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A B S T R A C T

To gain insight into possible underlying mechanism(s) of visual hallucinations (VH) in Parkinson's disease (PD),
we explored changes in local oscillatory activity in different frequency bands with source-space magnetoence-
phalography (MEG). Eyes-closed resting-state MEG recordings were obtained from 20 PD patients with hallu-
cinations (Hall+) and 20 PD patients without hallucinations (Hall-), matched for age, gender and disease se-
verity. The Hall+ group was subdivided into 10 patients with VH only (unimodal Hall+) and 10 patients with
multimodal hallucinations (multimodal Hall+). Subsequently, neuronal activity at source-level was re-
constructed using an atlas-based beamforming approach resulting in source-space time series for 78 cortical and
12 subcortical regions of interest in the automated anatomical labeling (AAL) atlas. Peak frequency (PF) and
relative power in six frequency bands (delta, theta, alpha1, alpha2, beta and gamma) were compared between
Hall+ and Hall-, unimodal Hall+ and Hall-, multimodal Hall+ and Hall-, and unimodal Hall+ and multimodal
Hall+ patients. PF and relative power per frequency band did not differ between Hall+ and Hall-, and mul-
timodal Hall+ and Hall- patients. Compared to the Hall- group, unimodal Hall+ patients showed significantly
higher relative power in the theta band (p=0.005), and significantly lower relative power in the beta
(p=0.029) and gamma (p=0.007) band, and lower PF (p=0.011). Compared to the unimodal Hall+, mul-
timodal Hall+ showed significantly higher PF (p=0.007). In conclusion, a subset of PD patients with only VH
showed slowing of MEG-based resting-state brain activity with an increase in theta activity, and a concomitant
decrease in beta and gamma activity, which could indicate central cholinergic dysfunction as underlying me-
chanism of VH in PD. This signature was absent in PD patients with multimodal hallucinations.

1. Introduction

Visual hallucinations (VH) are the most common type of halluci-
nations in Parkinson's disease (PD) with an overall prevalence of 22% to
38% (Fénelon, 2008; Goetz et al., 2011; Onofrj and Gilbert, 2018),
followed by auditory (AH), olfactory (OH) and tactile (TH) hallucina-
tions, which are less common with prevalence rates of 3–22% (Fénelon,
2008), 6–16% (Fénelon, 2008; Kulick et al., 2018), and 4–7% (Goetz
et al., 2011; Kulick et al., 2018), respectively. Cognitive impairment in
PD is strongly associated with VH (Fenelon and Alves, 2010; Hepp

et al., 2013; Lenka et al., 2017). In contrast, multimodal hallucinations
in PD are not necessarily associated with a greater risk of cognitive
impairment (Inzelberg et al., 1998; Katzen et al., 2010). Hallucinations
in PD are associated with higher caregiver burden and form a strong
and independent risk factor for nursing home placement (Aarsland
et al., 2000; Fenelon and Alves, 2010).

The majority of research examining the pathophysiology of hallu-
cinations in PD involve studies on VH. In contrast, nonvisual halluci-
nations in PD, reported to accompany VH as a second modality ex-
perience (Goetz et al., 2011), remain understudied (Kulick et al., 2018).
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As such, dysfunctional activation of frontal (top-down) and posterior
(bottom-up) brain regions have been reported in PD patients with VH
(Boecker et al., 2007; Ffytche et al., 2017; Lenka et al., 2015; Nagano-
Saito et al., 2004; Prell, 2018; Ramírez-Ruiz et al., 2008; Sanchez-
Castaneda et al., 2010; Stebbins et al., 2004). In addition, multiple
neurotransmitter systems have been related to hallucinations in PD: (1)
the cholinergic system, (2) the dopaminergic system, and (3) the ser-
otonergic system (Factor et al., 2017). First, the central cholinergic
system is a modulator of the interaction between feedback or top-down
and feedforward or bottom-up processing (Collerton et al., 2005;
Friston, 2005), such that cholinergic dysfunction may increase the
uncertainty in top-down activity resulting in incorrect scene re-
presentation, and thus hallucinations (Collerton et al., 2005; Friston,
2005). Support for this hypothesis of impaired bottom-up (i.e. reduced
activation and metabolism in the visual pathways) and top-down (i.e.
defective attentional) processing has been found in PD patients with VH
and this dysfunctional top-down and bottom-up processing has also
been associated with cognitive decline in PD (Boecker et al., 2007;
Hepp et al., 2017; Matsui et al., 2006; Meppelink et al., 2009; Park
et al., 2013; Stebbins et al., 2004). Second, drug-induced (mostly vi-
sual) hallucinations in PD, either or not accompanied with delusions,
have been associated with dopaminergic treatment. Dopamine agonists
have the highest risk of inducing this type of hallucinations, which are
independent of cognitive decline and reverse with adjustment of do-
paminergic drug treatment (Factor et al., 2017; Zahodne and
Fernandez, 2008). Third, dysfunction of the serotonin system has been
related to hallucinations in PD. In addition, response to pimavanserin (a
5-HT2A inverse-agonist), a novel antipsychotic for PD with no effect on
dopamine receptors, underscores the role of serotonin in psychosis in
PD (Factor et al., 2017; Kianirad and Simuni, 2017). It remains unclear
why some PD patients develop only VH while others also develop
hallucinations in other modalities. One hypothesis is that purely VH
reflect a hypocholinergic status, while non-visual hallucinations may be
related to other factors such as dopaminergic medication (Goetz et al.,
1998; McAuley and Gregory, 2012). This is an interesting hypothesis, as
it suggests different treatment options for both subtypes of hallucina-
tions. In this study, we wish to investigate the underlying mechanisms
of hallucinations in PD using magnetoencephalography (MEG).

MEG is a non-invasive technique to measure neuronal activity di-
rectly, and study normal and pathological (oscillatory) brain activity in
health and disease (Stam and van Straaten, 2012). Activation of brain
regions is often accompanied with decreases or increases in signal
power in a particular frequency band due to changes in local synchrony
in the underlying neuronal networks (Pfurtscheller and Lopes da Silva,
1999; Stam and van Straaten, 2012). Frequency specific neuronal os-
cillations provide insight into underlying neuronal network interactions
(Donner and Siegel, 2011). Specifically, local cortical network inter-
actions mainly involve oscillations above 30 Hz (i.e. gamma band) and
mediate feedforward processing, whereas long-range interactions
among distant brain regions are mediated through oscillations below
30 Hz (i.e. theta (4–8 Hz), alpha (8–13 Hz) and beta (13–30 Hz)) and
facilitate integrative brain functions and feedback attentional proces-
sing (Bastos et al., 2015; Donner and Siegel, 2011; Siegel et al., 2012;
Uhlhaas and Singer, 2013; von Stein and Sarnthein, 2000). Further-
more, both alpha and beta oscillations are boosted by cholinergic en-
hancement (Bauer et al., 2012) and play a role in feedback processes in
the context of (visual) attention tasks (Bauer et al., 2012; Gross et al.,
2004; Kamiński et al., 2012; Kopell et al., 2000; Lopes da Silva, 2013).
In addition, the modulatory effect of acetylcholine on oscillatory brain
activity is further supported by acetylcholine antagonists that induce a
so-called ‘slowing’ of oscillatory brain activity with decrease in alpha
and beta activity and increase in delta and theta activity (Bauer et al.,
2012; Simpraga et al., 2017, 2018). Therefore, MEG may be of great
value to provide an intrinsic temporal view of the brain in relation to
hallucinations.

In the present study, in order to gain insight into the

pathophysiological mechanism(s) underlying VH in PD, we used MEG
to study frequency-specific neural oscillations in PD patients with un-
imodal VH (unimodal Hall+) and compared this with PD patients with
multimodal hallucinations (multimodal Hall+) and PD patients
without hallucinations (Hall-). Given the predominant occurrence of
VH in PD, in this study, patients were recruited according to the cri-
terium of presence or absence of hallucinations. After inclusion, pa-
tients with hallucinations were divided into a subgroup with only VH
and a subgroup with multimodal hallucinations (see methods for de-
tails).

Since VH in PD are supposed to be related to cholinergic deficits,
and the cholinergic system has been associated with top-down proces-
sing and enhancement of alpha and beta frequencies (involved in top-
down processing), we expected to find ‘slowing’ (i.e. decrease in alpha
and beta frequencies, and increase in delta and theta frequencies) of
oscillatory brain activity in PD patients who experienced only VH.

2. Methods

2.1. Study population

Twenty PD patients with hallucinations (Hall+) and 20 without
hallucinations (Hall-) were recruited from the Understanding
Hallucinations (UH) study, and included in the Understanding
Hallucinations – MEG (UH-MEG) study at the department of Clinical
Neurophysiology of the VU University Medical Center (VUmc) in
Amsterdam, The Netherlands. UH-MEG is a follow-up study of the UH
study, which is an ongoing multicenter cross-sectional study that in-
vestigates phenomenology and underlying brain mechanisms of hallu-
cinations across different neurological, psychiatric and perceptual dis-
orders (clinicaltrials.gov identifier NCT02460965). Inclusion criteria of
UH were age≥ 18 years, mentally competent and PD diagnosis de-
termined by the treating neurologist, fluent in Dutch language, and
hallucinations experienced in at least the past month (i.e. Hall+) or no
hallucination experiences in life (i.e. Hall-). Presence of hallucinations
was assessed with the Questionnaire for Psychotic Experiences (QPE)
(Sommer et al., 2018) and confirmed with the scale for outcomes in
Parkinson's disease – psychiatric complications (SCOPA-PC) (Visser
et al., 2007). As part of the UH-MEG, all patients underwent a 5-min
eyes-closed MEG recording, followed by assessment of hallucinations
with the QPE, loneliness by De Jong Gierveld Loneliness (DJGL) scale
(de Jong-Gierveld and Kamphuls, 1985), depression by the Beck De-
pression Inventory-II (BDI-II) (Beck et al., 1996), and cognitive testing,
which included the Mini-Mental State Examination (MMSE) as a mea-
sure of global cognitive functioning (Folstein et al., 1975), the Trail
Making Test part A (TMT-A) as a measure of motor and visual proces-
sing speed (Reitan, 1958), and the TMT part B (TMTeB) (Crowe, 1998;
Oosterman et al., 2010; Reitan, 1992) and forward condition of the
Digit Span (Lindeboom and Matto, 1994) as measures of attention. A
contrast score between TMT-B and TMT-A (TMTB-A: TMT-B minus TMT-
A) was calculated as a measure of attentional set-shifting (i.e. cognitive
flexibility to shift attention between things or tasks), which is an im-
portant cognitive problem in PD (Williams-Gray et al., 2008). Hall+
and Hall- patients were matched at the group level for age, gender,
educational level, disease duration (i.e. years diagnosed with PD at
enrollment), and disease severity assessed using the (modified) Hoehn
and Yahr-scale (H&Y: range 0–5 with higher scores indicating more
advanced disease severity) (Goetz et al., 2004).

All participants provided written informed consent. UH and UH-
MEG were approved by the affiliated Institutional Review Board and
conducted in accordance with the Declaration of Helsinki.

After assessing the phenomenology of hallucinations with the QPE,
we observed a dichotomy in the presence of type of hallucinations
within the Hall+ group. Ten patients within the Hall+ group experi-
enced only VH, whereas ten patients experienced hallucinations in
more than one modality. Therefore, we divided the Hall+ group into
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subgroups (i.e. patients with only VH (unimodal Hall+, N=10) and
patients with multimodal hallucinations (multimodal Hall+, N=10)),
to explore the specificity of changes in frequency-specific neural oscil-
lations to the pathophysiology of VH. See the results section for a de-
tailed description of the phenomenology of the Hall+ patients.

2.2. MEG acquisition and preprocessing

MEG data were recorded using a 306-channel (102 magnetometers,
204 gradiometers) whole-head MEG system (Elekta Neuromeg, Oy,
Helsinki, Finland) with a sample frequency of 1250 Hz, online anti-
aliasing filter of 410 Hz, and a high-pass filter of 0.1 Hz. Five minutes of
(range 262–400 s) eyes-closed resting-state data were recorded with
patients in supine position in the MEG-scanner inside a magnetically
shielded room (Vacuumschmelze GmbH, Hanau, Germany).

The head position relative to the MEG sensors was recorded con-
tinuously using the signals from five head-localization coils. The posi-
tions of the head localization coils as well as the outline of the patient's
scalp (∼500 points) were digitized using a 3D digitizer (Fastrak;
Polhemus, Colchester, VT, U.S.A.).

MEG channels with excessive artifacts were identified by visual
inspection of the data by the first author (MD) and discarded. A max-
imum of 12 channels were excluded. Subsequently, an offline spatial
filter, the temporal extension of Signal Space Separation (tSSS) (Taulu
and Hari, 2009; Taulu and Simola, 2006) as implemented in MaxFilter
software (Elekta Neuromeg Oy; version 2.2.15) with a sliding window
of 10 s and a subspace correlation limit of 0.9 was used to remove ar-
tifacts (Hillebrand et al., 2013). The scalp surfaces of all patients were
co-registered to T1-weighted templates with 1mm resolution, grossly
matched for head-size, using a surface matching procedure (see Sup-
plemental Material for details). Visual inspection of the co-registration
between digitized scalp surface and the co-registered template MRI was
performed for all patients by MD. The sphere that best fitted the scalp
surface as extracted from the co-registered template MRI was used as a
volume conductor model for source reconstruction using the beam-
former approach described below.

2.3. Source reconstruction using beamforming

Neuronal activity at source-level was reconstructed using an atlas-
based beamforming approach (Hillebrand et al., 2012). The automated
anatomical labeling (AAL) atlas was used to label the voxels in a pa-
tient's co-registered surrogate MRI in 78 cortical and 12 subcortical
regions of interest (ROIs) (Tzourio-Mazoyer et al., 2002). Given the
different number of voxels in each ROI, the centroid voxel (i.e. the voxel
within the ROI that is nearest, in terms of Euclidean distance, to all
other points in the ROI) was selected as representative for that ROI
(Hillebrand et al., 2016). The neuronal activity for each centroid voxel,
a so-called virtual electrode (VE), was reconstructed as the weighted
sum of each MEG sensor's time-series. The (normalized) beamformer
weights (Cheyne et al., 2007) were based on the forward solution (i.e.
lead field for an equivalent current dipole in the spherical head model),
and the broad-band (0.5–48 Hz) data covariance. On average, 286 s
(range 262–394 s) of data was used to construct the covariance matrix.
See (Hillebrand and Barnes, 2005; Hillebrand et al., 2005, 2012, 2016)
for a detailed description of the beamforming approach.

The beamforming approach resulted in broad band (0.5–48 Hz)
time-series for each centroid of the 90 ROIs. From these time-series 35
epochs of 4096 samples (3.2765 s) were visually selected by MD and
independently evaluated on quality by one of the senior authors (CS).
Epochs without consensus were replaced by new epochs. The selected
epochs were converted to American Standard Code for Information
Interchange (ASCII) format, and loaded into BrainWave software for
further analysis (BrainWave version 0.9.152.12.5, C. J. Stam; available
at http:/home.kpn.nl/stam7883/brainwave.html).

2.4. Spectral analysis

Peak frequency (i.e. frequency with the highest power in the
4–13 Hz range, PF), and relative power in the frequency bands delta
(0.5–4 Hz), theta (4–8 Hz), alpha1 (8–10 Hz), alpha2 (10–13 Hz), beta
(13–30 Hz), and gamma (30–48 Hz) were calculated as one average
value per frequency band, and for each AAL region per epoch per pa-
tient by using the Fast Fourier Transformation. All components of the
Fourier transform outside the pass band were set to zero, after which an
inverse Fourier transform was performed to obtain the filtered time-
series.

The PF and relative power values were averaged over the 35 arte-
fact-free epochs per patient to obtain one value per patient per fre-
quency band and per AAL region.

2.5. Statistical analysis

Statistical analyses were performed using IBM SPSS statistics 24.0.
Patient characteristics and spectral measures were compared between
the groups. Continuous data were tested for normality using the
Shapiro-Wilk test. Normally distributed variables were compared using
independent samples t-test. Data that did not follow a normal dis-
tribution were compared using nonparametric Mann-Whitney U test.
Categorical data were compared using the chi-square test.

To explore the spatial distribution of relative power per frequency
band and PF, we compared relative power and PF of different brain
regions between the subgroups using repeated measures ANOVA with
Greenhouse-Geiser correction for sphericity, with brain regions and
frequency band as the within subject factor and group as the between
subject factor, and FDR-correction for multiple comparisons. For this
analysis the following brain regions per hemisphere were tested:
frontal, central, parietal, occipital, temporal, limbic and subcortical. For
frequency bands, only the bands/PF with significant difference between
the groups in the main analysis, were included.

The False Discovery Rate (FDR) approach (Benjamini and Hochberg,
1995) with adjusted p value (i.e., q-value) of 0.05 was used to correct
for multiple comparisons: (1) for the main analysis where one average
value per frequency band/PF was calculated, correction was performed
for the number of frequency bands and PF, (2) for the frequency bands/
PF that revealed significant differences between the groups in the main
analysis, power/PF was further explored regionally between the groups,
and correction was performed for the number of brain regions. A p-
value of< 0.05 was considered significant.

Finally, Spearman correlation coefficients were calculated between
each neuropsychological test and each relative power/PF per brain
region that showed significant differences between any two groups.

3. Results

3.1. Hall+ vs. Hall- patients

3.1.1. Patient characteristics
Hall+ and Hall- patients did not differ at the group level for age,

gender, educational level, disease duration, disease severity and med-
ication use (Table 1), which indicates that matching was accurate. All
Hall+ patients (n=20, 100%) experienced VH (Table 1). Ten patients
(n=10/20, 50%) also experienced auditory hallucinations (AH). From
this group (i.e. 10 patients with VH and AH), six patients experienced
olfactory (OH) and tactile hallucinations (TH) (n=6/20, 30%). All
patients experienced recurrent complex VH containing people, animals
and inanimate objects with and without movement. Twelve (60%)
patients retained full insight, while six (30%) patients had partial in-
sight into their hallucinations and doubted the real nature of the hal-
lucinations. Two (10%) patients were fully convinced that their hallu-
cinations were real (i.e. insight was absent). 80% (n=16) of the
patients had at least once interacted with their hallucinations. > 50%
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of the patients also experienced minor hallucinations including visual
illusions (i.e. seeing things differently than they actually are, e.g. seeing
a face in a branch of a tree), passage hallucinations (i.e. seeing a person,
animal or object passing in the peripheral visual field), and sensed
presence hallucinations (i.e. sense that someone or something is present
or nearby without being actually visible). One (5%) patient experienced
delusions in the week preceding participation in the study (Table 1).

Hall+ patients scored significantly lower on the MMSE and sig-
nificantly higher on the BDI-II, and DJGL than the Hall- group
(Table 1).

3.1.2. Spectral analysis
Fig. 1 shows the mean power spectrum for both patient groups. The

Hall+ group showed slowing of resting state brain activity compared to
Hall- group, but the groups did not differ in relative power or PF
(Table 2).

3.2. Subgroup analyses

3.2.1. Patient characteristics
As described above, given the dichotomy in the presence of type of

hallucinations within the Hall+ group, namely n=10 patients with
only VH and n=10 patients with multimodal hallucinations, we

performed exploratory subgroup analyses and compared PD patients
with only VH (unimodal Hall+) with PD patients with multimodal
hallucinations (multimodal Hall+), and both these subgroups sepa-
rately with Hall- patients, to explore the specificity of spectral changes
to the pathophysiology of VH.

Unimodal Hall+, multimodal Hall+ and Hall- patients did not
differ at the group level for age, gender, educational level, disease
duration, disease severity and medication use (Table 3). Unimodal Hall
+ patients performed significantly worse on MMSE, TMT-A, TMTeB,
and experienced more depressive symptoms and loneliness than Hall-
patients. Multimodal Hall+ patients experienced more depressive
symptoms compared to Hall- patients (Table 3). Unimodal Hall+ and
multimodal Hall+ patients did not differ on cognition, DJGL or BDI-II
(Table 3).

Although not significantly different, the emotional valence of hal-
lucinations was more severe (i.e. content was more often negative) in
multimodal Hall+ patients and they also experienced more often dis-
tress from their hallucinations than unimodal Hall+ patients (Table 3).

3.2.2. Spectral analysis
Fig. 2 shows the mean power spectrum for the unimodal Hall+ and

multimodal Hall+ patients in relation to the Hall- group. For both re-
lative power and PF, the unimodal Hall+ and multimodal Hall+ group
deviated in opposite direction compared to the Hall- group (Table 4).
Compared to the Hall- group, unimodal Hall+ patients showed sig-
nificantly higher relative power in the theta band (p=0.005), and
significantly lower relative power in the beta (p=0.029) and gamma
(p=0.007) band, and lower PF (p=0.011). The relative power per
AAL region for the theta, beta and gamma frequency band, as well as PF
per AAL region, are shown in Tables S1–S4. After correcting for mul-
tiple comparisons, theta, beta, and gamma band relative power, as well
as PF (Tables S1–S4), were significantly different for several AAL re-
gions. Fig. 3 displays the mean relative power for the theta, beta and
gamma frequency band, as well as the mean PF, for each cortical ROI
for both the unimodal Hall+ and Hall- patients.

In the theta band, unimodal Hall+ patients showed higher relative
power in 74 (82.2%) out of 90 AAL regions compared to the Hall-
group. These regions were spread across the entire brain and included
all the regions in the limbic lobes and all the subcortical regions in both
hemispheres (Table S1). In the beta band, relative power was lower in
14 (15.6%) out of 90 AAL regions in unimodal Hall+ patients. These
regions were mainly located in the parietal and occipital lobes (Table
S2). In the gamma band, unimodal Hall+ patients showed lower re-
lative power in 47 (52.2%) out of 90 AAL regions. These regions in-
cluded mainly the frontal and limbic lobes, and subcortical regions, but
not the temporal, parietal and occipital lobes (Table S3). PF was lower
in 51 (56.7%) out of 90 AAL regions in unimodal Hall+ patients
compared to Hall- patients. These regions comprised almost the entire
brain except (mainly) the frontal lobes (Table S4).

To explore whether a potential spatial pattern could be found for the
AAL regions that revealed significant difference that might be related to
VH, we performed regional analysis and found significant interaction
effects for brain regions per frequency band between the groups F(8.50,
157.16)= 4.70, p < 0.001. In the theta band, brain regions that
showed significant difference between unimodal Hall+ and Hall- pa-
tients were all located across the right hemisphere, and comprised the
parietal, temporal, limbic and subcortical brain regions (Tables S5 and
S6, Fig. 4A). In the beta band, the parietal and temporal brain region in
the right hemisphere showed significant difference between the unim-
odal Hall+ and Hall- group (Tables S5 and S6, Fig. 4B). In the gamma
band, relative power in the bilateral frontal, left central and limbic
brain region differed significantly between unimodal Hall+ and Hall-
patients (Tables S5 and S6, Fig. 4C). Brain regions that revealed sig-
nificant difference between unimodal Hall+ and Hall- patients in terms
of PF included left occipital and limbic brain region, whereas in the
right hemisphere, all but the fronto-central brain regions showed

Table 1
Patient characteristics.

Hall+ (N=20) Hall- (N=20)

Age, yrs 72.15 (6.22) 70.50 (6.45)
Gender, female 7 (35.0%) 6 (30.0%)
Education level 4 (3–7) 7 (6–7)
Handedness, right 18 (90.0%) 15 (75.0%)
Disease duration, yrs 7.71 (4.35–12.73) 4.46 (2.75–9.38)
Hoehn & Yahr staging

scale
3.0 (3.0–4.0) 3.0 (3.0–3.0)

LED, mg/day 882.00
(628.75–1188.00)

666.00 (547.25–1218.75)
n=18

Type of hallucinations
VH 20 (100.0%)
AH 10 (50.0%)
OH 6 (30.0%)
TH 6 (30.0%)
Delusions 1 (5.0%)
BDI-II⁎⁎ 15.00 (10.00–19.75) 10.00 (5.00–14.75)
DJGL⁎ 5.00 (1.00–6.00) 1.00 (0.00–4.00)

Cognition
MMSE⁎⁎ 26.0 (21.75–27.75) 28.5 (27.0–29.0)
Digit Span forward 8.20 (1.51) 8.85 (1.66)
TMT-A 96.47 (59.89) n=19 65.73 (58.25)
TMT-B 183.87 (113.35) n=16 121.77 (67.52) n=18
TMTB-A 101.69 (112.96) n=16 74.13 (58.16) n=18

Data are mean (SD), median (interquartile range), or n(%). Education level was
assessed with the 7-item Verhage coding system for education (Verhage, 1964).
Disease duration was calculated as the years diagnosed with PD at enrollment in
the study. The Hoehn and Yahr staging scale was used to measure disease se-
verity based on clinical features and functional disability. It ranges from 0 to 5
with higher scores indicating more advanced disease severity (Goetz et al.,
2004). The total dose of dopaminergic medication (i.e. including dopamino-
mimetics and levodopa) was converted to a so-called levodopa equivalent dose
in milligrams per day based on (Tomlinson et al., 2010). Depression was
measured with the BDI-II. Loneliness was measured using the DJGL.
AH: Auditory Hallucinations; BDI-II: Beck Depression Inventory-II; DJGL: De
Jong Gierveld Loneliness scale; Hall+: PD patients with hallucinations; Hall-:
PD patients without hallucinations; LED: Levodopa Equivalent Dose; MMSE:
Mini Mental State Examination; OH: Olfactory Hallucinations; PD: Parkinson's
disease; TH: Tactile Hallucinations; TMT-A: Trail-Making Test part A; TMTeB:
Trail-Making Test part B; TMTB-A: a contrast score between TMT-B and TMT-A
calculated as a measure of attentional set-shifting; VH: Visual Hallucinations.

⁎ p < 0.05.
⁎⁎ p≤ 0.01.
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significant difference between the groups (Tables S5 and S6, Fig. 4D).
The multimodal Hall+ and Hall- groups did not differ in relative

power or PF (Table 4). The unimodal Hall+ and multimodal Hall+
groups differed significantly in relative power in the theta (p=0.19)
and gamma (p=0.023) frequency band and in PF (p=0.007). After
FDR-correction, only PF between the groups remained significantly
different with multimodal Hall+ patients showing higher PF than un-
imodal Hall+ patients (Table 4). The relative power per AAL region for
the theta and gamma band and PF are shown in Tables S7–S9.

Further regional exploration showed that in the theta band, all but
the bilateral central, left parietal and temporal brain region were sig-
nificantly different between the unimodal Hall+ and multimodal Hall
+ group (Tables S5 and S6, Fig. 5A). In the gamma band, relative
power in the bilateral frontal and left central brain region differed

significantly between unimodal Hall+ and multimodal Hall+ patients
(Tables S5 and S6, Fig. 5B). With regard to PF, unimodal Hall+ and
multimodal Hall+ differed significantly in all but the bilateral frontal
and left central brain region (Tables S5 and S6, Fig. 5C).

Although the subgroups did not differ in use of medication
(Table 3), we redid the main analyses in the subgroups (Table 4) with
medication (LED) as a covariate in order to exclude a potential effect of
medication on our results, and found that the corrected model still
showed the same effects (see Table S10).

3.2.3. Correlation with neuropsychological tests
3.2.3.1. MMSE. In the Hall- group, a negative correlation was found
between relative power in the right parietal and limbic brain region in
the theta band and MMSE (Table 5). In the beta band, MMSE was
positively correlated with relative power in the right parietal brain
region (Table 5). MMSE was positively correlated with PF in all but the
right occipital brain region (Table 5). No significant correlations were
found for the gamma band or the unimodal Hall+ group.

3.2.3.2. TMT-A and TMT-B. In the Hall- group, Spearman correlation
showed a positive correlation between both the TMT-A and TMT-B and
relative power in all brain regions in the theta band, and negative
correlations with relative power in brain regions in the beta band
(Table 5). For PF, a negative correlation was found between relative
power in all brain regions and TMT-A, whereas for TMTeB, a
significant negative correlation was found with relative power in the
bilateral occipital and left limbic brain region (Table 5). No significant
correlations were found for the gamma band or the unimodal Hall+
group.

Fig. 1. Average power spectra over 90 AAL regions for Parkinson's disease patients with (Hall+: yellow) and without (Hall-: blue) hallucinations. Peak frequency (i.e.
frequency with the most power in the 4–13 Hz range) is lower in Hall+ compared to Hall- patients. Filled area represents the standard error of the mean.

Table 2
Relative power per frequency band in PD patients with and without halluci-
nations.

Hall+ (n=20) Hall- (n=20) p-Value

Delta 0.262 (0.074) 0.256 (0.038) 0.758
Theta 0.207 (0.080) 0.183 (0.054) 0.285
Alpha1 0.102 (0.026) 0.104 (0.034) 0.833
Alpha2 0.101 (0.031) 0.098 (0.018) 0.758
Beta 0.257 (0.090) 0.276 (0.064) 0.453
Gamma 0.071 (0.019) 0.082 (0.020) 0.089
Peak frequency 7.97 (1.15) 8.11 (0.70) 0.643

Power is the relative power per frequency band (delta [0.5–4 Hz], theta
[4–8 Hz], alpha1 [8–10 Hz], alpha2 [10–13 Hz], beta [13–30 Hz], and gamma
[30–48 Hz]). Peak frequency is the frequency with highest power in range be-
tween 4 and 13 Hz. Hall+: Parkinson's disease patients with hallucinations;
Hall-: Parkinson's disease patients without hallucinations.
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4. Discussion

4.1. Main findings

This study is the first to explore neurophysiological markers of
hallucinations in PD by using source-space MEG. Although we hy-
pothesized to find slowing of resting-state oscillatory brain activity in
PD patients who experienced visual hallucinations, the primary analysis
revealed no significant differences in relative power or PF between PD
patients with and without hallucinations. However, remarkable results
were found when exploratory subgroup analyses were performed after
dissecting the hallucinating group into purely visual hallucinations
(unimodal Hall+) and hallucinations also in other modalities (multi-
modal Hall+). Compared to patients without hallucinations, patients
with only VH showed slowing of resting-state oscillatory brain activity,
with spatial distributions characterized by an increase in theta power in
all but the fronto-central and occipital brain region in the right hemi-
sphere, and concomitant decrease in beta power in the right tempor-
oparietal brain region, and decrease in gamma power in the bilateral
frontal and left limbic brain region, and lowering of PF in almost all but
the frontal brain regions. These deviations were absent in the patient
group with multimodal hallucinations compared to patients without
hallucinations. Compared to patients with only VH, patients with
multimodal hallucinations showed a significant and diffuse increase in
PF in all but the frontal brain regions.

Analysis of relative power/PF in relation to performance on neu-
ropsychological tests showed, only in patients without hallucinations, a
correlation between higher theta power and worse performance on the
MMSE, better performance on MMSE and higher beta power in the right

parietal region and higher PF in all but the right occipital brain regions.
Lower theta and higher beta power were associated with a better per-
formance on both TMT-A and TMTeB, whereas a diffuse higher PF was
associated with a better performance on TMT-A, and higher PF in bi-
lateral occipital and left limbic brain region was associated with better
performance on the TMT-B test.

4.2. Underlying mechanism(s) of unimodal visual and multimodal
hallucinations in PD

4.2.1. Unimodal visual hallucinations
The cholinergic system is seen as a modulator of the cortical signal-

to-noise ratio (Collerton et al., 2005). Slowing in resting-state brain
activity (increased power in delta and theta frequencies and decreased
power in alpha and beta frequencies) has been associated with impaired
cholinergic function (Bauer et al., 2012; Simpraga et al., 2018). As
mentioned earlier, the central cholinergic system has been involved in
the integration of top-down attentional and bottom-up sensory pro-
cessing such that cholinergic dysfunction (results in decrease in signal-
to-noise ratio) may increase the uncertainty in top-down activity re-
sulting in incorrect scene representation, and thus hallucinations
(Collerton et al., 2005; Friston, 2005). Indeed, impaired bottom-up (i.e.
reduced activation of the visual pathways) and top-down (i.e. defective
attentional) processing, and thus cholinergic dysfunction, has fre-
quently been reported in PD patients who experience VH (Boecker
et al., 2007; Hepp et al., 2017; Matsui et al., 2006; Meppelink et al.,
2009; Park et al., 2013; Stebbins et al., 2004). Recently, Hepp et al.
proposed that impaired bottom-up visual processing in combination
with defective top-down attentional processing may underlie VH in PD

Table 3
Patient characteristics in Parkinson's disease patients with unimodal, multimodal, and without hallucinations.

Unimodal Hall+ (N=10) Multimodal Hall+ (N=10) Hall- (N=20)

Age, yrs 74.20 (5.85) 70.10 (6.17) 70.50 (6.45)
Gender, female 2 (20.0%) 5 (50.0%) 6 (30.0%)
Education level 6.50 (3.75–7.0) 4.00 (2.75–5.50) 7.00 (6.0–7.0)
Handedness, right 9 (90.0%) 9 (90.0%) 15 (75.0%)
Disease duration, yrs 8.13 (4.81–19.79) 6.46 (4.02–11.19) 4.46 (2.75–9.38)
Hoehn & Yahr staging scale 3.5 (3.0–4.0) 3.0 (2.38–4.0) 3.0 (3.0–3.0)
LED, mg/day 922.0 (575.25–1459.75) 860.0 (587.50–1056.75) 666.0 (547.25–1218.75) n=18
BDI-II⁎,§ 16.0 (9.75–21.25) 14.50 (9.75–18.50) 10.0 (5.0–14.75)
DJGL⁎ 5.0 (2.50–6.0) 3.50 (1.0–6.0) 1.00 (0.0–4.0)

Type of hallucinations
VH 10 (100.0%) 10 (100.0%)
AH 0 10 (100.0%)
OH 0 6 (60.0%)
TH 0 6 (60.0%)
Distress from hallucinations 2 (20.0%) 5 (50.0%)
Emotional valence of hallucinations 1 (10.0%) 4 (40.0%)
Delusions 0 1 (10.0%)

Cognition
MMSE⁎⁎ 24.5 (16.25–27.0) 27.0 (24.75–28.25) 28.5 (27.0–29.0)
Digit Span forward 7.90 (1.97) 8.50 (0.85) 8.85 (1.66)
TMT-A⁎ 118.89 (66.10) n=9 76.30 (48.33) 65.73 (58.25)
TMT-B⁎⁎ 242.43 (121.84) n= 7 155.63 (75.08) 121.77 (67.52) n=18
TMTB-A 136.29 (138.46) n=7 97.88 (57.42) 74.13 (58.16) n=18

Data are mean (SD), median (interquartile range), or n(%).Education level was assessed with the 7-item Verhage coding system for education (Verhage, 1964).
Disease duration was calculated as the years diagnosed with PD at enrollment in the study. The Hoehn and Yahr staging scale was used to measure disease severity
based on clinical features and functional disability. It ranges from 0 to 5 with higher scores indicating more advanced disease severity (Goetz et al., 2004). The total
dose of dopaminergic medication (i.e. including dopaminomimetics and levodopa) was converted to a so-called levodopa equivalent dose in milligrams per day based
on (Tomlinson et al., 2010). Depression was measured with the BDI-II. Loneliness was measured using the DJGL.
BDI-II: Beck Depression Inventory-II; DJGL: De Jong Gierveld Loneliness scale; Hall-: PD patients without hallucinations; LED: Levodopa Equivalent Dose; MMSE:
Mini Mental State Examination; Multimodal Hall+: PD patients with multimodal hallucinations; PD: Parkinson's disease; TMT-A: Trail-Making Test part A; TMTeB:
Trail-Making Test part B; TMTB-A: a contrast score between TMT-B and TMT-A calculated as a measure of attentional set-shifting; Unimodal Hall+: PD patients with
only visual hallucinations;

⁎ p < 0.05; significantly different between unimodal Hall+ and Hall- patients.
⁎⁎ p < 0.01; significantly different between unimodal Hall+ and Hall- patients.
§ p < 0.05; significantly different between multimodal Hall+ and Hall- patients.
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(Hepp et al., 2017). In accordance with these findings, our results
provide neurophysiological evidence that VH in PD may emerge due to
central cholinergic dysfunction.

With respect to spatial distribution, compared to patients without
hallucinations, patients with unimodal VH showed notable findings in
the theta and beta band. In both frequency bands, brain regions that
revealed significant difference between the groups were located in the
right hemisphere and comprised the temporoparietal brain areas,
among others. The right hemisphere has been shown to play a role in
arousal and attentional processes and mediate top-down attentional
processing (Levy and Wagner, 2011; Posner, 1994; Sacchet et al.,
2015). The temporoparietal brain regions form part of the ventral at-
tentional network (VAN, also named salience network), which is la-
teralized to the right hemisphere and involved in shifting attention in
the presence of salient stimuli (Corbetta et al., 2002; Vossel et al.,
2014). Moreover, the right temporoparietal brain regions have been
involved in source monitoring or ‘self-other’ distinction (i.e.

discrimination between external perceptions and internally generated
information) (Sowden and Catmur, 2015), and deficits in source mon-
itoring have been reported in PD patients with VH (Barnes et al., 2003;
Muller et al., 2014).

Beta band activity has been associated with long-range feedback or
top-down processing and attention (Gross et al., 2004; Kamiński et al.,
2012; Kopell et al., 2000; Michalareas et al., 2016). Theta band activity
has also been proposed in top-down processing with a key inhibitory
role in working memory to suppress task-irrelevant or distracting in-
formation in situations that demand cognitive control (Klimesch, 1999;
Nigbur et al., 2011). Moreover, increase in theta oscillations is observed
during lower vigilance and states of drowsiness (Strijkstra et al., 2003).
In patients without hallucinations, we found that higher power in the
right temporoparietal regions in the theta band was correlated with
worse performance on the tests for visual processing speed (TMT-A) and
attention (TMTeB), whereas higher power in the right temporoparietal
regions in the beta band was associated with better performance on

Fig. 2. Average power spectra over 90 AAL regions for Parkinson's disease patients with only VH (unimodal Hall+: red), with multimodal (multimodal Hall+: green)
and without (Hall-: blue) hallucinations. Peak frequency (i.e. frequency with the most power in the 4–13 Hz range) is lowest in unimodal Hall+ patients. Filled area
represents the standard error of the mean.
VH: Visual Hallucinations.

Table 4
Relative power per frequency band in Parkinson's disease patients with unimodal, multimodal, and without hallucinations.

Unimodal Hall+
(n=10)

Multimodal Hall+
(n=10)

Hall- (n=20) p-Value, Unimodal
Hall+ vs. Hall-

p-Value, Multimodal
Hall+ vs. Hall-

p-Value, Unimodal Hall+ vs.
Multimodal Hall+

Delta 0.286 (0.093) 0.238 (0.060) 0.256 (0.038) 0.296 0.169 0.315
Theta 0.247 (0.056) 0.166 (0.082) 0.183 (0.054) 0.005⁎ 0.267 0.019
Alpha1 0.095 (0.027) 0.109 (0.025) 0.104 (0.034) 0.484 1.000 0.280
Alpha2 0.090 (0.021) 0.111 (0.036) 0.098 (0.018) 0.303 0.328 0.218
Beta 0.219 (0.062) 0.295 (0.101) 0.276 (0.064) 0.029a 0.619 0.063
Gamma 0.061 (0.014) 0.081 (0.019) 0.082 (0.020) 0.007a 0.948 0.023
Peak frequency 7.31 (0.88) 8.63 (1.01) 8.11 (0.70) 0.011a 0.091 0.007a

Power is the relative power per frequency band (delta [0.5–4 Hz], theta [4–8 Hz], alpha1 [8–10 Hz], alpha2 [10–13 Hz], beta [13–30 Hz], and gamma [30–48 Hz]),
averaged over all 90 AAL regions. Peak frequency is the frequency with highest power in range between 4 and 13 Hz, averaged over all 90 AAL regions.
Hall-: Parkinson's disease patients without hallucinations; Multimodal Hall+: Parkinson's disease patients with multimodal hallucinations; Unimodal Hall+:
Parkinson's disease patients with only visual hallucinations.
Bold indicates p< .05 or p< .01

a Significantly different between the groups after FDR-correction.
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Fig. 3. Mean relative power for each region of interest (ROI) in unimodal Hall+ (left) and Hall- (right) patients displayed as a color-coded map on a parcellated
template brain viewed from, in clockwise order, the left, top, right, right-midline and left-midline. Panel A: relative power in the theta band. Panel B: relative power
in the beta band. Panel C: relative power in the gamma band. Panel D: Peak frequency. Hot and cold colors indicate higher and lower relative power/peak frequency,
respectively. See table S1-S4 for the subcortical regions per frequency band that showed significant difference between the groups and for all the relative power and
peak frequency values in the two groups.
Hall-: Parkinson's disease patients without hallucinations; unimodal Hall+: Parkinson's disease patients with only visual hallucinations.
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both tests (Table 5). These correlations were lacking in patients with
only VH, which might be due to the small sample size of the group (data
available in n=9 for TMT-A and n=7 for TMTeB). Taken together,
our results provide support for alterations in top-down attentional
processing in PD patients with VH.

Gamma band activity is generated in early sensory cortices, and
involved in feedforward or bottom-up processing (Bastos et al., 2015;
Herrmann et al., 2010; Kopell et al., 2000). The lack of significant
differences in gamma power in the posterior brain regions between PD

patients with unimodal VH and PD patients without hallucinations
suggests that there may be no alterations in bottom-up processing in PD
patients with only VH. Less straightforward is the interpretation of
decreased gamma power in the frontal brain regions in PD patients with
only VH compared to PD patients without hallucinations. Gamma os-
cillations are modulated by various cognitive processes such as atten-
tion and working memory, and are therefore supposed to reflect in-
tegration mechanisms of the brain. Particularly, gamma oscillations are
involved in working memory storage that can be controlled by beta

Fig. 4. Distribution of the brain regions that showed
significant difference between unimodal Hall+ and
Hall- patients, displayed as in Fig. 3, for the theta
(panel A), beta (panel B), and gamma (panel C)
band, and for peak frequency (panel D). Red: higher
relative power in unimodal Hall+ patients. Blue:
lower relative power/peak frequency in unimodal
Hall+ patients. Gray: brain regions that did not
differ between the groups. Note: subcortical regions
are not shown in this figure. See table S6 for the
subcortical regions per frequency band that showed
significant difference between the two groups and
table S5 for the mean relative power/peak frequency
values in the two groups.
Hall-: Parkinson's disease patients without halluci-
nations; unimodal Hall+: Parkinson's disease pa-
tients with only visual hallucinations.

Fig. 5. Distribution of the brain regions that showed
significant difference between unimodal Hall+ and
multimodal Hall+ patients, displayed as in Fig. 3,
for the theta (panel A), and gamma (panel B) band,
and for peak frequency (panel C). Red: higher re-
lative power in unimodal Hall+ patients. Blue:
lower relative power/peak frequency in unimodal
Hall+ patients. Gray: brain regions that did not
differ between the groups. Note: subcortical regions
are not shown in this figure. See table S6 for the
subcortical regions per frequency band that showed
significant difference between the two groups and
table S5 for the mean relative power/peak frequency
values in the two groups.
Multimodal Hall+: Parkinson's disease patients with
multimodal hallucinations; unimodal Hall+: Par-
kinson's disease patients with only visual hallucina-
tions.
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oscillations, such that beta rhythm regulates the access of sensory in-
formation into working memory and controls its maintenance
(Herrmann et al., 2010; Miller et al., 2018). Hence, decreased gamma
power in the frontal brain regions might be a consequence of decreased
beta power and thus top-down processing. However, several other brain
regions also showed higher power in the theta and lower power in the
gamma band, and lower PF in patients with only VH, hence our results
with respect to spatial distribution may not provide sufficient insight
into the exact role of specific brain regions in the underlying

pathophysiological mechanisms of VH and should be interpreted with
caution. Future work to evaluate MEG-based functional connectivity
and brain network organization may be of additional value in exploring
the exact role of multiple brain regions and networks - involved in at-
tention and perception - in the pathophysiology of VH.

Another possible explanation for slowing of resting-state brain ac-
tivity in patients with only VH as opposed to patients with multimodal
hallucinations and patients without hallucinations may be sought in the
patient characteristics of the groups. Although not significantly dif-
ferent, patients with only VH were somewhat older, had somewhat
longer disease duration at enrollment and were slightly more cogni-
tively impaired than patients with multimodal hallucinations and pa-
tients without hallucinations, indicating a slightly more advanced dis-
ease stage in patients with only VH. For decades, diffuse and local
slowing of resting state oscillatory brain activity, involving increases in
theta power and decreases in beta and gamma power, has been a
consistently reported feature in PD patients, with severity of slowing
increasing with advancing disease, and predicting risk of future de-
mentia (Bosboom et al., 2006; Caviness et al., 2007; Fonseca et al.,
2009; Klassen et al., 2011; Neufeld et al., 1994; Olde Dubbelink et al.,
2014; Olde Dubbelink et al., 2013; Serizawa et al., 2008; Soikkeli et al.,
1991; Stoffers et al., 2007).

4.2.2. Multimodal hallucinations
Patients with multimodal hallucinations experienced both VH and

AH (with similar prevalences) and hallucinations in other modalities
but did not show more slowing of resting-state brain activity than pa-
tients with only VH or patients without hallucinations. Patients with
multimodal hallucinations rather showed faster, although not sig-
nificantly so, resting-state brain activity than patients with only VH and
patients without hallucinations, which indicates the complexity of the
pathophysiology of hallucinations in PD. In addition, given the ex-
tensive differences in spatial distribution in the different frequency
bands/PF between patients with multimodal hallucinations and pa-
tients with unimodal VH, it is difficult to draw conclusions about the
involvement of specific brain regions in the pathophysiology of hallu-
cinations in PD.

A likely candidate to explain changes in spectral power in PD pa-
tients with multimodal hallucinations may be the dopaminergic system.
Research on the effect of dopaminergic neurotransmission on resting-
state oscillatory brain activity in PD is scarce. Nonetheless, a few stu-
dies have examined the effect of exposure to dopaminergic agents (i.e.
dopaminomimetics or dopamine precursor levodopa (L-dopa)) on
resting-state brain activity in PD patients and found contradicting re-
sults (Babiloni et al., 2018; Melgari et al., 2014; Stoffers et al., 2007;
Yaar and Shapiro, 1983). A previous quantitative EEG study examined
25 PD patients on chronic L-dopa therapy and found a spatially con-
fined increase in power in all frequency bands over the left-occipital
brain region (Yaar and Shapiro, 1983). In addition, Melgari et al.
(2014) obtained resting-state source-space EEG recordings in 24 PD
patients before and after an oral dose of L-dopa and found a significant
increase in alpha and beta power over centro-parietal electrodes
(Melgari et al., 2014). This is in contrast with findings from a recent
study by Babiloni et al. (2018), who studied resting-state EEG activity
in PD patients with normal (N=35) and impaired cognition (N=85)
before and after L-dopa intake and compared these data with EEGs from
healthy individuals (N=50). Compared to the healthy individuals, the
PD groups with and without cognitive decline showed a diffuse increase
in delta power and decrease in alpha power in the posterior brain re-
gions. In relation to PD patients with normal cognition, cognitively
impaired PD patients showed greater increase in delta power, greater
reduction in occipital alpha power with concomitant increase in alpha
power in the frontal, central and temporal brain regions (Babiloni et al.,
2018). Notably, an MEG-study by Stoffers et al. in non-demented PD
patients (N=37) did not find any significant effect of acute L-dopa
administration on spectral power (Stoffers et al., 2007). Thus, there is

Table 5
Correlation between relative power/peak frequency per significantly differing
brain region and neuropsychological tests in Parkinson's disease patients
without hallucinations.

Brain region Neuropsychological test N Spearman rho (ρ) p-Value

Theta band
Right parietal MMSE 20 −0.45 0.048

TMT-A 20 0.51 0.023
TMT-B 18 0.53 0.025

Right temporal MMSE 20 −0.44 0.054
TMT-A 20 0.51 0.020
TMT-B 18 0.51 0.032

Right limbic MMSE 20 −0.45 0.049
TMT-A 20 0.53 0.016
TMT-B 18 0.47 0.049

Right subcortical MMSE 20 −0.43 0.062
TMT-A 20 0.55 0.011
TMT-B 18 0.51 0.029

Beta band
Right parietal MMSE 20 0.51 0.021

TMT-A 20 −0.61 0.004
TMT-B 18 −0.60 0.008

Right temporal MMSE 20 0.44 0.054
TMT-A 20 −0.49 0.029
TMT-B 18 −0.62 0.007

Gamma band
Left frontal MMSE 20 −0.01 0.966

TMT-A 20 0.10 0.669
TMT-B 18 0.18 0.464

Right frontal MMSE 20 −0.05 0.824
TMT-A 20 0.19 0.433
TMT-B 18 0.20 0.432

Left central MMSE 20 −0.18 0.436
TMT-A 20 0.33 0.160
TMT-B 18 0.14 0.569

Left limbic MMSE 20 −0.05 0.844
TMT-A 20 0.13 0.599
TMT-B 18 0.12 0.641

Peak frequency
Right parietal MMSE 20 0.55 0.012

TMT-A 20 −0.55 0.012
TMT-B 18 −0.44 0.069

Left occipital MMSE 20 0.51 0.023
TMT-A 20 −0.56 0.010
TMT-B 18 −0.59 0.011

Right occipital MMSE 20 0.41 0.076
TMT-A 20 −0.47 0.035
TMT-B 18 −0.50 0.034

Right temporal MMSE 20 0.46 0.042
TMT-A 20 −0.56 0.010
TMT-B 18 −0.46 0.056

Left limbic MMSE 20 0.57 0.008
TMT-A 20 −0.66 0.001
TMT-B 18 −0.48 0.043

Right limbic MMSE 20 0.64 0.002
TMT-A 20 −0.65 0.002
TMT-B 18 −0.44 0.068

Right subcortical MMSE 20 0.57 0.009
TMT-A 20 −0.61 0.005
TMT-B 18 −0.33 0.184

MMSE: Mini-Mental State Examination; TMT-A: Trail-Making Test part A;
TMTeB: Trail-Making Test part B.
Bold indicates p< .05 or p< .01
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considerable variability in the reported relation between resting-state
brain activity and dopaminergic neurotransmission, which could be
related to the demographics of the patient groups or methodological
differences between the studies.

In our study, the daily L-dopa equivalent dose (LED) did not differ
significantly between patients with only VH, patients with multimodal
hallucinations, and patients without hallucinations (Table 3). None-
theless, psychosis has frequently been reported as a non-motor adverse
effect of dopaminergic treatment in both early-stage and late-stage PD
(Barrett et al., 2017; Morgante et al., 2012; Ravina et al., 2007; Stowe
et al., 2008). Moreover, recent positive findings show that hallucina-
tions in PD can be alleviated with subthalamic deep brain stimulation,
which could probably be related to the reduction of dopaminergic
medication (Lhommée et al., 2018). Considering the findings that do-
paminergic treatment in PD may lead to psychosis, and that restoration
of brain dopamine levels by drug treatment may (at least partly) restore
normal patterns of oscillatory brain activity, suggest that hyperdopa-
minergic neurotransmission may underlie psychosis in PD and does not
induce slowing in resting-state oscillatory brain activity.

A highly speculative explanation for the increase in signal power in
patients with multimodal hallucinations may be sought in the decreased
output from the nigrostriatal dopaminergic system to connected brain
areas. The dopamine depleted nigro-striatal-thalamo-cortical circuit in
PD may lead to reduced modulatory control on connected cortical brain
regions (Melgari et al., 2014; Rodriguez-Oroz et al., 2009). In response,
connected brain areas may lower their detection threshold for neuronal
firing, which may result in hyper-excitability (due to increased sensi-
tivity of neurons towards incoming signals) within the connected brain
regions. This hyper-excitability may result in false-positive neuronal
firing, which may be perceived as an experience without the presence of
an external source; a hallucination (dependent on the modality-specific
brain region). This mechanism is known as cortical deafferentiation
(Carter and ffytche, 2015). Dysregulation of neural circuits due to im-
balance between excitation and inhibition as a general model of hal-
lucinations has been proposed in both neurological and psychiatric
disorders, with greater evidence for inhibitory deficits in hallucinations
(Jardri et al., 2016).

Alterations in serotonin neurotransmission have also been proposed
in the pathophysiology of hallucinations in PD, with a specific role for
the serotonin 2 receptor (Factor et al., 2017). Treatment with pima-
vanserin, a serotonin 2A inverse-agonist, has been shown to alleviate
psychosis in both PD patients with normal and impaired cognitive
functioning (Espay et al., 2018; Kianirad and Simuni, 2017). To date,
only one study has examined in vivo changes in serotonin receptor
binding in PD with positron emission tomography (PET) and found
increased serotonin binding in the ventral visual pathway in PD patients
with VH compared to patients without hallucinations (Ballanger et al.,
2010). The use of selective serotonin reuptake inhibitors (SSRIs) (in-
creasing the extracellular level of serotonin) has been associated with
changes in rhythmic brain activity in the delta, theta and alpha band in
prefrontal brain regions, with decreases in the delta and theta band and
increases in the alpha band (Bares et al., 2008; Leuchter et al., 2017;
Leuchter et al., 2009). In this study, we did not find significant differ-
ences between the groups in the delta or alpha band. Significant dif-
ferences in the theta band were widespread throughout the brain in
both patients with only VH and patients with multimodal hallucina-
tions. Specifically, patients with multimodal hallucinations showed
lower relative power in the theta band compared to both patients with
only VH and patients without hallucinations, hinting that serotonergic
dysfunction may play a role in multimodal hallucinations in PD.

Nevertheless, the above-mentioned neurophysiological evidence is
insufficient to provide strong support for the notion that dopaminergic
or serotonergic dysfunction may induce faster resting-state brain ac-
tivity in PD patients with multimodal hallucinations. Future studies
investigating different modalities of hallucinations within PD are
needed to gain insight into other potential underlying mechanisms.

4.3. Strengths and limitations

A strength of this study is that it investigated hallucinations in PD
with source-space MEG, which made it possible to find regionally-
specific differences between the groups. Second, both patients with and
without hallucinations, as well as, patients with only VH and patients
with multimodal hallucinations, were carefully matched for age,
gender, educational level, disease duration, disease stage, and use of
medication, which makes our findings robust for the influence of these
general and disease related factors.

This study also has limitations. First, by performing subgroup ana-
lyses we reduced the sample size of the hallucination group, and
therefore, the results should be interpreted with caution. However, by
dividing patients with hallucinations in subgroups based on the mod-
ality of hallucinations, we were able to explore the specificity of pos-
sible group differences to the pathophysiology of VH. Second, choli-
nesterase inhibitors are known to influence spectral power and entail
increases in high frequency power with simultaneous decreases in low
frequency power (Fogelson et al., 2003). We observed the opposite
pattern in our patients. In our study, only two patients (N=1 in the
unimodal Hall+ group and N=1 in the Hall- group) used the choli-
nesterase inhibitor rivastigmine. Therefore, it is unlikely that the use of
cholinesterase inhibitors has influenced our findings. In addition, aty-
pical antipsychotics (e.g. clozapine, quetiapine) are also used to treat
psychosis in PD (Wilby et al., 2017), and have been shown to increase
power in lower frequencies and decrease power in higher frequencies
(Hyun et al., 2011; Maccrimmon et al., 2012). In our study, only two
patients with multimodal hallucinations used atypical antipsychotics
(N=1 clozapine, and N=1 quetiapine). As we found decreased power
in the delta and theta band, and increases in power in the alpha and
beta band in patients with multimodal hallucinations, it is unlikely that
the use of atypical antipsychotics has influenced findings in this patient
group.

5. Conclusion

Source-space MEG shows distinct spectral differences between
Parkinson's disease patients with unimodal visual hallucinations and
patients without hallucinations. Slowing of resting-state brain activity
with increases in theta activity, and concomitant decreases in beta and
gamma activity indicates central cholinergic dysfunction as underlying
mechanism of visual hallucinations in Parkinson's disease. Future work
to evaluate functional connectivity and brain network organization is
needed in order to explore the exact role of multiple brain regions and
networks - involved in attention and perception – in the pathophy-
siology of visual hallucinations in Parkinson's disease.
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