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Preface

An introductory note together with a collection of papers constitute my thesis
presented in partial fulfillment of the requirements for the degree of Doctor Sci-
entarum in applied mathematics at the Department of Mathematics, University of
Bergen. The study started formally September 1998 and lasted over three years.

In this work several new numerical methods and a new mathematical model
related to multi phase flow in oil reservoirs have been developed, implemented
and tested. The numerical difficulties in multi phase flow stem from the highly
nonlinear nature of the equations. The solution can develop sharp fronts that travel
through the reservoir. We have used front tracking to capture these fronts in our
numerical methods. In additioncorrectedoperator splitting for systems has been
used and developed because of the advection dominated nature of the equations.
The new mathematical model was developed to improve short comings of existing
models and to include interfacial area as a new independent variable.

This thesis consists of two parts. Part I, the introduction, is a summary of
the papers presented in Part II. Some additional results that did not appear in the
papers are also included in Part I. Part II consists of the following 5 papers:

Operator splitting methods for systems of convection-diffusion equations:
Nonlinear error mechanisms and correction strategies

This paper presents a modification of corrected operator splitting for scalar
equations to systems. The idea is to construct a residual flux after the
advection step and use this flux in the diffusion step.

A local streamline Eulerian-Lagrangian method for two-phase flow

Two dimensional two-phase flow is solved by operator splitting. The
advection part is solved by front tracking along streamlines, and the
diffusion part by a standard finite difference scheme.



A streamline front tracking method for two- and three-phase flow including
capillary forces

Two dimensional multiphase flow is solved by operator splitting. The ad-
vection part is solved by front tracking along streamlines, and the diffusion
part by a standard finite difference scheme. The method is compared to a
fast marching method and a modified method of characteristics.

Two phase flow including interfacial area as a variable

In this paper a new model for two phase flow in porous media is presented.
Starting out from a model that covers all the physics we make simplifying
assumptions. The resulting model includes interfacial area as one of the
dependent variables.

A pore network model for calculation of interfacial velocities

A simple dynamic network model (presented by Blunt & King) is used to
calculate saturations, interfacial area, pressures and velocities. Since the
results are obtained at a micro scale averaging is done to obtain macroscale
variables like pressure and saturations. The averaged results are used to test
the equations proposed in the paper above.

In more detail Part I consists of 5 chapters. Chapter 1 gives a short general
introduction to multi phase flow in porous media. Some of the main physical and
numerical problems investigated in this work are presented here. The subsequent
three chapters in Part I give summaries of the papers: Chapter 2 gives a brief
description of corrected operator splitting for systems. In Chapter 3 front tracking
along stream lines is explained. Finally in Chapter 4 inclusions of interfacial area
in two phase flow models and dynamic network models are discussed. Chapter 5
gives a general summary of conclusions and remarks.

The numerical models used in this thesis are written in either C, C++ or For-
tran 77 and used under all or some of the following environments: Linux, Unix
and Windows. Matlab has been extensively used, but mostly as a visualization
tool. The thesis is written in LATEX and the editor of my choice is Emacs.
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Part I

Introduction





Chapter 1

Multi phase flow in porous media

In reservoir problems we consider some or all of the following phases: Oil, gas,
water and solid. The solid phase is normally assumed to be immobile and non-
deforming, but in general this does not need to be the case. By multi phase flow we
will mean the flow of oil, gas and water. The phases are categorized according to
their different physical quantities. A hydrocarbon phase, may consist of different
hydrocarbon components, e.g., the oil phase can contain several oil and gas types.
In this work the components are neglected and only the phases are considered. A
porous medium is any solid phase, e.g. sand stone, that is permeable. The flow in
a porous medium takes place through connected pores in the rock. Regions on a
larger scale that contain oil or gas are called reservoirs. The typical size of a reser-
voir is kilometers in each direction while the pore scale size is millimeters or less.
Solving the Navier-Stokes equation at the pore scale to obtain the transport on a
larger scale is not numerically feasible because of the huge difference in scales.
Therefore, some averaging is necessary to go from the pore scale (micro scale) to
the reservoir scale (macro scale). In this process the Navier-Stokes equations are
replaced by macro scale equations that are solved for macro scale variables. For a
thorough introduction to reservoir modeling see [1].

The papers presented herein cover several topics in multi phase flow in porous
media, and they address some central problems both on the micro scale as well as
on the macro scale. In addition, operator splitting techniques have been developed
for convection dominated non-linear transport equations.

1.1 From micro to macro scale

As noted above it is not numerically feasible to solve the equations on the mi-
cro scale to obtain macro scale behavior for the fluid phases. Therefore macro
scale equations involving macro scale variables are used. Traditional multi-phase
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flow models are usually based on direct extensions of one-phase flow equations
like Darcy’s law and conservation of mass. This leads to the introduction of con-
stitutive relationships like capillary pressure curves and relative permeabilities.
Although such models are generally accepted and have been successfully applied
to numerous problems, one can easily list several difficulties. Most important, the
models aread hocand involve hidden assumptions.

A rigorous approach to modeling of multi-phase flow is given by Gray and
Hassanizadeh, e.g. [2]. This approach starts from first principles and is aiming at a
more complete description of multi-phase flow phenomena. By using localization
theorems the authors transform conservation equations for micro scale variables
to conservation equations for macro scale variables. These theorems essentially
transform averages of derivatives to derivatives of averages. In Paper D we use
this approach to get a new formulation for two phase flow including interfacial
area. Some of the proposed equations in this work are tested using a dynamical
network model in Paper E.

Since geological data currently is available at a much finer scale than any prac-
tical computational grid, some kind of upscaling is necessary to get reasonable
averaged physical parameters. This kind of parameter upscaling is not the subject
of this work, and we refer to Dagan [3] for a thorough description of different
scales in porous media flow and averaging techniques. However, we note that as
the computers become faster and the methodologies improve, the computational
scale may get closer to the geological scale. Some of the methods described in
this work are aiming in that direction.

1.2 Non-linear equations and systems

Mathematical models for fluid flow often involve systems of convection-diffusion
equations. This is the case for multi phase flow in porous media. These mod-
els are normally convection dominated with sharp fronts building up because of
the non-linearities in the flow functions. Because of these fronts, difficulties will
be experienced when standard numerical approximations are used. Thus, many
different methods have been proposed to overcome the difficulties, see [4].

Mathematical models for three phase flow models often consist of a set of
pressure–velocity equations and a pair of strongly coupled equations for phase
saturations. The set of saturation equations is normally called a 2× 2 system.
The coupling of these strongly non-linear equations makes them hard to solve. In
Paper C (and A), a solution procedure for a simplified 2× 2 system is presented.
We assume that one of the phases is independent of the other. This will normally
be the gas and is due to the fact that the viscosity of the gas phase is usually at
least an order less than the viscosities of the liquid phase(s). We call such a system
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a triangular system because the Jacobi matrix for the flow functions is upper (or
lower) triangular.

An important design principle for many numerical methods for convection-
diffusion equations isoperator splitting(OS). That is, one splits the time evolution
into partial steps to separate the effects of convection and diffusion. It has been
shown that the temporal splitting error can be significant when there is a shock
present in the solution. This is well understood for scalar convection-diffusion
equation. Paper A describes the error mechanisms and a correction strategy for
systems.

In Paper A, B and C we concentrate on finding accurate and efficient solvers
for the advection step in the OS method. To achieve high efficiency, i.e, long time
steps, we have chosen to use the front tracking algorithm. The algorithm itself
is super fastand has no numerical diffusion. However, front tracking relies on
accurate Riemann solvers, and for systems in general they are hard to construct.
For a certain class of triangular 2× 2 systems the Riemann solver is not too
complicated to construct, and in Paper C (and A) we have solved such systems by
using front tracking.





Chapter 2

Corrected operator splitting for
systems

This chapter describes the methods and ideas from Paper A, “Operator splitting
methods for systems of convection-diffusion equations: Nonlinear error mechan-
isms and correction strategies”.

Mathematical models for fluid flow often involve systems of convection-
diffusion equations as a main ingredient. As mentioned in Section 1.2, operator
splitting (OS) is an important tool for developing numerical methods for such sys-
tems. In particular, OS methods are often used to solve convection-diffusion prob-
lems that are of convection dominated nature, see [5] and the references therein.

2.1 Introduction

The motivation for operator splitting methods is that it is easy to combine efficient
methods for solving the convection step with efficient methods for solving the dif-
fusive step. Especially for convection dominated systems, it is a major advantage
to be able to use an accurate and efficient hyperbolic solver developed for tracking
discontinuous solutions. By combining this with efficient methods for the diffus-
ive step, we get a powerful and efficient numerical method which is well suited
for solving parabolic problems with sharp gradients.

The obvious disadvantage of operator splitting methods is the temporal split-
ting errors. The temporal splitting error in OS methods can be significant in re-
gions containing viscous shocks [6, 7, 8]. Thus, to resolve viscous shock profiles
correctly, one must resort to very small splitting steps. This imposes a time step
restriction that is not present in the underlying numerical methods for the convect-
ive and the diffusive step. To reduce the influence of temporal splitting errors in
OS methods, and to allow for the use of large splitting steps, thecorrected oper-
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ator splitting (COS) method was introduced by Espedal and Ewing [9]. A recent
mathematical description of this method was given by Karlsen and Risebro [10].

The main idea behind the scalar COS method is to take into account the un-
physical entropy loss (due to Oleinik’s convexification [11]) produced by the hy-
perbolic solver in the convective step. The COS approach uses the wave structure
from the convective step to identify where the (nonlinear) splitting errors occur.

The purpose of the paper described here is to derive a thorough understanding
of the nonlinear mechanisms behind the viscous splitting error typically appearing
in operator splitting methods for systems of convection-diffusion equations. This
mechanism is well understood in the scalar case.

2.2 Operator splitting

To describe our ideas in more detail, we consider the one dimensional Cauchy
problem for`×` (` ≥ 1) systems of convection-diffusion equations

∂tU +∂xF (U ) =D∂2
xU, U (x,0)= U0(x) (2.1)

wherex ∈ R and t > 0. HereU = (u1, . . . , u`)T is the unknown state vector,
F (U ) = (f1(U ), . . . ,f`(U ))T is a vector of flux functions for each variable, and
D = diag(ε1, . . . ,ε`) > 0 is a constant diagonal matrix. LetSt denote the solu-
tion operator which takes the initial dataV0(x) to a weak solution at timet of the
purely hyperbolic problem

∂tV +∂xF (V ) = 0, V (x, t) = V0(x). (2.2)

We writeV (x, t) = StV0(x) for this weak solution. Next, letHt denote the oper-
ator which takes the initial dataW0(x) to a weak solution at timet of the purely
parabolic problem

∂tW =D∂2
xW, W (x, t) =W0(x). (2.3)

We writeW (x, t) =HtW0(x) for this solution.
In what follows, we consider a fixed final computing timeT > 0. For sim-

plicity we also choose a fixed splitting step∆t > 0 and an integerNt such that
Nt∆t = T . Then we define the semi-discrete OS algorithm by

U∆t(·,n∆t) :=
[

H∆t ◦S∆t
]n
U0(·), n = 0, . . . ,Nt. (2.4)

In applications, the exact solution operatorsSt andHt in (2.4) are replaced by
numerical methods. We will use front tracking as defined by Risebro [12, 13, 14]
as an approximate solution operator for the hyperbolic part. For the parabolic part,
we here use a simple explicit central difference method.
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2.3 Nonlinear error mechanisms

In the introduction we stated that OS approximations can be too diffusive near
viscous shocks when the splitting step∆t is large. To explain this in more detail
let us first study thescalarcase:

The entropy condition introduces a local linearization off (·) once a shock
is formed in the convection step. This linearization represents the entropy loss
associated with the formation of a shock in the hyperbolic solution. Thus, the
evolution of thehyperbolicsolution is governed locally by some convex/concave
envelopefc of f between the left and right shock values, see Figure 2.1. A similar
linearization can be introduced locally for theparabolicproblem. That is, the flux
function f can be decomposed into a convective partfc and a self-sharpening
part f − fc that tends to counteract the diffusive forces. Loosely speaking, we
say thatfc governs the local translation andf −fc the shape (or structure) of the
viscous front. In the OS algorithm, the local residual fluxf −fc is disregarded in
the hyperbolic step and the corresponding self-sharpening effects are therefore not
taken into account in the splitting, resulting in a splitting error. Figure 2.1 gives
an illustration off , fc, and the residual fluxfres := f −fc in the scalar case.
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Figure 2.1: (Left) A single shock solution from a convection step. (Right) The cor-
responding residual flux function; flux functionf (solid), convex envelopefc, i.e., local
linearization (dash), and residual fluxfres (dash-dot).

For a general system, the error mechanism is quite similar. To study it, we
consider the propagation of a single viscous shock. Assume that the splitting step
is sufficiently large so that a shock has developed in the hyperbolic substep (2.2),
i.e., the solutionV (·, t = t̄) consists of a single discontinuity atx = x̄ with left and
right shock valuesV l = (vl1, . . . , v

l
1)T andV r = (vr1, . . . , v

r
1)T. Then the behavior

(forward and backward in time) ofV (x, t) locally around ( ¯x, t̄) is governed by the
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linearized hyperbolic problem

∂tV +∂x(σ̄V ) = 0, V (x, t̄) =

{

V l, for x < x̄,

V r, for x > x̄,
(2.5)

whereσ̄ is the Rankine–Hugoniot shock speed satisfying

F (V l)−F (V r) = σ̄(V l−V r).

Weclaim that a large part of the splitting error that occurs locally around ( ¯x, t̄)
in the standard OS algorithm can be understood in terms of the difference between
the nonlinear system (2.1) and the linearized system (2.5) with right-hand side
D∂2

xV . In other words, in terms of the difference∂x(F (U )− σ̄U ). In (2.1), the
diffusion caused by the second order operator is perfectly balanced by the self-
sharpening effects due to the nonlinearity in the convective operator. In the OS
strategy, this self-sharpening disappears once a shock develops becauseF (U ) is
in effect replaced by ¯σU locally. Thus, one step in OS effectively amounts to
solving∂tU +∂x(σ̄U ) =D∂2

xU and not (2.1).

2.3.1 The COS strategy

To compensate for the loss of self-sharpening effects, thescalar COS approach
proposes to include the residual fluxFres in the diffusion step of the splitting. The
COS method therefore replaces the purely parabolic split problem (2.3) by

∂tW +∂xFres(x,W ) =D∂2
xW, W (x,0)=W0(x). (2.6)

whereFres(x,W ) is the residual flux in the pointx. LettingPt denote the solution
operator associated with (2.6), the COS solution may then be defined as

U∆t(·,n∆t) :=
[

P∆t ◦S∆t
]n
U0(·). (2.7)

We have replaced the convection-diffusion equation (2.1) by a hyperbolic equation
(2.2) and another convection-diffusion equation (2.6), where the flux term in (2.6)
is seemingly more complicated than the one in (2.1). However, we see that while
F contains convectiveand self-sharpening effects,Fres only contributes to self-
sharpening effects. Thus, viscous shock fronts are moved to the correct location
in the convective step and given a correct shape in the diffusive step.

When applied to systems of parabolic equations, the correction algorithm
needs to be reformulated, since one cannot simply write down the solution of
the hyperbolic step in terms of convex/concave envelopes. Instead, we identify
the following term

∂xFres(U ) = ∂x
(

F (U )− σ̄U
)

, (2.8)
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for each discontinuity in the solution from the hyperbolic step. Then, the parabolic
subproblem (2.3) is modified locally by addingFres(U ), which gives the new split
problem (2.6). By integrating (2.8) with respect tox, we get theresidual flux

Fres(U ) =
(

F (U )−F (V l)
)

− σ̄
(

U −V l
)

, (2.9)

where we have chosen the constant of integration such that

Fres(V
l) = Fres(V

r) ≡ 0.

2.4 A COS method

The operator splitting methods introduced above result in two different subprob-
lems that each must be solved numerically. The convection part is solved by a
front tracking method, and the diffusion part is solved by an explicit central finite
difference scheme.

2.4.1 Convection solver

In this section we describe the front tracking method [12, 13, 14] for solving
systems of conservation laws (2.2)

∂tV +∂xF (V ) = 0, V (x,0)= V0(x).

Front tracking is an algorithm for computing a piecewise constant approxima-
tion to V (x, t). The advantage of using a front tracking method is that it directly
identifies the correct physical envelope, given that the Riemann solver is correct.
We will not discuss Riemann solvers further here, but just note that finding good
approximative Riemann solvers for systems is in general a difficult problem. De-
scriptions of the Riemann solvers used in the applications are given in Section 3
in Paper A.

First,V0 is approximated by a step function so that a Riemann problem can be
associated with each jump in the approximate initial data. The solution of each
Riemann problem is approximated by step functions. In the front tracking approx-
imation, rarefaction waves are approximated by step functions sampled along the
wave curves (according to a pre-set, user-defined parameterδ), while the rest of
the Riemann solution is left intact. By doing this each Riemann problem pro-
duces a sequence of jump discontinuities (fronts) that travel with a finite wave
speed. The Riemann solution is represented by a list of fronts, sorted according to
increasing wave speeds. A global solution (inx) is formed by connecting the local
Riemann solutions. The solution consists of constant states separated by space-
time rays, i.e., a list of fronts sorted from left to right. There will be a first time
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at which two or more space-time rays intersect, i.e., two or more fronts collide.
This collision defines a new Riemann problem which is solved and inserted into
the list. The algorithm proceeds in this manner from collision to collision. The
numerical method isunconditionallystable and very fast.

2.4.2 Diffusion solver

The parabolic step is a Cauchy problem of the form

∂tW +∂xG(W ) =D∂2
xW, W (x,0)=W0(x). (2.10)

In applicationsG is the residual flux term, see (2.8), andD is still the diagonal
matrix diag(ε1, . . . ,ε`) > 0. To solve this system, one can for instance use the
explicit, central finite difference method

W n+1
j −W n

j

τ
−
G(W n

j+1)−G(W n
j−1)

2∆x
=D

W n
j+1−2W n

j +W n
j−1

(∆x)2
. (2.11)

This scheme is stable provided the discretization parametersτ and∆x satisfy the
following conditions

τ ≤ 0.5∆x2/maxεi, ∆xmax|λG| ≤ 2maxεi,

whereλG denotes the eigenvalues ofG′, the derivative ofG. See Strikwerda [15]
for an introduction to finite difference schemes and this one in particular. For
the Cauchy problem (2.10), which has linear diffusion, convergence and error
estimates for this scheme is shown in [16]. The stability conditions above may
put severe restrictions on the discretization parameters, especially on∆x for small
values ofε. However, both these conditions can be weakened or removed by using
a more sophisticated scheme. The use of implicit schemes is discussed in the next
section. To keep the technical details at a minimal level, we chose the simple
explicit scheme.

2.4.3 Construction of the residual flux

Given a piecewise constant front tracking solution,Un+1/2, of the hyperbolic
equation (3.4), we can now construct the residual fluxFres(x, ·) appearing in (2.6).
We assume that the discontinuities ofUn+1/2(x) are located at the points{xi}. Let
Ui = (ui1, . . . , u

i
`)T andUi+1 = (ui+1

1 , . . . , ui+1
` )T denote the values ofUn+1/2(x) in

the intervals [xi−1,xi) and [xi,xi+1), respectively. Locally, around theith dis-
continuity emerging from (xi, t0) the nonlinear problem (2.2) is governed by the
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linearized problem

∂tV +∂x(σiV ) = 0, V (xi, t0) =

{

Ui, for x < xi,

Ui+1, for x > xi,

whereσi is the Rankine–Hugoniot shock speed satisfyingF (Ui) − F (Ui+1) =
σi(Ui −Ui+1). Motivated by the discussion in Section 2.3, we define the resid-
ual fluxF i

res associated with theith discontinuity, as

F i
res(U ) =

{

(

F (U )−F (Ui)
)

−σi
(

U −Ui

)

, U ∈ (ui1, u
i+1
1 )×·· ·× (ui`, u

i+1
` ),

0, otherwise.

Note thatF i
res(Ui) = F i

res(Ui+1) ≡ 0.
Although a residual flux term can be identified for every discontinuity in the

front tracking solution, they should not be included for discontinuities which ap-
proximate rarefaction waves or for weak shocks. Therefore, in practice, we only
include residual terms for shock waves with strength exceeding a user-defined
threshold parameterγ. The process of identifying relevant residuals can be made
more rigorous, and simplified, by tagging fronts in the front tracker according to
wave type (shock/rarefaction/contact).

Having defined the residual fluxes in state space (u1, . . . , u`), we need to spe-
cify where to apply them in physical space (i.e., intervals inx). For explicit dis-
cretizations we apply the following strategy: Observe that in each spatial interval
where the solution is monotone in all its components (henceforth calledmono-
tonicity interval), all residual fluxes are defined on disjoint sets in state space.
Therefore, the residual flux is set to zero outside (a subset of) the associated mono-
tonicity interval, i.e.,

Fres(x,U ) =
∑

i

F i
res(U )χDi (x),

whereχI (x) denotes the indicator function of the intervalI ⊂ R andDi is the
(subset of) the monotonicity interval. For implicit discretizations we use a much
simpler approach where the user prescribes the length of the intervals where the
correction is applied. Unfortunately, specifying a reasonable length for the cor-
rection intervals must be based on experience. For further details concerning the
construction of the residual flux we refer to Paper A.

2.5 Concluding remarks

In Paper A results for two particular 2×2 systemsdescribing flow in porous media
were presented. Simulations for a two-phase multicomponent model, a polymer



14 Corrected operator splitting for systems

system, and for a triangular three-phase flow model were reported. In addition,
the polymer system is solved in 2D using dimensional splitting.

We demonstrate numerically that operator splitting (OS) methods for systems
of convection-diffusion equations in one space dimension, have a tendency to be
too diffusive near viscous shock waves. The idea behind the scalar COS method is
to use the wave structure from the convection step to identify where the nonlinear
splitting error (or entropy loss) occurs. The potential error is then compensated
for in the diffusion step (or in a separate correction step).

Similar to the scalar case, the splitting error is closely related to the local
linearizations introduced implicitly in the convection steps due to the use of an
entropy condition. A COS method for systems was proposed. The numerical
examples demonstrate that the COS method is significantly more accurate than
the corresponding OS method when the splitting step is large and the solution
consists of (moving) viscous shock waves.



Chapter 3

Solving multi dimensional
multi-phase flow by front tracking
along streamlines

This chapter describes the results and ideas form Paper B, “A local streamline
Eulerian-Lagrangian method for two-phase flow”, and Paper C, “A streamline
front tracking method for two- and three-phase flow including capillary forces”.

Increased demands for assessment of uncertainties and history matching re-
quire fast and accurate flow simulations on multiple plausible geological models
on a routinely basis. Conventional reservoir simulators fail to fulfill this need, and
there seems to be a trend within the petroleum industry to simulate reduced sets
of equations. Typically streamline and/or front tracking methods are used to solve
the hyperbolic Buckley-Leverett equation for two-phase flow, see [17, 18, 19].

In the work described here we consider models of multi-phase flow which do
include capillary forces. We also allow for three phases. In particular we shall
investigate a streamline front tracking method. To account for capillary effects
we use operator splitting [5]. We compare the streamline front tracking method
(SFTM) with a fast marching method (FFM) and a modified method of character-
istics (MMOC).

3.1 Governing equations

The basic equations describing three-phase immiscible flow in a porous medium,
say water (w), gas (g) and oil (o), are mass balance equations and Darcy’s law.
Assuming that the flow is incompressible, and that gravity can be neglected, the
equations can be written in a global pressure/total velocity formulation, see [20,
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21], as follows:
∇·v = q(x, t), (3.1)

v = −λT (x,Sα)K (x) ·∇p, (3.2)

φ
∂Sα

∂t
+∇· [Fαv− εα∇·Dα(x,Sα)∇Sα] = qα(x, t). (3.3)

Hereφ andK (x) are the porosity and absolute permeability of the porous medium;
Sα, vα, krα, µα andq/qα are, respectively, the reduced phase saturation, Darcy ve-
locity, relative permeability, viscosity of phaseα and sink/source terms. A global
pressurep is derived from the phase pressures and the capillary pressures, see
[21]. We refer to Paper B and C for more details on this standard formulation.

3.2 Solution strategy

To decouple the Pressure/Velocity equations (3.1), (3.2), from the saturation equa-
tions (3.3), we use sequential time stepping. Thus, for a given saturation-field, say
at timetn, we calculate a new velocity field. The saturation field is then advanced
to a new time-steptn+1 by solving (3.3), using the most recent velocity field. This
is continued sequentially up to a predetermined timet = T .

To solve the parabolic saturation Equation (3.3) with a given velocity field,
we again use operator splitting as described in Section 2.2 on page 8. In previous
works a Modified-Method-of-Characteristics (MMOC) has been used to solve the
two-phase flow problem based on the ideas outlined above, see [22]. This method
works excellently when the wave structure of the solution is knowna priori. We
present two alternative methods to the MMOC method, which both preserve the
shape of self-sharpening fronts and are more flexible than the MMOC method in
the sense that no a priori knowledge of the wave structure is required.

3.2.1 A streamline front tracking method

For simplicity we assume that the computational domain is discretized by a regular
Cartesian grid such that the velocityv = v(x) ∈ RT0 is given, whereRT0 is the
lowest order Raviart-Thomas space. Furthermore, we assume that all variables
are known at cell centers at time-leveltn.

To obtain saturation valuesSn+1 at time-leveltn+1, we split Equation (3.3)
into a hyperbolic equation

St+v ·∇F (S) = 0, (3.4)
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and a parabolic heat type equation

St = ε∇· (D∇S). (3.5)

whereS andF (S) are vectors of saturations and fluxes, respectively. The equa-
tions are solved in a standard operator splitting fashion, see previous chapter.

Now, consider the solution of Equation (3.4). Observe that on streamlines
r = r (ξ) such that

dr
dξ

= v, (3.6)

Equation (3.4) becomes one-dimensional

St+Fξ(S) = 0. (3.7)

We exploit this to obtain new saturation-values at cell centersxI , in the following
way: First, trace streamlines (3.6) analytically forr (0)= xI and−ξmax< ξ < ξmax.
Hereξmax= |λmax|(tn+1− tn) with λmax being an estimate of the maximum wave
speed of the system, such that the streamline covers the domain of dependence
for (xI , tn+1). The streamline is only traced in the upstream direction if all the
wave speeds are positive. The piecewise constant cell values of the saturations are
then projected onto these local streamlines, thus defining piecewise constant initial
conditions for Equation (3.7). This conveniently arranges for Equation (3.7) to
be solved by the front tracking method. (See Section 2.4.1 on page 11 for a
description of the method.)

The main advantages of the front tracking method, is that the method issuper
fast [23], and preserves the frontal structure of the solutions extremely well. On
the other hand, since the method heavily depends on solving Riemann problems,
it is not easy to extend the method to three-phase flow. In Section 3.3, we will
discuss a solution strategy for so-called triangular systems which may be a step
towards an applicable solution procedure for three-phase flow problems.

Equation (3.5) may be solved by finite element or finite difference based meth-
ods. In this work we have for convenience used a standard explicit central finite
difference scheme. Note that a local time step,∆tdiff ≤ tn+1− tn, is required to
satisfy the stability constraint inherent in the explicit finite difference method.

3.3 Triangular systems

A possible extension of the SFTM approach to three-phase flow, is to use an ap-
proximate Riemann solver to generate front speeds. However, to our knowledge,
the construction of accurate and reliable Riemann solvers for fully coupled three-
phase flow is not a trivial task, and we have chosen a different approach here.
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Observe that the viscosity of the gas phase is usually at least an order less than
the viscosities of the liquid phases. Motivated by this fact, it seems reasonable to
assume that the fractional flow function of the gas phase can be approximated by a
flux function which only depends on the saturation of the gas phase. Thus, we may
consider the following 2×2-triangular hyperbolic system, as an approximation to
the hyperbolic part of the fully coupled system (3.3):

∂Sg

∂t
+

∂

∂x
Fg(Sg) = 0, (3.8)

∂Sw

∂t
+

∂

∂x
Fw(Sg,Sw) = 0. (3.9)

Systems of this type have been investigated in [24, 25, 26], and existence and
uniqueness of the solution to the Riemann problem is shown under general condi-
tions.

3.3.1 A Riemann solver for triangular systems

The numerical construction of a solution for a Riemann problem associated with
equations (3.8)-(3.9) was developed by Gimse [24]. The idea is to solve the
Riemann problem for (3.8) first. The approximate solution to (3.8) consists of
a set of constant states, saySL

g = S1
g < S2

g < . . . < SN+1
g = SR

g , separated by jump
discontinuities traveling with the Rankine-Hugoniot shock speed:

si =
Fg(Si+1

g )−Fg(Si
g)

Si+1
g −Si

g

, i = 1,2, . . . ,N. (3.10)

Within each wedge of the solution fan, the fractional flow of the water phase
depends only on the water saturation and is given as:

F i
w(Sw)

def
= Fw(Si

g,Sw), i = 1,2, . . . ,N +1.

Thus, we may easily solve for the water saturation within each wedge once we
know the left- and right-hand state of the water saturation within the wedge. Ob-
viously, successive left- and right-hand states over the discontinuities in the gas
phase must also satisfy the jump condition

F i+1
w (Si+1

w )−F i
w(Si

w)

Si+1
w −Si

w

= si, i = 1,2, . . . ,N, (3.11)

There are infinitely many statesSi
w, which satisfy conditions (3.11), leading to

the definition of the so-calledH-sets:
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H1,in The set ofSw-values in regionSL
g , that can be reached fromSL

w with speed
σ ≤ s1.

Hi,in The set ofSw-values in regionSi
g, i = 2,3, . . .N, that can be reached from

Hi,out with speedσ such thatsi−1 ≤ σ ≤ si.

Hi+1,out The set ofSw-values in regionSi+1
g , i= 1,2, . . .N+1, that can be reached

fromHi,in by a shock with speedsi.

The solution can now be assembled by connecting the right state,SR
w , to the left

state,SL
w , by admissible waves given by theH-sets. This procedure is described

schematically in the following diagram:

SR
w →Hn+1,out →Hn,in →·· ·

→Hi+1,out →Hi,in →·· ·
→H2,out →H1,in → SL

w .

Note that a jump from one set to the next always happens at the first possible value
in the currentH-set.

Gimse has shown [24] that the above construction gives auniquesolution of
the triangular system, if the following conditions hold:

(A) Fg(0)= 0, (B) Fg(1)= 1, (C) Fw(Sg,1−Sg) = 1−Fg(Sg)

(D) ∂Fw
∂Sw

≥ 0, (E) ∂Fw
∂Sg

< 0, (F ) F ′
g(Sg) ≥ 0.

For a discussion of these conditions we refer to Paper C.

3.3.2 Approximation of a full three-phase flow system by a
triangular system

Since the fractional flow function for the gas phase is nearly independent of the
water saturation, it seems natural to decouple the gas phase from the other phases.
This can be done simply by plugging in a value for the water saturation,S0

w, in
the gas fractional flow function:

Fg(Sw,Sg) ≈ Fg(S0
w,Sg)

def
= Fg(Sg). (3.12)

We can chooseS0
w so that the decoupled fractional flow function is as close as

possible to the complete function in some norm over the admissible section of
state space, see [27]. However, in the experiments reported in Paper C,S0

w is
chosen more or less arbitrary to be zero.
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In situations where the full solution for the gas phase consists of two rarefac-
tion waves connected by an intermediate shock wave, the triangular approxima-
tion must fail because it cannot produce such a wave structure. A possible solution
to this problem is to letS0

w be defined locally for each Riemann problem which
is solved. This will allow for some feedback, and can be combined with the fact
that the total mobilityλT acts as an approximate invariant for the transport. Thus
λT (Sw,Sg) ≈ λT (S0

w,Sg) may be used to eliminateSw fromFg in a more accurate
way. However, this idea was not pursued any further in the paper.

Another difficulty that arises from the approximation (3.12), is that condition
(C) is violated since

Fw(1−Sg,Sg) = 1−Fg(1−Sg,Sg) 6= 1−Fg(S0
w,Sg).

If condition (C) is not satisfied the construction of the solution may fail in two
ways for values close toSo = 0: Either the construction of appropriateH-sets
will fail, or the tracking of admissible waves becomes impossible. SinceSo ≈
0 =⇒ Sw ≈ 1−Sg, we may circumvent the problem by replacingS0

w with 1−Sg

in (3.12) when the oil phase is close to residual. Again, this requires a local
definition ofS0

w which has not been implemented in our simulator yet.

3.4 Concluding remarks

For the detailed discussion of the numerical results, we refer to Paper B and C.
A front tracking streamline method (SFTM) for multi-phase flow in porous me-
dia was presented. The main advantage of this method is to handle the advective
part of the nonlinear transport using streamline information, and still be able to
solve for diffusive/dispersive effects on a regular grid. The method has been com-
pared with a Modified Method of Characteristics (MMOC) and a Fast Marching
(FMM) approach for two-phase flow problems. The solutions obtained seem to
be equally accurate. The SFTM and the MMOC are comparable when it comes to
computational efficiency, whereas the FMM gives a much faster advection solver.
However, compared to the MMOC and the FMM, the SFTM is more flexible and
has less restrictions with respect to the complexity of the problems that may be
solved.

Using theH-set method, the SFTM approach has been extended to solve
three-phase flow problems which are triangular. Since most three-phase flow
problems are fully coupled in both saturations, triangular systems can only be
approximate. However, because the viscosity of the gas is much smaller than the
viscosities of the liquid phases the gas phase is often nearly decoupled from the
other phases. We showed that the solution of anaive triangular approximation of
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a fully coupled system, may and may not be a good approximation to the solution
of the fully coupled system.

In these two papers standard operator splitting was applied, i.e, without cor-
rection in the diffusion step. Including a correction term would possibly give
sharper fronts, as explained in Chapter 2. However, defining the residual flux is
not straight forward for multi dimensional problems. A main difficulty is to find
the correction domain. After obtaining the solution along the streamlines in the
hyperbolic step, one needs to project not only the solution, but also the correc-
tion interval down onto the grid for the parabolic step. To find a local correction
domain, information from several streamlines at a time must probably be used.
Hence, it might also be hard to choose the correct shock values.





Chapter 4

Interfacial area and dynamic
network models

This chapter covers ideas and results from Paper D, “Two phase flow including
interfacial area as a variable”, and Paper E, “A pore network model for calcula-
tion of interfacial velocities”. The work presented is two folded; a generalization
of the standard two-phase flow model and testing of this model using a dynamic
network model.

Multi-phase porous media systems are characterized by fluid-fluid interfaces
that exist at the pore scale. These interfaces define the spatial boundaries of each
phase at any given instant in time. Interfaces also have properties such as interfa-
cial tension, which allows each fluid to maintain a different pressure. The resulting
difference between individual phase pressures is usually called capillary pressure.
Mass is transferred from one fluid phase to another across the fluid-fluid inter-
faces. Fluid-solid interfaces provide similar surfaces for mass exchanges between
fluid and solid phases. For these reasons, an understanding of interfacial behavior
at the pore scale, and subsequent scaling of that behavior to the more practical
continuum scale, is important to give proper descriptions of porous media flow
systems.

4.1 A generalized two phase flow model

As mentioned in the introduction, Section 1.1 on page 3, traditional multi-phase
flow models are usually based on direct extensions of one-phase flow equations.
These models aread hocand involve hidden assumptions that may be difficult
to uncover in a practical application. Furthermore, it may not be clear whether
all important physical effects are appropriately accounted for in the mathematical
formulations. This may also explain the apparent hysteresis in the constitutive
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relationships.
A rigorous approach to modeling of multi-phase flow is given by Gray and

Hassanizadeh, e.g. [2]. This approach starts from first principles and is aiming
at a more complete description of multi-phase flow phenomena. In particular,
their theoretical arguments imply that fluid-fluid interfacial areas,awn, should be
primary variables in the mathematical formulation of two-phase flow. Their ana-
lysis, based on thermodynamics, also includes other variables, like contact lines
and common points, but these will not be considered here. In this theory, it is con-
jectured that capillary-pressure hysteresis is a consequence of incompleteness of
traditional models. A non-hysteretic constitutive relationship would require that
thePc−sw relationship should be extended by at least a third variable, e.g.Pc, sw,
andawn. This conjecture has been tested using computational (quasi-static) pore-
scale network models, see [28, 29, 30]. The results obtained from these network
models give some support to the theoretical conjecture. However, experimental
validation is still required.

An important issue is whether the inclusion of interfacial area in a two-phase
flow model changes the nature of the solution for the saturation. Of course there
are situations where the interface itself is of interest, but in the oil reservoir set-
ting the saturation is what really matters. In Paper D, which is presented in the
following sections, this question is addressed and to some degree answered.

4.1.1 Assumptions and governing equations

Following the paper we will take a general set of equations based on the theory
of Gray and Hassanizadeh, [2], and reduce them to a system of two equations for
saturation and interfacial area using a standard fractional flow formulation. The
major assumptions applied are:

1. No phase change occurs;
2. Isothermal system;
3. Immobile, non-deforming solid;
4. Common lines are neglected;
5. The solid-fluid interface dynamics are negligible (i.e no film flow);
6. Massless fluid-fluid interface;
7. Incompressible fluids;
8. Inertial terms are negligible in the momentum equations;
9. Interfacial tensions are all constant and specified.

These assumptions most certainly restrict the applicability of the model, but
they are needed to reduce the complexity of the general set of equations. In a
preliminary analysis such as this, the model is still useful because it enables us
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to get some insight into the properties of two phase flow models that include
interfacial area. Notice, that by using this general framework all the assumptions
must be clearly stated.

A complete list of equations and variables is found in Paper D. Only the most
important equations will be given here. The mass and momentum conservation
for each phase is governed by standard equations. The interface was assumed
massless and hence there is no mass conservation equation for the interface. The
momentum conservation equation for a massless interface indicates that the inter-
facial velocity is a weighted sum of the velocities of the adjacent phases. Thus,
the following equality is assumed:

(Rw
wn+Rn

wn) ·vwn = Rw
wn ·vw +Rn

wn ·vn (4.1)

whereRα
wn is the resistance term for theα-phase due to thewn-interface (fluid-

fluid) andRα
αs the resistance term for theα-phase due to theαs-interface (fluid-

solid). vα is the velocity ofα-phase andvwn is the velocity of thewn-interface.
Resistance terms can be viewed upon as the inverse of conductance and is a func-
tion of K−1.

In addition, a geometry equation for interfacial area has to be satisfied:

∂awn

∂t
+∇· [Gwnawn ·vwn] = 0. (4.2)

Hereawn is the specific interfacial area (fluid-fluid) andGwn is a geometric tensor.
Also, the capillary pressure equation

γwnJw
wn = pw −pn = −Pc (4.3)

must hold, whereJw
wn is the average curvature andγwn is the surface tension of the

wn-interface.
Equation (4.2) and (4.3) are in fact simplified versions of the corresponding

equations arising from the general framework using the assumptions outlined in
the start of this section. In Equation (4.2) the production term is neglected. In
general, this is a significant assumption that limits the general applicability of
the system of equations. However, it will be applied consistently here with the
objective of performing a preliminary analysis of a simplified set of equations.
Equation (4.3) is reduced from a dynamic capillary equation by neglecting the
time derivative of the saturation. We refer to Section 2 in Paper D for the full
equations and motivations. Notice, however, that adding a production term in
Equation (4.2), might make it hard, if not impossible, to find a fractional flow
formulation of the equations.
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4.1.2 Fractional flow formulation

By eliminating all variables but saturation and interfacial area, and neglecting the
gravity terms, we get the following fractional flow formulation

ε
∂sw

∂t
+u ·∇ ·Fw = ∇· (Dw ·∇Pc),

∂awn

∂t
+

1
3

(u ·∇ · (Fwna
wn)) =

1
3
∇· (awnDwn ·∇Pc)

(4.4)

whereFα is the fractional flow (of the phase or interface),Dα is the diffusion
function (for the phase or interface),u is the Darcy velocity andε is the porosity.
This constitutes a 2×2 coupled system for the saturation and the interfacial area.

To close the system we need a constitutive relationship for capillary pressure
as a function of saturation and interfacial area. To our knowledge, no such rela-
tionship has been determined experimentally. Thus, we construct this relationship
based on results from network models, see e.g. [29]. In addition, functional forms
of the resistance terms are needed in the fractional flow and diffusion function.
Details on this are given in Section 4 of Paper D.

There are two difficulties related to the system in (4.4), and both arise from the
capillary pressure relationship. First of all thePc− sw −awn surface is not defined
for all value pairs of saturation and interfacial area. This might be solved by
some kind of (smooth) extrapolation or extention of the surface. We avoided this
problem by doing a careful choice of initial values. This is in general not enough
since one cannot guarantee that the solution will stay on the surface. However,
it is possible to reformulate the system as a set of equations for saturation and
capillary pressure. We did not pursue this in the article, but it is our assumption
that this might be less restrictive than the proposed system.

The second problem is that the system in some sense is overdetermined. If the
system is solved sequentially, the (new) saturation and the (old) capillary pressure
will be available when the interfacial area is solved for. Hence, we are then in the
position to get the interfacial area from the capillary pressure relationship without
actually solving the equation. This was not investigated any further, but we find it
appropriate to point this problem out.

For a numerical example we refer to Paper D again. Some concluding remarks
follow in Section 4.3.

4.2 Dynamic network models and equation testing

Network models have been used to investigate physical phenomena in multi phase
flow that are hard to observe in laboratory experiments. Typically, these models
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have been static in the sense that they just track the interface from one stable
position to another without taking time into account. This is sufficient for study-
ing fingering effects, functional relationships that do not depend on time and so
on. One example that illustrates what can be achieved by such models, is the de-
termination of a functional relationship between capillary pressure, saturation and
interfacial area, see e.g. [29].

The view that interfacial area plays an important role in porous media flows
is supported by the already mentioned theoretical developments reported by Gray
and Hassanizadeh, [2]. In their work, a thermodynamic approach is used to show
that the relationship between capillary pressure and saturation is incomplete, and
that interfacial area should enter into the relationship.

One of the problems associated with tests of theories involving interfacial area,
is the lack of experimental validation. It is very difficult to determine interfacial
area, and even more difficult to determine interfacial dynamics, which tends to
occur on very short time scales. Therefore, testing of these theories must rely
on using specific kinds of computational models, including so-called pore-scale
network models. Pore-scale network models typically represent the pore space
of the medium using simplified geometries. Within this geometric representation
equations are solved to explicitly track the location of all fluid-fluid interfaces
within the network.

The models are often run to mimic typical laboratory experiments, such as
pressure cell tests to determine the relationship between capillary pressure and
relative fluid saturation. This is accomplished by using lattices that are sufficiently
large to define meaningful continuum-scale measures, such as fluid saturation. In
other words, the network should represent one or more REVs. Results of such
simulations show all of the major features of experimental relationships, including
finite entry pressures, residual saturations, and hysteresis.

Two general types of pore-scale network models may be identified: quasi-
static models and dynamic models. In a quasi-static model, the location of any
fluid-fluid interface is governed by equilibrium considerations only. Equilibrium
states are determined from the Young-Laplace equation, which relates the capil-
lary pressure to the interfacial tension and the interface curvature, viz.

Pc =
σ

R
. (4.5)

In this equation,σ is the interfacial tension andR is the radius of curvature. For a
given imposed capillary pressure there are rules to determine whether or not an in-
terface is stable at a given location. If the interface is unstable, it is moved through
the network until a stable position is found, or until it exits the network. No time
dependence is included in the calculation. Examples of these kinds of models
include those described by Dullien [31], Ferrand and Celia [32], and Reeves [28].
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A second type of pore network model involves computation of transient beha-
vior associated with interface movement. That is, unstable interfaces are tracked
through the network until a stable position is reached, but the transient nature of
the movement from one position to another is explicitly described and modeled.
Most pore-scale network models reported in the literature are quasi-static, but
there are several dynamic models that have been developed. These include the
model of Blunt and King [33]; a series of models by Payatakes and coworkers
(see, for example, Valavanides and Payatakes [34]), and more recent models by
Mogensen and Stenby [35], Aker et al. [36], Hassanizadeh (Dijkstra et al. [37])
and by Dahle and Celia [38]. The models of Payatakes are the most comprehens-
ive, including a focus on mobilization of trapped fluids and so-called drop traffic
flows.

To study the equations in the generalized two phase flow model in Section 4.1,
static network models are not sufficient; we need dynamic network models. In
Paper E, we used a model based on the original work of Blunt and King [33]
and calculated dynamic interfacial behavior, with focus on volume-averaged in-
terfacial velocity. The most important features of the model are described, and a
definition of average interfacial velocity is provided, in the next section. In the
paper specific calculations were performed to demonstrate how continuum-scale
measures of both interface velocity and phase velocity can be quantified. The
model was then used to test a specific theoretical conjecture regarding interfacial
velocity and its relationship to average phase velocities.

4.2.1 The dynamic network model

The pore-scale network model used in Paper E is an extension of the model of
Blunt and King [33]. The pore network is a rectangular lattice, with spherical
pore bodies and cylindrical pore throats, with pore-size distributions defined for
the bodies and throats, see Figure 4.1 below. Following Blunt and King [33], the
model is simplified by the following assumptions:

1. Local capillary pressure in the pore throats is assumed to be negligible, so
that only one pressure exists within a pore body, independent of the local
saturation of that pore body.

2. While the radius of a pore throat serves to define its hydraulic conductance,
the volume contributed by the pore throat is assumed to be small relative
to volumes of pore bodies. Therefore, movement of an interface through a
pore throat is assumed to occur instantaneously.

3. Flow within pore throats is assumed to be laminar and given by Poiseuille’s
law, see Equation (4.8) and (4.7).

4. Both fluids are assumed to be incompressible.
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Figure 4.1: Example of a network model showing stable displacement.

With these assumptions, the set of governing equations is relatively simple. Each
equation must obey volume conservation within each pore body, such that

Vi
∂Sα

i

∂t
+
∑

j∈Ni

Qα
ij = 0. (4.6)

HereVi represents the volume of pore bodyi, Sα represents local saturation (per-
cent ofVi filled with fluid α), Qα

ij is the volumetric flux from pore bodyi to it’s
neighborj, andNi is a list of all neighbor pore bodies for pore bodyi. This equa-
tion is written for both fluid phases, wetting (α = w) and non-wetting (α = n). The
volumetric flux is related to pressures at the pore bodies by Poiseuille’s law,

Qα
ij = Gα

ij(p
α
i −pαj ) (4.7)

wherepαl represents pressures, andGα
ij represents hydraulic conductance in the

pore throat connecting pore bodiesi andj. Because the pore throats are cylindrical
and interface movement through them is instantaneous, only one fluid can occupy
a given pore throat at a given time. Therefore, the fluid occupying the pore throat
has conductance

Gα
ij =

πr4
ij

8µαlij
, (4.8)
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while the non-occupying fluid has zero conductance. Hererij andlij is the radius
and the length of the pore throat, respectively. Summation of Equation (4.6) over
the two phases gives the equation

∑

j∈Ni

(Qw
ij +Qn

ij) = 0 (4.9)

Substitution of Equation (4.7) for each of the phase fluxesQα
ij provides a set of al-

gebraic equations with the pore-body pressures as unknowns. These can be solved
using standard matrix solution methods. Time steps are chosen so that during any
time step, only one pore body reaches full non-wetting phase saturation.

As the model size increases the matrix solver becomes very important. The
matrix is sparse, banded and also symmetric if contributions from boundary (and
trapped) pore bodies are moved to the right hand side. However, having a condi-
tion number of 10−8 or more, the matrix system is hard to solve. Using a direct
solver will slow the computations down dramatically even for matrices with nar-
row band width. We used a preconditioned conjugate gradient method with in-
complete Cholesky factorization as preconditioner, and it worked very well. For a
network with 5000 nodes the speed-up compared to a direct solver was only four,
but for a network with 50000 nodes the speed-up was over 100. These results are
for illustration only since we did not do a rigorous convergence test. The num-
ber of off diagonal rows that are non-zero is equal to the maximal coordination
number of the nodes. For a three dimensional rectangular lattice the maximal co-
ordination number is six, i.e, one node can be connected to six other nodes. For a
irregular lattice this number may increase and having a good matrix solver is even
more important.

Overall, the algorithm proceeds as an Implicit Pressure Explicit Saturation
(IMPES) routine. The major unknowns are the pressure and saturation of each
pore body. For a given distribution of fluids, phase conductances are calculated
and substituted into Equation (4.9), which is solved for a new pressure field. That
pressure field is then used in Equation (4.7) to compute fluxes through the pore
throats. These fluxes are then used (in conjunction with knowledge of the current
saturations in each pore body) to determine the minimum filling time for each of
the pores, and this is set as the time step size. Then Equation (4.6) is used to
update the saturations in each pore body. Newly created interfaces are tested for
stability, conductances are updated, and the procedure is repeated.

4.2.2 Calculating average variables

Following the article we now define average variables over a representative
volume. The volume might be chosen to correspond to the entire volume of the
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network, or it might be defined as essentially two-dimensional slices through the
network in the direction perpendicular to the macroscopic direction of displace-
ment. In either case, the volume-averaged saturation is defined as

Sα =

∑

i∈Nvol
ViS

α
i

∑

i∈Nvol
Vi

=
1
V

∑

i∈Nvol

ViS
α
i (4.10)

whereV is the volume of the chosen averaging region, andNvol denotes the set
of pore bodies within the chosen averaging volume. Capillary pressure is defined
as the difference between volume-averaged phase pressures, such that

Pc = pn−pw =
1
V

(

∑

i∈Nvol

ViS
n
i pi−

∑

i∈Nvol

ViS
w
i pi

)

. (4.11)

Herepi corresponds to the pressure in pore bodyi. Notice that while no local
capillary pressure exists (by assumption in the model), a macroscopic capillary
pressure is still well defined based on the average phase pressures.

Average properties associated with interfaces require somewhat more care in
their definitions. Because no capillary pressure is associated with individual pore
bodies, the shape (especially the curvature) of a particular interface is not spe-
cified. The only information for active (non-trapped) interfaces is that they reside
in a specific pore body. The interfacial area in a pore body is of course a function
of saturation, but for simplicity we assumed it to be constant equal to the cross sec-
tion of the pore body. Those interfaces trapped at the entrance of pore throats are
assigned the area associated with the diameter of the pore throat. Therefore, the
specific interfacial area (defined as the amount of interfacial area per unit volume
of porous medium) is defined as

awn =
1
V

(

∑

i∈Nvol

awni +
∑

j∈Mvol

awnj

)

=
Awn

V
(4.12)

whereMvol denotes the set of pore throats that are contained within the averaging
volumeV .

The averaged variable that is the most difficult to define is the volume-
averaged interfacial velocity. To define a finite local velocity that preserves proper
global velocities, the pore filling associated with saturation changes is extended in
length to cover the combined pore body – pore throat combination. The ’locally
averaged’ velocity for a specific interface is defined as

‖vwni ‖ = li,j
∆Sn

i

∆t
. (4.13)
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The double brackets signify magnitude of the interface velocity vector, the length
li,j denotes the length of the pore throat through which the entering interface
travels plus the diameter of the pore bodyi, and∆Sn

i denotes the saturation change
over the time interval∆t. The direction assigned to the interfacial velocity vec-
tor is the average of the total inflow vector and total outflow vector. Finally, the
volume-averaged velocity vector is given by the sum of each interfacial velocity
weighted by the area of the interface,

vwn =
1

Awn

∑

i∈Nvol

vwni awni (4.14)

Volume-averaged phase velocities may be defined analogously to average inter-
facial velocities with volume replacing areas as the appropriate weights. Hence,

vα =
1

V Sα

∑

i∈Nvol

vαi ViS
α
i (4.15)

wherevαi is given by an equation similar to Equation (4.13), with appropriate
modification for the case ofS = 1 orS = 0.

Another possible definition of velocities arises if we consider the flow in the
pore throats and pore bodies separately. Let

‖vαjt‖ =
r2
j

8µαlj
‖∆pj‖ (4.16)

and

‖vαib‖ = 2R2
i

∆Sn
i

∆t
(4.17)

be the phase velocity in pore throatj and pore bodyi, respectively. For the throats
the actual flux is used to find the velocity, and for the pore bodies a ’locally aver-
aged’ velocity. Then we define the volume-averaged phase velocity as

vα =
1

V Sα

(

∑

i∈Nvol

vαibVibS
α
i +

∑

j∈Mvol

vαjtVjt
)

, (4.18)

and the volume-averaged interface velocity analogously. This definition was not
used in the article since it did not reveal any new information, i.e, the results from
the equation testing were qualitatively the same.

4.2.3 Equation testing

In Paper E we wanted to test Equation (4.1). The following procedure was used:
The phase velocities from the network model were used to get the theoretical inter-
face velocity which then was compared to the interface velocity from the network
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model. As the numerical results from the paper show, the match depends on the
flow regime, i.e., stable or unstable, and whether or not the trapped interfaces are
included.

In Paper D we did not discuss the freedom associated with Equation (4.1). For
a scalarK we get the following expression for the interface velocity

vwn = F wvw +F nvn =
fw

fw +fn
vw +

fn

fw +fn
vn (4.19)

where

fw = µwhw(sw)(sw)2,

fn = µnhn(sn)(sn)2,

when the definitions of the resistance terms from Paper D are used. Forhα we
assume a more general form than was used in the article, namely

hα(sα) = βα(1− sα)p (4.20)

To determine theβ-parameters we put the following restrictions onF α:

lim
sw→1

F w(sw) = 0 (4.21)

lim
sw→0

F w(sw) = 1 (4.22)

lim
sw→1

F n(sn) = lim
sn→0

F n(sn) = 1 (4.23)

lim
sw→0

F n(sn) = lim
sn→1

F n(sn) = 0 (4.24)

These restrictions are motivated by the observation that the interface velocity is
close to the non-wetting phase velocity when the drainage starts and close to the
wetting phase velocity when close to residual saturation. Below, the limits are
displayed for different choices ofp:

p = 1 p = 2 p > 2
limsw→1F

w(sw) 1 Lw 0
limsw→0F

w(sw) 0 Lw 1
limsw→1F

n(sn) 0 Ln 1
limsw→0F

n(sn) 1 Ln 0

The entityLα is given byLα = µαβα/(µwβw +µnβn). We observe thatp has to
be larger than two in order to satisfy Equation (4.21) - (4.24). We do not get any
constraints on the choice ofβα. Actually, several test cases showed that the best
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choice (measured in the quality of the match between the theoretical and network
model interface velocity) wasβα = 1/µα. Together with the choice ofp equal to
three, this defined the relationship between the volume-averaged interface velocity
and the volume-averaged phase velocities that we tested in the article.

4.3 Concluding remarks

In Paper D initial numerical solutions for an enhanced model of two phase flow
which includes fluid-fluid interfacial area as a primary variable were presented.
For the particular case studied, the saturation profiles show little dependency on
interfacial area. Since the correct functional forms of the resistance terms used in
the model are not known, more general studies are required to assess the practical
importance of the interfacial area equations to flow modeling. In addition, numer-
ical solutions need to be obtained for cases where the simplifying assumptions
applied to the governing equations are systematically examined. The results in
this paper represent a starting point for this more general analysis.

While we cannot reach any general conclusions based on our initial calcula-
tions, we can make a few general observations. First, inclusion of the interfacial
area equations allows for direct calculation of the amount of interfacial area in
the system. Equations written for the individual phases also incorporate effects of
the interfaces through functional dependencies in the appropriate nonlinear coef-
ficients. In addition, inclusion of a unique functional relationship betweenPc,
sw, andawn, allows hysteresis within thePc − sw plane to be incorporated into
the algorithm with no additional effort. Arbitrary drainage and imbibition cycles
can be simulated without redefining the constitutive curves. This appears to be a
major advantage of this approach to multi phase flow modeling. The cost of such
additional generality and flexibility is the need to identify and quantify additional
parameters, as well as their functional dependencies on interfacial area. Addi-
tional equations also need to be solved compared to the traditional equations for
multi phase flow.

The overall significance of interfacial areas in the mathematical description
of multi phase flow in porous media, remains to be determined. The degree to
which the governing equations can be simplified, must be explored numerically.
This requires a systematic and comprehensive numerical approach. The results
presented in Paper D represent a first contribution to the overall numerical study.

The dynamic network model presented in Paper E is relatively simple and
leads to numerical calculations that are straight-forward to implement. The cal-
culation of averages allows many continuum-scale variables to be calculated, and
thereby facilitates testing of new theories that involve non-traditional variables.
We focused on interfacial dynamics, and calculation of average interfacial ve-
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locities. The results were used to test a specific conjecture that relates average
interfacial velocity to average phase velocities.

In particular, we conclude that the proposed equation that relates interfacial ve-
locity to phase velocities only hold under very specific conditions, namely piston-
like stable displacements in which trapped interfaces are neglected. Under more
general conditions the equation provides a poor prediction. To close the extended
set of equations for two-phase flow, which include specific interfacial area as a
primary variable, new constitutive equations need to be developed.

While Paper E focused on a specific constitutive equation, the general ap-
proach is illustrative for the kind of problems that can be solved with dynamic
pore-scale network models. Because the local-scale information is highly de-
tailed, many upscaled variables can be calculated. This greatly facilitates testing
of new theories, and has the potential to provide significantly improved insight
into fundamental behavior of two-phase porous media flows.





Chapter 5

Conclusions

This chapter contains a summary of conclusions and remarks made in the previous
chapters. Since the presented work is done in collaboration with other researchers,
I will also point out some of my main contributions.

Corrected operator splitting for systems. In Paper A results for two particular
2× 2 systems describing flow in porous media were presented. Simula-
tions for a two-phase multicomponent model, a polymer system, and for a
triangular three-phase flow model were reported. In addition, the polymer
system was solved in 2D using dimensional splitting.

We demonstrate numerically that operator splitting (OS) methods for sys-
tems of convection-diffusion equations in one space dimension, have a tend-
ency to be too diffusive near viscous shock waves. The idea behind the
scalar COS method is to use the wave structure from the convection step
to identify where the nonlinear splitting error (or entropy loss) occurs. The
potential error is then compensated for in the diffusion step (or in a separate
correction step).

Similar to the scalar case, the splitting error is closely related to the local
linearizations introduced implicitly in the convection steps due to the use
of an entropy condition. A COS method for systems was proposed. The
numerical examples demonstrate that the COS method is significantly more
accurate than the corresponding OS method when the splitting step is large
and the solution consists of (moving) viscous shock waves.

My contributions:The triangular three-phase flow solver was implemented
by me, using the theory in [24]. To our knowledge this was the first attempt
to solve this system using a COS method. In the process I also contributed
to the general methodology and to the definition of the residual flux for
systems.
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Front tracking along streamlines. For the detailed discussion of the numerical
results, we refer to Paper B and C. A front tracking streamline method
(SFTM) for multi-phase flow in porous media was presented. The main
advantage of this method is to handle the advective part of the nonlinear
transport using streamline information, and still be able to solve for dif-
fusive/dispersive effects on a regular grid. The method has been compared
with a Modified Method of Characteristics (MMOC) and a Fast March-
ing (FMM) approach for two-phase flow problems. The solutions obtained
seem to be equally accurate. The SFTM and the MMOC are comparable
when it comes to computational efficiency, whereas the FMM gives a much
faster advection solver. However, compared to the MMOC and the FMM,
the SFTM is more flexible and has less restrictions with respect to the com-
plexity of the problems that may be solved.

Using theH-set method, the SFTM approach has been extended to solve
three-phase flow problems which are triangular. Since most three-phase
flow problems are fully coupled in both saturations, triangular systems can
only be approximate. However, because the viscosity of the gas is much
smaller than the viscosities of the liquid phases the gas-phase is often nearly
decoupled from the other phases. We showed that the solution of anaive
triangular approximation of a fully coupled system, may and may not be a
good approximation to the solution of the fully coupled system.

In these two papers standard operator splitting was applied, i.e, without
correction in the diffusion step. Including a correction term would pos-
sibly give sharper fronts, as explained in Chapter 2. However, defining
the residual flux is not straight forward for multi dimensional problems. A
main difficulty is to find the correction domain. After obtaining the solu-
tion along the streamlines in the hyperbolic step, one needs to project not
only the solution, but also the correction interval down onto the grid for the
parabolic step. To find a local correction domain, information from several
streamlines at a time must probably be used. Hence, it might also be hard
to choose the correct shock values.

My contributions:I implemented the three phase streamline solver, most of
the two phase streamline solver and the streamline generator (for a given
velocity field). I would like to thank Knut A. Lie for letting me use his
front tracker code and Johnny Frøyen for the pressure/velocity solver. I
contributed strongly to the development of these methods and in particular
with questions related to triangular systems.

Interfacial area and dynamic network models. In Paper D initial numerical
solutions for an enhanced model of two phase flow which includes fluid-
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fluid interfacial area as a primary variable were presented. For the particu-
lar case studied, the saturation profiles show little dependency on interfacial
area. Since the correct functional forms of the resistance terms used in
the model are not known, more general studies are required to assess the
practical importance of the interfacial area equations to flow modeling. In
addition, numerical solutions need to be obtained for cases where the sim-
plifying assumptions applied to the governing equations are systematically
examined. The results in this paper represent a starting point for this more
general analysis.

While we cannot reach any general conclusions based on our initial cal-
culations, we can make a few general observations. Firstly, inclusion of
the interfacial area equations allows for direct calculation of the amount of
interfacial area in the system. Equations written for the individual phases
also incorporate effects of the interfaces through functional dependencies
in the appropriate nonlinear coefficients. In addition, inclusion of a unique
functional relationship betweenPc, sw, andawn, allows hysteresis within the
Pc−sw plane to be incorporated into the algorithm with no additional effort.
Arbitrary drainage and imbibition cycles can be simulated without redefin-
ing the constitutive curves. This appears to be a major advantage of this ap-
proach to multi phase flow modeling. The cost of such additional generality
and flexibility is the need to identify and quantify additional parameters, as
well as their functional dependencies on interfacial area. Additional equa-
tions also need to be solved compared to the traditional equations for multi
phase flow.

The overall significance of interfacial areas in the mathematical description
of multi phase flow in porous media, remains to be determined. The de-
gree to which the governing equations can be simplified, must be explored
numerically. This requires a systematic and comprehensive numerical ap-
proach. The results presented in Paper D represent a first contribution to the
overall numerical study.

The dynamic network model presented in Paper E is relatively simple and
leads to numerical calculations that are straight-forward to implement. The
calculation of averages allows many continuum-scale variables to be cal-
culated, and thereby facilitates testing of new theories that involve non-
traditional variables. We focused on interfacial dynamics, and calculation
of average interfacial velocities. The results were used to test a specific con-
jecture that relates average interfacial velocity to average phase velocities.

In particular, we conclude that the proposed equation that relates interfacial
velocity to phase velocities only hold under very specific conditions, namely
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piston-like stable displacements in which trapped interfaces are neglected.
Under more general conditions the equation provides a poor prediction. To
close the extended set of equations for two-phase flow, which include spe-
cific interfacial area as a primary variable, new constitutive equations need
to be developed.

While Paper E focused on a specific constitutive equation, the general ap-
proach is illustrative for the kind of problems that can be solved with dy-
namic pore-scale network models. Because the local-scale information is
highly detailed, many upscaled variables can be calculated. This greatly
facilitates testing of new theories, and has the potential to provide signi-
ficantly improved insight into fundamental behavior of two-phase porous
media flows.

My contributions:In Paper D the major part of the development of the gen-
eral two phase flow model and the implementation of the numerical solver
was done by me. In Paper E an existing network model was improved and
extended by me to allow for calculation of several average variables and
general rectangular geometry. In addition I was a major contributor in the
discussions concerning the definition of average quantities based on the pore
scale calculations.
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