacteriophage vector. Clinically ARGs are commonly located on 

MGEs, such as conjugative plasmids (Sentchilo et al., 2013) and/or  transposons 

(Harmer and Hall, 2016). Antibiotic resistance genes can spread across and between 

different species in a given habitat (Martínez et al., 2015). However, ARGs are 

generally associated with fitness cost unless there is a relatively strong selection 

pressure to maintain them (Martinez, 2012; Bengtsson-Palme et al., 2018). Fitness is 

measured by how much faster a bacterium is to reproduce compared to other competing 

bacteria, in which ARGs that present affordable fitness cost may successfully spread 
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(Martínez et al., 2015). This suggests that carrying ARGs is only an advantage in the 

presence of antibiotics or other antimicrobial compounds. Pathogens encountered in 

hospital and community settings are frequently exposed to antibiotics during treatment, 

thus the benefits of harboring resistance genes are crucial for their survival and 

maintenance of ARGs (Andersson and Hughes, 2010). 

1.4 Antibiotic resistance is an emerging publich health threat 

Antibiotic resistance is a major global health, social and economic concern in the 21st 

century. Currently, it has been estimated that more than 700,000 deaths annually are 

due to antibiotic resistant bacteria and this is estimated to increase to approximately 10 

million deaths/year after 2050 (O’Neill et al., 2016). Antibiotics are essential for 

medical treatment and applied in all situations where infections can occur, such as 

complex surgery, cancer chemotherapy and organ transplants. The extensive misuse 

and overuse of antibiotics, both in human and veterinary medicine, has accelerated the 

spread of ARGs and emergence of resistant pathogens (FAO, 2016; WHO, 2017b). The 

consequence of AR in hospital- and community settings, as well as agriculture and 

aquaculture, is reduced effectiveness of antibiotics against infectious diseases leading 

to therapeutic failure. The World Health Organization (WHO) have published a list of 

priority pathogens, particularly the urgent threat concerning carbapenem-resistance 

Acinetobacter baumannii and extended-spectrum β-lactamase (ESBL)-producing 

Enterobacteriaceae (WHO, 2017b; CDC, 2019; ECDC, 2019). The Enterobacteriaceae 

family includes several important pathogens, such as strains of Escherichia coli, 

Klebsiella pneumoniae and Salmonella spp., which are prevalent in the clinics 

(Forsythe et al., 2015; Strockbine et al., 2015). The prevalence of invasive E. coli and 

K. pneumoniae isolates resistant to 3rd gen. cephalosporins are lower in  northern 

Europe compared to the south and east of Europe (Fig. 5 and Fig. 6) (WHO, 2017a; 

ECDC, 2019). In 2018, the prevalence of invasive E. coli isolates resistant to 3rd gen. 

cephalosporins was 28.7% and 38.7% in Italy and Bulgaria, respectively, compared to 

6.8% and 7.3% in Norway and the Netherlands, respectively (ECDC, 2019). The usage 

of antibiotics in Norway is low compared to most other countries (EMA, 2017), and 

the total usage of antibiotics in humans have been reduced by 24% since 2012 
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(NORM/NORM-VET, 2018). Norway represents a low prevalence country in terms of 

AR. Factors that can influence this situation are increased travel and import/export of 

animals, food and feed on a global scale (Nawaz et al., 2012; Bengtsson-Palme et al., 

2015; Han et al., 2017). Bacteria do not recognize borders and can be transferred with 

humans, animals and the environment even across continents. For instance, when 

travelling to countries with high prevalence of AR, such as the Indian subcontinent or 

Central Africa, humans can act as carriers of ARGs when returning home (Bengtsson-

Palme et al., 2015; Espenhain et al., 2018). Therefore, monitoring AR in humans, 

animals and the environment is needed in order to gain knowledge about the current 

situation, as well as prepare for the future challenges.  

 

 

 

 

 

 

 

 

 

Figure 5. Prevalence of invasive Escherichia coli isolates resistant to 3rd generation 

cephalosporins in EU/EEA countries, 2018. Reprinted from “Surveillance of antimicrobial 

resistance in Europe 2018, www.ecdc.europa.eu (ECDC, 2018). 
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Figure 6. Prevalence of invasive Klebsiella pneumoniae isolates resistant to 3rd generation 

cephalosporins in EU/EEA countries, 2018. Reprinted from “Surveillance of antimicrobial 

resistance in Europe 2018, www.ecdc.europa.eu (ECDC, 2018). 

 

1.5 Dissemination of resistance genes and resistant bacteria in the 

environment 

Environmental niches, including the aquatic environments, have been acknowledged 

as a source of and/or a dissemination route for clinically important ARGs and 

pathogens (Wellington et al., 2013; Karkman et al., 2019). The microbial communities 

in coastal environments can be influenced by sewage contamination, waste from 

livestock farming and other runoff from land, concomitantly containing both ARGs 

and resistant bacteria, as well as antimicrobial substances (Taylor et al., 2011; Gillings, 

2013; Michael et al., 2013; Wellington et al., 2013; Amos et al., 2014). A major 

proportion of the consumed antibiotics are still in a biologically active form when 

excreted through feces and urine (Gillings, 2013). Environmental pollution with 

antibiotics can lead to selection of ARGs and emergence of resistant bacteria (Marathe 

et al., 2013). Moreover, the presence of sub-lethal concentrations of antibiotics found 

in many natural environments are known to still select for resistance in bacterial 
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communities (Blázquez et al., 2012; Andersson and Hughes, 2014; Friman et al., 2015; 

Bengtsson-Palme and Larsson, 2016).  

Even in the absence of a selective pressure exerted by an antibiotic, bacteria can still 

acquire or maintain ARGs due to co-selection with resistance to heavy metals (Baker-

Austin et al., 2006; Seiler and Berendonk, 2012), biocides (Seier-Petersen et al., 2013; 

Jutkina et al., 2018) or disinfectants (Zhang et al., 2016). Environmental influences of 

metal ions, particular copper and zinc, on bacterial populations can lead to selection of 

genes conferring resistance to both metals and antibiotics (Poole, 2017; Zhou et al., 

2019). Although, low concentrations of metals and antibiotics are important for normal 

bacterial cell function as metalloproteins (Foster et al., 2014) or signaling molecules 

(Linares et al., 2006), respectively, elevated levels of these compounds induce stress 

resulting in promotion of adaptive and protective responses (Lemire et al., 2013; Pal et 

al., 2017). 

Hospital, municipal and industrial wastewater are important sources of resistant 

bacteria and ARGs, and considered hotspots for dissemination into the environment 

(Chagas et al., 2011; Berglund et al., 2015; Li et al., 2015; Xu et al., 2015; Ng et al., 

2017). One of the most important point sources of clinically important ARGs and 

pathogens are effluent from wastewater treatment plants due to the large volumes 

released (Fig. 7) (Rizzo et al., 2013; Guo et al., 2017; Karkman et al., 2018). Discharge 

of treated sewage plays an important part in the dissemination of ARGs into the 

environment (Karkman et al., 2019). Moreover, untreated sewage from sanitary sewer 

overflow may reach the sea during periods of heavy rainfall.  
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Figure 7. Dissemination of antibiotic resistant bacteria, resistance genes, and antibiotics or other 

resistance-promoting residues into the environment from various sources, such as from 

wastewater treatment plant (WWTP). Reprinted from Stalder et al. (2012). Integron 

involvement in environmental spread of antibiotic resistance. Front. Microbiol. 3(119), 1-14. 

http://dx.doi.org/10.3389/fmicb.2012.00119. 

 

Industrial agriculture, particularly livestock production, contributes to the development 

and dissemination of ARGs and resistant bacteria from fecal material through runoff 

from land (Marshall and Levy, 2011; Allen, 2014). Intensive production of animals, 

such as pigs and poultry, are prone to increase the burden of diseases due to the high 

density, and this niche represents a diverse and abundant reservoir of ARGs (Munk et 

al., 2018). In Norway, the use of antibiotics for food-producing animals, including 

horses, are very low compared to other European countries (EMA, 2019). In veterinary 

medicine, antibiotics are commonly used to treat bacterial infections individually or by 

herd therapy, and prophylactically. Even though the use of antibiotics as growth 

promotors are prohibited in Europe (1831/2003/EC, 2003), antibacterial agents are still 

used to increase growth and feed efficiency in many countries (van Boeckel et al., 2015; 

Woolhouse et al., 2015). Organic fertilizers made of sewage sludge or manure have 

large concentrations of organic substances, high bacterial density and sub-therapeutic 

concentrations of antibiotics and other antimicrobials (e.g. metals) (Tella et al., 2016), 
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which in combination can favor bacterial growth and induce gene exchange (Heuer et 

al., 2011; Calero-Cáceres et al., 2014; Jechalke et al., 2014; Su et al., 2015).  

As under all other production of livestock, antibiotics are important to treat infections 

in aquaculture, but due to the different way of administration, the application may also 

have adverse effects on the surrounding environment (Heuer et al., 2009; Seyfried et 

al., 2010; Shah et al., 2014; Xiong et al., 2015; Cabello et al., 2016). A common 

practice for antibacterial therapy in aquaculture is metaphylaxis, in which both diseased 

and healthy fish in the population are affected (Sørum, 2006). Unconsumed food pellets 

and feces containing antibiotics or other antimicrobials contribute to the enrichment of 

ARGs in bacterial communities present in the sediments below the farm and in the 

proximity (Samuelsen et al., 1992; Cabello, 2006; Burridge et al., 2010; Buschmann et 

al., 2012; Han et al., 2017; Muziasari et al., 2017). Importantly, the use of 

antimicrobials in Atlantic salmon aquaculture industry in Norway is very low (Love et 

al., 2020), especially considering the production volume (EMA, 2019). 

Wild animals, particularly birds (Poeta et al., 2008; Alves et al., 2014; Murugaiyan et 

al., 2015; Stedt et al., 2015), terrestrial (Gonçalves et al., 2013; Navarro-Gonzalez et 

al., 2013; Hansen et al., 2016; Mo et al., 2018) and aquatic mammals (Brownstein et 

al., 2011; Santestevan et al., 2015), can also act as potential carriers of ARGs and 

resistant bacteria. Particularly wild animals sharing the same habitats and water sources 

as humans and/or domestic animals can serve as potential reservoirs for resistance 

genes and subsequent transmission (Allen et al., 2010; Vittecoq et al., 2016; VKM, 

2018). 

Once fecal contamination from different sources are introduced into the aquatic 

environment, areas used for marine food production or recreational activities may serve 

as potential hotspots for exposure of resistant bacteria and ARGs (Blaak et al., 2014; 

Vignaroli et al., 2016; Leonard et al., 2018). Seafood represents a risk of infection in 

case of insufficient heat treatment or handling, or through products intended for raw- 

or light preserved consumption (Nawaz et al., 2012; Ryu et al., 2012; Roschanski et 

al., 2017; Yang et al., 2017). This have led to the need to identify sources contributing 
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to the dissemination of resistant bacteria and ARGs into aquatic environments. One 

possible candidate may be bivalve mollusks, which could function as tools for 

assessing the presence, as well as the abundance, of resistant bacteria and ARGs in 

coastal environments.  

1.6 Bivalve mollusks as tools 

Mollusca is the second largest phylum of invertebrates within the kingdom Animalia, 

and the class Bivalvia constitute numerous species, including mussels, clams, oysters, 

scallops and cockles (Gosling, 2003a). Bivalve mollusks are characterized by an 

external two-part hinged shell that enclose the soft parts of the animal (Gosling, 2003a). 

Bivalves are suspension feeders that actively filter, retain and concentrates particles 

from their surrounding water, including free living or particle-bound microorganisms 

(Fig. 8A) (Lees, 2000; Potasman et al., 2002). The gills have evolved into a specialized 

organ for both respiration and feeding, in which the captured particles are transported 

from the gills to the digestive tract by cilia in a selective process (Fig. 8B) (Gosling, 

2003b; Rosa et al., 2018). A large number of species belonging to different genera, 

including Vibrio, Shewanella and Stentrophomonas, constitute the microbiota of 

bivalves (Antunes et al., 2010; Romalde et al., 2014; Vezzulli et al., 2018). Bivalves 

located near a sewage discharge, or otherwise exposed to runoff from land, are thereby 

excellent tools for examining fecal contamination and will reflect the load of E. coli in 

the water column at time of sampling (Roslev et al., 2010; Lunestad et al., 2016; Bighiu 

et al., 2019).  
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Figure 8. The mechanism of filter-feeding in a blue mussel (Mytilus edulis). (A) The mussel 

actively filters particles from the surrounding water. (B) Captured particles on the gills are 

transported to the digestive tract by cilia. Source: Kimberly Andrews, Connected, Are you 

Sure? Ministry of Education, Lift Education, Crown 2013. 

 

Blue mussels (Mytilus edulis) frequently appear in robust aggregated structures. They 

attach themselves to a hard bottom substrate using strong byssal threads (Christensen 

et al., 2015). An adult blue mussel is able to filter approximately 70 liters of seawater 

daily (Cranford et al., 2011), and blue mussels living in the tidal zone are very tolerant 

against environmental fluctuations, such as temperature and salinity, and harbor a 

dense and diverse community of bacterial species of multiple origins (Utermann et al., 

2018; Serra-Compte et al., 2019). Shortly after exposure to fecal contamination, blue 

mussels show high concentrations of E. coli in the digestive tract, while lower 

concentrations were found in the gills, muscles and hemolymph (Power and Collins, 

1990). Ingested bacteria can be degraded by bacteriolytic enzymes in the stomach, or 

rejected and passed through the digestive tract while remaining viable (Bernard, 1989). 

Moreover, concentrations of land derived bacteria including E. coli do not impair 

immune competency in blue mussels, and does not represent a hazard on its survival in 

coastal areas subjected to sewage discharges (Gauthier-Clerc et al., 2013).  
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1.7 Cultivation and consumption of bivalves 

Bivalve mollusks represents a sustainable food source of high quality animal protein 

content (Wright et al., 2018), and generally requires minimal input, in which no 

formulated feed or medication are needed. The global production of marine bivalves is 

more than 15 million tons per year (average period 2010-2015), i.e. 14% of the total 

marine production for human consumption (Wijsman et al., 2019). Asia, especially 

China, is the largest producer, consumer and exporter of marine bivalves, and account 

for 85% of the global production; with an annual marine bivalve production of 12.4 

million tons (Wijsman et al., 2019). In Europe, the production has remained relatively 

constant during the last years, with the production volume of about 598,000 tons 

annually (Wijsman et al., 2019). Bivalve mollusks represents important species in 

Norwegian aquaculture, in which blue mussels represents the third most important 

species with a production volume of around 1,649 tons in 2018, and a gross sale of 

approximately 28.5 million NOK (Directorate of Fisheries, 2019).  

As a requirement from the European Union (854/2004/EC, 2004), a national 

monitoring program for production areas for bivalves was initiated by the Norwegian 

Food Safety Authority (NFSA) in 2006. On behalf of the NFSA, the Institute of Marine 

Research (IMR) conducts annual surveillance of bivalve mollusks, by repeatedly 

sampling of harvested bivalves, as well as random sampling of retail products, to ensure 

that the bivalves fulfils the requirements for acceptable levels of E. coli. Depending on 

the content of E. coli in the soft parts and mantle water of harvested bivalves, the 

production areas are classified as A, B, C or prohibited areas according to the EU 

Directives 854/2004/EC (2004) (Table 1). This is performed in order to assess whether 

the bivalves are suitable for consumption. Bivalves from a class A area can go directly 

for human consumption, while bivalves from class B or C must be purified until 

meeting the limit of 230 E. coli/100 g or heat treated. According to 2015/2285/EC 

(2015), 20% of the harvested bivalves from a class A area can contain E. coli between 

230 and 700/100 g sample material, while the remaining 80% of the samples must not 

exceed the class A limit, in order to remain a Class A area. In addition, 10% of the 

bivalves from a class B area can contain E. coli between 4,600 and 46,000/100 g, while 
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the remaining 90% of the samples must be within the class B limit (2008/1021/EC, 

2008).  

Table 1. Production areas for bivalves according to the EU Directive 854/2004 and 2015/2285. 

Areas are classified as A, B or C depending on the content of Escherichia coli in the soft parts 

and mantle water of harvested bivalves. 

*Re-sampling after at least two weeks. 

 

1.8 Escherichia coli as indicator for fecal contamination 

E. coli is a Gram- and oxidase-negative, facultative anaerobic, rod-shaped, coliform 

bacterium belonging to the Enterobacteriaceae family (Welch, 2006), occurring 

naturally in the gut microbiota of humans, birds, and terrestrial and marine mammals 

(Kaper et al., 2004; Tenaillon et al., 2010). As ubiquitous in feces of humans and other 

warm-blooded animals, E. coli is considered an indicator for fecal contamination and 

improper hygiene in food and water, representing a possible risk for the consumer 

(Buttiaux and Mossel, 1961; Welch, 2006; Strockbine et al., 2015). Human feces 

normally harbors E. coli in concentrations ranging from 106 to 107 cells per gram 

(Forsythe, 2010). The gut microbiota of healthy humans are colonized by commensal 

E. coli strains, while some opportunistic, pathogenic strains are capable of causing 

serious diseases (Tenaillon et al., 2010; Richter et al., 2018). Infections with E. coli are 

Class Amount of E. coli per 100 g sample 

material measured as fresh weight 

Treatment after harvesting 

A 80% of the bivalves must not exceed 230 

E. coli per 100 g, while the remaining 

20% must not exceed 700 E. coli/100 g 

None, go directly for human consumption 

B 90% of the bivalves must not exceed 

4,600 E. coli per 100 g, while the 

remaining 10% must not exceed 46,000 

E. coli/100 g 

Purification by resuspension at a Class A area*, or 

sufficient heat treatment by approved procedure 

C < 46,000 Purification by resuspension at a Class A area for a 

long period of time*, or sufficient heat treatment by 

approved procedure 
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among the most frequent foodborne diseases worldwide, causing morbidity such as 

diarrhea and extra-intestinal infections that in some cases could result in mortality 

(Kaper et al., 2004; Croxen et al., 2013). Contaminated food and water, person-to-

person contact, and contact with animals or the environment are the main transmission 

routs for such infections (Strockbine et al., 2015).  

During antibacterial therapy, susceptible pathogens responsible for the infection will 

normally be eliminated, as well as other commensal and protecting gut microbes 

(Dethlefsen and Relman, 2011). Antibacterial treatments are known to substantially 

affect the gut microbiota favoring the survival and growth of resistant bacterial strains 

(Sommer and Dantas, 2011; Palleja et al., 2018). This may result in complications 

during subsequent infections, in which non-resistant pathogens could acquire ARGs 

from commensal gut bacteria. Once the gut microbiota is colonized with resistant 

bacteria, such as E. coli, individuals may contribute to subsequent dissemination via 

feces transported through sewage contamination, waste from livestock production or 

other runoff from land into the environment. Due to its genetic flexibility, E. coli has 

the ability to persist in terrestrial and aquatic environments for days to months 

depending on the conditions (Fremaux et al., 2010; van Elsas et al., 2011; Schang et 

al., 2016). Hence, E. coli can be considered a good indicator organism for fecal 

contamination. 
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2. Objectives 

The main aim of this thesis was to evaluate bivalve mollusks as potential tools for the 

monitoring of E. coli and associated AR, in the marine environment in Norway. In 

addition, this thesis aimed to generate knowledge regarding the prevalence of antibiotic 

and heavy metal resistance, and associated resistance genes, among environmental 

bacteria isolated from marine bivalves. 

The following three objectives were defined for this work: 

1. Isolation and characterization of antibiotic resistant E. coli from marine bivalves  

2. In-depth characterization based on data from whole-genome sequencing of 

ESBL-producing E. coli isolates 

3. Isolation and characterization of antibiotic resistant environmental bacteria and 

associated heavy metal resistance from marine bivalves 
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3. Methodological Approach 

3.1    Sampling of bivalve mollusks 

To address Objective 1 & 3, batch samples of bivalve were obtained from several sites 

along the Norwegian coast. The IMR conducts annual surveillance of bivalves on 

behalf of the NFSA, in which the sampling and submission of samples were 

coordinated with inspectors at the District Offices of NFSA, as well as producers from 

several locations along the coast. Together, this comprised bivalves from both 

commercial active sites and reference monitoring positions (Fig. 9), sampled at 

multiple occasions. For Objective 3, two additional bivalve samples were collected 

from the city harbor (Bergen, Norway), and included as representatives of 

contaminated areas.  

 

 

 

 

 

 

 

 

 

 

Figure 9. Sampling sites of bivalve mollusk along the Norwegian coast, from both commercial 

active sites and reference monitoring positions. Reprinted from Martin et al. (2019). Isolation 

and characterisation of Shiga toxin-producing Escherichia coli from Norwegian bivalves. Food 

Microbiol. 84, 1-5. http://dx.doi.org/10.1016/j.fm.2019.103268. 
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The samples were transported under chilled conditions (at around 4°C) to the 

laboratory within 24 hours for microbiological analysis. One bivalve sample 

constituted ten individuals or more, if necessary to obtain 50 g, and soft parts and 

mantle water were homogenized. Bivalves harvested from the same area at the same 

time most likely contain comparable amounts of E. coli present in the surrounding 

water at time of sampling. The bivalve samples, comprising blue mussels (M. edulis), 

great scallops (Pecten maximus), horse mussels (Modiolus modiolus), flat oysters 

(Ostrea edulis), pacific oysters (Crassostrea gigas), common cockles (Cerastoderma 

edule), soft-shell clams (Mya arenaria) and ocean quahog (Arctica islandica), were 

included. Detection and enumeration of E. coli in bivalves are specified in EU Council 

Directive 91/492/EEC (1991), and the method is based on a most probable number 

(MPN) principal with a five tubes each in three dilutions (Oblinger and Koburger, 

1975). In accordance with the EU reference method ISO 16649-3 (ISO, 2005), the 

MPN method was performed in combination with verification on chromogenic agar, in 

which the number of E. coli in the bivalve samples were calculated (Donovan et al., 

1998). From positive bivalve samples, one E. coli isolate was picked from a random 

selective plate and grown into pure culture before further analysis (Objective 1 & 2). 

Objective 3 examined for a broad range of marine and allochthonous bacteria in 

bivalves, and the homogenized samples were examined by quantitative and qualitative 

analysis on non-selective media and selective media (containing antibiotics). The 

quantitative method was based on 10-fold dilution series followed by growth of 

bacteria on Mueller-Hinton (MH) agar plates. The total plate count was estimated by 

counting the number of colony-forming units (CFU) per gram and had lower and upper 

limit of quantification (LOQ) of 100 and 2.5 x 1011 CFU/g, respectively. In addition, 

sample homogenate was transferred directly to MH agar plates containing clinically 

relevant antibiotics (Table 2). All plates were aerobically incubated at 25°C for 72 

hours. The reduced temperature where selected to retrieve more marine bacterial 

isolates. The qualitative method was based on growth of resistant bacteria in MH broth 

supplemented with antibacterial agents (Table 2), and further growth on MH agar 

containing the same agents for verification. The MH broths and agar plates were 
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incubated aerobically at 25°C for 48 hours. Morphological different colonies were 

collected, if present, from both the qualitative and quantitative method and grown to 

pure cultures by three-time transfer on solid media. A maximum of 20 bacterial isolates 

were retrieved from each sample, ten isolates from non-selective plates and ten isolates 

from media containing antibiotics.  

Table 2. Antibiotics and concentrations applied in the  

Mueller-Hinton (MH) agar plates and MH broths. 

 

 

 

 

 

 

 

3.2    Characterization of the bacterial isolates 

The presumptive E. coli isolates were tested for Gram character according to the 

method of Buck (1982), as well as tested for oxidase activity (Kovacs, 1956), before 

further identifications steps were performed (Objective 1). For the environmental 

bacteria (Objective 3), the isolates were divided based on Gram character, and 

subsequently tested for oxidase activity and catalase production with hydrogen 

peroxide. 

For Objective 1, the E. coli isolates were characterized by the analytical profile index 

(API) 20E test kit (BioMérieux, France). The API 20E function by identifying 

members of the Enterobacteriaceae family based on biochemical reactions conducted 

in 20 miniature wells. The bacterial isolates were tested for the ability to utilize certain 

carbon sources and to produce specific enzymes. A scheme was used to compare 

positive or negative reactions in the different wells, i.e. to interpret the color, and the 

results was noted in a form and a seven-digit code was calculated. A comprehensive 

Antibacterial class Agent Concentration (mg/l) 

Penicillins    Ampicillin 50 

Cephalosporins Ceftazidime 2 

Carbapenems Imipenem 10 

Fluoroquinolones Ciprofloxacin 0.06 
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numerical, identification database (APIweb™) was used to interpret the code and the 

identification (%).  

Identification with matrix assisted laser desorption ionization-time of flight mass 

spectrometry (MALDI-TOF MS) was applied to verify the results obtained from API 

20E (Objective 1), as well as to identify the environmental bacteria obtained from the 

quantitative and qualitative analysis (Objective 3). The MALDI-TOF MS instrument 

identify bacteria into genus and specie levels, by generating small molecules from 

ribosomal proteins that gives a characteristic spectrum called peptide mass fingerprint 

(PMF) (Bourassa and Butler-Wu, 2015; Singhal et al., 2015). Due to their mucoid 

appearance, some bacteria were not completely lysed by the matrix solution and formic 

acid was added to ensure complete lysis prior to applying the matrix. During PMF 

matching, the spectra of the unknown bacterial isolate was compared with the spectra 

of known bacterial species included in the database of reference spectra (MALDI 

Biotyper Library). The data was interpreted and the program provided an overview of 

the results as best score/match of a bacterium.  

3.3    Antibiotic susceptibility testing 

To determine the susceptibility of the obtained E. coli isolates (Objective 1), and for 

the environmental isolates (Objective 3), the European Committee on Antimicrobial 

Susceptibility Testing (EUCAST) disk diffusion method was applied (Matuschek et 

al., 2014). This method for antimicrobial susceptibility testing is based on 

measurements of the inhibition zones, which depends on the concentration of the 

antibacterial agent in the disk, its ability to diffuse into the medium, and the 

susceptibility of the bacterium (Bauer et al., 1966). The bacterium can be interpreted 

as susceptible, intermediate or resistant based on the inhibition zone within a defined 

incubation temperature and time period (Bauer et al., 1966). When defining a bacterium 

as susceptible or resistant, clinical breakpoints or epidemiological cut-off values are 

commonly used (Martínez et al., 2015). In this experiment, clinical breakpoints were 

applied when defining the bacteria as susceptible or resistant (EUCAST, 2016a). 

Accordingly, the inhibition zones are only applicable when employing the EUCAST 

protocol, included the approved quality control strains. 
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The E. coli isolates were tested against 24 antibacterial agents belonging to ten classes 

(Table 3) (Objective 1). According to the EUCAST clinical breakpoint tables v.6.0 

available at time of analysis (EUCAST, 2016a), the isolates were interpreted as 

susceptible or resistant. The Clinical and Laboratory Standards Institute (2014) and 

Indian Council of Medical Research (2009) were used as clinical breakpoint tables for 

antibiotics not included in the EUCAST tables. 

For environmental isolates not able to grow at 35°C, the same protocol was performed 

at 25°C including for quality control strains (Objective 3). The isolates were tested 

against 18 antibacterial agents, and different test panels were applied on Gram-positive 

and Gram-negative bacteria (Table 3). The inhibition zones were interpreted as 

susceptible or resistant based on the EUCAST clinical breakpoint tables v.8.0 available 

at time of analysis (EUCAST, 2016b). For isolates with no established breakpoints, 

only complete absence of inhibition zone around the antibacterial disks were 

considered resistant or non-susceptible (i.e. intrinsic resistance) (EUCAST, 2016c).  
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Table 3. Antibiotics and amounts (μg) applied (marked as X) in the disk diffusion testing for 

Escherichia coli and environmental bacteria (G+; Gram-positives, G-; Gram-negatives).  

 

Antibacterial 

class 

Agent Disk potency 

(μg) 

E. coli        Environmental bacteria 

          G+                         G-  

Penicillins   Ampicillin 

Amoxicillin 

Amox./ 

Clavulanic acid 

Mecillinam 

Piperacillin/ 

Tazobactam 

10 

10 

3 (2/1) 

 

10 

36 (30/6) 

X 

X 

X 

 

X 

X 

X 

X 

 

 

X 

X 

X 

 

 

X 

Cephalosporins Cefotaxime 

Ceftazidime 

5 

10 

X 

X 

X 

X 

X 

X 

Carbapenems Imipenem 

Meropenem 

10 

10 

X 

X 

X 

X 

X 

X 

Aminoglycosides Gentamicin 

Tobramycin 

Streptomycin 

Kanamycin 

10 

10 

25 

30 

X 

X 

X 

X 

X 

X 

 

X 

X 

 

 

X 

Amphenicols Chloramphenicol 30 X X X 

Tetracyclines Tetracycline 

Doxycycline 

30 

30 

X 

X 

X 

X 

 

X 

Trimethoprim and 

sulfonamides 

Trimethoprim 

Trim./ 

Sulfamethoxazole 

5 

25 

(1.25/23.75) 

X 

X 

X 

X 

X 

X 

Quinolones, incl. 

fluoroquinolones 

Nalidixic acid 

Ciprofloxacin 

Levofloxacin 

Norfloxacin 

30 

5 

5 

10 

X 

X 

X 

X 

X 

X 

 

 

 

X 

X 

 

Nitrofurans Nitrofurantoin 100 X X X 

Polymyxins Colistin sulfate 25 X   

Macrolids Erythromycin 15   X 

Glycopeptides Vancomycin 5   X 
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3.4    Phenotypic susceptibility to heavy metals 

Phenotypic susceptibility to heavy metals was examined by a MIC test (Objective 3). 

The isolates were tested two times by point inoculation on solid agar containing 

increasing concentrations of copper, zinc and cadmium. The metal concentrations used 

were 0.095 mM, 0.188 mM, 0.375 mM, 0.75 mM, 1.5 mM, 3.0 mM, 6.0 mM and 12.0 

mM as the corresponding cations. The different metal concentrations in the media were 

verified by inductive coupled plasma-mass spectrometry (ICP-MS) (Julshamn et al., 

2007). Solid media without copper, zinc and cadmium were included as growth 

controls. Existing literature were applied when interpreting the breakpoints for metal 

resistance. The MIC were 3.0 mM for copper and zinc, and 0.75 mM for cadmium 

(Resende et al., 2012). For some bacterial taxa, the MIC50 was calculated. In addition, 

the concentrations of copper, zinc and cadmium were examined in batches of blue 

mussels by ICP-MS analysis (Julshamn et al., 2007). 

3.5    Conjugation assay 

For Objective 1, a conjugation experiment was performed in broth on a selection of 

resistant E. coli isolates to investigate the ability to transfer ARGs. The isolates were 

used as donors, and laboratory strains were used as recipients. The lactose-negative 

recipient strains used were E. coli DH5α (Culture Collection University Gothenburg, 

Sweden), resistant to nalidixic acid and One Shot E. coli (Invitrogen, USA), resistant 

to kanamycin. To be able to differentiate between donor and recipient, the applied 

recipient strains were resistant to a certain antibiotic, i.e. nalidixic acid and kanamycin, 

respectively, that inhibits growth of the donor strains. Conjugation is a process that 

involves cell-to-cell contact, in which the donor cell transfer MGEs directly into the 

recipient cell, termed transconjugant (Aminov, 2011). After mating (i.e. conjugation 

period), a 10-fold dilution series was made and aliquots from the mating solutions were 

spread onto media containing nalidixic acid or kanamycin and antibiotic disks, 

corresponding to the resistance profile of the donor, were applied on the agar surface. 

Growth of single colonies within the inhibition zone of the antibacterial disks were 

presumed to be transconjugants. Presumptive transconjugants were cultured on blood 

agar and subsequently tested against the antibiotics corresponding to the resistance 



 24 

profiles of the donors when examined by the EUCAST method (Matuschek et al., 

2014). Subsequently, the transconjugants were subcultured on lactose-saccharose-

bromthymol blue agar to verify that the transconjugants were indeed recipients and not 

the donor strain with mutations, or possible contamination. The colony morphology of 

the recipients used were different, in which the colonies were notably smaller than 

wild-type E. coli strains (donors) and did not ferment lactose (Sunde and Norström, 

2006; Sunde et al., 2015). 

3.6    Whole-genome sequencing 

Whole-genome sequencing (WGS) was performed on selected E. coli and 

environmental isolates based on phenotypes expressing resistance to clinically 

important agents, such as 3rd gen. cephalosporins and/or showing resistance towards 

multiple antibacterial agents (Objective 1 & 3).  

For Objective 1, genomic DNA was extracted and quantified using Nanodrop™ 2000 

Spectrophotometer (Thermo Fisher, USA) and Qubit™ 2.0 Fluorometer (Thermo 

Fisher, USA). A Kapa Hyper Plus Library preparation kit (Kapa Biosystems, USA) 

was used to prepare sequencing libraries. The libraries were sequenced on an Illumina 

MiSeq platform (Illumina, USA) (Bentley et al., 2008), using 2 x 250 bp chemistry at 

the Public Health Institute, Oslo, Norway. The raw data were quality trimmed and 

assembled using Trimmomatic (Bolger et al., 2014) and SPAdes (Bankevich et al., 

2012), respectively. The processed sequences were analyzed for ARGs, serotype and 

multi-locus sequence types (MLSTs) using available databases. This includes 

ResFinder (Zankari et al., 2012), SerotypeFinder (Joensen et al., 2015), and MLSTs 

tool (Larsen et al., 2012) with E. coli #1 profile (Wirth et al., 2006), from Centre for 

Genomic Epidemiology, at the Technical University of Denmark. 

For Objective 3, genomic DNA was extracted and quantified using Nanodrop™ 2000 

Spectrophotometer (Thermo Fisher, USA) and Qubit™ 2.0 Fluorometer (Thermo 

Fisher, USA). Sequencing libraries were prepared using Nextera DNA Flex Library 

Prep kit (Illumina, USA) and sequencing was performed on an Illumina MiSeq 

platform (Illumina, USA) (Bentley et al., 2008), using 2 x 300 bp chemistry, at the 
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Norwegian Sequencing center Oslo, Norway. The raw data were quality trimmed with 

BBMap v.81.31 (Bushnell, 2014) and assembled using SPAdes v.3.13.0 (Bankevich et 

al., 2012) or Unicycler v.0.4.7 (Wick et al., 2017). The processed sequences were 

annotated using Prokaryotic Genomes Annotation Pipeline (PGAP) v.4.8 at the 

National Center for Biotechnology Information (NCBI) (Tatusova et al., 2016). The 

presence of ARGs was examined, using AMRFinder v.3.1.1b (Feldgarden et al., 2019), 

and biocide- and heavy metal-resistance genes were analyzed, using the BacMet 

database v.2.0 (Pal et al., 2014), Diamond v.0.9.29 (Buchfink et al., 2015) and the 

Rapid Annotation using Subsystem Technology (RAST) v.2.0 database (Aziz et al., 

2008). 

3.7    Hybrid de novo assembly 

Short-read Illumina-based sequencing only allow fragmented genome assembly (i.e. 

draft genome), which is useful for detecting genes present in a given strain (Bentley et 

al., 2008). However, the complete metabolic potential of the given strain is not revealed 

by the draft genome. Long-read sequencing technology like Oxford Nanopore (Oxford 

Nanopore Technologies Ltd., UK) allow assembly of complete genomes, but have 

higher sequencing error rates compared to Illumina (Loman et al., 2015). To address 

Objective 2, a combination of low error short-reads and long-reads were applied, to 

obtain high-quality complete and closed genome sequences of the selected ESBL-

producing E. coli isolates to determine the genomic map of the resistance genes and 

associated mobile DNA elements. Genomic DNA was extracted, following the 

protocol described by Salvà-Serra et al. (2018). A sequencing library was prepared 

using a Rapid Barcoding kit (Oxford Nanopore Technologies Ltd., UK), and the library 

was sequenced using a MinION sequencer instrument (Oxford Nanopore Technologies 

Ltd., UK). Subsequently, a hybrid de novo assembly was performed by combining 

long-read Nanopore and short-read Illumina-based sequencing using Unicycler v.0.4.7 

(Wick et al., 2017). The bacterial genome sequences were annotated using PGAP v.4.8 

at the NCBI (Tatusova et al., 2016). Complete overview of the genome sequences and 

genomic maps were performed using GView Server v.1.7 (Petkau et al., 2010) and 

SnapGene® software v.4.3.8.2 (GSL Biotech, USA), respectively. Plasmid replicons 
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were typed using PlasmidFinder v.2.0 (Carattoli et al., 2014) as well as BLASTP 

analysis of the replication initiation (Rep) sequence against the NCBI database. The 

presence of ARGs were detected, using ResFinder v.3.2 (Zankari et al., 2012) and 

CARD v.3.0.7 (Alcock et al., 2019). Moreover, the VFDB database (Liu et al., 2019) 

was used to detect virulence genes, while biocide- and heavy metal-resistance genes 

were examined using the BacMet database v.2.0 (Pal et al., 2014).  

3.8    Phylogenetic analysis 

For Objective 1, rapid genotyping of the E. coli strains were performed using the 

multiple-locus variable number tandem repeats analysis (MLVA) method (Løbersli et 

al., 2012). The MLVA method measures the bp sizes for the variable number of tandem 

repeats (VNTR)-regions for each bacterial cell where a selected number of loci are 

present (Lindstedt et al., 2007). Genomic DNA was extracted, and the VNTR-regions 

were amplified by a PCR, and the amplicons were separated by a capillary 

electrophoresis (CE). During CE, the amplicons were run through a gel matrix in an 

electric field, in which the instrument measures the amplified amount of VNTR-regions 

by a fluorescence bound to the product to determine the size. According to size and 

color, each peak was identified and each multiple of repeat was assigned to a distinct 

allele number, and the results were interpreted using a library with an overview of E. 

coli strains. From the MLVA-profiles of the selected E. coli isolates, a minimal 

spanning tree (MST) was constructed. As markers for genetic relationships, we 

included 38 E. coli Reference (ECOR) strains obtained from the Microbial 

Evolutionary Laboratory (State University of Michigan, USA), 212 community-

acquired E. coli strains causing blood stream infection (Wester et al., 2013), and four 

enterohemorrhagic E. coli strains associated with hemorrhagic uremic syndrome 

collection at the Norwegian Institute of Public Health (Wester et al., 2013; Wester et 

al., 2014).  

For Objective 2, a single nucleotide polymorphism (SNP)-based comparative analysis 

of pathogenic ESBL-producing E. coli strains with other strains from different sources 

and countries was performed, as described by Sabat et al. (2017). The assembled 

genome sequences were analysed using the CSI Phylogeny tool 1.4 (Kaas et al., 2014) 
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and the SNP-based phylogenetic tree was displayed on-line with the Interactive Tree 

Of Life (iTOL) (Letunic and Bork, 2016).  
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4. Results and Discussion 

4.1    Detection and characterization of E. coli  

Sampling of marine bivalves were performed, between October 2014 and November 

2015, from 57 sites along the Norwegian coast, including samples from class A and B 

area, to assess the AR situation in the environment. A total of 549 samples were 

examined for presence of E. coli by applying the MPN EU reference method. The 

material comprised 447 samples of blue mussels (M. edulis), 40 flat oysters (O. edulis), 

39 great scallops (P. maximus), 12 soft-shell clams (M. arenaria) and 11 horse mussels 

(M. modiolus). Among the 549 bivalves examined, 335 (61%) contained E. coli at 

different concentrations, ranging from 20 to 3,500 E. coli per 100 g sample material. It 

is reasonable to assume that bivalves with a high concentration of E. coli had been 

exposed to fecal contamination recently, or that the sample sites were located closer to 

a sewage efflux point (Buttiaux and Mossel, 1961; Welch, 2006; Strockbine et al., 

2015). A total of 200 E. coli isolates from different bivalve samples, originating from 

both class A and B areas, were selected for further analysis.  

All isolates were Gram-negative and oxidase-negative. Totally 180 (90%) were 

identified as E. coli while 20 (10%) were identified as other species mostly belonging 

to the Enterobacteriaceae family (Paper I). Thirteen of these isolates were identified 

within the genera Klebsiella, Citrobacter and Enterobacter, all within the 

Enterobacteriaceae family. One isolate was identified as Acinetobacter spp. belonging 

to the Moraxellaceae family. The remaining six isolates were identified as different 

genus/species in the family Enterobacteriaceae with API 20E compared to MALDI-

TOF MS (Paper I). As specified in the European Council Directive 91/492/EEC (1991), 

the standardized MPN method ISO 16649-3 (ISO, 2005) is currently applied for the 

detection and enumeration of E. coli in bivalves intended for human consumption. 

Thus, it was expected to detect E. coli, although other Gram-negative bacteria were 

identified as well. However, most of the isolates were shown to belong to the 

Enterobacteriaceae family, except for one isolate. As stated in the method, Donovan et 

al. (1998), the number of E. coli in bivalves are calculated based on growth of blue-

green colonies on chromogenic agar, i.e. presence of β-glucuronidase activity. Hence, 
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the results were not quite in line with Donovan et al. (1998) who performed the MPN 

method on 204 isolates, in which all were E. coli. However, the genera Klebsiella, 

Citrobacter and Enterobacter, have shown to display β-glucuronidase production 

(Hofstra and Veld, 1988; Tryland and Fiksdal, 1998). This may explain why false-

positives were detected during verification on chromogenic agar (Pearez et al., 1986; 

Leung et al., 2001). Presence of false-positives may therefore cause an overestimation 

of the number of E. coli resulting in incorrect values. In contrast, more than 95% of E. 

coli strains are β-glucuronidase positive, hence there might be a possibility that the 

MPN values are underestimated due to potential false-negatives on TBX agar (Feng 

and Hartman, 1982). Either way, the detection of species other than E. coli, still 

represents important findings since these includes several important opportunistic 

pathogens associated with fecal contamination, such as K. pneumoniae, Citrobacter 

braakii and Enterobacter cloacae (Forsythe et al., 2015). A possible solution could be 

to revise the reference method to include other Enterobacteriaceae species in addition 

to E. coli. 

4.2    Marine bivalves as tools for the monitoring of antibiotic resistance  

To get a better understanding of the prevalence of antibiotic resistant E. coli and other 

Enterobacteriaceae species, the selected isolates (n=200) were subjected to disk 

diffusion by the  method recommended by EUCAST (Paper II) (EUCAST, 2016a). The 

isolate belonging to the Moraxellaceae family was removed from further analysis. In 

addition, amoxicillin/clavulanic acid and colistin sulfate were not included in the 

results due to experimental errors.    

Seventy-five (38%) of 199 bacterial isolates showed phenotypic resistance to at least 

one agent, while multidrug-resistance was seen in eight (4%) isolates (Fig. 10), i.e. 

resistance to >3 antibacterial classes according to the definition given by Magiorakos 

et al. (2012). Phenotypic resistance was observed against penicillins (31%), 

aminoglycosides (6%), trimethoprim (5%), sulfonamides (4%), tetracyclines (3%) and 

cephalosporins (3%), among others. No phenotypic resistance was observed towards 

piperacillin/tazobactam, imipenem or meropenem. Three isolates B142, B117 and 

B184 obtained from blue mussels (M. edulis) were resistant against seven or more 
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antibacterial agents. E. coli isolate B184 was resistant toward 15 antibacterial agents, 

belonging to six classes. Moreover, E. coli isolate B177 showed resistance to nine 

antibacterial agents belonging to five classes, while K. oxytoca isolate B142 displayed 

resistance to seven agents in four classes. 
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Among the isolates (n=199) obtained from marine bivalves, resistance to extended-

spectrum penicillins (31%) was observed. Thirteen isolates were identified within the 

genera Klebsiella, Citrobacter and Enterobacter, which are known to be intrinsic 

resistant to ampicillin and amoxicillin (Borenshtein and Schauer, 2006; Brisse et al., 

2006; Grimont and Grimont, 2006). In Norway, the most commonly prescribed group 

of antibiotics in human and veterinary medicine (excluding farmed fish) are penicillins, 

including β-lactamase sensitive and extended-spectrum penicillins (NORM/NORM-

VET, 2018). Suggesting that the high use of extended-spectrum penicillins in Norway 

may have been the reason for the prevalence of penicillin resistance observed in this 

study. A study performed by NORM/NORM-Vet (2016) reported that 4.2% of E. coli 

isolates obtained from bivalve mollusks (n=261) in Norway were resistant to at least 

one antibiotic, while prevalence of resistance to three antibiotics was 0.4%. 

Accordingly, phenotypic resistance was most frequently seen towards tetracycline 

(5.7%), ampicillin (4.6 %) and sulfamethoxazole (3.1%). In the present study, 

resistance to tetracycline, ampicillin and sulfamethoxazole was found in 3%, 11% and 

4% of the E. coli isolates, respectively. Comparison between the results, however, is 

difficult due to methodological differences in classification and the application of 

epidemiological cut-off values instead of clinical breakpoints. Regardless, the results 

from both studies indicate that the prevalence of antibiotic resistant E. coli in the marine 

environment in Norway is low. In contrast, 33.3% of E. coli strains isolated from venus 

clams (Chamelea gallina) in Italy were resistant to at least one antibiotic, while 

multidrug-resistance were seen in 11% of the strains (Vignaroli et al., 2016). Among 

these, resistance to tetracycline, ampicillin and trimethoprim/sulfamethoxazole were 

25.5%, 17% and 8.5%, respectively.  

Based on resistance phenotypes, ten E. coli isolates were subjected to WGS (Table 4). 

Three isolates belonged to sequence type (ST) 69, ST95 and ST95, respectively, which 

have been associated with bloodstream infections (Adams-Sapper et al., 2012). The 

multidrug-resistant (MDR) E. coli isolate B184 belonging to ST38 is a prevalent 

clinical pathogen, predominantly associated with urinary tract infections (Chattaway et 

al., 2014). In Norway, clinical isolates of E. coli ST10, ST38, ST69 and ST95 have 
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previously been detected (Naseer et al., 2009; Naseer et al., 2010). Moreover, E. coli 

ST10, ST38 and ST69 have also been detected from recreational, wastewater and urine 

samples in Norway (Jørgensen et al., 2017). Based on molecular epidemiological 

analysis (Paper II), the ECOR strains of different phylogroups and E. coli strains 

causing blood stream infection were evenly distributed throughout the MST, together 

with both 30 isolates from bivalves and the enterohemorrhagic E. coli strains associated 

with hemorrhagic uremic syndrome. Suggesting that the E. coli isolates from the 

bivalves may have derived from humans through dissemination of contaminated 

sewage or from other sources. Accordingly, the detection of pathogenic STs (Table 4) 

further supports a human origin of the E. coli strains. 

Table 4. Distribution of serotype, sequence type (ST) and antibiotic resistance genes  

(ARGs) among ten Escherichia coli isolates by whole-genome sequencing. 

*Genes: penicillins (blaTEM-1), cephalosporins (blaCTX-M-14, blaCTX-M-15),  

aminoglycosides (strA-strB, aadA5, aac(3)-IId, aph(3)-Ia),  

trimethoprim (dfrA5, dfrA14, dfrA17), sulfonamides (sul1, sul2),  

tetracyclines (tet(A), tet(B), tet(D)), amphenicols (catA1),  

quinolones (qnrS1) and macrolides (mphA). 

 

 

Isolate Serotype ST ARGs* 

B2    O8:H25 ST58 blaTEM-1B, strA-strB, dfrA5, sul2 

B53 No O type:H4 ST10 blaTEM-1B 

B117 O48:H20 ST191 blaTEM-1B, blaCTX-M-15 

B158 O1:H7 ST95 blaTEM-1B, strA-strB, dfrA5, sul2 

B160 O8:H30 ST58 blaTEM-1B, qnrS1, tet(A) 

B161 O17/O44:H18 ST69 blaTEM-1B, aac(3)-IId 

B165 O1:H7 ST95 blaTEM-1C, strA-strB, dfrA14, sul2, tet(A) 

B167 O8:H17 ST88 blaTEM-1C, tet(A) 

B177 O89:H9 ST3572 blaTEM-1B, strA-strB, dfrA17, sul1, sul2, catA1, aadA5, 

aph(3’)-Ia, tet(B) 

B184 O102:H6 ST38 blaTEM-1B, blaCTX-M-14, strA-strB, dfrA17, sul1, sul2, 

catA1, aadA5, aac(3)-IId, tet(D), mph(A) 
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Multiple resistance genes were detected in the genome sequences of the ten E. coli 

isolates when performing WGS. Among the ten isolates examined, six transferred 

ARGs by conjugation (Paper II). All ten isolates harbored the blaTEM-1 gene, while 

isolate B117 and B184 carried the blaCTX-M-15 and blaCTX-M-14 genes, respectively. The 

TEM enzymes confer resistance to penicillins, while CTX-M enzymes confer 

resistance to penicillins and cephalosporins (Palzkill, 2018). These enzymes function 

by hydrolysis of the β-lactam ring causing inactivation of β-lactams (Pfeifer et al., 

2010). A study has shown that among penicillin-resistant E. coli (n=13) isolated from 

bivalves along the Norwegian coast, four harbored blaTEM-1 (NORM/NORM-VET, 

2016). In addition, soil samples from Norway have previously been shown to contain 

low levels of blaTEM-1 (Brusetti et al., 2008). Phenotypic resistance to 3rd gen. 

cephalosporins (i.e. cefotaxime and/or ceftazidime) was detected in five isolates (3%). 

Based on the WGS results and a conjugation assay, isolate B117 carried the blaCTX-M-

15 gene on a conjugative plasmid (Paper II). Although, the knowledge about the 

prevalence of blaCTX-M in the Norwegian environment is limited, cephalosporin-

resistant E. coli harboring blaCTX-M-15 have been isolated from bivalves in Norway in 

another study (NORM/NORM-VET, 2016). CTX-M-carrying E. coli have also been 

detected from other niches in Norway, including healthy humans (Ulstad et al., 2016; 

Espenhain et al., 2018), wild red foxes (Vulpes vulpes) (Mo et al., 2018), water 

(Jørgensen et al., 2017) and wastewater (Paulshus et al., 2019b). Suggesting that 

humans and warm-blooded animals may act as sources of blaCTX-M, which could 

disseminate into the environment. A Norwegian study revealed that ESBL-producing 

E. coli strains from recreational fresh- and saltwater were clonally related to strains 

isolated from human urine and wastewater (Jørgensen et al., 2017).  

Fecal contamination plays an important part in the dissemination of ARGs in the 

environment (Karkman et al., 2019). Marine bivalves could be potential tools for 

monitoring of resistant E. coli as well as other Enterobacteriaceae species present in 

the marine environment at time of sampling (Paper I and II). Several studies have 

shown the presence of antibiotic resistant E. coli strains obtained from bivalves in other 

countries, such as Sweden (Bighiu et al., 2019), France (Balière et al., 2015), Italy 
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(Vignaroli et al., 2016) and Tunisia (Mani et al., 2018). This suggests that bivalves 

containing antibiotic resistant E. coli could represent a possible risk of transmission. 

This can occur through spillage of contaminated mantle water during handling of 

bivalves, or due to poor heat treatment of bivalves prior to consumption. However, 

most of the isolates in this study were obtained from blue mussels, which are usually 

heat treated for sufficient time before consumption. In contrast, contaminated bivalves 

intended for raw- or light preserved consumption, such as flat oysters (O. edulis) and 

the muscle of great scallops (P. maximus), could pose a possible risk of exposure to 

resistant E. coli. Infections with E. coli, particularly Shiga toxin-producing E. coli 

(STEC), are among the most frequent foodborne diseases worldwide (WHO, 2018). In 

Norway, the prevalence of STEC associated with marine bivalves has shown to be low 

(1.1%) (Martin et al., 2019). In addition to being important for food safety, monitoring 

of marine bivalves for the presence of resistant E. coli is also relevant for areas used 

for recreational activities (Leonard et al., 2018). Thus, our study highlights the 

importance for monitoring of bivalves for the presence of resistant E. coli strains in the 

marine environment.  

4.3    The presence of CTX-M-producing E. coli strains  

As defined by the WHO (2017c), the emergence of ESBL-producing 

Enterobacteriaceae are of great concern. Among these, plasmid-mediated class A β-

lactamases, belonging to CTX-M type, are prevalent and globally disseminated in the 

clinics, especially in Europe (Canton et al., 2012; Bevan et al., 2017).  

The MDR E. coli isolate B184 belongs to ST38 (Paper II), which is a pathogenic strain 

of clinical importance and associated with AR (Greig et al., 2018; Rafaque et al., 2018; 

Abril et al., 2019). Based on a comparative analysis (SNP-based) of isolate B184 with 

other strains of ST38 from various sources and countries, isolate B184 clustered closer 

to human isolates compared to ST38 isolates from animals (Paper III). Suggesting a 

human origin of isolate B184. In addition, isolate B184 revealed to harbor several 

virulence factors on the chromosome, including hemorrhagic E. coli pilus, invasive 

brain endothelial cells, hemolysin/cytolysin A, hemin uptake and yersiniabactin 

siderophore. 
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Complete genome sequence of isolate B184 (GenBank accession number: CP040263-

CP040268) was assembled into a circular chromosome of 5.19 Mb and five plasmids, 

ranging from 98 kb to 5 kb. Despite the number of plasmids carried by this isolate, all 

the ARGs were located on the chromosome. The majority of ARGs were clustered 

together on the chromosome at two separate multidrug-resistance determining regions 

(MDR-regions), each flanked by IS26 transposases (Fig. 11). MDR-region 1 (25.2 kb) 

harbored genes conferring resistance to penicillins, tunicamycin, aminoglycosides, 

macrolides, sulfonamides and trimethoprim (Fig. 11A). In addition, this region carried 

a gene conferring resistance to chromate (Aguilar-Barajas et al., 2008). The MDR-

region 1 had two DNA fragments (17,687 bp and 3,094 bp, respectively) that were 

identical (>99.9%) to fragments of a conjugative IncFII plasmid pE2855-3 (92.7 kb) 

reported in E. coli (GenBank accession number: AP018799) (Fig. 11A). This suggest 

the possibility that the MDR-1 in isolate B184 may have been transferred from a 

plasmid onto the chromosome by transposition (Rubio-Cosials et al., 2018). MDR-

region 2 (19.8 kb) carried genes conferring resistance to aminoglycosides, penicillins, 

amphenicols, tetracycline and sulfonamides (Fig. 11B). The MDR-region 2 had three 

DNA fragments (13,222 bp, 4,188 bp and 1,176 bp, respectively) that were identical 

(>99.9%) to fragments of a plasmid pKPN5 (88.6 kb) reported in K. pneumoniae 

(GenBank accession number: CP000650) (Fig. 11B). Four identical copies of blaCTX-

M-14 gene were detected outside these two regions, located on the chromosome at 

separate positions, each flanked by IS5 and ISEc9 transposases. Interestingly, isolate 

B184 showed elevated MIC of 0.094 μg/ml for ertapenem during antibiotic 

susceptibility testing. This could partly be explained by the high copy numbers of the 

CTX-M-14 gene detected in isolate B184. E. coli ST38 carrying chromosomal CTX-

M genes have previously been reported (Rodríguez et al., 2014; Greig et al., 2018). 

Although blaCTX-M-14 was detected on the chromosome, the DNA fragment carrying 

blaCTX-M-14 and the flanking IS5 and ISEc9 transposases was identical (100%) to 

fragment of plasmids carried by different Enterobacteriaceae species, including K. 

pneumoniae (GenBank accession number: CP041102), E. cloacae (GenBank accession 

number: CP035635) and Salmonella enterica (GenBank accession number: 

MH522424), suggesting that blaCTX-M-14 is mobile. Lastly, a chromosomal mutation in 
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the gyrA gene (S83L) was detected in isolate B184. This mutation is considered to have 

the strongest effect on quinolone resistance (Bagel et al., 1999). 
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Isolate B117, belonging to ST191, (GenBank accession number: CP040269-

CP040271) had one circular chromosome of 4.73 Mb and two plasmids (91 kb and 4 

kb, respectively). This isolate carried the blaCTX-M-15 gene on the 91 kb IncI1 plasmid 

pEc1500_CTX (GenBank accession number: CP040270), as well as a blaTEM-1 gene 

(Fig. 12). The blaCTX-M-15 gene was flanked by a Tn3 and an ISEc9 transposases. The 

ISEc9 transposase flanking the blaCTX-M-15 gene in isolate B117 revealed to be identical 

(100%) to the ISEc9 transposase flanking blaCTX-M-14 in isolate B184. Suggesting that 

the ISEc9 transposase play a role in dissemination of CTX-M type ESBLs. The 

pEc1500_CTX had high sequence identity (>99.9%) with two different CTX-M-

carrying plasmids (91,109 bp and 93,732 bp, respectively) reported in Shigella sonnei 

(GenBank accession number: KJ406378) and E. coli (GenBank accession number: 

EU935740), respectively. Plasmid pEc1500_CTX have demonstrated to transfer 

blaCTX-M-15 (Paper II), which highlights the potential for transfer of this plasmid from 

isolate B117 to other environmental bacteria.  

 

 

 

 

 

 

 

 

 

Figure 12. Structure of plasmid pEc1500_CTX carrying blaCTX-M-15 and blaTEM-1 gene (GenBank 

accession number: CP040270). Arrows indicate the size of the ORFs and their orientation in the 

genome. Antibiotic resistance genes are highlighted in red, transposases in blue, conjugal 

transfer proteins in green, replication initiation proteins in black, and other genes are highlighted 

in grey, respectively. 
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Our study highlights the importance of combining low error short-reads and long-reads 

for obtaining complete bacterial genome sequences, to understand the genomic 

structure and mobility of the ARGs. It demonstrates the presence of clinically important 

CTX-M-type ESBLs carried by two E. coli strains isolated from blue mussels (Paper 

II), representing a risk for further dissemination of such genes into the environment 

(Paper III). This is of particular concern in Norway which is a low prevalence country 

in terms of infections caused by ESBL-producing Enterobacteriaceae (NORM/NORM-

VET, 2018). Although, ESBL-producing E. coli strains have shown to be present in 

hospitals (11.5%), community (6.9%) and urban wastewater (3.7%) in Norway 

(Paulshus et al., 2019a). In addition, strains of E. coli and K. pneumoniae carrying 

CTX-M-encoding plasmids have been reported from the clinics (Naseer et al., 2009; 

Löhr et al., 2015; Knudsen et al., 2018). In addition, isolates B184 and B117 harbored 

multiple heavy metal resistance genes, as well as several biocide resistance genes, 

indicating the potential for co-selection (Pal et al., 2017; Jutkina et al., 2018). Thus, we 

have provided a comprehensive account of the presence of clinically relevant mobile 

ARGs in two E. coli strains isolated from blue mussels from the marine environment 

in Norway (Paper III). Our study provides an approach to generate information on 

resistance genes and associated mobile DNA elements present in the marine 

environment in low prevalence settings. 

4.4    Environmental bacteria with resistance to antibiotics and heavy metals  

Sampling of marine bivalves were performed, during June, July and August 2017, from 

18 sites along the Norwegian coast to assess the antibiotic and heavy metal resistance, 

as well as associated resistance genes, among environmental bacteria (Paper IV). A 

total of 26 samples were examined, comprised of 18 samples of blue mussels (M. 

edulis), two flat oysters (O. edulis), two great scallops (P. maximus), one soft-shell 

clams (M. arenaria), one pacific oyster (C. gigas), one common cockle (C. edule) and 

one sample of ocean quahog (A. islandica). Among the 25 bivalve samples examined 

by MPN method, 22 (88%) samples contained E. coli at different concentrations, 

ranging from 20 to 1,600,000 E. coli per 100 g sample material. One bivalve sample 

did not give any MPN results due to experimental errors. Moreover, the concentrations 
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of copper, zinc and cadmium were analyzed by ICP-MS in 25 individual blue mussels 

from 13 sites. The results were compared with provisional high reference 

concentrations (PROREF) of heavy metals (NIVA, 2016), and all samples were within 

the environmental status classification 1, i.e. no toxic levels or signs of contamination. 

From non-selective agar plates, totally 59 bacterial isolates from 26 bivalve samples 

were collected and identified. Among the Gram-negative isolates, phenotypic 

resistance was observed against ampicillin (80%), cefotaxime (60%), nitrofurantoin 

(55%), trimethoprim (50%), kanamycine (48%) and chloramphenicol (45%). Only one 

Gram-positive isolate detected and was resistant to mecillinam, trimethoprim, 

ceftazidime and imipenem. Totally 146 isolates from agar plates with antibiotics, 

including 36 isolates were retrieved from MH with ampicillin, 49 from MH with 

ceftazidime, 33 from MH with ciprofloxacin, and 28 isolates from MH with imipenem. 

Among the Gram-negative isolates, resistance was observed against ampicillin (86%), 

cefotaxime (69%), trimethoprim (69%), nitrofurantoin (66%) and kanamycin (56%). 

Among the Gram-positive isolates, resistance was seen towards mecillinam (27%), 

cefotaxime (27%), trimethoprim (23%), nitrofurantoin (18%) and sulfonamide (13%).  

The combined resistance to antibiotics and heavy metals among a selection of 195 

bacterial isolates from both non-selective and selective methods are shown in Figure 

13. Many of the environmental bacteria retrieved in this study are intrinsic resistant to 

a wide range of the antibiotics tested for, such as species belonging to the Pseudomonas 

spp. and Stenotrophomonas spp. (Breidenstein et al., 2011; Sánchez, 2015).  
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Among the Pseudomonas spp., phenotypic resistance was frequently observed towards 

kanamycine (93%), ampicillin (89%), amoxicillin (88%), mecillinam (88%), 

cephalosporins (88%), trimethoprim (88%) and nitrofurans (82%) (Fig. 13). No 

resistance was detected against levofloxacin or doxycycline. Most of the isolates 

showed high tolerance for copper (97%), zinc (93%) and cadmium (58%). Based on 

the WGS results of 27 isolates (Table 5), all Pseudomonas isolates harbored multiple 

ARGs, including genes belonging to the efflux transporter families MATE, MFS, SMR 

and RND, providing resistance to a wide range of antibiotics (Delmar et al., 2014; 

Greene et al., 2018). The ampC gene providing resistance to cephalosporins were 

present in all isolates, while the macrolide efflux pump macA/macB gene was found in 

eight isolates. Four isolates harbored the aph gene conferring resistance to 

aminoglycosides, while two isolates carried the catB-related gene encoding resistance 

to chloramphenicol. In addition, the Pseudomonas isolates harbored genes conferring 

heavy metal resistance and these genes have been shown to be linked to the tolerance 

of heavy metals in this genus (Pitondo-Silva et al., 2016). Among the Vibrio isolates 

resistance was mostly seen towards ampicillin (87%). No resistance was seen to 

nalidixic acid, ciprofloxacin and doxycycline. High tolerance to zinc (83%), cadmium 

(70%) and copper (57%) were detected. All Vibrio spp. subjected to WGS carried the 

multidrug transporter gene emrD (Table 5), and tet(34) gene conferring resistance to 

tetracycline. Six V. anguillarum isolates carried the varG gene encoding resistance 

against β-lactams (Lin et al., 2017). Four isolates harbored catB or catB-related genes, 

while two isolates carried the aph gene. One isolate carried the qnrVC gene conferring 

resistance to quinolones. Several heavy metal resistance genes, including cusA/cusB 

and czcA, were observed among the Vibrio isolates. In the bacterial species belonging 

to the Stenotrophomonas spp. resistance was frequently seen to amoxicillin (100%), 

ampicillin (89%) and kanamycin (94%). No resistance was observed towards 

doxycycline and sulfonamide. Most of the isolates showed high tolerance for zinc 

(100%), copper (71%) and cadmium (50%). Based on the WGS results (Table 5), all 

Stenotrophomonas isolates harbored blaL1 and blaL2 genes. Several efflux-encoding 

genes, including MATE and RND, were detected in the isolates and explains the high 

prevalence of resistance observed (Sánchez, 2015). The aph gene was present in all 
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isolates, while the qnr gene was detected in the six S. maltophilia isolates. The S. 

rhizophilia isolates carried a blaSUBCLASS B3 gene. The heavy metal resistance genes 

copB and cuzA/czcA were detected in all isolates. Among the Acinetobacter spp. 

resistance was frequently seen towards trimethoprim (100%), mecillinam (90%), 

cefotaxime (80%) and nitrofurantoin (80%). No resistance was observed for 

gentamicin, doxycycline, imipenem and meropenem. High tolerance to heavy metals 

were seen for copper (100%) and zinc (78%), and low tolerance was seen for cadmium 

(22%). Based on WGS results (Table 5), the blaOXA, macA/macB and catB-related 

genes were detected in all isolates, as well as genes conferring efflux transporter 

families RND, MATE and MFS, providing resistance to multiple antibiotics. Two 

isolate carried the ampC and aph(3’) genes, respectively. All isolates harbored genes 

encoding heavy metal resistance.  
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Clinically relevant ARGs associated with pathogenic E. coli strains can be introduced 

into the marine environment (Paper II & III), thereby interact with the environmental 

bacteria providing opportunities for acquisition of ARGs via horizontal transfer 

(Aminov, 2011; Martinez, 2012). Hence, opportunistic pathogens thriving in soil and 

water, such as Stenotrophomonas or Pseudomonas spp., may function as intermediate 

that could transfer ARGs back into human-associated bacteria (Berg et al., 2005).  

Many of the bacterial species examined belonged to the genera Pseudomonas (36%), 

Vibrio (11%) and Stenotrophomonas (8%). Species belonging to the Pseudomonas spp. 

and Stenotrophomonas spp. are intrinsic resistant to a wide range of antibiotics 

(Breidenstein et al., 2011; Sánchez, 2015), and not surprisingly high rate of resistance 

was observed. Hence, the large degree of intrinsic resistance among several of the 

environmental bacteria isolated makes it difficult to interpret the data (EUCAST, 

2016c). 

However, clinically relevant ARGs towards aminoglycosides (aph(3’)), phenicols 

(catB) and/or fluoroquinolones (qnrVC), were detected. The S. rhizophilia isolates 

carried a new variant of the blaSUBCLASS B3 gene that are highly similar (86.27% 

nucleotide identity) to a blaSUBCLASS B3 gene reported in a Stenotrophomonas sp. LM091 

(GenBank accession number: WP_070426224). Interestingly, increased phenotypic 

resistance were seen for Vibrio spp. isolated from bivalves from high vs. low exposure 

to fecal contamination. One Vibrio isolate detected harbored a qnrVC gene (Zhang et 

al., 2018). The qnrVC gene was highly similar (>99.9% nucleotide identity) to a 

plasmid-borne qnrVC6 reported in V. parahaemolyticus (GenBank accession number: 

AGH08253.1), suggesting that the qnrVC gene in V. anguillarum is mobile.  

This study has described the antibiotic and heavy metal resistance patterns, and 

associated resistance genes, among several environmental bacteria isolated from 

marine bivalves in Norway. Most of the environmental bacteria carried multiple genes 

belonging to the efflux transporter families (Table 5), and hence were intrinsic resistant 

to several antibiotics. The presence of clinically relevant ARGs were detected, however 

the genomic map and associated DNA elements should be investigated further. 
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5. Conclusion 

Environmental surveillance of AR can contribute towards better understanding and 

management of human and ecosystem health. A major cause for the spread of clinically 

relevant ARGs and pathogens is the partial lack of proper infrastructure for wastewater 

treatment and uncontrolled discharge of untreated urban waste. The results of the work 

performed in this thesis, suggests that marine bivalves represent an important tool for 

monitoring antibiotic resistant E. coli and other Enterobacteriaceae present in the 

marine environment. This study also highlights the presence of clinically important 

CTX-M-type ESBLs in the environment in Norway, with the potential for further 

dissemination. Moreover, clinically relevant ARGs, such as qnrVC, aph(3’) and/or 

catB-related, were detected in environmental bacteria isolated from marine bivalves. 

Thus, highlighting the importance for surveillance of clinically relevant ARGs in the 

environment, especially in a low prevalence setting like Norway. In addition, several 

heavy metal resistance genes were detected, suggesting the possibility for co-selection 

of ARGs in the absence of antibiotic exposure. The presence of E. coli in bivalves are 

indicators for fecal contamination, concomitantly containing both clinically relevant 

ARGs and pathogens. Dissemination of resistant E. coli strains into the marine 

environment represents a possible health concern, especially in areas used for marine 

food production or recreational activities. Thus, the results presented in this study 

strengthens the notion that the marine environment plays an important role in the 

dissemination of clinically important ARGs and pathogens (Bengtsson-Palme et al., 

2018). It also emphasizes the need for environmental surveillance of AR in countries 

with low burden of resistance, in order to be better prepared for managing future 

challenges. 
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6. Future perspective 

By this thesis, we have demonstrated that marine bivalves can function as tools for 

assessing antibiotic resistant E. coli present in the marine environment. However, only 

qualitative detection of antibiotic resistant E. coli isolates was performed. Future 

monitoring of bivalve mollusks should include quantitative detection of resistant E. 

coli and other bacteria derived from fecal contamination, such as Klebsiella spp. 

Enterobacter spp., Citrobacter spp. and Enterococcus spp. These genera includes 

several important human pathogens and are included in the priority list published by 

the WHO (2017c). Future samples should also include bivalves from areas with known 

high and low influence of anthropogenic activity, such as bivalves from densely 

populated and from more pristine areas. Not only would this provide knowledge about 

the differences in the prevalence of AR, but also provide a rough overview of fecal 

carriage of AR in humans and/or warm-blooded animals in Norway. Moreover, 

interactions between enteric and environmental bacteria should be assessed, since fecal 

contamination has been shown to contribute to the abundance of ARGs in the 

environment (Karkman et al., 2019). This would be of interest since environmental 

bacteria, like Pseudomonas spp. or Vibrio spp., could function as intermediates for 

ARGs, thereby contributing to the persistence of such genes in the environment. In 

addition, the resistome and virulome of the biota of bivalves should be examined to 

provide knowledge regarding the presence, as well as the abundance, of resistance and 

virulence genes in the environment. Another important aspect should be to determine 

if bivalves could be used exclusively for surveillance of AR in the environment. This 

includes obtaining samples of water and sediment, as well as bivalves, from the same 

location (at the same time), to evaluate if bivalves are sufficient enough for monitoring 

of ARGs and pathogens present in the marine environment. Interestingly, a Swedish 

study performed by Bighiu et al. (2019) included both bivalves and water samples, and 

detected higher concentrations of fecal bacteria, as well as AR, in the bivalve. 

Suggesting that bivalves represents good tools for monitoring of fecal-derived bacteria 

and associated AR present in the surrounding environment.  



 50 

References 

91/492/EEC (1991). "Council Directive of 15th July laying down the Health 

Conditions for the Production and Placing on the Market of Live Bivalve 

Molluscs (91/492/EEC)". Off. J. Eur. Union L, pp. 1-15 

854/2004/EC (2004). "Regulation (EC) No. 854/2004 of the European Parliament 

and of the Council of 29 April 2004 laying down specific rules for the 

organisation of official controls on products of animal origin intended for 

human consumption". Off. J. Eur. Union L, pp. 83-127 

1831/2003/EC (2003). "Regulation (EC) No 1831/2003 of the European Parliament 

and of the Council of 22 September 2003 on additives for use in animal 

nutrition". Off. J. Eur. Union L, pp. 29-43 

2008/1021/EC (2008). "Commission Regulation (EC) No. 1021/2008  amending 

Annexes I, II and III to Regulation (EC) No 854/2004 of the European 

Parliament and of the Council laying down specific rules for the organisation 

of official controls on products of animal origin intended for human 

consumption and Regulation (EC) no 2076/2005 as regards live bivalve 

mollusc, certain fishery products and staff assisting with official controls in 

slaughterhouses". Off. J. Eur. Union L, pp. 15-17 

2015/2285/EC (2015). "Commission Regulation (EU) No. 2015/2285 of 8 December 

2015 amending Annex II to Regulation (EC) No 854/2004 of the European 

Parliament and of the Council laying down specific rules for the organisation 

of official controls on products of animal origin intended for human 

consumption as regards certain requirements for live bivalve molluscs, 

echinoderms, tunicates and marine gastropods and Annex I to Regulation 

(EC) No 2073/2005 on microbiological criteria for foodstuffs". Off. J. Eur. 

Union L, pp. 2-4 

Abril, D., Bustos Moya, I.G., Marquez-Ortiz, R.A., Josa Montero, D.F., Corredor 

Rozo, Z.L., Torres Molina, I., et al. (2019). First report and comparative 

genomics analysis of a blaOXA-244-harboring Escherichia coli isolate recovered 

in the American continent. Antibiotics 8(4), 222. 

http://dx.doi.org/10.3390/antibiotics8040222 

Adams-Sapper, S., Diep, B.A., Perdreau-Remington, F., and Riley, L.W. (2012). 

Clonal composition and community clustering of drug-susceptible and 

resistant Escherichia coli isolates from blood stream infections. Antimicrob. 

Agents Chemother. 57(1), 490-497. http://dx.doi.org/10.1128/AAC.01025-12 

Aguilar-Barajas, E., Paluscio, E., Cervantes, C., and Rensing, C. (2008). Expression 

of chromate resistance genes from Shewanella sp. strain ANA-3 in 

Escherichia coli. FEMS Microbiol. Lett. 285(1), 97-100. 

http://dx.doi.org/10.1111/j.1574-6968.2008.01220.x 

Alcock, B.P., Raphenya, A.R., Lau, T.T.Y., Tsang, K.K., Bouchard, M., Edalatmand, 

A., et al. (2019). CARD 2020: Antibiotic resistome surveillance with the 

comprehensive antibiotic resistance database. Nucleic Acids Res. in press. 

http://dx.doi.org/10.1093/nar/gkz935 

Allen, H.K. (2014). Antibiotic resistance gene discovery in food-producing animals. 

Curr. Opin. Microbiol. 19, 25-29. http://dx.doi.org/10.1016/j.mib.2014.06.001 



 51 

Allen, H.K., Donato, J., Wang, H.H., Cloud-Hansen, K.A., Davies, J., and 

Handelsman, J. (2010). Call of the wild: Antibiotic resistance genes in natural 

environments. Nat. Rev. Microbiol. 8(4), 251-259. 

http://dx.doi.org/10.1038/nrmicro2312 

Alves, M.S., Pereira, A., Araújo, S.M., Castro, B.B., Correia, A., and Henriques, I. 

(2014). Seawater is a reservoir of multi-resistant Escherichia coli, including 

strains hosting plasmid-mediated quinolones resistance and extended-spectrum 

beta-lactamases genes. Front. Microbiol. 5(426), 1-10. 

http://dx.doi.org/10.3389/fmicb.2014.00426 

Aminov, R. (2010). A brief history of the antibiotic era: Lessons learned and 

challenges for the future. Front. Microbiol. 1(134), 1-7. 

http://dx.doi.org/10.3389/fmicb.2010.00134 

Aminov, R.I. (2009). The role of antibiotics and antibiotic resistance in nature. 

Environ. Microbiol. 11(12), 2970-2988. http://dx.doi.org/10.1111/j.1462-

2920.2009.01972.x 

Aminov, R.I. (2011). Horizontal gene exchange in environmental microbiota. Front. 

Microbiol. 2(158), 1-19. http://dx.doi.org/10.3389/fmicb.2011.00158 

Amos, G.C.A., Zhang, L., Hawkey, P.M., Gaze, W.H., and Wellington, E.M. (2014). 

Functional metagenomic analysis reveals rivers are a reservoir for diverse 

antibiotic resistance genes. Vet. Microbiol. 171(3), 441-447. 

http://dx.doi.org/10.1016/j.vetmic.2014.02.017 

Andersson, D.I., and Hughes, D. (2010). Antibiotic resistance and its cost: Is it 

possible to reverse resistance? Nat. Rev. Microbiol. 8, 260. 

http://dx.doi.org/10.1038/nrmicro2319 

Andersson, D.I., and Hughes, D. (2014). Microbiological effects of sublethal levels of 

antibiotics. Nat. Rev. Microbiol. 12(7), 465-478. 

http://dx.doi.org/10.1038/nrmicro3270 

Antunes, F., Hinzmann, M., Lopes-Lima, M., Machado, J., and Martins da Costa, P. 

(2010). Association between environmental microbiota and indigenous 

bacteria found in hemolymph, extrapallial fluid and mucus of Anodonta 

cygnea (Linnaeus, 1758). Microb. Ecol. 60(2), 304-309. 

http://dx.doi.org/10.1007/s00248-010-9649-y 

Asín-Prieto, E., Rodríguez-Gascón, A., and Isla, A. (2015). Applications of the 

pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. 

J. Infect. Chemother. 21(5), 319-329. 

http://dx.doi.org/10.1016/j.jiac.2015.02.001 

Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., et al. 

(2008). The RAST server: Rapid Annotations using Subsystems Technology. 

BMC Genomics 9(1), 75. http://dx.doi.org/10.1186/1471-2164-9-75 

Bagel, S., Hüllen, V., Wiedemann, B., and Heisig, P. (1999). Impact of gyrA and 

parC mutations on quinolone resistance, doubling time, and supercoiling 

degree of Escherichia coli. Antimicrob. Agents Chemother. 43(4), 868-875 

Baker-Austin, C., Wright, M.S., Stepanauskas, R., and McArthur, J. (2006). Co-

selection of antibiotic and metal resistance. Trends Microbiol. 14(4), 176-182. 

http://dx.doi.org/10.1016/j.tim.2006.02.006 



 52 

Baker, S. (2015). A return to the pre-antimicrobial era? Science 347(6226), 1064-

1066. http://dx.doi.org/10.1126/science.aaa2868 

Balière, C., Rincé, A., Blanco, J., Dahbi, G., Harel, J., Vogeleer, P., et al. (2015). 

Prevalence and characterization of shiga toxin-producing and enteropathogenic 

Escherichia coli in shellfish-harvesting areas and their watersheds. Front. 

Microbiol. 6(1356), 1-15. http://dx.doi.org/10.3389/fmicb.2015.01356 

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., et 

al. (2012). SPAdes: A new genome assembly algorithm and its applications to 

single-cell sequencing. J. Comput. Biol. 19(5), 455-477. 

http://dx.doi.org/10.1089/cmb.2012.0021 

Bauer, A.W., Kirby, W.M., Sherris, J.C., and Turck, M. (1966). Antibiotic 

susceptibility testing by a standardized single disk method. Am. J. Clin. 

Pathol. 45(4), 493-496. http://dx.doi.org/10.1093/ajcp/45.4_ts.493 

Bengtsson-Palme, J., Angelin, M., Huss, M., Kjellqvist, S., Kristiansson, E., 

Palmgren, H., et al. (2015). The human gut microbiome as a transporter of 

antibiotic resistance genes between continents. Antimicrob. Agents Chemother. 

59(10), 6551-6560. http://dx.doi.org/10.1128/aac.00933-15 

Bengtsson-Palme, J., Kristiansson, E., and Larsson, D.G.J. (2018). Environmental 

factors influencing the development and spread of antibiotic resistance. FEMS 

Microbiol. Rev. 42, 68-80. http://dx.doi.org/10.1093/femsre/fux053  

Bengtsson-Palme, J., and Larsson, D.G.J. (2016). Concentrations of antibiotics 

predicted to select for resistant bacteria: Proposed limits for environmental 

regulation. Environ. Int. 86, 140-149. 

http://dx.doi.org/10.1016/j.envint.2015.10.015 

Bentley, D.R., Balasubramanian, S., Swerdlow, H.P., Smith, G.P., Milton, J., Brown, 

C.G., et al. (2008). Accurate whole human genome sequencing using 

reversible terminator chemistry. Nature 456(7218), 53-59. 

http://dx.doi.org/10.1038/nature07517 

Berg, G., Eberl, L., and Hartmann, A. (2005). The rhizosphere as a reservoir for 

opportunistic human pathogenic bacteria. Environ. Microbiol. 7(11), 1673-

1685. http://dx.doi.org/10.1111/j.1462-2920.2005.00891.x 

Berglund, B., Fick, J., and Lindgren, P.-E. (2015). Urban wastewater effluent 

increases antibiotic resistance gene concentrations in a receiving northern 

European river. Environ. Toxicol. Chem. 34(1), 192-196. 

http://dx.doi.org/10.1002/etc.2784 

Bernard, F.R. (1989). Uptake and elimination of coliform bacteria by four marine 

bivalve mollusks. Can. J. Fish Aquat. Sci. 46(9), 1592-1599. 

http://dx.doi.org/10.1139/f89-203 

Bevan, E.R., Jones, A.M., and Hawkey, P.M. (2017). Global epidemiology of CTX-

M β-lactamases: Temporal and geographical shifts in genotype. J. Antimicrob. 

Chemother. 72(8), 2145-2155. http://dx.doi.org/10.1093/jac/dkx146 

Bighiu, M.A., Norman Haldén, A., Goedkoop, W., and Ottoson, J. (2019). Assessing 

microbial contamination and antibiotic resistant bacteria using zebra mussels 

(Dreissena polymorpha). Sci. Total Environ. 650, 2141-2149. 

http://dx.doi.org/10.1016/j.scitotenv.2018.09.314 



 53 

Blaak, H., de Kruijf, P., Hamidjaja, R.A., van Hoek, A.H.A.M., de Roda Husman, 

A.M., and Schets, F.M. (2014). Prevalence and characteristics of ESBL-

producing E. coli in Dutch recreational waters influenced by wastewater 

treatment plants. Vet. Microbiol. 171(3), 448-459. 

http://dx.doi.org/10.1016/j.vetmic.2014.03.007 

Blair, J.M.A., Webber, M.A., Baylay, A.J., Ogbolu, D.O., and Piddock, L.J.V. 

(2014). Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 

13, 42-51. http://dx.doi.org/10.1038/nrmicro3380 

Blázquez, J., Couce, A., Rodríguez-Beltrán, J., and Rodríguez-Rojas, A. (2012). 

Antimicrobials as promoters of genetic variation. Curr. Opin. Microbiol. 

15(5), 561-569. http://dx.doi.org/10.1016/j.mib.2012.07.007 

Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: A flexible trimmer 

for Illumina sequence data. Bioinformatics 30(15), 2114-2120. 

http://dx.doi.org/10.1093/bioinformatics/btu170 

Borenshtein, D., and Schauer, D.B. (2006). The genus Citrobacter. In The 

Prokaryotes: A Handbook on the Biology of Bacteria: Proteobacteria: 

Gamma subclass (3rd ed.), eds. M. Dworkin, S. Falkow, E. Rosenberg, K.H. 

Schleifer & E. Stackebrandt. (Springer Science & Business Media: New York, 

NY, USA). pp. 90-96. 

Bourassa, L., and Butler-Wu, S.M. (2015). MALDI-TOF mass spectrometry for 

microorganism identification. Methods Microbiol. 42,, 37-85. 

http://dx.doi.org/10.1016/bs.mim.2015.07.003 

Breidenstein, E.B.M., de la Fuente-Núñez, C., and Hancock, R.E.W. (2011). 

Pseudomonas aeruginosa: All roads lead to resistance. Trends Microbiol. 

19(8), 419-426. http://dx.doi.org/10.1016/j.tim.2011.04.005 

Brisse, S., Grimont, F., and Grimont, P.A.D. (2006). The genus Klebsiella. In The 

Prokaryotes: A Handbook on the Biology of Bacteria: Proteobacteria: 

Gamma subclass (3rd ed.), eds. M. Dworkin, S. Falkow, E. Rosenberg, K.-H. 

Schleifer & E. Stackebrandt. (Springer Science & Business Media: New York, 

NY, USA). pp. 159-175. 

Brownstein, D., Miller, M.A., Oates, S.C., Byrne, B.A., Jang, S., Murray, M.J., et al. 

(2011). Antimicrobial susceptibility of bacterial isolates from sea otters 

(Enhydra lutris). J. Wild. Dis. 47(2), 278-292. http://dx.doi.org/10.7589/0090-

3558-47.2.278 

Brusetti, L., Glad, T., Borin, S., Myren, P., Rizzi, A., Johnsen, P.J., et al. (2008). Low 

prevalence of blaTEM genes in Arctic environments and agricultural soil and 

rhizosphere. Microb. Ecol. Health Dis. 20(1), 27-36. 

http://dx.doi.org/10.1080/08910600701838244 

Buchfink, B., Xie, C., and Huson, D.H. (2015). Fast and sensitive protein alignment 

using DIAMOND. Nat. Methods 12(1), 59-60. 

http://dx.doi.org/10.1038/nmeth.3176 

Buck, J.D. (1982). Nonstaining (KOH) method for determination of Gram reactions 

of marine bacteria. Appl. Environ. Microbiol. 44(4), 992-993 

Burridge, L., Weis, J.S., Cabello, F., Pizarro, J., and Bostick, K. (2010). Chemical use 

in salmon aquaculture: A review of current practices and possible 



 54 

environmental effects. Aquaculture 306(1-4), 7-23. 

http://dx.doi.org/10.1016/j.aquaculture.2010.05.020 

Buschmann, A.H., Tomova, A., López, A., Maldonado, M.A., Henríquez, L.A., 

Ivanova, L., et al. (2012). Salmon aquaculture and antimicrobial resistance in 

the marine environment. PLoS ONE 7(8), e42724. 

http://dx.doi.org/10.1371/journal.pone.0042724 

Bushnell, B. (2014). BBMap: A fast, accurate, splice-aware aligner [Online]. 

Available: https://www.osti.gov/biblio/1241166 [Accessed 17.11. 2019]. 

Buttiaux, R., and Mossel, D.A.A. (1961). The significance of various organisms of 

faecal origin in foods and drinking water. J. Appl. Microbiol. 24(3), 353-364. 

http://dx.doi.org/10.1111/j.1365-2672.1961.tb00267.x 

Cabello, F.C. (2006). Heavy use of prophylactic antibiotics in aquaculture: A 

growing problem for human and animal health and for the environment. 

Environ. Microbiol. 8(7), 1137-1144. http://dx.doi.org/10.1111/j.1462-

2920.2006.01054.x 

Cabello, F.C., Godfrey, H.P., Buschmann, A.H., and Dölz, H.J. (2016). Aquaculture 

as yet another environmental gateway to the development and globalisation of 

antimicrobial resistance. Lancet Infect. Dis. 16(7), 127-133. 

http://dx.doi.org/10.1016/S1473-3099(16)00100-6 

Calero-Cáceres, W., Melgarejo, A., Colomer-Lluch, M., Stoll, C., Lucena, F., Jofre, 

J., et al. (2014). Sludge as a potential important source of antibiotic resistance 

genes in both the bacterial and bacteriophage fractions. Environ. Sci. Technol. 

48(13), 7602-7611. http://dx.doi.org/10.1021/es501851s 

Canton, R., Gonzalez-Alba, J.M., and Galán, J.C. (2012). CTX-M enzymes: Origin 

and diffusion. Front. Microbiol. 3(110), 1-19. 

http://dx.doi.org/10.3389/fmicb.2012.00110 

Carattoli, A., Zankari, E., Garcia-Fernandez, A., Voldby Larsen, M., Lund, O., Villa, 

L., et al. (2014). In Silico detection and typing of plasmids using 

PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents 

Chemother. 58(7), 3895–3903. http://dx.doi.org/10.1128/AAC.02412-14 

CDC (2019). "Antibiotic Resistance Threats in the United States". U.S. Department 

of Health and Human Services, Centers for Disease Control and Prevention 

(CDC) (Atlanta, GA, USA). pp. 4 

Chagas, T.P.G., Seki, L.M., Cury, J.C., Oliveira, J.A.L., Dávila, A.M.R., Silva, D.M., 

et al. (2011). Multiresistance, beta-lactamase-encoding genes and bacterial 

diversity in hospital wastewater in Rio de Janeiro, Brazil. J. Appl. Microbiol. 

111(3), 572-581. http://dx.doi.org/10.1111/j.1365-2672.2011.05072.x  

Chattaway, M.A., Jenkins, C., Ciesielczuk, H., Day, M., DoNascimento, V., Day, M., 

et al. (2014). Evidence of evolving extraintestinal enteroaggregative 

Escherichia coli ST38 clone. Emerg. Infect. Dis. 20(11), 1935-1937. 

http://dx.doi.org/10.3201/eid2011.131845 

Christensen, H.T., Dolmer, P., Hansen, B.W., Holmer, M., Kristensen, L.D., Poulsen, 

L.K., et al. (2015). Aggregation and attachment responses of blue mussels, 

Mytilus edulis—impact of substrate composition, time scale and source of 

mussel seed. Aquaculture 435, 245-251. 

http://dx.doi.org/10.1016/j.aquaculture.2014.09.043 



 55 

CLSI (2014). "Performance Standards for Antimicrobial Susceptibility Testing; 

Twenty-Fourth Informational Supplement". Clinical and Laboratory Standards 

Institute (CLSI) (Wayne, PA, USA). pp. 55; 57 

Cranford, P.J., Ward, J.E., and Shumway, S.E. (2011). Chapter 4: Bivalve filter 

feeding: Variability and limits of the aquaculture biofilter. In Shellfish 

Aquaculture and the Environment (1st ed.), ed. S.E. Shumway.  (John Wiley & 

Sons, Inc.: Hoboken, NJ, USA). pp. 81-124. 

Croxen, M.A., Law, R.J., Scholz, R., Keeney, K.M., Wlodarska, M., and Finlay, B.B. 

(2013). Recent advances in understanding enteric pathogenic Escherichia coli. 

Clin. Microbiol. Rev. 26(4), 822-880. http://dx.doi.org/10.1128/cmr.00022-13 

D’Costa, V.M., King, C.E., Kalan, L., Morar, M., Sung, W.W., Schwarz, C., et al. 

(2011). Antibiotic resistance is ancient. Nature 477, 457-461. 

http://dx.doi.org/10.1038/nature10388 

Davies, J., and Davies, D. (2010). Origins and evolution of antibiotic resistance. 

Microbiol. Mol. Biol. Rev. 74(3), 417-433. 

http://dx.doi.org/10.1128/MMBR.00016-10 

Delmar, J.A., Su, C.-C., and Yu, E.W. (2014). Bacterial multidrug efflux transporters. 

Annu. Rev. Biophys. 43(1), 93-117. http://dx.doi.org//10.1146/annurev-

biophys-051013-022855 

Dethlefsen, L., and Relman, D.A. (2011). Incomplete recovery and individualized 

responses of the human distal gut microbiota to repeated antibiotic 

perturbation. PNAS 108(Supplement 1), 4554-4561. 

http://dx.doi.org/10.1073/pnas.1000087107 

Directorate of Fisheries, D.o. (2019). Statistics for aquaculture - Molluscs, 

crustaceans and echinoderms [Online]. Available: 

http://www.fiskeridir.no/English/Aquaculture/Statistics/Molluscs-crustaceans-

and-echinoderms [Accessed 19.12. 2019]. 

Donovan, T., Gallacher, S., Andrews, N., Greenwood, M., Graham, J., Russell, J., et 

al. (1998). Modificiation of the standard method used in the United Kingdom 

for counting Escherichia coli in live bivalve molluscs. Commun. Dis. Public 

Health 1(3), 188-196 

ECDC (2019). "Surveillance of Antimicrobial Resistance in Europe 2018". European 

Centre for Disease Prevention and Control (ECDC) (Stockholm, Sweden). pp. 

1-29 

EMA (2017). "European Medicines Agency (EMA), European Surveillance of 

Veterinary Antimicrobial Consumption, 2019. 'Sales of veterinary 

antimicrobial agents in 31 European countries in 2017'. 

(EMA/294674/2019)". pp. p. 23-28 

EMA (2019). "'Sales of veterinary antimicrobial agents in 31 European countries in 

2017'". European Medicines Agency (EMA) (Amsterdam, Netherlands). pp. 

26-32 

Espenhain, L., Jørgensen, S.B., Leegaard, T.M., Lelek, M.M., Hänsgen, S.H., 

Nakstad, B., et al. (2018). Travel to Asia is a strong predictor for carriage of 

cephalosporin resistant E. coli and Klebsiella spp. but does not explain 

everything; prevalence study at a Norwegian hospital 2014–2016. Antimicrob. 



 56 

Resist. Infect. Control 7(146), 1-8. http://dx.doi.org/10.1186/s13756-018-

0429-7 

EUCAST (2016a). Breakpoint tables for interpretation of MICs and zone diameters. 

Version 6.0. [Online]. European Committee on Antimicrobial Susceptibility 

Testing (EUCAST). Available: 

http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_t

ables/v_6.0_Breakpoint_table.pdf [Accessed 01.01. 2016]. 

EUCAST (2016b). Breakpoint tables for interpretation of MICs and zone diameters. 

Version 8.0. [Online]. European Committee on Antimicrobial Susceptibility 

Testing (EUCAST). Available: 

http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_t

ables/v_8.0_Breakpoint_Tables.pdf [Accessed 01.01. 2017]. 

EUCAST (2016c). EUCAST Expert Rules Version 3.1. Intrinsic Resistance and 

Exceptional Phenotypes Tables [Online]. Available: 

http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Expert_Rule

s/Expert_rules_intrinsic_exceptional_V3.1.pdf [Accessed 20.12. 2019]. 

Fajardo, A., Martínez-Martín, N., Mercadillo, M., Galán, J.C., Ghysels, B., Matthijs, 

S., et al. (2008). The neglected intrinsic resistome of bacterial pathogens. PLoS 

ONE 3(2), 1-6. http://dx.doi.org/10.1371/journal.pone.0001619 

FAO (2016). "The FAO Action Plan on Antimicrobial Resistance 2016-2020". Food 

and Agriculture Organization (FAO) of the United Nations (Rome, Italy). pp. 

1-25 

Feldgarden, M., Brover, V., Haft, D.H., Prasad, A.B., Slotta, D.J., Tolstoy, I., et al. 

(2019). Validating the AMRFinder tool and resistance gene database by using 

antimicrobial resistance genotype-phenotype correlations in a collection of 

isolates. Antimicrob. Agents Chemother. 63(11), e00483-00419. 

http://dx.doi.org/10.1128/aac.00483-19 

Feng, P.C.S., and Hartman, P.A. (1982). Fluorogenic assays for immediate 

confirmation of Escherichia coli. Appl. Environ. Microbiol. 43, 1320-1329 

Forsythe, S.J. (2010). Foodborne pathogens. In The Microbiology of Safe Food (2nd 

ed.), ed. S.J. Forsythe. (Wiley-Blackwell: Chichester, UK). pp. 149-150. 

Forsythe, S.J., Abbott, S.L., and Pitout, J. (2015). Klebsiella, Enterobacter, 

Citrobacter, Cronobacter, Serratia, Plesiomonas, and other 

Enterobacteriaceae. In Manual of Clinical Microbiology (11th ed.), eds. J.H. 

Jorgensen, M.A. Pfaller, K.C. Carroll, G. Funke, M.L. Landry, S.S. Richter & 

D.W. Warnock. (ASM Press: Washington, DC, USA). pp. 714-720. 

Foster, A.W., Osman, D., and Robinson, N.J. (2014). Metal preferences and 

metallation. J. Biol. Chem. 289, 28095-280103. 

http://dx.doi.org/10.1074/jbc.R114.588145 

Fremaux, B., Prigent-Combaret, C., Beutin, L., Gleizal, A., Trevisan, D., Quetin, P., 

et al. (2010). Survival and spread of shiga toxin-producing Escherichia coli in 

alpine pasture grasslands. Appl. Environ. Microbiol. 108(4), 1332-1343. 

http://dx.doi.org/10.1111/j.1365-2672.2009.04527.x 

Friman, V.-P., Guzman, L.M., Reuman, D.C., and Bell, T. (2015). Bacterial 

adaptation to sublethal antibiotic gradients can change the ecological 



 57 

properties of multitrophic microbial communities. Proc. R. Soc. B. 282, 1-10. 

http://dx.doi.org/10.1098/rspb.2014.2920 

Gauthier-Clerc, S., Boily, I., Fournier, M., and Lemarchand, K. (2013). In vivo 

exposure of Mytilus edulis to living enteric bacteria: A threat for immune 

competency? Environ. Sci. Pollut. Res. 20(2), 612-620. 

http://dx.doi.org/10.1007/s11356-012-1200-x 

Gillings, M. (2013). Evolutionary consequences of antibiotic use for the resistome, 

mobilome and microbial pangenome. Front. Microbiol. 4(4), 1-10. 

http://dx.doi.org/10.3389/fmicb.2013.00004 

Gonçalves, A., Igrejas, G., Radhouani, H., Correia, S., Pacheco, R., Santos, T., et al. 

(2013). Antimicrobial resistance in faecal enterococci and Escherichia coli 

isolates recovered from Iberian wolf. Lett. Appl. Microbiol. 56(4), 268-274. 

http://dx.doi.org/10.1111/lam.12044 

Gosling, E. (2003a). An Introduction to Bivalves. In Bivalve Molluscs: Biology, 

Ecology and Culture, ed. E. Gosling. (Blackwell Publishing Ltd.: Oxford, 

UK). pp. 1. 

Gosling, E. (2003b). Morphology of Bivalves. In Bivalve Molluscs: Biology, Ecology 

and Culture, ed. E. Gosling. (Blackwell Publishing Ltd.: Oxford, UK). pp. 23. 

Greene, N.P., Kaplan, E., Crow, A., and Koronakis, V. (2018). Antibiotic resistance 

mediated by the MacB ABC transporter family: A structural and functional 

perspective. Front. Microbiol. 9(950), 1-17. 

http://dx.doi.org/10.3389/fmicb.2018.00950 

Greig, D.R., Dallman, T.J., Hopkins, K.L., and Jenkins, C. (2018). MinION nanopore 

sequencing identifies the position and structure of bacterial antibiotic 

resistance determinants in a multidrug-resistant strain of enteroaggregative 

Escherichia coli. Microb. Genom. 4(10), 1-5. 

http://dx.doi.org/10.1099/mgen.0.000213 

Grimont, F., and Grimont, P.A.D. (2006). The genus Enterobacter. In The 

Prokaryotes: A Handbook on the Biology of Bacteria: Proteobacteria: 

Gamma subclass (3rd ed.), eds. M. Dworkin, S. Falkow, E. Rosenberg, K.-H. 

Schleifer & E. Stackebrandt. (Springer Science & Business Media: New York, 

NY, USA). pp. 198-204. 

Guo, J., Li, J., Chen, H., Bond, P.L., and Yuan, Z. (2017). Metagenomic analysis 

reveals wastewater treatment plants as hotspots of antibiotic resistance genes 

and mobile genetic elements. Water Res. 123, 468-478. 

http://dx.doi.org/10.1016/j.watres.2017.07.002 

Han, Y., Wang, J., Zhao, Z., Chen, J., Lu, H., and Liu, G. (2017). Fishmeal 

application induces antibiotic resistance gene propagation in mariculture 

sediment. Environ. Sci. Technol. 51(18), 10850-10860. 

http://dx.doi.org/10.1021/acs.est.7b02875 

Hansen, T.A., Joshi, T., Larsen, A.R., Andersen, P.S., Harms, K., Mollerup, S., et al. 

(2016). Vancomycin gene selection in the microbiome of urban Rattus 

norvegicus from hospital environment. Evol. Med. Publich Health 2016(1), 

219-226. http://dx.doi.org/10.1093/emph/eow021 



 58 

Harmer, C.J., and Hall, R.M. (2016). IS26-mediated formation of transposons 

carrying antibiotic resistance genes. mSphere 1(2), 1-8. 

http://dx.doi.org/10.1128/mSphere.00038-16 

Hastings, P.J., Rosenberg, S.M., and Slack, A. (2004). Antibiotic-induced lateral 

transfer of antibiotic resistance. Trends Microbiol. 12(9), 401-404. 

http://dx.doi.org/10.1016/j.tim.2004.07.003 

Heuer, H., Schmitt, H., and Smalla, K. (2011). Antibiotic resistance gene spread due 

to manure application on agricultural fields. Curr. Opin. Microbiol. 14(3), 

236-243. http://dx.doi.org/10.1016/j.mib.2011.04.009 

Heuer, O.E., Kruse, H., Grave, K., Collignon, P., Karunasagar, I., and Angulo, F.J. 

(2009). Human health consequences of use of antimicrobial agents in 

aquaculture. Clin. Infect. Dis. 49(8), 1248-1253. 

http://dx.doi.org/10.1086/605667 

Hoffman, L.R., D'Argenio, D.A., MacCoss, M.J., Zhang, Z., Jones, R.A., and Miller, 

S.I. (2005). Aminoglycoside antibiotics induce bacterial biofilm formation. 

Nature 436, 1171-1175. http://dx.doi.org/10.1038/nature03912 

Hofstra, H., and Veld, J. (1988). Methods for the detection and isolation of 

Escherichia coli including pathogenic strains. J. Appl. Bacteriol. 65(17), 197-

212. http://dx.doi.org/10.1111/j.1365-2672.1988.tb04652 

ICMR (2009). "Detection of Antimicrobial Resistance in Common Gram-negative 

and Gram-positive Bacteria Encountered in Infectious Diseases - An Update". 

Indian Council of Medical Research (ICMR) (New Delhi, India). pp. 7 

ISO (2005). "EN ISO 16649-3. Microbiology of the food chain -- Horizontal method 

for the enumeration of beta-glucuronidase-positive Escherichia coli -- Part 3: 

Detection and most probable number technique using 5-bromo-4-chloro-3-

indolyl-ß-D-glucuronide.". International Organization for Standardization 

(ISO), Geneva, pp. 1-10 

Jechalke, S., Heuer, H., Siemens, J., Amelung, W., and Smalla, K. (2014). Fate and 

effects of veterinary antibiotics in soil. Trends Microbiol. 22(9), 536-545. 

http://dx.doi.org/10.1016/j.tim.2014.05.005 

Joensen, K.G., Tetzschner, A.M., Iguchi, A., Aarestrup, F.M., and Scheutz, F. (2015). 

Rapid and easy in silico serotyping of Escherichia coli using whole genome 

sequencing (WGS) data. J. Clin. Microbiol. 54(12), 1-41. 

http://dx.doi.org/10.1128/JCM.00008-15 

Jones, C., Allsopp, L., Horlick, J., Kulasekara, H., and Filloux, A. (2013). 

Subinhibitory concentration of kanamycin induces the Pseudomonas 

aeruginosa type VI secretion system. PLoS ONE 8(11), 1-15. 

http://dx.doi.org/10.1371/journal.pone.0081132 

Julshamn, K., Maage, A., Norli, H.S., Grobecker, K.H., Jorhem, L., and Fecher, P. 

(2007). Determination of arsenic, cadmium, mercury, and lead by inductively 

coupled plasma mass spectrometry (ICP-MS) in foods after pressure digestion: 

NMKL interlaboratory study. J. AOAC Int. 90(3), 844-856 

Jutkina, J., Marathe, N.P., Flach, C.F., and Larsson, D.G.J. (2018). Antibiotics and 

common antibacterial biocides stimulate horizontal transfer of resistance at 

low concentrations. Sci. Total Environ. 616-617, 172-178. 

http://dx.doi.org/10.1016/j.scitotenv.2017.10.312 



 59 

Jørgensen, S.B., Søraas, A.V., Arnesen, L.S., Leegaard, T.M., Sundsfjord, A., and 

Jenum, P.A. (2017). A comparison of extended spectrum β-lactamase 

producing Escherichia coli from clinical, recreational water and wastewater 

samples associated in time and location. PLoS ONE 12(10), e0186576. 

http://dx.doi.org/10.1371/journal.pone.0186576 

Kaas, R.S., Leekitcharoenphon, P., Aarestrup, F.M., and Lund, O. (2014). Solving the 

problem of comparing whole bacterial genomes across different sequencing 

platforms. PLoS ONE 9(8), e104984. 

http://dx.doi.org/10.1371/journal.pone.0104984 

Kaper, J.B., Nataro, J.P., and Mobley, H.L.T. (2004). Pathogenic Escherichia coli. 

Nat. Rev. Microbiol. 2, 123-140. http://dx.doi.org/10.1038/nrmicro818 

Karaiskos, I., and Giamarellou, H. (2014). Multidrug-resistant and extensively drug-

resistant Gram-negative pathogens: Current and emerging therapeutic 

approaches. Expert Opin. Pharmacother. 15(10), 1351-1370. 

http://dx.doi.org/10.1517/14656566.2014.914172 

Karkman, A., Do, T.T., Walsh, F., and Virta, M.P.J. (2018). Antibiotic-resistance 

genes in waste water. Trends Microbiol. 26(3), 220-228. 

http://dx.doi.org/10.1016/j.tim.2017.09.005 

Karkman, A., Pärnänen, K., and Larsson, D.G.J. (2019). Fecal pollution can explain 

antibiotic resistance gene abundances in anthropogenically impacted 

environments. Nat. Commun. 10(1), 1-8. http://dx.doi.org/10.1038/s41467-

018-07992-3 

Knudsen, P.K., Gammelsrud, K.W., Alfsnes, K., Steinbakk, M., Abrahamsen, T.G., 

Müller, F., et al. (2018). Transfer of a blaCTX-M-1-carrying plasmid between 

different Escherichia coli strains within the human gut explored by whole 

genome sequencing analyses. Sci. Rep. 8(280), 1-10. 

http://dx.doi.org/10.1038/s41598-017-18659-2 

Kohanski, M.A., Dwyer, D.J., and Collins, J.J. (2010). How antibiotics kill bacteria: 

From targets to networks. Nat. Rev. Microbiol. 8, 423-435. 

http://dx.doi.org/10.1038/nrmicro2333 

Kovacs, N. (1956). Identification of Pseudomonas pyocyanea by the oxidase reaction. 

Nature 178, 703. http://dx.doi.org/10.1038/178703a0 

Larsen, M.V., Cosentino, S., Rasmussen, S., Friis, C., Hasman, H., Marvig, R.L., et 

al. (2012). Multilocus sequence typing of total genome sequenced bacteria. J. 

Clin. Microbiol. 50, 1355-1361. http://dx.doi.org/10.1128/JCM.06094-11 

Lees, D. (2000). Viruses and bivalve shellfish. Int. J. Food Microbiol. 59, 81-116. 

http://dx.doi.org/10.1016/S0168-1605(00)00248-8 

Lemire, J.A., Harrison, J.J., and Turner, R.J. (2013). Antimicrobial activity of metals: 

mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11, 371-

384. http://dx.doi.org/10.1038/nrmicro3028 

Leonard, A.F.C., Zhang, L., Balfour, A.J., Garside, R., Hawkey, P.M., Murray, A.K., 

et al. (2018). Exposure to and colonisation by antibiotic-resistant E. coli in UK 

coastal water users: Environmental surveillance, exposure assessment, and 

epidemiological study (Beach Bum Survey). Environ. Int. 114, 326-333. 

http://dx.doi.org/10.1016/j.envint.2017.11.003 



 60 

Letunic, I., and Bork, P. (2016). Interactive tree of life (iTOL) v3: An online tool for 

the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 

44(W1), W242-W245. http://dx.doi.org/10.1093/nar/gkw290 

Leung, J.W., Liu, Y.-l., Leung, P.S., Chan, R.C., Inciardi, J.F., and Cheng, A.F. 

(2001). Expression of bacterial β-glucuronidase in human bile: an in vitro 

study. Gastrointest. Endosc. 54(3), 346-350. 

http://dx.doi.org/10.1067/mge.2001.117546 

Lewis, J.S., and Bush, K. (2015). Antibacterial agents. In Manual of Clinical 

Microbiology (11th ed.), eds. J.H. Jorgensen, M.A. Pfaller, K.C. Carroll, G. 

Funke, M.L. Landry, S.S. Richter & D.W. Warnock. (ASM Press: 

Washington, DC, USA). pp. 1171-1211. 

Li, J., Cheng, W., Xu, L., Strong, P.J., and Chen, H. (2015). Antibiotic-resistant 

genes and antibiotic-resistant bacteria in the effluent of urban residential areas, 

hospitals, and a municipal wastewater treatment plant system. Environ. Sci. 

Pollut. Res. 22(6), 4587-4596. 

http://dx.doi.org/10.1002/etc.278410.1007/s11356-014-3665-2 

Lin, H.-T.V., Massam-Wu, T., Lin, C.-P., Wang, Y.-J.A., Shen, Y.-C., Lu, W.-J., et 

al. (2017). The Vibrio cholerae var regulon encodes a metallo-β-lactamase and 

an antibiotic efflux pump, which are regulated by VarR, a LysR-type 

transcription factor. PLoS ONE 12(9), e0184255. 

http://dx.doi.org/10.1371/journal.pone.0184255 

Linares, J.F., Gustafsson, I., Baquero, F., and Martinez, J.L. (2006). Antibiotics as 

intermicrobial signaling agents instead of weapons. PNAS 103(51), 19484-

19489. http://dx.doi.org/10.1073/pnas.060894910310.1073/pnas.0608949103 

Lindstedt, B.-A., Brandal, L.T., Aas, L., Vardund, T., and Kapperud, G. (2007). 

Study of polymorphic variable-number of tandem repeats loci in the ECOR 

collection and in a set of pathogenic Escherichia coli and Shigella isolates for 

use in a genotyping assay. J. Microbiol. Methods 69(1), 197-205. 

http://dx.doi.org/10.1016/j.mimet.2007.01.001 

Liu, B., Zheng, D., Jin, Q., Chen, L., and Yang, J. (2019). VFDB 2019: A 

comparative pathogenomic platform with an interactive web interface. Nucleic 

Acids Res. 47(D1), D687-D692. http://dx.doi.org/10.1093/nar/gky1080 

Loman, N.J., Quick, J., and Simpson, J.T. (2015). A complete bacterial genome 

assembled de novo using only nanopore sequencing data. Nat. Methods 

12(2015), 733–735. http://dx.doi.org/10.1038/nmeth.3444 

López, E., Elez, M., Matic, I., and Blázquez, J. (2007). Antibiotic-mediated 

recombination: Ciprofloxacin stimulates SOS-independent recombination of 

divergent sequences in Escherichia coli. Mol. Microbiol. 64(1), 83-93. 

http://dx.doi.org/10.1111/j.1365-2958.2007.05642.x 

Love, D.C., Fry, J.P., Cabello, F., Good, C.M., and Lunestad, B.T. (2020). Veterinary 

drug use in United States net pen Salmon aquaculture: Implications for drug 

use policy. Aquaculture 518, 734820. 

http://dx.doi.org/10.1016/j.aquaculture.2019.734820 

Lunestad, B.T., Frantzen, S., Svanevik, C.S., Roiha, I.S., and Duinker, A. (2016). 

Time trends in the prevalence of Escherichia coli and enterococci in bivalves 



 61 

harvested in Norway during 2007–2012. Food Control 60, 289-295. 

http://dx.doi.org/10.1016/j.foodcont.2015.08.001 

Løbersli, I., Haugum, K., and Lindstedt, B.-A. (2012). Rapid and high resolution 

genotyping of all Escherichia coli serotypes using 10 genomic repeat-

containing loci. J. Microbiol. Methods 88(1), 134-139. 

http://dx.doi.org/10.1016/j.mimet.2011.11.003 

Löhr, I.H., Hülter, N., Bernhoff, E., Johnsen, P.J., Sundsfjord, A., and Naseer, U. 

(2015). Persistence of a pKPN3-like CTX-M-15-encoding IncFIIK plasmid in 

a Klebsiella pneumonia ST17 host during two years of intestinal colonization. 

PLoS ONE 10(3), 1-16. http://dx.doi.org/10.1371/journal.pone.0116516 

Magiorakos, A.-P., Srinivasan, A., Carey, R., Carmeli, Y., Falagas, M., Giske, C., et 

al. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-

resistant bacteria: an international expert proposal for interim standard 

definitions for acquired resistance. Clin. Infect. Dis. 18(3), 268-281. 

https://doi.org/10.1111/j.1469-0691.2011.03570.x 

Mani, Y., Mansour, W., Lupo, A., Saras, E., Bouallègue, O., Madec, J.-Y., et al. 

(2018). Spread of blaCTX-M-15-producing Enterobacteriaceae and OXA-23-

producing Acinetobacter baumannii sequence type 2 in Tunisian seafood. 

Antimicrob. Agents Chemother. 62(9), e00727-00718. 

http://dx.doi.org/10.1128/aac.00727-18 

Marathe, N.P., Regina, V.R., Walujkar, S.A., Charan, S.S., Moore, E.R.B., Larsson, 

D.G.J., et al. (2013). A treatment plant receiving waste water from multiple 

bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-

bearing bacteria. PLoS ONE 8(10), 1-10. 

http://dx.doi.org/10.1371/journal.pone.0077310 

Marshall, B.M., and Levy, S.B. (2011). Food animals and antimicrobials: Impacts on 

human health. Clin. Microbiol. Rev. 24(4), 718-733. 

http://dx.doi.org/10.1128/cmr.00002-11 

Martin, C.C., Svanevik, C.S., Lunestad, B.T., Sekse, C., and Johannessen, G.S. 

(2019). Isolation and characterisation of Shiga toxin-producing Escherichia 

coli from Norwegian bivalves. Food Microbiol. 84, 1-5. 

http://dx.doi.org/10.1016/j.fm.2019.103268 

Martinez, J. (2012). Bottlenecks in the transferability of antibiotic resistance from 

natural ecosystems to human bacterial pathogens. Front. Microbiol. 2(265), 1-

6. http://dx.doi.org/10.3389/fmicb.2011.00265 

Martinez, J.L. (2014). General principles of antibiotic resistance in bacteria. Drug 

Discov. Today Technol. 11, 33-39. 

http://dx.doi.org/10.1016/j.ddtec.2014.02.001 

Martínez, J.L. (2008). Antibiotics and antibiotic resistance genes in natural 

environments. Science 321(5887), 365-367. 

http://dx.doi.org/10.1126/science.1159483 

Martínez, J.L., Coque, T.M., and Baquero, F. (2015). What is a resistance gene? 

Ranking risk in resistomes. Nat. Rev. Microbiol. 13(2), 116-123. 

http://dx.doi.org/10.1038/nrmicro3399 

Martinez, J.L., Fajardo, A., Garmendia, L., Hernandez, A., Linares, J.F., Martínez-

Solano, L., et al. (2008). A global view of antibiotic resistance. FEMS 



 62 

Microbiol. Rev. 33(1), 44-65. http://dx.doi.org/10.1111/j.1574-

6976.2008.00142.x 

Matuschek, E., Brown, D.F.J., and Kahlmeter, G. (2014). Development of the 

EUCAST disk diffusion antimicrobial susceptibility testing method and its 

implementation in routine microbiology laboratories. Clin. Microbiol. Infect. 

20(4), 255-266. http://dx.doi.org/10.1111/1469-0691.12373 

McKenzie, C. (2011). Antibiotic dosing in critical illness. J. Antimicrob. Chemother. 

66(2), 25-31. http://dx.doi.org/10.1093/jac/dkq516 

Michael, I., Rizzo, L., McArdell, C., Manaia, C., Merlin, C., Schwartz, T., et al. 

(2013). Urban wastewater treatment plants as hotspots for the release of 

antibiotics in the environment: A review. Water Res. 47(3), 957-995. 

http://dx.doi.org/10.1016/j.watres.2012.11.027 

Michel, B. (2005). After 30 years of study, the bacterial SOS response still surprises 

us. PLoS Biology 3(7), 1174-1176. 

http://dx.doi.org/10.1371/journal.pbio.0030255 

Miller, C., Thomsen, L.E., Gaggero, C., Mosseri, R., Ingmer, H., and Cohen, S.N. 

(2004). SOS response induction by ß-lactams and bacterial defense against 

antibiotic lethality. Science 305(5690), 1629-1631. 

http://dx.doi.org/10.1126/science.1101630 

Mo, S.S., Urdahl, A.M., Madslien, K., Sunde, M., Nesse, L.L., Slettemeås, J.S., et al. 

(2018). What does the fox say? Monitoring antimicrobial resistance in the 

environment using wild red foxes as an indicator. PLoS ONE 13(5), 1-17. 

http://dx.doi.org/10.1371/journal.pone.0198019 

Mouton, J.W., Brown, D.F.J., Apfalter, P., Cantón, R., Giske, C.G., Ivanova, M., et 

al. (2012). The role of pharmacokinetics/pharmacodynamics in setting clinical 

MIC breakpoints: the EUCAST approach. Clin. Microbiol. Infect. 18(3), 37-

45. http://dx.doi.org/10.1111/j.1469-0691.2011.03752.x 

Munk, P., Knudsen, B.E., Lukjancenko, O., Duarte, A.S.R., Van Gompel, L., Luiken, 

R.E.C., et al. (2018). Abundance and diversity of the faecal resistome in 

slaughter pigs and broilers in nine European countries. Nat. Microbiol. 3(8), 

898-908. http://dx.doi.org/10.1038/s41564-018-0192-9 

Murugaiyan, J., Krueger, K., Roesler, U., Weinreich, J., and Schierack, P. (2015). 

Assessment of species and antimicrobial resistance among Enterobacteriaceae 

isolated from mallard duck faeces. Environ. Monit. Assess. 187(3), 1-11. 

http://dx.doi.org/10.1007/s10661-015-4346-4 

Muziasari, W.I., Pitkänen, L.K., Sørum, H., Stedtfeld, R.D., Tiedje, J.M., and Virta, 

M. (2017). The resistome of farmed fish feces contributes to the enrichment of 

antibiotic resistance genes in sediments below Baltic Sea fish farms. Front. 

Microbiol. 7(2137), 1-0. http://dx.doi.org/10.3389/fmicb.2016.02137 

Naseer, U., Haldorsen, B., Simonsen, G.S., and Sundsfjord, A. (2010). Sporadic 

occurrence of CMY-2-producing multidrug-resistant Escherichia coli of ST-

complexes 38 and 448, and ST131 in Norway. Clin. Microbiol. Infect. 16(2), 

171-178. http://dx.doi.org/10.1111/j.1469-0691.2009.02861.x 

Naseer, U., Haldorsen, B., Tofteland, S., Hegstad, K., Scheutz, F., Simonsen, G.S., et 

al. (2009). Molecular characterization of CTX-M-15-producing clinical 

isolates of Escherichia coli reveals the spread of multidrug-resistant ST131 



 63 

(O25:H4) and ST964 (O102:H6) strains in Norway. APMIS 117(7), 526-536. 

http://dx.doi.org/10.1111/j.1600-0463.2009.02465.x 

Navarro-Gonzalez, N., Casas-Díaz, E., Porrero, C.M., Mateos, A., Domínguez, L., 

Lavín, S., et al. (2013). Food-borne zoonotic pathogens and antimicrobial 

resistance of indicator bacteria in urban wild boars in Barcelona, Spain. Vet. 

Microbiol. 167(3), 686-689. http://dx.doi.org/10.1016/j.vetmic.2013.07.037 

Nawaz, M., Khan, S.A., Tran, Q., Sung, K., Khan, A.A., Adamu, I., et al. (2012). 

Isolation and characterization of multidrug-resistant Klebsiella spp. isolated 

from shrimp imported from Thailand. Int. J. Food Microbiol. 155(3), 179-184. 

http://dx.doi.org/10.1016/j.ijfoodmicro.2012.02.002 

Ng, C., Tay, M., Tan, B., Le, T.-H., Haller, L., Chen, H., et al. (2017). 

Characterization of metagenomes in urban aquatic compartments reveals high 

prevalence of clinically relevant antibiotic resistance genes in wastewaters. 

Front. Microbiol. 8(2200), 1-12. http://dx.doi.org/10.3389/fmicb.2017.02200 

NIVA (2016). "Contaminants in coastal waters of Norway 2016". Norwegian 

Institute for Water Research (NIVA) by contract from the Norwegian 

Environment Agency (Trondheim, Norway). pp. 30-34 

NORM/NORM-VET (2016). "Usage of Antimicrobial Agents and Occurrence of 

Antimicrobial Resistance in Norway". Norwegian monitoring programme on 

antimicrobial resistance in bacteria from humans, food, feed and animals 

(NORM/NORM-VET) (Tromsø / Oslo, Norway). pp. 71-72 

NORM/NORM-VET (2018). "Usage of Antimicrobial Agents and Occurrence of 

Antimicrobial Resistance in Norway". Norwegian monitoring programme on 

antimicrobial resistance in bacteria from humans, food, feed and animals 

(NORM/NORM-VET) (Tromsø / Oslo, Norway). pp. 10-12; 29-33 

O’Neill, J., Davies, S., Rex, J., White, L., and Murray, R. (2016). "Tackling drug-

resistant infections globally: Final report and recommendations". The Review 

on Antimicrobial Resistance. (Wellcome Trust and UK Government: London, 

UK). pp. 4 

Oblinger, J.L., and Koburger, J.A. (1975). Understanding and teaching the most 

probable number technique. J. Food Microbiol. 38(9), 540-545 

Pal, C., Asiani, K., Arya, S., Rensing, C., Stekel, D.J., Larsson, D.J., et al. (2017). 

Metal resistance and its association with antibiotic resistance. Adv. Microb. 

Physiol. 70, 261-313. http://dx.doi.org/10.1016/bs.ampbs.2017.02.001 

Pal, C., Bengtsson-Palme, J., Rensing, C., Kristiansson, E., and Larsson, D.G.J. 

(2014). BacMet: Antibacterial biocide and metal resistance genes database. 

Nucleic Acids Res. 42(D1), D737-D743. http://dx.doi.org/10.1093/nar/gkt1252 

Palleja, A., Mikkelsen, K.H., Forslund, S.K., Kashani, A., Allin, K.H., Nielsen, T., et 

al. (2018). Recovery of gut microbiota of healthy adults following antibiotic 

exposure. Nat. Microbiol. 3(11), 1255-1265. http://dx.doi.org/10.1038/s41564-

018-0257-9 

Palzkill, T. (2018). Structural and mechanistic basis for extended-spectrum drug-

resistance mutations in altering the specificity of TEM, CTX-M, and KPC β-

lactamases. Front. Mol. Biosci. 5, 16-16. 

http://dx.doi.org/10.3389/fmolb.2018.00016 



 64 

Patel, J.B., and Richter, S.S. (2015). Mechanisms of resistance to antibacterial agents. 

In Manual of Clinical Microbiology (11th ed.), eds. J.H. Jorgensen, M.A. 

Pfaller, K.C. Carroll, G. Funke, M.L. Landry, S.S. Richter & D.W. Warnock. 

(ASM Press: Washington, DC, USA). pp. 1212-1213. 

Paulshus, E., Kühn, I., Möllby, R., Colque, P., O'Sullivan, K., Midtvedt, T., et al. 

(2019a). Diversity and antibiotic resistance among Escherichia coli 

populations in hospital and community wastewater compared to wastewater at 

the receiving urban treatment plant. Water Res. 161, 232-241. 

http://dx.doi.org/10.1016/j.watres.2019.05.102 

Paulshus, E., Thorell, K., Guzman-Otazo, J., Joffre, E., Colque-Navarro, P., Kühn, I., 

et al. (2019b). Repeated isolation of ESBL positive Escherichia coli ST648 

and ST131 from community wastewater - Are sewage systems important 

sources of emerging clones of antibiotic resistant bacteria? Antimicrob. Agents 

Chemother. 63(9), 1-12. http://dx.doi.org/10.1128/aac.00823-19 

Pearez, J., Berrocal, C.I., and Berrocal, L. (1986). Evaluation of a commercial β-

glucuronidase test for the rapid and economical identification of Escherichia 

coli. J. Appl. Bacteriol. 61(6), 541-545. http://dx.doi.org/10.1111/j.1365-

2672.1986.tb01727.x 

Perron, G.G., Inglis, R.F., Pennings, P.S., and Cobey, S. (2015). Fighting microbial 

drug resistance: A primer on the role of evolutionary biology in public health. 

Evol. Appl. 8(3), 211-222. http://dx.doi.org/10.1111/eva.12254 

Petkau, A., Stuart-Edwards, M., Stothard, P., and Van Domselaar, G. (2010). 

Interactive microbial genome visualization with GView. Bioinformatics 

26(24), 3125-3126. http://dx.doi.org/10.1093/bioinformatics/btq588 

Pfeifer, Y., Cullik, A., and Witte, W. (2010). Resistance to cephalosporins and 

carbapenems in Gram-negative bacterial pathogens. Int. J. Med. Microbiol. 

300(6), 371-379. http://dx.doi.org/10.1016/j.ijmm.2010.04.005 

Pitondo-Silva, A., Gonçalves, G.B., and Stehling, E.G. (2016). Heavy metal 

resistance and virulence profile in Pseudomonas aeruginosa isolated from 

Brazilian soils. APMIS 124(8), 681-688. http://dx.doi.org/10.1111/apm.12553 

Poeta, P., Radhouani, H., Igrejas, G., Gonçalves, A., Carvalho, C., Rodrigues, J., et 

al. (2008). Seagulls of the Berlengas natural reserve of Portugal as carriers of 

fecal Escherichia coli harboring CTX-M and TEM extended-spectrum beta-

lactamases. Appl. Environ. Microbiol. 74(23), 7439-7441. 

http://dx.doi.org/10.1128/aem.00949-08 

Poole, K. (2017). At the nexus of antibiotics and metals: The impact of Cu and Zn on 

antibiotic activity and resistance. Trends Microbiol. 25(10), 820-832. 

http://dx.doi.org/10.1016/j.tim.2017.04.010 

Potasman, I., Paz, A., and Odeh, M. (2002). Infectious outbreaks associated with 

bivalve shellfish consumption: A worldwide perspective. Clin. Infect. Dis. 

35(8), 921-928. http://dx.doi.org/10.1086/342330 

Power, U.F., and Collins, J.K. (1990). Tissue distribution of a coliphage and 

Escherichia coli in mussels after contamination and depuration. Appl. Environ. 

Microbiol. 56(3), 803-807 

Rafaque, Z., Dasti, J.I., and Andrews, S.C. (2018). Draft genome sequence of a 

uropathogenic Escherichia coli isolate (ST38 O1:H15) from Pakistan, an 



 65 

emerging multidrug-resistant sequence type with a high virulence profile. New 

Microbes New Infect. 27, 1-2. http://dx.doi.org//10.1016/j.nmni.2018.10.004 

Resende, J.A., Silva, V.L., Fontes, C.O., Souza-Filho, J.A., de Oliveira, T.L.R., 

Coelho, C.M., et al. (2012). Multidrug-resistance and toxic metal tolerance of 

medically important bacteria isolated from an aquaculture system. Microbes 

Environ. 27(4), 449-455. http://dx.doi.org/10.1264/jsme2.ME12049 

Richter, T.K.S., Michalski, J.M., Zanetti, L., Tennant, S.M., Chen, W.H., and Rasko, 

D.A. (2018). Responses of the human gut Escherichia coli population to 

pathogen and antibiotic disturbances. mSystems 3(4), 1-15. 

http://dx.doi.org/10.1128/mSystems.00047-18 

Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M.C., et al. (2013). 

Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria 

and genes spread into the environment: A review. Sci. Total Environ. 447, 

345-360. http://dx.doi.org/10.1016/j.scitotenv.2013.01.032 

Rodríguez, I., Thomas, K., Van Essen, A., Schink, A.K., Day, M., Chattaway, M., et 

al. (2014). Chromosomal location of blaCTX-M genes in clinical isolates of 

Escherichia coli from Germany, the Netherlands and the UK. Int. J. 

Antimicrob. Agents. 43(6), 553-557. 

http://dx.doi.org/10.1016/j.ijantimicag.2014.02.019 

Romalde, J., Diéguez, A., Lasa, A., and Balboa, S. (2014). New Vibrio species 

associated to molluscan microbiota: A review. Front. Microbiol. 4(413), 1-11. 

http://dx.doi.org/10.3389/fmicb.2013.00413 

Rosa, M., Ward, J.E., and Shumway, S.E. (2018). Selective capture and ingestion of 

particles by suspension-feeding bivalve molluscs: A review. J. Shellfish Res. 

37(4), 727-747. http://dx.doi.org/10.2983/035.037.0405 

Roschanski, N., Guenther, S., Vu, T.T.T., Fischer, J., Semmler, T., Huehn, S., et al. 

(2017). VIM-1 carbapenemase-producing Escherichia coli isolated from retail 

seafood, Germany 2016. Euro Surveill. 22(43), 1-7. 

http://dx.doi.org/10.2807/1560-7917.es.2017.22.43.17-00032 

Roslev, P., Bukh, A.S., Iversen, L., Sønderbo, H., and Iversen, N. (2010). Application 

of mussels as biosamplers for characterization of faecal pollution in coastal 

recreational waters. Water Sci. Technol. 62(3), 586-593. 

http://dx.doi.org/10.2166/wst.2010.910 

Rubio-Cosials, A., Schulz, E.C., Lambertsen, L., Smyshlyaev, G., Rojas-Cordova, C., 

Forslund, K., et al. (2018). Transposase-DNA complex structures reveal 

mechanisms for conjugative transposition of antibiotic resistance. Cell 173(1), 

208-220. http://dx.doi.org/10.1016/j.cell.2018.02.032 

Ryu, S.-H., Park, S.-G., Choi, S.-M., Hwang, Y.-O., Ham, H.-J., Kim, S.-U., et al. 

(2012). Antimicrobial resistance and resistance genes in Escherichia coli 

strains isolated from commercial fish and seafood. Int. J. Food Microbiol. 

152(1), 14-18. http://dx.doi.org/10.1016/j.ijfoodmicro.2011.10.003 

Sabat, A.J., Hermelijn, S.M., Akkerboom, V., Juliana, A., Degener, J.E., Grundmann, 

H., et al. (2017). Complete-genome sequencing elucidates outbreak dynamics 

of CA-MRSA USA300 (ST8-spa t008) in an academic hospital of Paramaribo, 

Republic of Suriname. Sci. Rep. 7(1), 41050. 

http://dx.doi.org/10.1038/srep41050 



 66 

Salvà-Serra, F., Svensson-Stadler, L., Busquets, A., Jaén-Luchoro, D., Karlsson, R., 

R. B. Moore, E., et al. (2018). A protocol for extraction and purification of 

high-quality and quantity bacterial DNA applicable for genome sequencing: A 

modified version of the Marmur procedure. Protoc. Exch. 

http://dx.doi.org/10.1038/protex.2018.084 

Samuelsen, O.B., Torsvik, V., and Ervik, A. (1992). Long-range changes in 

oxytetracycline concentration and bacterial resistance towards oxytetracycline 

in a fish farm sediment after medication. Sci. Total Environ. 114, 25-36. 

http://dx.doi.org/10.1016/0048-9697(92)90411-K 

Sánchez, M. (2015). Antibiotic resistance in the opportunistic pathogen 

Stenotrophomonas maltophilia. Front. Microbiol. 6(658), 1-7. 

http://dx.doi.org/10.3389/fmicb.2015.00658 

Santestevan, N.A., de Angelis Zvoboda, D., Prichula, J., Pereira, R.I., Wachholz, 

G.R., Cardoso, L.A., et al. (2015). Antimicrobial resistance and virulence 

factor gene profiles of Enterococcus spp. isolates from wild Arctocephalus 

australis (South American fur seal) and Arctocephalus tropicalis (Subantarctic 

fur seal). World J. Microbiol. Biotechnol. 31(12), 1935-1946. 

http://dx.doi.org/10.1007/s11274-015-1938-7 

Schang, C., Lintern, A., Cook, P.L., Osborne, C., McKinley, A., Schmidt, J., et al. 

(2016). Presence and survival of culturable Campylobacter spp. and 

Escherichia coli in a temperate urban estuary. Sci. Total Environ. 569, 1201-

1211. http://dx.doi.org/10.1016/j.scitotenv.2016.06.195 

Seier-Petersen, M.A., Jasni, A., Aarestrup, F.M., Vigre, H., Mullany, P., Roberts, A., 

et al. (2013). Effect of subinhibitory concentrations of four commonly used 

biocides on the conjugative transfer of Tn916 in Bacillus subtilis. J. 

Antimicrob. Chemother. 69(2), 343-348. http://dx.doi.org/10.1093/jac/dkt370 

Seiler, C., and Berendonk, T. (2012). Heavy metal driven co-selection of antibiotic 

resistance in soil and water bodies impacted by agriculture and aquaculture. 

Front. Microbiol. 3(399). http://dx.doi.org/10.3389/fmicb.2012.00399 

Sentchilo, V., Mayer, A.P., Guy, L., Miyazaki, R., Green Tringe, S., Barry, K., et al. 

(2013). Community-wide plasmid gene mobilization and selection. ISME J. 7, 

1173-1186. http://dx.doi.org/10.1038/ismej.2013.13 

Serra-Compte, A., Sánchez-Melsió, Á., Álvarez-Muñoz, D., Barceló, D., Balcázar, 

J.L., and Rodríguez-Mozaz, S. (2019). Exposure to a subinhibitory 

sulfonamide concentration promotes the spread of antibiotic resistance in 

marine blue mussels (Mytilus edulis). Environ. Sci. Technol. Let. 6(4), 211-

215. http://dx.doi.org/10.1021/acs.estlett.9b00112 

Seyfried, E.E., Newton, R.J., Rubert, K.F., Pedersen, J.A., and McMahon, K.D. 

(2010). Occurrence of tetracycline resistance genes in aquaculture facilities 

with varying use of oxytetracycline. Microb. Ecol. 59(4), 799-807. 

http://dx.doi.org/10.1007/s00248-009-9624-7 

Shah, S.Q.A., Cabello, F.C., L'Abée-Lund, T.M., Tomova, A., Godfrey, H.P., 

Buschmann, A.H., et al. (2014). Antimicrobial resistance and antimicrobial 

resistance genes in marine bacteria from salmon aquaculture and non-

aquaculture sites. Environ. Microbiol. 16(5), 1310-1320. 

http://dx.doi.org/10.1111/1462-2920.12421 



 67 

Singhal, N., Kumar, M., Kanaujia, P.K., and Virdi, J.S. (2015). MALDI-TOF mass 

spectrometry: An emerging technology for microbial identification and 

diagnosis. Front. Microbiol. 6(791), 1-16. 

http://dx.doi.org/10.3389/fmicb.2015.00791 

Sommer, M.O., and Dantas, G. (2011). Antibiotics and the resistant microbiome. 

Curr. Opin. Microbiol. 14(5), 556-563. 

http://dx.doi.org/10.1016/j.mib.2011.07.005 

Sommer, M.O.A., Munck, C., Toft-Kehler, R.V., and Andersson, D.I. (2017). 

Prediction of antibiotic resistance: Time for a new preclinical paradigm? Nat. 

Rev. Microbiol. 15, 689-696. http://dx.doi.org/10.1038/nrmicro.2017.75 

Stalder, T., Barraud, O., Casellas, M., Dagot, C., and Ploy, M.-C. (2012). Integron 

involvement in environmental spread of antibiotic resistance. Front. 

Microbiol. 3(119), 1-14. http://dx.doi.org/10.3389/fmicb.2012.00119 

Stedt, J., Bonnedahl, J., Hernandez, J., Waldenström, J., McMahon, B.J., Tolf, C., et 

al. (2015). Carriage of CTX-M type extended spectrum β-lactamases (ESBLs) 

in gulls across Europe. Acta Vet. Scand. 57, 74. 

http://dx.doi.org/10.1186/s13028-015-0166-3 

Strockbine, N.A., Bopp, C.A., Fields, P.I., Kaper, J.B., and Nataro, J.P. (2015). 

Escherichia, Shigella, and Salmonella. In Manual of Clinical Microbiology 

(11th ed.), eds. J.H. Jorgensen, M.A. Pfaller, K.C. Carroll, G. Funke, M.L. 

Landry, S.S. Richter & D.W. Warnock. (ASM Press: Washington, DC, USA). 

pp. 685-713. 

Su, J.-Q., Wei, B., Ou-Yang, W.-Y., Huang, F.-Y., Zhao, Y., Xu, H.-J., et al. (2015). 

Antibiotic resistome and its association with bacterial communities during 

sewage sludge composting. Environ. Sci. Technol. 49(12), 7356-7363. 

http://dx.doi.org/10.1021/acs.est.5b01012 

Sunde, M., and Norström, M. (2006). The prevalence of, associations between and 

conjugal transfer of antibiotic resistance genes in Escherichia coli isolated 

from Norwegian meat and meat products. J. Antimicrob. Chemother. 58(4), 

741-747. http://dx.doi.org/10.1093/jac/dkl294 

Sunde, M., Simonsen, G.S., Slettemeås, J.S., Böckerman, I., and Norström, M. 

(2015). Integron, plasmid and host strain characteristics of Escherichia coli 

from humans and food included in the Norwegian antimicrobial resistance 

monitoring programs. PLoS ONE 10(6), 1-14. 

http://dx.doi.org/10.1371/journal.pone.0128797 

Sørum, H. (2006). Antimicrobial drug resistance in fish pathogens. In Antimicrobial 

Resistance in Bacteria of Animal Origin., ed. F.M. Aarestrup. (ASM Press: 

Washington, DC, USA). pp. 213. 

Tagliabue, A., and Rappuoli, R. (2018). Changing Priorities in Vaccinology: 

Antibiotic Resistance Moving to the Top. Front. Immunol. 9(1068), 1-9. 

http://dx.doi.org/10.3389/fimmu.2018.01068 

Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E.P., 

Zaslavsky, L., et al. (2016). NCBI prokaryotic genome annotation pipeline. 

Nucleic Acids Res. 44(14), 6614-6624. http://dx.doi.org/10.1093/nar/gkw569 



 68 

Taylor, N.G., Verner-Jeffreys, D.W., and Baker-Austin, C. (2011). Aquatic systems: 

Maintaining, mixing and mobilising antimicrobial resistance? Trends Ecol. 

Evol. 26(6), 278-284. http://dx.doi.org/10.1016/j.tree.2011.03.004 

Tella, M., Bravin, M.N., Thuriès, L., Cazevieille, P., Chevassus-Rosset, C., Collin, 

B., et al. (2016). Increased zinc and copper availability in organic waste 

amended soil potentially involving distinct release mechanisms. Environ. 

Pollut. 212, 299-306. http://dx.doi.org/10.1016/j.envpol.2016.01.077 

Tenaillon, O., Skurnik, D., Picard, B., and Denamur, E. (2010). The population 

genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 8, 207-217. 

http://dx.doi.org/10.1038/nrmicro2298 

Tryland, I., and Fiksdal, L. (1998). Enzyme characteristics of β-D-galactosidase-and 

β-D-glucuronidase-positive bacteria and their interference in rapid methods for 

detection of waterborne coliforms and Escherichia coli. J. Appl. Environ. 

Microbiol. 64(3), 1018-1023 

Ulstad, C.R., Solheim, M., Berg, S., Lindbæk, M., Dahle, U.R., and Wester, A.L. 

(2016). Carriage of ESBL/AmpC-producing or ciprofloxacin non-susceptible 

Escherichia coli and Klebsiella spp. in healthy people in Norway. Antimicrob. 

Resist. Infect. Control 5(57), 1-11. http://dx.doi.org/10.1186/s13756-016-

0156-x 

Utermann, C., Parrot, D., Breusing, C., Stuckas, H., Staufenberger, T., Blümel, M., et 

al. (2018). Combined genotyping, microbial diversity and metabolite profiling 

studies on farmed Mytilus spp. from Kiel Fjord. Sci. Rep. 8(1), 7983. 

http://dx.doi.org/10.1038/s41598-018-26177-y 

van Boeckel, T.P., Brower, C., Gilbert, M., Grenfell, B.T., Levin, S.A., Robinson, 

T.P., et al. (2015). Global trends in antimicrobial use in food animals. PNAS 

112(18), 5649-5654. http://dx.doi.org/10.1073/pnas.1503141112 

van Elsas, J.D., Semenov, A.V., Costa, R., and Trevors, J.T. (2011). Survival of 

Escherichia coli in the environment: Fundamental and public health aspects. 

ISME J 5(2), 173-183. http://dx.doi.org/10.1038/ismej.2010.80 

van Saene, R., Fairclough, S., and Petros, A. (1998). Broad- and narrow-spectrum 

antibiotics: A different approach. Clin. Microbiol. Infect. 4(1), 56-57. 

http://dx.doi.org/10.1111/j.1469-0691.1998.tb00338.x 

Vezzulli, L., Stagnaro, L., Grande, C., Tassistro, G., Canesi, L., and Pruzzo, C. 

(2018). Comparative 16SrDNA gene-based microbiota profiles of the Pacific 

oyster (Crassostrea gigas) and the Mediterranean mussel (Mytilus 

galloprovincialis) from a shellfish farm (Ligurian Sea, Italy). Microb. Ecol. 

75(2), 495-504. http://dx.doi.org/10.1007/s00248-017-1051-6 

Vignaroli, C., Di Sante, L., Leoni, F., Chierichetti, S., Ottaviani, D., Citterio, B., et al. 

(2016). Multidrug-resistant and epidemic clones of Escherichia coli from 

natural beds of Venus clam. Food Microbiol. 59(2016), 1-6. 

http://dx.doi.org/10.1016/j.fm.2016.05.003 

Vittecoq, M., Godreuil, S., Prugnolle, F., Durand, P., Brazier, L., Renaud, N., et al. 

(2016). Antimicrobial resistance in wildlife. J. Appl. Ecol. 53(2), 519-529. 

http://dx.doi.org/10.1111/1365-2664.12596 



 69 

VKM (2018). "Antimicrobial Resistance in Wildlife - Potential for Dissemination. 

Opinion of the Panel on Microbial Ecology". Norwegian Scientific Committee 

for Food and Environment (VKM) (Oslo, Norway). pp. 62-65: 66-73 

Welch, R.A. (2006). The genus Escherichia. In The Prokaryotes: A Handbook on the 

Biology of Bacteria: Proteobacteria: Gamma subclass (3rd ed.), eds. M. 

Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. 

(Springer Science & Business Media: New York, NY, USA). pp. 60-68. 

Wellington, E.M., Boxall, A.B., Cross, P., Feil, E.J., Gaze, W.H., Hawkey, P.M., et 

al. (2013). The role of the natural environment in the emergence of antibiotic 

resistance in Gram-negative bacteria. Lancet Infect. Dis. 13(2), 155-165. 

http://dx.doi.org/10.1016/S1473-3099(12)70317-1 

Wester, A., Melby, K., Wyller, T., and Dahle, U. (2014). E. coli Bacteremia Strains-

High diversity and Associations with Age-related Clinical Phenomena. Clin. 

Microbiol. 3(140), 1-7. http://dx.doi.org/10.4172/2327-5073.1000140 

Wester, A.L., Dunlop, O., Melby, K.K., Dahle, U.R., and Wyller, T.B. (2013). Age-

related differences in symptoms, diagnosis and prognosis of bacteremia. BMC 

Infect. Dis. 13(346), 1-12. http://dx.doi.org/10.1186/1471-2334-13-346 

WHO (2017a). "Central Asian and Eastern European Surveillance of Antimicrobial 

Resistance (CAESAR). World Health Organization.". World Health 

Organization (WHO) (Copenhagen, Denmark). pp. 1-143 

WHO (2017b). "Global Antimicrobial Resistance Surveillance System (GLASS) 

Report: Early Implementation 2016-2017". World Health Organization 

(WHO) (Geneva, Switzerland). pp. 3-4: 139-142 

WHO (2017c). World Health Organization (WHO) publishes list of bacteria for 

which new antibiotics are urgently needed [Online]. Available: 

http://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-

bacteria-for-which-new-antibiotics-are-urgently-needed [Accessed 16.02. 

2019]. 

WHO (2018). E. coli [Online]. Available: https://www.who.int/news-room/fact-

sheets/detail/e-coli [Accessed 23.08. 2019]. 

Wick, R.R., Judd, L.M., Gorrie, C.L., and Holt, K.E. (2017). Unicycler: Resolving 

bacterial genome assemblies from short and long sequencing reads. PLoS 

Comput. Biol. 13(6), 1-22. http://dx.doi.org/10.1371/journal.pcbi.1005595 

Wijsman, J.W.M., Troost, K., Fang, J., and Roncarati, A. (2019). Global Production 

of Marine Bivalves. Trends and Challenges. In Goods and Services of Marine 

Bivalves, eds. A.C. Smaal, J.G. Ferreira, J. Grant, J.K. Petersen & Ø. Strand. 

(Springer International Publishing: Cham, Switzerland). pp. 7-26. 

Wirth, T., Falush, D., Lan, R., Colles, F., Mensa, P., Wieler, L.H., et al. (2006). Sex 

and virulence in Escherichia coli: An evolutionary perspective. Mol. 

Microbiol. 60(5), 1136-1151. http://dx.doi.org/10.1111/j.1365-

2958.2006.05172.x 

Woolhouse, M., Ward, M., van Bunnik, B., and Farrar, J. (2015). Antimicrobial 

resistance in humans, livestock and the wider environment. Philos. T. R. Soc. 

B 370(1670), 1-7. http://dx.doi.org/10.1098/rstb.2014.0083 



 70 

Wright, A.C., Fan, Y., and Baker IV, S.L. (2018). Nutritional value and food safety 

of bivalve molluscan shellfish. J. Shellfish Res. 37(4), 695-708. 

http://dx.doi.org/10.2983/035.037.0403 

Wright, G.D. (2011). Molecular mechanisms of antibiotic resistance. Chem. 

Commun. 47(14), 4055-4061. http://doi.org/10.1039/c0cc05111j 

Xiong, W., Sun, Y., Zhang, T., Ding, X., Li, Y., Wang, M., et al. (2015). Antibiotics, 

antibiotic resistance genes, and bacterial community composition in fresh 

water aquaculture environment in China. Microb. Ecol. 70(2), 425-432. 

http://dx.doi.org/10.1007/s00248-015-0583-x 

Xu, J., Xu, Y., Wang, H., Guo, C., Qiu, H., He, Y., et al. (2015). Occurrence of 

antibiotics and antibiotic resistance genes in a sewage treatment plant and its 

effluent-receiving river. Chemosphere 119, 1379-1385. 

http://dx.doi.org/10.1016/j.chemosphere.2014.02.040 

Yang, Y., Xie, J., Li, H., Tan, S., Chen, Y., and Yu, H. (2017). Prevalence, antibiotic 

susceptibility and diversity of Vibrio parahaemolyticus isolates in seafood 

from south China. Front. Microbiol. 8(2566), 1-9. 

http://dx.doi.org/10.3389/fmicb.2017.02566 

Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund, O., et 

al. (2012). Identification of acquired antimicrobial resistance genes. J. 

Antimicrob. Chemother. 67(11), 2640-2644. 

http://dx.doi.org/10.1093/jac/dks261 

Zhang, Y., Gu, A.Z., He, M., Li, D., and Chen, J. (2016). Subinhibitory 

concentrations of disinfectants promote the horizontal transfer of multidrug 

resistance genes within and across genera. Environ. Sci. Technol. 51(1), 570-

580. http://dx.doi.org/10.1021/acs.est.6b03132 

Zhang, Y., Zheng, Z., Chan, E.W.-C., Dong, N., Xia, X., and Chen, S. (2018). 

Molecular characterization of qnrVC genes and their novel alleles in Vibrio 

spp. isolated from food products in China. Antimicrob. Agents Chemother. 

62(7), e00529-00518. http://dx.doi.org/10.1128/aac.00529-18 

Zhou, Q., Wang, M., Zhong, X., Liu, P., Xie, X., Wangxiao, J., et al. (2019). 

Dissemination of resistance genes in duck/fish polyculture ponds in 

Guangdong province: Correlations between Cu and Zn and antibiotic 

resistance genes. Environ. Sci. Pollut. R. 23(8), 8182-8193. 

http://dx.doi.org/10.1007/s11356-018-04065-2 

 



Paper I 



 

 

 

 

 

 

 

 

 

 

 

 

 

 



The species accuracy of the Most Probable Number (MPN) European
Union reference method for enumeration of Escherichia coli in
marine bivalves

Didrik Hjertaker Grevskott a, Cecilie Smith Svanevik a, Astrid Louise Wester b, Bjørn Tore Lunestad a,⁎
a National Institute of Nutrition and Seafood Research, P.O. Box 2029, Nordnes, 5817 Bergen, Norway
b Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, N-0403 Oslo, Norway

a b s t r a c ta r t i c l e i n f o

Article history:
Received 26 September 2016
Received in revised form 12 October 2016
Accepted 12 October 2016
Available online 13 October 2016

Continuous European Union programmes with specified methods for enumeration of Escherichia coli in bivalves
for human consumption are currently running. The objective of this researchwas to examine the species accuracy
of the five times three tube Most Probable Number (MPN) EU reference method used for detection of E. coli in
marine bivalves. Among 549 samples of bivalves harvested from Norwegian localities during 2014 and 2015, a
total number of 200 bacterial isolates were prepared from randomly selected culture-positive bivalves. These
presumptive E. coli isolates were characterized biochemically by the Analytical Profile Index (API) 20E, as well
as by Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS). The ma-
jority of isolates (90%)were identified as E. coli, by both API 20E andMALDI-TOFMS. Ten isolates (5%)were iden-
tified as Klebsiella pneumoniae, while one isolate was identified as K. oxytoca by both methods, whereas three
isolates were identified as Acinetobacter baumannii, Citrobacter braakii, and Enterobacter cloacae, respectively.
The identification of the remaining six isolates were not in compliance between the two methods.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Bivalve molluscs, including blue mussels (Mytilus edulis), great scal-
lops (Pecten maximus), flat oysters (Ostrea edulis), horse mussels
(Modiolus modiolus), and carpet shells (Mya arenaria), are suspension
feeders and actively filter and retain particles from their surrounding
water, including free living or particle bound bacteria. Bivalves are
thereby excellent bio-samplers that reflects the load of Escherichia coli
and other microorganisms of faecal origin, such as enteric viruses (e.g.,
Norovirus), in the water column at a given location (Lunestad et al.,
2016). These microorganisms may originate from humans and other
homeothermic animals either via sewage, by runoff from land, or from
thewild fauna. E. coli is awell-established indicator of faecal contamina-
tion, and its absence in food products indicates amanufacturing process
under appropriate sanitary conditions (Baylis et al., 2011; Buttiaux and
Mossel, 1961).

According to EU Directive 854/2004/EC (2004), national food safety
authorities, in this case the Norwegian Food Safety Authority (NFSA),
has the responsibility of monitoring and classifying production areas
for bivalve molluscs (NFSA, 2013). The production areas are classified
as A, B, C or prohibited areas depending on the content of E. coli in the
soft parts and mantle water of harvested bivalves. A Class A area have
an upper limit of 230 E. coli/100 g sample material measured as fresh

weight, and such bivalves may go directly for human consumption. A
Class B area has an upper limit of 4,600 E. coli/100 g, whereas a class C
area has an upper limit of 46,000 E. coli/100 g. Bivalves from B and C
area must be purified by resuspension at Class A area until meeting
the limit of 230 E. coli/100 g or heat treated. Areaswith samples exceed-
ing the upper limit of a Class C area are prohibited for harvesting. Ac-
cording to 2015/2285 (2015) concerning bivalve product to be placed
on the market, 20% of the samples may contain E. coli between 230
and 700/100 g samplematerial, while the remaining 80% of the samples
must be below 230/100 g sample material.

The quantitative method for detection and enumeration of E. coli in
bivalve molluscs are specified in EU Council Directive 91/492/EEC
(1991). This method is based on a Most Probable Number (MPN) prin-
cipal (Oblinger and Koburger, 1975) with five tubes, each in three dilu-
tions. The MPN principal is based on the number of positive tubes at
increasing dilutions of a sample, and further calculations are necessary
to convert the results into a MPN value, with a probable range. This
MPN technique is commonly used in combination with verification on
chromogenic agar to calculate the number of E. coli in bivalves
(Donovan et al., 1998). The applied MPNmethod utilise Minerals Mod-
ified Glutamate Broth (MMGB) as growth medium, and material from
positive tubes, i.e., tubes with colour change from acid production, are
confirmed on Tryptone Bile with X-glucuronide (TBX) agar for the de-
termination of β-glucuronidase production, a common feature of E.
coli (Donovan et al., 1998). According to the EU method, bacterial
growth with colour change in MMGB and presence of β-glucuronidase
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production is considered to be E. coli. It is known that other members of
the Enterobacteriaceaemay possess the β-glucuronidase enzyme and it
could be assumed/suspected that theymay also give false-positive blue-
green colonies on the TBX agar. To examine the species accuracy of the
standardised EUMPNmethod,we performed further characterisation of
the presumptive E. coli isolates by both theAnalytical Profile Index (API)
20E test kit and a Matrix Assisted Laser Desorption Ionization-Time of
Flight Mass Spectrometry (MALDI-TOF MS) (Bourassa and Butler-Wu,
2015). The API 20E test kit is designed to identify members of the En-
terobacteriaceae family and to differentiate between closely related,
and morphologically similar, bacterial strains based on enzymatic deg-
radation of carbohydrates, amino acids and some other reactions in 20
miniature wells, resulting in a biochemical profile specific for each spe-
cies. In MALDI-TOF MS small molecules from lyophilized bacteria gives
distinct spectra allowing identification into genus and specie levels. A
target plate with pre-treated samples is exposed to a nitrogen laser ap-
plying short pulses of high-energy, causing desorption and ionization of
each sample (Bourassa and Butler-Wu, 2015). To identify a particular
bacterium a characteristic Peptide Mass Fingerprint (PMF) pattern of
highly abundant peptides derived from ribosomal proteins arematched,
which ionize readily and represent about 60–70% of the dry weight of a

bacterial cell (Singhal et al., 2015). During PMF matching, the spectra of
known bacterial species included in the database of reference spectra
(MALDI Biotyper Library) are comparedwith the spectra of the unknown
bacterial isolate (Bourassa and Butler-Wu, 2015; Singhal et al., 2015).

The objective of this researchwas to examine the species accuracy of
the five times three tube MPN EU reference method used for detection
of E. coli in marine bivalves assessed by API 20E and MALDI-TOF MS.

2. Materials and methods

2.1. Samples

From October 2014 to November 2015, a total of 549 samples were
collected and examined, comprising 447 samples of blue mussels (M.
edulis), 40 samples of flat oysters (O. edulis), 39 samples of great scallops
(P. maximus), 12 samples of carpet shells (M. arenaria), and 11 samples
of horse mussels (M. modiolus). The samples were collected at rearing
localities along the coast of Norway (Fig. 1), and transported to the lab-
oratory under chilled conditions close to 4 °C. Themicrobiological anal-
yses were initiated within 24 h of sampling.

Blue mussels 

Great scallops 

Horse mussels 

Flat oysters 

Carpet shells

Fig. 1. Sampling sites of bivalve molluscs along the Norwegian coast in the period from 2014 to 2015.
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2.2. MPN method for enumeration of E. coli

The 549 bivalve samples were examined applying the MPN method
for enumeration of E. coli in accordance with the EU reference method
ISO 16649-3 (ISO, 2005). Ten individuals, or more if necessary, were se-
lected to obtain 50 g sample material. The flesh and intravalvular liquid
were collected in a sterile stomacher bag with 100 ml of Peptone water
(BioMérieux, France) and homogenised using a Stomacher for 2.5 min.
The homogenate was added additionally 350 ml of Peptone water
(BioMérieux, France) resulting in a final 1:10 dilution. Aliquots from
this 1:10 homogenate was transferred to tubes with MMGB (Oxoid,
UK). An effective 1:1 dilution of the sample material was obtained by
transferring 10 ml of the homogenate into five tubes with 10 ml of
MMGB with double strength, resulting in tubes containing 1 g of the
original sample material. Furthermore, aliquots of 1.0 ml and 0.1 ml of
the 1:10 homogenate were transferred to five tubes each with 10 ml
single strength MMGB, resulting in tubes containing 0.1 g and tubes
0.01 g sample material, respectively. The tubes were incubated aerobi-
cally at 37 ± 1 °C for 24 ± 2 h. The MMGB tubes that changed colour
from purple to yellow, were assumed positive, and material from
these tubes were plated on chromogenic TBX agar (Oxoid, UK) to con-
firm β-glucuronidase activity (Donovan et al., 1998). Each TBX plate
were subdivided into five sections and 10 μl from positive MMGB
tubes were inoculated by a loop, and incubated aerobically at 44 ±
1 °C for 22 ± 2 h. The growth of blue-green colonies were recognised
as presumptive E. coli (Donovan et al., 1998). By counting the number
of positive tubes that gave growth of blue-green colonies on TBX agar,
the level of E. coli/100 g was estimated using the MPN table (Donovan
et al., 1998). From 200 selected positive bivalve samples (n = 335),
one single colony was isolated and cultivated on standard Plate count
agar (Oxoid, UK) for further examination. The selection of samples to
be included were done on a random basis by laboratory personnel not
involved in further analysis. E. coli strain CCUG 17620 was used as pos-
itive control for MMGB and for TBX agar. Negative control strains in-
cluded Pseudomonas aeruginosa CCUG 22801 for MMGB and Klebsiella
pneumoniae CCUG 10785 for TBX agar.

2.3. API 20E

The bacterial isolates were Gram tested (Buck, 1982) and examined
for oxidase production on BBL™ DrySlide™ Oxidase (BD, USA). The iso-
lates were biochemically characterized by the API 20E test kit as de-
scribed in the instructions from the supplier (BioMérieux, France).
Positive and negative reactions in the different wells were noted,
resulting in a seven-digit code, which was interpreted with a numerical
identification database (APIweb™). The identification strength (% ID
and T-value) of each bacterium was noted.

2.4. MALDI-TOF MS

To obtain a fresh bacterial culture the isolates were cultivated on Co-
lumbia blood agarwith 5%horse blood (Oxoid, UK) incubated aerobical-
ly at 35 ± 1 °C for 18 ± 4 h. A sterile loop was used to transfer some
bacterial material from an isolated colony onto two spots on a target
plate, making a thin layer. The target plate was air dried at room tem-
perature for 2–3 min. To improve lysis of mucoid bacteria, 1 μl of 70%
formic acid was added prior to applying the Matrix (Bourassa and
Butler-Wu, 2015; Singhal et al., 2015). The bacterial isolates were pre-
pared by coatingwithα-cyano-4-hydroxycinnamic acid (HCCA), an en-
ergy-absorbent, organic matrix solution composed of soluble acid
molecules (Bourassa and Butler-Wu, 2015; Singhal et al., 2015). Each
spot was added 1 μl of Matrix HCCA (Bruker, Germany) that specifically
absorbed the laser beam (Könönen et al., 2015), and the Matrix had to
evaporate before conducting the analysis. The results were interpreted
and registered on the MALDI Biotyper RTC and FlexControl. The pro-
grams provided an overview of the results as bestmatch of the bacterial

isolates. TheMALDI-TOFMS instrument isweekly examinedwith a con-
trol bacterium (E. coli ATCC 25922). The ID must match and the score
value have to be higher than 1.7. In addition, a monthly monitoring of
the MALDI-TOF MS instrument is performed by a technician, on behalf
of the company producing the instrument, with a defined bacterial
test standard.

3. Results

3.1. Detection of E. coli

Among the549bivalvemolluscs examined, 479 (87%) had presump-
tive E. coli (i.e., β-glucuronidase-positive) levels within the limits of a
Class A area, and 70 (13%) had levels within a Class B area. The 200 se-
lected bivalve samples positive for presumptive E. coli, originating from
both Class A and B areas, comprised 177 (88.5%) blue mussels (M.
edulis), ten (5%) flat oysters (O. edulis), seven (3.5%) great scallops (P.
maximus), three (1.5%) carpet shells (M. arenaria), and three (1.5%)
samples of horse mussels (M. modiolus).

3.2. Identification of the presumptive E. coli isolates

All presumptive E. coli isolates (n = 200) were Gram- and oxidase-
negative. Of the isolates, 191 (95.5%) were identified using API 20E
with an identification value above 80% and a T-value above 0.5, in
which 175 isolates were identified as E. coli. When examined by the
MALDI-TOFMSmethod, the presumptive E. coli isolates were identified
within the four genera Escherichia, Klebsiella, Citrobacter and Enterobac-
ter, all within the Enterobacteriaceae family. One isolate were identified
to the genus Acinetobacter within the Moraxellaceae family. When ap-
plying MALDI-TOF MS, all bacterial isolates had a score value above
2.0, in which 151 isolates (75.5%) conferred ‘highly probable species
identification’ and 49 isolates (24.5%) conferred ‘secure genus and prob-
able species identification’. Totally 180 (90%) of the bacterial isolates
were identified as E. coli, ten of the isolates were identified as Klebsiella
pneumoniae, while one isolate was identified as K. oxytoca. Three iso-
lates were identified as Acinetobacter baumannii, Citrobacter braakii,
and Enterobacter cloacae, respectively. Totally 194 isolates (97%) were
identified to the same species by API 20E and MALDI-TOF MS. The re-
maining six isolates were identified differently on API 20E as compared
toMALDI-TOFMS (Table 1). Four of the six isolates were identified as 1)
K. pneumoniae and E. coli, 2) K. oxytoca and E. coli, 3) R. ornithinolytica
and K. pneumoniae, and, 4) E. hermannii and E. coli, on API 20E and
MALDI-TOF MS, respectively. Two isolates had inconclusive results by
API 20E, but were identified as E. coli by MALDI-TOF MS.

4. Discussion

Continuous programmes for enumeration of E. coli in bivalve mol-
luscs for human consumption are currently running in the European
Union (EU). The objective of this research was to examine the species
accuracy of the five times three tube MPN EU reference method used
for detection of E. coli in marine bivalves assessed by API 20E and
MALDI-TOF MS. E. coli are found in stable concentrations in faeces of
humans (between 106 and 107 cells g−1) (Forsythe, 2010) and other
homeothermic animals, including birds and marine mammals, and
some strains are reported to survive from a few days to several months
in the marine environment (Fremaux et al., 2010; Labelle et al., 1980;
Young-Joo et al., 2002). The examination for E. coli is commonly applied
to provide evidence of poor hygiene, inadequate processing or post-pro-
cess contamination (Baylis et al., 2011). Marine bivalves may become
contaminated by faecal bacteria transported to themarine environment
through an overloaded sewage systems or through runoffs from land
during periods with heavy rainfall (Lunestad et al., 2016). Alternatively,
the rearing localities could be influenced by a sewage efflux point. Flat
oysters (O. edulis) and the muscle of great scallops (P. maximus)
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represent an increased risk for transmitting faecal microorganisms to
the consumers, as they are commonly consumed raw.

According to the EU Council Directive (91/492/EEC, 1991), a MPN
method with further verification on chromogenic agar is to be
employed for the determination of E. coli in bivalve molluscs.

In the present trial, 10% of the presumptive E. coli were not con-
firmed as E. coli by API 20E and MALDI-TOF MS. However, with the ex-
ception of one Acinetobacter isolate, all presumptive E. coli isolates
belonged to the four genera Escherichia, Klebsiella, Citrobacter, and En-
terobacter, all within the Enterobacteriaceae family. Our finding is not
fully in line with Donovan et al. (1998) who performed the MPNmeth-
od, followed by confirmation on TBX agar and found that all 204 isolates
producing blue-green colonies were indeed E. coli. Furthermore, re-
search performed by Rice et al. (1990) on 720 isolates from Enterobac-
teriaceae, showed that there were no non-E. coli isolates that were
positive on a β-glucuronidase assay, including Klebsiella, Enterobacter,
and Citrobacter. However, during our examinations two isolates identi-
fied as K. pneumoniae, displayed growth of blue-green colonies on TBX
agar. According to Kilian and Bulow (1976), β-glucuronidase activity
have shown to be mostly limited to E. coli. In other Enterobacteriaceae
genera, such as Salmonella, Shigella, and Yersinia, β-glucuronidase activ-
ity is less common (Feng and Hartman, 1982; Frampton and Restaino,
1993; Kilian and Bulow, 1976;Massanti et al., 1981).While β-glucuron-
idase-positive E. coli have been observed in 94–96%of the isolates tested
(Edberg and Kontnick, 1986; Feng and Hartman, 1982; Kaspar et al.,
1987; Kilian and Bulow, 1976), a higher proportion of β-glucuroni-
dase-negative E. coli (a median of 15%) have been described in Chang
et al. (1989).

Apart from β-glucuronidase production in E. coli as seen in most
strains, some other Enterobacteriaceae members as Klebsiella,
Citrobacter, and Enterobacter may display this enzyme (Hofstra and
Veld, 1988; Tryland and Fiksdal, 1998), and could therefore cause
false-positives on TBX agar (Fiksdal et al., 1997; Frampton and
Restaino, 1993; Leung et al., 2001; Pearez et al., 1986; Sarhan et al.,
1991; Van Poucke and Nelis, 1997).

Ogden et al. (1998) made attempts to find alternatives to the MPN
method for the enumeration of E. coli in bivalves. In their research, alter-
natives included the Merck Chromocult agar method, a Malthus con-
ductance technique, and the 3M Petrifilm system. After statistical
analysis, no significant differences were observed when employing the

Merck Chromocult agar method. In addition, poor correlation with a
Malthus conductance technique as alternative to the MPN method
was reported. The method based on the 3M Petrifilm system was
found to be unsuitable and therefore not included.

Our research is the first systematic examination of the species accu-
racy of the EU MPN method conducted on marine bivalves harvested
from in temperate waters. In total, 180 (90%) of the isolates examined
were confirmed as E. coli, whereas eleven isolates belonged to the
genus Klebsiella, and three isolates belonged to Acinetobacter spp.,
Citrobacter spp., and Enterobacter spp., respectively. Bacteria belonging
to the genus Acinetobacter are widely distributed in soil, manure and
water, and are frequently isolated in nosocomial infections (Tower,
2006). Klebsiella spp., Citrobacter spp., and Enterobacter spp. includes
several important opportunistic pathogenic bacteria causing infections
such as enteritis, pneumonia, meningitis, bloodstream and urinary
tract infections (Borenshtein and Schauer, 2006; Brisse et al., 2006;
Grimont and Grimont, 2006). Further, six isolateswere identified differ-
ently when applying API 20E or MALDI-TOF MS. Among these, the re-
sults were difficult to interpret due to unexpected positive or negative
reactions in the 20 wells of the API 20E system, resulting in unaccept-
able profiles. In particular, two isolates were identified as Klebsiella
spp. with the API 20E system,while being identified as E. coliwith an ac-
ceptable genus and species profile by the MALDI-TOF MS instrument.
When using both API 20E and MALDI-TOF MS, a more reliable identifi-
cation were obtained and the liability of the results was enhanced,
resulting in a total of 194 out of 200 the bacterial isolates identified suf-
ficiently by API 20E and MALDI-TOF MS.

5. Conclusion

In this research, presumptive E. coli were isolated from marine bi-
valves harvested along the Norwegian coast. Other bacteria within the
Enterobacteriaceae family besides E. coli, gave growth of false-positive
blue-green colonies on TBX agar, indicating that this chromogenic me-
diummay not solely be used to verify the presence of E. coli. When ap-
plying theAPI 20E systemand theMALDI-TOFMS instrument, 90%were
identified as E. coli. However, the 10% false-positives will lead to an
overestimation of the number of E. coli. If a specific enumeration of E.
coli are required, an alternative chromogenic medium to replace the

Table 1
Presumptive E. coli isolates from theMPNmethodwhere API 20E andMALDI-TOFMS either doubted or rejected them as being E. coli. The API 20E identifications are presented in %match
to the suggested species. The T-value indicates the proximity (reliability) of the results. TheMALDI-TOFMS Score value ≥ 2.300 indicates ‘highly probable species identification’ and 2.000–
2.299 indicates a ‘secure genus and probable species identification’.

API 20E MALDI-TOF MS

Isolate no. Bacterium Identification (%) T-value Bacterium Score value (log)

B69 Klebsiella pneumoniae 81.80% (+) 1 K. pneumoniae 2.364
B70 K. pneumoniae 81.80% (+) 1 K. pneumoniae 2.509
B102 K. pneumoniae 82.60% (++) 0.75 K. pneumoniae 2.511
B105 K. pneumoniae 97.30% (+++) 1 K. pneumoniae 2.508
B152 K. pneumoniae 81.80% (+) 1 K. pneumoniae 2.466
B162 K. pneumoniae 81.80% (+) 1 K. pneumoniae 2.325
B183 K. pneumoniae 81.80% (+++) 1 K. pneumoniae 2.538
B189 K. pneumoniae 81.80% (+) 1 K. pneumoniae 2.352
B192 K. pneumoniae 81.80% (+) 1 K. pneumoniae 2.457
B194 K. pneumoniae 98.00% (+++) 0.8 K. pneumoniae 2.521
B142 Klebsiella oxytoca 94.10% (+) 0.41 K. oxytoca 2.391
B174 Acinetobacter baumannii 92.80% (+) 0.79 A. baumannii 2.159
B80 Citrobacter braakii 87.60% (++) 0.43 C. braakii 2.354
B138 Enterobacter cloacae 98.80% (+++) 0.72 E. cloacae 2.438
B12 K. pneumoniae 93.00% (+++) 0.75 E. coli 2.327
B20 K. oxytoca 92.30% (+++) 0.48 E. coli 2.257
B47 Raoultella ornithinolytica 92.00% (+++) 0.88 K. pneumoniae 2.344
B172 Escherichia hermannii 80.40% (+++) 0.64 E. coli 2.378
B96 Serratia odorifera – (+) – E. coli 2.49
B181 E. coli – (+) – E. coli 2.168

(+++) indicates good identification. (++) indicates acceptable, while (+) indicates doubtful identification or if the bacterial isolate had unacceptable profile. “–” indicates that no value
was obtained.
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TBX agar should be considered, or further biochemical verification or
DNA based methods should be included.
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The mechanisms for the development and spread of antibacterial resistance (ABR) in
bacteria residing in environmental compartments, including the marine environment,
are far from understood. The objective of this study was to examine the ABR rates
in Escherichia coli and other Enterobacteriaceae isolates obtained from marine bivalve
mollusks collected along the Norwegian coast during a period from October 2014
to November 2015. A total of 549 bivalve samples were examined by a five times
three tube most probable number method for enumeration of E. coli in bivalves
resulting in 199 isolates from the positive samples. These isolates were identified
by biochemical reactions and matrix Assisted Laser Desorption Ionization-Time of
Flight Mass Spectrometry, showing that 90% were E. coli, while the remaining were
species within the genera Klebsiella, Citrobacter, and Enterobacter. All 199 isolates
recovered were susceptibility tested following the European Committee on Antimicrobial
Susceptibility Testing disk diffusion method. In total, 75 of 199 (38%) isolates showed
resistance to at least one antibacterial agent, while multidrug-resistance were seen
in 9 (5%) isolates. One isolate conferred resistance toward 15 antibacterial agents.
Among the 75 resistant isolates, resistance toward extended-spectrum penicillins
(83%), aminoglycosides (16%), trimethoprim (13%), sulfonamides (11%), tetracyclines
(8%), third-generation cephalosporins (7%), amphenicols (5%), nitrofurans (5%), and
quinolones (5%), were observed. Whole-genome sequencing on a selection of 10
E. coli isolates identified the genes responsible for resistance, including blaCTX-M genes.
To indicate the potential for horizontal gene transfer, conjugation experiments were
performed on the same selected isolates. Conjugative transfer of resistance was
observed for six of the 10 E. coli isolates. In order to compare E. coli isolates from
bivalves with clinical strains, multiple-locus variable number tandem repeats analysis
(MLVA) was applied on a selection of 30 resistant E. coli isolates. The MLVA-profiles
were associated with community-acquired E. coli strains causing bacteremia. Our study
indicates that bivalves represent an important tool for monitoring antibacterial resistant
E. coli and other members of the Enterobacteriaceae family in the coastal environment.

Keywords: bivalve mollusks, Enterobacteriaceae, Escherichia coli, antibacterial resistance, horizontal gene
transfer
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INTRODUCTION

The development of antibacterial resistance (ABR) is a natural
process and ancient among bacteria (Aminov and Mackie,
2007; D’Costa et al., 2011). However, the current global use of
antibacterial agents in human and veterinary medicine, as well
as in agriculture, are a driving force for ABR development and
also increase the release of these substances to the environment
(Davies and Davies, 2010).

The intestines of humans and other homeothermic animals
are colonized by a dense and diverse microbiota belonging to,
among others, the Enterobacteriaceae family (Tancrède, 1992;
Dethlefsen et al., 2006). The predominant genus within this
family is Escherichia, with Escherichia coli being the main species.
E. coli occurs naturally in the large intestine of humans, birds, and
terrestrial and marine mammals (Welch, 2006). Most E. coli of
the large intestine of humans and other homeothermic animals
are commensal strains, however opportunistic and pathogenic
strains may be present (Strockbine et al., 2015). E. coli cause
morbidity and mortality as a result of common infections,
including enteritis, meningitis, urinary tract, or bloodstream
infections (Strockbine et al., 2015). The main sources of infections
with pathogenic E. coli are consumption of contaminated
water and food, as well as through animal contact (ILSI,
2011).

Antibacterial treatments are known to substantially affect the
normal intestinal microbiota favoring resistant strains (Sommer
and Dantas, 2011). The prevalence of resistant E. coli and other
bacteria in the intestinal microbiota of humans are shown to be
strongly correlated with the use of antibacterial agents (Murray
et al., 1982; Bruinsma et al., 2003; van der Veen et al., 2009).

The microbiological communities in coastal environments can
be influenced by sewage and runoff from land, concomitantly
containing both fecal bacteria as well as residues of antibacterial
substances (Martinez, 2009; Alves et al., 2014; Balière et al., 2015).
A significant proportion of the antimicrobial agents are excreted
unchanged and in a biologically active form (Dolliver and Gupta,
2008; Gillings, 2013; Michael et al., 2013). During periods with
heavy rainfall, increased amount of fecal material from land living
animals will reach the sea. In addition, high precipitation could
cause an overload and possible leakage from sewage systems.
Sewage and manure harbor bacteria of high diversity, have a high
concentration of organic substances, as well as anthropogenic
pollution as heavy metals and antimicrobial agents, which in
combination can favor bacterial growth and promote spread of
genetic elements through horizontal gene transfer (Moura et al.,
2010; Heuer et al., 2011). Bacteria conferring ABR colonizing
the intestines of humans and other homeothermic animals, may
contribute to the dissemination of antibiotic resistant bacteria
(ABR-B) via sewage to the marine environment (Poeta et al.,
2005; Penders et al., 2013). The survival of these bacteria in
aquatic environments are affected by both abiotic and biotic
factors, e.g., nutrient availability, osmotic stress, variations in
temperature and pH, and predation (Barcina et al., 1997; Rozen
and Belkin, 2001; Campos et al., 2013). Importantly, E. coli have
the ability to persist in the aquatic habitat due to its genetic
flexibility (van Elsas et al., 2011).

The presence of Enterobacteriaceae conferring resistance to
antibacterial agents in coastal waters may represent a human
health issue, especially in areas used for marine food production
or recreational activities (Murugaiyan et al., 2015). Multidrug-
resistant (MDR) bacteria have been detected in coastal waters,
and could result in the transmission of resistance among marine
and contaminating bacteria via exchange of genetic elements,
such as plasmids (Wright, 2010; Alves et al., 2014; Moura et al.,
2014).

Bivalve mollusks are invertebrates that have an external two-
part hinged shell that contains the soft parts. Typical bivalve
mollusks comprise among others clams, oysters, mussels, and
scallops. As these mollusks are suspension feeders, they actively
filter, retain, and concentrates particles from their surrounding
water, including free living or particle-bound bacteria (Bernard,
1989; Leff et al., 1992; Maugeri et al., 2004). Bivalve associated
members of the Enterobacteriaceae family, may originate from
humans and other homeothermic animals either via sewage, by
runoff from land, or from representatives of the wild fauna such
as birds or marine mammals (Bogomolni et al., 2008). These
bivalves are therefore excellent indicators for fecal contamination
and will reflect the load of E. coli and other bacteria in the
Enterobacteriaceae family present in the water column at a
given location. However, different environmental conditions, e.g.,
temperature, water flow rate, and food availability, can affect
the filtration rate, consequently also the accumulation of fecal
bacteria (Šolić et al., 1999; Strohmeier et al., 2012; Campos et al.,
2013).

Bivalve mollusks are good candidate for studies on resistance
in bacteria originating from several sources including humans
and animals, and gives the possibility of comparing temporal
and spatial changes and the potential for exposure to humans
by consumption of marine bivalves. The main objective of this
study was to examine the ABR rates in Enterobacteriaceae isolates
obtained from marine bivalve mollusks collected along the
Norwegian coast. In addition, an assessment of the transferability
of certain resistance genes, as well as comparing bivalve isolates
with clinical isolates of human origin, was performed.

MATERIALS AND METHODS

Sampling and Identification of Bacterial
Isolates
As part of the mandatory EU surveillance program
(854/2004/EC, 2004) conducted by the Norwegian Food
Safety Authority (NFSA), sampling of bivalve mollusks were
performed from 57 localities covering the Norwegian coast
on several occasions from October 2014 to November 2015.
A standardized most probable number (MPN) reference method
for enumeration of E. coli in bivalves (Oblinger and Koburger,
1975), with Minerals Modified Glutamate Broth (MMGB)
(Oxoid, UK) as growth media in combination with verification
on Tryptone Bile with X-glucuronide (TBX) agar (Oxoid,
UK) (Donovan et al., 1998), was performed as described in
Grevskott et al. (2016). A total of 549 bivalves were collected
and examined at the National Institute of Nutrition and Seafood
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Research and the Norwegian Institute of Public Health, as
presented in Grevskott et al. (2016). More than a half of the
bivalve samples (51%) was harvested from commercially active
rearing localities, while the rest were collected from positions
established by NFSA for long time reference monitoring
purposes of shellfish safety. A total number of 199 bacterial
isolates, one from each randomly selected culture-positive
bivalve sample (n= 335), was grown into pure culture for further
analysis.

Antibacterial Susceptibility Testing
The bacterial isolates were susceptibility tested by disk diffusion
on Mueller-Hinton (MH) agar (Oxoid, UK) according to the
European Committee on Antimicrobial Susceptibility Testing
(EUCAST) (Matuschek et al., 2014). Each bacterial isolate
was tested for 24 antibacterial agents, representing 10 drug
classes (WHOCC Server, 2016). The following disks (Oxoid,
UK) were applied: ampicillin (10 µg), amoxicillin (10 µg),
amoxicillin/clavulanic acid (2/1 µg), mecillinam (10 µg),
piperacillin/tazobactam (30/6 µg), chloramphenicol (30 µg),
ciprofloxacin (5 µg), levofloxacin (5 µg), nalidixic acid (30 µg),
norfloxacin (10 µg), nitrofurantoin (100 µg), gentamicin
(10 µg), tobramycin (10 µg), streptomycin (25 µg), kanamycin
(30 µg), trimethoprim (5 µg), trimethoprim/sulfamethoxazole
(1.25/23.75 µg), cefotaxime (5 µg), ceftazidime (10 µg),
doxycycline (30 µg), tetracycline (30 µg), colistin sulfate
(25 µg), imipenem (10 µg), and meropenem (10 µg).
To monitor the quality for each new batch of MH agar,
and antibacterial disks, E. coli CCUG 17620 was included
on a regular basis. The inhibition zones were interpreted
according to the EUCAST clinical breakpoint tables v.6.0
(EUCAST, 2016). For some substances breakpoints were not
available and for these substances clinical breakpoints given
by Clinical and Laboratory Standards Institute (CLSI, 2014)
or Indian Council of Medical Research (ICMR, 2009), were
used.

Whole-Genome Sequencing
A selection of 10 isolates was subjected to whole-genome
sequencing (WGS). The isolates were selected on the basis
of phenotypes showing resistance toward multiple antibacterial
agents and/or expressing resistance to critically important agents,
such as to third-generation cephalosporins. DNA was isolated by
the use of the MagNA Pure 96 DNA and Viral NA Small Volume
Kit and a MagNApure 96 instrument (Roche Diagnostics,
Germany). The sequencing libraries were prepared using the
Kapa HyperPLus Library Preparation Kit (Kapa Biosystems,
USA). The isolates were sequenced on an Illumina MiSeq
platform (Illumina, USA), producing (2 bp × 250 bp) paired-
end reads. The data were adaptor and quality trimmed using
Trimmomatic (Bolger et al., 2014), and assembled using SPAdes
(Bankevich et al., 2012). The processed sequence data were
analyzed for genes encoding resistance to antimicrobial resistance
using the web-based ResFinder tool (Zankari et al., 2012), for
serotype using the SerotypeFinder tool (Joensen et al., 2015) and
for multi-locus sequence types (MLSTs) using the MLSTs tool

(Larsen et al., 2012) from Centre for Genomic Epidemiology1, at
the Technical University of Denmark.

Conjugation Experiments
The whole-genome sequenced strains were subjected to
conjugation experiments in order to investigate the ability of
self-transfer of resistance properties to susceptible recipient
strains. The 10 donor isolates were mated with one of the two
sensitive recipient strains, E. coli DH5α (Culture Collection,
University of Göteborg, Sweden) and One Shot E. coli (Thermo
Fisher, USA). Eight of the donor E. coli isolates were susceptible
to quinolones, and were conjugated with E. coli DH5α resistant
to nalidixic acid, as recipient. Two of the donor E. coli isolates
were resistant to quinolones, but susceptible to kanamycin, and
were therefore conjugated with One Shot E. coli resistant to
kanamycin, as recipient. The conjugal transfer was conducted
in a Luria-Bertani (LB) broth (Sigma-Aldrich, USA) and the
mating was prepared as previously described by Sunde and
Sørum (2001). The transconjugant was selected as described
by Sunde and Norström (2006), by applying antibacterial disks
corresponding to the resistance profile of the donors (Oxoid,
UK; Rosco, Denmark) onto the surface of the MH agar plates
(BD, USA), with 20 µg/ml nalidixic acid (N-8878 Sigma-Aldrich,
USA) or 50 µg/ml kanamycin (K4000 Sigma-Aldrich, USA).
The obtained transconjugants were subcultured for inspection
of colony morphology as previously described (Sunde and
Norström, 2006) and subsequently subjected to susceptibility
testing by disk diffusion.

Multiple-Locus Variable Number Tandem
Repeats Analysis
Based on resistance profile, 30 of the 199 isolates were selected for
multiple-locus variable number tandem repeats analysis (MLVA).
Extraction of DNA was done by dissolving bacterial cells in 350 µl
sterile, distilled water (Fresenius Kabi, Germany) and boiling at
100◦C for approximately 15 min. Extracted DNA was mixed with
reagents from Qiagen Multiplex PCR kit (Qiagen, Germany).
The PCR mixture consisted of 12.5 µl of 2x Master mix, 0.5 µl
of primer mix and 11 µl of sterile water. Four different primer
mixes were used for each DNA sample: EC-5, EC-6, CVN002
and EC-12, where 1 µl extracted DNA was added to the PCR
mixtures, to a total volume of 25 µl. The PCR mixtures were
placed in the GeneAmp R© PCR System 9700 machine (Applied-
Biosystems, USA) followed by capillary electrophoresis on an
ABI 3130xl Genetic Analyzer (Applied-Biosystems, USA), as
described by Løbersli et al. (2012). A control DNA sample (GJ57)
was measured along with the unknown DNA samples for quality
assurance.

Molecular Epidemiologic Analysis of the
E. coli Isolates by BioNumerics
From the MLVA-profiles of the 30 bivalve E. coli isolates, the allele
numbers generated were entered into BioNumerics database
version 7.6 (Applied Maths, Belgium) as character values, and

1https://cge.cbs.dtu.dk/services/
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an analysis based minimal spanning tree (MST) clustering was
constructed. As markers of genetic relationships, we included 212
community-acquired E. coli bacteremia isolates, 38 other human
strains from the E. coli Reference (ECOR)-collection obtained
from the Microbial Evolutionary Laboratory (State University of
Michigan, USA), four Enterohemorrhagic E. coli (EHEC) strains
associated with hemorrhagic uremic syndrome (HUS) from the
strain collection at the Norwegian Institute of Public Health, as
described (Wester et al., 2013, 2014). The community-acquired
E. coli isolates causing blood stream infection (BSI) were classified
as non-severe, early organ failure (≥organs affected within
1 day of admittance to hospital), or in-hospital death within
14 days of admission (Wester et al., 2013). We applied MST for
categorical data, with one-locus difference as first priority rule
(weight 10,000), and two-loci difference as second priority rule
(weight 10).

RESULTS

Sampling and Identification
The majority of the bacterial isolates (90%) were identified as
E. coli, both by Analytical Profile Index 20E (Oxoid, UK) and
by Matrix Assisted Laser Desorption Ionization-Time of Flight
Mass Spectrometry (Bruker, Germany). The remaining isolates
(10%) belonged to the three genera Klebsiella, Citrobacter, and
Enterobacter.

Prevalence of Antibacterial Resistance
A total of 75 (38%) of the 199 isolates showed resistance
to at least one antibacterial agent, while multidrug-resistance
was seen in nine (5%) of the isolates (Figure 1), using the
definition by Magiorakos et al. (2012). Among the 75 resistant
isolates, resistance toward extended-spectrum penicillins (83%),
aminoglycosides (16%), trimethoprim (13%), sulfonamides
(11%), tetracyclines (8%), third-generation cephalosporins (7%),
amphenicols (5%), nitrofurans (5%), and quinolones (5%), were
observed. Amoxicillin-resistance was found in 59 (79%) isolates,
while ampicillin-resistance was found in 36 (48%) isolates. The
two E. coli isolates B177 and B184 showed phenotypic resistance
against nine and 15 antibacterial agents, respectively.

Genetic Characterization of Selected
Resistant E. coli Isolates
Among the 10 bacterial isolates subjected to WGS, eight sequence
types (STs) were identified. Two isolates belonged to ST-95,
and two isolates belonged to ST-58, the remaining six isolates
belonged to ST-10, ST-38, ST-69, ST-88, ST-191, or ST-3572,
respectively.

Multiple resistance genes were present as examined by
ResFinder (Table 1). Resistance toward extended-spectrum
penicillins was observed in all 10 E. coli isolates and they
all harbored the blaTEM-1 gene. Isolate B117 and B184 were
resistant to third-generation cephalosporins, and carried the

FIGURE 1 | Number of E. coli and other bacteria in the Enterobacteriaceae family showing phenotypic resistance to antibacterial agents applied in
accordance with the EUCAST, CLSI, and ICMR clinical breakpoint tables. The two E. coli isolates B177 and B184 (marked by arrows) displayed resistance
against nine or more antibacterial agents.
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TABLE 1 | Distribution of sequence type (ST), resistance genes, and
serotype among 10 Escherichia coli isolates by WGS.

Isolate no. MLST ResFinder Serotype

B2 ST-58 blaTEM-1B, strA-strB,
dfrA5, sul2

O8:H25

B53 ST-10 blaTEM-1B No O type:H4

B117 ST-191 blaTEM-1B, blaCTX-M-15 O48:H20

B158 ST-95 blaTEM-1B, strA-strB,
dfrA5, sul2

O1:H7

B160 ST-58 blaTEM-1B, qnrS1, tet(A) O8:H30

B161 ST-69 blaTEM-1B, aac(3)-IId O17/O44:H18

B165 ST-95 blaTEM-1C, strA-strB,
dfrA14, sul2, tet(A)

O1:H7

B167 ST-88 blaTEM-1C, tet(A) O8:H17

B177 ST-3572 blaTEM-1B, strA-strB,
dfrA17, sul1, sul2, catA1,
aadA5, aph(3′)-Ia, tet(B)

O89:H9

B184 ST-38 blaTEM-1B, blaCTX-M-14,
strA-strB, dfrA17, sul1,
sul2, catA1, aac(3)-IId,
aadA5, tet(D), mph(A)

O102:H6

Genes conferring resistance toward: extended-spectrum penicillins (blaTEM-1),
third-generation cephalosporins (blaCTX-M-14, blaCTX-M-15), aminoglycosides [strA-
strB, aadA5, aac(3)-IId, aph(3)-Ia], trimethoprim (dfrA17, dfrA5, dfrA14),
sulfonamides (sul1, sul2), tetracyclines [tet(A), tet(B), tet(D)], amphenicols (catA1),
quinolones (qnrS1), and macrolides (mphA).

blaCTX-M-15 and blaCTX-M-14 genes, respectively. Six isolates
possessed genes conferring resistance to aminoglycosides, while
five isolates carried genes for resistance against trimethoprim,
sulfonamides, and tetracyclines. A gene conferring resistance
against amphenicols was observed in two isolates. Two
isolates had genes conferring resistance toward quinolones
and macrolides, respectively. Notably, three isolates harbored
resistance genes (strA-strB, catA1, and qnrS1, respectively) which
did not correspond to the phenotypic resistance pattern.

Conjugal Transfer of Antibacterial
Resistance Determinants
Six of 10 E. coli isolates transferred resistance genes by
conjugation (Table 2). The three bacterial isolates B2, B158,
and B165 transferred trimethoprim- and sulfamethoxazole-
resistance, two isolates (B160 and B167) transferred tetracycline-
resistance, while one isolate (B117) transferred resistance
to cefotaxime and ceftazidime. The resistance patterns of
transconjugants were examined by the EUCAST disk diffusion
method, in which only a selection of antibacterial agents were
employed as determined by the resistance profile of the donor.

Phylogenetic Diversity of the E. coli
Isolates
A total of 284 strains were included and MLVA-profiles
matching nine specific loci were regarded as phylogenetic related
(Figure 2). The ECOR strains of different phylogroups and E. coli
isolates causing BSI did not cluster, nor showed to be located in
any specific branch of the MST, except from strains belonging to
phylogroup A. The 30 E. coli isolates from bivalves seemed to be

TABLE 2 | Conjugative transfer and antibacterial resistance (ABR) profile
in transconjugants.

Donor Resistance profile Conjugation∗ Resistance profile
transconjugants

B2 AMP-AML-TRI-SXT-S + TRI-SUL

B117 AMP-AML-CTX-CAZ + AMP-CTX-CAZ

B158 AMP-AML-MEL-TRI-SXT-S + TRI-SUL

B160 AMP-AML-TRI-SXT-DO-TE + TE

B165 AMP-AML-TRI-SXT-DO-TE + TRI-SUL

B167 AMP-AML-DO-TE + TE

B53 AMP-AML-NA-TRI −

B161 AMP-AML-MEL-GEN-TOB −

B177 AMP-AML-C-S-K-TRI-SXT-
DO-TE

−

B184 AMP-AML-MEL-NA-NOR-
GEN-TOB-S-K-TRI-SXT-
DO-TE-CTX-CAZ

−

∗Transferability of resistance plasmids; “+” transconjugants were obtained, “−”
no transconjugants were obtained. AMP, ampicillin; AML, amoxicillin; MEL,
mecillinam; C, chloramphenicol; NA, nalidixic acid; NOR, norfloxacin; GEN,
gentamicin; TOB, tobramycin; S, streptomycin; K, kanamycin; TRI, trimethoprim;
SUL, sulfamethoxazole; SXT, trimethoprim/sulfamethoxazole; DO, doxycycline; TE,
tetracycline; CTX, cefotaxime; CAZ, ceftazidime.

evenly distributed throughout the MST, together with both the
bacteremia E. coli and the ECOR strains and the HUS-associated
EHEC strains.

DISCUSSION

Antibacterial resistant fecal bacteria from animals or humans
may spread among the human population by direct contact, or
via water and food. The transfer of ABR-B in the food production
chain may affect the development and spread of resistance among
the foodborne pathogens (Sørum and L′Abée-Lund, 2002; VKM,
2015). This could also apply for seafood. Contaminated seafood
as fish, bivalves, and crustaceans may cause ABR-B from both
marine and fecal origins to reach humans during handling and
consumption. A possible risk of transmission of ABR-B may
occur from unintentional improper heat treatment, or through
bivalves intended for raw- or light preserved consumption.
Especially, flat oysters (Ostrea edulis) and great scallops (Pecten
maximus) represents a risk, as they are commonly consumed
raw. If these food products are consumed without proper
heat treatment, resistant bacteria may enter the consumer and
subsequently interact with the intestinal microbiota (Sullivan
et al., 2001).

In this study, two E. coli isolates displayed phenotypic
resistance toward as many as nine or more antibacterial
agents, indicating a potential risk of exposure to MDR
Enterobacteriaceae during consumption or handling of marine
bivalves. In addition, extended spectrum beta-lactamase (ESBL)-
producing E. coli isolates were identified from this food
source (Table 1). Among the European countries, Norway has
the lowest production corrected use of antimicrobial agents
in animals (EMA, 2016). Furthermore, as reported in the
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FIGURE 2 | Minimal spanning tree showing the phylogenetic relationships between 212 E. coli isolated from blood stream infection (BSI) according
to patient outcome (non-severe, 3failure = organ failure ≥3 organs within one day of admission to hospital, death14d = death within 14 days of
admittance to hospital), 38 ECOR strains of human origin with main phylogroup, 30 E. coli isolates from bivalves, and four HUS-associated EHEC
strains. The distance between circles are indicated by the thickness and dotting of lines, hence a thicker line indicate a closer relation than a thin line, and a thin line
indicate a closer relation than a dotted line. Shared MLVA-profiles are shown as shared circles.

Norwegian monitoring program for antimicrobial resistance in
human pathogens, and in bacteria from food, feed and animals
(NORM/NORM-VET, 2015), Norway is a low prevalence
country in terms of antimicrobial resistance and it is therefore
surprising to detect a high rate of resistant Enterobacteriaceae
in marine bivalves, including the ESBL-producing E. coli strains.
Notably, this should be taken into account in order to determine
if bivalves should be included in annual monitoring of ABR in the
coastal environment.

The majority of resistant isolates (n = 75) examined in
the current work were resistant to the extended-spectrum
penicillins ampicillin and/or amoxicillin (83%) (Figure 1),
which is interesting since the use of antimicrobial agents
in Norway is dominated by narrow-spectrum penicillins
(NORM/NORM-VET, 2015). However, an increase in the use
of penicillins with extended spectrum have been reported lately
(NORM/NORM-VET, 2015). The increased use of ampicillin
and amoxicillin in humans and/or food-producing animals may

have led to the development of resistance within the bacterial
species observed in this study. Moreover, it is well-known
that the blaTEM-1 gene conferring resistance against extended-
spectrum penicillins has been widely distributed in bacterial
populations for decades (Hedges et al., 1974). All 10 E. coli
isolates subjected to in-depth characterization by WGS harbored
the blaTEM-1 gene, whereas two isolates had blaCTX-M genes,
the latter conferring ESBL-production (Table 1). The various
TEM enzymes are mutant derivatives of plasmid-mediated beta-
lactamases conferring resistance to penicillins, while the CTX-M
enzymes confer resistance to penicillins and cephalosporins and
have their origin in environmental bacteria (Cantón et al., 2012).
The CTX-M enzymes have become the most prevalent ESBLs
in bacteria causing human infection, both in hospital and in
community settings (Cantón and Coque, 2006; Cantón et al.,
2008). The presence of ESBL-positive E. coli is of great concern
due to possible lack of therapeutic success in the treatment
of serious infections, hence defined as critically important by
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the World Health Organization [WHO] (2014). ESBL-positive
E. coli have also been recovered from food products for human
consumption, as well as from wildlife (Li et al., 2007; Smet
et al., 2010; Guenther et al., 2011). A fraction of the bacterial
isolates were resistant to aminoglycosides (16%), and six of
the 10 sequenced E. coli isolates harbored resistance genes.
Resistance toward trimethoprim and sulfonamides were seen
in 13 and 11% of the isolates, respectively, and five of the 10
sequenced E. coli isolates harbored genes conferring resistance
toward trimethoprim and sulfonamides. All isolates expressing
resistance to trimethoprim and sulfonamides contained genes
responsible for the resistance phenotype, except isolates B53
and B160. This indicates that resistance among the bacterial
isolates could be a result of selection by increased use, since
these agents are synthetic and thus not commonly found in the
natural environment. However, observations of resistance toward
quinolones and sulfonamides have been seen in the intestinal
microbiota of an 11th Century pre-Columbian Andean mummy,
showing that resistance even to some synthetic agents may date
back to Ancient times (Santiago-Rodriguez et al., 2015).

Among the 10 E. coli isolates subjected to conjugation
experiments, transferable resistance was detected in six isolates
(Table 2). The transfer of genes conferring resistance toward
third-generation cephalosporins (cefotaxime and ceftazidime)
are especially alarming, since the spread of these genes to
clinically relevant E. coli strains will dramatically reduce the
possible choice of antibacterial agents for medical treatment.
Moreover, transfer of multiple resistance genes may occur with
a higher frequency when the bacteria are exposed to antibacterial
agents. ABR among, e.g., enteric bacteria may form reservoirs,
in which resistance determinants could transfer to non-resistant
bacteria, including those responsible for diseases (Salyers et al.,
2004; Stecher et al., 2012). Intestinal bacteria from the human
microbiota may, in addition to sharing resistance genes among
themselves, also exchange resistance genes to other bacteria that
are temporary passing through the intestine (Teuber et al., 1999;
Salyers et al., 2004). Thus, commensal bacteria may function as
a vector in transferring resistance genes between environmental
and pathogenic bacteria.

Whole-genome sequencing and subsequent analysis showed
that two isolates belonged to ST-95, while two isolates belonged
to ST-38 and to ST-69, respectively (Table 1). These STs are
associated with bacteremia and urinary tract infection in humans
(Adams-Sapper et al., 2012; Alghoribi et al., 2015; Hertz et al.,
2016). The MLVA-profiles of the bivalve E. coli isolates displayed
a seemingly high degree of diversity (Figure 2). Furthermore,
they scattered among BSI-causing, including those leading to
death within 14 days of admission to hospital, as well as among
representatives of all E. coli main phylogroups. Both instances
indicate no common source, but also that the bacteria have the
potential for causing serious infection in humans. Consequently,
the presence of pathogenic E. coli isolates in the coastal
environment represent a risk to human health, especially in areas
use for aquaculture or recreational activities. This is supported by
the findings of Balière et al. (2015) who reported that a few E. coli
strains of EHEC and Enteropathogenic E. coli (EPEC) isolated
from bivalve mollusks harbored resistance toward amoxicillin,

cefotaxime, and imipenem. The World Health Organization
[WHO] (2014) have stated that infections with E. coli strains,
e.g., EHEC and EPEC, are among the most frequent foodborne
causative agents worldwide.

Allochthonous bacteria from different sources (e.g., urban,
industrial, and agriculture waste), and residues of antimicrobial
agents, will ultimately be transported to the marine environment
through waste water effluents, rivers, or streams, and mixed
with the indigenous bacterial population (Baquero et al., 2008;
Wellington et al., 2013). This can result in the rise of resistance
due to selection pressure, and/or genetic exchange between
environmental and intestinal bacteria. Bivalves may promote
gene transfer among bacteria in the marine environment, by
collecting bacteria from various sources and concentrate them
within a stable micro-environment at a high density (Taylor et al.,
2011). The increasing pressure exerted by antimicrobial agents
affects the acquisition, selection, and transmission of resistance
determinants among a wide range of bacteria.

CONCLUSION

Our study indicates that marine bivalves may represent an
important tool for monitoring antibacterial resistant E. coli
and other members of the Enterobacteriaceae family in coastal
environments. Bivalves may furthermore act as a “hot spot” for
resistance transfer between Enterobacteriaceae and indigenous
bacteria, as the conditions they offer may facilitate the
conjugational frequency. As continuous EU programs for the
detection of E. coli from bivalves are currently implemented, an
additional characterization of their ABR profile would represent
a good cross-compartment added value indicator of spatial and
temporal trends in resistance rates.
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