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ABSTRACT: Based on the procedure of (Gray & Hassanizadeh 1998) we state macroscale conservation equa-
tions for multi phase flow in porous media including interfacial area as a variable. The phases we consider are a
solid phase, a wetting phase and a non-wetting phase. Some modeling work is done to decide the functionality
of the coefficients in the equations. In particular we construct constitutive relationships for the interfacial area as
a function of saturation and capillary pressure, and the resistance terms. The final set of equations is reduced to
a 2× 2 system with the saturation and the interfacial area as independent variables. Some preliminary numerical
experiments are reported.

1 INTRODUCTION
Multi phase flow has been intensively studied in fields
like reservoir mechanics, ground water research and
so on. Models in these fields are normally based on
generalisations from one phase flow, e.g. Darcy’s law
is generalised through the introduction of relative per-
meability. In this work we take another approach.
Conservation equations for a complete two phase
model including all physical effects are used. These
equations are derived through a general and system-
atic procedure that employs conservations equations
at the microscale and thermodynamics analysis, see
(Gray & Hassanizadeh 1998; Gray 1999; Gray 2000).
This model is very complex and contains a large num-
ber of coefficients that must be specified for numerical
computation. In this preliminary study, assumptions
are made to reduce the number of variables and facil-
itate the study of the behaviour of the system of equa-
tions. In fact, the general set of equations is reduced
to a 2× 2 system that has saturation and interfacial
area as the primary dependent variables.

There are three major reasons for this approach:
First, when the complete system is simplified, there
are no hidden assumptions, and hence it is easier to
see what the limitations of the model are. Secondly,
there may be practical reasons for calculating amount
of interfacial area. Third, the inclusion of interfacial
area may help in reducing apparent hysteresis in the
model. Thus, the development of models determin-
ing the amount of interfacial are important. Both rely
on the reasoning that it is better to simplify a gen-
eral model than to generalise a simple model. In fact,
hysteresis effects, e.g. inPc− sw curves, may be a re-

sult of taking one phase flow models and generalising
them directly to multi phase flow. On the other hand,
these effects can be explained and eliminated through
a more general approach.

In Section 2 the model and the conservation equa-
tions are stated. The basic assumptions are listed and
simplifications made. The model is rewritten into a
fractional flow formulation in Section 3. This is done
for computational and analytical purposes. The re-
sistances introduced in Section 2 is parameterised in
Section 4, and capillary pressure is parameterised in
Section 5. A numerical experiment is given in Section
6, and some conclusions and final remarks are given
in Section 7.

2 CONCEPTUAL MODEL
The following terminology will be used:
as specific area of the solid phase surface.
awn specific interfacial area (fluid-fluid).
aαs specific area of the

αs-interface (fluid-solid).
Gwn geometric tensor.
Jwwn average curvature.
K permeability for the medium.
Lp, Lx coefficients in linearised equations.
pα pressure ofα-phase.
Rα
wn resistance for theα-phase due

to thewn-interface (fluid-fluid).
Rα
αs resistance for theα-phase due

to theαs-interface (fluid-solid).
sα saturation of theα-phase.
u total Darcy velocity.
uα Darcy velocity for theα-phase.
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vα velocity ofα-phase.
vwn velocity of thewn-interface.
xwss fraction of the solid surface

covered by the wetting phase.
γαβ surface tension of theαβ-interface.
ε porosity of the medium.
εα = εsα volume fraction of theα-phase.
µα viscosity for theα-phase.
ρα density ofα-phase.
Φw average contact angle.

2.1 Conservation equations
Based on the general theory in (Gray & Hassanizadeh
1998; Gray 2000) and the assumptions below we state
a simplified set of equations modeling two phase flow
in porous media that include interfacial area as a vari-
able. The basic assumptions are:
• No phase change occurs,
• isothermal system,
• immobile, non-deforming solid,
• common lines are neglected,
• the solid-fluid interface dynamics are negligible

(i.e no film flow),
• massless fluid-fluid interface,
• inertial terms are negligible in the momentum

equations and
• interfacial tensions are all constant and specified.
Because the solid phase is immobile and non-

deforming we have a two phase immiscible flow sys-
tem where the wetting phase is denotedw and the
non-wetting phasen.

In addition the solid is non-deforming so thatvs = 0
and we get

vα,s = vα −vs = vα, α = w,n,wn,

and
Ds

Dt
=
∂

∂t
+vs ·∇ =

∂

∂t
.

Note that bold capital and lowercase letters denote
matrices and vectors, respectively.

From these assumptions, the following equations
can be stated:

Mass conservation for thew-phase:

Dw(εwρw)
Dt

+εwρw∇·vw = 0. (1)

Momentum conservation for thew-phase:

−εw∇pw+εwρwg=

(Rw
wn+Rw

ws) ·vw −Rw
wn ·vwn.

(2)

Mass conservation for then-phase:

Dn(εnρn)
Dt

+εnρn∇·vn = 0. (3)

Momentum conservation for then-phase:

−εn∇pn+εnρng=

(Rn
wn+Rn

ns) ·vn−Rn
wn ·vwn.

(4)

The momentum conservation equation for a mass-
less interface indicates that the interfacial velocity
is a weighted sum of the velocities of the adjacent
phases. Here, for a masslesswn-interface, the follow-
ing equality is assumed:

(Rw
wn+Rn

wn) ·vwn = Rw
wn ·vw +Rn

wn ·vn. (5)

Geometry equation for interfacial area:

∂awn

∂t
−εJwwn

∂sw

∂t
−as cosΦw

∂xwss
∂t

=

−∇· [Gwnawn ·vwn].

(6)

Dynamic capillary pressure equation:

ε
∂sw

∂t
= −Lp[pn−pw + γwnJwwn]. (7)

Linearised constitutive equation for surface area frac-
tion:

as
∂xwss
∂t

= −Lx[γws− γns+ γwn cosΦw]. (8)

The Darcy velocity for phaseα is given byuα =
εαvα = εsαvα. We substitute these relationships into
Equation (1)-(6). The velocity for the interface be-
tween the fluids,vwn, will be kept as it is.

To further simplify the set of equations we ad-
ditionally assume incompressible flow. Equation (1)
and (3) then reduces to

ε
∂sw

∂t
+∇·uw = 0, (9)

ε
∂sn

∂t
+∇·un = 0. (10)

In some simple models, e.g. bundle of capillary tubes,
it is reasonable to assume that there will be no pro-
duction ofwn-interfacial area as saturation changes.
Therefore, the second and third terms of Equation
(6) will cancel. Application of this condition, in gen-
eral, is a significant assumption that limits the general
applicability of the system of equations. However, it
will be applied here consistent with the objective of
performing a preliminary analysis of a simplified set
of equations. This assumption eliminates the need to
model the dynamics of thews-interfacial area, Equa-
tion (8), and reduces Equation (6) to:

∂awn

∂t
+∇· [Gwnawn ·vwn] = 0. (11)
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The transfer coefficient,Lp , in Equation (7) is also
considered large so that Equation (7) reduces to:

γwnJwwn = p
w −pn = −Pc. (12)

Adding Equation (9) and (10) and observing that
sw + sn = 1 gives

∇· [uw +un] = ∇·u = 0

where
uw +un = u (13)

is the total Darcy velocity. In 1Du is a constant.
We are now in the position to rewrite Equation (2),

(4), (5), (9)-(12) to a 2× 2 system of equations in-
cluding fractional flow and capillary diffusion terms.
This will be done in the following sections.

3 FRACTIONAL FLOW FORMULATION
From Equation (5) we get

vwn = Aw ·uw +An ·un (14)

where

Aα def
= (Rw

wn+Rn
wn)

−1 ·Rα
wn/ε

α, α = w,n.

Using this expression forvwn in Equation (2) and (4)
we get

−εwρw∇ψw = Bw ·uw −Rw
wn ·An ·un, (15)

−εnρn∇ψn = Bn ·un−Rn
wn ·Aw ·uw, (16)

whereψα = pα/ρα −gz and

Bα
def
= (Rα

wn · (I −Aα)+Rα
αs)/ε

α, α = w,n.

Define

Cn def
=Rw

wn ·An · (Bn)−1,

Cw def
=Rn

wn ·Aw · (Bw)−1.

Add Cn times Equation (16) to (15), andCw times
Equation (15) to (16) to getuα expressed as a sum of
the phase pressures:

uw = − (Mw)−1 · [εwρw∇ψw+

εnρnCn ·∇ψn], (17)

un = − (Mn)−1 · [εnρn∇ψn+

εwρwCw ·∇ψw], (18)

where

Mw def
= Bw −Cn ·Rn

wn ·Aw,

Mn def
= Bn−Cw ·Rw

wn ·An.

Mα is the total mobility for theα-phase and Equation
(17) and (18) are generalised Darcy’s laws. Note that
the superficial velocity of each phase now depends on
the potential of the other phase, and that resistances
also depends on the amount of interfacial area.

Equation (12) gives the following relationship be-
tweenψn andψw

ρwψw −ρnψn = pw −pn+ (ρn−ρw)gz

= (γwnJwwn)+ (ρn−ρw)gz

= −Pc+ (ρn−ρw)gz (19)

We then have 6 unknowns

uw,un,u,ψn,ψw andPc.

Using Equation (13), (17)-(19) we are able to express
uw andun as a function of the total Darcy velocityu
and the capillary pressurePc.

uw = Fw ·u+Dw ·ρn,wg−Dw ·∇Pc, (20)

un = Fn ·u+Dn ·ρn,wg−Dn ·∇Pc, (21)

where

ρn,wg= (ρn−ρw)g,

Fw = (εw +εnCn) ·Mn ·N−1,

Fn = (εwCw +εn) ·Mw ·N−1,

Dw = εnεw(1−Cw ·Cn) ·N−1 = −Dn,

and

N = εnMw +εnCn ·Mn+εwCw ·Mw +εwMn.

From Equation (14) we get the following expression
for the speed of the interface between the fluid phases

vwn = (Aw ·Fw +An ·Fn) ·u+

(Aw ·Dw +An ·Dn) · (ρn,wg−∇Pc)

= Fwn ·u+Dwn · (ρn,wg−∇Pc)

whereFwn andDwn is defined implicitly.

3.1 Resulting 2× 2 system
Substituting the above expression foruw andvwn into
Equation (9) and (11) we get the following equations:

ε
∂sw

∂t
+u ·∇ ·Fw +g·∇ ·Dw

= ∇· (Dw ·∇Pc)
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∂awn

∂t
+

1
3

(u ·∇ · (Fwnawn)+ρn,wg·∇ · (Dwna
wn))

=
1
3
∇· (awnDwn ·∇Pc))

This constitutes a 2× 2 coupled system for the satu-
ration and the interfacial area.

4 PARAMETERISATION OF RESISTANCES
To close the above system we need to specify the re-
sistances. We assume the functional form ofRα

αβ to
be

Rw
wn = µ

wgwwn(a
wn)hwwn(s

w)K−1εw
2
,

Rw
ws = µ

wgwws(a
ws)hw(sw)K−1εw

2
,

Rn
wn = µ

ngnwn(a
wn)hnwn(s

n)K−1εn
2
,

Rn
ns = µ

ngnns(a
ns)hn(s

n)K−1εn
2
.

The motivation for these forms is as follows:
Equation (2) and (4) are generalised forms of Darcy’s
law. We therefore expectµα andK to be terms in the
resistances. In addition, to make the dimensions on
the left and right side of the equations to match,εα

2

must be a factor too. Theg’s andh’s must be non-
dimensional (and positive).

To get expressions for theg’s andh’s we look at the
limit cases where we have only one phase. Equation
(2) and (4) should then reduce to the usual Darcy’s
law.

Case 1: No non-wetting phase

sw → 1, krw → 1, awn/as → 0,

aws/as → 1 and ans/as → 0.

Consider Equation (2). Since the interfacial areaawn

is zero, the resistance due to this interface,Rw
wn,

should also be zero and Equation (2) reduces to

−εw∇pw +εwρwg= Rw
ws ·vw.

Hence

Rw
ws = µ

wK−1εw
2
,

and we get

gwwn(0)hwwn(1) = 0 andgwws(0)hw(1) = 1. (22)

Case 2: No wetting phase

sn → 1, krn → 1, awn/as → 0,

ans/a
s
→ 1 and aws/as → 0

Consider Equation (4). Since there is no (fluid-fluid)
interfacial area, the resistance due to this interface,
Rn
wn, should be zero and Equation (4) reduces to

−εn∇pn+εnρng= Rn
ns ·vn.

Hence
Rn
ns = µ

nK−1εn
2
,

and we get

gnwn(0)hnwn(1) = 0 andgnws(0)hn(1) = 1. (23)

One set of functions that satisfies the constraints
imposed by Equation (22) and (23) are:

gwwn(a
wn) =

awn

as
, hwwn(s

w) = 1− sw

gnwn(a
wn) =

awn

as
, hnwn(s

n) = 1− sn

gwws(a
ws) =

aws

as
, hw(sw) = k−1

rw (sw) = (sw
2
)−1

gnns(a
ns) =

ans

as
, hn(s

n) = k−1
rn (sn) = (sn

2
)−1

Other constraints arise if we consider the case when
the wetting fluid covers the medium (awn/as → 1),
and the case when the interfacial area is negligible
(awn/as → 0). One possible set of functionsgααs is:

gwws = 1+
ans

as
awn

as

gnns = 1+
aws

as
awn

as

However, this choice appears to be unphysical since
the resistance due to the solid-fluid interface depend
on the area of the fluid-fluid interface. We will not use
this choice in our numerical experiments.

4.1 Resulting fractional flow and diffusion functions
In 1D we can write the fractional flow functionsFw,
Fn andFwn and the diffusion functionsDw, andDwn

as rational polynomials in saturation and interfacial
area. The expression are generated using Maple, but
omitted because of their length. Using the parameters
given in Section 6 we get the surfaces in Figure 1 and
2. Notice that these functions are only weakly depen-
dent on interfacial area.

5 CAPILLARY PRESSURE
In this section a capillary pressure function depend-
ing on the (wetting) saturations and on the interfacial
areaawn is constructed. To our knowledge there are
almost no available data forPc − sw − awn relation-
ships. We therefore use results from network models,
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Figure 1: Fractional flow function for thew-phase
(upper), then-phase (middle) and thewn-interface
(lower).
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Figure 2: Diffusion function for thew-phase (upper)
and thewn-interface (lower).

see e.g. (Reeves & Celia 1996), and try to capture the
qualitative behaviour of surfaces obtained therein.

In (van Genuchten 1980) the following relationship
between capillary pressurePc and saturations was
proposed:

Pc =
((sw)

− n
n−1 −1)

1
n

αG
. (24)

Starting out with this relationship we fixn and vary
αG to get three curves satisfying

P 1
c ≤ P 2

c ≤ P 3
c .

HereP 1
c andP 3

c are approximations to the inner and
outer envelopes for thePc − sw curves.P 2

c is chosen
midway between the two boundary curves for interpo-
lation purposes. Along these three curves we specify
the interfacial area as

awni (sw) = αisw(1− sw)+βsw, i = 1,2,3, (25)

whereαi is chosen such thatawn1 ≤ awn2 ≤ awn3 . In Fig-
ure 3 and 4 plots of capillary pressure and interfacial
area are shown for a set of parameters.
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Figure 4: Interfacial areaawni onP ic , i = 1,2,3.

Interpolating (quadratically) from these three
curves defines the function. For a givenPc we specify
awn(s,Pc) as

awn(s,Pc) = c1sw
2
+ c2sw + c3. (26)

Let swi (Pc) = (P ic )
−1(Pc), where(P ic )

−1 is given by
Equation (24) withαG = αiG. It follows thatawni (swi ) =
awni (swi (Pc)) = a

wn
i (Pc),i= 1,2,3. Using Lagragian in-

terpolating we get the following expression for the in-
terfacial area as a function of capillary pressure and

saturation:

awn(Pc,s
w) =

awn1 (Pc)
(sw − sw2 (Pc))(sw − sw3 (Pc))

(sw1 (Pc)− sw2 (Pc))(s
w
1 (Pc)− sw3 (Pc))

+awn2 (Pc)
(sw − sw1 (Pc))(sw − sw3 (Pc))

(sw2 (Pc)− sw1 (Pc))(s
w
2 (Pc)− sw3 (Pc))

+awn3 (Pc)
(sw − sw1 (Pc))(sw − sw2 (Pc))

(sw3 (Pc)− sw1 (Pc))(s
w
3 (Pc)− sw2 (Pc))
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Figure 5: Interfacial area as a function of wetting satu-
ration and capillary pressure given by the three curves
above.

Since the interfacial area is non-monotone in cap-
illary pressure, see Figure 5, it is generally impos-
sible to find a unique expression forPc as a func-
tion of saturation and interfacial area. In the equa-
tions we will need the derivative of capillary pres-
sure with respect to saturation and interfacial area. If
we assume uniqueness ofPc locally around a point
(sw,awn) we can employ implicit differentiation of
function to evaluate

(∂Pc
∂sw

)

awn
and

( ∂Pc
∂awn

)

sw
.

6 EXAMPLES

We have done a simple test case in 1D. Data for pa-
rameters are taken from (Dahle & Celia 1999) and
from a table over typical values of permeability and
porosity for sand stones. The specific area of the solid
phase surface is calculated using the Carman-Kozeny
equation. The following values are used:
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µw = 10−3 [Ns/m2]
µn = 10−2 [Ns/m2]
ε = 0.27
K = 1.3×10−9 [m2]
u = 1.3×10−3 [m/s]
as = 7.6×104 [1/m]
ans = 0.7×104 [1/m]
aws = 6.9×104 [1/m]
n = 7
αiG = 10−3, 0.7×10−3, 0.5×10−3

αi = 400, 800, 1200
β = 0

Since we are working in 1D, gravity terms are ne-
glected. To avoid difficulties with boundaries and dis-
continuities, a smooth ramp is initially specified for
the saturation. An increased amount of interfacial area
is evenly distributed around this ramp.The equations
are solved by sequential time stepping using a straight
forward upstream/central difference scheme.

The initial data and solutions for interfacial area
and saturation are shown in Figure 6. This problem
appears to be advection dominated. It follows that
since the advective flux is nearly insensitive to inter-
facial area, the dynamics of the saturation is nearly
independent of the changes in interfacial area.

7 CONCLUSIONS
In this work, we have presented initial numerical solu-
tions for an enhanced model of two phase flow which
includes fluid-fluid interfacial area as a primary vari-
able. The solutions are for a simplified test problem
under a specific set of assumptions, and with a partic-
ular choice of functional forms for the nonlinear coef-
ficients. For this particular case, the saturation profiles
show little dependence on interfacial area. This re-
sult is consistent with the forms of the fractional flow
functions, which show minimal sensitivity to interfa-
cial area. This in turn is a reflection of the functional
forms chosen to parameterise the various nonlinear
resistance terms that arise in the governing equations.
Because the correct functional forms for these resis-
tance terms are not known, more general sensitivity
studies are required to assess the practical importance
of the interfacial area equations to flow modeling. In
addition, numerical solutions need to be obtained for
cases where the simplifying assumptions applied to
the governing equations are systematically examined,
so that the sensitivity of the solutions to these assump-
tions can be assessed. The results presented herein
represent a starting point for this more general analy-
sis.

While we cannot reach any general conclusions
based on our initial calculations, we can make a few
general observations about the overall system of equa-
tions. First, inclusion of the interfacial area equa-
tions allows for direct calculation of the amount of
interfacial area in the system, as a function of space
and time. Equations written for the individual phases
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Figure 6: Profiles for interfacial area (upper) and wet-
ting saturation (lower) att = 0,1300,2600 and 5200s
.

also incorporate effects of the interfaces through func-
tional dependences in the appropriate nonlinear coef-
ficients. In addition, inclusion of a unique functional
relationship betweenPc, sw, andawn, and the associ-
ated transport equation for interfacial area, allow hys-
teresis within thePc−sw plane to be incorporated into
the algorithm with no additional effort. This means
that arbitrary drainage and imbibition cycles can be
simulated without regard for redefinition of the con-
stitutive curves. This appears to be a major advan-
tage of this approach to multi phase flow modeling.
The cost of this additional generality and flexibility
is the requirement to identify and quantify additional
parameters, as well as their functional dependences
on interfacial area. Additional equations also need to
be solved, as compared to the traditional equations
for multi phase flow; and these additional equations
remain to be analysed mathematically, as do the as-
sociated numerical algorithms implemented for their
solution.
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The overall significance of interfacial areas in
the mathematical description of multi phase flow in
porous media remains to be determined. To make this
determination, numerical simulators are required to
allow a wide range of possible functional forms for
the nonlinear coefficients to be explored. The degree
to which the governing equations can be simplified
must also be explored numerically. This requires a
systematic and comprehensive numerical approach.
The results presented herein represent a first contri-
bution to the overall numerical study.
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