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G E O L O G Y

Lake sediments with Azorean tephra reveal ice-free 
conditions on coastal northwest Spitsbergen during 
the Last Glacial Maximum
Willem G. M. van der Bilt1,2* and Christine S. Lane3

Lake sediments retrieved from the beds of former nonerosive ice sheets offer unique possibilities to constrain 
changes in the extent and style of past glaciation, and place them in an absolutely dated context. We present the 
first pre-Holocene lake sediments from Arctic Svalbard. Radiocarbon dating of terrestrial plant fossils reveals that 
the investigated catchment was unglaciated and vegetated between 30 and 20 ka B.P. during the global Last 
Glacial Maximum. The presence of volcanic ash from a contemporaneous Azorean eruption also provides evi-
dence for ice-free conditions. Indicators of sediment compaction and a depositional hiatus suggest subsequent 
coverage by nonerosive ice until 11 ka B.P. Comparison with regional paleoclimate data indicates that sea ice 
variability controlled this pattern of ice sheet evolution by modulating moisture supply. Facing rapid regional 
sea ice losses, our findings have implications for the future response of the Arctic’s cryosphere, a major driver of 
global sea-level rise.

INTRODUCTION
For decades, the preservation of pre–Last Glacial Maximum (LGM) 
landforms stirred debate as to whether northwest Spitsbergen on the 
Svalbard archipelago was ice-covered during the Late Weichselian 
[30 to 12 calibrated (cal.) ka B.P.] (1, 2). There is now broad consensus 
that ice extended to the shelf edge and drained through fjords and 
troughs, while less active ice occupied intermediary areas (3, 4). A 
wealth of recent cosmogenic nuclide data reveals that this ice sheet was 
highly dynamic and left a varied imprint on the landscape. Notably, 
age differences between dated bedrock and boulders suggest that areas 
were (periodically) covered by nonerosive (cold-based) ice or even ex-
posed during the LGM (5–7). However, in these terrains, cosmogenic 
inheritance complicates interpretations about the timing, style, and 
duration of past glaciation (8). Robust chronological control is vital 
to confidently constrain ice sheet change across time and space. Dis-
coveries from the beds of former nonerosive ice sheets on Baffin Island 
and Greenland show that Arctic lakes hold great potential to cor-
roborate cosmogenic evidence (9, 10). In these basins, sediments that 
can be absolutely dated accumulated during ice-free periods, while 
overriding nonerosive ice preserved and compacted these deposits. 
This study describes the first pre-Holocene lake sediments reported 
from Svalbard. We present three bryophyte-derived 14C ages, a new 
regional tephra marker of Azorean provenance, as well as stratigraphic 
evidence to demonstrate that parts of coastal northwest Spitsbergen 
were ice free and vegetated from ~30 to 20 cal. ka B.P., before being 
overrun by nonerosive (cold-based) ice until ~11 cal. ka B.P.

MATERIALS AND METHODS
Setting
Our study site, Lake Hajeren (79.26°N, 11.52°E), is situated on the 
Mitra peninsula of northwest Spitsbergen (Fig. 1 and fig. S1). As at-

tested by a combination of minimal isostatic unloading and the preser-
vation of pre-Weichselian landforms or surfaces [e.g., (3, 11)], this 
area may have harbored ice-free areas during the Late Weichselian. 
Hajeren covers 0.23 km2, has a maximum depth of ~20 m, and sits 
at an elevation of 35 m above sea level (a.s.l.)—just above the 32 m 
a.s.l. postglacial marine limit reported in nearby Trongdalen (3), ~5 km 
south (fig. S1A). The catchment measures ~3 km2 and comprises 
large tracts of gently sloping weathered surfaces covered by polygonal 
ground, solifluction lobes, and overdimensioned channels that 
drain meltwater from two small cirque glaciers (fig. S1B) (12). The 
alpine terrain of the surrounding mountains and fjords indicates that 
glacial erosion has modified the local landscape. The orientation of 
glacial striations and flutes suggests that ice mostly flowed along the 
southeast-trending adjacent Krossfjord during glacial maxima (fig. S1A) 
(3). Exposure-dated erratics from Trongdalen indicate that ice last 
retreated from this fjord around 12.2 cal. ka B.P. (3). However, local 
glaciers persisted in the Hajeren catchment and readvanced around 
9.5 cal. ka B.P. before disappearing after 7 cal. ka B.P.: The small 
glaciers that presently occupy two cirques reformed during the Late 
Holocene (13). The bedrock lithologies that underlie both catchment 
and upstream ice drainage basins comprise schist or migmatite (14). 
Two sediment sequences were extracted from Lake Hajeren with a 
piston corer during fieldwork in 2012, only one of which contained 
undisturbed sediments (core HAP0212) (13).

Sediment stratigraphy
This study focuses on HAP0212, a 332-cm-long undisturbed core 
taken from the deepest part of the basin. Here, we reappraised bot-
tom unit 4 (272 to 320 cm)— homogenous, dense, and minerogenic 
sediments that were excluded from previous work on the Holocene 
lake history by (13) because of “improbably old” radiocarbon ages 
[16,580 ± 180 and 25,100 ± 300 14C yr B.P. (radiocarbon years be-
fore the present)] and signs of dewatering. We characterized the 
stratigraphy of unit 4 sediments using four parameters on a com-
mon 0.5-cm resolution. Sediment density [dry bulk density (DBD)] 
and water content, basic measures for compaction (9), were deter-
mined. Magnetic susceptibility (MS), an indicator of detrital input 
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(15), was measured using a Bartington MS2E sensor. We also measured 
loss on ignition (LOI) on these samples, a basic measure of organic 
content, following the protocol by (16). To assess sediment prove-
nance, we carried out x-ray diffraction (XRD) analysis on 14C-dated 
depth intervals (n = 3). For this purpose, we sieved sample material 
through a 63-m mesh and separated clay from silt using gravity 
settling. Both fine fractions were then analyzed as randomly oriented 
dry powders on a Bruker D8 ADVANCE ECO X-ray diffractometer. 
Last, we visualized sedimentary structure in three dimensions (3-D) 
using a ProCon X-Ray ALPHA Computed Tomography (CT) scan-
ner. Extensive sampling of HAP0212 for previous work (13) has 
restricted this exercise to selected depth intervals. In addition, we 
tried to extract lipids from analyzed unit 4 sediments in mixture 
of dichloromethane (DCM) and methanol (9:1 volume %) with a 
Dionex ASE 350 system. So far, all analyzed samples (n = 5) were 
devoid of identifiable compounds following gas chromatography 
mass spectrometry and flame ionization detection.

Tephra analyses
Volcanic glass (tephra) was extracted from the investigated sediments 
using the flotation procedure of (17) by sieving at 15 m followed by 
density extraction using different densities of sodium polytungstate 
heavy liquid (1.95 to 2.55 g/cm3). To detect discrete horizons, we 
sampled and analyzed the entire length of targeted unit 4 sediments. 

First, we focused on contiguous 10-cm sediment slices. Then, we 
zoomed in on sections that contained glass using 1-cm interval samples. 
Last, shards were picked for analysis from the discrete tephra horizon 
presented here (278.5-cm core depth) with the help of a gas chroma-
tography syringe [cf. (18)]. Individual tephra shards were then geo-
chemically characterized using wavelength electron microprobe analysis 
to measure major and minor element oxide concentrations. Analyses 
were carried out at the Electron Probe Microanalysis Facility at the 
School of Geosciences of the University of Edinburgh. For this purpose, 
we used a Cameca SX100 instrument that was operated at an accel-
erating voltage of 15 kV, with variable beam currents of 0.5 nA (Na/Al), 
2 nA (Mg/Si/K/Fe/Ca), and 60 nA (P/Ti/Mn), and a beam diameter of 
6 m. Secondary glass standards (LIPARI and BCR2g) were analyzed 
between and within runs to monitor analytical precision (table S1).

Geochronology
We constrained the age of the investigated core section with three radio-
carbon samples of terrestrial plant macrofossils. LuS 10868 (269.5 cm) 
and LuS 10870 (317 cm), first reported by (13) but designated as 
outliers, constrain the upper and lower sections of unit 4, respectively. 
For this study, we submitted an additional terrestrial plant macro-
fossil sample (LuS 13913) to the same laboratory (Lund Radiocarbon 
Dating Laboratory) from the same depth as the presented tephra 
isochron (278.5 cm). All ages were calibrated with the IntCal13 curve 
before obtaining an age-depth model with Clam 2.2 using a linear 
fit (19, 20). To assess the condition and origin of dated material from 
all horizons, we used a light microscope fitted with a ZEISS Axiocam 
105 camera. All submitted material consists of several (maximum of 
10) terrestrial plant macrofossils, identified as bryophytes (mosses, 
Fig. 2).

RESULTS
Late Weichselian lake sediments
The chronology shown in Fig. 2B indicates that Lake Hajeren received 
sediment input between 29,966 to 28,516 cal. yr B.P. and 20,466 to 
19,571 cal. yr B.P. (2). The presented 14C dates are in stratigraphic 
order and separated by stable time increments, which suggests that 
the investigated sediments have neither been disturbed nor reworked 
(table S2). The CT orthoslices in Fig. 2C support this notion by re-
vealing intact centimeter-scale laminations. As shown by the micro-
graph plates of Fig. 2D, we were able to pick and date terrestrial 
macrofossils, providing robust chronological control. The presence 
of this material indicates that (part of) the Hajeren watershed was 
ice free and sustained plant life (bryophytes; mosses) during the Late 
Weichselian.

Complementing the presented chronological evidence, minimal 
organic content—reflected by stable low (1.5%) LOI values (fig. S2A) 
(13)—helps exclude the possibility that the investigated sediments 
were deposited during (productive) interglacial conditions. This notion 
is supported by the absence of lipid biomarker compounds, ubiqui-
tous throughout the Holocene (21), analyzed in unit 4 samples. Last, 
picked and pictured macrofossils exclusively comprise bryophytes 
(mosses). At present, this phylum only dominates the flora of Ant-
arctica because of their unique ability to withstand extreme cold and 
complete desiccation (22).

Mineralogical (XRD) analyses allay concerns of carbonate con-
tamination of radiocarbon ages by freshwater reservoir effects: unit 
4 host sediments that predominantly consist of the phyllosilicates 
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Fig. 1. Overview map of the Svalbard archipelago. Our study site, Lake Hajeren, is 
highlighted with a green dot; the green inset marks the extent of the detailed map in 
fig. S1. Modern glacier extent is shown, along with (most credible) reconstructed ice 
margin positions after (45) for key intervals: 32 to 30 ka B.P. (referred to as ~30 ka 
B.P.) (the onset of late Weichselian sedimentation in Hajeren), c. 20 ka B.P. (when the 
lake was overrun by nonerosive ice), and c. 11 ka B.P. (when lacustrine sedimenta-
tion resumed). We also indicate the localities of the sea ice reconstructions from 
the Yermak plateau and the western Svalbard margin that are shown in Fig. 5 (47).
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(illite and muscovite) and quartz minerals that dominate the bed-
rock of the surrounding catchment (Fig. 2E) (14). The first 14C age 
above the investigated late Weichselian sediments (unit 4) at 265 cm 
yields an Early Holocene age of 11,260 to 11,082 cal. yr B.P. (2) 
(13), indicating an ~9000-year hiatus. In the absence of a truncated 
contact with the overlying sediments or other indications of an erosive 
boundary, we argue that this interval marks a period of nondeposition. 
On the basis of high undrained shear strength values (126 kPa), van der 
Bilt and co-workers (13) suggest compaction of unit 4. Our findings 
support this interpretation as downcore measurements reveal that the 
investigated sediments are consistently dewatered (water content ≈ 
20%) and dense (DBD ≈ 1.5 g/cm3) (Fig. 2A). Together with high 
MS (MS ≈ 25 × 10−5 SI) values, this depositional signature is notably 
different from the Holocene sediments in Lake Hajeren (fig. S2A) 
but characteristic for compression by ice in similar Arctic lakes where 
pre-Holocene sediments have been preserved (9). Under such a sce-
nario, perennial lake ice coverage and overriding nonerosive (cold-
based) ice preserve and compress sediments, respectively (10).

Azorean tephra
Our tephra data provide additional evidence for ice-free conditions 
in the Hajeren watershed during the Late Weichselian. We located 

a distinct cryptotephra layer between 278- and 279-cm core depth 
(Fig. 4A), composed of clear glass shards with open vesicle cuspate 
forms, ~20 m in size. A discrete shard maximum (56 g/cm3) sug-
gests that ash was deposited from primary air fall (23), allaying con-
cerns about reworking such as delayed release from snow or ice. This 
notion is supported by a homogeneous geochemistry; secondary depo-
sition typically mixes tephra from different eruptions (24). Major 
and minor oxide data from the four diminutive shards that were 
analyzed following three rounds of extraction reveal a trachytic com-
position, with normalized SiO2 weight percentages between 65.62 
and 66.8% and a total alkali (Na2O + K2O) content ranging from 
13.29 to 14% (table S6). To find a geochemical match, we compared 
our data to reference material of trachytic eruptions from volcanoes 
that were active around the time of deposition (Fig. 3A and table S4). 
We delimit this interval between 19 and 23 cal. ka B.P. by using the 
age-depth model presented in Fig. 2B, which is constrained at this 
depth by radiocarbon age LuS 13913 (range, 20,466 to 19,571 cal. yr 
B.P. 2). Possible candidates include the D1b Acireale eruption 
of Etna, the Pomici di Base eruption of Somma-Vesuvius, the Sant 
Angelo Tephra from Ischia, and the Lajes-Angra Ignimbrite (LAI) 
from Pico Alto on the Azorean island of Terceira (Fig. 3B and table 
S4) (25–28). Contemporaneous trachytic eruptions from the Fogo 
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Fig. 2. Stratigraphic context of analyzed unit 4 sediments from Lake Hajeren. (A) Down-core density, magnetic susceptibility (MS), and water content (compared to 
dry sediment weight) measurements. (B) Clam-calibrated chronology. The core image on the left-hand side marks the sampling locations of the analyzed material shown 
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and Sete Cidades volcanoes on the Azorean island of São Miguel lack 
reference glass compositional data (Fig. 3B) (29, 30). We address this 
issue by using other glass data from these sources (30–33). Last, we 
include data from the most proximal sources of trachyte tephra, Jan 
Mayen and Snæfellsjökull on Iceland. While reported Late Pleistocene 
and Holocene Jan Mayen eruptives exclusively comprise basanite 

and trachybasalt (34), so little is known about the eruptive history of 
the island that we include the most recent (580 to 640 cal. ka B.P.) 
trachyte ash (35). From Snæfellsjökull, we include data from the two 
characterized tephras from this system, produced by the Holocene 
SN-1 and SN-2 eruptions (36, 37). Low (<1) K2O/Na2O ratios suggest 
that the analyzed shards derive from an anorogenic interplate volcanic 
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setting (38), such as Etna or the Azores; a total alkali-silica (TAS) 
plot shows the analyzed shards group closest to reference material 
from the latter source (Fig. 4B). An Azorean provenance is also sup-
ported by the bivariate plots of Fig. 4C, which highlight the charac-
teristically low CaO (<1%) content of Azorean tephra, as well as its 
high FeO(t) concentrations (>4.3%) (28, 32).

Comparison with available data from Azorean eruptions indicates 
that our samples derive from the island of Terceira (Fig. 4C, inset). 
Here, the Pico Alto volcano produced the largest pyroclastic deposit on 
the island (3.3 km3 dense rock equivalent) during the LAI eruption, 
which has been dated to between ~20 and 23 14C ka B.P. (25, 39). The 
first stage of this cataclysmic event produced fine ash with a high po-
tential for distal dispersal (40). We used aforementioned published 14C 
ages (n = 3) taken from the base of LAI deposits to constrain the onset 
of this phase (table S5) (25, 39). Timing of LAI ash dispersal (range, 
22,711 to 24,536 cal. yr B.P. 2) overlaps with the age distribution of 
the presented tephra isochron (Fig. 4D), providing chronological ev-
idence in support of correlation. We should note that no other Pico 
Alto eruption occurred during this period; a preceding Ignimbrite- 
forming event has been dated to ~35 ka B.P. (25). Moreover, glass from 
the other active volcanic center on Terceira (Santa Bárbara; Fig. 3C) 
has a distinctly different (nonperalkaline) geochemistry (41). Our 
finding marks the first find of LAI ash outside Terceira, highlights its 
potential pan-North Atlantic LGM isochron, and expands the known 
dispersal distance of Azorean tephra by thousands of kilometers.

DISCUSSION
Glacio-climatic conditions on northwest Spitsbergen  
during the Late Weichselian
The presented chronostratigraphic framework demonstrates that 
parts of the coastal northwest Spitsbergen remained unglaciated be-

tween 30 and 20 ka B.P. before being overrun by nonerosive (cold-based) 
ice. The inferred timing of this transition from ice-free to ice-covered 
around 20 cal. ka B.P. is consistent with the most regional evidence 
of the culmination of ice sheet expansion. Using amino acid ratios on 
dated shells, Mangerud and co-workers (42) argue that ice overrode 
the west coast of Spitsbergen after 22 cal. ka B.P. and advanced toward 
the shelf edge between 23 and 21 cal. ka B.P., as indicated by debris 
lobe deposition along the western Svalbard margin [e.g., (43, 44)]. 
We should note that the compilation by (45) suggests that ice al-
ready extended beyond the modern coast ~30 cal. ka B.P. (Fig. 1). 
However, as stated by the authors in their supplementary database, 
this interpretation is based on sparse evidence or cosmogenic (10Be) 
dates with a complex exposure (inheritance) history. The reported 
association of undisturbed and compacted sediments with an over-
lying hiatus in Lake Hajeren is indicative for coverage by nonerosive 
(cold-based) ice, as observed in similar settings elsewhere [e.g., (10)]. 
Our data thus support the notion that fast-flowing ice was restricted to 
troughs and fjords during the Late Weichselian (4). Basal conditions 
need to remain at or below the pressure melting point to maintain 
cold-based glaciation. This restricts the possible thickness of the Late 
Weichselian ice over low-lying Lake Hajeren, as also suggested by 
minimum ice surface estimates (<300 m a.s.l.) based on exposure 
dates derived from the surrounding Mitra peninsula (fig. S1B) (3). 
Because nunataks may have remained unglaciated throughout the 
Late Weichselian (46), plants like the bryophytes (mosses) pictured 
and dated for this study could have survived on higher ground after 
ice overrode coastal lowlands.

From a paleoclimate perspective, regional marine geological 
records reveal that the advance of ice over Hajeren and across 
Svalbard around 20 cal. ka B.P. coincides with sea ice shifts of an 
unprecedented magnitude during the discussed ~30 to 11 cal. ka B.P. 
While perennial sea ice formed along the western Svalbard margin 
after ~22.5 cal. ka B.P., seasonally open conditions were estab-
lished farther north on the eastern Yermak plateau (Figs. 1 and 5) 
(47, 48). Kremer and co-workers (49) argue that katabatic winds 
originating from the expanding Barents Ice Sheet played a criti-
cal role in creating open water conditions at this time of minimal 
summer insolation and low surface temperatures. Knies and co- 
workers (50) argue that wind-driven upwelling of mild Atlantic 
waters, which continued to flow to Svalbard below the surface, 
helped prevent sea ice formation. In general, sea ice coverage blocks 
the transfer of moisture from ocean to atmosphere (51); the exis-
tence of seasonally open water therefore greatly enhances surface 
moisture fluxes. Hebbeln and co-workers (52) suggest that the 
availability of moisture was a critical constraint for the buildup 
of ice on Svalbard, a polar desert at the time. Proxy-constrained 
modeling experiments show that ice sheet expansion toward recon-
structed LGM limits on Svalbard required a 130% increase in pre-
cipitation from present-day (inter-glacial) conditions (53). At around 
20 cal. ka B.P., prevalent northeasterly polar winds could pick up 
extra moisture from the seasonally open waters of the Yermak 
plateau before releasing it as snow over northwest Spitsbergen—the 
first landmass in their track (Fig. 1). Conversely, perennial sea ice 
coverage on the Yermak plateau from ~30 to 20 cal. ka B.P. limited 
the supply of precipitation to our study area (47), restricting ice 
buildup (47). The dominance of bryophytes (Fig. 2D), which can 
survive complete desiccation (22), also supports extreme aridity 
during this period. Still, there is ample evidence that ice domes 
occupied the interior of Spitsbergen at the time (5, 7). We, however, 
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cussed time interval of 30 to 11 ka B.P. from the western Svalbard margin 
(core PS93/006-1) and eastern Yermak plateau (core PS92/039-2) after (12). 
The time spans covered by analyzed unit 4 in core HAP0212 and the overlying hiatus 
are highlighted, while we show the calibrated range of the 14C age (LuS 10868, green 
bell curve; also see table S2) that separates both intervals.
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argue that the ice streams bordering the surrounding Mitra penin-
sula drained ice away from the Hajeren catchment (fig. S1A).

Resumption of lacustrine sedimentation around 11 cal. ka B.P. 
provides a minimal age for the deglaciation of the Hajeren catchment 
(fig. S2B). This estimate is in agreement with geochronological evi-
dence from the surrounding Mitra peninsula (12.2 cal. ka B.P.) (3), 
other parts of northwest Spitsbergen (~14 cal. ka B.P.) (7), and the 
wider Svalbard archipelago (11 cal. ka B.P.) (Fig. 1) (11). Climato-
logically, deglaciation can be attributed to high radiative forcing and 
intensifying heat advection by the surface ocean (54).

CONCLUSIONS
We report the first evidence of pre-Holocene lake sediments on the 
Arctic Svalbard archipelago. The presented chronostratigraphic data 
reveal that unglaciated areas existed on northwest Spitsbergen be-
tween 30 and 20 cal. ka B.P., coincident with the LGM. Bryophyte 
macrofossils, used for dating, indicate that these cryptic refugia were 
vegetated. In light of evidence for ice-free conditions on high (>300 m 
a.s.l.) plateaus since 80 cal. ka B.P. (46), these findings raise the pos-
sibility that plants may have endured the Last Glacial period on 
Svalbard. The analyzed sediments were preserved in a lowland basin 
and thus confirm recent suggestions that even low-lying areas on 
Svalbard were covered by nonerosive ice during the LGM (6). Similar 
sites are ubiquitous on Svalbard, raising the possibility that more and 
possibly older sequences may be retrieved in the future. Comparison 
with regional paleoclimate records suggests that the culmination of 
ice expansion around 20 cal. ka B.P. was triggered by enhanced mois-
ture fluxes from seasonally open waters upwind (northeast) from 
the Lake Hajeren site. This interpretation underscores the importance 
of hydrological change for the evolution of Arctic ice sheets, which 
face a future that is warmer as well as wetter (55). The proposed 
mechanism may also explain the similarly late LGM culmination of 
precipitation-starved ice sheets on Greenland and Ellesmere Island 
(56, 57). Last, the reported tephra isochron marks the most distal 
find of volcanic ash from the Azores and represents a valuable new 
LGM time marker that has the potential to synchronize paleoclimate 
reconstructions across the entire North Atlantic region.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/10/eaaw5980/DC1
Fig. S1. Overview maps of our study area and site.
Fig. S2. The full stratigraphy and chronology of investigated core HAP0212.
Table S1. Major and minor oxide data of glass standards, along with calculated means and 
(weighted) SDs (2) of replicate measurements.
Table S2. Overview of presented radiocarbon (14C) samples.
Table S3. Glass (tephra) shard counts in 10-cm slices of core HAP0212, as well as 1-cm 
resolution counts for the selected 276.5- to 285.5-cm interval shown in Fig. 4A.
Table S4. Published ages and reference glass data sources for specific eruptions from particular 
volcanic sources that are discussed and shown in the main text (Figs. 3 and 4).
Table S5. Published radiocarbon ages that were taken from the base of LAI deposit and used 
to calculate the onset of the eruption (Fig. 4D).
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