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Abstract

We consider a non-linear extension of Biot’s model for porome-
chanics, wherein both the fluid flow and mechanical deformation are
allowed to be non-linear. Specifically, we study the case when the
volumetric stress and the fluid density are non-linear functions satis-
fying certain assumptions. We perform an implicit discretization in
time (backward Euler) and propose two iterative schemes for solving
the non-linear problems appearing within each time step: a splitting
algorithm extending the undrained split and fixed stress methods to
non-linear problems, and a monolithic L-scheme. The convergence of
both schemes are shown rigorously. Illustrative numerical examples
are presented to confirm the applicability of the schemes and validate
the theoretical results.

Index terms— Biot’s model, L-schemes, MFEM, convergence
analysis, fixed-stress method, coupled problems, poromechanics.
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1 Introduction

Poromechanics, that is to say the coupled flow and mechanics of porous me-
dia, plays a crucial role in many societal relevant applications. These include
geothermal energy extraction, energy storage in the subsurface, CO2 seques-
tration and understanding of biological tissues. The increased role played by
computers for the development and optimisation of (industrial) technologies
for these applications enhances the need for improved mathematical models
and robust numerical solvers for poromechanics.

The most common mathematical model for coupled flow and mechanics
in porous media is the linear, quasi-stationary Biot model [9, 10]. The model
consists of two fully coupled partial differential equations, representing bal-
ance of forces for the mechanics and conservation of mass for (single-phase)
flow in porous media.

In terms of modelling, Biot’s model has been extended to unsaturated flow
[12, 36, 49], multiphase flow [35, 47, 46], thermo-poro-elasticity [17], and reac-
tive transport in porous media [32, 48], where non linearities arise in the flow
model in the diffusion term, the time derivative term and/or in the Biot’s cou-
pling term. The mechanics model can also be extended to elasto-plastic [58],
fracture propagation [33] and hyperelastic materials [18, 19] where the non
linearities appear in the constitutive law of the material, in the compatibil-
ity condition and or in the conservation of momentum equation.Furthermore
elastodynamics or non-stationary Biot, i.e. Biot-Allard model in [39] includes
an convolution in the coupling term of both mechanic and flow equations. In
this paper we are going to explore the case when the relative density of the
flow and the bulk modulus in the porous material are non linear. These non
linearities are the first but necessary steps to later on consider extensions of
Biot’s model to multiphase flow, hyperelastic materials and elastodynamics.

Finding closed form solutions for coupled problems is very difficult, and
normally based on various simplifications. We therefore resort to numerical
approximations.

Fully coupled models for fluid potential and mechanical deformation guar-
antees that the numerical solution is formally consistent with the underlying
continuous differential equations. Nevertheless, due to the complexities as-
sociated with monolithic solvers for the full non-linear problem, industry
standard remains to use so-called weakly, or iteratively, coupled approaches
[53, 42]. Weakly coupled schemes, wherein the iterations are not contin-
ued until convergence, have in particular been questioned in previous works
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[42, 45, 21]. In order to ensure the robustness and accuracy of the resulting
computations, it is therefore essential to understand the efficiency, stability
and convergence of iterative coupling schemes, in particular in presence of
non-linearities.

As a response to this current status, the objective of this paper is to
show how a simple linearization technique, i.e. the L-scheme (see [36, 44, 47]
for application of this method to Richards’ equation or two-phase flow in
porous media) can be combined with a splitting algorithm (known both as
the undrained split or the fixed stress method [11, 29, 30, 31, 38, 40, 51]) to
obtain a robust and efficient iterative scheme for solving a non-linear Biot
model. Concretely, by robust it is meant that the convergence is guaranteed
regardless of the starting guess for the iteration (global convergence) and
independently of the discretization parameters.

In this paper, we use for concreteness linear conformal Galerkin elements
for the discretization in space of the mechanics equation and mixed finite
elements for the flow equation [24, 43]. Precisely, the lowest order Raviart-
Thomas elements are used [13]. We expect, however, that the solution strat-
egy discussed herein will be applicable to other combinations of spatial dis-
cretizations such as those discussed in [41, 50] and the references therein.
Backward Euler is used for the temporal discretization. Multirate time dis-
cretizations or higher order space-time Galerkin method have been also pro-
posed for the linear Biot model in [3] and [7], respectively. We propose two
new iterative methods for solving the resulting non-linear equations at the
new time-level: a splitting algorithm based on a combination between the
undrained split and the fixed stress methods (as mentioned above) and a
monolithic approach based on the same linearization technique. The exis-
tence and uniqueness of a solution for the both formulations, as well as their
global, linear convergence are shown rigorously. To the best of our knowl-
edge, these are the first rigorous convergence results for iterative (monolithic
or splitting) schemes in the non-linear case. At the same time, we also ac-
knowledge that while the non-linearities considered here are representative
for compressible materials, they are simpler than those encountered in more
complex applications such as multiphase flow.

To summarise, the new contributions of this paper are

• We propose splitting and a monolithic L-scheme for a non-linear Biot
model.

• The linear convergence of both schemes is rigorously shown in energy
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norms.

• We provide a benchmark for the convergence of splitting algorithms
for the non-linear Biot model, including a comprehensive comparison
between the splitting and monolithic L-scheme.

The paper is structured as follows. In the next section we present the
mathematical model and the discretization, including the fully discrete com-
putational schemes. In Section 3 we analyze rigorously the proposed schemes.
Numerical results are presented in Section 4, and we conclude the paper in
Section 5.

1.1 Notations

In this paper we use typical notations from functional analysis. Let Ω ⊂ Rd

be an open and bounded domain with a Lipschitz continuous boundary ∂Ω,
with d ∈ {1, 2, 3} being the dimension of the space. We denote by L2(Ω) the
space of square integrable functions and by H1(Ω) the Sobolev space

H1(Ω) = {v ∈ L2(Ω) ; ∇ v ∈ L2(Ω)d}.

Furthermore, H1
0 (Ω) will be the space of functions in H1(Ω) vanishing on

∂Ω and H(div; Ω) the space of vector valued function having all the compo-
nents and the divergence in L2(Ω). We will use bold face notation to specify
when dealing with vectors. We denote by 〈·, ·〉 the inner product on L2(Ω)
and ‖v‖ =

√
〈v, v〉 the associated norm. Let further [0, T ] be a time inter-

val, with T denoting the final computational time. The notations for the
variables and parameters of Biot’s model are summarized in Table 1.

2 Mathematical model and discretization

We use Biot’s consolidation model in the domain Ω × [0, T ] considering a
non-linear elastic, homogeneous, isotropic, porous medium saturated with a
compressible fluid. The Cauchy stress tensor ~σpor can be expressed in terms
of the fluid pressure p and the displacement ~u as

~σpor(~u, p) = ~σ(~u)− αp~I, (1)
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Table 1: Nomenclature

Parameters Variables
Lamé’s first parameter λ Displacement ~u
Lamé’s second parameter µ Pressure p
Kinematic fluid viscosity νf Mass flux ~q
Fluid density ρf
Reference fluid density ρf,ref
Source term Sf
Biot’s constant α
Biot’s modulus M
Permeability scalar value k
Gravity vector ~g

Body forces ~f
Effective stress tensor ~σ
Cauchy stress tensor ~σpor

Strain tensor ε

where ~I is the identity tensor and α is the dimensionless Biot coefficient, see
e.g. [9, 10, 20, 18], and ~σ(~u) the extended non-linear stress tensor [55], given
by

~σ(~u) = 2µε(~u) + c(∇ · ~u)~I. (2)

Above, µ > 0 is the constant shear modulus, ε the strain (or symmetric
gradient) tensor, i.e. ε(~u) = 1

2

(
∇~u+ (∇~u)T

)
. The non-linear term c(·)

models the volumetric stress. Under quasi-static assumptions (neglecting
the acceleration), the governing equation for mechanical deformation of the
solid-fluid system can be expressed as

−∇ · ~σpor = ~f, (3)

where ~f is a body force in Ω. Substituting the constitutive relation (2) into
(1) and expanding (3), we get

−∇ · [2µε(~u) + c(∇ · ~u)~I] + α∇ · p~I = ~f.

The volumetric flux through porous medium Ω is modelled using Darcy’s law

~qv = − k

νfρf,ref
[∇p− ρf,ref~g] ,
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where νf , ρf,ref are the kinematic viscosity and reference density of the fluid
respectively and ~g is the gravity vector.

Remark 1. For simplicity, we consider the permeability to be a scalar func-
tion, but the results of the paper can be extended without difficulties to the
tensor case.

The next equation is the mass balance for the fluid and reads as

∂ϕ

∂t
= −∇ · ~q + Sf , (4)

where ~q = ρf,ref~qv is the mass flux, Sf is a source term and ϕ the mass of
the fluid in the medium, which is proportional with the volume. Further, ϕ
can be expressed in terms of the fluid pressure p and ∇ · u

ϕ = b(p) + α∇ · ~u. (5)

This approach extends the classical Biot model, as e.g. in [9, 29, 38] by
allowing for a more general equation-of-state, here given by the relative den-
sity as a non-linear function b(·). As commonly in flow in porous media, we
used a linearization assumption implying that the fluid density is considered
constant, e.g. ρf = ρf,ref in the flux and source term. Putting together the
equations (4)-(5) we obtain

∂

∂t
(b(p) + α∇ · ~u) +∇ · ~q = Sf .

Finally, the non-linear Biot’s model considered in this paper reads as (the
variables and coefficients are summarized in Table 1)

−∇ · [2µε(~u) + c(∇ · ~u)] + α∇ · (pI) = ~f in Ω×]0, T [,

(6)

~q = − k

νf
(∇p− ρf,ref~g) in Ω×]0, T [,

(7)

∂t (b(p) + α∇ · ~u) +∇ · ~q = Sf in Ω×]0, T [.
(8)

To complete the model we consider homogeneous Dirichlet boundary condi-
tions (BC) and initial conditions given by ~u = ~u0 and p = p0 at time t = 0.
The functions ~u0, p0 are supposed to be given (and to be sufficiently regular).
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Remark 2. We consider here homogeneous Dirichlet BC just for the sake
of simplicity. The analysis in Section 3 can be extended to more general BC,
as considered also in the numerical examples in Section 4.

Remark 3. Linear Biot’s model. The linear Biot model, as in e.g.
[38, 40], is a particular case of the non-linear model (6)-(8) and it can be
immediately obtained by taking b(p) := p

M
and c(∇ · ~u) := λ∇ · ~u, where M

is a compressibility constant and λ the Lame parameter.

Fully implicit discretization of the Biot model (6)-(8).
For the discretization of the considered non-linear Biot model we use con-

formal Galerkin finite elements for the displacement variable and mixed finite
elements for the flow unknowns [24, 43]. Precisely, we use linear elements
for the displacement and lowest order Raviart-Thomas elements [13] for the
flow. Backward Euler is used for the temporal discretization.

Let Ω = ∪K∈Kh
K be a regular decomposition of Ω into d-simplices. We

denote by h the mesh size. The discrete spaces are given by

Zh = {zh ∈ H1(Ω)
d

; zh|K ∈ Pd1 , ∀K ∈ Kh},
Qh = {wh ∈ L2(Ω) ; wh|K ∈ P0 , ∀K ∈ Kh},
Vh = {~vh ∈ H(div; Ω) ; ~vh|K(~x) = ~a+ b~x, ~a ∈ Rd, b ∈ R, ∀K ∈ Kh},

where P0,P1 denote the spaces of constant functions and of linear polynomi-
als, respectively.

For N ∈ N, we discretize the time interval uniformly and define the time
step τ = T

N
and tn = nτ . We use the index n for the primary variable pn, ~qn,

~un at corresponding time step tn.
We can now formulate a fully discrete variational formulation for the

non-linear Biot model (6)-(8).
Problem P n

h . Given
(
pn−1
h , ~qn−1

h , ~un−1
h

)
, find (pnh, ~q

n
h , ~u

n
h) ∈ Wh×Vh×Zh

such that

2µ〈ε(~unh) : ε(~zh)〉+ 〈c(∇ · ~unh),∇ · ~zh〉 − α〈pnh,∇ · ~zh〉 = 〈~f, ~zh〉, (9)

νf〈k−1~qnh , ~vh〉 − 〈pnh,∇ · ~vh〉 = 〈ρf,ref~g,~vh〉, (10)

〈b(pnh), wh〉+ α〈∇ · ~unh, wh〉+ τ〈∇ · ~qnh , wh〉 =

τ〈f, wh〉+ 〈b(pn−1
h ), wh〉+α〈∇ · ~un−1

h wh〉, (11)

for all ~zh ∈ Zh, ~vh ∈ Vh and wh ∈ Wh.
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Remark 4. A continuous variational formulation can be analogously given,
see [38] for the linear case. We will show in Section 3 the existence and
uniqueness of a solution for the fully discrete variational scheme above, by
using the Banach fixed point theorem. Existence and uniqueness for the con-
tinuous case can be shown similarly. Error estimates can be also obtained,
following the lines of [43] in combination with the techniques used in this
paper to deal with the nonlinearities. Nevertheless, this is beyond the scope
of this paper.

Non-linear solvers: a splitting L-scheme and a monolithic L-scheme.
The non-linear system (9)-(11) can be solved monolithically by using

the Newton method or a robust, linear convergent linearization scheme (L-
scheme, see e.g. [44, 47, 36]) or by using a splitting algorithm [11, 31, 40] .
In this work we present a combination between the undrained split and fixed
stress methods, adapted to the non-linear case and a monolithic, fixed point
linearization scheme.

We begin by presenting the splitting L-scheme. At each time step (we use
n to denote the time index), we first solve the flow equations using the dis-
placement from the last iteration and then, with the new computed pressure,
we solve the displacement equation and iterate until the difference between
two consecutive iterates is lower than a tolerance. For the value of the toler-
ance see please the numerical section. We use i for indexing the iterations.
We start the iterations with the solution at the last time step (or the initial
values for the first time step), i.e. pn,0h = pn−1

h , ~qn,0h = ~qn−1
h and ~un,0h = ~un−1

h .
We further introduce two positive constants, L1 and L2 which are free to be
chosen in order to optimize the scheme.

A robust splitting L-scheme: the extension of the fixed stress al-
gorithm to non-linear Biot.

Step 1: Given ~un,ih ∈ Zh, find pn,i+1
h ∈ Wh and ~qn,i+1

h ∈ Vh such that
there holds for all ~vh ∈ Vh and wh ∈ Wh

νf〈k−1~qn,i+1
h , ~vh〉 − 〈pn,i+1

h ,∇ · ~vh〉 = 〈ρf,ref~g,~vh〉, (12)

〈b(pn,ih ), wh〉+ L1〈pn,i+1
h − pn,ih , wh〉

+α〈∇ · ~un,ih , wh〉+ τ〈∇ · ~qn,i+1
h , wh〉 = τ〈SF , wh〉+ 〈b(pn−1

h ), wh〉
+ α〈∇ · ~un−1

h wh〉. (13)

Step 2: Given now pn,i+1
h ∈ Wh, find ~un,i+1

h ∈ Zh such that there holds
for all ~zh ∈ Zh
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2µ〈ε(~un,i+1
h ) : ε(~zh)〉+ L2〈∇ · ~un,i+1

h −∇ · ~un,ih ,∇ · ~zh〉
+〈c(∇ · ~un,ih ),∇ · ~zh〉 − α〈pn,i+1

h ,∇ · ~zh〉 = 〈~f, ~zh〉. (14)

Remark 5. Ideally the constants L1 and L2 should be chosen as small as
possible (in order to increase the convergence rate, as it will be shown below),
but large enough to ensure the convergence of the scheme. This will be dis-
cussed in detail in Section 3 (from a theoretical point of view) and in Section
4 (for practical computations).

We introduce now a monolithic L-scheme, called the L-scheme as alterna-
tive to the splitting method proposed above. The scheme is inspired by the
works [44, 47, 36], where a similar idea is applied for the Richards equation.

We again start the iterations with the solutions at the last time step:
pn,0h = pn−1

h , ~qn,0h = ~qn−1
h and ~un,0h = ~un−1

h (recall that n denotes the time step
index and i is the iteration step). Let L1 and L2 be two positive constants.

A monolithic L-scheme.
Given ~un,ih ∈ Zh, p

n,i
h ∈ Wh and ~qn,ih ∈ Vh, find ~un,i+1

h ∈ Zh, p
n,i+1
h ∈ Wh

and ~qn,i+1
h ∈ Vh such that there holds for all ~zh ∈ Zh, ~vh ∈ Vh and wh ∈ Wh

2µ〈ε(~un,i+1
h ) : ε(~zh)〉+ L2〈∇ · ~un,i+1

h −∇ · ~un,ih ,∇ · ~zh〉
+〈c(∇ · ~un,ih ),∇ · ~zh〉 − α〈pn,i+1

h ,∇ · ~zh〉 = 〈~f, ~zh〉, (15)

and

νf〈k−1~qn,i+1
h , ~vh〉 − 〈pn,i+1

h ,∇ · ~vh〉 = 〈ρf,ref~g,~vh〉, (16)

〈b(pn,ih ), wh〉+ L1〈pn,i+1
h − pn,ih , wh〉 + α〈∇ · ~un,i+1

h , wh〉
+τ〈∇ · ~qn,i+1

h , wh〉 = τ〈SF , wh〉+ 〈b(pn−1
h ), wh〉+ α〈∇ · ~un−1

h wh〉,
(17)

The convergence of the proposed schemes will be studied theoretically in
Section 3 and numerically in Section 4.

3 Convergence analysis

In this section we will show the convergence of the splitting L-scheme (12)-
(14) and of the monolithic L-scheme (15)-(17) for the non-linear Biot problem
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(9)-(11). For this we will combine the techniques developed in [44, 47] with
the ones in [40]. In the following we will use the algebraic identity

〈x− y, x〉 =
‖x‖2

2
+
‖x− y‖2

2
− ‖y‖

2

2
(18)

and Young’s inequality

|ab| ≤ a2

2δ
+
δb2

2
, ∀δ > 0.

We will also use the next lemma in the theorems below. The proof can
be found e.g. in [56].

Lemma 1. Given a wh ∈ Wh there exists ~vh ∈ Vh satisfying

∇ · ~vh = wh and ‖~vh‖ ≤ CΩ,d‖wh‖,

with CΩ,d > 0 not depending on wh or mesh size.

Throughout this section we assume that the following assumptions hold
true.

(A1) b(·) : R → R is C1 (i.e. derivable, having a continuous derivative),
strictly increasing and Lipschitz continuous, i.e there exist bm > 0 and
Lb such that bm ≤ b′(·) ≤ Lb < +∞.

(A2) c(·) : R → R is C1, strictly increasing and Lipschitz continuous, i.e.
there exist cm > 0 and Lc such that cm ≤ c′(·) ≤ Lc < +∞.

(A3) k : Rd → R is assumed to be constant in time and bounded, i.e. there
exist km > 0 and kM , such that km ≤ k(~x) ≤ kM , ∀~x ∈ Ω.

Remark 6. The assumptions (A1)-(A2) are obviously satisfied in the linear

case, where b′ =
1

M
and h′ = λ.

Remark 7. The Lipschitz continuity and monotonicity of b(·), c(·) and bm, cm >
0 are essential for the proof of the convergence for the splitting L-scheme. In
the case of the monolithic L-scheme, one can relax the latter assumption:
bm, cm ≥ 0 is enough to ensure the convergence of the L-scheme.
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Convergence of the splitting L-scheme.
Let us denote by eip = pn,i−pn, ~ei~q = ~qn,i−~qn and ~ei~u = ~un,i−~un the errors

at iteration i, where (pn, ~qn, ~un) is the solution of the non-linear problem
(9)-(11) and (pn,i, ~qn,i, ~un,i) is the solution of (12)-(14). We assume here that
(pn, ~qn, ~un) exists, this being rigorously proved later in Theorem 2.

The next result is showing the convergence of the splitting algorithm.

Theorem 1. Assuming that (A1)-(A3) hold true and that L1 ≥ Lb and
L2 ≥ Lc + α2

bm
, the splitting algorithm (12)-(14) is linearly convergent. There

holds(
L1 −

bm
2

+
τk2

m

νfC2
Ω,dkM

)
‖ei+1

p ‖2 +
τνf
kM
‖~ei+1

~q ‖
2 + L2‖∇ · ~ei+1

~u ‖
2

≤ (L1 − bm)‖eip‖2 + (L2 − cm)‖∇ · ~ei~u‖2.

(19)

Remark 8. The inequality above ensure the convergences eip → 0, ~ei~q → 0
and ∇ · ~ei~u → 0. The convergence ∇ · ~ei~u → 0 follows from (31) below.

Proof. We start by subtracting (9) - (11) from (14) - (12), respectively to
obtain for all wh ∈ Wh, ~vh ∈ Zh, vh ∈ Vh

〈b(pn,ih )− b(pnh), wh〉+ L1〈ei+1
p − eip, wh〉+ τ〈∇ · ~ei+1

~q , wh〉
= −α〈∇ · ~ei~u, wh〉,

(20)

νf〈k−1~ei+1
~q , ~vh〉 − 〈ei+1

p ,∇ · ~vh〉 = 0, (21)

2µ〈ε(~ei+1
~u ), ε(~zh)〉+ 〈c(∇ · ~un,ih )− c(∇ · ~unh),∇ · ~zh〉

+L2〈∇ · (~ei+1
~u − ~ei~u),∇ · ~zh〉 = α〈(ei+1

p ),∇ · ~zh〉.
(22)

The estimates are obtained in a stepwise manner. Accordingly, we handle
the flow equations (20)-(21) and displacement equation (22) in Step 1 and
Step 2, respectively. Then, the obtained estimates will be combined in Step
3 to show the result (19).

Step 1: Flow equations
We first choose wh = ei+1

p ∈ Wh in (20) and ~vh = τ~ei+1
~q ∈ Vh in (21), then

add the results to obtain

〈b(pn,ih )− b(pnh), ei+1
p 〉+ L1〈ei+1

p − eip, ei+1
p 〉+ τνf〈k−1~ei+1

~q , ~ei+1
~q 〉

= −α〈∇ · ~ei~u, ei+1
p 〉.

(23)
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By some algebraic manipulations: adding and subtracting
〈
b(pn,ih )− b(pnh),

eip
〉
, using (18) to L1

〈
ei+1
p − eip, ei+1

p

〉
and later on, using Cauchy-Schwarz and

Young inequalities over 〈b(pn,ih )− b(pnh), eip − ei+1
p 〉 we get from (23)

L1

2
‖ei+1

p ‖2 + L1

2
‖ei+1

p − eip‖2 + 〈b(pn,ih )− b(pnh), eip〉+ τνf〈k−1~ei+1
~q , ~ei+1

~q 〉

= L1

2
‖eip‖2 + 〈b(pn,ih )− b(pnh), eip − ei+1

p 〉 − α〈∇ · ~ei~u, ei+1
p 〉

≤ L1

2
‖eip‖2 +

δ1‖b(pn,i
h )−b(pnh)‖2

2
+ 1

2δ1
‖eip − ei+1

p ‖2 − α〈∇ · ~ei~u, ei+1
p 〉,

for any δ1 > 0. Using (A3), we obtain from the above equation

L1

2
‖ei+1

p ‖2 +
(
L1

2
− 1

2δ1

)
‖ei+1

p − eip‖2 + 〈b(pn,ih )− b(pnh), eip〉

+
τνf
kM
‖~ei+1

~q ‖2 ≤ L1

2
‖eip‖2 + δ1

2
‖b(pn,ih )− b(pnh)‖2 − α〈∇ · ~ei~u, ei+1

p 〉.
(24)

Furthermore, using now (A1), i.e. the monotonicity and the Lipschitz conti-
nuity of b(·), we get from (24)

L1

2
‖ei+1

p ‖2 +
(
L1

2
− 1

2δ1

)
‖ei+1

p − eip‖2 + bm
2
‖eip‖2 +

τνf
kM
‖~ei+1

~q ‖2

+
(

1
2Lb
− δ1

2

)
‖b(pn,ih )− b(pnh)‖2 ≤ L1

2
‖eip‖2 − α〈∇ · ~ei~u, ei+1

p 〉.
(25)

Step 2: Displacement Equation
Testing (22) with ~zh = ~ei+1

~u ∈ Vh and using (18) we obtain

2µ〈ε(~ei+1
~u ) : ε(~ei+1

~u )〉+ 〈c(∇ · ~un,ih )− c(∇ · ~unh),∇ · ~ei+1
~u 〉+ L2

2
‖∇ · ~ei+1

~u ‖2

+L2

2
‖∇ · (~ei+1

~u − ~ei~u)‖2 = L2

2
‖∇ · ~ei~u‖2 + α〈ei+1

p ,∇ · ~ei+1
~u 〉.

(26)
Proceeding as in the Step 1 above, by some algebraic manipulations, using
Cauchy-Schwarz and Young inequalities and assumption (A2) we obtain from
(26)

2µ〈ε(~ei+1
~u ) : ε(~ei+1

~u )〉+

(
1

2Lc
− δ2

2

)
‖c(∇ · ~un,ih )− c(∇ · ~unh)‖2

+
L2

2
‖∇ · ~ei+1

~u ‖
2 +

(
L2

2
− 1

2δ2

)
‖∇ · (~ei+1

~u − ~ei~u)‖2

≤ L2 − cm
2

‖∇ · ~ei~u‖2 + α〈ei+1
p ,∇ · ~ei+1

~u 〉.

(27)
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for any δ2 > 0.

Step 3: Combining flow and displacement
Adding (25) and (27) we obtain

L1

2
‖ei+1

p ‖2 +
(
L1

2
− 1

2δ1

)
‖ei+1

p − eip‖2 +
τνf
kM
‖~ei+1

~q ‖2

+
(

1
2Lb
− δ1

2

)
‖b(pn,ih )− b(pnh)‖2 + 2µ〈ε(~ei+1

~u ) : ε(~ei+1
~u )〉+ L2

2
‖∇ · ~ei+1

~u ‖2

+
(

1
2Lc
− δ2

2

)
‖c(∇ · ~un,ih )− c(∇ · ~unh)‖2 +

(
L2

2
− 1

2δ2

)
‖∇ · (~ei+1

~u − ~ei~u)‖2

≤ L1−bm
2
‖eip‖2 + L2−cm

2
‖∇ · ~ei~u‖2 + α〈∇ · (~ei+1

~u − ~ei~u), ei+1
p 〉︸ ︷︷ ︸

Λ

.

(28)
We denoted the last term on the right hand side by T , which can be estimated
separately by using Cauchy Schwarz and Young inequalities. We get

Λ ≤ α2

2δ3

‖∇ · (~ei+1
~u − ~ei~u)‖2 +

δ3

2
‖ei+1

p ‖2

for any δ3 > 0. Then, (28) takes the form

(L1

2
− δ3

2
)‖ei+1

p ‖2 +
(
L1

2
− 1

2δ1

)
‖ei+1

p − eip‖2 +
τνf
kM
‖~ei+1

~q ‖2

+
(

1
2Lb
− δ1

2

)
‖b(pn,ih )− b(pnh)‖2 + 2µ〈ε(~ei+1

~u ) : ε(~ei+1
~u )〉+ L2

2
‖∇ · ~ei+1

~u ‖2

+
(

1
2Lc
− δ2

2

)
‖c(∇ · ~un,ih )− c(∇ · ~unh)‖2 +

(
L2

2
− 1

2δ2
− α2

2δ3

)
‖∇ · (~ei+1

~u − ~ei~u)‖2

≤ L1−bm
2
‖eip‖2 + L2−cm

2
‖∇ · ~ei~u‖2.

(29)
Due to Lemma 1, there exists a ~vh ∈ Vh such that ∇ · ~vh = ei+1

p and
‖~vh‖ ≤ CΩ,d‖ei+1

p ‖. Testing (21) with this ~vh, and using Cauchy-Schwarz’s
inequality we obtain

‖ei+1
p ‖ ≤ CΩ,d

νf
km
‖~ei+1

~q ‖. (30)

Using now (30) in (29) further gives(
L1

2
+ τk2

m

2νfC
2
Ω,dkM

− δ3
2

)
‖ei+1

p ‖2 +
(
L1

2
− 1

2δ1

)
‖ei+1

p − eip‖2 +
τνf
2kM
‖~ei+1

~q ‖2

+
(

1
2Lb
− δ1

2

)
‖b(pn,ih )− b(pnh)‖2 + 2µ〈ε(~ei+1

~u ) : ε(~ei+1
~u )〉+ L2

2
‖∇ · ~ei+1

~u ‖2

+
(

1
2Lc
− δ2

2

)
‖c(∇ · ~un,ih )− c(∇ · ~unh)‖2 +

(
L2

2
− 1

2δ2
− α2

2δ3

)
‖∇ · (~ei+1

~u − ~ei~u)‖2

≤ L1−bm
2
‖eip‖2 + L2−cm

2
‖∇ · ~ei~u‖2.

(31)
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Finally, choosing δ1 = 1
Lb

, δ2 = 1
Lc

, δ3 = bm and assuming that there holds

L1 ≥ Lb and L2 ≥ Lc + α2

bm
we obtain from (31)(

L1

2
− bm

2
+

τk2
m

2νfC2
Ω,dkM

)
‖ei+1

p ‖2 +
τνf
2kM
‖~ei+1

~q ‖
2 +

L2

2
‖∇ · ~ei+1

~u ‖
2

+2µ〈ε(~ei+1
~u ) : ε(~ei+1

~u )〉 ≤ L1 − bm
2

‖eip‖2 +
L2 − cm

2
‖∇ · ~ei~u‖2.

The above result gives immediately (19).

Remark 9. In the linear case, i.e. b′ =
1

M
and h′ = λ, the undrained split

scheme [31, 40] is obtained by taking L1 =
1

M
and L2 = λ + Mα2. The

convergence result is the same then as the one obtained in [40], but now in
energy norms. Nevertheless, the optimal convergence would be obtained for

L2 = λ+
Mα2

2
, which can be shown e.g. by using the techniques in [11] (for

the linear case).

Remark 10. The convergence rate is actually better, due to 〈ε(~ei+1
~u ) : ε(~ei+1

~u )〉 ≥
1
d
‖∇ ·~ei+1

~u ‖2 which furnishes the term (L2 + 2µ/d)‖∇ ·~ei+1
~u ‖2 on the left hand

side of the inequality (19).

Convergence of the monolithic L-scheme and existence and unique-
ness of the non-linear variational formulation Problem P n

h (9)-(11).
We prove now also the convergence of the monolithic L-scheme (15)-(17).

The idea is to show that the scheme is a contraction and apply the Banach
fixed point theorem. In particular, we obtain by this also the existence and
uniqueness of the original, non-linear problem (9)-(11).

We define now eip = pn,i−pn,i−1, ~ei~q = ~qn,i−~qn,i−1 and ~ei~u = ~un,i−~un,i−1 the
differences between the solutions at iteration i and i−1 of problem (15)-(17),
respectively. Please remark the different definition compared to the proof of
the convergence of the splitting algorithm. In that case the existence of a
solution of the non-linear problem (9)-(11) was assumed, in this case it will
be proved.

14



Theorem 2. Assuming that (A1)-(A3) hold true and that L1 ≥
Lb
2

and

L2 ≥ Lc, the fixed point scheme (15)-(17) is a contraction satisfying

(L1 +
τk2

m

νfkMC2
Ω,d

)‖ei+1
p ‖2 +

τνf
kM
‖~ei+1

~q ‖2 + 4µ〈ε(~ei+1
~u ) : 〈ε(~ei+1

~u )〉

+L2‖∇ · ~ei+1
~u ‖2 ≤ L1‖eip‖2 + (L2 − cm)‖∇ · ~ei~u‖2.

(32)

The limit is then the unique solution of (9)-(11).

Proof. We begin by writing the equations for eip, ~e
i
~q, ~e

i
~u. By subtracting equa-

tions (15)-(17) at i from the ones at i + 1 we get for all ~zh ∈ Zh, ~vh ∈ Vh

and wh ∈ Wh

2µ〈ε(~ei+1
~u ) : ε(~zh)〉+ L2〈∇ · ~ei+1

~u −∇ · ~ei~u,∇ · ~zh〉
+〈c(∇ · ~un,ih )− c(∇ · ~un,i−1

h ),∇ · ~zh〉 = α〈ei+1
p ,∇ · ~zh〉,

(33)

and

νf〈k−1~ei+1
~q , ~vh〉 − 〈en,i+1

p ,∇ · ~vh〉 = 0, (34)

〈b(pn,ih )− b(pn,i−1
h ), wh〉+ L1〈ei+1

p − eip, wh〉 + α〈∇ · ~ei+1
~u , wh〉

+τ〈∇ · ~ei+1
~q , wh〉 = 0. (35)

Testing now (34) with ~vh = τ~ei+1
~q ∈ Vh and (35) with wh = ei+1

p ∈ Wh,
adding the results and using the identity (18) together with some algebraic
manipulations: adding and subtracting

〈
b(pn,ih )− b(pnh), eip

〉
, using (18) on

L1

〈
ei+1
p − eip, ei+1

p

〉
we obtain

〈b(pn,ih )− b(pn,i−1
h ), eip〉+

L1

2
‖ei+1

p ‖2 +
L1

2
‖ei+1

p − eip‖2 + τνf〈k−1~ei+1
~q , ~ei+1

~q 〉

=
L1

2
‖eip‖2 + 〈b(pn,ih )− b(pn,i−1

h ), eip − ei+1
p 〉 − α〈∇ · ~ei+1

~u , ei+1
p 〉.

(36)
We proceed by testing (33) with ~zh = ~ei+1

~u ∈ Zh, and using similarly the
algebraic manipulations used in (36) to get

2µ〈ε(~ei+1
~u ) : ε(~ei+1

~u )〉+
L2

2
‖∇ · ~ei+1

~u ‖2 +
L2

2
‖∇ · ~ei+1

~u −∇ · ~ei~u‖2

+〈c(∇ · ~un,ih )− c(∇ · ~un,i−1
h ),∇ · ~ei~u〉 =

L2

2
‖∇ · ~ei~u‖2

+〈c(∇ · ~un,ih )− c(∇ · ~un,i−1
h ),∇ · (~ei~u − ~e

i+1
~u )〉+ α〈ei+1

p ,∇ · ~ei+1
~u 〉.

(37)
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We add now (36) and (37), use (A1)-(A3), the Cauchy-Schwarz and Young
inequalities and Lemma 1 in a similar manner as in the proof of the conver-
gence for the splitting algorithm to finally obtain (after a multiplication by
2)

(L1 +
τk2

m

νfkMC2
Ω,d

)‖ei+1
p ‖2 +

τνf
kM
‖~ei+1

~q ‖2 + 4µ〈ε(~ei+1
~u ) : 〈ε(~ei+1

~u )〉

+L2‖∇ · ~ei+1
~u ‖2 + (L1 −

Lb
2

)‖ei+1
p − eip‖2 + (L2 − Lc)‖∇ · ~ei+1

~u −∇ · ~ei~u‖2

≤ L1‖eip‖2 + (L2 − cm)‖∇ · ~ei~u‖2.
(38)

The above result gives immediately (32), implying that the considered fixed
point scheme is a contraction. The rest follows by applying Banach fixed
point theorem.

Remark 11. Theorem 2 holds also for b(·) increasing, i.e. bm ≥ 0, not
necessarily strictly increasing (see assumption (A1)). It implies that the
monolithic L-scheme converges also for an incompressible fluid b = 0, be-
ing therefore more robust than the splitting L-scheme. We point out that the
monolithic L-schemes converges also for cm = 0 if µ > 0.

4 Numerical results

In this section, we present numerical experiments with the purpose of il-
lustrating the performance of the iterative schemes proposed. We propose
two main test problems: an academic problem with a manufactured analyti-
cal solution, and a non-linear extension of Mandel’s problem. All numerical
experiments were implemented using the open-source finite element library
Deal II [6].

Test problem 1: an academic example with a manufactured so-
lution

We solve the non-linear Biot problem in the unit-square Ω = (0, 1)2 and

until final time T = 1, with a manufactured right hand side (Sf and ~f) such
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that the problem admits the following analytical solution

p(x, y, t) = tx(1− x)y(1− y),

~q(x, y, t) = −k∇p,
u1(x, y, t) = u2(x, y, t) = tx(1− x)y(1− y),

which has homogeneous boundary values for p and ~u. We consider k =
νf = M = α = λ = µ = 1.0. The mesh size and the time step are set as
h = τ = 0.1. For this case, all initial conditions are 0. For all cases, we use
as convergence criterion for the schemes

‖pn,i − pn,i−1‖+ ‖~qn,i − ~qn,i−1‖+ ‖~un,i − ~un,i−1‖ ≤ 10−8.

In order to study the performance of the considered schemes, with a
special focus on the splitting algorithm, we propose three coefficient functions
for b(·) and two for c(·), and define five test cases as given in Table 2. The
Lipschitz constants Lb, Lc depend on the pressure and the divergence of
displacements, respectively. Unfortunately, for realistic problems one does
not have the exact values of Lb and Lc. Hence, it is necessary to determine
how sensitive is the convergence of the proposed numerical schemes with
respect to the tuning parameters L1 and L2. For each case, we investigated
a range of values for L1 and L2 to assess the sensitivity of the performance of
both monolithic and splitting L-schemes with respect to these parameters.

Table 2: The coefficient functions b(·), c(·) for test problem 1.

Case b(p) c(∇ · ~u)

1 ep (∇ · ~u)3

2 p3 (∇ · ~u)3

3 3
√
p (∇ · ~u)3

4 p3 3
√

(∇ · ~u)5

5 3
√
p 3

√
(∇ · ~u)5

Figures 1 - 5 illustrate the numbers of fixed-point iterations for the split-
ting and monolithic L-schemes for different values of L1 and L2 at the last
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time step. A relative similar behaviour with respect to the tuning parameters
L1, L2, the value of k and of coefficient α for the two proposed schemes is
observed. The schemes are sensitive to the choice of the coefficient functions
b(·) and c(·). We remark that the region for faster convergence of the fourth
and fifth cases (Figures 4 and 5) is more narrow than of the firsts three cases.
In all cases, the proposed iterative scheme was more sensitive with respect
to the parameter L2 as to L1, Figures 1 - 5. The fastest convergence for the
both schemes was obtained when L1 ∼ Lb and L2 ∼ Lc.

The number of iterations is decreasing from the first time step until the
last time step. This is because the linearization parameters L1 and L2 are
chosen to be the Lipschitz constants of the corresponding non linearities at
the last time step. Therefore, an improvement to this methods would be to
choose specific values of the Lipschitz constants Lb and Lc at each time step
(i.e. take time dependent Ls).

Remark 12. A powerful alternative to the L-scheme is Newton method.
When applied to the same tests as above, the monolithic Newton method
is faster (quadratically convergent). Nevertheless, in combination with the
splitting method, Newton loses the quadratic convergence. We also mention
that in terms of CPU time, the L-scheme is competing with Newton’s method
because it does not involve the computation of any derivatives and the linear
systems to be solved as better conditioned, see also [36].

The convergence of the proposed scheme is clearly depending on the value
of the permeability, as one can see in Figures 8 and 9. In accordance with the
theoretical results in Section 3, a higher permeability implies a faster conver-
gence. Moreover, we have tested the numerical schemes with different mesh
sizes and different time step. The results in Figure 6 shows that the schemes
are converging faster when the time step decrease and the convergence is
not depending of the mesh diameter. This was obtained by setting L1 = Lb
and L2 = Lc. Nevertheless, by running the same case 1 but decreasing the
linearization parameters L1 and L2 in two order of magnitude the schemes
are converging faster when the time step increases and that the convergence
is not depending of the mesh diameter, confirming again the theory (See Fig-
ure 7). Finally, we test the scheme for different values of the Biot coupling
constant α, see Figures 10 and 11. The convergence is not affected by the
values of α for this test problem.

In Figures 12a-12c we further compared the two proposed schemes with
respect to CPU time and number of both non-linear and GMRES iterations.
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A natural advantage of the splitting L-scheme is that it decouples the system
of equations in two, one corresponding to flow and one for mechanics. Thus
the resulting linear systems are composed of two positive definite problems,
rather than the saddle-point structure arising from the monolithic lineariza-
tion. A comparison of the CPU time for test problem 1, case 1 is shown in
Figure 12a. The schemes are performing similar, when no preconditioning
is applied. The same is observed for the total number of iterations in Fig-
ure 12b. In Figure 12c we report the number of GMRES iterations needed
to resolve the linear system associated with the flow problem for the split-
ting L-scheme, compared to number of iterations needed for the monolithic
L-scheme. For the cases considered here, the number of iterations needed
to solve the mechanics problem in the splitting L-scheme was neglectable.
When no preconditioning is applied, we see that the number of iterations
needed increases dramatically with grid refinement, as expected. The two
schemes are performing similarly, with the splitting being a bit better.

Next, a block preconditioner based on the proposed splitting L-scheme
was applied to the monolithic L-scheme in order to reduce the number of
GMRES iterations [59]. As a result of preconditioning, GMRES method
needed less than 10 iterations to converge for all mesh sizes tested (see Figure
12c). A substantial reduction in the CPU time is observed, see Figure 12a.
We applied the same block preconditioner also to the splitting L-scheme,
separately to flow problem and mechanics. Again, the CPU time is strongly
reduced (by two orders of magnitude for the largest mesh), see Figure 12a.
The splitting L-scheme is now faster then the monolithic L-scheme, as one
can see in Figure 12a. We remark also the much smaller number of non-linear
iterations for the splitting L-scheme comparing to the monolithic L-scheme
in Figure 12b and the converse situation regarding GMRES iterations in
Figure 12c. Although the monolithic L-scheme preconditioned needs just 10
GMRES iterations to converge, it requires more computational cost due to
an inner linear solver that the block preconditioner has inside.
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Figure 1: Performance of the iterative schemes for different values of L1 and
L2 for test problem 1, case 1: b(p) = ep; c(∇ · ~u) = (∇ · ~u)3.

0

1

2

3

4

5

0 20 40 60 80 100 120 140 160

L
2
/
L
h

L
1
/L

b

Number of iterations

9

1
2

12

1
5

15

1
8

1
8

18

2
1

21
21

2
4

2
4

24

2
7

2
7

2727
30

30

(a) Splitting

0

1

2

3

4

5

0 20 40 60 80 100 120 140 160

L
2
/
L
h
 

L
1
/L

b

Number of iterations

6

9

1
2

12

1
5

15

1
8

1
8

18

2
1

2
1

21
24 24

(b) Monolithic

Figure 2: Performance of splitting algorithm for different values of L1 and
L2 for test problem 1, case 2: b(p) = p3; c(∇ · ~u) = (∇ · ~u)3.
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Figure 3: Performance of the iterative schemes for different values of L1 and
L2 for test problem 1, case 3: b(p) = 3

√
p; c(∇ · ~u) = (∇ · ~u)3.
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Figure 4: Performance of the iterative schemes for different values of L1 and
L2 for test problem 1, case 2: b(p) = p3; c(∇ · ~u) = 3

√
(∇ · ~u)5.
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Figure 5: Performance of the iterative schemes for different values of L1 and
L2 for test problem 1, case 3: b(p) = 3

√
p; c(∇ · ~u) = 3

√
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Figure 6: Performance of the iterative schemes for different mesh sizes for
test problem 1, case 1: L1 = Lb; L2 = Lc.
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Figure 7: Performance of the iterative schemes for different mesh sizes for
test problem 1, case 1: L1 = 10−3Lb; L2 = 10−3Lc.
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Figure 8: Number of iterations for different mesh sizes and different values
of ∆t, k for test problem 1, case 3: b(p) = p3; c(∇ · ~u) = (∇ · ~u)3.

0

5

10

15

20

25

30

10
-2

10
-1

10
0

10
1

#
 
i
t
e
r
a
t
i
o
n
s

K

dt = 0.500; h = 1/2
3

dt = 0.250; h = 1/2
4

dt = 0.125; h = 1/2
5

(a) Splitting

0

5

10

15

20

25

30

10
-2

10
-1

10
0

10
1

#
 
i
t
e
r
a
t
i
o
n
s

K

dt = 0.500; h = 1/2
3

dt = 0.250; h = 1/2
4

dt = 0.125; h = 1/2
5

(b) Monolithic

Figure 9: Number of iterations for different mesh sizes and different values
of ∆t, k for test problem 1, case 5: b(p) = 3

√
p; c(∇ · ~u) = 3

√
(∇ · ~u)5.
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Figure 10: Number of iterations for different mesh sizes and different values
of ∆t, α for test problem 1, case 3: b(p) = p3; c(∇ · ~u) = (∇ · ~u)3.
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Figure 11: Number of iterations for different mesh sizes and different values
of ∆t, α for test problem 1, case 3: b(p) = 3

√
p; c(∇ · ~u) = 3

√
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(a) CPU time (b) Linearisation procedure

(c) Number GMRES iterations

Figure 12: Performance comparison between the splitting L-scheme and the
monolithic L-scheme solver for the case 1

24



Test problem 2: a non-linear extension of Mandel’s problem

Mandel’s problem is a relevant 2D benchmark problem with a known
analytical solution [1, 37]. The problem is very often used in the community,
see e.g. [31, 38, 43, 50] for verifying the implementation and the performance
of the schemes.

Mandel’s problem consists in a poroelastic slab of extent 2a in the x
direction, 2b in the y direction, and infinitely long in the z-direction, and is
sandwiched between two rigid impermeable plates (see Figure 13a). At time
t = 0, a uniform vertical load of magnitude 2F is applied and equal, but
upward force is applied to the bottom plate. This load is supposed to remain
constant. The domain is free to drain and stress-free at x = ±a. Gravity is
neglected.

For the numerical solution, the symmetry of the problem allows us to
use a quarter of the physical domain as a computational domain (see Figure
13b). Moreover, the rigid plate condition is enforced by adding constrained
equations so that vertical displacement Uy(b, t) on the top are equal to a
known constant value.

2F

2F

x

y

2a

2b

(a) Mandel’s problem domain.

2F

2F

x

y

u =0x

u =0y

(b) Mandel’s problem quarter domain

Figure 13: Mandel’s problem

The application of a load (2F) causes an instantaneous and uniform pres-
sure increase throughout the domain [23]; this is predicted theoretically [1]
and it can be used as an initial condition

p(x, y, 0) =
FB(1 + vu)

3a
,

~q(x, y, 0) = ~0,

~u(x, y, 0) =
(
Fvux

2µ
, −Fb(1−vu)y

2µa

)t
.
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The input parameters for Mandel’s problem are listed in Table 4, and the
boundary conditions are specified in Table 3.

Table 3: Boundary conditions for Mandel’s problem

Boundary Flow Mechanics

x = 0 ~q · ~n = 0 ~u · ~n = 0
y = 0 ~q · ~n = 0 ~u · ~n = 0
x = a p = 0 ~σ · ~n = 0
y = b ~q · ~n = 0 ~σ12 = 0; ~u · ~n = Uy(b, t)

Table 4: Input parameter for Mandel’s problem

Symbol Quantity Value

a Dimension in x 100 m
b Dimension in y 10 m
k Permeability 100 D
νf Kinematic viscosity 0.01 m2/s
α Biot’s constant 1.0
M Biot’s modulus 1.65× 1010 Pa
µ Lame coefficients 2.4750× 109

λ Lame coefficients 1.6500× 109

∆x Grid spacing in x 2.5 m
∆y Grid spacing in y 0.25 m
∆t Time step 1 s
tT Total simulation time 500 s

In Figure 14, the solution of the system for the variables pressure and
displacement is depicted. This implementation demonstrates the Mandel-
Cryer effect, first showing a pressure raise during the first 20 seconds and
then, a sudden dissipation throughout the domain.

We consider now a non-linear extension of Mandel’s problem. We use the
same parameters, boundary and initial conditions as in the linear case above
(see Table 4). We propose different coefficient functions b(·) and c(·) to study
the performance of the proposed schemes.

Figures 15-17 shows the number of fixed-point iterations of the monolithic
and the splitting L-scheme at t = 20s. The influence of nonlinearities on the
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Figure 14: Pressure and displacement match results for non-linear extension
of Mandel’s problem, test case 1

convergence is smaller than in the test problem 1. However, both schemes
are more sensitive on the choice of the tuning parameter L2. We point out
that the schemes are converging also for L2 = 0, but the convergence is slow
(around 200 iterations). The schemes are performing similarly.

Figures 18 - 23 illustrates the influence of the mesh size, time step, value
of permeability k and Biot’s coupling coefficient on the convergence of the
schemes for test problem 2. We observe, again according to the theory,
that a higher time step or higher permeability imply a faster convergence.
The schemes are converging faster when the time step increases and that
the convergence is not depending of the mesh diameter, confirming again
the theory. We remark a slight increase in the number of iterations for an
increasing Biot coefficient α, see Figures 22 and 23.

Table 5: Cases for test problem 2

Case b(p) c(∇ · ~u)

1 p+p3

M
λ∇ · ~u+ λ(∇ · ~u)3

2
p+ 3
√
p

M
λ∇ · ~u+ λ 3

√
(∇ · ~u)5

3 ep

M
λ∇ · ~u+ λ 3

√
(∇ · ~u)5
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Figure 15: Performance of the iterative schemes for different values of L1 and
L2 for test problem 2, case 1: b(p) = p+p3

M
; c(∇ · ~u) = λ∇ · ~u+ λ(∇ · ~u)3.
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Figure 16: Performance of the iterative schemes for different values of L1 and
L2 for test problem 2, case 2: b(p) =

p+ 3
√
p

M
; c(∇ · ~u) = λ∇ · ~u+ λ 3

√
(∇ · ~u)5.

5 Conclusions

We have proposed two linearisation schemes for the non-linear Biot model,
a monolithic L-scheme and a splitting L-scheme. The convergence of both
schemes has been rigorously shown, similar techniques as in [44, 47, 36] and
[40] being involved. The schemes are only linear, but global convergent, i.e.
they converge for any starting value and they are not involving the compu-
tations of derivatives. Two illustrative numerical examples, an academic one
and a non-linear extension of Mandel’s problem were implemented for test-
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Figure 17: Performance of the iterative schemes for different values of L1 and
L2 for test problem 2, case 3: b(p) = ep

M
; c(∇ · ~u) = λ∇ · ~u+ λ 3

√
(∇ · ~u)5.
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Figure 18: Performance of the iterative schemes for different mesh sizes for
test problem 2, case 1: b(p) = p+p3

M
; c(∇ · ~u) = λ∇ · ~u+ λ(∇ · ~u)3.

ing the performance of the schemes. To summarise, we make the following
remarks:

• Both schemes are very robust with respect to the choice of the tuning
parameter, the mesh size and time step size.

• The tuning parameters L1, L2 have a strong influence on the speed of
the convergence, with L2 being the dominant one.

• The two schemes (splitting and monolithic) performed similarly with
respect to parameters L1, L2, CPU time and number of iterations when
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Figure 19: Performance of the iterative schemes for different mesh sizes for
test problem 2, case 2: b(p) =
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Figure 20: Number of iterations for different mesh sizes and different values of
∆t, k for test problem 2, case 2: b(p) =
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Figure 21: Number of iterations for different mesh sizes and different values
of ∆t, k for test problem 2, case 3: b(p) = ep
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Figure 22: Number of iterations for different mesh sizes and different values of
∆t, α for test problem 2, case 2: b(p) =
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Figure 23: Number of iterations for different mesh sizes and different values
of ∆t, α for test problem 2, case 3: b(p) = ep

M
; c(∇·~u) = λ∇·~u+λ 3

√
(∇ · ~u)5.

no preconditioning was applied. When preconditioned, the splitting L-
scheme is faster.

• The splitting L-scheme can be used both as a robust solver or as a
preconditioner to improve the performance of a monolithic solver

• The convergence of the schemes is faster for higher permeability.

• The convergence of the schemes is almost independent of the mesh size,
and varies only slightly with the Biot coupling parameter.

According to the results in Section 3, we should observe a faster conver-
gence for the pressure variable when we increase the time step size. Neverthe-
less, there is no indication on how the time step size is affecting the coupled
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problem. Numerically, we observed that by decreasing the time step size, the
number of iterations decreases for Mandel’s problem. Nevertheless, for the
academic problem this tendency was less obvious.
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two-phase flow in porous media including Hölder continuous nonlinearities. IMA J. Numer Anal.

(2017). https://doi.org/10.1093/imanum/drx032

[47] Radu, F.A., Nordbotten, J.M., Pop, I.S., Kumar, K.: A robust linearization scheme for finite volume

based discretizations for simulation of two-phase flow in porous media. J. Comput. Appl. Math.

289, 134–141 (2015).

[48] Radu F.A., Pop I.S.: Newton method for reactive solute transport with equilibrium sorption in

porous media. J. Comput. Appl. Math. 234(7), 2118–2127 (2010).

[49] Radu F.A., Wang W.: Convergence analysis for a mixed finite element scheme for flow in strictly

unsaturated porous media. Nonlinear Analysis: Real World Applications 15, 266–275 (2014).

[50] Rodrigo, C., Gaspar, F., Hu, X., Zikatanov, L.: Stability and monotonicity for some discretizations

of the Biot’s consolidation model. Comput. Methods. Appl. Mech. Eng. 298, 183–204 (2016).

[51] Settari, A., Mourits, F.M.: Coupling of geomechanics and reservoir simulations models. Comput.

Methods. and Advances in Geomechanics. (1994).

[52] Settari, A., Mourits, F.M.: A Coupled Reservoir and Geomechanical Simulation System. SPE J.

(1998).

[53] Settari, A., Walters, D.A.: Advances in Coupled Geomechanical and Reservoir Modeling With

Applications to Reservoir Compaction. SPE J. (2001).

[54] Showalter, R.E.: Diffusion in Poro-Elastic Media. J. Math Anal. Appl. 251(1), 310–340 (2000).

[55] Temam, R.M., Miranville, A.M.: Mathematical Modeling in Continuum Mechanics. Cambridge

(2005).

[56] Thomas, J.: Sur l’ numerique des methodes d’elements finis hybrides et mixtes. Univ. Pierre et

Marie Curie, thèse (1977).
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