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Abstract. Cryptosystems based on Learning with Errors or related
problems are central topics in recent cryptographic research. One main
witness to this is the NIST Post-Quantum Cryptography Standardization
effort. Many submitted proposals rely on problems related to Learning
with Errors. Such schemes often include the possibility of decryption er-
rors with some very small probability. Some of them have a somewhat
larger error probability in each coordinate, but use an error correcting
code to get rid of errors. In this paper we propose and discuss an at-
tack for secret key recovery based on generating decryption errors, for
schemes using error correcting codes. In particular we show an attack on
the scheme LAC, a proposal to the NIST Post-Quantum Cryptography
Standardization that has advanced to round 2.
In a standard setting with CCA security, the attack first consists of a pre-
computation of special messages and their corresponding error vectors.
This set of messages are submitted for decryption and a few decryption
errors are observed. In a statistical analysis step, these vectors causing
the decryption errors are processed and the result reveals the secret key.
The attack only works for a fraction of the secret keys. To be specific,
regarding LAC256, the version for achieving the 256-bit classical secu-
rity level, we recover one key among approximately 264 public keys with
complexity 279, if the precomputation cost of 2162 is excluded. We also
show the possibility to attack a more probable key (say with probability
2−16). This attack is verified via extensive simulation.
We further apply this attack to LAC256-v2, a new version of LAC256 in
round 2 of the NIST PQ-project and obtain a multi-target attack with
slightly increased precomputation complexity (from 2162 to 2171). One
can also explain this attack in the single-key setting as an attack with
precomputation complexity of 2171 and success probability of 2−64.

Keywords: Chosen-ciphertext security, Decryption errors, Lattice-based
cryptography, NIST post-quantum standardization, LAC, LWE, Reac-
tion attack.



1 Introduction

Lattice-based cryptography and the learning with errors problem (LWE) [24]
is now one of the main research areas in cryptography. Factoring and the dis-
crete logarithm problem have always been the fundamental basis in modern
cryptography, but due to the threat of quantum computers, this will change.
Lattice-based cryptography is the enabler for a rich collection of cryptographic
primitives, ranging from key exchange, KEMs, encryption and digital signature
to more advanced constructions like fully homomorphic encryption.

There are several reasons for using LWE or related problems as the under-
lying problem in cryptographic constructions. One is that constructions can be
computationally very efficient compared to existing solutions. Another motiva-
tion is that LWE-based constructions may be resistant to quantum computers.
It is also potentially the way how one can best provide constructions of fully
homomorphic encryption [7,5].

An important problem is to establish the difficulty of solving various LWE-
like problems, as it directly determines an upper bound on the security for
a construction. One can use reductions for LWE to worst-case lattice prob-
lems [24,23,6], but it may not always be applicable or it may not give useful
help in choosing optimal parameters. As of today, the security of a primitive
is often estimated from the computational complexity of lattice-basis reduction
algorithms like BKZ and its different versions.

Recent developments in several areas where problems may potentially be dif-
ficult even for a quantum computer, motivated several standardization projects,
and some time ago the NIST post-quantum standardization project [2] started.
In the specification of the analysis of submitted proposals, the most important
aspect was said to be their security. Typically, the computational complexity
for solving problems like LWE through lattice basis reduction is the guide when
explicitly suggesting parameters in the different constructions. Most proposals
have some proof of security, relating to some well known and difficult problems
in lattice theory, such as the shortest vector problem. Most lattice-based schemes
include also the possibility of having decryption errors with some small prob-
ability. Making this probability zero has a price, as the parameters should be
adjusted accordingly, resulting in a performance loss. So many schemes tolerate
a very small probability of decryption error, say something of size 2−128.

An approach used by some schemes to enhance the performance is to allow
a larger error probability in each position and then use error-correcting codes
to correct the errors that occured. In essence, part of the message information
are parity-check bits that enable correction of up to a fixed number of errors.
Such schemes can thus have a larger error probability in each bit position, as it
requires that a number of them are in error for a decryption error to occur. Still,
the possibility of having decryption errors can be used in cryptanalysis and the
motivation for this paper is to further examine such possibilities.

We specifically focus on the proposal LAC, a scheme that has now advanced to
round 2 in the NIST project. LAC is perhaps the most extreme scheme among the
LWE-based schemes in the NIST project. It has a very small modulus, q = 251,
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which makes it very interesting. It leads to a rather large probability of error
in a single position (2−7.4), but then it uses a strong error correcting code to
correct up to 55 errors, resulting in a small overall probability of decryption error
(2−115). LAC has excellent performance and is indeed an elegant design.

In our attack we consider CCA (chosen-ciphertext attacks) security for PKE
(public-key encryption) schemes and use the algorithms as specified in the LAC
design document.

1.1 Related works

The use of decryption errors in cryptanalysis has been frequently used in all areas
of cryptography, [4]. For lattice-based encryption systems and NTRU, some work
in this direction [16], [17], [18], [12].

More recently, Fluhrer [11] showed an attack on key-exchange protocols in
a key reuse setting and [9] extended the attack. In [3] a chosen-ciphertext at-
tack on the recent proposal HILA5 [25] was described, using decryption errors.
These attacks can be described as CCA type attacks on proposals without CCA
transforms.

Here we will only consider CCA attacks on schemes proposed for CCA se-
curity. For such a case, an attack model for LWE-based schemes and a specific
attack on ss-ntru-pke, another NIST submission, was given in the recent pa-
per [8]. We base the attack in this paper on the same model. For the specific
case of LAC, there has also been some discussion on the NIST forum, on how to
increase the probability of decryption errors [1].

For code-based schemes, Guo, Johansson and Stankovski [14] proposed a
key-recovery attack against the CCA-secure version of QC-MDPC. They used
a property that ‘colliding pairs’ in the noise and the secret can change the de-
cryption failure rate. In the statistical analysis in this paper, we use some kind
of similar idea, identifying similar patterns between a part of the secret key and
error vectors.

1.2 Contributions

In this paper we describe an attack for secret key recovery based on generating
decryption errors, where error correcting codes are used. It is applied on the
CCA version of the proposal LAC and it is a chosen-ciphertext attack. The at-
tack is described as a sequence of steps. The first step is a precomputation phase
where messages generating special error vectors are found. In the second step we
send these encrypted messages for decryption and some decryption errors are ob-
served. Finally, the major part of the attack is the last step, in which a statistical
analysis of the messages/errors causing the decryption errors are analyzed. In
particular, we identify a correlation between consecutive positions in the secret
key and consecutive positions in error vectors that can be used to restore the
secret vector. The attack success is conditioned on a certain weight-property of
the secret key, causing the decoding error probability to be significantly higher
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than that in the average case. In particular, we describe the details of an at-
tack to LAC256 with success probability3 larger than 2−64 with complexity less
than 279, assuming a single precomputation of complexity 2162 encryptions. The
statistical analysis is supported by extensive simulation results4.

We also extend our approach to attacking a new version of LAC256 in round 2
of the the NIST PQ-project. We design a new desired noise pattern that can lead
to a high decryption error probability. For instance, with the precomputation of
about 2120 for one chosen message/error, the error probability is simulated to
be 2−12.74, for a key with probability 2−64. Using this error pattern, one could
classically solve LAC256-v2 with complexity far less than that of the claimed
security level by our estimation.

1.3 Organization

The remaining of the paper is organized as follows. In Section 2 we describe
the LAC proposal from the NIST Post-Quantum standardization process. In
Section 3, we present the main attack procedure, which is followed by a section
elaborating the statistical analysis step, i.e., how to reconstruct the secret key
from the decryption failures. Section 5 shows how to apply the proposed attack to
the new LAC version in round 2 of the NIST PQ-project, and Section 6 includes
related discussions. Finally, we present the conclusion in Section 7.

2 Description of LAC

LAC [19] is a proposal in the NIST Post-Quantum competition, including three
versions for different security levels, i.e., LAC128, LAC192, and LAC256. We focus
in this paper only on attacking LAC256. Also, we consider only CCA security as
a CPA-version is almost trivially broken in a reaction attack model.

2.1 Some basic notation

Let Zq be the ring of integers modulo q represented in (−q/2, q/2] and let R
denote the ring Zq[X]/(Xn + 1). Consider the one-to-one correspondence be-
tween polynomials in R and vectors in Znq . Vectors will be represented with bold
lowercase letters, while matrices are written in uppercase. For a vector a, the
transpose vector is written aT .

The Euclidean norm of a polynomial a ∈ R is written as ‖a‖2 and defined

as
√∑

i a
2
i , which is extended to vectors as ‖a‖2 =

√∑
i ‖ai‖

2
2. The notation

a
$← χ(R) will be used to represent the sampling of a ∈ R according to the

3 Assuming for 264 users in the system is considered as a reasonable setting in the
NIST PQC project discussion forum [1].

4 The implementation is available at: https://github.com/MelodyJuly/
A-Novel-CCA-Attack-using-Decryption-Errors-against-LAC.

4

https://github.com/MelodyJuly/A-Novel-CCA-Attack-using-Decryption-Errors-against-LAC
https://github.com/MelodyJuly/A-Novel-CCA-Attack-using-Decryption-Errors-against-LAC


distribution χ. Writing Samp(χ; seed) means computing an output following the
distribution χ using seed as the seed.

A distribution used in LAC is the centered binomial distribution, denoted Ψnσ .
In particular, in LAC256 one uses Ψ1, which is the distribution on {−1, 0, 1},
where P (X = 0) = 1/2 and P (X = −1) = P (X = 1) = 1/4 for X $← Ψ1. Note
that the mean is 0 and the variance is 1/2, so for Ψn1 the variance is n/2. We
also denote U(R) the uniform distribution on R.

For cryptographic schemes of this type, the definition of security is to (at
least) fulfill the concept of indistinguishability under adaptive chosen ciphertext
attacks, denoted IND-CCA2. This is usually described through the advantage of
a certain security game where the adversary may adaptively ask for decryptions
of various ciphertexts, except the one that is given as the challenge. As our attack
is more direct and simply tries to recover the secret key, we do not further
introduce notions of security. We note however that all results given can be
translated to corresponding results in the form of advantage of security games
in the IND-CCA2 model.

2.2 The LAC scheme

LAC is a concrete instantiation of a general construction proposed in [22] where
the novelty lies in the combination of a very small q together with a very strong
error correcting procedure, which allows to have many errors in different posi-
tions and still be able to correctly decrypt to the message used in encryption
with a very large probability.

The key generation algorithm of LAC is shown in Algorithm 1. The encapsu-
lation algorithm Enc is shown in Algorithm 2, and the decapsulation algorithm
Dec is shown in Algorithm 3. These algorithms call the CPA-secure schemes
described in Algorithms 4-5. For more details we refer to the original design
document [19].

Algorithm 1 LAC.KeyGen()

Output: A pair of public key and secret key (pk, sk).

1) seeda
$← S;

2) a← Samp(U(R); seeda) ∈ R;
3) s $← Ψnσ ;
4) e $← Ψnσ ;
5) b← as+ e ∈ R;
6) return (pk := (seeda,b), sk := s);

Recall that our prime target LAC256, uses Ψ1, a distribution that is 1 (or
−1) with probability 1/4 and 0 with probability 1/2. We assume that lv = n.
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Algorithm 2 LAC.CCA.Enc(pk; seedm)

Output: A ciphertext and encapsulation key pair (c,K).

1)m← Samp(U(M); seedm) ∈M;
2) seed← G(m) ∈ S;
3) c← LAC.CPA.Enc(pk,m; seed);
4) K ← H(m, c) ∈ {0, 1}lk ;
5) return (c,K);

Algorithm 3 LAC.CCA.Dec(sk; c)

Output: An encapsulation key (K).

1)m← LAC.CPA.Dec(sk, c);
2) K ← H(m, c);
3) seed← G(m) ∈ S;
4) c′ ← LAC.CPA.Enc(pk,m; seed);
5) if c′ 6= c then

K ← H(H(sk), c);
6) return K;

The underlying ring is of the form R = Zq[x]/(xn + 1), where n = 1024 and
q = 251. One important selling point of this scheme is its much smaller alphabetic
size, compared with other lattice-based proposals; this, however, also leads to
the main obstacle regarding to its decryption success probability. This scheme
targets the highest NIST security level of V, corresponding roughly to 256-bit
classical security.

An important part of the scheme is the use of the ECCEnc(m) subroutine.
This part uses a BCH code with length 1023 and dimension 520, which is capable
of decoding up to 55 errors and is employed for correcting errors. We assume a
decoder for the BCH code that will fail if the number of erroneous positions is
56 or more. All parameters are summarized in Table 1.

A characterizing property of the scheme (as for many other schemes) is the
fact that decryption may fail. A main question is to examine the probability of
such an event. This is done in the design document [19] and we briefly summarize
the results. The error term in LAC, denoted W, is of the form5

W = e1s− er+ e2,

since the computation c′m ← c2 − c1s gives

c′m = (br) + e2 + b
q

2
c · cm − (ar+ e1)s = b

q

2
c · cm +W.

5 The noise term is equivalent to the representation in [19] due to symmetry.
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Algorithm 4 LAC.CPA.Enc(pk = (seeda,b),m ∈M; seed ∈ S)

Output: A ciphertext c.

1) a← Samp(U(R); seeda) ∈ R;
2) cm ← ECCEnc(m) ∈ {0, 1}lv ;
3) (r, e1, e2)← Samp(Ψnσ , Ψ

n
σ , Ψ

lv
σ ; seed);

4) c1 ← ar+ e1 ∈ R;
5) c2 ← (br)lv + e2 + b q2c · cm ∈ Zlvq ;
6) return c := (c1, c2) ∈ R× Zlvq ;

Algorithm 5 LAC.CPA.Dec(sk = s; c = (c1, c2))

Output: A plaintext m.

1) u← c1s ∈ R;
2) c′m ← c2 − (u)lv ∈ Zlvq ;
3) for i = 0 to lv − 1 do

if q
4
≤ c′mi <

3q
4

then
cmi ← 1

else
cmi ← 0

4) m← ECCDec(cm);
5) return m;

Now a single position in W is essentially a sum of 2n random variables, each
drawn from a distribution obtained by multiplying two random variables from Ψ1.
The variance for such a random variable is 1/4. The sum is then approximated
by a Gaussian distribution with mean 0 and variance 2n/4. A single position is
in error if the contribution from W in that position is larger than b q4c in absolute
value, so this gives an error probability in a single position which is roughly

δ = 1− erf(62/
√
1024) ≈ 2−7.44.

Now, since the error correction procedure corrects up to 55 errors, it is argued in
[19] that one can then approximate the overall probability of a decryption error

Table 1: Proposed parameters of LAC256.

n q R Distribution BCH[ne, le, de, te] Security

1024 251 Zq [x]

〈xn+1〉 Ψ1 [1023, 520, 111, 55] V
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as
1024∑
i=56

(
1024

i

)
δi(1− δ)1024−i ≈ 2−115.

Since the stated decryption error probability is very small, the scheme does
appear to be quite safe against attacks trying to use the possibility of having
decryption errors.

3 The attack

We first note that LAC is a scheme without protection against multi-target at-
tacks, meaning that precomputed information can be used on any public key.
This is because the public key is not included when the seed is computed for
generating the noise vectors in encryption. In the code, this is visible in the step
2) seed← G(m) ∈ S; of Algorithm 2. It is also a bit unclear how to consider the
computational complexity of the precomputation part, as it is something that
only needs to be performed once and then never again. At least, as long as the
complexity is below 2256 encryptions (or 2128 in a quantum setting) it should
not violate the limits of a successful attack.

We will now present the attack on LAC256 and it is described in three steps;
a first step of precomputation; a second step of getting precomputed ciphertexts
decrypted and checking the decryption error probability; and a last phase of
performing a statistical analysis to recover the secret key.

3.1 Attack step 1 - precomputation

We construct a special set S of messages/error vectors by precomputation. To
be precise, we pick a random message m (seedm) and compute the seed through
the two steps from Algorithm 2:

1) m← Samp(U(M); seedm) ∈M;
2) seed← G(m) ∈ S;

Then compute the noise vectors according to step 3 of Algorithm 4:

3) (r, e1, e2)← Samp(Ψnσ , Ψ
n
σ , Ψ

lv
σ ; seed);

We are now only interested in keeping messages that give rise to noise vectors
of special form. In our attack we target only special properties of the e1 vector.
Let us first consider messages/errors including any combination where the error
vector e1 contains an interval of consecutive l1 all positive or all negative entries.
Assuming a randomly selected error vector, the probability of finding such an
interval starting in the first position is then

p = 2× (1/4)l1 .
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As we can start from any position, the probability that a random message/noise
vector fulfills the condition for S can be lower-bounded by

p0 = 2× (1/4)l1 × 3/4 · n. (1)

The reason is that if one searches for a desired pattern, an erronous sequence
will on average use 3/4 · 1 + 1/4 · 3/4 · 2 + (1/4)2 · 3/4 · 3 + . . . ≈ 4/3 positions
until there is a possibility for a new desired sequence. We then know Equation
(1) by p0 = p× 3/4 ·n. The precomputation complexity is thus less than |S|/p0
runs of the steps above. We denote the type of noise vectors of the above kind as
TYPE 1 noise vectors. In particular, we will consider the length6 l1 ∈ {65, 85}
when describing the attack by examples.

We note that there are many other special forms of the noise that can be
useful in an attack. We define one more such set of special noise vectors related to
the e1 vector, being the case when e1 contains an interval of length l0 + l1 with
at least l1 either all positive or all negative entries and the remaining entries
all-zero. The probability of finding such an interval in e1 starting in the first
position is then

p′ = 2

l0+l1∑
i=l1

(
l0 + l1
i

)
× (1/4)i · (1/2)l1+l0−i.

Determining the probability of having such a bit subsequence starting from any
position is more complicated to compute, but would roughly result in a proba-
bility c · n · p′ for some not too small constant c. We denote the type of noise
vectors of the above kind as TYPE 2 noise vectors.

Basically, TYPE 2 noise vectors are much more likely to appear compared
to TYPE 1 noise vectors, so the required precomputation complexity will be
smaller, but at the same time it will give a smaller contribution to the correlation
used in the later statistical analysis part of the attack, for the same length.

After finishing this step, we have a stored set S of precomputed messages/error
vectors with some special property for the e1 part.

3.2 Attack step 2 - submit ciphertexts for decryption

We now map the messages in S to ciphertexts and give them to the decryption
algorithm for each public key. We record the decryption error rate and keep track
of the set of error vectors creating a decryption error, denoted S ′. We will attack
and recover the secret key for keys7 where the decryption error rate is large.

6 We choose l1 ∈ {65, 85} to balance the complexity of precomputation and simu-
lations. One can definitely choose a smaller l1 to achieve a lower precomputation
complexity at the cost of increasing the attack effort.

7 In the real case, one can start with the key with the largest decryption error rate,
and then try different keys with error rates in the decreasing order.
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As the enabling property for s to have a large decryption error rate, we
assume the property ∣∣∣∣∣

n−1∑
i=0

si

∣∣∣∣∣ ≥ δ0,
for δ0 a positive integer. One can approximate

∑n−1
i=0 si by a Gaussian distribu-

tion with mean 0 and variance n/2. With this approximation, if we set δ0 = 208
as an example, the secret s will have this property with probability about 2−64.

We now need to examine the decryption error probability for such a condition
on s. The error term in LAC is of the form

W = e1s− er+ e2.

The decryption error occurs if among all the coefficients of W, at least 56 of
them are with absolute value larger than bq/4c = 62. In polynomial form, the
error w(x) is computed as

w(x) = e1(x)s(x)− e(x)r(x) + e2(x).

We only target the e1(x)s(x) term and consider the remaining as additional con-
tributing noise in each position, denoted N̂(x), for the moment. For simplicity,
we assume that all error vectors are of TYPE 1 and have the assumed consec-
utive ones in their first positions, i.e., e1(x) is of the form (e0, e1, . . . , en−1) =
(1, 1, . . . , 1, el1 , . . . , en−1). In vector form, the multiplication e1(x)s(x) can be
written as

(s0, s1, . . . , sn−1) ·


e0 e1 e2 . . . en−1
−en−1 e0 e1 . . . en−2

...
...

...
. . .

...
−e1 −e2 −e3 . . . e0

 .
Since we assume (e0, e1, . . . , el1−1) = (1, 1, . . . , 1), the above is written

(s0, s1, . . . , sn−1) ·



1 1 . . . 1 el1 el1+1 . . . en−1
−en−1 1 1 . . . 1 el1 . . . en−2
−en−2 −en−1 1 . . . 1 1 . . . en−3

...
...

. . . . . .
...

...
. . .

...
−el1 −el1+1 . . . −en−1 1 1 . . . 1
−1 −el1 −el1+1 . . . −en−1 1 . . . 1
...

. . . . . . . . . . . .
. . . . . .

...
−1 . . . −1 −el1 −el1+1 . . . −en−1 1


.

We model the N̂(x) = −er + e2 part of the noise as a sum of randomly
generated variables (as also done in the LAC submission). Instead, we focus on
the e1s part, where we now have both e1 and s of special forms. We see that
for a particular key s, the contribution from the fixed part (e0, e1, . . . , el1−1) =
(1, 1, . . . , 1) to the multiplication e1s is a vector defined as follows.
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Definition 1 (Contribution vector.) The contribution vector cv(s) of (e0, e1,
. . . , el1−1) = (1, 1, . . . , 1) for a secret key s is defined as

(cv0, cv1, . . . , cvn−1),

where

cvi =

{∑i
k=0 si−k −

∑n−1
k=n−l1+1+i sk, if 0 ≤ i < l1 − 1,∑l1−1

k=0 si−k, if l1 − 1 ≤ i ≤ n− 1.
(2)

The basic idea in the attack is that the contribution vector is a fixed con-
tribution that is the same for all e1 vectors of TYPE 1. Furthermore, assuming
the secret vector s of the form

∣∣∣∑n−1
i=0 si

∣∣∣ ≥ δ0, it is easily verified that most
coefficients in the contribution vector cv(s) are quite large. With a large fixed
contribution in most coefficients, the probability of having a decryption error
will drastically increase.

It seems difficult to derive an accurate estimation on the error probability
due to the dependence between different positions in the error. One may try to
use experiments to determine the variance and have a Gaussian approximation.
But this distribution could be key-dependent and therefore somewhat unhelpful
in a general sense.

Example 1:We have two choices for l1 in implementation, i.e., l1 = 85 or 65.
In the first case, if we collect errors with 85 consecutive 1’s or -1’s, then this event
happens with probability about

2−85×2 × n× 3

2
≥ 2−160.

In the latter case, the probability is about 2−120. To collect |S| messages/error
vectors, we need 2160|S| (or 2120|S|) precomputation work. If we bound the
number of decryption oracle calls by 264, as suggested by NIST, then the overall
precomputation complexity is bounded by 2224 (or 2184).

0 200 400 600 800 1000
Index i
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5

10

15

20

25

30

35

Fig. 1: The contribution vector cv(s) for a key s with δ0 = 208 when l1 = 85.
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Fig. 2: The histogram of the contribution vector depicted in Figure 1.

Assume we target a secret key s having δ0 = 208 more 1 (−1) than −1 (1).
For a randomly chosen secret key s of this type we have plotted the contribution
vector in Figure 1. In Figure 2 the corresponding histogram for cv(s) is given.
We see that many coefficients in the contribution vector are quite large. Thus,
the overall probability of having more than 56 coefficients with large absolute
value can be much larger than that in the official analysis of decryption errors.

The error probability is difficult to predict and requires further investigation.
In simulation, as shown in Table 2, we obtained decryption error probabilities of
2−6.6 for l1 = 85 and 2−12.2 for l1 = 65. This should be compared to the general
decryption error probability of 2−115!

To conclude this part of the attack, we submit a limited number of ciphertexts
of TYPE 1 (say with l1 = 65) for decryption (say 215) and if we detect several
errors (say around 215 ·2−12.2) we assume that δ0 is large. We then get many more
decryption failures in S ′ for this weak key and move to the statistical analysis
part. If few errors are detected, we move on to another public key.

3.3 Attack step 3 - statistical analysis

This step assumes that we have identified a weak public key in the previous step.
After receiving the errors, caused by the vectors in S ′, we need to reconstruct the

Table 2: Decryption error probability Pe for a key s with δ0 = 208.

l1 Pe

85 2−6.6

65 2−12.2
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secret key s. Since the reconstruction step is the most difficult task for attacking
LAC, we write it in the next section for fully describing the details.

Last, suppose that we have a guessed secret vector denoted by (s′, e′). If
(∆s, ∆e) = (s, e) − (s′, e′) is small, we can recover it using lattice reduction
efficiently. Thus, we obtain the correct value of (s, e). To be more specific, we
want to recover (s, e) from the public key (a,b = as + e). Let b′ = as′ + e′.
We have that b − b′ = a∆s + ∆e. This is a new lattice problem with same
dimension but smaller noise, which can be solved with less computational effort.
In conclusion, we can handle with some small errors from the statistical testing.

4 Statistical analysis

Assume that we have determined a weak key. We now collect the vectors (e1, r)
in S ′ that caused decryption errors and average all the collected vectors. Our
observation is that the parts e1s, −er, and e2 are all highly correlated with the
contribution vector. The intuition behind it is that for a larger absolute value
in the contribution vector, the probability of the corresponding position in W
exceeding 62 is larger, thereby implying that the values of e1s, −er, and e2
should be all larger.

We next derive two different approaches for the statistical analysis. The first
one is a theoretical approach that is easy to analyze, where we recover the secret
s by observing the correlation between e2 and the contribution vector. The
second one is a heuristic approach exploiting the fact that −er has a positive
contribution on almost all the coefficients. We then try to recover the e vector.
This heuristic approach shows stronger correlation in implementation.

4.1 Theoretical arguments for statistical recovery of the
contribution vector

This subsection contains a recovery procedure which uses more theoretical ar-
guments. We first note that if we recover the contribution vector (or something
close to the contribution vector) then we can also almost trivially recover the
secret key. The procedure to be given uses the dependence between cv(s) and
the given e2 vector. We know from before that the probability of error in a
particular position i depends on the value of the contribution vector in this po-
sition, which is here simply denoted cvi. The good thing for analysis is that e2
is independent of the other parts involved in the error W. Now denote the value
of e2 in position i as Ei for simplicity. The observation we will examine is that
the larger the value of cvi is, the more likely it is that Ei = 1.

We denote the event of decryption error by D, meaning no less than 56
positions are in error. We know that the probability for an error in position
i in the set of vectors causing decryption failure is P (cvi + Ni + Ei > 62|D),
where Ni denotes the non-fixed part of W excluding Ei, that can be numerically
computed via the convolution of probability distributions.
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Now let us examine P (Ei = 1|D) through

P (Ei = 1|D) =P (error in pos. i|D)P (Ei = 1|error in pos. i,D)
+ P (no error in pos. i|D)P (Ei = 1|no error in pos. i,D).

We assume that P (Ei = 1|no error in pos. i,D) ≈ P (Ei = 1|no error in pos. i).
Also, P (Ei = 1|error in pos. i,D) ≈ P (Ei = 1|error in pos. i). Then we can
rewrite as

P (Ei = 1|D) =P (error in pos. i|D)P (Ei = 1|error in pos. i)
+ P (no error in pos.i|D) · P (Ei = 1|no error in pos. i).

(3)

Finally, we note that P (Ei = x|error in pos. i) = P (error in pos. i|Ei = x) ·
P (Ei = x)/P (error in pos. i), and compute P (Ei = 1|error in pos. i) by

P (Ni > 61− cvi)
P (Ni > 61− cvi) + 2P (Ni > 62− cvi) + P (Ni > 63− cvi)

. (4)

Similarly, P (Ei = x|no error in pos. i) = P (no error in pos. i|Ei = x) · P (Ei =
x)/P (no error in pos. i), and we compute P (Ei = 1|no error in pos. i) by

P (Ni ≤ 61− cvi)
P (Ni ≤ 61− cvi) + 2P (Ni ≤ 62− cvi) + P (Ni ≤ 63− cvi)

.

We get

P (Ei = 1|D) =P (error in pos. i|D)P (Ei = 1|error in pos. i)
+ (1− P (error in pos.i|D)) · P (Ei = 1|no error in pos. i).

The probability P (error in pos.i|D) is difficult to derive analytically, as one
has to consider all combinations of error patterns with ≥ 56 errors. However, it
can be determined from simulation results quite efficiently, since its dependence
on cvi is strong. Figure 3 plots this correlation and shows that a bigger |cvi|
leads to a larger P (error in pos.i|D) in almost all the cases.

Let us now examine the difference between P (Ei = 1|D) for two different po-
sitions where the cvi values are close, say 10 and 11. Examining P (error in pos.i|D)
for cvi = 10 in simulation gives P (error in pos.i|D) ≈ 0.023587 and the same for
cvi = 11 gives P (error in pos.i|D) ≈ 0.027138.

With these values, one can compute the absolute difference ε of P (Ei = 1|D)
for cvi = 10 and cvi = 11, respectively. It would then require no more than 4/ε2

decryption failures to distinguish between different cvi values counting only the
frequency of Ei = 1, with high probability. For larger cvi values the difference
between probabilities for consecutive cvi values is increasing, so almost all entries
of cv(s) can be determined through the frequency of Ei = 1.

Note that we need to determine the cvi values for multiple positions, so we
conservatively choose the following formula to estimate the data complexity,

8 ln(nt)

ε2
, (5)
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Fig. 3: The correlation of cvi v.s. P (error in pos.i|D). 700, 000 TYPE 1 errors
are collected and l1 = 85. The x axis represents the index i, for 0 ≤ i < n.

where nt is the number of tests bounded by n. Setting nt = n, we numerically
compute that it requires about 234.0 errors to distinguish all the cvi values larger
than 11 with probability close to 1, if l1 = 85.

Now assume that we have recovered about 870 cvi values8 for all cvi ≥ 11.
We can then trivially recover the secret by using the inherent algebraic equations
in the definition of cvi, i.e., Equation (2). We first notice that if two consecutive
values of cvi are with an absolute difference 2, then two positions in the secret
s are known. Based on these known positions, we then iteratively recover more
positions in s using the differences of known consecutive values of cvi. We last
fully recover the secret using a small number of guesses or other post-processing
procedures like lattice reduction algorithms.

This recovery approach works well in our simulation9. In the simulation, we
directly recover 594 positions using the algebraic structures discussed before.
We then use the obtained 877 equations corresponding to the 877 positions with
cvi value no less than 11, and write them into a mixed integer linear program-
ming model to maximize the value of

∣∣∣∑n−1
i=0 si

∣∣∣. After running the optimization
procedure for around 100 seconds using a desktop with an Intel(R) Core(TM)
i7-7700 CPU, we successfully recover 995 positions among the 1024 unknown
entries of s. After guessing a few positions, it is easy to recover the key as most
of the remaining errors are located in the first 100 positions.

8 For a key we chose in simulation, 877 positions are with a cvi value no less than 11.
9 In simulation, we assume that cvi is totally unknown for all cvi ≤ 10, which is pes-
simistic for an attacker. Actually, when the required decryption errors are obtained,
we can have good knowledge of the values cvi even if cvi ≤ 10.
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Table 3: Success probability Ps of estimating cv(s) for a key s with δ0 = 208 .

number of TYPE 1 errors Ps

228.0 0.47
229.5 0.58
230.3 0.65

For l1 = 65, we similarly compute that it requires about 229.8 errors to
distinguish all the cvi values larger than 9 with probability close to 1. We can
then do a full key recovery similar to the approach discussed above.

Experimental verification We have launched extensive simulation (of about
40,000 CPU core hours) to obtain 230.3 TYPE 1 errors when setting l1 = 85.
Firstly, we verify that the correlation between the probability P (Ei = 1|D) and
the value cvi is very strong (see Figure 4). Secondly, the experimental results
match our theoretical prediction well. For instance, as shown in Table 3, one can
recover 47% of the values cvi with 228.0 TYPE 1 errors. The ratio increased to
65% (or 58%) when using 230.3 (or 229.5) TYPE 1 errors.

Fig. 4: The correlation of the frequency of (Ei = 1|D) v.s. cvi. 230.3 TYPE 1
errors are collected and l1 = 85. The x axis represents the index i, for 0 ≤ i < n.

4.2 A heuristic approach

We have presented a simple key-recovery approach with theoretical arguments
and also experimental validation. We next propose an alternative heuristic method,
to demonstrate that better ways for key-recovery can probably be found.
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We now look at the averaged values of −er for all the vectors in S ′ causing
errors. The strong correlation between this averaged vector and the contribution
vector is shown in Figure 5. Considering TYPE 1 errors and l1 = 85, we see
that the correlation is much stronger if ten times more (i.e., 300000 v.s. 30000)
decryption errors are provided, and the correlation is already very strong for
300000 error samples. Comparing Figure 5 and Figure 6, we also see that with
a similar number of decryption failures the correlation between the contribution
vector and the averaged vector is stronger if the error probability is smaller.

0 200 400 600 800 1000
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20

0 200 400 600 800 1000

0.0

0.2

0.4

0 200 400 600 800 1000

0.0

0.5

Fig. 5: The correlation of cvi v.s. the averaged values of −er w.r.t. different
positions for a key. The first subfigure plots the contribution vector and 300000
(30000) TYPE 1 errors are collected in the second (third) subfigure. We set
l1 = 85. The x axis represents the index i, for 0 ≤ i < n.

The remaining problem is to have an accurate estimation e′ of e.
One approach is to guess a small subvector esec (say of length ls = 12) of

the e vector and to check the decryption error probability when the occurrences
of −esec (or near-collisions that are defined as a very close pattern) in part of
the ciphertexts in S are larger than a threshold th0. This probability should be
higher for the correct guess, and vice versa for the wrong guesses, among all the
guesses with the same numbers of ‘-1’, ‘1’, and ‘0’.
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Fig. 6: The correlation of cvi v.s. the averaged values of −er w.r.t. different
positions for a key. 36690 TYPE 1 errors are collected and l1 = 65. The x axis
represents the index i, for 0 ≤ i < n.

This idea is similar to that of colliding ‘ones’ from the key and the collected
ciphertexts proposed in [14]. The intuition behind it is that it is more probable
to show multiple (near-)collisions for a right guess because in a decryption error
from S ′, more than 56 positions are of a large positive value.

Let us for instance guess the first ls = 12 entries esec of e. We then record
the number of the ciphertexts in S ′ that more than th0 (near-)collisions to its
negative −esec in each chosen ciphertext r with index from l1 − ls to n are
found. We next need to know the number for the ciphertexts in S that the same
condition holds and compute the likelihood by the ratio of the two numbers. In
simulation, we can instead sample at random a large number (say 10,000,000)
of ciphertexts in S since the size of S could be too large. We then rank all
the guesses by these likelihood values. Note that the index interval should be
adjusted if the guessed consecutive entries start from a different position. We
select this index interval [l1 − ls, n] since the starting entries of the contribution
vector could be (with a high probability) negative.

We now have a list of subkeys near a certain position sorted according to
their key-ranks. We then shift to a nearby starting position and produce a new
list of subkeys with respect to the new position. Since the guessed subkeys with
respect to nearby positions could have large overlaps and the correlation becomes
stronger if the guessed length is longer, we can combine different subkeys to
generate a list of longer subkeys. We iteratively combine the subkeys to have an
estimation on the full e vector.

If we accurately recovered the e vector, then the secret s can be solved from
the public key (seeda,b). Even if some errors occur in the statistical test step,
they can be corrected by a further lattice reduction step.
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Implementation results. We present the implementation results with the test
interval [l1− ls, n], where ls = 12 and l1 = 65. Thus, the starting positions of the
guessed keys with a high rank should be close to the initial position. We checked
all possible key patterns with length 12, five nonzero positions and nonzero
starting and end entries. The threshold th0 is set to be 18 and a near-collision
is found if in a ciphertext a pattern of length 12 whose inner product with the
guessed pattern is smaller than −4 occurs.

We use the collected 36690 decryption errors and test the ranks of 5 subvec-
tors in e of the select form and also of a starting position close to the initial
position. From Table 4 we see, among the 5 tested ‘true’ keys, that four keys are
with a relatively high rank. For example, the first row in the table states that
a key with two minus ones and three ones is ranked fourth among all the 1200
possible key patterns.

Table 4: Key ranks of the ‘true’ keys.

Type Rank

[2, 3] 4/1200
[3, 2] 109/1200
[1, 4] 34/600
[4, 1] 87/600

We notice that most of the guesses with a high rank are a subvector of e with
the starting position (left or right) shifted10 for less than 30 positions. Thus, we
can reconstruct a longer (than length 12) subkey near the initial position with
high confidence. The further combination of the subkey patterns is straight-
forward but requires much more implementation effort.

The correlation would be much stronger if more decryption failures are col-
lected, as shown in Figure 5. We conjecture that increasing the used number of
errors in implementation by a reasonable constant factor (say 10 or 20) would
lead to a full attack, and then the required number of data in the heuristic
approach could be much smaller than that of the theoretical approach.

4.3 The complexity analysis

As claimed in Section 4.1, when setting l1 = 65, the secret s can be fully recov-
ered using no more than 229.8 decryption failures in the theoretical approach.
Thus, the precomputation cost can be estimated as 2120+29.8/2−12.2 ≈ 2162.
The heuristic approach may reduce the precomputation cost further. For both
approaches, one needs to submit 215 ciphertexts to 264 decryption algorithms

10 This shift operation can be viewed as being multiplied by xj for j ∈ Z over the ring
Zq [x]

(xn+1)
.
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(public keys) to determine the weak key, with complexity about 279. He also
needs to perform the statistical test whose complexity is negligible. It is com-
mon to exclude the precomputation effort in the complexity analysis since the
precomputation will be done only once; therefore, we claim an overall attacking
complexity of 279.

4.4 Discussions

In this part, we discuss possible extension of the new attack.

Increase the weak-key probability. In implementation, weak keys with prob-
ability of 2−64 are targeted. Based on the simulation results, we in Table 5 show
the precomputation cost for generating a ciphertext regarding weak keys of vari-
ous probability p. If the TYPE 2 errors are chosen, then one can achieve an error
rate of about 2−12 for weak keys with a fairly large probability, say 2−16, having
the precomputation effort below the claimed 256-bit (classical) security level of
LAC256. These keys can be risky, under the assumption that a similar level of
key information (correlation) can be extracted for a fixed number of errors with
similar error rates.

Table 5: Precomputation cost of generating a ciphertext for random keys with
probability p to achieve an error rate of about 2−12.

p log2(C) l1 l0 δ0

2−64 120† 65 0 208
2−32 140 145 135 143
2−16 220 225 215 98

† This complexity can be lower if l0 6= 0.

5 Attacking the LAC version in round 2 of the NIST
PQ-project

The authors very recently revised the LAC proposal when it entered the round
2 of the NIST post-quantum standardization effort, see [21,20]. The introduced
modifications are a few:

– They employed a new coding scheme where the message is firstly encoded
with BCH codes and the codeword is further encoded with the D2 error
correcting codes. The BCH code now corrects much less number of errors
(16 errors can be corrected), but the addition of the D2 encoder makes the
overall error probability roughtly the same as before. Also, the message/key
size is decreased to 256 bits.
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Table 6: Proposed parameters of LAC256-v2 in round 2.

n q R h lv Distribution ecc DER Security

1024 251 Zq [x]

〈xn+1〉 512 800 Ψ1, Ψ
n,h
1 BCH[511, 256, 33] +D2 2−122 V

– The noise distribution is changed to have a constant weight and the same
number of ones as minus ones. For instance, the vectors of s, e, e1, r are now
sampled from Ψn,h1 , containing exactly h/2 ones and h/2 minus ones, and
the distribution of e2 is unchanged. The authors11 made this change to re-
sist against the high Hamming weight CCA attacks [1,8], in which higher
decryption error rates are achieved via choosing high Hamming weight mes-
sages/errors through precomputation.

– Some 4 bits of each position in the second part of the ciphertext are dropped,
bringing some ciphertext compression. This however adds an additional noise
term uniformly distributed in [−7, 7].

Table 6 shows the concrete parameters of LAC256-v2 proposed in the NIST
round 2 submission. In LAC256-v2, lv is equal to 800; thus only the first 800 posi-
tions matter, and the D2 encoding/decoding combines two positions of distance
400 apart12. The decryption error probability is estimated to be 2−122.

We shortly present the steps of generalizing the previous attack to the new
version. The basic idea is that we split the enabling error patterns in two parts,
one part being the even positions having a positive contribution and the second
part being the odd positions having a negative contribution. The same goes for
the desired pattern in the secret vector s. We expect the contribution of the two
parts to have the same sign and the sum to be roughly doubled.

5.1 Attack step 1 - precomputation

We again construct a special set S of messages/error vectors by precomputation.
We are only interested in keeping messages that give rise to noise vectors of
special form of the e1 vector. Let us include combinations where the error vector
e1 contains an interval of consecutive l1 entries, where every even position in
the interval contains a 1 and every odd position contains a -1 (or vice versa).
Thus, l1 is even. The starting position of this interval is chosen from [801, n− l1],
leading to the largest contribution to the first lv = 800 positions13 of e1s.

Assuming a randomly selected error vector from the error distribution Ψn,h1 ,
the probability of finding such an interval starting from a fixed position in
11 In the round 2 submission [20], they also argued that ‘it is difficult to get any

information about the private key from these decryption failures’.
12 This part is verified from the reference implementation.
13 Due to the mod (xn+1) operation, the controlled interval is split into two consecu-

tive parts in (l1−1) columns of the matrix generated by shifting e1. These two parts
will be multiplied by 1 or -1, respectively, leading to a reduced absolute contribution.
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[801, n− l1] is then

p = 2×

(
h/2
l1/2

)
·
(
h/2
l1/2

)(
n
l1

)
·
(
l1
l1/2

) .
The overall probability can be approximated by

p0 ≈ (n− 800− l1)p. (6)

We denote the type of noise vectors of the above kind as TYPE 1b noise vectors.
Just as before, we can consider many other special forms of the noise that can

be useful in an attack, for example noise vectors similar to what we previously
defined as TYPE 2 noise vectors but split in even and odd parts. We also define
TYPE 2b errors that the error vector e1 contains an interval of consecutive
l1 + l0 entries, where all the even positions include l1/2 ones and l0/2 zeros, and
all the odd positions include l1/2 minus-ones and l0/2 zeros (or vice versa). The
starting position of this interval is chosen from [801, n− l1 − l0]. With the same
precomputation effort, this error pattern can lead to a much larger decryption
error probability compared with TYPE 1b errors.

After finishing this step, we assume that we have a stored set S of precom-
puted messages/error vectors with the TYPE 1b (or TYPE 2b) property for the
e1 part. We could describe a TYPE 1b error as a TYPE 2b error with l0 = 0.

5.2 Attack step 2 - submit ciphertexts for decryption

Similar to the procedure in Section 3.2, we map the messages in S to ciphertexts
and submit them to the decryption algorithm for each public key. We keep track
of the set of error vectors causing a decryption error, denoted S ′, and record
the decryption error rate. We then attempt to recover the public key for keys
where the decryption error rate is large i.e., targeting users with error rates in a
decreasing order.

The weak key property for s that gives a large decryption error rate, is the
property ∣∣∣∣∣∣

n/2−1∑
i=0

s2i

∣∣∣∣∣∣+
∣∣∣∣∣∣
n/2−1∑
i=0

s2i+1

∣∣∣∣∣∣ ≥ δ0.
For a noise distribution with fixed n/4 ones and n/4 minus ones, it is easy to

compute the probability for the above condition. For example, if we set δ0 = 206,
the secret s will have the above property with probability about 2−64. Since∑n
i=0 si = 0, we further have∣∣∣∣∣∣

n/2−1∑
i=0

s2i

∣∣∣∣∣∣ =
∣∣∣∣∣∣
n/2−1∑
i=0

s2i+1

∣∣∣∣∣∣ = δ0
2

= 103.

We now examine the decryption error probability for such a weak secret s.
The error term in the new LAC is of the form

W = e1s− er+ e2 + e3,
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where e3 is a new error term due to the ciphertext compression.
We now get a decryption error occurring if among all 400 values after the D2

encoding/decoding of W, at least 17 of them are in error.
The D2 encoding/decoding means that the same binary value (message/key

bit) is encoded in two different code positions and the decoding means adding
the two positions together and checking if the sum is around 0 or around q.
For an error to occur, the sum of the noise in the two positions must have an
absolute value larger than bq/2c = 125.

In polynomial form, the error w(x) is computed as

w(x) = e1(x)s(x)− e(x)r(x) + e2(x) + e3(x).

We focus on e1(x)s(x) and consider the remaining as noise.
For simplicity, we assume that all error vectors are of TYPE 1b and have

the assumed sequence of even ones and odd minus ones in their last positions,
i.e., e1(x) is of the form (e0, e1, . . . , en−1) = (e0, . . . , en−l1−1, 1,−1, . . . , 1,−1).
We examine the e1s part, where we again have both e1 and s of special forms.
For a particular key s, the contribution from the fixed part (en−l1 , . . . , en−1) =
(1,−1, . . . , 1,−1) to the multiplication e1s is the contribution vector now defined
as follows.

Definition 2 (Contribution vector for TYPE 1b errors.) The contribution
vector cv(s) of (en−l1 , . . . , en−1) = (1,−1, . . . , 1,−1) for a secret key s is defined
as

(cv0, cv1, . . . , cvn−1),

where

cvi =



∑i+l1
k=i+1,k odd sk −

∑i+l1
k=i+1,k even sk, if 0 ≤ i < n− l1, i even,∑i+l1

k=i+1,k even sk −
∑i+l1
k=i+1,k odd sk, if 0 ≤ i < n− l1, i odd,∑n−1

k=i+1,k odd sk −
∑n−1
k=i+1,k even sk

−(
∑i+l1−n
k=0,k odd sk −

∑i+l1−n
k=0,k even sk), if n− l1 ≤ i ≤ n− 1, i even,∑n−1

k=i+1,k even sk −
∑n−1
k=i+1,k odd sk

−(
∑i+l1−n
k=0,k even sk −

∑i+l1−n
k=0,k odd sk), if n− l1 ≤ i ≤ n− 1, i odd.

(7)

The new idea in this attack is that the contribution vector is a fixed con-
tribution as before for all e1 vectors of TYPE 1b, but now it will shift in sign
depending on whether i is even or odd.

Assuming the secret vector s of the form
∣∣∣∑n/2−1

i=0 s2i

∣∣∣+ ∣∣∣∑n/2−1
i=0 s2i+1

∣∣∣ ≥ δ0,
we can verify that most coefficients in the contribution vector cv(s) are quite
large, but with shifting signs (see Figure 7 for an instance). Again, with a large
fixed contribution in most coefficients, the probability of a decryption error will
be much larger than expected.

In LAC256-v2, the D2 encoding/decoding combines two positions of distance
400 apart, which means that the fixed contribution is of the same sign in both

23



Fig. 7: The contribution vector cv(s) of a key s with δ0 = 206 when l1 = 86, for
TYPE 1b errors. The first figure plots the whole vector and the second one plots
its first 100 positions.

Table 7: Decryption error probability Pe for a key s with δ0 = 206.

log2(Cpre) l1 l0 Pe

170 86 0 2−21.03

128 66 0 2−28.42

120 114 80 2−12.74

positions and we have a large fixed contribution when summing the two posi-
tions.

Example 2: For LAC256-v2 we tested three choices for l1 and l0 in imple-
mentation, i.e., for TYPE 1b errors with l1 = 86 and 66, and for TYPE 2b errors
with l1 = 114 and l0 = 80. We targeted a secret key s having δ0 = 206, and
the key probability can be estimated as 2−64. The simulated decryption error
probabilities (no less than 17 positions in error) are shown in Table 7, where the
first column describes the computational efforts (in log2(·)) of finding one desired
message/noise. We see that the decryption error probability can be higher than
2−13 with complexity of about 2120 for one message/noise.

We note that the error performance of the new LAC256-v2 in round 2 with
respect to our attack is slightly better than that of the old version, but is still
far from preventing this attack.

5.3 Attack step 3 - recovering s

This final step assumes an identified weak public key in the previous step. After
receiving the decryption errors, caused by the vectors in S ′, we reconstruct the
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Fig. 8: The correlation of cv w.r.t. the TYPE 1b errors with l1 = 194 v.s.
P (error in pos.i|D). About 6, 500, 000 TYPE 2b errors are collected with l1 =
114 and l0 = 80.

secret key s. The procedure is analogue to the procedure described in the previous
section. Throughout the section, we focus on TYPE 2b errors as they can lead
to a higher decryption error probability. Note that the distributions of the i-th
and the (i + 400)-th positions (of say e2) should be studied jointly due to the
implementation of the D2 error correcting codes.

The interesting main observation is that for TYPE 2b errors with l1 = 114
and l0 = 80, the distribution of P (Ei|D) is a function of the sum of the i-th and
the (i + 400)-th positions of the contribution vector for TYPE 1b errors with
l1 = 194, where Ei is the random variable representing the sum of the the i-th
and the (i+ 400)-th positions of e2.

We plot the simulation results for verifying this correlation in the first and the
second subfigures of Figure 9. Since about 238 encryptions have been performed,
it is beyond our computational capability to run an even larger experiment.
However, the correlation between the sum of two positions in the contribution
vector w.r.t. the TYPE 1b errors with l1 = 194 and P (error in pos.i|D) is much
stronger and can be verified with fewer decryption errors. This strong correlation
explains our main observation.

We show the latter strong correlation in Figure 8 where the plots are obtained
from about 6, 500, 000 TYPE 2b errors. The left two subfigures, (a1) and (a2),
plot the correlation for the whole vector of length 400, and the right two, (b1)
and (b2), plot the last 40 entries.
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Fig. 9: The correlation of cv w.r.t. the TYPE 1b errors with l1 = 194, P (Ei|D)
and P (Ei|error in pos.i,D). About 225.09 TYPE 2b errors are collected with
l1 = 114 and l0 = 80.

We can now use the theory from Section 4.1 to study the data complex-
ity for this attack on LAC256-v2. We first obtain an equation with the same
form as Equation (3), and the difficulty is then to numerically compute P (Ei =
1|error in pos. i) (or P (Ei = 1|no error in pos. i)). Since we include l0 zeros in
the controlled interval to form TYPE 2b errors, the contribution (denoted by a
random variable CV) from the controlled intervals (of the i-th and (i + 400)-th
positions) is no longer a constant. We could approximate the distribution of CV
by using a typical choice, i.e., assuming half of the positions of s corresponding to
the controlled intervals are 0, and then compute the distribution via convolution.
Then, P (Ei = 1|error in pos. i) can be computed as

∑
cv

P (CV = cv)P (Ei = 1|error in pos. i,CV = cv),
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where similarly to Equation (4), P (Ei = 1|error in pos. i,CV = cv) can be
computed as 4P (Ni>124−cv)

f(cv) , and f(cv) = P (Ni > 123 − cv) + 4P (Ni > 124 −
cv) + 6P (Ni > 125 − cv) + 4P (Ni > 126 − cv) + P (Ni > 127 − cv). Here Ni is
defined, similar to that in Section 4.1, as the noise term after the D2 decoding
excluding the CV part and the Ei part. We compute P (Ei = 1|no error in pos. i)
similarly, and finally apply Equation (5) to estimate the data complexity14. With
this analysis, the complexity to distinguish the sum of the i-th and the (i+400)-
th positions of the contribution vector for TYPE 1b errors with l1 = 194 to be
89 or 90 is 234.73.

If we test P (Ei|error in pos.i,D) empirically, as shown in the last subfigure
of Figure 9, we obtain a data complexity estimation of about 233.42, to distin-
guish the sum to be 89 or 90. This empirical estimation verifies our theoretical
estimation to which we will stick in our later analysis.

In simulation, we obtained 151 equations corresponding to the index set I90
with size 151, where for i ∈ I90 the sum of the i-th and the (i+400)-th positions
of the contribution vector for TYPE 1b errors with l1 = 194 is no less than 90.
We do more rounds to collect more linear equations using error patterns derived
from TYPE 2b errors, i.e., replacing one position in the controlled interval by an
carefully selected position outside the interval. We ask the two positions to be
both even or odd and assign corresponding values of the same sign. Since only a
single index of the controlled positions is changed, the contribution vector or the
error probability keeps (or has a small difference) but more linear equations of
entries from s are obtained. One then performs about n/151 ≈ 7 times to collect
enough linear equations for a full recovery. In summary, the required number of
decryption errors is bounded by 238 and the overall precomputation complexity
is estimated to be 2171.

6 Discussions

On multi-target protection. Many proposals to the NIST post-quantum
standardization process have a multi-target protection technique, i.e., including
the public key as an input to a hash function for generating the noise seeds.
We see that for LAC256, the multi-target protection cannot thwart this attack
because this attack can work in the single-key setting that is independent of the
multi-target protection technique. Actually, this attack recovers the key with
precomputation complexity 2162 and success probability 2−64, when only a single
key is assumed.

Using the adaptive attack model in [13], for LAC256 with the multi-target pro-
tection, one can prepare 215 ciphertexts for 264 users with complexity 2120+64+15 =
2199 if l1 = 65, to determine the weak keys. The dominant part in the complexity
analysis is a precomputation of 2199, far below the 2256 bound. We can further
reduce the complexity by balancing the computational efforts in different steps.
14 The analysis is conservative because we only consider one value of Ei conditioned

on the collected errors. In fact, we can use the full distribution, i.e., the probabilities
of Ei|D being 5 different possible values, to reduce the data complexity further.
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Similar analysis applies to LAC256-v2.

On other LAC parameter settings. On LAC128-v2 having a key with prob-
ability 2−64, with precomputation of 258 for one chosen ciphertext, we simulated
a decryption failure probability of around 2−28. This experimental data demon-
strate that LAC128-v2 could be vulnerable to the newly proposed attack in the
multi-target setting. This multi-target attack can be prevented via including the
multi-target protection technique discussed before. We believe that LAC192-v2
is more vulnerable to the multi-target attack than LAC128-v2 since one has a
less restricted bound for precomputation.

7 Conclusions and future works

We have presented a CCA attack on the scheme LAC256, a proposal to the NIST
Post-Quantum Cryptography Standardization project that has passed the first
round selection. This attack exploits the decryption failures and recovers one
weak key among about 264 public keys. This attack has two versions due to the
two different approaches to reconstruct the secret key from the decryption fail-
ures. With the first approach, we present an attack with complexity of 279, i.e.,
the cost of determining a weak key, if the required precomputation cost is bound
by 2162 encryptions. One can definitely achieve different trade-offs between the
attacking complexity and the precomputation cost via choosing suitable param-
eters. The second approach is similar to the reaction attacks [14,15,10] on the
MDPC and LDPC based cryptosystems, which could heuristically decrease the
precomputation effort further. We also discuss the possibility of attacking a key
with a much larger probability, say 2−16. Last, we discuss the attack on a new
version of LAC256 in round 2 of the NIST PQC project. We claim a multi-target
attack with complexity bounded by 280 and precomputation of about 2171 to
recover a weak key among about 264 public keys. This attack also means a CCA
attack on LAC256-v2 with precomputation of 2171, and success probability 2−64,
in the single-key setting.

This attack can also be applied to other schemes. It is interesting future work
to check the performance of the attack with respect to different proposals in the
NIST Post-Quantum Cryptography Standardization project.
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