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S U M M A R Y
We present an application of the homotopy analysis method for solving the integral equations
of the Lippmann–Schwinger type, which occurs frequently in acoustic and seismic scattering
theory. In this method, a series solution is created which is guaranteed to converge independent
of the scattering potential. This series solution differs from the conventional Born series
because it contains two auxiliary parameters ε and h and an operator H that can be selected
freely in order to control the convergence properties of the scattering series. The ε-parameter
which controls the degree of dissipation in the reference medium (that makes the wavefield
updates localized in space) is known from the so-called convergent Born series theory; but
its use in conjunction with the homotopy analysis method represents a novel feature of this
work. By using H = I (where I is the identity operator) and varying the convergence control
parameters h and ε, we obtain a family of scattering series which reduces to the conventional
Born series when h = −1 and ε = 0. By using H = γ where γ is a particular pre-conditioner
and varying the convergence control parameters h and ε, we obtain another family of scattering
series which reduces to the so-called convergent Born series when h = −1 and ε ≥ εc where
εc is a critical dissipation parameter depending on the largest value of the scattering potential.
This means that we have developed a kind of unified scattering series theory that includes
the conventional and convergent Born series as special cases. By performing a series of 12
numerical experiments with a strongly scattering medium, we illustrate the effects of varying
the (ε, h, H)-parameters on the convergence properties of the new homotopy scattering series.
By using (ε, h, H) = (0.5, −0.8, I) we obtain a new scattering series that converges significantly
faster than the convergent Born series. The use of a non-zero dissipation parameter ε seems
to improve on the convergence properties of any scattering series, but one can now relax on
the requirement ε ≥ εc from the convergent Born series theory, provided that a suitable value
of the convergence control parameter h and operator H is used.

Key words: Numerical approximations and analysis; Multiple scattering theory; Waveform
modelling; Homotopy analysis.

1 I N T RO D U C T I O N

There exist a range of different numerical methods for seismic
wavefield modelling (Carcione et al. 2002), including differential
equation methods (e.g., Robertsson et al. 2012) and integral equa-
tion methods (Pike & Sabatier 2000; Jakobsen 2012; Oristaglio &
Blok 2012; Jakobsen & Wu 2016; Malovichko et al. 2018). The
majority of researchers in the seismic community use differential
equation methods (Carcione et al. 2002), but the integral equation
approach has actually several advantages compared with the differ-
ential equation approach: (1) it is naturally target oriented (Haffinger
et al. 2013; Huang et al. 2019), (2) it gives the sensitivity matrix
directly in terms of Green’s functions (Jakobsen & Ursin 2015)

which is convenient for uncertainty estimation (Eikrem et al. 2019)
and (3) it is compatible with the use of domain decomposition and
renormalization methods from modern physics (Jakobsen & Wu
2016, 2018).However, the integral equation approach can be less
efficient than the differential equation approach, depending on how
it is implemented (Jakobsen & Wu 2018; Malovichko et al. 2018;
Jakobsen et al. 2019). An integral equation solution based on ma-
trix inversion can be very accurate, but very memory-depending
and costly (Jakobsen & Wu 2018). Efficient implementations of the
integral equations approach are typically based on the use of iter-
ative methods and /or scattering series solutions (Jakobsen & Wu
2016, Malovichko et al. 2018; Huang et al. 2019a,b; Jakobsen et al.
2019).
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Many geophysicists are familiar with the scattering series of
Born that one can easily obtain from the Lippmann–Schwinger
equation via simple iteration (Jakobsen & Wu 2016). However, the
Born series represents an example of a so-called naive perturbation
expansion which is only guaranteed to converge in the special case
of relatively small contrasts (Kirkinis 2008; Jakobsen & Wu 2016).
To obtain a convergent scattering scattering series in the presence
of strong contrasts, it may be required to use a non-perturbative
method for strongly nonlinear systems. Previously, researchers have
developed convergent scattering series solutions of the Lippmann–
Schwinger equation by using renormalization procedures (Wu et al.
2007; Abubakar & Habashy 2013; Jakobsen et al. 2016, 2019;
Osnabrugge et al. 2016). In this study, however, we have employed
the so-called homotopy analysis method (HAM), which is based
on concepts and ideas form topology (Liao 2003; Hetmaniok et al.
2014).

The HAM used in this study was developed by Liao (1998, 2003,
2004, 2009, 2012, 2014). However, the development of related glob-
ally convergent homotopy methods for solving nonlinear equations
started around 1976 (see Watson 1989). Historically, there have
been several attempts to apply homotopy methods to model and
invert geophysical data (see Watson 1989), but the paper of Huang
& Greenhalgh (2019) appears to represent the first geophysical ap-
plication of the modern hHAM developed by Liao (2003), which
differs from the one discussed by Watson (1989). In any case, the
homotopy methods allows one to solve operator equations of any
kind by using ideas and concepts of topology, which is a branch
of pure and applied mathematics dealing with quantities that are
preserved during continuous deformations. A homotopy describes
a continuous transformation between two states and has been com-
pared with the concept of scale-invariance in renormalization group
theory (Palit & Datta 2016; Jakobsen et al. 2019a; Pfeffer 2019).
The HAM have been used to solve a range of different nonlinear
problems, ranging from heat conduction problems (Abbasbandy
2006) to problems within theoretical physics (Pfeffer 2019). Most
applications of the HAM is based on a differential operator formu-
lation, but there have also been successful attempts to solve integral
equations of the Fredholm and Volterra types using the HAM (see
Hetmaniok et al. 2014).

Although the HAM may potentially be very useful for practi-
cal nonlinear inversion of seismic waveform data (see Han et al.
2005; Fu & Han 2006), we shall focus on the forward problem.
This is partially because there is still an important need for more
work on the nonlinear direct scattering problem (Jakobsen et al.
2019a,b) and the corresponding nonlinear inverse scattering prob-
lem is much more difficult to solve due to its ill-posed nature. It
will be demonstrated that the HAM can be used to construct a scat-
tering series solution of the Lippmann–Schwinger equation in the
context of seismic wavefield modelling. Although such convergent
scattering series have been developed on the basis of renormaliza-
tion methods in the past (Abubakar & Habashy 2013; Osnabrugge
et al. 2016; Jakobsen et al. 2019a), we think it is interesting to study
convergence properties of the direct scattering series solution from
different perspectives, since this may give us new ideas and insights
that may be useful for future studies of nonlinear inverse scattering
as well as direct scattering problems.

In Section 2, we present fundamental equations and establish our
notation. In Section 3, we present a general method for obtaining
convergent series solutions of nonlinear operator equations that
does not depend on any parameter being small. In Section 4, we
derive a convergent scattering series solution of the Lippmann–
Schwinger equation. In Section 5, we show that the conventional

Born series and the renormalized Born series of Osnabrugge et al.
(2016) and Huang et al. (2019) represent a special case of the HAM
series. In Section 6, we demonstrate that the HAM series converges
for strongly scattering media where the conventional Born series
diverges. In Section 7, we also provide some ideas for further work.

2 T H E L I P P M A N N – S C H W I N G E R
E Q UAT I O N A N D C O N V E N T I O NA L
B O R N S E R I E S

The scalar wave equation in the frequency domain (the inhomoge-
neous Helmholtz equation) can be written as (Morse & Feshbach
1953; Osnabrugge et al. 2016; Huang et al. 2019a,b)(∇2 + k2(x

)
ψ(x) = −S(x), (1)

where k(x) is the wavenumber at position x. Following Os-
nabrugge et al. (2016), we now decompose the actual medium with
wavenumber k(x) into an arbitrary homogeneous dissipative refer-
ence medium with complex wavenumber kd given by k2

d = k2
0 + iε

(where ε is an arbitrary small positive number) and a corresponding
complex scattering potential V(x) (with compensating gain, rather
than dissipation). It follows that(∇2 + k2

d

)
ψ(x) = −S(x) − V (x)ψ(x), (2)

where

V (x) = k2(x) − k2
d . (3)

The second term on the right-hand side of eq. (2) represents the
so-called equivalent sources. By treating the contrast sources just
like real sources, one can derive the Lippmann–Schwinger equation
(Jakobsen & Ursin 2015):

ψ(x) = ψ (0)(x) +
∫

�

dx′G(0)(x − x′)V (x′)ψ(x′), (4)

where G(0)(x − x
′
) is Green’s function for the homogeneous refer-

ence medium, which satisfies(∇2 + k2
d

)
G(0)(x − x′) = −δ(x − x′). (5)

Note that the introduction of a non-zero imaginary part ε to the
squared wavenumber k2

0 in the homogeneous reference medium
makes the energy associated with Green’s function finite and the
wave fields more localized (Osnabrugge et al. 2016; Huang et al.
2019b; Jakobsen et al. 2019a). Although most workers tend to set ε

to zero, the use of a non-zero ε parameter improves the convergence
properties of any scattering series (Abubakar & Habashy 2013;
Osnabrugge et al. 2016; Huang et al. 2019b; Jakobsen et al. 2019a).

In symbolic operator notation, the Lippmann–Schwinger equa-
tion (4) can be written as

ψ = ψ (0) + G(0)V ψ, (6)

where the scattering potential operator V is local (but see Jakobsen
& Wu 2017) and can be represented by a diagonal matrix in the real-
space representation (Jakobsen & Ursin 2015). The above equation
has the following exact formal solution:

ψ = (I − G(0)V )−1ψ (0) (7)

where I is the identity operator.
Solution (7) is valid independently of the contrast volume, but

it involves the inversion of a huge operator or matrix (in the co-
ordinate representation), which can be very costly in the case of a
realistic model. In principle, one could try to solve the Lippmann–
Schwinger equation by iteration. The well-known Born series can be
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regarded as the simplest possible iterative solution of the Lippmann–
Schwinger equation and can be presented as

ψ =
∞∑

m=0

ψm (8)

where ψ0 = ψ (0) and

ψm = G(0)V ψm−1, m = 1, 2, 3, ... . (9)

The Born series is very popular due to its simplicity. However, the
Born series represents an example of a naive perturbation expansion
(Kirkinis 2008) which is only guaranteed to converge if the contrast
is relatively small, in the sense that the largest eigenvalue of the
operator G(0)V must be smaller than unity (Weinberg 1963; Newton
2002; Osnabrugge et al. 2016).

3 T H E H O M O T O P Y A NA LY S I S M E T H O D

The HAM can be used to solve operator equations of the form (Liao
2003)

N [ψ] = 0, (10)

where N denotes a nonlinear operator and ψ is the unknown function
(or state vector). The first step is to define the homotopy operator
H by (Liao 2003)

H [�, λ] ≡ (1 − λ)L [�(λ) − ψ0] − λh H N [�(λ)] , (11)

where λ ∈ [0, 1] is the so-called embedding parameter, h 	= 0 is the
so-called convergence control parameter, H is a convergence control
operator (see Section 4), ψ0 is our initial guess of the solution to
eq. (10) and L is an auxiliary linear operator that can be selected
arbitrarily as long as L[0] = 0.

By setting H [�, λ] = 0 we get the so-called zero-order defor-
mation equation (Liao 2003)

(1 − λ)L [�(λ) − ψ0] = λh H N [�(λ)] . (12)

If λ = 0 then L[�(0) − ψ0] = 0, which implies that �(0) = ψ0. If
λ = 1 then N[�(1)] = 0, which implies that �(1) = ψ , where ψ is
the solution of eq. (10) we are looking for. A gradual change in the
embedding parameter λ from 0 to 1 therefore means a continuous
transition of �(λ) from the initial guess ψ0 to the exact solution ψ

of the original eq. (10).
If we now expand the auxiliary field �(λ) into a Maclaurin series

with respect to the embedding parameter λ then we obtain (Liao
2003)

�(λ) = �(0) +
∞∑

m=1

1

m!

∂m�(λ)

∂λm
|λ=0λ

m . (13)

By introducing the definition (Liao 2003)

ψm ≡ 1

m!

∂m�(λ)

∂λm
|λ=0, m = 1, 2, 3, ..., (14)

the above eq. (13) can be expressed as (Liao 2003)

�(λ) = �(0) +
∞∑

m=1

ψmλm . (15)

If the above series (15) is convergent for λ = 1 then the solution we
are looking for is given by (Liao 2003)

ψ =
∞∑

m=0

ψm . (16)

It is of course not obvious that the series (15) is convergent for λ

= 1, but by adjusting the auxiliary parameter h and the auxiliary
operator H we can make sure that this series is indeed convergent
(Liao 2003).

In order to determine the different ψm terms , we now differentiate
the left and right side of the zeroth-order deformation eq. (12) m
times with respect to the auxiliary parameter λ, divide the result by
m! and set λ = 0. In this way suggested by Liao (2003), we obtain
the so-called mth-order deformation equation (m > 0):

L [ψm − χmψm−1] = h H Rm, (17)

where

χm =
{

0 if m ≤ 1
1 if m ≥ 2

(18)

and

Rm = 1

(m − 1)!

(
∂m−1

∂λm−1
N

[ ∞∑
i=0

ψiλ
i

])
λ=0

. (19)

The different Rm parameters will depend on the nature of the nonlin-
ear operator N. In the next section, we shall evaluate the Rm param-
eters for the nonlinear operator corresponding with the Lippmann–
Schwinger equation.

The selection of the convergence control parameter h is very
important. In order to select a suitable value of h, one can either
use the h-parameter curve method or an optimization method (Liao
2003; Hetmaniok et al. 2014). We shall discuss the selection of h
in connection with the results we have obtained for the homotopy
analysis of the Lippmann–Schwinger equation.

4 H O M O T O P Y A NA LY S I S O F T H E
L I P P M A N N – S C H W I N G E R E Q UAT I O N

Hetmaniok et al. (2014) discuss the usage of the HAM for solving
nonlinear and linear integral equations of the second kind. However,
their analysis is restricted to 1-D media and slightly different from
the analysis presented below. In order to derive a convergent scat-
tering series solution of the Lippmann–Schwinger equation based
on the HAM, we define the linear and nonlinear integral operators
L and N by

L[ψ] = ψ, N [ψ] = ψ − ψ (0) − G(0)V ψ, (20)

By using the above definitions of the linear and nonlinear operators
L and N in conjunction with the mth-order deformation equation
(17), we obtain

ψm = χmψm−1 + h H Rm . (21)

By using the definition of the nonlinear operator N given in eq. (20)
in conjunction with the expression for the Rm parameters in eq. (18),
we get

Rm = 1

(m − 1)!

∂m−1

∂λm−1

[ ∞∑
i=0

ψiλ
i − ψ (0) − G(0)V

∞∑
i=0

ψiλ
i

]
λ=0

.

(22)

The above equation implies that

Rm = 1

(m − 1)!

(
(m − 1)!ψm−1 − (1 − χm)ψ (0)

−(1 − m)!G(0)V ψm−1

)
, (23)
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or

Rm = ψm−1 − (1 − χm)

(1 − m)!
ψ (0) − G(0)V ψm−1. (24)

By using the above expression for Rm in conjunction with the recur-
sive formula (21), we obtain

ψ1 = h H
(
ψ0 − ψ (0) − G(0)V ψ0

)
, (25)

and for m ≥ 2:

ψm = Mψm−1, (26)

where

M ≡ I + h H − h H G(0)V . (27)

Eqs (25) and (A1) for the first- and higher-order terms in the ho-
motopy analysis scattering series represent the main results of this
paper. This HAM iterative solution of the Lippmann–Schwinger
equation differs from the conventional Born series via the conver-
gence control parameter h and the operator H that can be selected
arbitrarily to ensure that the series is convergent. The HAM series
converges if the spectral radius σ of M is smaller than unity; which
can occur even if the spectral radius of the operator G0V is larger
than unity; that is, when the conventional scattering series of Born
diverges.

5 C O M PA R I S O N W I T H E X I S T I N G
A NA LY T I C A L R E S U LT S

If we use our freedom to set ψ0 = ψ(0), h = −1 and H = I then
the homotopy series in eqs (25) and (26) reduces to the conven-
tional Born series (9). As discussed earlier, the conventional Born
series have a rather small range of convergence, since the largest
eigenvalue of the operator G(0)V must be smaller than unity.

Osnabrugge et al. (2016) presented a modified Born series (CBS)
which is guaranteed to converge independent of the scattering po-
tential. If we set ψ0 = γψ (0) where γ = iV/ε is the pre-conditionner
of Osnabrugge et al. (2016) then it follows from eq. (23) that

ψ1 = h H
(
I − γ −1 − G(0)V

)
ψ0. (28)

If we now set h = −1 and H = γ then the above equation becomes

ψ1 = Mψ0, (29)

where

M ≡ I − γ + γ G(0)V . (30)

Also, it follows from equation that

ψm = Mψm−1, (31)

which implies that the convergent Born series of Osnabrugge et al.
(2016) is a special case of our new HAM series.

A comparison of eqs (26) & (27) and (30) & (31) clearly suggests
that we have generalized the convergent Born series of Osnabrugge
et al. (2016). We can construct a family of convergent Born series
similar to the convergent Born series of Osnabrugge et al. (2016)
if we set H = γ but use different values of the convergence control
parameter h. The CBS is based on the use of a dissipative reference
medium, which makes Green’s function finite and localized (Os-
nabrugge et al. 2016; Huang et al. 2019b; Jakobsen et al. 2019a).
Since our generalized convergent Born series based on HAM con-
tains the additional convergence control parameter h, we can de-
crease the value of the dissipation parameter ε if we compensate

by using a suitable h-value. The convergence control parameter h
is a global convergence parameter, in the sense that it acts globally
on the whole model, whereas the dissipation parameter ε can be
regarded as a local convergence parameter, since a higher value for
ε implies a higher degree of wavefield localization. By a suitable
choice of the local and global convergence control parameters ε

and h we can accelerate the convergence of the HAM series. This
point will be illustrated in the next section dealing with numerical
experiments based on a strongly scattering seismic model. By in-
troducing an imaginary part to the wavevector of the background
medium, we make the total energy represented by the background
Green’s function finite and localized. The imaginary term in the
background medium is compensated exactly by an imaginary term
in the scattering potential. Therefore, the final solution remains the
same as the solution without any dissipation.

6 N U M E R I C A L R E S U LT S A N D
D I S C U S S I O N

We performed a series of 12 different numerical experiments to
study the effects of the auxiliary parameters (ε, h, H) on the conver-
gence properties of the HAM for solving the Lippmann–Schwinger
equation. The numerical experiments are based on a resampled
version of the SEG/EAGE salt model (Fig. 1, left). We used a ho-
mogeneous reference medium with wave speed c0 = 2870 m s−1

(Fig. 1, right). We employed a single delta function source with fre-
quency 10 Hz located in the middle of the top of the model and we
used a grid size equal to 5 m in each direction. In each experiment,
we used one of the combinations of the (ε, h, H) parameters given in
Table 1 and generated a scattering series solution of the Lippmann–
Schwinger equation by using the recursive formulae (25)–(27).

We quantified the convergence properties of the different scatter-
ing series by calculating the normalized overall error δk as a function
of the number of iterations k, where

δk = ||
k∑

i=1

ψi − ψ (r )||/||ψ (r )||, (32)

and ψ (r) is a reference solution obtained by solving eq. (7) via
matrix inversion (see Fig. 2), which is exact apart from very small
numerical discretization errors (Jakobsen 2012). In each numerical
experiment, we iterated until the normalized overall error became
smaller than 10−3 (in the case of convergence) or larger than 10
(in the case of divergence). However, this stopping criterion is of
course flexible and dependent on the desired accuracy.

If the scattering series diverges then the resulting wavefield
(Fig. 3) will of course look very different from the reference wave-
field (Fig. 2). If the scattering series converges in the sense that
the overall normalized error becomes smaller than 10−3 than the
resulting wavefield (Fig. 4) will necessarily be very similar to the
true wavefield (Fig. 2). Since the resulting wavefield is independent
of the auxiliary parameters in the case of convergence, we focus on
the behaviour of δk rather than the wavefield itself.

In numerical experiments 1–6 (Fig. 5), we assumed H = I and
varied the dissipation parameter ε and the convergence control pa-
rameter h. As discussed in the previous section, when ε = 0 and h
= −1, the numerical results correspond with the conventional Born
series, whereas the use of different ε- and h-values represents differ-
ent modifications of the conventional Born series. Clearly, one can
see from the blue curve in Fig. 5 that the conventional Born series
corresponding with ε = 0 and h = −1 diverges for this strongly
scattering medium. When ε = 0 and h = −0.95 corresponding with
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Figure 1. The true velocity model and the homogeneous reference model.

Table 1. Convergence control parameters used in four different numerical
experiments focusing on the convergence properties of the homotopy anal-
ysis method. The parameter εc is the critical value which is required for the
convergent Born series of Osnabrugge et al. (2016) to converge. The colour
refers to the different colors used in Fig. 5 (experiments 1–6) and Fig. 6
(experiments 7–12).

Experiment ε/εc h H Colour ‖M‖ σ (M)

1 0.00 01.000 I 1.46 1.06 b
2 0.00 00.950 I 1.40 1.03 g
3 0.00 00.900 I 1.35 0.99 r
4 0.00 00.800 I 1.27 0.94 c
5 0.00 00.100 I 1.01 0.97 m
6 0.50 00.800 I 0.96 0.82 k
7 1.00 −1.000 γ 0.94 1.98 b
8 0.50 −1.000 γ 0.85 1.93 g
9 0.50 −0.500 γ 0-92 1.09 r
10 0.50 −0.250 γ 0.96 0.93 c
11 0.50 −0.125 γ 0.98 0.96 m
12 0.25 −0.125 γ 0.96 1.00 k

the green curve in Fig. 5, the scattering series still diverges. When
ε = 0 and h = −0.9 corresponding with the red curve in Fig. 5, the
scattering series is starting to converge, but extremely slowly. When
ε = 0 and h = −0.8 corresponding with the cyan curve in Fig. 5,
the scattering series converges faster. When ε = 0 and h = −0.1
corresponding to the black curve in Fig. 5, the scattering series is
still convergent, but the convergence rate is much smaller than when
using h = −0.8. When ε = 0.5 and h = −0.8 corresponding to the
black curve in Fig. 5 than the scattering series converges faster than
for all the other experiments 1-5. Therefore, it appears that the use
of a non-zero ε-value in conjunction with an optimal h-value helps
to accelerate an already convergent scattering series.

In numerical experiments 7–12 (Fig. 6), we assumed H = γ and
varied the dissipation parameter ε as well as the convergence control
parameter h. When ε ≤ εc where εc is a critical value depending
on the velocity model and h = −1 then the numerical results corre-
sponds with the convergent Born series of Osnabrugge et al. (2016),
whereas the use of different ε and h-parameters correspond with dif-
ferent modifications of the convergent Born series of Osnabrugge
et al. (2016). Clearly, one can see from the blue curve in Fig. 6 that
the convergent Born series of Osnabrugge et al. (2016) correspond-
ing with ε = εc and h = −1 is indeed convergent. When h = −1 but

ε = 0.5εc corresponding to the green curve in Fig. 6, the scattering
series is as expected divergent. When ε = 0.5εc and h = −0.5 cor-
responding with the red curve in Fig. 6, the scattering series is still
divergent. However, when ε = 0.5εc and h = −0.25 corresponding
with the cyan curve in Fig. 6, the scattering series become conver-
gent again. When ε = 0.5εc and h = −0.125 corresponding with the
curve in Fig. 6, the scattering series is still convergent, but the con-
vergence rate is smaller than when using h = −0.25. When using ε

= 0.25εc corresponding with the black curve in Fig. 6 the scattering
series converges extremely slowly. Therefore, it appears that the ε

and h-parameters corresponding with the original convergent Born
series of Osnabrugge et al. (2016) are optimal when H = γ .

Fig. 7 represents a comparison of the optimal HAM series (the
black curve in Fig. 6 corresponding to ε = 0.5, h = −0.8 and H
= I) and the original convergent Born series of Osnabrugge et al.
(2016) (the blue curve in Fig. 6 corresponding with ε = 1, h =
−1 and H = −γ ). Clearly, one can see that the optimal HAM
series requires much less iterations than the original convergent
Born series. Therefore, one can say that we have generalized and
improved on the convergent Born series of Osnabrugge et al. (2016)
by using the HAM.

The auxiliary parameters ε and h may be referred to as local and
global convergence control parameters, respectively. This is because
a non-zero ε value leads to dissipation in the reference medium (and
gain in the scattering potential), which makes the wavefield update
more localized in space; and different h-values are associated with
different degrees of global wavefield scaling. Having both local and
global convergence control parameters in addition to the auxiliary
convergence control operator H makes this HAM very general and
flexible.

7 C O N C LU D I N G R E M A R K S

We have used the HAM to derive a general scattering series solu-
tion of the Lippmann–Schwinger equation which is guaranteed to
converge independent of the scattering potential, provided that one
select the dissipation parameter ε as well as the convergence control
parameter h and operator H in a suitable manner. We have found
that the conventional Born series and the convergent Born series
of Osnabrugge et al. (2016) are special cases of the new scattering
series based on HAM. We have performed a series of 12 numerical
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Figure 2. Real and imaginary parts of the frequency-domain wavefield at 10 Hz computed by solving the Lippmann–Schwinger equation exactly using a real
space matrix representation.

Figure 3. The real and imaginary parts of the frequency- domain wavefield at 10 Hz computed using the HAM series with auxiliary parameters corresponding
to experiment 1 in Table 1.

Figure 4. The real and imaginary parts of the frequency-domain wavefield at 10 Hz computed using the HAM series with auxiliary parameters corresponding
with experiment 2 in Table 1.
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Figure 5. Comparison of overall errors versus the number of iterations for numerical experiments 1–6 described in Table 1.
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Figure 6. Comparison of overall errors versus the number of iterations for numerical experiments 7–12 described in Table 1.
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Figure 7. Comparison of overall errors versus the number of iterations for numerical experiments 6 (optimal HAM series with some dissipation in the reference
medium) and 7 (original convergent Born series of Osnabrugge et al. 2016). Note that the optimal HAM series (black curve) requires much less iterations than
the convergent Born series (blue curve) of Osnabrugge et al. (2016).

experiments and found that a scattering series with ε = 0.5, h =
−0.8 and H = I requires much less iterations to converge than the
original convergent Born series of Osnabrugge et al. (2016). Other
choices of the (ε, h, H) may lead to even higher convergence rate,
but existing guidelines for selecting h and H (see Liao 2003) needs
to be modified in the presence of the new parameter ε.

Historically, this paper represents a rare example of the applica-
tion of HAM for solving integral equations and the first example
in the context of seismic wavefield modelling. The introduction of
the dissipation parameter ε into the HAM formalism also repre-
sents a novel feature of this work. Theoretically, the embedding
parameter λ reminds us about the running coupling constant in the
renormalization group theory of Jakobsen et al. (2019a) as well as
the homotopy parameter λ of Watson (1989), but these relations
requires further investigation. Computationally, it is interesting to
note that the computational cost of the reference solution (7) we
have obtained via matrix inversion and the scattering series solu-
tion (eqs 25–27) scales like N3 and N2, respectively, where N is the
number of grid blocks in a discretized seismic model. Since our for-
mulation is based on a homogeneous reference medium, it allows
for the use of efficient and memory-saving Fast Fourier Transform
methods that scales like N and Nlog N, respectively (see Osnabrugge
et al. 2016; Jakobsen et al. 2019a). The present work can also be
combined with convergence acceleration techniques (Eftekhar et al.
2018). Practically, it is important that the theory and method devel-
oped in this study can be generalized to anisotropic elastic media,
since the corresponding wave equation can also be transformed into
an integral equation of the Lippmann–Schwinger type (Jakobsen
et al. 2019b). Having developed a convergent forward scattering

series, the next step could be to apply this series in the context
of inverse scattering theory. Weglein et al. (2003) have pioneered
inverse acoustic scattering methods that do not require an assumed
propagation velocity model within the medium (Zou & Weglein
2018). Their approach (Zhang & Weglein 2009; Zou et al. 2019)
is based on the Born series solution of the Lippmann–Schwinger
equation and a concomitant expansion of the interaction in orders of
the data. In principle, the method is completely general and requires
no prior information about the target or the propagation details of
the probe signal within the target. The only fundamental limitation
of the approach appears to the convergence of the conventional
Born series (Kouri & Vijay 2003). Weglein et al. (2003) have made
significant progress using this approach by introducing subseries.
We hope to develop convergent inverse scattering series using the
HAM scattering series. However, it is not obvious that the inverse
scattering series will converge even though the forward scattering
series is convergent. Finally, we note that the work reported here
may be useful in future applications of the HAM within the context
of nonlinear inverse scattering to solve the so-called regularized
normal equations (Jegen et al. 2001).
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A P P E N D I X A : D E S C R I P T I O N A N D
I M P L E M E N TAT I O N O F T H E H A M
S E R I E S

Similar to the conventional Born series, every iteration is associated
with multiple scattering processes of different orders. However, we
have reorganized the different terms in the conventional Born series
so that the spectral radius of M is smaller than unity. This implies
that each new term is smaller than the previous one, so that the
scattering series does not diverge when the number of iterations
becomes large. Mathematically, this is done by introducing an in-
tegral operator with spectral radius smaller than unity via the use
of control parameter h and the convergence control operator H.
The series converges if the spectral radius of the operator M is less
than unity. We have also introduced an element of dissipation in the
reference medium, which ensures that the energy associated with
Greens function is finite and localized. It should be emphasized
that the dissipation parameter ε can be selected arbitraryly. This is
because the dissipation is compensated exactly by a corresponding
gain term in the scattering potential, suggesting that the final results
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Figure A1. The real and imaginary parts of the frequency-domain wavefield at 10 Hz computed by solving the Lippmann–Schwinger equation exactly using
a real space matrix representation.

Figure A2. The real and imaginary parts of the frequency-domain wavefield computed using the HAM series with auxiliary parameters corresponding with
experiment 11 in Table 1.

are independent of this dissipation in the reference medium. The
dissipation aspect of our HAM algorithm is similar to the convergent
Born series of Osnabrugge et al. (2016). However, our convergent
scattering series is more general than the convergent Born series,
since the convergent control parameters can be selected rather arbi-
trary, as long as the spectral radius of the M-operator is smaller than
unity. Some details for implementation of the new convergent scat-
tering series using based on the HAM are provided in Algorithm 1.
In addition, Table 1 shows the norm ‖M‖ and spectral radius σ (M)
of the operator M with numerical experiments.

The HAM algorithm is represented by eqs (25)–(27). However,
the formulation in the main text is based on the real-space coordi-
nate representation of the relevant integral operators. As discussed
by Osnabrugge et al. (2016), the operation of Green’s function with
contrast-source terms has a convolution structure that can be im-
plemented more efficiently by using the wave vector representation;
that is, by using the fast Fourier transform (FFT) algorithm in this

context. This is because convolution in real-space is equivalent to
multiplication in the Fourier space, and the computational cost of
the FFT-operation is much smaller than that of matrix multiplica-
tion and inversion. The memory requirements scale like N2 and N
when using the position and wave vector representations, respec-
tively. The computational cost should theoretically scale like N3 and
N log N when using the position and wave vector representations,
respectively. The iterative FFT algorithm is implemented as

ψm (r) = h H (ψ (0) (r) − ψ0 (r)

−ifft
[
G(0) (k) fft [V ψm (r)]

]
), (A1)

where fft and ifft are the forward and inverse fast Fourier transform
operators, k is the Fourier transformed coordinates. Figs A1 and A2
show the frequency-domain wavefield using exact solutions, the ef-
ficient and memory-saving FFT implementation with 100 iterations,
respectively.
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Algorithm 1 Pseudo code for the scattering series

Initialisation: frequency, maximum iteration number Nmax ,
the parameter ε

true model and background model;
V = k2 − k2

0 − iε

kb =
√

k2
0 + iε

ψ (0) = G(0) S
ψ = ψ (0)

M = I + h H − h H G(0)V
n = 1
while n < Nmax do

n = n + 1
if n == 1 then

ψm = h H (ψ (0) − ψ0 − G(0)V ψ (0))
else

ψm = Mψm

end if
ψ = ψ + ψm

end while
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