Exploiting graph structures for
computational efficiency

Torstein J. F. Stremme

Thesis for the degree of Philosophiae Doctor (PhD)
University of Bergen, Norway
2020

UNIVERSITY OF BERGEN

Exploiting graph structures
for computational efficiency

Torstein J. F. Streamme

Thesis for the degree of Philosophiae Doctor (PhD)
at the University of Bergen

Date of defense: 07.05.2020

© Copyright Torstein J. F. Stromme

The material in this publication is covered by the provisions of the Copyright Act.

Year: 2020
Title: Exploiting graph structures for computational efficiency
Name: Torstein J. F. Stromme

Print: Skipnes Kommunikasjon / University of Bergen

Scientific environment

The author has carried out the research reported in this dissertation at the Department of
Informatics, Faculty of Mathematics and Natural Sciences, University of Bergen, Norway.

v

Scientific environment

Acknowledgements

I am deeply grateful for the opportunity to submit and defend this thesis, and I owe everyone
who has supported me in this endeavor a very big “thank you.” First and foremost, this goes
to my advisor Fedor Fomin, who has guided me with a steady hand through the cliffs and
waters of research in theoretical computer science. It has been an honor! Secondly, I wish
to thank my co-advisor Daniel Lokshtanov, who also made very valuable contributions to
my journey; your enthusiasm and stunning ability to dumb things down have been much
appreciated.

My co-authors are all simply great people. Thank you, Petr Golovach, Lars Jaffke, Dong
Yeap Kang, O-jung Kwon, and Dimitrios M. Thilikos, for what I have learned from you, and
everything you have brought to this thesis. A very special thanks in this category also goes
to Jan Arne Telle; you have for all practical purposes been my third advisor, and I always
appreciated our morning discussions, whether they were about width parameters, competitive
programming or university politics.

[wish to thank Fredrik Manne, Marthe Bonamy and Robert Ganian for agreeing to review
the thesis. I hope you enjoy it!

My years as a PhD candidate at the Department of Informatics in the University of Bergen
have been a blast. The corner office in the far end of the Algorithms hallway on the 3rd floor
of Hayteknologisenteret has always been a great place to be, thanks to the cool office mates
I’ve had there: Naim Md, Paloma Thomé de Lima, Sritanu Chakraborty, Emmanuel Arrighi,
and Emmanuel Sam. You rock!

I also wish to thank the Algorithms group as a whole, past and present. You have all been
part of my journey; I am thankful for the friendly spirit you have fostered, and the culture of
collaboration, encouragement and mathematical rigor you promote.

The department administration deserves a mention as well. I have received much support
and encouragement from you, and I truly appreciate all the efforts you have made to sup-
port our initiatives within competitive programming at the department. More than once have
you cleared the schedule to make room for a programming contest, even when this required
tough negotiations with professors from other departments. You have been a great support
in organizing teaching, and you have helped me out with many practical matters. I also wish
to thank the IT people, both at the department and university level; for always being flexible
and service-minded regardless of how work-intensive a task I gave you.

Thank you, Pinar Heggernes and the Department of Informatics, for believing in me. You
gave me responsibilities that were challenging, but which I could still enjoy and learn from.

Finally, I thank my family and friends. You have shaped me to become who I am. A
special shout-out goes to Marijn Visscher, who took the time to read and provide valuable

vi Acknowledgements

feedback on a thesis which is in a field completely orthogonal to her own. I also want to
thank those who have been praying for me, my work and my family during these years; your
efforts have for sure made a difference. Thanks you, Sjur Dyrkolbotn; this journey might
never have started without your example and encouragement.

Thank you, Maria, for being the best wife in the world. And thank you Arild and Emil, for
being the best sons; I have actually been working on this book your entire lives. A defining
era in your dad’s life is now coming to a close.

Abstract

Coping with NP-hard graph problems by doing better than simply brute force is a field of
significant practical importance, and which have also sparked wide theoretical interest. One
route to cope with such hard graph problems is to exploit structures which can possibly be
found in the input data or in the witness for a solution. In the framework of parameterized
complexity, we attempt to quantify such structures by defining numbers which describe “how
structured” the graph is. We then do a fine-grained classification of its computational com-
plexity, where not only the input size, but also the structural measure in question come in to
play.

There is a number of structural measures called width parameters, which includes tree-
width, clique-width, and mim-width. These width parameters can be compared by how many
classes of graphs that have bounded width. In general there is a tradeoff; if more graph classes
have bounded width, then fewer problems can be efficiently solved with the aid of a small
width; and if a width is bounded for only a few graph classes, then it is easier to design
algorithms which exploit the structure described by the width parameter.

For each of the mentioned width parameters, there are known meta-theorems describing
algorithmic results for a wide array of graph problems. Hence, showing that decompositions
with bounded width can be found for a certain graph class yields algorithmic results for the
given class. In the current thesis, we show that several graph classes have bounded width
measures, which thus gives algorithmic consequences.

Algorithms which are FPT or XP parameterized by width parameters are exploiting struc-
ture of the input graph. However, it is also possible to exploit structures that are required of
a witness to the solution. We use this perspective to give a handful of polynomial-time algo-
rithms for NP-hard problems whenever the witness belongs to certain graph classes.

It is also possible to combine structures of the input graph with structures of the solu-
tion witnesses in order to obtain parameterized algorithms, when each structure individually
is provably insufficient to provide so under standard complexity assumptions. We give an
example of this in the final chapter of the thesis.

viil Abstract

List of papers

This thesis is based on the following publications.

(D A width parameter useful for chordal and co-comparability graphs
Dong Yeap Kang, O-joung Kwon, Torstein J. F. Stremme and Jan Arne Telle. In The-
oretical Computer Science, Volume 704, 2017, Pages 1-17.

(I) Mim-width III. Graph powers and generalized distance domination problems
Lars Jaftke, O-joung Kwon, Torstein J. F. Stremme and Jan Arne Telle. In Theoretical
Computer Science, Volume 796, 2019, Pages 216-236.

(IIT) Subgraph complementation
Fedor V. Fomin, Petr A. Golovach, Torstein J. F. Stromme and Dimitrios M. Thilikos.
In Algorithmica 2020.

(IV) Time-inconsistent planning: simple motivation is hard to find

Fedor V. Fomin and Torstein J. F. Stremme. Presented at the 34¢th AAAI conference.

List of papers

Contents

Scientific environment
Acknowledgements
Abstract

List of papers

I Background

1 Introductions

1.1 Computers and algorithms
1.2 Graphproblems
1.3 PversusNP. o
1.4 Overview ofthethesis,
1.5 Extended prologue
1.5.1 Themenuproblem
1.5.2 Computational complexity
1.53 Howtodefineastep
1.54 BigOmnotation.
1.5.5 Runtime analysis and exploiting structures
1.5.6 Practicalimpact

2 Foundations

2.1 Settheory e
2.2 Graphtheory
22.1 Simplegraphs
2.2.2 Modificationof graphs oL
2.2.3 Generalizationsof graphs

3 Computational complexity

3.1 Problems and computability
3.2 Turingmachines
3.3 Nondeterminism e

34 Complexityclasses

iii

vii

ix

17
17
19
19
20
22

xii CONTENTS
341 PandNP. 26

3.42 Other complexity classes 26

3.5 Reductionsandhardness 28

3.6 Exploiting structure 29
3.6.1 Pseudo-polynomial algorithms 29

3.6.2 Parameterized complexity, 30

3.6.3 Parameterized reductions L. 30

3.64 The W-hierarchy 31

4 Graph classes 33
4.1 Forbidden graph characterization 34
4.2 Central graphclasses 35

43 Graphsinlogic 36
44 Graphproblems 39
4.4.1 Graph modification problems 41

4.4.2 Locally checkable vertex subset and vertex partitioning problems . . 41

5 Graph decompositions and width parameters 43
5.1 Branch decompositions and cut functions 44

5.2 Graph algorithms on branch decompositions: an example 45

5.3 Width parameters for branch decompositions 46

54 Treewidth L 48

5.5 Graph grammars and clique-width 0oL, 49

5.6 Algorithmic meta-theorems 50
5.6.1 Courcelle’stheorem 50

5.6.2 Locally checkable vertex subset and vertex partitioning problems . . 51

6 Overview of Part I1 53
Bibliography 55
IT Publications 61
7 A width parameter useful for chordal and co-comparability graphs 63
8 Mim-width ITI. Graph powers and generalized distance domination problems. 91
9 Subgraph Complementation 125
10 Time-inconsistent planning: simple motivation is hard to find 147

Part 1

Background

Chapter 1

Introductions

1.1 Computers and algorithms

Computers have revolutionized the world. One might even argue that they have taken over
the world. Luckily for the human race, though, modern digital computers are ridiculously
receptive; they can be persuaded to do whatever we want them to. All it takes is to describe
in detail what logical operations each computer should do, and put that description in the
respective computer’s memory. This is called to program the computer.

In fact, what constitutes a computer can almost be defined in terms of its programmability.
Will it accurately follow instructions? Well, then it is a computer! This definition is consistent
with the historical use of the term, when a computer referred to a job title — a human being
performing computations.

Such a computer was perhaps a promising student, employed in the 18th century by an
acclaimed mathematician who found mundane calculations to be below their dignity. Or the
computer could be an educated woman assisting NASA engineers in the 1950’s. A com-
puter’s job was sometimes menial and repetitive, such as performing tedious computations;
but the answers they reported were important. What the engineers wanted from the comput-
ers, then, were essentially two things:

* The computer should find the correct answer when asked to solve a problem.
* The computer should solve the problem as quickly as possible.

Both these traits could be highly influenced by which computer the engineer chose to hire.
However, another factor was even more important: which algorithm the computer used.

An algorithm is quite simply a set of instructions for how to solve a problem. It can be
written down on a piece of paper, it can be stored electronically as a sequence of 1’s and 0’s,
it can float around in someone’s mind, or it can merely exist, with no one but God being
aware it does. Typically an algorithm will expect some input and produce some output, see
Figure 1.1.

Algorithms have been essential to the work of computers ever since they joined the work
force in the early 1600’s. One of the founding fathers of modern computer science, Alan
Turing, observed that a human computer has “no authority to deviate from [the algorithm]
in any detail,” and that a digital computer can do essentially everything a human computer

4 1. Introductions

Algorithm

l
5 - @ - B

Input Computer Output
Figure 1.1: An algorithm is an instruction set for how to solve a problem.

can (Turing, 1950). Apart for a very large (but constant) factor difference in computational
speed, human and digital computers are thus essentially the same.

An algorithm should therefore not be viewed primarily as an instruction set for a digital
computer, but rather as a set of instructions that anyone could use in order to solve a problem.
However, the reader ought to be aware that not all algorithms are good. Indeed, algorithms
can be problematic for several reasons; most critically, not all algorithms produce good an-
swers for the problem at hand. Secondly, some algorithms instruct the computer to perform
terribly many steps of computation before reaching a good answer. If the required number of
steps is too high, then the computer can simply not use that algorithm to solve the problem
within reasonable time.

Looking for algorithms which require the computer to perform few steps, whilst still
reaching good answers, is hence a useful endeavor: the realm of computations which we
know can be performed in reasonable time will be extended whenever a better algorithm is
found. Finding such good algorithms — or proving that no good algorithms are likely to exist
for a particular problem — is the purpose of much research in algorithms, and the main topic
of this thesis.

1.2 Graph problems

A graph is an abstract mathematical object which closely corresponds with what we in the
real world call networks. We have road networks, railway networks, power grid networks,
electric circuit networks, social networks, computer networks, citation networks, task de-
pendency networks, protein networks, climate networks, physiological networks, financial
networks, just to name a few. What these networks all have in common, is that “entities” in
the network are “related” in various ways. This is exactly the property which is captured by
a mathematical graph.

Basically, a graph consists of vertices (sometimes called nodes) and edges, where each
edge relate two vertices; in terms of a network, the vertices are the entities, and edges are the
connections between entities. See Figure 1.2.

In all of the mentioned domains, there are tasks to be performed and problems to be
solved. Many of them can be modeled as abstract graph problems, and good solutions for
them can potentially be found with the aid of a computer. For example:

1.3 P versus NP 5

Figure 1.2: A simple graph

Path-finding A fire broke out in the underground coal mine were you work, and you need
to evacuate; however, you can not travel through your usual tunnels because of the fire.
Is there another way out? Modeled as a mathematical graph, we can let each vertex
represent an intersection (that is not yet on fire), and each edge represent a traversable
tunnel which connects two intersections.

Cave design In order to have sufficient escape routes in the underground coal mine, the
authorities decided that it should be possible to reach the exit from any point in the mine
if a fire breaks out at a different point (possibly an intersection). To meet this demand,
you sadly need to dig more tunnels, which can be quite expensive. You only have a
budget of k; can you afford to build some tunnels such that the requirement is met?
This problem is known for abstract graphs as weighted biconnectivity augmentation.

Data cleaning In a high-profile chemistry experiment, you made n observations; however,
some of the observations are contradictory. Can you remove at most k& observations
from your data set such that there are no contradictions among the remaining observa-
tions? This problem can be modeled as a graph where each observation is a vertex, and
if two observations are contradictory, then the corresponding vertices are related by an
edge. The problem on the abstract graph is known as vertex cover.

As we see, graphs can be used to model a variety of scenarios and problems. Some of
these problems are easy, in the sense that there exist good algorithms that quickly compute
correct answers to the problems. Other graph problems are hard, because there are no such
algorithms.

1.3 P versus NP

One of the most famous open problems in computer science and even in mathematics as a
whole, is whether P = NP. Roughly speaking, we can think of P as the class of all problems
for which there exist good algorithms, whereas NP is the class of problems where a solution
can be verified by a good algorithm' — the question is whether these two classes of problems

"Many problems exhibit the property that a witness of the solution can be concisely described. Verification is
the operation of checking that a witness is “telling the truth.” For instance, consider the problem of path-finding:
the input is a maze with one entry and one exit, and the question is whether it is possible to move through the
maze from entry to exit. If the answer is yes, a red line can be drawn through the maze highlighting the path.
This line is a witness. Given the red line, it is easy to check whether it is a valid solution — simply trace the
line with your finger and check that it never cross a wall. Because we could verify the solution quickly (with
a “good” algorithm), this problem is in NP. We remark that for the path-finding problem we actually know a
good algorithm for the full problem as well, hence the problem is also in P. For many problems, however, a
good algorithm for verification is known, whereas a good algorithm for the full problem is not.

6 1. Introductions

/ NP-hard

[NPP 0]\ Np.c;mplete
N

Path-finding Factoring Satisfiability 7 X n Chess

Figure 1.3: Classes P and NP under standard complexity assumptions.

really are the same class, or whether P is strictly contained in NP.

While it is widely believed that P # NP (see Figure 1.3), nobody has yet been able to
prove so. However, in a remarkable result by Cook (1971) and Levin (1973) it is shown that
if a problem called SatisFiaBiLITY (SAT) can be solved with a good algorithm, then every
problem in NP can be solved with a good algorithm, and hence P = NP. Sat is the first of
what we call NP-complete problems. These are in a sense the hardest problems in NP: find
a good algorithm for one of them, and it will automatically yield good algorithms for all
problems in NP.

One might at first think that NP-complete problems must be very special problems, since
they can be used to solve every problem in NP. However, the variety of NP-complete prob-
lems is vast. It includes problems such as the cave design and data cleaning problems men-
tioned in Section 1.2, as well as thousands of other problems from vastly different domains:
circuit design, system architecture, scheduling, mathematical proofs, drug development, city
planning and large Sudoku’s are just a few examples of NP-complete problems.

These problems represent real challenges that humanity is faced with on a daily basis.
Hence, even if the problems are hard, we have a strong incentive to cope with them. Some
mechanisms with which to cope with such problems are approximation, heuristics and proba-
bilistic algorithms. With these approaches, we are not guaranteed to find an optimal solution
in reasonable time, but at least we are often able to find something not too bad.

Another approach, which is what we are investigating in the current thesis, is that of ex-
ploiting structures in the problem input to speed up computation. For example in the data
cleaning example in Section 1.2: if we can organize the observations from our chemistry
experiment according to when and where they were observed, this might reveal some under-
lying structure such that we can make additional assumptions to aid our algorithm — two
observations can for example not be contradictory if they are far apart in time.

Structures can sometimes be parameterized. This entails defining numerical values that
describes “how structured” the input or solution is. In such a context, we might provide
algorithms for NP-hard problems where the “bad” factors of the runtime are driven by said
parameter — in which case the algorithm is good whenever the parameter is bounded.

A parameterized structure can be given explicitly or be implicitly assumed. Returning yet
again to our data cleaning example, we can for instance exploit that the answer is yes only if
the data points in fact have a strong structure — namely that there exists a set of observations
of size k such that their removal yields a conflict-free set! For this problem, we do indeed
have a good algorithm when & is small.

1.3 P versus NP 7

Coping with NP-hardness by exploiting structures

If a decision problem @ is in the class P there exists an algorithm A such that:
« A can be run on a normal computer,? and
« for all problem instances [of) and for all executions of A on I:

— A will compute the answer to [correctly, and

— A will require at most f(|1]) steps, where f(-) is a polynomial function.?

On the other hand; if) is NP-complete, then there does not exist such an algorithm unless
P = NP.

An algorithm designer facing an NP-hard problem has two options: either a) provide a
good algorithm which ticks all the boxes above, and thereby prove that P = NP, or b) provide
an algorithm which compromise on one or more of the nice mentioned features. Since the
former option has proven to be a tall mountain to climb, we have so far needed to settle with
option (b) every time. An obvious way to make such a compromise, and which is commonly
done, is to simply not care whether the answer is always correct. There is something slightly
unsatisfying about such a strategy, though, and we will not find any such approaches in the
current thesis.

A different way to go about it, is to relax the requirement that our algorithm solve al/l
instances — we could for instance settle with solving correctly only those instances which
satisfy our structural requirement of choice. Another strategy is to relax the requirement that
f() is a polynomial function; perhaps we only need to solve small instances.

In the current thesis, we primarily approach problems from the perspective of parameter-
ized complexity. In this approach, we are in a sense relaxing both the requirement of solving
all instances, and also the requirement of letting f(-) be a polynomial function — there is
instead a trade-off: for highly structured instances our algorithm runs in polynomial time,
but as the structure gradually descend, the algorithm requires more steps and resources to
conclude.

For a graph to possess a structure, is equivalent to saying that the graph belongs to a
graph class — the collection of all graphs possessing this structure. From the perspective of
parameterized complexity, we can also talk about structural graph parameters and parame-
terized graph classes. For example, we can discuss the graph class VC; containing all graphs
with a vertex cover of size at most k, or the class 7TW,, of graphs with treewidth at most k.

Many graph problems can be described as the problem where input is a graph G, and
we consider a fixed graph class G and ask: is G a member of G? In such problems, there
inherently is a structure — namely the structure given by G. It is not always such that the

2When we here refer to a “normal computer,” what we really mean is the mathematical model of a random-
access (stored-program) machine introduced by Cook and Reckhow (1973). This model closely resembles how
contemporary digital computers are designed, the von Neumann architecture (Neumann, 1945). They can also
be simulated on a (deterministic) Turing machine with a polynomial overhead.

3A function f is polynomial if it can be written on the form f(z) = a,2™ + an_12" "' + ... + a1z + ag for
some constants ag, a1, . . . a,. For example, g(x) = 322 — 2 is a polynomial function (as = 3,a; = 0, a9 = —2),
whereas h(xz) = 1.01% is not. A polynomial function (such as g) will, for sufficiently large inputs, grow slower
than an exponential function (such as h) whenever the base of the exponential is strictly larger than 1.

8 1. Introductions

structure of G is sufficient to provide a good algorithm. However, it could be that the input
graph G is known to be a member of another graph class #, in which case we also have
another source of structure.

In our first two papers, we are primarily exploiting the structure of the input graph in
order to provide parameterized algorithms. In the third paper, we focus on the structure of
solution witnesses, and in the fourth paper we combine structural parameters of the input
graph and of the solution witness.

1.4 Overview of the thesis

This thesis contains four papers which are addressing NP-hard graph problems through the
lens of parameterized complexity and exploiting graph structures:

* In Chapter 7, we investigate a new structural graph parameter, called special induced
matching width, abbreviated to sim-width. We show that sim-width has a strong mod-
elling power; in other words, there are many graph classes which have bounded sim-
width. As such, we ought to expect that the analytic power of the parameter — how
easy it is to exploit this structure to provide good algorithms — is limited. Still, we
show that certain graph classes with bounded sim-width also have bounded maximum
induced matching width (mim-width) for which there exists good algorithms for many
problems. Since recognizing the mim-width of a graph is NP-hard in general, this result
yield algorithmic results for those graph classes.

* In Chapter 8 we continue the theme of structural “width” parameters, as we investigate
whether a large family of distance domination problems can be solved on graphs with
bounded mim-width. The core result is purely a structural one: namely that taking ar-
bitrary large graph powers does not increase the mim-width of the graph by more than
a factor 2. This yields several algorithmic consequences.

* In Chapter 9 we investigate a tool for modifying graphs called a subgraph complement.
Given a graph class G, we ask if one can recognize in polynomial time whether an input
graph G is in the graph class G') — the class of graphs that has a subgraph complement
in G. We show that this can indeed be done for a handful of graph classes, but also that
it is NP-complete when G is the class of regular graphs.

* In Chapter 10 we attempt to devise parameterized algorithms for the motivating sub-
graph problem. In this problem, we are asked whether a weighted acyclic directed
graph G has a subgraph H C G possessing certain special properties. Whilst NP-
complete in general, we are investigating an additional structural parameter on H, for
which we are able to give a pseudo-polynomial algorithm whenever the parameter is
bounded.

The thesis is organized as follows. In Chapter 2 we give an introduction to the basic tools
we are using in the thesis, including notation for set theory and graph theory. In Chapter 3
we give a brief introduction to complexity theory, including parameterized complexity. We

1.5 Extended prologue 9

move on to define several graph classes in Chapter 4, before we investigate width parameters
and graph decompositions in Chapter 5.

First, however, we give an extended prologue in order to motivate why computational
complexity and algorithm design matters.

1.5 Extended prologue

Good algorithms makes a difference. In the upcoming extended prologue we give an illustra-
tion of how algorithm design can really matter. The section is intended for an audience with
some programming experience, but which is not yet familiar with the field of algorithms.
The material we cover in this section is covered in more detail by any standard textbook in
algorithms and data structures, e. g. Sedgewick and Wayne (2011).

1.5.1 The menu problem

Let me introduce the problem of finding a longest increasing subsequence. Imagine you are
running a restaurant where you serve n different dishes. For this year’s menu, you decide to
order the dishes according to how tasty they are, such that dish number 1 is the least tasty
(although still very nice), and dish number n is the tastiest.

Your price scheme can then be described as a list of numbers x1, xs, . . ., z,,, where z; is
the price of the i least tasty dish. However, ordering prices by tastiness in this way reveals
that some dishes are both less tasty and more expensive than others! Such dishes will for
sure never be chosen by any customer. What is the fewest dishes you must remove from the
menu in order that the remaining dishes have strictly increasing price?

Rather than asking which dishes to remove, we can equivalently ask which ones to keep.
These dishes will then correspond to a longest increasing subsequence of x1,z,. .., 2,4
Finding such a sequence can be mundane work, so we want to employ a computer to find
it for us. The computer will do nothing, though, unless we also provide it with an algorithm
for how to solve the problem. We here provide a first attempt in Algorithm 1.1.

Algorithm 1.1: Longest increasing subsequence (first attempt)

Input: a sequence of numbers x = (1, Zo, ..., %n)
Output: the length of the longest increasing subsequences of y
1 let m hold the value 1;
2 for each subsequence 1 of x do
3 if ¢ is an increasing subsequence longer than m then
4 let m hold the length of v;
5 return m;

4We could also model this problem as a graph problem, where there is one vertex for each dish, and we
have a directed edge from one vertex to another if the second dish is both tastier and more expensive than the
first. The task then becomes to find the longest path in this graph. However, we will not use this perspective
here.

10 1. Introductions

Algorithm 1.1 is correct, in the sense that a computer following the instructions carefully
will find the optimal answer. It describes the most straightforward strategy we can imagine:
try every possible subsequence, check if it is increasing and longer than the best sequence
seen previously, and if so, remember its length. We have here omitted the details for how we
go from one subsequence to the next, but for the sake of simplicity we assume the computer
knows how to do this.

The algorithm is, however, problematic — it requires the computer to perform an enor-
mous amount of steps to conclude. The number of possible subsequences is roughly 2", and
the algorithm instructs the computer to check all of them. For instance, even if there are only
n = 30 dishes on the menu, then there are still a whopping 23° = 1073 741 824 subsequences
to check. Bear in mind that for us to find the time required for the computer, the number of
steps must be multiplied with the average time spent to perform each step; in reality, opera-
tions such as checking whether a sequence is increasing will involve another algorithm that
itself contains many steps. But even whilst pretending we can do so in a single step, a better
algorithm is called for.

Luckily, a better algorithm does exist. Consider our second attempt in Algorithm 1.2. In
this algorithm we define n variables ¢1, (5, . . ., £,,, one for each item on the menu. The purpose
of such a variable, say ¢;, is to store the length of the longest increasing subsequence ending
with the 7™ item on the menu. Initially, ¢, receives the value 1, which is clearly correct — the
longest increasing subsequence ending in the very first item is the subsequence containing
that item only. For ¢ € {2,3,...,n}, consider how we may compute ¢;, assuming that ¢; is
already known for all j < . Either the longest subsequence ending at the i item contains
only the single item itself, in which case the correct value for ¢; is 1, and all earlier items
have prices which are higher than or equal to z;. Otherwise, there is a “second last” element
in the longest sequence ending at 4, say j, such that z; < z; and j < 4 (item j is both cheaper
and less tasty than item ¢). We can try all possibilities for this j, and see which of them have
the longest subsequences ending at it. We extend the best of them with the i item.

Algorithm 1.2: Longest increasing subsequence (second attempt)
Input: a sequence of numbers x = (1, z2,...,%,)
Output: the length of the longest increasing subsequences of x
1 let ¢y, 0, ..., ¢, be variables each holding the value 1;
2 for eachiin {2,3...,n} do
3 foreachjin{l,2,...,i— 1} do

4 if T < T and Ej > éz then
5 let ¢; hold the value ¢; + 1;
6 let m be the maximum value held by any of (1, (s, ..., ¢,;

7 return m;

Algorithm 1.2 is also correct, and produces the same answers as Algorithm 1.1. However,
the number of steps required by Algorithm 1.2 is appreciably less. For a menu of n items, the
computer using Algorithm 1.2 will encounter the if-statement on line 4 exactly 14+2+3+. ..+
(n—1)= w times. For n = 30, this is only 435; comparing this with Algorithm 1.1, we
find that Algorithm 1.2 is more than 2 million times faster — even if we assume that asserting

1.5 Extended prologue 11

the if-statement is done equally fast for both algorithms (in reality, this is also much quicker
in Algorithm 1.2).

As n goes beyond 30, the factor difference of the runtimes become even worse. Merely
going ton = 31, one more than in the previous paragraph, and Algorithm 1.2 is now more that
4 million times faster than Algorithm 1.1. Hence, saying that one algorithm is x times faster
than another does not well capture the difference between the algorithms, since x could be
vastly different depending on how large the input is. In the theoretical study of algorithms,
we even want to compare the runtime of algorithms as n approaches infinity. In order to
compare and classify algorithms according to how their runtime behaves on different inputs,
we now enter the realm of computational complexity.

1.5.2 Computational complexity

It makes sense to describe the runtime of an algorithm — the number of steps the computer
is instructed to perform — as a function f of the input. While the input can have many
characteristics which affect runtime, the most natural one is the input size in some form or
another, usually denoted by n. For example: in Algorithm 1.1 on page 9, we see that lines
1 and 5 are performed once each; lines 2 and 3 are performed 2" times each; and line 4 is
performed at most 2" times, depending on other characteristics of the input. This illustrates
that it is often impossible to give an exact function for the number of steps as a function
of the input size only, but we can usually give a function describing an upper bound; here
f(n)=3-2"42.

We ought to be careful, however, with what we consider a step. Counting the number of
required steps is, after all, only interesting if each step takes roughly the same time to perform.
In Algorithm 1.1, we note that the step on line 3 involves checking whether a particular
subsequence is strictly increasing, which is clearly more time-consuming than for instance
line 1, where a variable is set to hold the number 1. So what is a good way of defining a step?

1.5.3 How to define a step

In the context of a contemporary digital computer, each processor core has a fixed set of
machine code instructions it understands, and in principle it will execute one instruction
every clock cycle. It might therefore be tempting to let one such instruction constitute a
single step, such that our counting exactly corresponds to a fixed unit of time.> However,
this proves difficult for several reasons: the principle that one instruction takes one clock
cycle is not true in practice,® and the algorithm undergoes several transformations on the way
from being abstractly described to becoming machine code; some of these transformations
(e. g. compiling) are practically speaking black boxes to most of us, and the resulting machine

SIn a 5 GHz processor, one clock cycle lasts exactly 0.0000000002 seconds.

®For example, there is an important instruction which says “go fetch whatever is in memory location x, and
put it here right next to me (in the processor register)”. Executing this instruction will potentially require lots
of clock cycles; depending on how the operating system has been managing memory, the requested memory
location could be physically stored in the cache (a couple of cycles), in RAM (many more clock cycles) or even
on the hard drive (hordes of clock cycles). However, for all practical purposes we can assume there is some
upper bound on how many clock cycles each operation requires.

12 1. Introductions

code can be very hard to trace and reason over. There certainly are applications where finding
exactly how many clock cycles an algorithm require is useful, but that is the topic of a very
different dissertation.

In the area of complexity theory, which we are concerned with in the current thesis, we
simplify things drastically. We simply say that anything that can be done within a constant
amount of time (and resources) can constitute one step. Because we do not specify which
constant amount we are talking about, this may seem like a too lenient approach; for instance,
I may decide that my constant amount of time is a full year. For our purposes, that is perfectly
fine — as long as that constant is fixed before we begin our analysis, it will not change our
results when the input size approaches infinity.

Let us return to our example of Algorithm 1.1. With the restrictions that only operations
which can be performed within constant time are allowed to constitute a step, this means
that line 3 can not qualify as a single step: regardless of which constant amount of time and
resources we allow, there exists an input with a subsequence so large we are unable verify
whether it is increasing or not within that constant amount of time.

The nitpicky reader will now point out that also other lines of Algorithm 1.1 are disal-
lowed under our loose definition of a step. For example, in line 4, the variable m is instructed
to hold the length of the subsequence ; but if ¢/ is extremely long, then also writing down its
length will require many digits. If n goes towards infinity, then also the number of digits will
go towards infinity. This will complicate our runtime analysis slightly; if we care to account
for it, the resulting analysis of the algorithm will reveal its bit complexity.’

More commonly, however, we will rudely choose to ignore this by defining a handful of
primitive operations which we assume to take constant time. Inspired by the instruction sets
of real-life digital computers, such operations include moving and storing a value, addition,
negation, multiplication, division, logical operations, comparing numbers etc. In order for
this assumption to be fair, though, we restrict each variable such that it can not (alone) hold
any value that requires more than c-log(n) bits to represent, where n is the input size and c is
some arbitrary constant. The resulting analysis will yield the algorithm’s word complexity.?

Different assumptions for what we are allowed to count as a single step yield different
abstract machines for which our analysis will be performed. In the current thesis we will
focus on word complexity; however, this does not limit our results. Most complexity classes
(see Section 3.4), are designed to be agnostic, within reason, as to which abstract machine
was used when carrying out the analysis.

1.5.4 Big O notation

Recall that our requirements for what constitutes a step allows any operation which can be
performed in constant time. It follows that also any sequence with a bounded number of steps
could also be defined as a single step if we had started with a larger constant at the outset.

7A bit is a binary piece of information, either 1 or 0.

8 A word is, for a computer engineer dealing with real-life digital computers, a memory cell which can hold
a constant number of bits. The constant is determined by the particular computer architecture; for instance, in
64-bit architectures, a word will contain 64 bits. For our purposes, however, the word size is not constant but
instead bounded by ¢ - log(n), where c is an arbitrary constant and n is the number of bits required to describe
the input.

1.5 Extended prologue 13

Different steps can thus differ greatly in how much time is required to execute them (though
there is a fixed bound on how big the factor difference is). In light of this, constant factors
that appear in a function f describing the runtime of an algorithm are somewhat superfluous;
the essence of f is in a sense not found in its constant factors.

In complexity theory we commonly use asymptotic notation in order to capture this
essence of how a function f behaves as the argument n tends towards infinity. The most
prominent member of the asymptotic notations is that of big O, which we here define as a
set of functions:

Definition 1.3 (Big O). Let g : R — R be a function on the reals. Then O(g) is the set of all
functions f for which there exist constants c; € R and by € Ry such that f(n) < ¢; - g(n)
forall n € Ryy,.

If a function f is in the set O(g) for some function g, this should be interpreted as “f
grows no faster than g.” Let us provide an example.

Example. Say we have functions f and g:

f(n) =4n* —13n + 10

g(n) =n?

We claim that f € O(g). In order to prove this, consider the following choice of constants:
¢y =4+ 0410 and by = 1. According to the definition, f € O(g) will hold if
f(n) <c¢p-g(n)
4n* —13n 4+ 10 < (4 + 0 + 10)n?
4n* — 13n + 10 < 4n* + On® + 101>

for all n > by = 1. Comparing term by term, we can observe that the inequality indeed
holds for each pair whenever n is at least 1, and hence also for the expressions as a whole.

1.5.5 Runtime analysis and exploiting structures

Recall that Algorithm 1.1 required checking 2" subsequences, and for each of those subse-
quences, it was required to check whether the sequence was increasing. We quickly deduce
that the latter requires O(n) steps; hence the runtime of the algorithm is O(2"n).

We can contrast that with Algorithm 1.2, which yields a runtime of O(n?). The difference
is vast: Algorithm 1.1 has an exponential runtime, whereas Algorithm 1.2 has a polynomial
runtime.

Can we do even better? The answer is yes; there exists a standard algorithm for the prob-
lem which runs in O(nlogn) time relying on an application of binary search. We will leave
out the details of that algorithm here, and ask instead: does there exist a /inear algorithm (i. e.
requiring only O(n) steps) for the longest increasing subsequence?

Essentially, the answer is no (Fredman, 1975). However, what if the input has some spe-
cial properties? Say, for example, that the items in our sequence of numbers only take &
distinct values; can we exploit this structure?

14 1. Introductions

Algorithm 1.4: Longest increasing subsequence (k distinct values)

Input: a sequence of numbers x = (1, 2o, ..., x,) such that there exists a set of reals
V C Rwhere z; € V foralli € {1,2,...,n}, and where V contains at most k
numbers.

Output: the length of the longest increasing subsequences of y

1 find the set V' and give its elements some order; let v; denote the j’th value in V'
according to said order;

2 let 44,05, . .., ¢ be variables each holding the value 0;

3 for eachiin (1,2,...,n) do

4 ety =1,

5 letj; =—1,;

6 foreachjin(1,2,...,k)do

7 if z; = v, then

8 let j; = j;

9 if v; < z; then

10 let b; be the maximum of b; and ¢; + 1;

1 let¢; hold the value b;;

12 let m be the maximum value held by any of ¢4, 65, ..., 0,;

13 return m;

Consider Algorithm 1.4. First, we find the set V' = {v;,vq,..., v} of all distinct values
in the input sequence, and give those elements some random order; this can be done in time
O(n) using for instance a hashing set data structure and an array. We proceed on Line 2 to
initialize variables ¢;, {5, . . ., {; to 0. The purpose of such a variable ¢; is to keep track of the
length of a longest increasing subsequence which ends on an item with value v;. Next, we
iterate over each element in the input sequence; the variable b; is intended to hold the length
of the longest sequence ending with element ¢, and j; is intended to hold the index of the
value z; in V. We next interate over (the index j of) every possible value in V; if the value
v; is less than z;, then a subsequence ending with value v; can be extended with the value z;
— we remember it if it is better than what we have seen before.

Algorithm 1.4 is, as the previous algorithms we have seen, correct for every possible
input. However, the Algorithm is parameterized — its runtime depends crucially on the
number of distinct values k. Analyzing the runtime, we find that it requires O(n - k) steps! If
it so happens that our inputs all have very small k, say smaller than some constant, then the
algorithm is really fast — asymptotically linear, O(n). Otherwise, we are better off with the
standard O(n log n) algorithm.’

1.5.6 Practical impact

We end by reflecting on just how big difference a good algorithm can make, by comparing
how our different algorithms fare in practice. This is an area which is not discussed any

9 Actually, a more careful analysis of the standard O(nlogn) algorithm reveals that the runtime is in fact
O(nlogk); so we should probably use that regardless.

1.5 Extended prologue 15

== Algorithm 1 == Algorithm 2 Standard
40
30
20
10
0
500 1000 1500 2000 2500

Figure 1.4: Comparison of runtimes for longest increasing subsequence. The unit of the -
axis is the size of the input array, and the unit of the y-axis is the number of seconds required
to solve 10 randomized input arrays.

further in the current thesis, but it is worth noting that there is a practical side to runtime
analysis and algorithm design, and a theoretical runtime analysis will inform the work of a
wise practitioner.

In Figure 1.4, we compare the runtimes of Algorithm 1.1, which our theoretical analysis
revealed to be O(2"n), Algorithm 1.2, which is O(n?), and the standard algorithm, which
is O(nlogn). As we expected, the runtime of Algorithm 1.1 skyrockets from the outset,
and we can handle at most random inputs of sizes around 30 before we get tired of waiting.
Algorithm 1.2 fares much better, but as the input size approaches n = 3000, it gets boring
waiting for these results too. The standard O(nlogn) algorithm can handle inputs as big as
n = 107 within the same time frame (which in this informal experiment was roughly one
second on a tired laptop).

16

1. Introductions

Chapter 2

Foundations

A proposition is a statement which is either True or FaLse. The ultimate goal of a mathe-
matician is to prove that their favorite proposition, called a theorem, is Trug — if necessary
under certain assumptions. A proof, then, is a sequence of propositions, beginning with the
assumptions and ending with the theorem, such that the truth of each proposition in the se-
quence is a necessary logical consequence of earlier propositions. How a proposition may
be derived from earlier propositions is by a rule of inference, for example modus ponens:

“If A is known to imply B, and A is known to be Trug, then B must be Trug.”

The rules of inference in mathematics are so blatantly obvious that nobody disagrees
with them; if there is even a faint doubt that a rule of inference makes sense, then it will be
degraded to an axiom, assumption or different field of study. Now, given a proposition, a rule
of inference and pointers to which earlier propositions the rule is being applied on to form
the new proposition, it is (supposed to be) straight-forward to verify whether the inference
is correct.

This is the process of peer review that results in mathematics undergo before being pub-
lished and accepted. If a proof is done in such excruciating detail that it can be verified by a
computer, then it is a formal proof; unfortunately, such proofs can be really long, and gives
limited intuition for the human reader. Formal proofs will also need to indulge in the math-
ematical foundations rather than focus on the abstract or “intuitive” meaning given to the
mathematical objects in question.

In the current thesis you will find no formal proofs, but rather rigorous informal proofs.
The principle for such proofs is the same, but it requires more of the reviewers — the author
and reviewers need to share a common understanding of the terms and notation which is
used and the nature of the mathematical objects in question. We therefore provide a brief
background here.

2.1 Set theory

Set theory is the building block on which graph theory and complexity theory are built.
We will use a reasonably standard vocabulary of set theory in order to describe our results,
and only briefly recapitulate some central notation here. For a deeper introduction, we refer
to Stoll (1979).

18 2. Foundations

A set is a collection of mathematical objects. These objects can in principle be anything,
such as propositions, strings of symbols, truth values, tuples, functions, predicates, relations,
other sets, Turing machines, graphs or simply anything that we want to reason about;' in-
cluding numbers, which we obviously also have sets for:

N | The set of (positive) natural numbers, {1,2,3,...}.

Z | The set of integers, {...,—2,-1,0,1,2,...}.

Q | The set of rational numbers. For example, 0, 1, -5, 7, 5.
R

The set of real numbers. For example: 0,1, -5, 1, 5, 7, ¢, V2.

1 =7

A predicate is a function P : A — {Trug, FaLse} where A is a set called the domain. We
say that P is a predicate on A. In other words, for an element a € A, we get that P(a) is a
proposition. For a set A and predicate P on A, we can define the set Ap = {a € A | P(a)},
which contains every element ¢ of A for which the proposition P(a) is True. Using this
notation, we define more sets of numbers we commonly use:

Zso | {x € Z | x > 0} | The set of non-negative integers.
[k] | {x e N| 2z <k} | Defined for k € Z>, it denotes the set of natural numbers less
than or equal to k.

Assume A and B are sets, and « is a mathematical object. We use the following notations
to express propositions/predicates:

a € A | The mathematical object @ is a member of A.

A C B | Ais asubset of the set B; every element of A is also an element of B.

A = B | Aand B are the same set, and contain the same elements; A C B and B C A.
A C B | Ais aproper subset of the set B; A C Band A # B.

To form composite propositions, we use the standard logical connectives — (not), V (or),
A (and), — (implies) and < (if and only if) from propositional logic. We refer to Walicki
(2016) for a deeper introduction.

The empty set is denoted by @, and contains no elements. The empty set is a subset of
every set. The cardinality of a set A is denoted | A|, and is a measure of how many elements
there are in A. If A is finite, then |A| € Z>o. The power set of a set A is a set which contains
every subset of A, denoted 24 = {B | B C A}. The choice-k set of a set A is a set containing
all subsets of cardinality k in A, denoted (1) = {B € 2* | |B| = k}.

The cross product of two sets A and B is the set containing all ordered pairs (a, b) where
a € Aandb € B;itisdenotedas Ax B = {(a,b) | a € ANb € B}. The set power of a set Ato
the power k for k € Nis the set A¥ = A x A x A x ... (k times). The union of sets A and B is
the set containing every element that is in A, B or both, denoted AUB = {z | « € AVx € B}.

!In formal set theory we run into strange situations if we place absolutely no restrictions on what a set can
contain; for example consider the set of all sets which does not contain itself; this set appears to contain itself if
and only if it does not contain itself, and it is known as Russel’s paradox. We will, however, leave those worries
with the pure set theorists.

2.2 Graph theory 19

The intersection of sets A and B is the set containing all elements that are in both A and B,
denoted AN B = {z | x € AA x € B}. The difference between a set A and a set B contains
the elements which are in A but not in B, denoted A\ B={z |z € AAz ¢ B}.

2.2 Graph theory

A graph is essentially a set of vertices (sometimes called nodes) and a relation on the set
of vertices called edges. If the relation is irreflexive, i. e. no element is related to itself, then
the graph is simple; if the relation is not symmetric, then the graph is directed, also called
a digraph. We will mostly discuss simple undirected graphs, but most of the vocabulary
naturally carries over to digraphs as well. We give an overview of our vocabulary here, but
for a deeper introduction we refer to Diestel (2017).

2.2.1 Simple graphs

Simple graph A simple (undirected) graph G is an ordered pair G = (V(G), E(G)), where
V(G) is a set of vertices and E(G) C (V') is a set of edges.

Vertex A vertex u € V(G) can in principle be any mathematical object, but for the purposes
of graph theory we do not assume it to have any special properties aside from being
distinguishable from the other vertices.

Edge Anedge e € E(G) in an undirected graph is a set of two distinct vertices, e = {u, v}.
We abbreviate an edge {u, v} to simply uv (or equivalently, vu).

Incidence An edge e € E(G) is incident to a vertex u € V(G) if u € e. Two edges eq,e; €
E(G) are incident if they share an endpoint, i.e. if e; N ey # 0.

For a set of edges F' C E(G), the set of vertices which are incident to an edge in F is
denoted V(F) = U, .pe.

Adjacency Two vertices u,v € V(G) are adjacent (and are also called neighbors) if there
is an edge wv in E(G), i.e. if {u,v} € E(G).

Open neighborhood For a graph G and a vertex u € V(G), its open neighborhood (also
called simply its neighborhood) is the set of all its neighbors in G, denoted Ng(u) =
{v|uwv € E(G)}.

For a set of vertices X C V(G), the open neighborhood of X is the set Ng(X) =
(Uuex Ne(u)) \ X. If the graph G is clear from the context, the subscript ¢ may be
dropped.

Closed neighborhood For a graph G and a vertex u € V(G), its closed neighborhood is the
set Ng[u] = Ng(u) U {u}.

For a set of vertices X C V(G), the closed neighborhood of X is the set Ng[X]| =
Ne(X) U X. If the graph G is clear from the context, the subscript may be dropped.

20 2. Foundations

Degree For a graph G and a vertex u € V(G), the degree of u is the size of its open neigh-
borhood, denoted deg(u) = |Ng(u)|. If the graph G is clear from the context, the
subscript ¢ may be dropped.

Isolated vertex For a graph G and a vertex u € V(G), the vertex u is isolated in G if
deg,(u) = 0.

Universal vertex For a graph G and a vertex v € V(G), the vertex u is universal in G if
Nelu] = V(G), i.e. if it is adjacent to every other vertex.

Subgraph For two graphs H and G, we say the H is a subgraph of G, denoted H C G, if
V(H) CV(G) and E(H) C E(G). Note that this is overloading the C operator, so its
meaning is slightly different when used on graphs (such as H and G) as opposed to
when used on sets (such as V(G),V(H), E(G), E(H)).

Induced subgraph For a graph G and a vertex set X C V(G), the graph G induced by X is
the graph G[X] = (X, E(G) N (3)).

2

Path A graph P is a path if there exists a permutation o over V(P) = {uy,ug,...,un},
such that the neighborhood of each vertex is exactly its neighboring vertices in the
permutation. In other words, the set of edges for P is exactly E(P) = {o(u;)o(uit1) |
i € [n — 1]}. The endpoints of P are o(uy) and o (u,).

The path on n vertices is denoted P,. The path on n vertices is said to have length n — 1.

Distance The distance between two vertices u,v € V(G), denoted dg(u, v) is the length of
a shortest path with « and v as its endpoints, or co if no such path exist.

Connected graph A graph G is connected if for every pair of vertices u,v € V(G), there
exists a path P C G with u and v as its endpoints.

Connected component A connected component in a graph G is an induced subgraph G[X]
for a non-empty set X C V(G) such that a) G[X] is connected, and b) there is no edge
wv € E(G) wherew € X and v ¢ X.

Isomorphic graphs Two graphs G and H are isomorphic if they are representing the same
abstract graph structure. Formally, G is isomorphic to H if there exists a bijection o :
V(G) — V(H) such that for every vertex pair u, v € V(G), there is an edge uv € E(G)
if and only if there is an edge o(u)o(v) € E(H).

(True) twins For a graph G and distinct vertices u, v € V(G), we say that v and v are twins
if Ng(u) = Ng(v). They are true twins if Ng[u] = Ng[v].

2.2.2 Modification of graphs

Whenever we have a graph GG, we sometimes want to make some modifications to the graph.
One example is given above, when we found an induced subgraph of G. There are also many
other operations we can perform on a graph in order to obtain new graphs. We give a list of
common operations here.

2.2 Graph theory 21

Remove or add vertices For a graph G and a vertex u € V (&), we denote the graph where
we remove the vertex v and its incident edges by G — u = G[V(G) \ {u}].

For a graph G and vertex set X C V(G), we denote the graph where the vertices of X
and their incident edges are removed from G as G — X = G[V(G) \ X]

For a graph G and a vertex u, we denote the graph where we add the vertex u (without
any incident edges) as G + u = (V(G) U {u}, E(G)).

For a graph G and a set of vertices X, we denote the graph where we add the vertices
of X to G as isolated vertices as G + X = (V(G) U X, E(G)).

Remove or add edges For a graph G and an edge e € F(G), we denote the graph where e
is removed from G by G — e = (V(G), E(G) \ {e}).

For a graph G and a set of edges F' C F(G), we denote the graph where all edges of F
are removed from G by G — F = (V(G), E(G) \ F).

V(G)

2), we denote the graph where e is added to G by

For a graph G and an edge e € (
G+e=(V(GQ),E(G)U{e}).
For a graph G and a set of edges ' C (V(QG)), we denote the graph where all edges of
Fareaddedto Gby G+ F = (V(G), E(G)U F).

(Disjoint) union of graphs For graphs G and H, the union of G and H is the graph GUH =
(V(G)UV(H), E(G)U E(H)).
The disjoint union of G and H entails making an isomorphic copy of H, called H’
(which is vertex disjoint from G), and then taking the union G U H'. It is denoted by
G + H (or sometimes G @ H).

Contraction For a graph G and an edge e € E(G), contracting the edge e = uv entails
removing the vertices v and v from G and replacing it with a new vertex w whose
neighborhood is the set Ng({w,v}). Let X = Ng({u, v}). Then contracting the edge e
in G yields the graph G/e = G[V(G) \ e]U ({w} U X, {uw | u € X}).

Smoothing For a graph G and vertex u € V(G) of degree 2 whose neighbors v and w are
non-adjacent, contracting one of «’s incident edges is called smoothing the vertex u.

Subdivision For a graph G and an edge e € E(G), subdividing the edge e = uv entails
removing e from the set of edges, and adding a new vertex w whose neighborhood
is {u,v}. The resulting graph is G + ¢ = G — ¢ + w + vw + wv. An edge may be
subdivided multiple times; for a non-negative integer n € Zx, the n-subdivision of an
edge e entails applying the subdivision n times on either e or one of the resulting edges
created in the process.

Splitting For a graph G and a vertex u € V(G), splitting the vertex u entails adding a vertex
v with the neighborhood Ng(u).

Complement For a graph G, its complement graph is a graph on the same vertex set where
every edge is removed, and every non-edge is added. The complement graph is denoted
G =G, ("\EG)).

22 2. Foundations

Graph power For a graph G and an integer k € N, the graph power G* is the graph on the
same vertex set V(G) = V(G*) where there is an edge in uv € G* between distinct
vertices u and v if their distance in G is at most k, i. e. if dg(u, v) < k.

2.2.3 Generalizations of graphs
Directed graphs

A directed graph, also called a digraph, is a graph where each edge also has a direction.
They differ from undirected graphs in that each edge is represented as an (ordered) 2-tuple,
as opposed to an (unordered) set of size 2.

For directed graphs, most of the concepts and operations of undirected graphs may be
naturally carried over to the context where edges have direction; for example, (induced) sub-
graphs, isomorphism and twins are defined pretty much identically as for simple graphs.

Other concepts require some adaptation. For example, a directed path require that all
edges are directed in the expected direction.

With respect to connectivity, digraphs require some different notions; we say that a vertex
v is reachable from a vertex w if there is a path from u to v, or if u = v. A strongly connected
component is maximal induced subgraph where every vertex is reachable from every other
vertex.

Other generalizations

Graphs comes in many variations. Each of the concepts below may be mixed and matched
to form a new category of graphs.

Weighted graphs A graph or digraph G = (V(G), E(G)) can be weighted, either by their
vertices or by their edges. Edge weights are most common, which are represented by
a weight function w : E(G) — R ascribing a certain weight to each edge.

Multigraphs A mulitgraph is a generalisation of graphs where there may be multiple edges
between two vertices. The difference between a multigraph and an ordinary (simple)
graph, is that each edge in a multigraph has a separate identity beyond merely con-
necting two vertices; as such, two distinct edges which both go from u to v can be
distinguished, (and can have distinct weights, if the multigraph is weighted).

Hypergraphs A hypergraph is a generalization of (undirected) graphs where there is no
requirement that an edge have exactly two endpoints. For this type of graph, the edge
set E(G) is a subset of 2V(@) \ (). If all edges have the same cardinality k, then it is
called a k-uniform hypergraph.

Chapter 3

Computational complexity

As a computer executes an algorithm on some input data, it will start chewing away on its task,
performing one step at a time. How many steps the computer will perform before coming to
a conclusion is the runtime of the algorithm. Finding algorithms that require as few steps as
possible is a useful endeavor, since computations may then be performed faster.

Sometimes we are able to find quite good algorithms for the problem at hand, and a
modern computer will blaze through huge input data in a split-second. For other problems,
however, it seems difficult to find algorithms that perform well; even on small input instances,
the number of steps required is so huge that we have no hope that the computer will finish
its computations in our lifetime.

We can thus categorize our problems: those that have good algorithms, the easy problems;
and those that (probably) do not, the hard problems.

Categorizing problems according to their difficulty in this way is a central theme in com-
putational complexity theory and its predecessor, computability theory. In this section we
give a brief background for this area, but for a deeper introduction, we refer the reader to
(Sipser, 2012).

An algorithm is a finite set of instructions for how to perform a task in any form; for our
purposes, however, we restrict our attention to algorithms which are descriptions of compu-
tational machines whose purpose is to compute functions.

3.1 Problems and computability

Recall that a function f : X — Y is a map from elements in the set X to elements in the set
Y. So if I have some element = € X, I might want to know what the element f(z) is. But
even if we defined the function f ourselves, it is not necessarily easy for us to deduce which
element = maps to.

For example, say that X =Y = R is the set of non-negative real numbers, and that f is
a function expressed as f(z) = v/z3. Clearly, f is well-defined — even so, we do not know
what f(4) is without some way of computing it.

A computable function is informally speaking a function for which there exists a proce-
dure by which the image of any input can be found.

According to the famous conjecture called the Church-Turing thesis, every computable
function can be computed by a Turing machine (Copeland, 2019). Since every Turing ma-

24 3. Computational complexity

chine also computes some function, it will follow that a function is computable if and only
if there exists some Turing machine which computes it.

Whenever we refer to a problem, then its most general meaning is that we wish to compute
the image(s) of some input(s) for a given function which we can precisely articulate. To solve
the problem is to give an algorithm which correctly computes the function.

A decision problem is a question to which the answer for a particular input instance is
either yes or no — the function we want to compute is in other words a predicate. Since the
predicates on X is in a one-to-one correspondence with the subsets of X, we can think of a
decision problem L as a subset of the domain, L C X. The question to answer for an element
x € X is whether x € L is TRUE or not.

In an optimization problem, the input is a set X of elements with an objective function
f X — R, and the task is to find an element x € X such that f(z) is minimum (or
maximum) among all elements in X. Every optimization problem has a decision version,
where a number a € R is provided along with the input, and the question is whether there
exists an element z € X such that f(z) < a (or f(z) > a).

3.2 Turing machines

A (deterministic) Turing machine is a mathematical model introduced by (Turing, 1937); it is
formally defined as a collection of sets possessing some special structure. Hence, calling this
collections of sets a machine is a bit generous, because it is not like the sets will do anything
if we only plug them into the power grid.

Turing machines are, however, precise models for a family of devices which can be built
in practice, using either mechanical parts or electrical circuits — there is a one-to-one corre-
spondence between what such a device will do and configurations of a Turing machine in the
mathematical model. Moreover, these devices can simulate exactly the behavior of a modern
digital computer, albeit with some polynomial overhead in computation time; and vice versa,
a modern digital computer can simulate the behavior of a Turing machine.

Due to space constraints, we will omit the formal definition of a Turing machine here,
but refer the reader to (Sipser, 2012; De Mol, 2019) for a thorough introduction. However,
we will highlight some of their properties:

* The input to a Turing machine is always a string of symbols s € ¥* over some finite
alphabet . Hence, the domain in which the Turing machine computes a function is
Y*. We can, however, assume that all the mathematical objects we are working with in
this thesis can indeed be described as a finite string of symbols. The size of an input s,
denoted |s|, is the number of symbols in the string.

 For a given input s € ¥*, a Turing machine M will go through some sequence of steps.
The sequence of steps is uniquely determined by s and M; it could be infinitely long,
or it could be finite. If the sequence is finite, we say that the machine Aalts on that input.
For a given input s, the number of steps before the machine halts is the runtime of M
on s.

3.3 Nondeterminism 25

* When a Turing machine halts, it is in either an accepting or a rejecting state. If for a
string s € ¥* the machine M halts in an accepting (rejecting) state, we say that M
accepts (rejects) s. The set of all strings that M accepts is the language of M, denoted
L(M) = {s € ¥* | M accepts s}. For a language L C ¥*, we say that M recognize L
if L(M) = L. If a machine M recognize a language L and additionally halts on every
input, then M decides the problem L.

With respect to a decision problem on a domain X, i. e. asubset L C X, a Turing machine
will compute the answer if it decides the language L' = {s € X* | s is a string representation
of some z € L}.

Let |s| denote the length of a string s € £*, and let f : R>y — R, be a function on the
non-negative real numbers. Then a Turing machine M 1is said to decide the language £(M)
in f time if, for every string s € ¥*, the runtime of M on s is at most f(|s]).

3.3 Nondeterminism

In deterministic philosophy, every action is seen as a logical necessity that follows from the
current state of affairs. In this world view, everything is determined by cause and effect; free
will is merely an illusion. Digital computers as we know them today are perfectly consistent
with this world view; they are built from circuits which adhere to the omnipotent physical
laws and always perform the same sequence of steps on the same input.!

Nondeterminism, on the other hand, is a view that there can be multiple possible courses
of action from a given state of the universe. A nondeterministic Turing machine is a mathe-
matical model which adheres to such a world view. As opposed to the deterministic Turing
machine introduced in Section 3.2, the sequence of steps that follows by executing a given
nondeterministic Turing machine M on a certain input string s is not unique; instead, there
are multiple such sequences.

A nondeterministic Turing machine M is said to accept an input s if there exists a se-
quence which takes M to an accepting state, and is said to reject the input if every possible
sequence ends in a rejecting state. Note that it could also happen that some sequences end up
in a rejecting state, whereas others are infinitely long — in these cases, the machine neither
accepts nor rejects the input, and does not halt.

The runtime of a nondeterministic Turing machine M on an input string s, is defined
the length of the shortest possible sequence ending in an accepting state (if one exists), or
the longest possible sequence otherwise. If M does not halt on input s, then the runtime is
undefined.?

In terms of computability, nondeterministic Turing machines are no more powerful than
their deterministic counterparts; a nondeterministic machine can be simulated by a determin-
istic machine at the cost of a longer runtime. The extra cost in runtime required on determin-
istic machines, is, however, significant. In fact, comparing the required runtime for solving

!In practice there are sources of random behavior in a digital computer, such as memory cells that physically
stop working after an unknown quantity of strain, or that execution begins at a certain point in time. According
to deterministic philosophy, however, these events are not random, they are simply too hard for us to predict.

2Keep in mind that nondeterministic Turing machines are not models for devices which we know how to
build in practice — at least not with respect to how their “runtime” is defined.

26 3. Computational complexity

problems on deterministic versus nondeterministic Turing machines has become one of the
most prominent open problems in mathematics as a whole. It is the classical problem of P
versus NP.

3.4 Complexity classes

3.4.1 Pand NP

We have already discussed the complexity classes P and NP in our introduction (Section 1.3),
where we defined P to be the class of all problems which can be solved by a polynomial-
time algorithm, and NP as the class of problems for which a solution can be verified by a
polynomial-time algorithm. The traditional definition, however, is that P is defined as the
class of problems which can be decided in polynomial time on a deterministic Turing ma-
chine, and NP consists of those which can be decided in polynomial time on a nondeterminis-
tic Turing machine. This is how the classes got their names: problems solvable in polynomial
time (P) and problems solvable in nondeterministic polynomial time (NP).

In the previously mentioned result by Cook (1971) and Levin (1973), it is shown that if
the problem of SatisFiaBILITY (SAT) can be solved in f time on a Turing machine where f
is a polynomial function, then every problem in NP can also be solved in polynomial time.
Because Sar has this remarkable property, we say that it is NP-Aard. Since the problem hap-
pens to be solvable in polynomial time on a nondeterministic Turing machine, it is also in
the class NP. A problem which is both in NP and also NP-hard is called NP-complete;? recall
Figure 1.3 on page 6.

It remains open whether P = NP, but it is conjectured that it is not — if it is, then every
problem in NP, including a wide spectrum of NP-complete problems, will have polynomial-
time algorithms. It was estimated that several thousand new problems were proved to be
NP-complete each year in the 90’s (Papadimitriou, 1997), and investigating historical trends
for the term “NP-complete” in scholarly databases suggests that the number might be even
higher today. If P = NP, then all these thousands of problems are solvable significantly faster
than what we currently are aware of; showing any one of these problems to be in P will have
massive implications.

A more cynical view is that NP-hardness is a useful concept because we do not need to
waste our time trying to find polynomial-time algorithms for such problems.

3.4.2 Other complexity classes

There is a multitude of complexity classes which can be defined; for example, given a compu-
tational model and a restriction on the runtime (or the amount of space) allowed as a function
of the input description size, we obtain such a class. We mention a few of examples that we
might refer to later:

3Formally speaking, a problem is only NP-complete if it is in NP and is NP-hard with respect to polynomial-
time many-one reductions (also called Karp reductions). In this stricter definition, a problem L is NP-hard if
there exist polynomial-time many-one reductions from every problem in NP to L. This holds for Sat. See also
Section 3.5 on reductions and hardness.

3.4 Complexity classes 27

EXP A decision problem L is in the class EXP if there exists a Turing machine which decides
L in 27 time where n is the input size, and p is a polynomial function. We know that
P is strictly contained within EXP, and that NP C EXP. In other words, if P = NP, then
NP C EXP, and if NP = EXP, then P # NP.

PSPACE A decision problem L is in the class PSPACE if there exists a Turing machine which
decides L using only polynomial amount of space. We remark that the class PSPACE
is known to be contained in EXP, and known to contain NP.

coNP A decision problem L is in the class coNP if it is the complement of a problem in NP; in
other words, there is a problem L € NP on the same domain as L such that an instance s
is Truk for L if and only if it is FaLsk for L. An example of a problem which is believed
to be in coNP but not in NP, is the TautoLoGY problem: in this problem one is given a
sentence in propositional logic, and is asked whether all possible structures are models
for the formula. This is the complement of the SaTisFiaBiLITY problem, except that the
formula is negated; we ask whether all assignments are FaLsk rather than asking if there
exists an assignment which is TRUE.

While they appear to be the same question (and if we know the answer to one, we
immediately know the answer to the other), they are also different in an important
regard: verifying the answer. If the answer to an instance of SATISFIABILITY is yes, then
there exists a small/polynomial size witness of this — namely an assignment to the
variables which yields the formula True. On the other hand, if the answer is o, then
we do not know of any small witness.

ZPP A decision problem L is in the class ZPP if there exists a probabilistic Turing machine
which decides L in polynomial time. We remark that a probabilistic Turing machine is a
nondeterministic Turing machine which picks its sequence of steps according to some
probability distribution; the definition of runtime for such a machine is different from
a nondeterministic Turing machine, in that it will be the expected runtime according to
the probabilities.

We know that P C ZPP C NP, however it is unknown whether any of the inclusions
are strict.

APX An optimization problem L is in the class APX if there exists a constant-factor approx-
imation algorithm for L which runs in polynomial time on a deterministic Turing ma-
chine.

We will see a few more complexity classes in Section 3.6 on parameterized complexity.

Some complexity classes form a hierarchy of inclusion. For example, we know that P C
ZPP C NP C PSPACE C EXP, but we do not know whether any of the inclusions are strict;
we know that P C EXP, but we do not know which intermediate inclusions are strict and
which are not. We usually assume that these inclusions are all strict — it the opposite is
proved, it will cause a collapse in the hierarchy, meaning that some classes of problems are
actually the same class.

The complexity classes we have mentioned are defined by which problems can be solved
under certain restrictions — in order to prove that a given problem L is in a certain complexity

28 3. Computational complexity

class C, we have to give an algorithm for the problem which adheres to the specifications
of the given class. For example, we can show that L is in P by providing a polynomial-time
algorithm for it.

To show that a problem is hard, on the other hand, requires a different tool set which is
equally important as algorithms in complexity theory: reductions.

3.5 Reductions and hardness

Building on the result of Cook (1971), Karp (1972) showed that Sat is not the only problem in
NP which is NP-hard; in fact, many problems are. Cook’s proof was in essence a construction
which as input was provided a description of a nondeterministic Turing machine M, and an
input string intended for said machine; based on this, a formula ¢ for Sar is constructed such
that it can be satisfied if and only if M will accept the string. This is in a sense to “express”
the problem £(M) as a SATISFIABILITY problem.

Karp took this perspective further, and showed that Sar itself can be expressed as a wide
variety of other problems; and just like Cook’s construction, the new expression of the prob-
lem requires only polynomial time to be computed. To formalize this, Karp introduced the
notion of a reduction.

* A polynomial-time many-one reduction from a decision problem L to a decision prob-
lem @ is an algorithm which works in polynomial time with respect to the input size,
and takes as input an instance s to the problem L, and returns an instance s’ to the
problem @ such that s is a yes-instance to L if and only if s’ is a yes-instance to Q.

If there exists such an algorithm for problems L and @, we write this as L <p Q; here,
<p reads as “is polynomial-time many-one reducible to.” It follows that if () can be solved
in polynomial time, then certainly also L can be solved in polynomial time.

While we will stick with polynomial-time many-one reductions in the current thesis,
it is worth being aware that other types of reductions exist. For instance, a natural notion
from a programmer’s point of view are Turing reductions (also called Cook reductions). A
(polynomial-time) Turing reduction from a problem A to a problem B is an algorithm for A
which call a black box algorithm for B as a subroutine; possibly more than once. Assuming
that the calls to B require only polynomial time, then the algorithm as a whole also has this
property. A many-one reduction is a special case of a Turing reduction, where there is one
call to the algorithm for B, and this is the final step of the algorithm.

We say that a problem L is sard for a complexity class C with respect to type x reductions
if every problem in C has a type = reduction to L. We say that the problem is complete for
C with respect to type x reductions if additionally the problem is in C. In order to show that
a certain problem L is C-hard, it suffices to give a reduction from any C-hard problem to L,
since reductions can be chained.

If nothing else is mentioned specifically, we will assume that by a reduction we mean
a polynomial-time many-one reduction. This is the standard form of reduction with which
NP-completeness is most commonly defined with respect to.

3.6 Exploiting structure 29

3.6 Exploiting structure

We do not expect that NP-hard problems can be solved with a polynomial time algorithm
unless there is a collapse of the classes P and NP. However, NP-hard problems exist in the
real world, and humanity has come up with algorithms to deal with them as best we can.
Some of these algorithms turns out to solve their problem both correctly and quickly on all
input instances which occur in practice. To explain this theoretically, we define concepts such
as pseudo-polynomial algorithms and parameterized complexity.

3.6.1 Pseudo-polynomial algorithms

The notion of pseudo-polynomial algorithms is one example of algorithms which are exploit-
ing the structure of practical instances in order to quickly solve NP-hard problems. These are
algorithms which works in polynomial time if the input is encoded in unary — that is, if
writing down a number x in the input is done using z amounts of space, and not log, = as
we would normally expect with a binary encoding. The Susser sum problem is an example
of this; while it is NP-hard in general, many instances which occur in practice can be solved
efficiently.

SUBSET suM

Input: A finite set of natural numbers S = {ay,as,...,a,} C Nand a target W € N.
Parameter: W/

Question: Does there exist a subset S’ C S such that the sum of its elements equals W?

The Susser sum problem can famously be solved by dynamic programming, by creating
a 2-dimensional table ¢ with dimension n x W. A cell ¢[i, j] is supposed to contain the value
Truk if there exists a subset of {ay, as, ... a;} such that they sum to j, and FaLse otherwise.
For ¢ = 1, filling in ¢[¢, j] with the correct value is trivial: it is True for j = a; and FaLse
otherwise. If we fill the table starting from lower values of i, we can assume that ¢[i — 1, j] is
correct for all values of j when we want to calculate the value for ¢[¢, j]. We can then set the
value for [, j] as follows: t[i, j] = t[i — 1,j] Vi[i — 1,5 — a;] V (j = a;). The final answer is
found in ¢[n, W].

When analyzing the runtime of the algorithm outlined in the previous paragraph, we
notice that we fill n1¥ cells, and computing each cell can be done in constant time. Hence,
the runtime is O(nWV). Note that this runtime is highly dependent on W, the target value.
If W was encoded in unary, then the algorithm would indeed be polynomial — we would
simply start by converting the input to binary, and then do the same as before.

The target value W above is a structural parameter. By restricting the value of W, we
can give better guarantees on the runtime of the algorithm. For instance, if we restrict the
instances we are willing to handle to those where W is bounded by some polynomial function
of n, then we are also able to give a polynomial algorithm.

An NP-hard problem which has a pseudo-polynomial algorithm is called weakly NP-hard.
If the problem does not have a pseudo-polynomial algorithm unless P = NP, then the problem
is strongly NP-hard. The notion of weakly/strongly NP-completeness is defined analogously.

30 3. Computational complexity

3.6.2 Parameterized complexity

Introduced in the 1990°s by Rod Downey and Michael Fellows, parameterized complexity
is a formalized framework for describing the computational complexity of problems with
respect to multiple parameters that affect the runtime required to solve a problem — not only
the input size, which is done in traditional complexity. Pseudo-polynomial algorithms are
an example of parameterized algorithms which was well-known beforehand; but looking at
how large numerical values exist in the input is by no means the only way to find structural
parameters.

In the formal definitions by Downey and Fellows (2012), a parameter is simply some
additional data (typically a number) which is provided with the problem instance — it does
not need to appear in the “unparameterized” part of input instance in any way, though it
can be used to describe some property it possesses if wanted; it does not need to appear in
the structure of a witness for a yes -instance, though it can be used to describe this as well.
Formally speaking, it is merely some extra data, a number.

These definitions are from the book by Cygan et al. (2015):

Parameterized decision problem A parameterized decision problem is a language L C
¥* x N, where X is a fixed, finite alphabet. For a problem instance (s,k) € ¥* x N, k
is called the parameter.

FPT A parameterized decision problem L. C ¥* x N is called fixed-parameter tractable
(FPT) if there exists an algorithm A (called a fixed-parameter algorithm), a computable
function f : N — N, and a constant ¢ such that, given a problem instance (s, k) € ¥*xN,
the algorithm A correctly decides whether (s, k) € L in time bounded by f(k)-|(s, k)|°.
The complexity class containing all fixed-parameter tractable problems is called FPT.

XP A parameterized decision problem L C ¥* x N is called slice-wise polynomial (XP)
if there exists an algorithm A and two computable functions f,g : N — N such that,
given (s, k) € ¥* x N, the Algorithm A correctly decides whether (s, k) € L in time
bounded by f(k)-|(s, k)|?®). The complexity class containing all slice-wise polynomial
problems is called XP.

We can assume that the functions f and g in the definitions of FPT and XP are non-
decreasing functions.

Note that the class FPT clearly is contained in the class XP, since we are free to let the
function g always output a constant if we so desire. The converse is not true.

3.6.3 Parameterized reductions

From an algorithm designer’s point of view, the classes FPT and XP are important complexity
classes in parameterized complexity, since algorithms in these classes can be implemented
on normal computers. However, whenever we have a parameterized problem for which we
are unable to find an FPT-algorithm, we desire to show that it is hard or even complete for
some class that is not contained in FPT — this will mimic how hardness is showed in the
unparameterized setting. Even if it is unknown if the class is contained in FPT, then such a

3.6 Exploiting structure 31

conditional hardness results will still have value; a later proof that the problem actually is
FPT will cause a collapse in the hierarchy, showing that a/l problems in said class actually
have an FPT-algorithm.

In order to show such hardness, we need a notion of reductions which is appropriate with
respect to parameterized problems and the class FPT. In comes the notion of a parameterized
reduction:

FPT many-one reduction Let A, B C ¥* x N be two parameterized decision problems. A
FPT many-one reduction (also called a parameterized reduction) from A to B is a fixed-
parameter algorithm that, given an instance (s, k) for A, outputs an instance (s, k") for
B such that

* (s,k) is a yes-instance of A if and only if (s', k') is a yes-instance of B, and

* k' < g(k) for some computable function g.

We emphasize that the runtime of an FPT-reduction must be bounded by f (k) - |(s, k)|
for some computable function f and some constant ¢, since the reduction is an FPT-
algorithm.

Note that if there is such a parameterized reduction from A to B, and B is in FPT, then
also A is in FPT.

Our parameterized reductions differ from polynomial-time many-one reductions in two
regards: first, we allow the runtime of the algorithm to be FPT; and second, the parameter
must be preserved. It turns out that many polynomial-time many-one reductions are also
parameterized reductions for some natural parameters. It is, however, not always the case.

Using such reductions, we can show some problems are “at least as difficult” as others;
the problem being reduced 7o is at least as hard as the problem being reduced from. This
shows a conditional hardness: assuming A is hard (i. e. not in FPT), and that A is reducible
to B, then B must also be hard. By chaining reductions, we can obtain an intricate network
of problems which can be reduced to each other, and sometimes one goes full circle — there
is a sequence of parameterized reductions leading back to the original problem. Then all the
problems in that cycle are “equally” hard with respect to obtaining FPT algorithms; either
none of them, or all of them, are in FPT.

3.6.4 The W-hierarchy

While many problems are proven to be equally hard with respect to FPT-reductions, it turns
out that the digraph showing which parameterized problems we know to be FPT-reducible
to each other has multiple strongly connected components, even if restricting the universe
to those problems which are in XP and unknown to be in FPT. This suggests that there is a
hierarchy of complexity classes between FPT and XP.

Downey and Fellows (1992) introduced the W hierarchy, which describes a family of
parameterized complexity classes W[1] C W[2] C W[3] C ... which elegantly capture some
prominent strongly connected components in the FPT-reducible digraph as the complete prob-
lems for a certain class in the hierarchy. It holds that FPT is contained in W[1], and for every

32 3. Computational complexity

positive integer ¢, W([t] is contained in XP. It is not known if any of these classes are distinct,
or even if they are different from FPT; however, it is conjectured that the inclusions are all
proper.

We will not formally define classes in the W hierarchy here, but refer to Cygan et al.
(2015) and Downey and Fellows (2012) for a deeper introduction. However we would like
to point out some parameterized problems which are complete with respect to these classes.

WI1] Examples of W[1]-complete problems are the k-CrLioue and k-INDEPENDENT SET prob-
lems, including their colored versions. A parameterized reduction from any of these
problems will show that the problem reduced to is W[1]-hard.

WI[2] Examples of W[2]-complete problems are the k-DominatinG SEt, k-SET CovEer and k-
Hirring SET problems. A parameterized reduction from any of these problems will
show that the problem reduced to is W[2]-hard.

W([t] An example of a W[t]-complete problem (for ¢ > 2) is that of WEIGHTED ¢-NORMALIZED
SatisFiaBILITY, Where the input is a SaTisFiaBiLiTy formula ¢ which is ¢-normalized,
and the parameter % is an upper bound on the number of variables that can be set to
Truk. A formula is t-normalized if it is the big conjunction (or big disjunction) of sub-
formulae, each of which is a /-normalized formula for some ¢ < ¢t — 1. A 0-normalized
formula is a literal, that is, a variable or its negation.

Chapter 4

Graph classes

A graph class is a predicate on the class of all graphs, categorizing every graph into one of
two categories: those possessing the property, and those who do not.

Consider for instance the property of connectivity. We say that a graph G is connected if
for every non-trivial partition of the vertices into two sets A, B C V(G), it holds that there
exists an edge uv € E(G) such that u € A and v € B. This is a property a given graph
can have or not have — but it also defines a graph class, namely the collection of all graphs
which are connected.

Graph classes can be described in various different ways; some graph classes are de-
scribed by exactly which graphs are in the graph class. Other graph classes are described
recursively by how they can be built. Yet other classes are expressed as all graphs which can
or can not be modified in a certain way to be something else. Often, a graph class can be
described in many ways.

We begin by describing some very narrow graph classes, where each graph in the class
even has a special name.

Complete graph A graph G is complete if it contains every possible edge, i.e. if E(G) =
(V9. The complete graph on n vertices is denoted K,,.

Edgeless graph A graph G is an edgeless graph if it does not contain any edges, i.e. if
E(G) = (). The edgeless graph on n vertices is denoted K,,.

Path A graph P is a path if there exists a permutation o over V(G) = {u,us,...,u,},
such that the neighborhood of each vertex is exactly its neighboring vertices in the
permutation. In other words, the set of edges for P is exactly F(G) = {o(u;)o(uiy1) |
i € [n — 1]}. The endpoints of P are o(u,) and o(u,).

The path on n vertices, for n € N, is denoted P,. The path on n vertices is said to have
length n — 1.

In a graph G, the distance between two vertices u, v € V(G) is equal to the length of
the shortest path with u and v as its endpoints.

Cycle A graph C is a cycle if removing any edge from the graph yields a path. It follows
that a graph C' is a cycle if and only if every vertex has degree 2 and C' is connected.
The cycle on n vertices, for n € N3, is denoted C,,.

34 4. Graph classes

A cycle on n vertices also have n edges, and we say that the length of the cycle is n. If
n is odd, we say that C,, is an odd cycle.

Complete bipartite A graph G is a complete bipartite graph if its vertex set can be parti-
tioned into two sets A, B C V(&) such that all edges between A and B are present,
and no other edges are. In other words, E(G) = {uv | u € A Av € B}. The complete
bipartite graph with a = | A| vertices in one partition and b = | B| vertices in the other,
is denoted by K, .

Star A graph G is a star if is a complete bipartite graph where one side of the bipartition
has size 1. Equivalently, there exists a vertex r € V(.9) called the root, such that r is
universal in S and S — r is edgeless. The vertices in V' (.5) \ {r} are called the /eaves
or S. The star with £ leaves is denoted K .

4.1 Forbidden graph characterization

While some graph classes are described by exactly which graphs they contain, other graph
classes are described by which graphs they do nof contain — or more generally, which graphs
they can not be transformed into by a certain toolbox of graph modifications.

For example, a graph is said to be triangle-free if it does not contain a C5 as an induced
subgraph. In other words, if a graph is such that it is possible to remove some vertices such
that the remaining graph is a triangle, then that graph is not triangle-free.

This and similar ways of characterizing graph classes has proven incredibly useful, since
they can describe a wide variety of graph classes, and it is also possible to prove powerful
meta-theorems about such graph classes.

A graph G can be related to a graph H in multiple ways. Most commonly:

Induced subgraph A graph G contains H as an induced subgraph if it is possible to obtain
H from G by:

* removing vertices.
If a graph G does not contain an induced subgraph isomorphic to H, then G is H-free.
Subgraph A graph G contains H as a subgraph if it is possible to obtain H from G by:

* removing vertices, and

* removing edges.
If a graph G does not contain a subgraph isomorphic to H, then G is H-subgraph free.
Minor A graph G contains H as a minor if it is possible to obtain H from G by:

* removing vertices, and
» removing edges, and

* contracting edges.

4.2 Central graph classes 35

{Cs} IS | Triangle-free

{Cs} M | Forest
{C5,C4,C5,...} | S | Forest
{C5,C5,C%,...} | S | Bipartite
{C4,C5,Cs, ...} | IS | Chordal

{K5, K33} M | Planar
{Ky, Ko3} M | Outerplanar
{C4,C5, K> + K5} | IS | Split
{Ps} IS | Cograph
{K14} S | Subcubic

Table 4.1: Some well-known graph classes and their characterization in terms of forbidden
structures. In the first column is the set of forbidden structures, in the second column the
relation (S = subgraph, IS = induced subgraph, M = minor), in the third column is the name
of the resulting graph class

If a graph G does not contain a minor isomorphic to H, then G is H-minor free.

Induced minor A graph G contains H as an induced minor if it is possible to obtain H from
G by:

* removing vertices, and

* contracting edges.

If a graph G does not contain an induced minor isomorphic to H, then G is H-induced
minor free.

We can define plenty of well-known graph classes in this manner; see Table 4.1.

4.2 Central graph classes

Trees

A particularly important graph class is that of trees. A graph T is a tree if it is a connected
forest — in other words, for every two vertices there is a unique path which connects them,
and there are no cycles.

A vertex of degree 1 in a tree is called a /eaf. The set of all leaves of a tree 7" is denoted
L(T) = {u € V(T) | degy(u) = 1}. A vertex with higher degree is called an internal vertex.

A tree can be rooted, in which case a vertex r € V(T) is designated as the root. For every
vertex other than the root u € V(T') \ {r} there is a unique path with endpoints « and r;
the neighboring vertex to in this path is called the parent of u. Every neighbor of a vertex
u € V(T) which is not u’s parent, is a child of u. A vertex u € V(T) is an ancestor of a
vertex v € V(T') if u is on the path from v to the root .

The descendants of a vertex u € V(T') is the set of all vertices for which u is an ancestor.
The subtree of u is the graph induced on the vertex v and all its descendants. It is denoted by
T,, and it is naturally rooted in w.

36 4. Graph classes

Chordal graphs

A graph G is chordal if every cycle longer than 3 has a chord, i. e. at least one edge connecting
two non-consecutive vertices in the cycle. An alternative characterization is that chordal
graphs are those which admits a perfect elimination ordering. This is an ordering of the
vertices such that if they are removed from the graph in order, then the neighborhood the
vertex being removed will always induce a complete graph (Fulkerson and Gross, 1965). Yet
another characterization is that a graph is chordal if and only if every minimal separator is a
clique (Dirac, 1961).

Co-comparability graphs

A graph G is a comparability graph if there exists a partial order on V(G) such that and v are
comparable in the partial order if and only if there is an edge uv € F(G). G is a comparability
graph if and only if its complement G is a co-comparability graph.

An alternative characterization of co-comparability graphs is that they are the graphs
which admit a co-comparability ordering. This is an ordering of the vertices uy, us, ..., u,
such that for all integers 4, j, k with 1 < i < j < k < n, we have that u;u;, implies w;u; or
u;uy. In other words, for any edge u,;uy, crossing a vertex u; in the ordering, u; is adjacent to
at least one of the endpoints. Hence, if vertices u; and uy, are on different sides of a vertex u;
in the order, then v, is either in or has a neighbor in every path from wu; to w.

4.3 Graphs in logic

A graph class is merely a predicate on the class of all graphs. It turns out that formal logic
systems such as first- and second order logic is able to capture the world of graphs in a natural
way, and we can express many properties of graphs using such formulae.

The way this is done, is by letting a logic structure M represent the graph G. There are
two common ways to do this, using either MSO; or MSQ,. The logic we expect to use is
hence monadic second-order logic, though there is nothing preventing us from describing a
graph property in first-order logic, for instance assuming the same graph representation as
in MSO;. Regardless of which representation is used, we say that a formula ¢ representing
a graph property is satisfied if M models ¢; for simplicity we denote this by

GFo

since the model M is implicitly given by G. If G models ¢, then G is a member of the
graph class ¢ describes. For a thorough introduction to formal logic and graphs, we refer to
Courcelle and Engelfriet (2012); however, we give a brief overview here.

Representation of graphs in MSO,

A natural way to let a structure M represent a (directed) graph G, is to let the domain of
discourse U be the set of vertices V(G), and let the signature have a single binary relation
adj which Mg gives the following interpretation:

4.3 Graphs in logic 37

* The relation adj is a binary relation indicating whether one vertex is an (out-) neighbor
of another. More precisely, adj(u, v) is Truk if and only if v € Ng(u).

Note that an undirected graph G can be seen as a directed graph where for every edge
wv € E(G), we also have vu € E(G). In other words, G is undirected if

Mg E VuVu(adj(u, v) — adj(v, u))

Both quantifiers in this formula are first-order; we can thus describe the property “the graph
is undirected” in first-order logic.
More generally, the formula

syM(P) = VuVu(P(u,v) = P(v,u))

indicates whether the binary relation P is symmetric. For a graph G to be simple, then the
adjacency relation must be both symmetric and irreflexive (so it has no self-loops). Irreflex-
iveness can also be described as a first-order formula:

IRREF(P) = Yu—P(u,u)
It follows that a graph G is simple if M is a model for the formula:
SimvpLE; = sym(adj) A IRrer(adj)

So far we have used the perspective where we begin with a graph G check it against a
graph property described as a formula . However, it is also possible to have the perspective
where we start from the formula ¢, and want to find a graph G (or a class of graphs) which
satisfies ¢. Since the signature of ¢ contains only a single relation, the number of different
models for ¢ is limited — for each positive integer n, there is a direct correspondence between
directed graphs on n vertices and structures with a universe of size |U| = n. In this way, every
unique model M for ¢ represents a unique graph G.

Examples of MSO; properties

We can express a variety of different properties of graphs using the MSO; signature. For
example, in a (simple) graph G a set I C V(G) is independent if there are no edges between
vertices of /, and a set K’ C V(G) is a clique if every edge between distinct vertices of K is
present. We can define the formulae

IND(X) = VuexVvex—adj(u, v)

CLQ(X) = VuexVvex(—adj(u,v) — u=v)

which respectively indicate whether a set of vertices of X is an independent set or a clique.
We can use these sub-formulae to describe a graph class. For example, a simple graph is
split if its vertices can be divided into two sets K and I such that K is a clique and [is an
independent set. The class of (simple) split graphs may thus be described by the formula

Serit = SimpLE; A AK cy o) cv ey (Vieve (v € K < u e I) ANInp(1) A CLe(K))

38 4. Graph classes

A vertex cover for a simple graph G is a set of vertices X C V(G) such that V(G) \ X is
an independent set. Equivalently, X is a vertex cover if every edge has an endpoint in X. For
a given graph G and non-negative integer k, one might be interested to know whether there
exists a set X of size < k such that X is a vertex cover. We construct the formula

vCp = SIMPLE A 31325 . .. Ja, Vuo(
adj(u,v) 2u=mVo=xVu=xVo=xV...Vu=1xx Vv =umx

)

which describes the class of all graphs which has a vertex cover of size at most k.

Representing graphs in MSO,

A limitation of MSQy, is that we may not quantify over edges. For example, we might want
to express the property that a graph has a Hamiltonian cycle — that is, it contains a set
of edges such that every vertex is incident to exactly two edges, and such that the graph
induced by the edges is connected. Then we probably want to describe the graph property as
a formula 3Fc g()Ham(F), where Ham(F') is a formula checking that the edge set indeed is a
Hamiltonian cycle. Unfortunately, this is not possible in MSOy, since edges are not elements
of the universe, but rather encoded in the relation adj.

A way to remedy this is to let the universe also contain edges, for example by letting Mg
represent the incidence graph of G. It turns out that MSQO, lends itself well for this purpose:
for a graph G, a structure M representing G will have as its universes the sets U; = V(G)
and U, = E(G). Moreover, the interpretation of My will have the following relation:

* The binary relation inc where the first argument is of type vertex and the second ar-
gument is of type edge. For u € V(G) and e € E(G), inc(u, e) indicate whether the
vertex v is incident to the edge e.

Observe that the type of graph which this structure naturally capture, is a undirected multi-
graph with hyper-edges; however we can provide formulae which, if satisfied, restricts the
graph to simpler graphs. We can also introduce direction by adding binary relation tail which
takes as its arguments a vertex v and an edge e, and is Truk if u is the (destination) endpoint
of e.

As before, we can give a formula ensuring that the graph is simple:

SIMPLE; = Veepq)u, vey(e)[u # v Aine(u, e) Aine(v, e)]
A Veep—Iu, v, wev(e[(u # v) A (v # w) A (u # w)
Aine(u, e) Aine(v, e) A ine(w, e)]

A Ve, fer@)Fuey (@)line(u, e) A —ine(y, f)]

The first line of the formula ensures that each edge is incident to at least two vertices; the
second line ensure it is incident to at most two vertices. On the last line it is ensured that all
edges are distinct.

While adjacency is not in the signature of this representation, we can define the open
formula

Api(u,v) = (u # v) A Jecpe)inc(u, e) Alinc(v, e)

4.4 Graph problems 39

which provides the same function. We can also annotate the formula by the argument £, the
set of edges to consider. We get

Apig(u,v) = u # v A ecgine(u, e) Aine(v, e)

Example of MSO, property: Hamiltonian cycle

Let us return to our example of a Hamiltonian cycle. Let us begin by defining a formula
Ham(V, E) which determines whether a subgraph given by V C V(G) and E C E(G) con-
tains a Hamiltonian cycle. Then substituting in V' (G) and E(G) for V' and E respectively will
give our answer. We let

Ham(V, E) = 3FcgIsCycLe(V, F)
where IsCycLe(V, F) is a formula indicating whether the subgraph given by the vertices V'
and the edges F represents a cycle. The formula indicating a cycle is

IsCycLe(V, E) = VueyTwolnc(u, E) A Conn(V, E)

where Twolnc(u, E) indicates whether a vertex u is incident to exactly two edges of F, and
Conn(V, E) indicates whether the subgraph given by vertices V' and edges F' is connected. We
omit defining Twolnc here, as it is analogous to how we ensured that each edge is incident to
two vertices in the formula SimpLE; above. We proceed to give the formula for connectivity:

Conn(V, E) = VXcy[(Fu,vev(u € X Ao ¢ X)) —
(Fu, vey (Apig(u,v) Au € X Av ¢ X))

The formula for connectivity is basically checking that every way of partitioning the vertex
set into two non-empty parts will lead to some edge crossing between the sets — there will
exist two adjacent vertices where one is in X and the other is not. Note that this formulae
for a cycle and for connectivity is also expressible for graphs in MSQO;. The only location
where quantification over edges was actually used, was in the very beginning of the formula
for Hamiltonicity. This concludes the formula for Hamiltonian path.

4.4 Graph problems

A graph problem is a computational task involving a question about graphs. We will only
deal with problems which takes a single graph as input. Since we deal with decision problems,
we can look at such graph problems from a few different perspectives:

A graph decision problem is a yes/no question we can ask about an input graph G.
* A graph decision problem is a predicate P on the class of all graphs; in other words,
we want to compute the truth value P(G) for some input graph G. For example, if

the predicate can be described in MSO; or MSQO,, then the graph problem can be
understood as asking whether the corresponding model satisfies the formula.

* A graph decision problem takes as input a graph G, and ask for a certain graph class G
whether G € G.

Some of our favorite problems to reference are:

40 4. Graph classes

Independent set, vertex cover and clique

For a graph G, a vertex set I C V(G) is called independent if there is no edge in E(G) with
both endpoints in /. Given an integer k£ and a graph G, we can ask whether the graph G
contains an independent set of size (at least) k.

INDEPENDENT SET
Input: A graph G and an integer k.
Question: Does there exist an independent set I C V(G) of size k?

We can think of this problem as computing a function IS, : G — {Trug, FaLse} defined as

True if 31 CV(G)s.t.|I| =kand Ve € E(G)le € 1]

FaLse otherwise

IS, (G) = {

where G is the class of all simple graphs. We can also think of the problem as deciding
whether an input graph G belongs to the graph class ZS, = {G € G | 3] C V(G) s.t. |I| =
kand Ve € E(G)le ¢ I]}.

The dual problem to INnpePENDENT SET is VERTEX CovEr. A vertex set X C V(G) is a
vertex cover if every edge has at least one endpoint in X. Note that if X is a vertex cover,
then V(G) \ X is an independent set and vice versa. Given an integer k and a graph G, we
can ask whether the graph G contains a vertex cover of size (at most) k.

VERTEX COVER
Input: A graph G and an integer k.
Question: Does there exist a vertex cover X C V(G) of size k?

A clique in a graph G is a vertex set X' C V(G) such that every two distinct vertices of K
are neighbors. Given an integer k and a graph G, we can ask whether the graph G contains a
clique of size (at least) k.

CLIQUE
Input: A graph G and an integer k.
Question: Does there exist a clique K C V(G) of size k?

We remark that a graph G contains a clique of size k if and only if the complement graph
G contains an independent set of size k.

Dominating set

If Gisagraphand D C V(@) is a vertex set, then D is called a dominating set if every vertex
in G is either in D or has a neighbor in D. Given an integer k£ and a graph G, we can ask
whether the graph G contains a dominating set of size (at most) .

DOMINATING SET
Input: A graph G and an integer k.
Question: Does there exist a dominating set D C V(G) of size k?

4.4 Graph problems 41

4.4.1 Graph modification problems

Given a certain set of graph modification operations and a graph class G, is it possible to

modify an input graph G with at most & operations such that the modified graph belongs to

G? For example, in the VeErTEX COVER problem our operation of choice is vertex removal,

and we ask: can we remove k vertices from the input graph such that the graph is edgeless?
A multitude of problems can be described this way. Some examples include:

Edit operation Graph class k Problem name

Vertex deletion Edgeless k VERTEX COVER

Vertex deletion Complete n — k | CLIQUE

Vertex deletion Forest k FEEDBACK VERTEX SET
Vertex deletion Bipartite k Opb CycLE TRANSVERSAL
Edge insertion Chordal k MiniMum FiLL-iN

Edge insertion, edge deletion | Union of cliques k CLusTER EDITING

Vertex deletion, edge deletion, | {H} oo | H-mINOR

edge contraction

4.4.2 Locally checkable vertex subset and vertex partitioning problems

Let 0, p C Zs be finite or co-finite! subsets of non-negative integers. For a graph G and a
vertex set X C V(G), we say X is a (o, p)-dominating set if

« for every vertex v € X, o contains the cardinality of its neighborhood in X, i. e. | N (u)N
X| € o;and

« forevery vertex u € V(G) \ X, p contains the cardinality of its neighborhood in X, i. e.
IN(u)NX]| € p.

For example, a ({0}, Z>()-dominating set is an independent set; and a (Z>¢, Z>)-dominating
set is a (standard) dominating set. For each (o, p), we can formulate the minimization, maxi-
mization and existence questions. Recall that the decision version of a minimization (or maxi-
mization) problem provides some target value k along with the input and ask whether the
optimal solution is at most (or at least) the target value. Some examples of (o, p)-problems
are:

o p ? | Problem name
{0} | Z5o | max | INDEPENDENT SET

Z>o | Z>; | min | DOMINATING SET

{0} | Z», | min | MaxiMAL INDEPENDENT SET/INDEPENDENT DOMINATING SET
{0} | {1} | 3 | Pereecr Cobg
{1} | Z>o | max | INDUCED MATCHING

'A co-finite subset of non-negative integers is a set such that there exists a largest integer which is not in
the set.

42 4. Graph classes

The (o, p) problems were introduced by Telle and Proskurowski (1997), and are called
locally checkable vertex subset problems. They can be further generalized to locally check-
able vertex partitioning (LCVP) problems, where one considers a degree constraint matrix
D, which is a ¢ x ¢ matrix whose entries are finite or co-finite subsets of Zx(. A D-partition
of a graph G is a partition of the vertex set into parts V3, V2, ...V, such that for all ¢, j € [g]
and all v € V;, we have |N(u) N'V;| € D]z, j]. For example, if there exists a Ds-partitioning
of a graph for the matrix

{0} Zeo Zxo
Dy = |Z> {0} Zxo
Zso Zso {0}

then the graph is 3-colorable. Furthermore, if we have a degree constraint matrix D, a graph
G, and an integer k, we can ask whether there exists a D-partition of G such that the first
partition V; has cardinality at least (or at most) k. Then the (o, p) problems, including their
maximization and minimization version, can be expressed by the degree constraint matrix:

g Z>0:|

Dy =
(:#) [ﬂ L

Each (o, p) and LCVP problem has a d-value. This is defined as the maximum value con-
tained in a finite set in the degree constraint matrix, or the maximum value not included in a
co-finite set, whichever is highest.

Chapter 5

Graph decompositions and width
parameters

A graph decomposition is a way of dividing different “sections” of a graph into separate
containers, such that the combination of these containers in the appropriate way will form the
full graph. The intuition behind decomposing graphs in this manner, is that saying something
interesting about each part might be easier than saying something about the whole graph —
and if we are able to say something about each part, perhaps we can combine this knowledge
to say something about the whole afterwards.

The idea of breaking a graph into smaller parts, say something about the smaller parts and
then combine the knowledge to say something about the whole, can be applied recursively.
In this case, the decomposition will naturally obtain a tree-like structure.

For example, say that we want to design a divide-and-conquer-algorithm for one of our
old favorites, the INDEPENDENT SET problem based on the following idea:

1. Partition the vertices of G into two parts A, B C V(G).

2. Let X be the set of vertices that has a neighbor in the opposite partition of itself. Then
no vertex in A \ X has a neighbor in B and vice versa.

3. For each independent set Iy € 2%:

(a) Recursively find the best independent sets in A and B whose intersections with
Ix is respectively Iy N A and Ix N B.

(b) Take the union of found independent sets and remember the largest one found.

If f(n) is the runtime of this algorithm on a graph with n vertices, then f(n + 1) can be
bounded by something like O(21X! - f(n) + poly(n)). At the outset this does not seem very
promising, with a horrendous total runtime of 2°("*) lurking at us. Imagine, though, that we
are able to (by a stroke of magic) always partition the graph such that the set X has cardinality
at most some constant w — then at least we bound the runtime to 29" Still, less impressive
than the naive O(2" - poly(n)) algorithm.

We can, however, employ the powerful concept of memoization in order to reduce the
runtime significantly. By memoizing the answers, we only need to compute recursive calls
with the same arguments once. In order for this to significantly speed up computation time,

44 5. Graph decompositions and width parameters

{a,b,c,d,e, [}
{a,b,c} {d,e, f}
{a,b} {e. f}
f {a} {b} {e} @ {f}

1
spundunnnn

1

1

Figure 5.1: Example of a binary decomposition tree for a graph.

we need the number of distinct recursive calls to be relatively small. To obtain this, we require
that the graph is partitioned in exactly the same manner in every recursive call. The way we
consistently partition the graph forms a binary decomposition tree, where each node in the
tree represents a subset of vertices; the two children of a node represents a non-trivial partition
of that vertex set. See Figure 5.1.

By doing this, our binary decomposition tree will have 2n — 1 nodes. Each such node
can be recursively called with at most 2 distinct arguments, and thus the number of dis-
tinct recursive calls is bounded by 2n - 2. The runtime local to each such recursive call is
O(4" - poly(n)) time, leading us to a total runtime of at most O(8" - poly(n)). If w is constant,
this runtime is polynomial! And if w is a parameter, then the algorithm is fixed parameter
tractable.

Of course, finding good decompositions will not always be possible (unless P = NP), and
the structure required to easily combine information about the parts to the whole can differ
across different problems; but in those instances when we can do something like this, we can
get very useful algorithms.

5.1 Branch decompositions and cut functions

In the context of a universal set X, the complement of a subset A C X is the set A = X \ A.
A branch decomposition of a set X is a pair (T, 0) where T is a subcubic tree called a
decomposition tree and § : X — L(T) is a bijection from X to leaves of the tree. Each edge
e € E(T) naturally defines a partition of X; let 7} and T» be the two connected components
in T — e, and define the part A, = {u € V(G) | §(u) € V(T1)}. It follows that A, = {u €
X | §(u) € V(T3)}, and {A,, A.} is a non-trivial partition of X. We call this partition the cut
according to e. The set of all possible branch decompositions of X is denoted Bp(X).

A cut function on a set X is a symmetric' set function f : 2¥ — R, i.e. it holds that
f(X') = f(X \ X') for every X’ € 2%. For a branch decomposition (T,J) on X, and an
edge e € E(T), we let f(e) be a shorthand notation for f(A.), where A, is one part in the cut
according to e. This is well-defined, since f(A.) = f(4,) as f is symmetric.

For a cut function f and a branch decomposition (7,0) on a set X, the f-width of the
branch decomposition is the maximum value of f across all edges of 7', denoted fw(T,d) =

max f(e).

ecE(T)

! The requirement that the cut function is symmetric is not absolute; for example, the cut function for module-
width is not symmetric. For non-symmetric cut functions, it is important that the branch decomposition is rooted
in order for the width to be well-defined.

5.2 Graph algorithms on branch decompositions: an example 45

For a set X, the f-width of X is the minimum f-width of any branch decomposition of

X, denoted fw(X) = (T,ar)lé};lg()() fw(T,).

In order to distinguish vertices of a decomposition tree from vertices of a general graph,
we will call them nodes. This distinction is most useful when the set X originates from a

graph.

5.2 Graph algorithms on branch decompositions:
an example

In the context of graphs, we can consider branch decompositions and cut functions over
either the set of vertices or the set of edges. In order to comply with our independent set
story from the beginning of the chapter, we define as an illustrative example the cut function
ep : 2V — Zy. Let cp(A) denote the cardinality of the smallest set X which contains all
vertices in A with a neighbor in V(G) \ A and also all vertices in V(@) \ A with a neighbor
in A. This set function is clearly symmetric. Let us name it the cosmopolity function, in
honor of those who befriend others across borders; the function describes the number of
“cosmopolitan” vertices.

By this definition of a cut function, we immediately obtain a corresponding notion of
cosmopolity-width of a graph G, denoted as cpw(G).

Given a branch decomposition (7', §) for a graph G (that is, for the vertex set VV(G)) with
cpw(T, §) = w, we can solve INDEPENDENT SET by dynamic programming on the decomposi-
tion tree; this corresponds to the recursive approach we broadly described earlier, but is done
in a bottom-up fashion starting from the leaves.

In order to know which order this is, precisely, we want to make the decomposition tree
rooted. It is also convenient to make each internal vertex have exactly two children. Thus we
pick an internal vertex of degree 2 as the root; if there are none, we subdivide an edge and
make the new vertex the root. We then smooth all other internal degree-2 vertices of 7. Note
that none of these operations will add or remove any partition, since the edges incident to a
degree-2 vertex will both yield the same partition as the resulting edge after smoothing the
vertex. The resulting decomposition tree is a binary decomposition tree.

In the binary decomposition tree, each node u represents a set of vertices in G, namely
those 0 maps to leaf nodes of T;,; let V,, C V(&) denote these vertices. Each node (other than
the root) also represents a cut, namely {V,,,V,} corresponding to the edge to its parent node.
Let X, denote the set of vertices in V,, with a neighbor in V,,; then | X,| < w, where w is the
cosmopolity-width of the decomposition. In our dynamic programming for INDEPENDENT SET,
we store in each node u:

* For each independent set I of G[X,], we store in the memory location dp,[I] the largest
independent set of G[V,,] that contains / and moreover does not contain any vertex of
X\ I

This is trivial to calculate for the leaves, since the graph is then only a singleton vertex. For
an internal node u with children a and b, note that V,, and V}, forms a two-partition of V,,. See
Figure 5.2. For an independent set / C X,,, we calculate dp,[] as follows:

46 5. Graph decompositions and width parameters

Figure 5.2: Venn diagram of relevant vertex sets when calculating the entry dp,[I] for an
internal node u with children a and b.

* Let dp,[I] be equal to the largest union dp,[l,] U dp,[I;] where I, and I, are subset of
respectively X, and X, such that I, U [, is independent and (I, U [,) N X,, = I.

We remark that calculating dp, [I] takes no more than O(4" - poly(n)) time. With less than
2n-2% such entries to fill, the runtime of the dynamic programming algorithm described here
requires O(8" - poly(n)) time. Note that this runtime can be improved to O(4" - poly(n)) by
iterating over I, and I, first and then calculate / in polynomial time.

5.3 Width parameters for branch decompositions

Similarly to how we defined the cosmopolity cut function on the vertex set of graphs, there
are multiple other cut functions which can be defined. We will describe a few such parameters
here.

Carving width

The first width parameter based on branch decompositions of graphs was carving-width in-
troduced by Seymour and Thomas (1994). Here, the cut function yields simply the number of
edges crossing the cut. It is easy to see that the cosmopolity-width as defined in Section 5.2
is upper bounded by twice the carving-width — each edge is incident to only two vertices.
Conversely, if the cosmopolity-width is w,,, then the carving-width is upper bounded by
()2, the maximum number of edges in a bipartite graph with w,, vertices. In other words,

2
cosmopolity-width is bounded on the same graph classes as carving-width.

MM-width

Cosmopolity-width (and carving-width) is good for designing algorithms, and as such it has
a strong analytic power. However, its modelling power is not very good. For instance, a
graph as simple as a star will have a maximum possible cosmopolity-width, which is n;

5.3 Width parameters for branch decompositions 47

any graph class which allow stars, or in fact any graph with a universal vertex, will have
unbounded cosmopolity-width. Since we know how to solve independent set for stars, this
suggest that there might be parameters with a stronger modeling power that also allow us to
solve INnpepENDENT SET in FPT time.

The crucial property of the set X in the context of our INDEPENDENT SET algorithm param-
eterized by cosmopolity-width, is that it is a separator between the vertices A\ X and A\ X.
However, it is overkill to require both X N4 and X N A to be separators; what we really want
is the smallest set X that is a vertex cover for all edges crossing the cut — then that set is a
separator.

If we refine the definition to be this, we end up with maximum matching width, as in-
troduced by Vatshelle (2012). The cut function mm is defined over vertex subsets, mm :
2V — 7, and it gives the size of a maximum matching in the graph induced on the edges
crossing the cut — equivalently, this is the size of a minimum set X which covers all edges
crossing the cut.

This parameter is never further than a factor 3 from the well-known decomposition param-
eter treewidth, which we will briefly introduce later. Thus, it has the same modeling power
and analytic power as treewidth: graph classes such as trees, cactuses, outerplanar graphs and
series-parallel graphs all have mm-width bounded by a constant, and problems such as inde-
pendent set, dominating set, feedback vertex set, Hamiltonian path and graph isomorphism
can be solved in FPT time when mm-width is the parameter.

Rank-width

The rank-width of a graph is defined as the cut function which returns the GF[2]-rank of the
graph G[A, A] where A and A are the partitions of the cut, and G[A, A] is the graph induced
on the edges crossing the cut (Oum and Seymour, 2006). This parameter is shown to be
bounded on the same graph classes as clique-width; this class of graphs is strictly larger than
the class of graphs with bounded mm-width; for example, cliques have constant rank-width,
but unbounded mm-width.

MIM-width

The mim-width of a graph G, is a branch decomposition parameter defined as a cut function
on vertex subsets mim : 2V — Z,, where the cut value is defined as the size of a max-
imum induced matching in the graph induced on the edges crossing the cut. Introduced by
Vatshelle (2012), this parameter has an even better modeling power than rank-width; graph
classes such as interval graphs, permutation graphs, trapezoid graphs and many others have
constant mim-width, even though their rank-width is unbounded.

On the analytic side, mim-width is as expected weaker than mm-width and the other
width parameters higher up in the hierarchy. The most pressing issue is that no XP algo-
rithm for determining mim-width is currently known, and a constant-factor polynomial-time
approximation algorithm is unlikely to exist (unless NP = ZPP, see Sather and Vatshelle
(2016)). However, for some graph classes it is possible to find good decompositions; the
classes mentioned above are just a few such examples.

48 5. Graph decompositions and width parameters

SIM-width

In Chapter 7, we introduce the width parameter sim-width. This cut function is defined as
the maximum induced matching of edges across the cut, but where we have the additional
constraint that no two edges in the matching can be connected by an edge on the same side
of the cut. This parameter has even stronger modeling power than mim-width, and graph
classes such as split, chordal and co-comparability graphs have constant sim-width, even
though their mim-width is unbounded. Moreover, a decomposition with constant sim-width
can be found in polynomial time for the mentioned classes.

The analytic power of sim-width is unfortunately not really strong; since DOMINATING SET
is NP-complete on chordal graphs, we can for example not expect to have an XP-algorithm
for this problem with sim-width as the parameter.

However, we show that certain classes of graphs with bounded sim-width also have
bounded mim-width, thereby extending the realm of graphs for which we can find a bounded
mim-width decompositions.

5.4 Treewidth

Treewidth is a width parameter for graphs that goes longer back than the parameters based
on branch decompositions. It was discovered independently at multiple occasions, most fa-
mously by Robertson and Seymour (1984), and it is arguably the most popular and well-
known width parameter.

The treewidth of a graph is an integer aiming to describe how “tree-like” a graph is; for
example, say that you create a graph by first making a tree on n nodes, and then replace each
node in the tree with a clique of size k; each vertex in such a clique is made neighbor with
each vertex in the “neighboring” cliques (in other words, the vertices in two neighboring
cliques forms a larger clique of size 2k). The intuition is that if n is much larger than &, then
the graph will be quite tree-like at a distance, even though it actually contains hordes of
cycles. The treewidth of this strange graph is exactly 2k — 1. And more importantly: every
subgraph of such a graph will also have treewidth at most 2k — 1.

Another way that a graph can be “tree-like,” is if the graph is made by first having a
normal tree on n vertices, and then adding % vertices with an arbitrary neighborhood — for
example, adding % universal vertices. This graph is also quite similar to a tree, since such a
huge part of the graph is only a tree. The treewidth of such a graph, and all its subgraphs, is
atmost k + 1.

We describe a third way to be “tree-like”. Observe first that a tree is a graph which can be
constructed as follows: start with a single vertex, and repeatedly add one vertex to the graph;
the new vertex must pick exactly one neighbor from the older vertices to connect to. Now,
imagine that instead of starting with a single vertex, we start with a complete graph of size
k + 1; we then add one vertex at a time, and the new vertex must choose a clique of size k
as its neighborhood. The graphs which are constructed like this are called k-trees, and have
treewidth k. In fact, the class of subgraphs of k-trees (called partial k-trees) is exactly the
class of graphs with treewidth at most k.

More commonly, treewidth is defined as follows. A tree decomposition for a graph G is a

5.5 Graph grammars and clique-width 49

pair (T, x) where T is a tree and x = { X, },ev(r) is a set of bags, where each bag X; C V(G)
is a set of vertices related to a node ¢t € V(7'). Furthermore, the following requirements hold:

* For each vertex u € V(G), there exists a node ¢ € T such that its bag X, contains u.

* For each edge uv € F(G), there exists a node ¢ € T such that its bag X; contains both
wand v.

* For each vertex u € V(G), the set T, = {t € V(T) | v € X,} induce a connected
subgraph in 7. In other words, the nodes which an arbitrary vertex « is related to are
connected.

The width of a tree decomposition is the cardinality of its largest bag minus one, i.e.
w(T,x) = maxx,e, | X;| — 1.2 The treewidth of a graph G is the smallest width of any tree
decomposition for G.

5.5 Graph grammars and clique-width

The width measure that became known as clique-width was introduced by Courcelle et al.
(1993). The context in which this parameter is born, is that of grammars for graphs; in this
area, a class of graphs is that which can be generated by a certain set of rules for combining
and transforming graphs.

Consider for example the class of cographs. This class is defined by three rules as follows:

» The graph K7, i.e. an isolated vertex u, is a cograph.
* If G and H are cographs, then their disjoint union G + H is a cograph.

» If G and H are cographs, then the complete join G @ H is a cograph. The complete join
of two graphs GG and H is obtained by first taking their disjoint union, and then adding
every edge between vertices of G and vertices of H.

Graphs which are generated by grammars like this, have a natural decomposition tree,
where the leafs are the “basic” graphs defined to belong in the class (in the case of cographs,
each leaf represents a K7). Internal nodes will have a type, depending on which rule for
combining or transformation was used (for cographs, each internal node is either of type
disjoint union or of type complete join). They also have an expression. See Figure 5.3.

21 is subtracted in order for trees to have tree-width 1

‘ ®

, @ _®
®

: ®

Figure 5.3: A cograph decomposition tree depicting the expression a ® (b + ¢).

50 5. Graph decompositions and width parameters

The class of graphs with clique-width at most & are generated similarly; they have a k-
expression and a k-decomposition tree. The generation rules are slightly different, however,
and during the creation process, each vertex is annotated with one of k labels; these labels are
only significant in the construction and decomposition of the graph. We call a graph whose
vertices are labeled by one of k labels, and which is constructed according to the rules below
a k-graph. The rules are:

* Anisolated vertex u with the label i € [£] is a k-graph. The k-expression for this graph
is i(u).

» If G and H are k-graphs, then their disjoint union G + H is a k-graph.

» If G is a k-graph and i, j € [k] are two distinct labels, then the graph where all edges
between vertices labeled ¢ and vertices labeled j are added to G is also a k-graph. This
graph is denoted 7; ;(G).

» If G is a k-graph and i, j € [k] are two distinct labels, then the graph where all vertices
with label ¢ are relabeled to label j is a k-graph. This graph is denoted p; ;(G).

The class of cographs is exactly the class of graphs with clique-width at most 2. As such,
the class of graphs with clique-width at most & is a generalization of cographs, similarly to
how treewidth is a generalization of trees.

5.6 Algorithmic meta-theorems

5.6.1 Courcelle’s theorem

Width parameters treewidth and clique-width have been shown to have a good analytical
power; there are FPT parameters for many problems when these width measures are the pa-
rameters. A very powerful meta-theorem in this regard is Courcelle’s theorem, which comes
in two versions: one for treewidth (shown by Courcelle (1990); here in the words of Downey
and Fellows (2013)) and one for clique-width (Courcelle et al., 2000):

* Given a graph G and a formula ¢ in (counting) MSO;, logic describing a graph property
of interest, and parameterizing by the combination of tw(G) (the treewidth of) and
the size of the formula ¢, it can be determined in time f(tw(G) + |¢|) - n®1) whether
G has the property of interest.

» Given a graph G and a formula ¢ in (counting) MSO; logic describing a graph property
of interest, and parameterizing by the combination of cw(G) (the clique-width of G)
and the size of the formula ¢, it can be determined in time f(cw(G)+|p|)-n®") whether
G has the property of interest.

While the dependency on the graph size in both cases is actually /inear when the decom-
position is given, the function f contains a tower of exponentials whose height is bounded
by the width and ¢ (Frick and Grohe, 2004).

5.6 Algorithmic meta-theorems 51

5.6.2 Locally checkable vertex subset and vertex partitioning problems

Telle and Proskurowski (1997) gave an FPT-algorithm for LCVP problems (recall Section
4.4.2) on graphs whose treewidth are bounded by k, with &, ¢ and d as structural parameters;
the runtime is of the form O(f (k, ¢, d)-n). This runtime is linear in n, the number of vertices in
an input graph. Their algorithm also works for minimizing or maximizing a certain partition.
Since LCVP problems usually can be expressed in (counting) MSO1, the main contribution
of this result is that the dependency on £ is far better than what Courcelle’s theorem can
provide; f has complexity (¢d?)°™, which is singly exponential in k.

Continuing the work on LCVP problems, Bui-Xuan et al. (2013) gives an algorithm
for graphs with bounded Boolean-width, whose runtime is O(n* - 20(4*)) where w is the
structural parameter Boolean-width. We have not introduced Boolean-width here, but Vat-
shelle (2012) (see also Belmonte and Vatshelle (2013)) showed that it is upper bounded by
mimw - log, n. It follows that LCVP problems can be solved in XP time when mim-width is
the parameter.

In his thesis, Vatshelle (2012) strengthens the result by refining the runtime analysis for
mim-width, finding that it is actually n®®) when w is the mim-width of a provided branch
decomposition.

52

5. Graph decompositions and width parameters

Chapter 6

Overview of Part 11

In the upcoming part of the thesis, we present four papers which are approaching NP-hard
graph problems with the perspective of exploiting structures in order to provide polynomial-
time algorithms.

A width parameter useful for chordal and co-comparability graphs

In Chapter 7 we find the article (Kang et al., 2017). The background for this paper is that
LCVP problems are known to have XP-algorithms when a branch decomposition of bounded
mim-width is provided (Vatshelle, 2012). It follows that any algorithm which takes as input
a graph from a graph class G and produce a branch decomposition for that graph with mim-
width ¢ in XP time, will also yield an XP-algorithm for any LCVP problem for that graph
class, with ¢ as the parameter.

This is exactly what we do in this paper. First, we consider G as the class of chordal graphs,
and a structural parameter ¢ defined as the smallest integer such that a graph is K, B K,-free.
The graph K, B K, is the disjoint union of a complete graph and an edgeless graph both on
k vertices which are then joined by a perfect matching. For K, B K,-free chordal graphs, we
show how to provide a branch decomposition of mim-width at most ¢ — 1; this yields a n®®
algorithm for any fixed LCVP problem on the class of chordal graphs.

Similarly, we show that any LCVP problem can be solved in n°®® time on the class of
co-comparability graphs, where the parameter ¢ is defined as the smallest integer such that a
graph is K, H K-free (the graph K, 3 K, is the disjoint union of two complete graphs of size
k joined by a perfect matching).

To generalize these results further, we introduce a new width parameter called special
induced matching-width, abbreviated to sim-width. We show that this parameter is constant
for the class of chordal graphs and the class of co-comparability graphs, and for these classes
we can also quickly find a branch decomposition with sim-width 1. Since the LCVP problem
DoMINATING SET is NP-hard on chordal graphs, we can not hope to solve LCVP problems in
polynomial time on the class of graphs with bounded sim-width. However, bounding it might
allow us to use other parameters which would otherwise be insufficient — for instance the
parameter ¢ as described above (note that planar graphs are both K5 B K;5-free and K5 B K;-
free, yet DomiNATING SET is still NP-hard; hence, being { K, B K;, K, B K, }-free is not itself
sufficient to yield XP-algorithms for LCVP problems with the parameter t).

54 6. Overview of Part 11

We show that given a branch decomposition with sim-width w for a graph G which is
K, B K, and K, B K,-free, then the same decomposition has mim-width O(wt?).

Mim-width III. Graph powers and generalized distance domination problems

Chapter 8 contains the article (Jaftke et al., 2019). In this paper we investigate the generaliza-
tion of LCVP problems to their distance versions. For example, in the distance-r version of
InpePENDENT SET, the distance between two “independent” vertices must be at least r, and in
the distance-r version of DomiNATING SET, a dominator can dominate all vertices at distance
r or closer. We show that the distance-r versions of the LCVP problems are still in XP when
the mim-width of a provided branch decomposition is the parameter. The main result is a
purely structural one, namely that taking an arbitrary large graph power does not increase
the mim-width by more than a factor 2. Since a distance-r LCVP problem is equivalent to
the non-distance version on the v graph power, the claim follows.

We complement these findings by showing that many (o, p) problems are W[1]-hard pa-
rameterized by mim-width + solution size, even in their non-distance versions.

In chapters 7 and 8, our common theme is that we show how a certain graph class is con-
tained in a different graph class for which we have good algorithms; we show that the class
of {K; B K;, K, B K, }-free graphs with bounded ¢ and constant sim-width is contained in
the class of graphs with bounded mim-width, and we show that the class of graph powers
of graphs with constant mim-width also has constant mim-width (albeit for different con-
stants). In the final two chapters we obtain algorithmic consequences slightly differently, by
providing algorithms directly.

Subgraph Complementation

Chapter 9 contains the paper (Fomin et al., 2020). Here, we investigate a tool for modifying
graphs called a subgraph complement. A subgraph complement for a graph G entails picking
a vertex set X C V(@) and complementing all adjacencies within the set X. The graph
G @& X denotes the graph where a subgraph complement has been performed on the vertex
set X C V(@) in the graph G.

Given as input a graph G and for a constant graph class G, we ask whether we can modify
G with a subgraph complement to become a member of G. Subgraph complementation is
a generalization of adding or removing an edge, so clearly we can create any graph on the
same number of vertices by applying this modification repeatedly; however, it is not obvi-
ous how many applications are needed. Is it sufficient with only a single application of the
modification?

We show that this question can be answered in polynomial time for many choices of graph
class G, such as triangle-free, d-degenerate, cographs, and split graphs. For triangle-free and
d-degenerate graph classes we provide novel algorithms.

We also show that the clique-width of a graph does not increase by more than a factor
3 when applying a subgraph complement, and that any MSO; property can be extended to
encompass those graphs which has a subgraph complement with the original property —
this yields algorithmic consequences due to Courcelle’s theorem for all classes G that has
bounded clique-width and can be expressed in MSOy ; for example cographs.

55

Similarly, we show that for every graph property P which can be described as a k& x k
M -partition, there exists a 2k x 2k M-partition describing the property that a graph has a
subgraph complement with property P. Due to existing algorithmic results for 4 x 4 M-
partitions, this yields polynomial algorithms for any property which can be described as a
2 x 2 M -partition; for example split graphs.

Finally, we give a NP-hardness proof for the case when G is the class of regular graphs.

Time-inconsistent planning: simple motivation is hard to find

In Chapter 10 we provide an extended version of (Fomin and Stremme, 2020). The back-
ground for this paper is the time-inconsistent planning model due to Kleinberg and Oren
(2018). In this model, an agent exhibiting present bias is moving through a weighted acyclic
digraph, hoping to pick up a reward at the end of their path; they will move along the cheap-
est perceived path towards the target. Edge weights indicate how costly it is for the agent
to move along the given edge. However, the agent continuously evaluate the path with a
present bias, giving undue salience to the immediate next edge compared to later edges in
the path; this cause the agent to behave irrationally, and change their path as they go. The
model capture behaviors such as procrastination and abandonment.

If the agent at some point perceives the cheapest path to the target as costlier than the
reward, they give up. In order to motivate the agent to finish, Kleinberg and Oren demonstrate
that it in some cases is possible to remove edges and vertices from the graph such that the
agent will not go to the point where they give up in the first place. This operation can be
interpreted as a form of choice reduction, which psychological research also confirms to be
beneficial with respect to completing tasks and making good choices.

This begs the question, which edges and vertices should we remove in order that a biased
agent will reach the target? This is the problem of finding a motivating subgraph. Whilst
shown to be NP-hard in the general case (Tang et al., 2017; Albers and Kraft, 2019), we
consider the problem from a structural perspective: are there any structural properties of the
target subgraph which we can exploit to find good algorithms?

As a first step, we show that deciding whether there exists a path which is motivating for
the agent can be done in linear time; we give a dynamic programming algorithm over the
topological order of the input graph for this. The requirement that the motivating subgraph
is a path is, however, a very strong structural requirement; it is the very simplest scenario we
can possibly imagine. We therefore try to allow the subgraph we look for to be slightly more
complicated: we allow it to contain a single vertex with out-degree 2, and a single vertex
with in-degree 2. Unfortunately, we show that the problem is NP-hard already in this case.

However, we do not give up; since the NP-hardness reduction was from SUBSET suwm,
which is only weakly NP-complete, there is still the hope that there exists a pseudo-polynomial
algorithm when we allow a single vertex with out-degree 2. We show that this is indeed the
case: if we allow the motivating subgraph to contain a constant & vertices whose out-degree
is two or more, we scale up all weights and the reward to become integers, and we let W de-
note the reward, then we give an algorithm which solves the motivating subgraph problem in
(nW)©®*) time. Hence, the pseudo-polynomial algorithm is XP parameterized by the number
of vertices with out-degree 2 or more in the solution.

56

6. Overview of Part II

Bibliography

Albers, S. and D. Kraft (2019). Motivating time-inconsistent agents: A computational ap-
proach. Theory of Computing Systems 63(3), 466—487. 55

Belmonte, R. and M. Vatshelle (2013). Graph classes with structured neighborhoods and
algorithmic applications. Theoretical Computer Science 511, 54 — 65. Exact and Parame-
terized Computation. 51

Bui-Xuan, B., J. A. Telle, and M. Vatshelle (2013). Fast dynamic programming for lo-
cally checkable vertex subset and vertex partitioning problems. Theoretical Computer
Science 511, 66-76. 51

Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC *71, New York, NY, USA,
pp. 151-158. ACM. 6, 26, 28

Cook, S. A. and R. A. Reckhow (1973). Time bounded random access machines. Journal
of Computer and System Sciences 7(4), 354 —375. 7

Copeland, B. J. (2019). The church-turing thesis. In E. N. Zalta (Ed.), The Stanford Ency-
clopedia of Philosophy (Spring 2019 ed.). Metaphysics Research Lab, Stanford University.
23

Courcelle, B. (1990). The monadic second-order logic of graphs. i. recognizable sets of finite
graphs. Information and computation 85(1), 12-75. 50

Courcelle, B. and J. Engelfriet (2012). Graph structure and monadic second-order logic: a
language-theoretic approach, Volume 138. Cambridge University Press. 36

Courcelle, B., J. Engelftriet, and G. Rozenberg (1993). Handle-rewriting hypergraph gram-
mars. Journal of Computer and System Sciences 46(2), 218 —270. 49

Courcelle, B., J. A. Makowsky, and U. Rotics (2000). Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems 33(2), 125—
150. 50

Cygan, M., F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh (2015). Parameterized algorithms, Volume 4. Springer. 30, 32

De Mol, L. (2019). Turing machines. In E. N. Zalta (Ed.), The Stanford Encyclopedia of
Philosophy (Winter 2019 ed.). Metaphysics Research Lab, Stanford University. 24

58 BIBLIOGRAPHY

Diestel, R. (2017). Graph theory (5rd ed.), Volume 173 of Graduate Texts in Mathematics.
Springer. 19

Dirac, G. A. (1961). On rigid circuit graphs. In Treatises from the Mathematical Seminar at
the University of Hamburg, Volume 25, pp. 71-76. Springer. 36

Downey, R. G. and M. R. Fellows (1992). Fixed-parameter tractability and completeness.
Congressus Numerantium, 161-161. 31

Downey, R. G. and M. R. Fellows (2012). Parameterized complexity. Springer Science &
Business Media. 30, 32

Downey, R. G. and M. R. Fellows (2013). Fundamentals of parameterized complexity, Vol-
ume 4. Springer. 50

Fomin, F. V., P. A. Golovach, T. J. F. Stremme, and D. M. Thilikos (2020). Subgraph com-
plementation. Algorithmica. 54

Fomin, F. V. and T. J. F. Stremme (2020). Time-inconsistent planning: simple motiavtion is
hard to find. In Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI).
55

Fredman, M. L. (1975). On computing the length of longest increasing subsequences. Dis-
crete Mathematics 11(1),29 —35. 13

Frick, M. and M. Grohe (2004). The complexity of first-order and monadic second-order
logic revisited. Annals of Pure and Applied Logic 130(1), 3 —31. Papers presented at the
2002 IEEE Symposium on Logic in Computer Science (LICS). 50

Fulkerson, D. and O. Gross (1965). Incidence matrices and interval graphs. Pacific journal
of mathematics 15(3), 835-855. 36

Jaffke, L., O. Kwon, T. J. F. Stremme, and J. A. Telle (2019). Mim-width iii. graph powers
and generalized distance domination problems. Theoretical Computer Science 796,216 —
236. 54

Kang, D. Y., O. Kwon, T. J. F. Stremme, and J. A. Telle (2017). A width parameter useful
for chordal and co-comparability graphs. Theoretical Computer Science 704, 1-17. 53

Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of computer
computations, pp. 85—103. Springer. 28

Kleinberg, J. and S. Oren (2018, February). Time-inconsistent planning: A computational
problem in behavioral economics. Communications of the ACM 61(3), 99-107. 55

Levin, L. A. (1973). Universal sequential search problems. Problemy peredachi informat-
sii 9(3), 115-116. 6, 26

Neumann, J. v. (1945). First draft of a report on the edvac. Technical report. 7

BIBLIOGRAPHY 59

Oum, S. and P. Seymour (2006). Approximating clique-width and branch-width. Journal of
Combinatorial Theory, Series B 96(4), 514-528. 47

Papadimitriou, C. H. (1997). Np-completeness: A retrospective. In International Colloquium
on Automata, Languages, and Programming, pp. 2—6. Springer. 26

Robertson, N. and P. Seymour (1984). Graph minors. iii. planar tree-width. Journal of
Combinatorial Theory, Series B 36(1), 49 — 64. 48

Sether, S. H. and M. Vatshelle (2016). Hardness of computing width parameters based on
branch decompositions over the vertex set. Theoretical Computer Science 615, 120—125.
47

Sedgewick, R. and K. Wayne (2011). Algorithms. Addison-wesley professional. 9

Seymour, P. D. and R. Thomas (1994). Call routing and the ratcatcher. Combinatorica 14(2),
217-241. 46

Sipser, M. (2012). Introduction to the Theory of Computation. Cengage Learning. 23, 24
Stoll, R. R. (1979). Set theory and logic. Courier Corporation. 17

Tang, P., Y. Teng, Z. Wang, S. Xiao, and Y. Xu (2017). Computational issues in time-
inconsistent planning. In Proceedings of the 31st AAAI Conference on Artificial Intelli-
gence (AAAI). 55

Telle, J. A. and A. Proskurowski (1997). Algorithms for vertex partitioning problems on
partial k-trees. SIAM Journal on Discrete Mathematics 10(4), 529-550. 42, 51

Turing, A. M. (1937). On computable numbers, with an application to the entscheidungsprob-
lem. Proceedings of the London mathematical society 2(1), 230-265. 24

Turing, A. M. (1950, 10). I.—Computing Machinery and Intelligence. Mind LIX(236),
433-460. 4

Vatshelle, M. (2012). New width parameters of graphs. 47, 51, 53

Walicki, M. (2016). Introduction to Mathematical Logic: Extended Edition. World Scientific
Publishing Company. 18

60

BIBLIOGRAPHY

Part 11

Publications

Chapter 7

A width parameter useful for chordal
and co-comparability graphs

Dong Yeap Kang, O-joung Kwon, Torstein J. F. Stremme and Jan Arne Telle. In Theoretical
Computer Science, Volume 704, 2017, Pages 1-17.

This paper is reprinted from the publication available with DOI 10.1016/j.tcs.2017.09.006.
All rights remain with the authors and editors.

A preliminary version appeared in WALCOM 2017, LNCS 10167, Pages 93-105, 2017,
and is available online with DOI 10.1007/978-3-319-53925-6_8.

64

7. A width parameter useful for chordal and co-comparability graphs

65

A width parameter useful for chordal and
co-comparability graphs

Dong Yeap Kang*!, O-joung Kwon'2, Torstein J. F. Strgmme?, and Jan Arne
Telle?

lDepartment of Mathematical Sciences, KAIST, Daejeon, South Korea.
2Logic and Semantics, Technische Universitit Berlin, Berlin, Germany.
3Department of Informatics, University of Bergen, Norway.

Abstract

Belmonte and Vatshelle (TCS 2013) used mim-width, a graph width parameter bounded
on interval graphs and permutation graphs, to explain existing algorithms for many domination-
type problems on those graph classes. We investigate new graph classes of bounded mim-
width, strictly extending interval graphs and permutation graphs. The graphs K; HK; and
K; B, are graphs obtained from the disjoint union of two cliques of size ¢, and one clique
of size t and one independent set of size ¢ respectively, by adding a perfect matching. We
prove that :

e interval graphs are (K3 BS3)-free chordal graphs; and (K; B S;)-free chordal graphs
have mim-width at most ¢ — 1,

e permutation graphs are (K3 B K3)-free co-comparability graphs; and (K; B K;)-free
co-comparability graphs have mim-width at mostz — 1,

e chordal graphs and co-comparability graphs have unbounded mim-width in general.

We obtain several algorithmic consequences; for instance, while MINIMUM DOMINATING
SET is NP-complete on chordal graphs, it can be solved in time n7®) on (K, BS,)-free
chordal graphs. The third statement strengthens a result of Belmonte and Vatshelle stating
that either those classes do not have constant mim-width or a decomposition with constant
mim-width cannot be computed in polynomial time unless P = NP.

We generalize these ideas to bigger graph classes. We introduce a new width parameter
sim-width, of stronger modelling power than mim-width, by making a small change in the

*Supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
(No. NRF-2017R1A2B4005020) and also by TJ Park Science Fellowship of POSCO TJ Park Foundation.

Supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (ERC consolidator grant DISTRUCT, agreement No. 648527).

OE-mail addresses: dynamical@kaist.ac.kr (D. Kang), ojoungkwon@gmail.com (O. Kwon),
torstein.stromme@ii.uib.no (T. Strgmme), Jan.Arne.Telle@uib.no (J. A. Telle).
An extended abstract appeared in the proceedings of 11th International Workshop on Algorithms and Computation,
2017.

66 7. A width parameter useful for chordal and co-comparability graphs

definition of mim-width. We prove that chordal graphs and co-comparability graphs have
sim-width at most 1. We investigate a way to bound mim-width for graphs of bounded sim-
width by excluding K; HK; and K; HS; as induced minors or induced subgraphs, and give
algorithmic consequences. Lastly, we show that circle graphs have unbounded sim-width,
and thus also unbounded mim-width.

1 Introduction

The study of structural graph “width” parameters like tree-width and clique-width have been
ongoing since at least the 1990’s, and their algorithmic use has been steadily increasing [9].
A parallel and somewhat older field of study gives algorithms for special graph classes, such
as chordal graphs and permutation graphs. Since the introduction of algorithms based on tree-
width, which generalized algorithms for trees and series-parallel graphs, these two fields have
been connected. Recently the fields became even more intertwined with the introduction of
mim-width in 2012 [32], which yielded generalized algorithms for quite large graph classes. In
the context of parameterized complexity a negative relationship holds between the modelling
power of graph width parameters, i. e. what graph classes have bounded parameter values, and
their analytical power, i. e. what problems become FPT or XP. For example, the family of graph
classes of bounded width is strictly larger for clique-width than for tree-width, while under
standard complexity assumptions the class of problems solvable in FPT time on a decomposition
of bounded width is strictly larger for tree-width than for clique-width. For a parameter like
mim-width its algorithmic use must therefore be carefully evaluated against its modelling power,
which is much stronger than clique-width. A common framework for defining graph width
parameters is by branch decompositions over the vertex set. This is a natural hierarchical
clustering of a graph G, represented as an unrooted binary tree 7 with the vertices of G at its
leaves. Any edge of the tree defines a cut of G given by the leaves of the two subtrees that result
from removing the edge from 7. Judiciously choosing a cut-function to measure the complexity
of such cuts, or rather of the bipartite subgraphs of G given by the edges crossing the cuts, this
framework then defines a graph width parameter by a minmax relation, minimum over all trees
and maximum over all its cuts. Restricting T to a path with added leaves we get a linear variant.
The first graph parameter defined this way was carving-width [29], whose cut-function is simply
the number of edges crossing the cut, and whose modelling power is weaker than tree-width.
The carving-width of a graph G is thus the minimum, over all such branch decomposition trees,
of the maximum number of edges crossing a cut given by an edge of the tree. Several graph
width parameters have been defined this way. For example the mm-width [32], whose cut
function is the size of the maximum matching and has modelling power equal to tree-width;
and the rank-width [25], whose cut function is the GF[2]-rank of the adjacency matrix and has
modelling power equal to clique-width.

This framework was used by Vatshelle in 2012 [32] to define the parameter mim-width
whose cut function is the size of the maximum induced matching of the graph crossing the cut.
Note that low mim-width allows quite complex cuts. Carving-width one allows just a single edge,
mm-width one a star graph, and rank-width one a complete bipartite graph with some isolated
vertices. In contrast, mim-width one allows any cut where the neighborhoods of the vertices
in a color class can be ordered linearly w.r.t. inclusion. The modelling power of mim-width
is much stronger than clique-width. Belmonte and Vatshelle showed that interval graphs and
permutation graphs have linear mim-width at most one, and circular-arc graphs and trapezoid

67

o ' S

Figure 1: KsHS5 and K5 HKs.

graphs have linear mim-width at most two [3] !, whereas the clique-width of such graphs can be
proportional to the square root of the number of vertices. With such strong modelling power
it is clear that the analytical power of mim-width must suffer. The cuts in a decomposition of
constant mim-width are too complex to allow FPT algorithms for interesting NP-hard problems.
Instead, what we can get is XP algorithms, for the class of LC-VSVP problems [8] - locally
checkable vertex subset and vertex partitioning problems - defined in Section 2.4. For classes of
bounded mim-width this gives a common explanation for many classical results in the field of
algorithms on special graph classes.

In this paper we extend these results on mim-width in several ways. Firstly, we show that
chordal graphs and co-comparability graphs have unbounded mim-width, thereby answering a
question by Belmonte and Vatshelle [3], and giving evidence to the intuition that mim-width
is useful for large graph classes having a linear structure rather than those having a tree-like
structure. Secondly, by excluding certain subgraphs, like K; HS; obtained from the disjoint
union of a clique of size ¢t and an independent set of size ¢ by adding a perfect matching, we
find subclasses of chordal graphs and co-comparability graphs for which we can nevertheless
compute a bounded mim-width decomposition in polynomial time and thereby solve LC-VSVP
problems. See Figure 1 for illustrations of K; HS;. Note that already for K3 HS3-free chordal
graphs the tree-like structure allowed by mim-width is necessary, as they have unbounded linear
mim-width. Thirdly, we introduce sim-width, of modelling power even stronger than mim-width,
and start a study of its properties.

The graph width parameter sim-width is defined within the same framework as mim-width
with only a slight change to its cut function, simply requiring that a special induced matching
across a cut cannot contain edges between any pair of vertices on the same side of the cut. This
exploits the fact that a cut function for branch decompositions over the vertex set of a graph need
not be a parameter of the bipartite graph on edges crossing the cut. The cuts allowed by sim-
width are more complex than for mim-width, making sim-width applicable to well-known graph
classes having a tree-like structure. We show that chordal graphs and co-comparability graphs
have sim-width one and that these decompositions can be found in polynomial time. See Figure 2
for an inclusion diagram of some well-known graph classes illustrating these results. Since
LC-VSVP problems like MINIMUM DOMINATING SET are NP-complete on chordal graphs we
cannot expect XP algorithms parameterized by sim-width. However, for graphs of sim-width w,
when excluding subgraphs K; HK; or K; HS;, either as induced subgraphs or induced minors,
we get graphs of bounded mim-width. The induced minor relation is natural since graphs of
bounded sim-width are closed under induced minors, which might be of independent interest
when taking the structural point of view. We show that by the alternate parametrization w + ¢ the
LC-VSVP problems are solvable in XP time on graphs excluding K; HK; or K; HS;, when given
with a decomposition of sim-width w. The class of circle graphs is one of the classes listed

'In [3], all the related results are stated in terms of d-neighborhood equivalence, but in the proof, they actually
gave a bound on mim-width or linear mim-width.

68 7. A width parameter useful for chordal and co-comparability graphs

(2,2)-interval

comparability

‘ weakly chordal ‘

distance hereditary

\”
threshold

Figure 2: Inclusion diagram of some well-known graph classes. (I) Classes where clique-width
and rank-width are constant. (II) Classes where mim-width is constant. (III) Classes where
sim-width is constant. (IV) Classes where it is unknown if sim-width is constant. (V) Classes
where sim-width is unbounded.

in [3] where either graphs in the class do not have constant mim-width, or it is NP-complete to
find such a decomposition. Using a technique recently introduced by Mengel [24] we prove that
sim-width of circle graphs is unbounded, which implies that mim-width of circle graphs is also
unbounded.

Let us mention some more related work. Golovach et al. [18] applied linear mim-width in
the context of enumeration algorithms, showing that all minimal dominating sets of graphs of
bounded linear mim-width can be enumerated with polynomial delay using polynomial space.
The graph parameter mim-width has also been used for knowledge compilation and model
counting in the field of satisfiability [7, 27, 15]. The LC-VSVP problems include the class
of domination-type problems known as (¢, p)-DOMINATION problems, whose intractability
on chordal graphs is well known [6]. For two subsets of natural numbers o,p a set S of
vertices is called (o, p)-dominating if for every vertex v € S, |SNN(v)| € o, and for every v & S,
[SAN(v)| € p. Golovach et al. [17] showed that for fixed o, p the problem of deciding if a
given chordal graph has a (o, p)-dominating set, is NP-complete whenever there exists at least
one chordal graph containing more than one (o, p)-dominating set, as this graph can then be
used as a gadget in a reduction. Golovach, Kratochvil, and Suchy [19] extended these results to
the parameterized setting, showing that the existence of a (o, p)-dominating set of size k, and at
most k, are W[1]-complete problems when parameterized by k for any pair of finite sets ¢ and
p. In contrast, combining our bounds on mim-width and algorithms of Bui-Xuan, Telle, and
Vatshelle [8] we obtain the following.

Theorem 1.1. Ler t > 2 be an integer. Given an n-vertex (K; B S;)-free chordal graph or an

n-vertex (K, B K;)-free co-comparability graph, every fixed LC-VSVP problem can be solved in
; o(r)

time n®\",

69

As a specific example, we show that MINIMUM DOMINATING SET can be solved in time
O(n**4) and ¢-COLORING can be solved in time O(gn#**). We note that given an n-vertex
graph, one can test in time ¢&(n*') whether it contains an induced subgraph isomorphic to K; 3.5,
or not. Therefore, a membership testing for (K; 5 S;)-free chordal graphs and the algorithm
in Theorem 1.1 can be applied in time n?(*). The same argument holds for (K; B K;)-free
co-comparability graphs.

The remainder of this paper is organized as follows. Section 2 contains all the necessary
notions required for our results. In Section 3, we prove that chordal graphs have sim-width
at most 1 and mim-width at most r — 1 if they are (K; BS;)-free. Similarly we show that co-
comparability graphs have linear sim-width at most 1 and linear mim-width at most # — 1 if they
are (K; BK;)-free. We provide polynomial-time algorithms to find such decompositions, and
discuss their algorithmic consequences for LC-VSVP problems. We also show that chordal
graphs and co-comparability graphs have unbounded mim-width. In Section 4, we bound the
mim-width of graphs of sim-width w that do not contain K; HK; and K; HS; as induced subgraphs
or induced minors, and give algorithmic consequences. We also show that graphs of bounded
sim-width are closed under induced minors. Lastly, we show in Section 5 that circle graphs have
unbounded sim-width. We finish with some research questions related to sim-width in Section 6.

After our result appeared on arXiv June 2016, Mengel [24] obtained an asymptotically tight
lower bound of mim-width on chordal graphs.

2 Preliminaries

In this paper, all graphs are finite and simple. We denote the vertex set and edge set of a graph G
by V(G) and E(G), respectively. Let G be a graph. For a vertex v of G, we denote by Ng(v) the
set of neighbors of vin G. For v € V(G) and X C V(G), we denote by G — v the graph obtained
from G by removing v, and denote by G — X the graph obtained from G by removing all vertices
in X. For e € E(G), we denote by G — e the graph obtained from G by removing e, and denote by
G /e the graph obtained from G by contracting e. For a vertex v of G with exactly two neighbors
v1 and v, that are non-adjacent, the operation of removing v and adding the edge v,v; is called
smoothing the vertex v. For X C V(G), we denote by G[X] the subgraph of G induced by X. A
clique in G is a set of vertices of G that are pairwise adjacent, and an independent set in G is
a set of vertices that are pairwise non-adjacent. A set of edges {viwi,vaws,...,vuwn} of G is
called an induced matching in G if there are no other edges in G[{vi,...,Vm, Wi,...,Wn}.

For sets R and C, an (R, C)-matrix is a matrix whose rows and columns are indexed by R and
C, respectively. For an (R,C)-matrix M, X C R, and Y C C, let M[X,Y] be the submatrix of M
whose rows and columns are indexed by X and Y, respectively. For a graph G, a (V(G),V(G))-
matrix M is called the adjacency matrix of G if for v,w € V(G), M[v,w] = 1 if v and w are
adjacent in G, and M[v,w] = 0 otherwise.

A pair of vertex subsets (A, B) of a graph G is called a vertex bipartition if ANB = () and
AUB =V(G). For a vertex bipartition (A, B) of a graph G, we denote by G|A, B] the bipartite
graph on the bipartition (A, B) where for a € A and b € B, a and b are adjacent in G[A, B] if and
only if they are adjacent in G. In other words, it is the graph obtained from G by removing edges
whose both end vertices are contained in A or contained in B. For a vertex bipartition (A, B) of G
and an induced matching {viwy,vows,...,vuwy, } in G where vy, ..., vy €A and wy,...,wy € B,
we say that it is an induced matching in G between A and B.

70 7. A width parameter useful for chordal and co-comparability graphs

We denote by N the set of all non-negative integers, and let Nt := N\ {0}

2.1 Graph classes

A tree is called subcubic if every internal node has exactly 3 neighbors. A tree T is called a
caterpillar if it contains a path P such that every vertex in V(7') \ V(P) has a neighbor in P. The
complete graph on n vertices is denoted by K,.

A graph is chordal if it contains no induced subgraph isomorphic to a cycle of length 4 or
more. A graph is a split graph if it can be partitioned into two vertex sets C and I where Cis a
clique and / is an independent set. A graph is an interval graph if it is the intersection graph
of a family of intervals on the real line. All split graphs and interval graphs are chordal. An
ordering vy,...,v, of the vertex set of a graph G is called a co-comparability ordering if for
every integers i, j,k with 1 <i< j<k<n,

e if v; is adjacent to v, then v; is adjacent to v; or vy.

It is known that this condition is equivalent to the following: for every integers i, j,k with
1 <i< j<k<n,v;has aneighbor in every path from v; to v; avoiding v;. A graph is a
co-comparability graph if it admits a co-comparability ordering. Every co-comparability graph
is the complement of some comparability graph, where comparability graphs are graphs that
can be obtained from some partial order by connecting pairs of elements that are comparable to
each other. A graph is a permutation graph if it is the intersection graph of line segments whose
endpoints lie on two parallel lines. Permutation graphs are co-comparability graphs [11]. A
graph is a circle graph if it is the intersection graph of chords in a circle.

For positive integer n, let K,, HK), be the graph on {v{, eee, v}” v%, et v%} such that for all
i,je{l,...,n},

o {vl....vl}and {43,...,v2} are cliques,
e v! is adjacent to v? if and only if i = j,
and let K, 3, be the graph on {v{,...,v},v3,...,v2} such that for all i, j € {1,...,n},
e {vl,... vl}isaclique, {¥3,...,v2} is an independent set,
e v} is adjacent to v? if and only if i = j.

Since K> HK; is an induced cycle of length 4, chordal graphs do not contain K, HK, as an
induced subgraph. We observe that K3 HS3 is not a co-comparability graph.

Lemma 2.1. The graph K35 S5 is not a co-comparability graph.
Proof. Let G be a graph on {v,vp,v3}U{wi,wp, w3} such that
e {vi,v,v3}is aclique, {w,wp, w3} is an independent set, and
e v; is adjacent to w; if and only if i = j.

It is clear that G is isomorphic to K3 HS3. Suppose G admits a co-comparability ordering. By
relabeling if necessary, we may assume wp,wy, w3 appear in the co-comparability ordering in
that order. However wiviviws is a path from w; to wj that contains no neighbors of w;, and
thus, it contradicts the assumption that the given ordering is a co-comparability ordering. We
conclude that K3 HS3 is not a co-comparability graph. OJ

71

2.2 Graph relations

Let G be a graph. A graph H is a subgraph of G if H can be obtained from G by removing some
vertices and edges. A graph H is an induced subgraph of G if H = G[X] for some X C V(G).
A graph H is an induced minor of G if H can be obtained from G by a sequence of removing
vertices and contracting edges. A graph H is a minor of G if H can be obtained from G by a
sequence of removing vertices, removing edges, and contracting edges. For a graph H, we say a
graph is H-free if it contains no induced subgraph isomorphic to H.

A minor model of a graph H in G is a function 1 with the domain V(H) UE(H), where

e forevery v € V(H), n(v) is a non-empty connected subgraph of G, all pairwise vertex-
disjoint

o for every edge ¢ of H, 1(e) is an edge of G, all distinct
e ifec E(H)andv e V(H) thenn(e) ¢ E(n(v)),
e for every edge e = uv of H, 1(e) has one end in V(1 («)) and the other in V(1 (v)).

It is well known that H is a minor of G if and only if there is a minor model of H in G. A minor
model N of a graph H in G is an induced minor model if for every distinct vertices v; and v in
H that are non-adjacent, there are no edges between V(1 (v1)) and V(1 (v2)). A graph H is an
induced minor of G if and only if there is an induced minor model of H in G.

2.3 Width parameters

For sets A and B, a function f : 24 — B is symmetric if for every Z C A, f(Z) = f(A\ Z).
For a graph G and a vertex set A C V(G), we define functions cutrks, mimg, and simg from
2V(6) (o N such that

e cutrkg(A) is the rank of the matrix M[A,V (G) \ A] where M is the adjacency matrix of G
and the rank is computed over the binary field,

e mimg(A) is the maximum size of an induced matching of G[A,V(G) \ 4],
e simg(A) is the maximum size of an induced matching between A and V(G) \ A in G.

Remark that in K, B K, mimg, gk, ({v1,...,v}}) = n and simg, g, ({v1,...,vi}) = 1.

For a graph G, a pair (T, L) of a subcubic tree T and a bijection L from V(G) to the set of
leaves of T is called a branch-decomposition. For each edge e of T, let T{ and T be the two
connected components of T — e, and let (A{,A%) be the vertex bipartition of G such that for
each i € {1,2}, A¢ is the set of all vertices in G mapped to leaves contained in T by L. We call
(Af,A$5) the vertex bipartition of G associated with e. For a branch-decomposition (7,L) of a
graph G and an edge e in T and a symmetric function f : 2V(%) — N, the f-width of e is define
as f(A]) where (A{,A$) is the vertex bipartition associated with e. The f-width of (T,L) is the
maximum f-width over all edges in 7', and the f-width of G is the minimum f-width over all
branch-decompositions of G. If |V(G)| < 1, then G does not admit a branch-decomposition, and
the f-width of G is defined to be 0.

The rank-width of a graph G, denoted by rw(G), is the cutrkg-width of G, and the mim-width
of a graph G, denoted by mimw(G), is the mimg-width of G, and the sim-width of a graph

72 7. A width parameter useful for chordal and co-comparability graphs

G, denoted by simw(G), is the simg-width of G. For convenience, the f-width of a branch-
decomposition is also called a rank-width, mim-width, or sim-width depending on the function
f-

If T is a subcubic caterpillar tree, then a branch-decomposition (T,L) is called a linear
branch-decomposition. The linear f-width of G is the minimum f-width over all linear branch-
decompositions of G. The linear mim-width of a graph G, denoted by Imimw/(G), is the linear
mimg-width of G, and the linear sim-width of a graph G, denoted by Isimw(G), is the linear
simg-width of G.

By definitions we have the following.

Lemma 2.2. For a graph G, we have simw(G) < mimw(G) < rw(G).
We frequently use the following fact.

Lemma 2.3. Let G be a graph, let w be a positive integer, and let f - 2V(6) 5 Nbe a symmetric
function. If G has f-width at most w, then G admits a vertex bipartition (A1,Az) where f(A1) <w

and for each i € {1,2}, ‘V <l < 2“/3(G)|'

Proof. Let (T,L) be a branch-decomposition of G of f-width at most w. We subdivide an
edge of T, and regard the new vertex as a root node. For each node ¢ € V(T'), let u() be the
number of leaves of T that are descendants of . Now, we choose a node ¢ that is farthest from
the root node such that u(r) > ‘V(G)l . By the choice of #, for each child ¢ of 7, u(¢') < |V(G)‘

Therefore, ‘V < u@) < Z‘V ‘ . Let e be the edge connecting the node ¢ and its parent. By
the constructlon the vertex b1part1t10n associated with e is a required bipartition. O

We also use tree-decompositions in Section 3. A tree-decomposition of a graph G is a pair
(T, % = {B:},ev(r)) such that

(D) Urev(r) B =V (G),
(2) for every edge in G, there exists B, containing both end vertices,
(3) forty,t2,13 € V(T), By, N By, C By, whenever 1 is on the path from 7, to 13.

Each vertex subset B; is called a bag of the tree-decomposition. The width of a tree-decomposition
is w — 1 where w is the maximum size of a bag in the tree-decomposition, and the tree-width
of a graph is the minimum width over all tree-decompositions of the graph. It is well known
that a graph has tree-width at most w if and only if it is a subgraph of a chordal graph with
maximum clique size at most w + 1; see for instance [5]. Furthermore, chordal graphs admit a
tree-decomposition where each bag induces a maximal clique of the graph. We will use this fact
in Section 3.

24 LC-VSVP problems

Telle and Proskurowski [31] classified a class of problems called locally checkable vertex subset
and vertex partitioning problems, which is a subclass of MSO; problems. These problems
generalize problems like MAXIMUM INDEPENDENT SET, MINIMUM DOMINATING SET,
4q-COLORING etc.

Let ¢ and p be finite or co-finite subsets of N. For a graph G and S C V(G), we call S a
(0, p)-dominating set of G if

73

e foreveryv e S,

Ng(v)NS| € o, and
e forevery v e V(G)\ S, [INg(v)NS| € p.

For instance, a (0, N)-set is an independent set as there are no edges inside of the set, and we do
not care about the adjacency between S and V(G) \ S. Another example is that an (N,N*)-set is
a dominating set as we require that for each vertex in V(G) \ S, it has at least one neighbor in
S. See [31, Table 4.1] for more examples. The MIN-(OR MAX-)(0, p)-DOMINATION problem
is a problem to find a minimum (or maximum) (o, p)-dominating set in an input graph G, and
possibly on vertex-weighted graphs. These problems also called as locally checkable vertex
subset problems.

For a positive integer ¢, a (¢ X ¢)-matrix D, is called a degree constraint matrix if each
element is either a finite or co-finite subset of N. A partition {Vi,V5,...,V,} of the vertex set of
a graph G is called a Dy-partition if

o foreveryi,je{l,...,qtandv eV,

NG(V) n Vj| c Dq[l’,j}.

For instance, if we take a matrix D, where all diagonal entries are 0, and all other entries are
N, then a D -partition is a partition into ¢ independent sets, which corresponds to a g-coloring
of the graph. The D;-PARTITIONING problem is a problem deciding if an input graph admits
a D-partition or not. These problems are also called as locally checkable vertex partitioning
problems.

All these problems will be called locally checkable vertex subset and vertex partitioning
problems, shortly LC-VSVP problems. As shown in [8] the runtime solving an LC-VSVP
problem by dynamic programming relates to the finite or co-finite subsets of N used in its
definition. The following function d is central.

1. Let d(N) =0.

2. For every finite or co-finite set 4 C N, let d(it) = 1 + min(max{x € N: x € u}, max{x €
N:ix ¢ u}).

For example, for MINIMUM DOMINATING SET and g-COLORING problems we plugind = 1
because max(d(N),d(N*")) = 1 and max(d(0),d(N)) = 1.
Belmonte and Vatshelle [3] proved the following application of mim-width.

Theorem 2.4 (Belmonte and Vatshelle [3] and Bui-Xuan, Telle, and Vatshelle [8]). (1) Given an
n-vertex graph and its branch-decomposition (T, L) of mim-width w and o,p C N, one can
solve MIN-(OR MAX-)(0, p)-DOMINATION in time 0 (n*®+%) where d = max(d(o),d(p)).

(2) Given an n-vertex graph and its branch-decomposition (T,L) of mim-width w and a
(g x q)-matrix Dy, one can solve D,-PARTITIONING in time O(qn3*"4**) where d =
max; ;d(Dyli, j]).

3 Mim-width of chordal graphs and co-comparability graphs

In this section, we show that chordal graphs admit a branch-decomposition (7', L) such that

1. (T,L) has sim-width at most 1, and

74 7. A width parameter useful for chordal and co-comparability graphs

2. (T,L) has mim-width at most 7 — 1 if the given graph is (K, BS;)-free for some 7 > 2.

‘We combine the second statement with Theorem 2.4, and show that LC-VSVP problems can
be efficiently solved for (K; 8S;)-free chordal graphs (Corollary 3.2). In the same context, we
show that co-comparability graphs admit a linear branch-decomposition such that

1. (T,L) has linear sim-width at most 1, and

2. (T,L) has linear mim-width at most ¢ — 1 if the given graph is (K; B K;)-free for some
t>2.

We combine the second statement with Theorem 2.4, and show that LC-VSVP problems can be
efficiently solved for (K; B K;)-free co-comparability graphs (Corollary 3.7). We also prove that
chordal graphs and co-comparability graphs have unbounded mim-width in general.

3.1 Mim-width of chordal graphs
We prove the following.

Proposition 3.1. Given a chordal graph G, one can in time O(|V(G)|+ |E(G)|) output a
branch-decomposition (T, L) with the following property:

e (T,L) has sim-width at most 1,
e (T,L) has mim-width at mostt — 1 if G is (K; BS;)-free for some integer t > 2.

To show Proposition 3.1, we use the fact that chordal graphs admit a tree-decomposition
whose bags are maximal cliques. Such a tree-decomposition can be easily transformed from
a clique-tree of a chordal graph. A clique-tree of a chordal graph G is a pair (7,{C; },cv (7)),
where

(1) T is atree,
(2) each C; is a maximal clique of G, and
(3) for each v € V(G), the vertex set {r € V(T') : v € C;} induces a subtree of T

Gavril [16] showed that chordal graphs admit a clique-tree, and it is known that given a chordal
graph G, its clique-tree can be constructed in time O'(|V(G)| + |E(G)]) [4, 21].

Proof of Proposition 3.1. Let G be a chordal graph. We compute a tree-decomposition (F, % =
{Bt}1ev(r)) of G whose bags induce maximal cliques of G in time &(|V(G)|+ |E(G)|). Let us
choose a root node r of F.

We construct a tree (7, L) from F as follows.

1. We attach a leaf ' to the root node r of F and regard it as the parent of r and let B, := 0.

2. Forevery t € V(F) with its parent ¢, we subdivide the edge 77" into a path 1/ - -- vt‘ B[\B/‘t’ ,
t
and for each j € {1,...,|B,\ By|}, we attach a leaf 2 to V/; and assign the vertices of
B\ By to L(Z)),... 7L(ZTB,\B /‘) in any order. Then remove 7.
t

75

—a
b
¢

—d h
| e i:L
I:f —y

Figure 3: Constructing a branch-decomposition (T,L) of a chordal graph G of sim-width at
most 1 from its tree-decomposition.

3. We transform the resulting tree into a tree of maximum degree at most 3. For every
t € V(F), we do the following. Let t1,... 1, be the children of 7 in F. We remove ¢ and
introduce a path w\w} ---w/,. If ¢ is a leaf, then we just remove it. We add an edge w/ v},

. t i
and for each i € {1,...,m}, add an edge WiViB,\B,|

4. Let T’ be the resulting tree, and we obtain a tree T from 7’ by smoothing all nodes of
degree 2. Let (T, L) be the resulting branch-decomposition. See Figure 3 for an illustration
of the construction.

We can construct (7, L) in linear time as the number of nodes in 7' is &'(|V(G)|). We consider T
as a rooted tree with the root z \B,*

We claim that (7, L) has sim-width at most 1. We prove a stronger result that for every edge
e of T with a vertex bipartition (A,B) associated with e, either Ng(A) N B or Ng(B)NA is a
clique.

Claim 1. Let e be an edge of T and let (A, B) be the vertex bipartition of G associated with e.
Then either Ng(A) NB or Ng(B) NA is a clique.

Proof. For convenience, we prove for 7/, which is the tree before smoothing. We may
assume that both end nodes of e are internal nodes of T’, otherwise, it is trivial. There are
four types of e:

1. e=viVi, | forsomer € V(F), its parent s, and i € {1,...,|B;\ By| — 1}.

2. e=w)V| for somer € V(F).

3. e= VT;?14\BxIW§ for some ¢ € V(F) and its child 7.

4. e =wiw!_ | for some ¢ € V(F) and its child #;.

Suppose e = vivi, | for some ¢ and 7, and let t' be the parent of t. We may assume that A is the
set of all vertices assigned to the descendants of vi. Note that B; N By separates A and B\ B
in G. Therefore, for each v € A, Ng(v) N B is contained in By, and Ng(A) N B is a clique. We
can similarly prove for Cases 2 and 3.

Now, let #1,...,t, be the children of ¢, and let w},...,w}, be the vertices that were replaced
from ¢ in the algorithm. We assume e = wiw! , for some i € {1,...,m —1}. For each

tj .
1B,\B" Without

loss of generality, we may assume that B; C B. We can observe that A = ;< j<u Lj-

j€{l,...,m},let L; be the set of all vertices assigned to the descendants of v

76 7. A width parameter useful for chordal and co-comparability graphs

Let j; and j, be integers such that 1 < j; <i < j, < m. Note that B, separates L;, and L,
in G. Therefore, for every v € A, Ng(v) N B is contained in By, and N(A) N B is a clique, as
required. O

We prove that when G is (K, BS;)-free for some ¢ > 2, (T, L) has mim-width at most 7 — 1.
Claim 2. Let t > 2 be an integer. If G is (K;BS;)-free, then (T, L) has mim-width at most t — 1.

Proof. We show that (T,L) has mim-width at most ¢ — 1. Suppose for contradiction that
there is an edge e of T with the vertex bipartition (A4,B) of G associated with e such that
mimg(A) > ¢t. We may assume both end nodes of e are internal nodes of T

By Claim 1, one of Ng(A) NB and N (B) NA is a clique. Without loss of generality we assume
Ng(B)NA is aclique C. Since mimg(A) > ¢, there is an induced matching {a1b1,...,a:b;}
in G[A, B] where ay,...,a; € A. Since Ng(B) NA is a clique C, there are no edges between
vertices in {by,...,b;}, otherwise, it creates an induced cycle of length 4. Thus, we have an
induced subgraph isomorphic to K; HS;, which contradicts our assumption. We conclude that
(T, L) has mim-width at most # — 1. ¢

This concludes the proposition. O
As a corollary of Proposition 3.1, we obtain the following.
Corollary 3.2. Lett > 2 be an integer.

(1) Given an n-vertex (K, BS;)-free chordal graph and o,p C N, one can solve MIN-(OR
MAX-) (G, p)-DOMINATION in time €(n?*'~V)+4) where d = max(d(o),d(p)).

(2) Given an n-vertex (K; BS;)-free chordal graph and a (q x q)-matrix Dy, one can solve
D,-PARTITIONING in time € (qn’®0=1)+4) where d = max; jd(D,i, j)).

This generalizes the algorithms for interval graphs, as interval graphs are (K3 B S3)-free
chordal graphs [22].

We now prove the lower bound on the mim-width of general chordal graphs. We show
this for split graphs, which form a subclass of the class of chordal graphs. The Sauer-Shelah
lemma [28, 30] is essential in the proof.

Theorem 3.3 (Sauer-Shelah lemma [28, 30]). Let t be a positive integer and let M be an X x Y
(0,1)-matrix such that |Y| > 2 and any two row vectors of M are distinct. If |X| > |Y|', then
there are X' C X, Y' CY such that |X'| = 2', |Y'| =t, and all possible row vectors of length t
appear in M[X',Y'].

Proposition 3.4. Let m > 8 be an integer and let n := m+ (2™ — 1). There is a split graph on n
vertices having mim-width at least % -1

Proof. Let G be a split graph on the vertex bipartition (C,I) where C is a clique of size m,

I is an independent set of size 2" — 1, and all vertices in I have pairwise distinct non-empty

neighborhoods on C. We claim that every branch-decomposition of G has mim-width at least
logyn
Slog, (log, n)

77

Let (7,L) be a branch-decomposition of G. By Lemma 2.3, there is a vertex bipartition
(A1,A2) of G associated with e satisfies that for each i € {1,2}, 5 < |A;| < 2" . Without loss of
generality, , and thus we have 5 < |A;NC| < m and
|A;NC| < 5.

We prove that there are many vertices in Ay N/ having pairwise distinct neighborhoods in
AiNcC.

Claim 3. There are at least |A| NC|*™2" vertices in Ay NI that have pairwise distinct neigh-
borhoods in A1 NC.

Proof. Since m > 8, we have 2" > 4 4 2m. Therefore, we have

|Azﬂl\:|A2\f|A2ﬁC|>gf§

>m+(2m—1)

= 3
2’” 2+m

=3 ¢
2m

> —

=4

_m
2

Observe that there are exactly 214201 yertices in Ay having the same set of neighbors in A} NC,
because such Vertices should have distinct neighborhoods in A, NC. Since |[A,NC| < %
there are at least el AzﬂC\ > 2 3 vertices in Ay N having pairwise distinct nelghborhoods
onA;NC. Asmz 8, wehave F—-2>7%and

m_o _m__
22 > m4log2m.

Thus, we have

1 m m

127 _ 27*2 > m7410’g2m > ‘Al mc|7410'gzm7
as required. ¢
By Claim 3, there are at least |A| N C|*°2" vertices in Ay NI that have pairwise distinct

neighborhoods in A; N C. Therefore, by the Sauer-Shelah lemma, there exist A’ C A; NC and
B' C A, N1 such that

o 4| = |52) and |B| = 21 and
e all vertices in B have pairwise distinct neighborhoods in A’.

In particular, there is an induced matching of size Lmj between A’ and B'. It implies that
(T, L) has mim-width at least 4log ——1. Since n = 2" +m— 1, we have

e logyn—1<m<log,n.
As (T,L) was chosen arbitrary, the mim-width of G is at least

m (logyn) —1 log, n
4logym — 4log,(log,n) ~ 5log,(log, n)

78 7. A width parameter useful for chordal and co-comparability graphs

3.2 Mim-width of co-comparability graphs
We observe similar properties for co-comparability graphs.

Theorem 3.5 (McConnell and Spinrad [23]). Given a co-comparability graph G, one can output
a co-comparability ordering in time O(|V(G)|+ |[E(G))).

Proposition 3.6. Given a co-comparability graph G, one can in time O(|V(G)|+ |E(G)|) output
a linear branch-decomposition (T, L) with the following property:

o (T,L) has linear sim-width at most 1,
e (T,L) has linear mim-width at most t — 1 if G is (K, BK;)-free for some integer t > 2.

Proof. Let G be a co-comparability graph. Using Theorem 3.5, we can obtain its co-comparability
ordering vi,va,...,v, in time O(|V(G)|+ |E(G)]).

From this, we take a linear branch-decomposition following the co-comparability ordering.
More precisely, let Q be the path g1 - - - g5, and let T be the tree obtained from Q by adding a
leaf p; adjacent to ¢; for each i € {2,3,...,n—1}. Let p; = q; and p, = g,. We define a function
L:V(G) = {p1,p2,-..,pn} such that L(v;) = p; for each i € {1,2,...,n}. Note that (T,L) is
a linear branch-decomposition of G. We show that (T, L) is a linear branch-decomposition of
linear sim-width at most 1. Clearly for each leaf edge of T, its simg-width is at most 1. We
focus on non-leaf edges in T'.

We claim that for each i € {2,...,n— 1}, there is no induced matching of size 2 between
{vi,...,vi} and {viy1,...,v,}. Suppose there are ij,ip € {1,...,i} and ji,jr» € {i+1,...,n}
such that {v;,v;,,vi,v;, } is an induced matching of G. Without loss of generality we may assume
that i; < ip. Then we have i < ip < ji, and thus by the definition of the co-comparability order-
ing, v;, should be adjacent to one of v;; and v;,, which contradicts our assumption. Therefore,
there is no induced matching of size 2 between {vy,...,v;} and {viy1,...,v,} in G. It implies
that (7, L) has linear sim-width at most 1.

Now, suppose that G is (K; B K;)-free for t > 2. We prove that for every i € {1,...,n},

there are no induced matchings of size ¢ in G[{vy,...,vi},{vit1,-..,vn}]. For contradiction,
suppose there is an induced matching {v;,v;,,...,v;v; } in G{vi,...,vi}, {Vit1,...,va}] where
it,...,i €{1,...,i}. We claim that {v;,...,v; } and {vj,...,v; } are cliques.

Claim 4. {v;,...,v,} and {vj,,...,vj} are cliques.

Proof. Letx,y € {1,...,t}. Assume that iy < iy. Then iy < iy < jy, and therefore, v; is
adjacent to either v;, or v; . Since v;, is not adjacent to v, v; is adjacent to v; . In case when
iy < iy, we also have that Vi, is adjacent to v;, by the same reason. It implies that {v;,,...,v; }
is a clique. By the symmetric argument, we have that {v;,,...,v; } is a clique. o

By Claim 4, {vj,,...,v; } and {vj,,...,v; } are cliques, and therefore, G contains K; 5 K; as
an induced subgraph, a contradiction. We conclude that (7,L) is a linear branch-decomposition
of linear mim-width at most ¢ — 1. OJ

Corollary 3.7. Lett > 2 be an integer.

(1) Given an n-vertex (K; BK;)-free co-comparability graph and o,p C N, one can solve
MIN-(OR MAX-) (G, p)-DOMINATION in time € (n>=1+%) where d = max(d(c),d(p)).

79

Figure 4: The (4 x 4) column-clique grid.

(2) Given an n-vertex (K, BK;)-free co-comparability graph and a (g x q)-matrix Dg, one can
solve D,~PARTITIONING in time O(qn’®=1+4) where d = max; ;d(D,i, j]).

Note that permutation graphs do not contain K3 H K3 as induced subgraphs, because K3 H K3
is the complement of Cg, which is not a permutation graph. Therefore, Corollary 3.7 generalizes
the algorithms for permutation graphs.

In the next, we show that co-comparability graphs have unbounded mim-width. For positive
integers p and g, the (p x q) column-clique grid is the graph on the vertex set {v; j: 1 <i <
p,1 < j<gq} where

o forevery j € {1,...,q}, {vij,...,vp, } is aclique,

e for every i € {1,...,p} and ji,j» € {1,...,q}, vij, is adjacent to v; ;, if and only if

lj2a—jil=1,
o foriy,ip € {1,...,p}and ji,j» € {1,...,q} with i1 # iy and j; # jo, vj, j, is not adjacent
to Viy jp-
We depict an example in Figure 4. For each 1 <i < p, we call {v; 1,...,v;;} the i-th row of G,

and define its columns similarly.

Lemma 3.8. For integers p,q > 12, the (p X q) column-clique grid has mim-width at least

mln(ﬁ,g)

Proof. Let G be the (p X g) column-clique grid, and let (7, L) be a branch-decomposition of G.
It is enough to show that (7',L) has mim-width at least min(%,%). Let w be the mim-width of
(T,L). By Lemma 2.3, G admits a vertex bipartition (A, B) where mimg(A) < w and for each
U € {A,B}, |V < |U| < 2“/(Il 1t is sufficient to show that mimg(A) > min(§,%).

Firstly, assume that for each row R of G, RNA # 0@ and RN B # 0. Then there is an edge
between RNA and RN B, as G[R] is connected. For each i-th row R;, we choose a pair of vertices
Via; € RNA and v;p, € RN B that are adjacent. We choose a subset X C {1,..., p} such that
|X| > £ and every pair (viq;,vip,) in {(Via;,vip,) 1§ € X} satisfies that a;+ 1 = b;. By taking the
same parity of g;’s, we choose a subset ¥ C X such that |[Y| > % and all integers in {a; : i €Y}
have the same parity. Then we can observe that {v; ,v;; : i € Y} is an induced matching in
G[A, B], as all integers in {g; : i € Y} have the same parity. Therefore, we have mimg(A) > 4.

Now, we assume that there exists a row R such that R is fully contained in one of A and B.
Without loss of generality, we may assume that R is contained in A. Since |B| > () , there is a
subset X C {1,...,q} such that |X| > % and for each i € X, the i-th column contams a vertex
of B. For each i—th column where i € X, we choose a vertex v, ; in B. It is not hard to verify

80 7. A width parameter useful for chordal and co-comparability graphs

that the edges between {vq,.; : i € X} and the rows in R form an induced matching of size % in
G|A,B].
Therefore, we have d > min(§,%). O

Corollary 3.9. For every large enough n, there is a co-comparability graph on n vertices having
mim-width at least \/ 5.

Proof. Let p > 4 be an integer, and let n := 12p%. Let G be the (4p x 3p) column-clique grid.
It is not hard to see that

VI, V2 155 V4p 1,V1,2,V225 -+, Vap—13p, V4p 3p

is a co-comparability ordering, as each column is a clique. Thus, G is a co-comparability graph.
By Lemma 3.8, mimw(G) > p = /15. O

We remark that the two classes, (K; 5S;)-free chordal graphs and (K; BHK;)-free co-comparability
graphs, are subclasses of the class of graphs of sim-width at most 1 and having no induced
subgraph isomorphic to K; HK; and K; BHS; for t > 3. This is because chordal graphs have no
K> HK; induced subgraph, and co-comparability graphs have no K3 5.3 induced subgraphs by
Lemma 2.1. Motivated from it, we extend these classes to classes graphs of bounded sim-width
and having no K; HK; and K; B S; as induced subgraphs or induced minors, in Section 4.

4 Graphs of bounded sim-width

In Section 3, we proved that graphs of sim-width at most 1 contain all chordal graphs and all
co-comparability graphs. A classical result on chordal graphs is that MINIMUM DOMINATING
SET is NP-complete on chordal graphs [6]. So, even for this kind of locally-checkable problems,
we cannot expect efficient algorithms on graphs of sim-width at most w. Therefore, to obtain
a meta-algorithm for graphs of bounded sim-width encompassing many locally-checkable
problems, we must impose some restrictions. We approach this problem in a way analogous to
what has previously been done in the realm of rank-width [13].

It is well known that complete graphs have rank-width at most 1, but they have unbounded
tree-width. Fomin, Oum, and Thilikos [13] showed that if a graph G is K,-minor free, then its
tree-width is bounded by ¢ - rw(G) where c is a constant depending on r. This can be utilized
algorithmically, to get a result for graphs of bounded rank-width when excluding a fixed minor,
as the class of problems solvable in FPT time is strictly larger when parameterized by tree-width
than rank-width [20].

We will do something similar by focusing on the distinction between mim-width and sim-
width. However, K,-minor free graphs are too strong, as one can show that on K,-minor free
graphs, the tree-width of a graph is also bounded by some constant factor of its sim-width. To
see this, one can use Lemma 4.5 and the result on contraction obstructions for graphs of bounded
tree-width [12].

Instead of using minors, we exclude K; HK; and K; HS; as induced subgraphs or induced
minors. The induced minor operation is rather natural because sim-width does not increase when
taking induced minors; we prove this property in Subsection 4.2. In Subsection 4.3, we prove
that chordal graphs having no induced minor isomorphic to K3 HS3 have unbounded rank-width.
As chordal graphs have no induced minor isomorphic to K3 H K3 and they have sim-width 1,

81

this implies that graphs that have bounded sim-width and have no induced minor isomorphic to
K;HK, or K, HS; for fixed t have unbounded rank-width. Therefore, such classes still extend
classes of bounded rank-width.

We denote by R(k,¢) the Ramsey number, that is the minimum integer satisfying that every
graph with at least R(k, £) vertices contains either a clique of size k or an independent set of size
¢. By Ramsey’s Theorem [26], R(k,¢) exists for every pair of positive integers k and .

4.1 Bounding mim-width
We show the following.

Proposition 4.1. Every graph with sim-width w and no induced minor isomorphic to K, HK;
and K, BS; has mim-width at most 8(w -+ 1)t> — 1.

Proposition 4.2. Every graph with sim-width w and no induced subgraph isomorphic to K; BK;
and K, BS, has mim-width at most R(R(w+ 1,1),R(t,1)).

We remark that sometimes this Ramsey number can go down to a polynomial function
depending on the underlying graphs. See discussions in Belmonte et al [2].

We first prove Proposition 4.1. We use the following result. Notice that the optimal bound of
Theorem 4.3 has been slightly improved by Fox [14], and then by Balogh and Kostochka [1].

Theorem 4.3 (Duchet and Meyniel [10]). For positive integers k and n, every n-vertex graph
contains either an independent set of size k or a K;-minor where t > .

Proof of Proposition 4.1. Let G be a graph with sim-width w and no induced minor isomorphic
to K;BK; and K;BS,. Let (T,L) be a branch-decomposition of G of sim-width w. Let e
be an edge of T and (A, B) be the vertex bipartition of G associated with e. We claim that
mimg(A) < 8(w+1)3 — 1.

Suppose for contradiction that there is an induced matching {viwy,...,vuwy,} in G[A, B]
where vi,...,vm € A, Wi,...,w, € B, and m > 8(w+ 1)>. Let f be the bijection from
{vi,.osvm} to {wy,...,wy} such that f(v;) = w; foreachi € {1,...,m}. Asm > 8(w+1)t3, by
Theorem 4.3, the subgraph G[{vy,..., v, }] contains either an independent set of size 2(w+ 1)z,
or a K;,2-minor.

First assume that G[{vy,...,v,}| contains a K,,-minor. Then there is a minor model of K,,»
in G[{v1,...,vm}], that is, there exist pairwise disjoint subsets S, ..., Sy of {vi,..., vy} such
that

e foreachic {1,...,2¢*}, G[S)] is connected, and
e for two distinct integers i, j € {1,...,2¢%}, there is an edge between S; and S;.

For each i € {1,...,2t?}, we choose a representative d; in each f(S;) and contract each S; to
a vertex ¢;. Let G| be the resulting graph. Then Gy [{c1,...,¢y2},{d1,...,dy}] is an induced
matching of size 2¢%, and {cy, ..., ¢, } is a clique in G;. By the same procedure on {dy, ...,dy.},
the subgraph G;[{d\,...,d,,»}] contains either an independent set of size ¢, or a K;-minor. In
both cases, one can observe that G contains an induced minor isomorphic to K; BK; or K; 5HS;,
hence we obtain a contradiction.

82 7. A width parameter useful for chordal and co-comparability graphs

Now assume that G[{v1,..., v, }] contains an independent set {cy, ..., 5,41 }» and for each
ie{l,....,2(w+1)t},letd; := f(c;). By Theorem 4.3, G[{d1,...,d5(,+1) }] contains either an
independent set of size w+ 1 or a K;-minor. In the former case, we obtain an induced matching
of size w+ 1 between A and B in G, contradicting to the assumption that simg(A) < w. In the
latter case, we obtain an induced minor isomorphic to K; HS;, contradiction.

We conclude that mimg(A) < 8(w+ 1)¢> — 1. Since e is arbitrary, G has mim-width at most
S(w+ 1) —1. O

In a similar manner we can prove Proposition 4.2.

Proof of Proposition 4.2. One can easily modify from the proof of Proposition 4.1 by replacing
the application of Theorem 4.3 with the Ramsey’s Theorem to find a clique or an independent
set. OJ

As a corollary, we obtain the following. In general, we do not have a generic algorithm to
find a decomposition, and thus we assume that the decomposition is given as an input.

Corollary 4.4. Letw > 1 and t > 2 be integers.

(1) Given an n-vertex graph of sim-width at most w and having induced minor isomorphic
to neither K, BK; nor K,8S,, and o,p C N, one can solve MIN-(OR MAX-) (0,p)-
DOMINATION in time € (n3% +*) where d = max(d(o),d(p)) and t' = 8(w +1)t> — 1.

(2) Given an n-vertex graph of sim-width at most w and having induced minor isomorphic to
neither K; BK; nor K;8S;, and a (q x q)-matrix D, one can solve D,-PARTITIONING in

time €(qn®¥'+4) where d = max; ;jd(D,li, j]) and t' = 8(w+ 1)r> — 1.

(3) Given an n-vertex graph of sim-width at most w and having induced subgraph isomor-
phic to neither K;BK; nor K;BS;, and o,p C N, one can solve MIN-(OR MAX-) (0,p)-
DOMINATION in time € (n¥ %) where d = max(d(c),d(p)) andt' = R(R(w+1,1),R(t,1)).

(4) Given an n-vertex graph of sim-width at most w and having induced subgraph isomorphic
to neither K; BK; nor K;BS;, and a (q X q)-matrix Dy, one can solve D;-PARTITIONING in
time O(qn®¥'+*) where d = max; ;d(D,i, j]) and t' = R(R(w+1,1),R(1,1)).

4.2 Induced minors

We show that the sim-width of a graph does not increase when taking an induced minor. This is
one of the main motivations to consider this parameter.

Lemma 4.5. The sim-width of a graph does not increase when taking an induced minor.

Proof. Clearly, the sim-width of a graph does not increase when removing a vertex. We prove
for contractions.

Let G be a graph, viv, € E(G), and let (T, L) be a branch-decomposition of G of sim-width
w for some positive integer w. Let z be the contracted vertex in G/viv,. We claim that G/v|v,
admits a branch-decomposition of G of sim-width at most w. We may assume that G is connected
and has at least 3 vertices. For G/vv,, we obtain a branch-decomposition (77,L') as follows:

e Let T’ be the tree obtained from T by removing L(v,), and smoothing its neighbor.

83

e Let L’ be the function from V(G /viv;) to the set of leaves of 7’ such that L'(v) = L(v) for
veV(G/viv2)\{z} and L' (z) = L(vy).

Let e; and e, be the two edges of T incident with the neighbor of L(v;), but not incident
with L(vy). Let econ be the edge of T’ obtained by smoothing. By construction, all edges of
E(T")\ {€cont } are contained in T.

Claim 5. For each e € E(T") \ {econ }, the simg,,,,,-width of e in (T',L') is at most the simg-
width of e in (T,L).

Proof. Lete € E(T')\ {econt}- Let (A,B) be the vertex bipartition of G/vv, associated
with e. Without loss of generality, we may assume z € A. Suppose there exists an induced
matching {a1b1,...,amby} in G/viv, with ay,...,an €A and by,...,by, € B. Let (A’,B’) be
the vertex bipartition of G associated with e where v; € A’. We will show that there is also an
induced matching in G of same size between A’ and B'.

We have either v, € A" or vy € B'. If z ¢ {ay,...,an}, then {a1by,...,amby} is also an
induced matching between A" and B’ in G. Without loss of generality, we may assume that
Z=aj.

Casel.v, c A,

Proof. In G, one of v| and v,, say V/, is adjacent to b;. Also, v; and v, are not adjacent to
any of {az,...,am,b1,...,by}. Therefore, {V'by,azb,...,anby} is an induced matching in
G between A’ and B, as required. O

Case2.1, € B

Proof. Inthis case, {vivy,a2b,...,amby} is an induced matching between A’ and B', because
vy and v, are not adjacent to any of {ay,...,dm,b2,..., by} |

It shows that the sim,,,,,-width of e in (7", L') is at most the simg-width of e in (T,L). ¢

In a similar manner, we can show that the simg,,,,,-width of eon in (77, L') is at most the
minimum of the simg,,,,,-width of e, and 3 in (7',L). Thus, we conclude that simw (G /viv2) <
simw(G). O

4.3 Unbounded rank-width

We show that the Hsu-clique chain graph depicted in Figure 5 is chordal, but does not contain
K>HK, or K3 HSj3 as an induced minor. Belmonte and Vatshelle [3, Lemma 16] showed that a
(p x q) Hsu-clique chain graph has rank-width at least §£ when g = 3p+ 1. So, our algorithmic
applications based on Proposition 4.1 or Proposition 4.2 are beyond algorithmic applications of
graphs of bounded rank-width.

We formally define Hsu-clique chain graphs. For positive integers p,q, the (p x q) Hsu-
clique chain grid is the graph on the vertex set {v; j: 1 <i < p,1 < j < ¢} where

o forevery j€{l,...,q},{vij,...,vp, }is aclique,

84 7. A width parameter useful for chordal and co-comparability graphs

Figure 5: The (4 x 4) Hsu-clique chain graph.

o forevery iy, ir €{l,...,p}and j€{l,...,g—1}, v ; is adjacent to v;, ;4 if and only if
i1 <y,

e forij,ip € {1,...,p}and ji,jo» € {1,...,q}, v; j is not adjacent to v;, ;, if |j1 — jo| > 1.

Proposition 4.6. Let w > 1 and t > 2 be integers. The class of graphs of sim-width w and
having induced minor isomorphic to neither K; B S; nor K; B K; has unbounded rank-width.

Proof. For this, we provide that Hsu-clique chain grids are chordal and having no induced minor
isomorphic to K; HS; or K; HK;. Since Hsu-clique chain grids have unbounded rank-width [3],
it proves the proposition.

Let G be the (p x ¢g) Hsu-clique chain graph for some positive integers p and q.

First show that G is chordal. Suppose for contradiction that G contains an induced cycle
C=cjcy---cyc1 where m > 4. Since each column of G is a clique, all vertices of C are contained
in two consecutive columns. But also, since each column contains at most 2 vertices, we have
m =4, and two consecutive vertices of C are contained in one column. Without loss of generality,
we assume ¢y, ¢ are in the i-th column for some i € {1,...,¢g— 1}, and ¢3, ¢4 are in the (i+1)-th
column. This implies that there is an induced matching of size 2 between two columns if we
ignore edges in each column. However, this is not possible from the construction. Therefore, G
is chordal.

If G contains an induced minor isomorphic to K> HK5, which is an induced cycle of length 4,
then G contains an induced subgraph isomorphic to an induced cycle of length ¢ for some ¢ > 4.
This contradicts the fact that G is chordal. So, G has no induced minor isomorphic to K> HK>.

We claim that G has no induced minor isomorphic to K3 HS3. For contradiction, suppose
there is an induced minor model) of K3HS3 in G. Let H := K3HS3. Foreach v € V(H), let
L={j:vijeV(n())}. Letl:= LyULy UL, and let ¢ and r be the smallest and greatest

integers in 7, respectively. Let x,y € {vi,v},v1} such that

1. V(n(x)) contains a vertex in the {-th column, but for z € {v},v},v}}\ {x}, V(n(z)) has
no vertex whose row index is higher than all vertices in V(1 (x)) in the ¢-th column,

2. similarly, V(n(y)) contains a vertex in the r-th column, but for z € {v},v},vi}\ {x},
V(n(z)) has no vertex whose row index is lower than all vertices in V(71 (y)) in the r-th
column.

As {v},vé, vé} is a clique, it is easy to observe that I, Ul, = I. Let ¢ be the integer such that
vi e (v, v} w11\ {x,y}. By the choice of x and y, every vertex in V(1 (v?)) has a neighbor
in V(n(x))UV(n(y)). Thus, it contradicts the assumption that G contains H as an induced
minor. OJ

85

aq ha aqp hia ay3 hag Q44

V3.1

as,1

V2,1

V1,1 V1,2 V1,3 V1,4

ar hi a2 hia ar3 hl,:s 14

Figure 6: The circle graph G4 of Lemma 5.4

S Lower bound of sim-width on circle graphs

In this section, we construct a set of circle graphs with unbounded sim-width and no triangle,
using the approach similar to the one by Mengel [24]. As simw(G) < mimw(G) for every graph
G, the example also implies that the class of circle graphs has unbounded mim-width.

Theorem 5.1. Circle graphs have unbounded sim-width, and thus have unbounded mim-width.

For an integer d > 0, a graph G is d-degenerate if every subgraph of G contains a vertex
of degree at most d. The following lemma asserts that every d-degenerate graph with large
treewidth also has a large mim-width.

Lemma 5.2 (Vatshelle’s Thesis [32]; See also Mengel [24]). For every d-degenerate graph G,

mimw(G) > t‘;’gﬁﬁ .

Given a bipartite graph with large mim-width, we do not lose much of mim-width after
adding edges to one part of the bipartition.

Lemma 5.3 (Mengel [24]). Let H be a bipartite graph with a bipartition (A,B), and let G be a
graph obtained from H by adding some edges in H[A]. Then mimw(G) > %W(H)

For an integer k > 1 and a graph H, a graph G is a k-subdivision of H if G can be built from
H by replacing every edge of H with a path of length k£ + 1 such that those paths replacing edges
of H are internally vertex-disjoint.

Now we prove the main lemma of this section.

Lemma 5.4. For every integer k > 2, there is a circle graph Gy satisfying the following.

86 7. A width parameter useful for chordal and co-comparability graphs

1. Gy contains no K3 as a subgraph.
2. Gy contains a I-subdivision of a (k x k)-grid as a subgraph. In particular, tw(Gy) > k.
3. mimw(Gy) > 5L

Proof. Let H be a 1-subdivision of a (k x k)-grid. It is easy to see that H is 2-degenerate and has
tree-width at least k, since it contains a (k x k)-grid as a minor. By Lemma 5.2, mimw (H) > &1,

Fori,je{l,...,k}, let a; j be the vertex on the i-th row and j-th column of the (k x k)-grid.
Forie {1,...,k} and j € {1,...,k— 1}, let h; ; be the vertex of degree 2 adjacent to a; ; and
a;j+1inH. Forie {1,...,k—1}and j € {1,...,k}, letv; ; be the vertex of degree 2 adjacent to
aijand a1y jin H. Letus define A :={a; j:i,j € {1,....k}}, By :={h;j:ie{l,... .k}, j €
{1,...,k—=1}},and B, :={v; j:ie{l,...,k—1},j€{l,...,k}}. Then H is a bipartite graph
with the bipartition (A, B, UB,). Let B= B, UB,.

Before we describe in detail, we briefly explain how we will construct a circle representation
of H. For two points a and b on a circle, we denote by ab the chord whose end points are a
and b. Let py,..., py2 be distinct 2k? points on the circle in clockwise order. We regard each
vertex in A as a chord joining two points py; and py; | for some i € {1,...,k*}. Since every
vertex in B has a degree 2 in H, the chord representing a vertex in B will be represented by a
chord intersecting two disjoint chords p2;p2;—1 and p2jp2;—1 for some i # j that represents its
neighbors. Since the chords representing vertices in B may cross each other, the resulting circle
graph will be a graph obtained from H by adding some edges in B. By Lemma 5.3, this graph
has mim-width at least %W(H) > %

We explain how we can assign chords representing vertices in A not to induce K3 in B.

Let C be a circle and cy,...,cqe be distinct 6k> points on C in clockwise order. For
i,j€{1,...,k}, a; j is represented as follows:

e if i is odd, then a; ; is represented by a chord intersecting ¢g(;—1)k+6,;—5 and Ce(j—1)x+6;>
e if i is even, then g; j is represented by a chord intersecting cix—gj+1 and cek—6j+6-

Remark that we assign chords representing vertices ay 1,...,a1 k,a2k,---,02,1,- .. in clockwise
order. We assign chords for vertices in Bj, as follows.

e For an odd integer i € {1,...,k} and an integer j € {1,...,k— 1}, a chord connecting
Co(i—1)k+6j—1 and Cq(;_ 1)k 1642 Tepresents a vertex h; j € By,

e For an even integer i € {1,...,k} and an integer j € {1,...,k— 1}, a chord connecting
Coik—6j+2 and cejx—¢j—1 TEpresents a vertex h; j € By,.

We assign chords for vertices in B,, as follows. Note that we assign chords to vertices in B,
so that fori € {1,...,k—2} and ji, jo» € {1,...,k}, chords representing two vertices v; ;, and
Vit1,j, cross if and only if either i is odd and j; < j, oriis even and j; > j>.

e For an odd integer i € {1,...,k— 1} and an integer j € {I,...,k}, a chord connecting
Co(i—1)k+6j—2 and Ceipy6(k— j)+3 TEpresents a vertex vj j € B,.

e For an even integer i € {1,...,k— 1} and an integer j € {1,...,k}, a chord connecting
Coik—6j+4 and Coik+6j—3 represents a vertex v; ; € B,.

87

Let Gy, be the circle graph obtained by this procedure. See Figure 6 which describes G4. Since
every new edge of Gy joins v; j, and v;y j, forsome i € {1,...,k—2} and ji, jo € {1,...,k}, it
is easy to see that Gy, contains no K3. Note that Gy, is a graph obtained from H by adding some
edges in B. By Lemma 5.3, the resulting circle graph has mim-width at least %W(H) >]‘1*—81. O
Proof of Theorem 5.1. By Proposition 4.2, there is an increasing function f : N — N such that
every graph G with no induced subgraph isomorphic to K3 H K3 and K3 HS3 has mim-width at
most f(simw(G)). Since the circle graph G; of Lemma 5.4 contains no K3 as a subgraph, we
have f(simw(Gy)) > mimw(Gy) > %. It follows that simw(Gy) should be large for sufficiently
large k. O

6 Concluding remarks

In this paper, we showed that every fixed LC-VSVP problem can be solved in XP time parame-
terized by ¢ on (K; B S;)-free chordal graphs and (K; HK;)-free co-comparability graphs. We
further give a mim-width bound on the class of graphs that have sim-width at most w and do not
contain K; HS; and K; HK; as induced minors or induced subgraphs.

Vatshelle [32] asked whether there is a function f such that given a graph G, one can in XP
time parameterized by mimw(G) compute a branch-decomposition of mim-width at most f(k).
This still remains an open problem. We asked the same question for sim-width.

Question 1. Does there exist a function f such that, given a graph G, one can in XP time
parameterized by the sim-width k of G compute a decomposition of sim-width f(k)?

We observed that one cannot expect XP algorithms for MINIMUM DOMINATING SET
parameterized by sim-width. However, we know that one can solve MAXIMUM INDEPENDENT
SET or 3-COLORING in polynomial time on both chordal graphs and co-comparability graphs,
which are all known classes of constant sim-width. We ask whether those problems are NP-
complete on graphs of sim-width 1 or not.

Question 2. Is Maximum Independent Set NP-complete on graphs of sim-width at most 1? Also,
is 3-Coloring NP-complete on graphs of sim-width at most 1?

It would be interesting to find more classes having constant sim-width, but unbounded
mim-width. We propose some possible classes, that are also presented in Figure 2.

Question 3. Do weakly chordal graphs or AT-free graphs have constant sim-width?

We showed that MINIMUM DOMINATING SET can be solved in time n¢(") on (K, BS;)-free
chordal graphs, but we could not obtain an FPT algorithm. We ask whether it is W[1]-hard or
not.

Question 4. Is MINIMUM DOMINATING SET on chordal graphs W[1 J-hard parameterized by
the maximum t such that the given graph has an K; B, induced subgraph?

88 7. A width parameter useful for chordal and co-comparability graphs

References

[1] J. Balogh and A. Kostochka. Large minors in graphs with given independence number.
Discrete Math., 311(20):2203 — 2215, 2011.

[2] R. Belmonte, P. Heggernes, P. van t Hof, A. Rafiey, and R. Saei. Graph classes and ramsey
numbers. Discrete Appl. Math., 173:16 — 27, 2014.

[3] R. Belmonte and M. Vatshelle. Graph classes with structured neighborhoods and algorith-
mic applications. Theoret. Comput. Sci., 511:54-65, 2013.

[4] J. R. S. Blair and B. Peyton. An introduction to chordal graphs and clique trees. In Graph
theory and sparse matrix computation, volume 56 of IMA Vol. Math. Appl., pages 1-29.
Springer, New York, 1993.

[5] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Comput. Sci., 209:1-45, 1998.

[6] K. S. Booth and J. H. Johnson. Dominating sets in chordal graphs. SIAM J. Comput.,
11(1):191-199, 1982.

[7] S. Bova, F. Capelli, S. Mengel, and F. Slivovsky. On compiling cnfs into structured
deterministic dnnfs. In Theory and Applications of Satisfiability Testing - SAT 2015 - 18th
International Conference, Austin, TX, USA, September 24-27, 2015, Proceedings, pages
199-214, 2015.

[8] B.-M. Bui-Xuan, J. A. Telle, and M. Vatshelle. Fast dynamic programming for locally
checkable vertex subset and vertex partitioning problems. Theoret. Comput. Sci., 511:66—
76, 2013.

[9] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

[10] P. Duchet and H. Meyniel. On hadwiger’s number and the stability number. In B. Bol-
lobs, editor, Graph Theory Proceedings of the Conference on Graph Theory, Cambridge,
volume 62 of North-Holland Mathematics Studies, pages 71 — 73. North-Holland, 1982.

[11] B. Dushnik and E. W. Miller. Partially ordered sets. Amer. J. Math., 63:600-610, 1941.

[12] F. V. Fomin, P. Golovach, and D. M. Thilikos. Contraction obstructions for treewidth. J.
Combin. Theory Ser. B, 101(5):302-314, 2011.

[13] F. V. Fomin, S. Oum, and D. M. Thilikos. Rank-width and tree-width of H-minor-free
graphs. European J. Combin., 31(7):1617-1628, 2010.

[14] J. Fox. Complete minors and independence number. SIAM J. Discrete Math., 24(4):1313—
1321, 2010.

89

[15] S. Gaspers, C. H. Papadimitriou, S. H. Sther, and J. A. Telle. On Satisfiability Problems
with a Linear Structure. In J. Guo and D. Hermelin, editors, I 1th International Symposium
on Parameterized and Exact Computation (IPEC 2016), volume 63 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 14:1-14:14, Dagstuhl, Germany, 2017. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

[16] E. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. J.
Combin. Theory Ser. B, 16:47-56, 1974.

[17] P. Golovach and J. Kratochvil. Computational complexity of generalized domination: a
complete dichotomy for chordal graphs. In Graph-theoretic concepts in computer science,
volume 4769 of Lecture Notes in Comput. Sci., pages 1-11. Springer, Berlin, 2007.

[18] P. A. Golovach, P. Heggernes, M. M. Kanté, D. Kratsch, S. H. S@ther, and Y. Villanger.
Output-polynomial enumeration on graphs of bounded (local) linear mim-width. Algorith-
mica, To appear, 2017.

[19] P. A. Golovach, J. Kratochvil, and O. Suchy. Parameterized complexity of generalized
domination problems. Discrete Appl. Math., 160(6):780-792, 2012.

[20] P. Hlinény, S. Oum, D. Seese, and G. Gottlob. Width parameters beyond tree-width and
their applications. The Computer Journal, 51(3):326-362, 2008.

[21] W. L. Hsu and T. H. Ma. Substitution decomposition on chordal graphs and applications.
In ISA ’91. Algorithms (Taipei, 1991), volume 557 of Lecture Notes in Comput. Sci., pages
52-60. Springer, Berlin, 1991.

[22] C. G. Lekkerkerker and J. C. Boland. Representation of a finite graph by a set of intervals
on the real line. Fund. Math., 51:45-64, 1962/1963.

[23] R. M. McConnell and J. P. Spinrad. Modular decomposition and transitive orientation.
Discrete Math., 201(1-3):189-241, 1999.

[24] S. Mengel. Lower bounds on the mim-width of some graph classes. Discrete Appl. Math.,
To appear, 2017.

[25] S. Oum and P. Seymour. Approximating clique-width and branch-width. J. Combin.
Theory Ser. B, 96(4):514-528, 2006.

[26] E. P. Ramsey. On a problem of formal logic. Proc. London Math. Soc., s2-30:264-286,
1930.

[27] S. H. Sather, J. A. Telle, and M. Vatshelle. Solving #sat and MAXSAT by dynamic
programming. J. Artif. Intell. Res. (JAIR), 54:59-82, 2015.

[28] N. Sauer. On the density of families of sets. J. Combin. Theory Ser. A, 13(1):145 — 147,
1972.

[29] P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217-
241, 1994.

90 7. A width parameter useful for chordal and co-comparability graphs

[30] S. Shelah. A combinatorial problem; stability and order for models and theories in infinitary
languages. Pacific J. Math., 41(1):247-261, 1972.

[31] J. A. Telle and A. Proskurowski. Algorithms for vertex partitioning problems on partial
k-trees. SIAM J. Discrete Math., 10(4):529-550, 1997.

[32] M. Vatshelle. New width parameters of graphs. Ph.D. thesis, University of Bergen, 2012.

Chapter 8

Mim-width III. Graph powers and
generalized distance domination
problems.

Lars Jaftke, O-joung Kwon, Torstein J. F. Stremme and Jan Arne Telle. In Theoretical Com-
puter Science, Volume 796, 2019, Pages 216-236.

This paper is reprinted from the publication available with DOI 10.1016/j.tcs.2019.09.012.
It is licensed under Creative Commons Attribution 4.0 International License.

A preliminary version appeared in IPEC 2018, LIPIcs 115, Pages 6:1-6:14, 2018, and is
available online with DOI 10.4230/LIPIcs.IPEC.2018.6.

92

8. Mim-width III. Graph powers and generalized distance domination problems.

93

Mim-Width III. Graph Powers and Generalized
Distance Domination Problems*

LarsJ affke“, O-joung Kwoniz’?’, Torstein J. F. Strgmme!, and Jan Arne Telle!

'Department of Informatics, University of Bergen, Norway.

{lars. jaffke, torstein.stromme, jan.arne.telle}@uib.no
2Department of Mathematics, Incheon National University, South Korea.
3Discrete Mathematics Group, Institute for Basic Science (IBS), Daejeon, South Korea.
ojoungkwon@gmail.com

Abstract

We generalize the family of (o, p) problems and locally checkable vertex partition
problems to their distance versions, which naturally captures well-known problems such
as DISTANCE-r DOMINATING SET and DISTANCE-7 INDEPENDENT SET. We show that
these distance problems are in XP parameterized by the structural parameter mim-width, and
hence polynomial-time solvable on graph classes where mim-width is bounded and quickly
computable, such as k-trapezoid graphs, Dilworth k-graphs, (circular) permutation graphs,
interval graphs and their complements, convex graphs and their complements, k-polygon
graphs, circular arc graphs, complements of d-degenerate graphs, and H-graphs if given
an H-representation. We obtain these results by showing that taking any power of a graph
never increases its mim-width by more than a factor of two. To supplement these findings,
we show that many classes of (o, p) problems are W[1]-hard parameterized by mim-width
+ solution size.

We show that powers of graphs of tree-width w — 1 or path-width w and powers of
graphs of clique-width w have mim-width at most w. These results provide new classes of
bounded mim-width. We prove a slight strengthening of the first statement which implies
that, surprisingly, LEAF POWER graphs which are of importance in the field of phylogenetic
studies have mim-width at most 1.

*The paper is based on extended abstracts that appeared in STACS 2018 [20] and IPEC 2018 [16]. The first part
of the series, ‘Mim-Width I. Induced Path Problems’ [18], and the second part of the series, ‘Mim-Width II. The
Feedback Vertex Set Problem’ [19], are based on extended abstracts that appeared in IPEC 2017 [17] and STACS
2018 [20].

Supported by the Bergen Research Foundation (BFS).

tSupported by IBS-R029-C1, and the National Research Foundation of Korea (NRF) grant funded by the
Ministry of Education (No. NRF-2018R1D1A1B07050294), and the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (ERC consolidator grant DISTRUCT,
agreement No. 648527). Part of the research took place while Kwon was at Logic and Semantics, Technische
Universitit Berlin, Berlin, Germany.

94 8. Mim-width III. Graph powers and generalized distance domination problems.

1 Introduction

Telle and Proskurowski [30] defined the (o, p)-domination problems, or (o, p) problems for
short, and the more general locally checkable vertex partitioning problems (LCVP). In (o,p)-
domination problems, feasible solutions are vertex sets with constraints on how many neighbors
each vertex of the graph has in the set. The framework generalizes important and well-studied
problems such as MAXIMUM INDEPENDENT SET and MINIMUM DOMINATING SET, as well
as PERFECT CODE, MINIMUM SUBGRAPH WITH MINIMUM DEGREE d and a multitude of
other problems. See Table 1. Bui-Xuan, Telle and Vatshelle [7] showed that (o, p)-domination
and locally checkable vertex partitioning problems can be solved in time XP parameterized
by mim-width, if we are given a corresponding decomposition tree. Roughly speaking, the
structural parameter mim-width measures how easy it is to decompose a graph along vertex cuts
inducing a bipartite graph with small maximum induced matching size [31].

In this paper, we consider distance versions of problems related to independence and
domination, such as DISTANCE-7 INDEPENDENT SET and DISTANCE-r DOMINATING SET.
The DISTANCE-r INDEPENDENT SET problem, also studied under the names r-SCATTERED
SET and r-DISPERSION (see e.g. [2] and the references therein), asks to find a set of at least k
vertices whose vertices have pairwise distance strictly longer than r. Agnarsson et al. [1] pointed
out that it is identical to the original INDEPENDENT SET problem on the r-th power' graph G
of the input graph G, and also showed that for fixed r, it can be solved in linear time for interval
graphs, and circular arc graphs. The DISTANCE-r DOMINATING SET problem was introduced
by Slater [29] and Henning et al. [15]. They as well observed that it is identical to solve the
original DOMINATING SET problem on the 7-th power graph. Slater presented a linear-time
algorithm to solve DISTANCE-» DOMINATING SET problem on forests.

We generalize all of the (o, p)-domination and LCVP problems to their distance versions,
which naturally captures DISTANCE-7 INDEPENDENT SET and DISTANCE-r DOMINATING
SET. While the original problems put constraints on the size of the immediate neighborhood of
a vertex, we consider the constraints to be applied to the ball of radius r around it. Consider for
instance the MINIMUM SUBGRAPH WITH MINIMUM DEGREE d problem; where the original
problem is asking for the smallest (in terms of number of vertices) subgraph of minimum degree
d, we are instead looking for the smallest subgraph such that for each vertex there are at least
d vertices at distance at least 1 and at most r. In the PERFECT CODE problem, the target is to
choose a subset of vertices such that each vertex has exactly one chosen vertex in its closed
neighborhood. In the distance-r version of the problem, we replace the closed neighborhood by
the closed r-neighborhood. This problem is known as PERFECT r-CODE, and was introduced
by Biggs [4] in 1973.

We show that all these distance problems are in XP parameterized by mim-width if a
decomposition tree is given. One of the main results of the paper is of structural nature, namely
that for any positive integer r the mim-width of a graph power G” is at most twice the mim-width
of G. It follows that we can reduce the distance-r version of a (o, p)-domination problem to its
non-distance variant by taking the graph power G, while preserving small mim-width.

One negative aspect of the mim-width parameter is that we do not know an XP algorithm
computing mim-width. The problem of deciding whether a given graph has a decomposition tree
of mim-width w is NP-complete in general and W([1]-hard parameterized by w. Determining the

!For a graph G and an integer r, the r-th power of G, denoted by G, is the graph that has the same vertex set as
G, with each pair of distinct vertices being adjacent if their distance in G is at most r.

95

optimal mim-width is not in APX unless NP = ZPP, making it unlikely to have a polynomial-
time constant-factor approximation algorithm [28].

However, for several graph classes we are able to find a decomposition tree of constant
mim-width in polynomial time, using the results of Belmonte and Vatshelle [3]. These in-
clude; permutation graphs, convex graphs and their complements, interval graphs and their
complements (all of which have linear mim-width 1); (circular k-) trapezoid graphs, circular
permutation graphs, Dilworth-k graphs, k-polygon graphs, circular arc graphs and complements
of d-degenerate graphs. Fomin, Golovach and Raymond [13] showed that we can find linear
decomposition trees of constant mim-width for the very general class of H-graphs in polynomial
time, given an H-representation of the input graph.” For all of the above graph classes, our
results imply that the distance-r (o, p)-domination and LCVP problems are polynomial time
solvable.

Graphs represented by intersections of objects in some model are often closed under taking
powers. For instance, interval graphs, and generally d-trapezoid graphs [1, 12], circular arc
graphs [1, 27], and leaf power graphs (by definition) are such graphs. We refer to [5, Chapter
10.6] for a survey of such results. For these classes, we already know that the distance-r
version of a (o, p)-domination problem can be solved in polynomial time. However, this
closure property does not always hold; for instance, permutation graphs are not closed under
taking powers. Our result implies that to obtain such algorithmic results, we do not need to
know that these classes are closed under taking powers; it is sufficient to know that classes
have bounded mim-width. To the best of our knowledge, for the most well-studied distance-r
(o, p)-domination problem, DISTANCE-r DOMINATING SET, we obtain the first polynomial
time algorithms on Dilworth k-graphs, convex graphs and their complements, complements of
interval graphs, k-polygon graphs, H-graphs (given an H-representation of the input graph), and
complements of d-degenerate graphs.

We give results that expand our knowledge of the expressive power of mim-width. We show
that powers of graphs of tree-width w — 1 or path-width w and powers of graphs of clique-width
w have mim-width at most w. In fact, the statement we prove is a slight strengthening, namely:
Given a nice tree decomposition of width w, all of whose join bags have size at most w, or a
clique-width w-expression of a graph, one can output a decomposition tree of mim-width w of
its k-th power in polynomial time. The former implies that leaf power graphs, of importance in
the field of phylogenetic studies [8], have mim-width 1. These graphs are known to be strongly
chordal and there has recently been interest in delineating the difference between strongly
chordal graphs and leaf power graphs, on the assumption that this difference was not very big
[22, 24]. Our result actually implies a large difference, as it was recently shown by Mengel that
there are strongly chordal split graphs of mim-width linear in the number of vertices [23].

The natural question to ask after obtaining an XP algorithm is whether we can do better,
e. g. can we show that for all fixed r, the distance-r (o, p)-domination problems are in FPT?
Fomin et al. [13] answered this in the negative by showing that (the standard, i.e. distance-1
variants of) MAXIMUM INDEPENDENT SET, MINIMUM DOMINATING SET and MINIMUM
INDEPENDENT DOMINATING SET problems are W([1]-hard parameterized by (linear) mim-
width + solution size. We modify their reductions to extend these results to several families
of (o, p)-domination problems, including the maximization variants of INDUCED MATCHING,
INDUCED d-REGULAR SUBGRAPH and INDUCED SUBGRAPH OF MAX DEGREE < d, the

2For a formal definition of H-graphs, see Definition 18. We would like to remark that it is NP-complete to
decide whether a graph is an H-graph whenever H is not a cactus [9].

96 8. Mim-width III. Graph powers and generalized distance domination problems.

minimization variants of TOTAL DOMINATING SET and d-DOMINATING SET and both the
maximization and the minimization variant of DOMINATING INDUCED MATCHING.

The remainder of the paper is organized as follows. In Section 2 we introduce the (o, p)-
domination problems and define their distance-r generalization, and we give a short introduction
to mim-width. In Section 3 we show that the mim-width of a graph grows by at most a factor 2
when taking (arbitrary large) powers and prove bounds on the mim-width of powers of graphs of
bounded tree-width and clique-width. We discuss algorithmic consequences for (o, p) problems
and more generally, LCVP problems, in Section 4, and in Section 5 we present the above
mentioned lower bounds. Finally, we give some concluding remarks in Section 6.

2 The Main Concepts

In this section, we introduce the main concepts of the paper. That is, in Section 2.2 we
introduce the family of distance-r (o, p)-domination problems, and in Section 2.3 we give
a short introduction to the graph parameter mim-width and several of its aspects that are of
importance to this work. Before we proceed, we introduce the basic terminology and notation
used throughout the paper.

2.1 Preliminaries

We let the set of natural numbers be N = {0,1,2,...}, and the positive natural numbers be
N* =N\ {0}. For a set S and a given property y, we denote by Sy, the biggest subset of S
where y is satisfied for all elements. For instance, Nik denotes the set {1,2,...k}. For this

particular property, we also use the shorthand [k] := N;k. For a set X, we denote by ()lg) the set
of all size-k subsets of X.

Basic Notation for Graphs. A graph G is a pair of a vertex set V(G) and an edge set E(G) C
(V<2G>). For an edge {u,v} € E(G), we use the shorthand notation ‘uv’. For a set of edges
F C E(G), we denote by V(F) the set of vertices that are contained in the edges of F, i.e.
V(F) = Uuer{u,v}. A cut of a graph is a 2-partition of its vertex set.

(Induced) Subgraphs. For graphs G and H we say that H is a subgraph of G, denoted by
HCG,ifV(H) CV(G) and E(H) C E(G). For a vertex set X, we denote by G[X] the subgraph
of G induced by X, i.e. G[X] = (X,E(G)N (3)). We use the notation G — X = G[V(G) \ X|
and for a set of edges F C E(G), G—F = (V(G),E(G) \ F). For a vertex v € V(G) (an edge
e € E(G)), we use the shorthand G —x:= G — {x} (G —e:= G —{e}).

Neighborhoods. Let G be a graph. For a vertex v € V(G), we denote by Ng(v) the open
neighborhood of v, i.e. Ng(v) := {w | vw € E(G)}, and by Ng[v] the closed neighborhood
of v, i.e. Ng[v] = {v} UNg(v). The degree of v is the size of its open neighborhood, i.e.
deg;(v) == |Ng(v)|. For a set of vertices X C V(G), we let Ng(X) := U,ex No(x) \ X and
Ng[X] = Ng(X)UX. We use the shorthand notations ‘N’ and ‘deg’ for ‘N’ and ‘deg;’,
respectively, if G is clear from the context.

Connectivity/Distance. A graph G is called connected if for each 2-partition (X,Y) of V(G)
with X # 0 and Y # 0, there is an edge xy € E(G) such that x € X and y € Y. A connected
graph all of whose vertices have degree two is called a cycle. A graph that does not contain a
cycle as a subgraph is called a forest and a connected forest is a tree. The vertices of degree

97

one in a tree are called the leaves and the remaining vertices the internal vertices. A tree of
maximum degree two is called a path and the leaves of a path are called endpoints. A tree T
is called a caterpillar if it contains a subgraph P C T such that P is a path and each vertex
in V(T)\ V(P) has a neighbor in V(P). The length of a path P is |[E(P)], i.e. the number of
its edges. Given a graph G and two of its vertices u,v € V(G), the distance from u to v in G,
denoted by DIST(u,v), is the smallest length of any path P C G with endpoints « and v.

Matchings. A set of edges M C E(G) is called a matching, if no pair of edges in M shares an
endpoint. A matching is called induced if G[V(M)] = (V(M),M), i.e. if there are no other edges
than the edges in M in the subgraph of G induced by V (M).

Cliques/Independence/Domination/Bipartite Graphs. A graph G is called complete, if
E(G) = (V(ZG)). A set of vertices C C V(G) is called a clique if G[C] is a complete graph.
A set of vertices I C V(G) is called an independent set if E(G[I]) = 0. A set of vertices
D CV(G) is called a dominating set if Ng[D] = V(G). A graph G is called bipartite if there
is a 2-partition (X,Y) of V(G) such that X and Y are independent sets, and we call a bipartite
graph G with partition (X,Y) complete bipartite if E(G) = {xy | x € X,y € Y} For two disjoint
vertex sets X, Y C V(G), we denote by G[X, Y| the bipartite subgraph of G induced by (X,Y),
ie. GIX,Y]:=(XUY,E(G)N{xy|xeX,yeY}).

Multigraphs/Subdivisions. Let G and H be two graphs. A bijection ¢: V(G) — V(H) is
called an isomorphism from G to H if for all u,v € E(G), uv € E(G) if and only if ¢(u)@(v) €
E(H). If there is an isomorphism from G to H then say that G and H are isomorphic.

A multigraph is a pair of a set of vertices V(G) and a multiset of size-2 subsets of V(G),
called the edges of G and denoted by E(G). For a (multi-) graph H, we let |H| := |V (G)| and
[|H|| = |E(G)|. Let G be a (multi-) graph. An edge subdivision of an edge e¢ € E(G) with
endpoints 1 and v is the operation of adding to G a new vertex x and replacing the edge e by a
path with endpoints « and v, consisting of an edge between u and x and an edge between x and v.
We call the vertex x a subdivision vertex. A graph G’ is called a subdivision of G if it can be
obtained from G by a series of edge subdivisions.

2.2 Distance-r (o, p)-Domination Problems

Let o and p be finite or co-finite subsets of the natural numbers o,p C N. For a graph G, a
vertex set S C V(G) is a (o, p)-dominating set, or simply (o, p) set if

- for each vertex v € S it holds that [N(v) N S| € o, and
- for each vertex v € V(G) \ S it holds that [N(v) N S| € p.

For instance, a ({0}, N) set is an independent set as there are no edges between the vertices
in the set, and we do not care about adjacencies between S and V(G) \ S. For another example, a
(N,N*)-set is a dominating set as we require that for each vertex in V(G) \ S, it has at least one
neighbor in S.

There are three types of (o, p)-domination problems: minimization, maximization, and
existence. We denote the problem of finding a minimum (maximum) (o, p) set as the MIN-
(0,p) DOMINATION (MAX-(0,p) DOMINATION) problem, or simply MIN-(c,p) (MAX-
(o,p)) problem, and we refer to Table 1 for examples of well-studied problems expressible in
this framework.

98 8. Mim-width III. Graph powers and generalized distance domination problems.

K p [d | Standard name | W[1]-Hard |
{0} N 1 Independent set Omax
N N+ 1 Dominating set Omin
{0} N+ 1 Maximal Independent set Omin
N+ N+ 1 Total Dominating set *min
{0} {0,1} 2 Strong Stable set or 2-Packing
{0} {1} 2 Perfect Code or Efficient Dom. set
{0,1} {0,1} 2 Total Nearly Perfect set
{0,1} {1} 2 Weakly Perfect Dominating set
{1} {1} 2 Total Perfect Dominating set
{1} N 2 Induced Matching *max
{1} N+ 2 Dominating Induced Matching *max»> *min
N {1} 2 Perfect Dominating set
N {dd+1,.} | d d-Dominating set *min
{d} N d+1 | Induced d-Regular Subgraph *max
{dd+1,.} | N d Subgraph of Min Degree > d
{0,1,...,d} |N d+1 | Induced Subg. of Max Degree < d | *max

Table 1: Some vertex subset properties expressible as (o, p)-sets, with N = {0,1,...} and
N ={1,2,...}. Column d shows d = max(d(c),d(p)). For each problem, at least one of
the minimization, the maximization and the existence problem is NP-complete. For problems
marked with *max (*min) in the rightmost column, W([1]-hardness of the maximization (mini-
mization) problem parameterized by mim-width + solution size is shown in the present paper.
For problems marked with omax (opmin) the W[1]-hardness of maximization (minimization) in the
same parameterization was shown by Fomin et al. [13].

We naturally generalize (o, p)-domination problems to their distance-r version: For a graph
G and a vertex v € V(G), let N;(v) denote the ball of radius r around v, i.e.

Ng(v) = {w € V(G)\ {v} | DIsTg(vw) <).

Let ¢ and p be finite or co-finite subsets of N. Then, a vertex set S C V(G) is called a distance-r
(0, p)-dominating set, if

- for each vertex v € § it holds that [N"(v) N S| € o, and
- for each vertex v € V(G) \ S it holds that [N"(v) N S| € p.

We associate with these sets minimization, maximization, and existence problems in the natural
way.

The d-value of a distance-r (o, p) problem is a constant which will ultimately affect the
runtime of the algorithm. For a set C N, the value d(u) should be understood as the highest
value in N we need to enumerate in order to describe p1. Hence, if u is finite, it is simply the
maximum value in g, and if u is co-finite, it is the maximum natural number not in i (1 is
added for technical reasons).

Definition 1 (d-value). Let d(N) = 0. For every non-empty finite or co-finite set 1 C N, let
d(p) = 14+ min(max{x | x € u},max{x | x € N\ u}).

99

For a given distance-r (o, p) problem Il p, its d-value is defined as d (Il p) := max{d(c),d(p)},

see column d in Table 1.

2.3 Mim-width and Applications

Maximum induced matching width, or mim-width for short, was introduced in the Ph. D. thesis of
Vatshelle [31], used implicitly by Belmonte and Vatshelle [3], and is a structural graph parameter
defined over decomposition trees (sometimes called branch decompositions), similar to graph
parameters such as rank-width and module-width. Decomposition trees naturally appear in
divide and conquer style algorithms where one recursively partitions the pieces of a problem into
two parts. When the algorithm is at the point where it combines solutions of its subproblems to
form a full solution, the structure of the cuts are (unsurprisingly) important to the runtime; this
is especially true for dynamic programming when one needs to store multiple partial solutions
at each intermediate node. We will briefly introduce the necessary machinery here, but for a
more comprehensive introduction we refer the reader to [31].

A graph of maximum degree at most 3 is called subcubic. A decomposition tree for a graph
G is a pair (T,.Z) where T is a subcubic tree and . : V(G) — L(T) is a bijection between the
vertices of G and the leaves of T. Each edge e € E(T) naturally represents a cut of G, i.e. a
2-partition of V(G): Let Tf and T denote the two connected components of T —e. For i € [2],
let A denote the set of vertices that are mapped to leaves in 7 via .Z. Then, (A],AS) is a
cut of G which in the following we refer to as the cut associated with e. One way to measure
the complexity of a cut is by considering the maximum size of an induced matching in the
bipartite subgraph of G that it induces. For a vertex set A C V(G), we let mimg(A) denote the
maximum size of an induced matching in G[A,V (G) \ A], the bipartite subgraph of G induced
by (A,V(G)\ A). Note that mimg is symmetric, i.e. mimg(A) = mimg(V(G) \ A).

Definition 2 (mim-width). Let G be a graph, and let (7,.%) be a decomposition tree for G. The
mim-width of (T,.%) is defined as

mimwg(7,.%) = eg}ga();)mimG(Af),

where for an edge e € E(T), (A{,AS) denotes the cut associated with e. The mim-width of
the graph G, denoted mimw(G), is the minimum value of mimwg(7,.%) over all possible
decomposition trees (7,.Z). The linear mim-width of the graph G is the minimum value of
mimwg(T,.Z) over all possible decomposition trees (T,.%) where T is a caterpillar.

Note that the definition of a decomposition tree (7,.Z) allows T to have nodes of degree
two. Suppose there is a node ¢ € V(T') of degree two with incident edges e; and e;. Then, up to
renaming the sets, we have that A{' = A7 and A5' = AP, where for i € [2], (A]',A) is the cut
associated with e;. Let t; denote the endpoint of e; other than ¢. The observation we just made
implies that the decomposition tree (T’,.%), where T’ is obtained from T by removing ¢ and
making #; and #, adjacent, is equivalent to (7,.%) both in terms of their mim-width, as well as
their structural properties. To that end, for ease of exposition, we will assume in algorithmic
applications that a decomposition tree does not have degree two nodes, while when proving
bounds on the mim-width of some decomposition tree, we may allow them to have degree two
nodes.

100 8. Mim-width III. Graph powers and generalized distance domination problems.

Given a decomposition tree, one can subdivide an arbitrary edge and let the newly created
vertex be the root of T, in the following denoted by r. For two nodes ¢,#' € V(T'), we say that
t' is a descendant of t if t lies on the path from r to t' in T. For ¢t € V(T), we denote by V; the
set of vertices that are mapped to a leaf that is a descendant of ¢, i.e. V, := {v € V(G) | Z(v) =
t' where t' is a leaf descendant of ¢ in T}. We let V; .= V(G) \ V; and G, = G[V{].

In previous work, Bui-Xuan et al. [7] and Belmonte and Vatshelle [3] showed that all (o, p)
problems can be solved in time n? () where w denotes the mim-width of a decomposition tree
that is provided as part of the input. As we state the runtime bounds more tightly than what
can be read from the statements in the original works, we provide a sketch of the proof of the
following result due to [3, 7], mainly focusing on aspects that affect the runtime rather than the
correctness of the algorithms.

Proposition 3 ([3, 7]). There is an algorithm that given a graph G and a decomposition tree
(T, %) of G with w:= mimwg(T,.Z) solves each (c,p) problem I1 with d := d(IT)

(i) in time O'(n*24"), if T is a caterpillar; and
(ii) in time O (n*+34"), otherwise.

Sketch of the Proof. For a positive integer d, and a set A C V(G), we call two subsets X C A
and Y C A d-neighbor equivalent w.r.t. A, and we write X E;{ Y,if

Vv € V(G)\A: min(d,|X N"N(v)|) = min(d, [Y NN(v)|).

We denote by nec(=4) the number of equivalence classes of =4, and for X C A, by rep? (X) an
equivalence class representative for X.

The crucial insight that makes the dynamic programming algorithm work within the claimed
runtime bound is: when tabulating the partial solutions with respect to a node ¢ € V(T), it
suffices to store one optimum partial solution for each pair (R, Ry), where R, is an equivalence
class representative for = _V and R; is an equivalence class representative for = d . In this way, an

upper bound on nec(= A) gives an upper bound on the number of table entrles to be considered.

Now, let ¢ be a leaf of T and v € V(G) be such that £(v) = ¢. Then, there are two
equivalence classes for Ef{lv}, and d + 1 equivalence classes for E‘é(G)\{v}> SO We only have
0(d) partial solutions to consider. For an internal node ¢ € V(T') with children a and b, we can
compute the necessary partial solutions in the following way. For each triple (R,, Ry, R;) of an
equivalence class representative R, of :‘d, , an equivalence class representative Ry, of E‘d/b, and an
equivalence class representative Ry of ={-, compute R; = repv (RyURy), Rz = rep‘%(Rb UR;),
and R; = reva,(R“ URy), and update the table entry for (R;,Ry) according to the partial solution
obtained from combining the partial solution stored for (Ra,Ra) with the one stored for (Ry,Ry).

Letnec,(7,-Z) = max,cy () max{nec(= V,) nec(=)} We argue that for each internal node

t € V(T), all table entries can be computed in time & (necd(T,f)3-n3). 1t can be shown [7,
Lemma 1] that for a set A C V(G), a set of canonical equivalence class representatives of =
can be enumerated in time &' (nec(=4) - log(nec(=4))-n?), and given a set X C A, one can find
a pointer to rep? (X) in time ¢'(log(nec(=4)) - |X| - n).

The former computation is invoked once, taking time at most &' (necy(7T,.Z) -log(necy (T, %)) -
n?). Next, there are at most necy(T,.Z)> triples of equivalence class representatives to con-

sider, and the remaining computations take time at most & (n*), applying the latter of the two

101

aforementioned tasks (finding a pointer to an equivalence class representative), and noting that
each representative is of size at most & (n), and that log(nec,(T,.£)) < €(n). Therefore, we
compute all table entries for t € V(T) in time at most & (necy(T,.-Z)*-n3) . As |V(T)| = O(n),
and the computation for a leaf node takes constant time, the whole algorithm takes time at most
O(necy(T, L)% -n*).

In [3, Lemma 2] it is shown that nec(=4) < n? mim(4) - Hence the dynamic programming
algorithms that we sketched above run in time @' (n*+3¢"), where w = mimw(7,.%), proving
item (ii). For item (i), we observe that for an internal node ¢ € V(T') with children a and b such
that b is a leaf node, the number of triples to consider reduces to @ (necy(T,.%)?), as there are
only £ (1) many equivalence class representatives to consider for E‘d/b. If T is a caterpillar, then
each internal node of T is of that shape, implying that in this case, the algorithms run in time
ﬁ(n4+2d-w)_ |

3 Mim-width on Graph Powers

In this section we discuss the structural results of this work, regarding the mim-width of graph
powers. These are formally defined as follows.

Definition 4 (The r-th Power of a Graph). Let r be a positive integer and let G = (V,E) be a
graph. The r-th power of G, denoted G”, is the graph obtained from G by adding, for each pair
of distinct non-adjacent vertices u,v € V(G) with DISTg(u,v) < r, the edge uv.

We show in Section 3.1 that taking an (arbitrarily large) power of a graph only increases its
mim-width by a factor of at most two. In Section 3.2 we prove results concerning powers of
graphs of bounded tree-width and clique-width.

3.1 Arbitrary Graphs

Theorem 5. Let r be a positive integer and let G be a graph. Then, mimw(G") < 2-mimw/(G).
Moreover, any decomposition tree of G of mim-width w has mim-width at most 2w for G".

Proof. Assume that there is a decomposition tree of mim-width w for the graph G. We show
that the same decomposition tree has mim-width at most 2w for G”.

We consider a cut (A, A) associated with some edge of the decomposition tree. Let M be a
maximum induced matching across the cut for G". To prove our claim, it suffices to construct an
induced matching across the cut M’ in G such that [M’| > %

We begin by noticing that for an edge uv € M, the distance between u and v is at most r
in G. For each such edge uv € M, we let P,, denote some shortest path between u and v in G
(including the endpoints u and v).

Claim 5.1. Let uv,wx € M be two distinct edges of the matching. Then P,, and P, are vertex
disjoint.
Proof. We may assume that u,w € A and v,x € A. Now assume for the sake of contradiction
there exists a vertex y € V(P,,) NV (P,). Because both paths have length at most r, we have
that DISTG(u,y) + DISTG(y,v) < r, and DISTG(w,y) + DISTG(y,x) < r. Adding these together,
we get

DISTG(u,y) 4+ DISTG(y,v) + DISTG(w,y) + DISTG(y,x) < 2r.

102 8. Mim-width III. Graph powers and generalized distance domination problems.

, O @
Ol e

Figure 1: Structure of two paths P, and P,, when the edge u'x’ exists in G. Dashed edges
appear in G", solid edges appear in G, squiggly lines are (shortest) paths existing in G (possibly
of length 0, and possibly crossing back and forth across the cut).

Since uv and wx are both in M, there cannot exist edges ux and wv in G”. Hence, their
distance in G is strictly greater than r, i.e. DISTg(u,y) + DISTg(y,x) > DISTg(u,x) > r, and
DISTG(w,y) 4+ DISTg(y,v) > r. Putting these together, we obtain our contradiction:

DISTG(u,y) + DISTG(y,x) + DISTGg(w,y) + DISTG(y,v) > 2r

This concludes the proof of the claim. J

Because for each uv € M, one endpoint of P,, lies in A and the other one lies in A, there
must exist at least one point at which the path crosses from A to A. For each uv € M with u € A
and v € A, we let u'v' € E(P,,) denote an edge in G such that ' € A and v/ € A.

We plan to construct our matching M’ by picking a subset of such edges. However, we
cannot simply take all of them, since some pairs may be incompatible in the sense that they
will not form an induced matching across the cut (A,A). We examine the structures that arise
when two such edges v and w'x’ are incompatible, and cannot both be included in the same
induced matching across the cut. For easier readability, we let ¢;; be a shorthand notation for
DISTg(a, ') for o € {u,v,w,x}.

Claim 5.2. Let uv,wx € M with {u,w} C A and {v,x} C A be two distinct edges of M and let
u'v' and w'x’ be edges on the shortest paths as defined above. If there is an edge u'x’ € E(G),
then all of the following hold. See Figure 1.

@ ugt+xqg=r
®) ug+vg=wyg+xs=r—1
©) wg=uqg—1

Proof. (a) Since ux is not an edge in G', the distance between u and x must be at least r+ 1 in
G, and so uy + x4 must be at least r. It remains to show that u; + x; < r for equality to hold.
Similarily to the proof of Claim 5.1, we know that P,, and P,,, both are of length at most r. We
get

ug+vg+wyg+xg <2r—2 (D)

The ‘-2’ at the end is because we do not include the length contributed by edges «/v' and w'x’
in our sum. Now assume for the sake of contradiction that u; +x; > r+ 1. Then we get that

Vi+wg <2r—2—r—1=r-3

103

Because DISTg (v, w') < 3 (follow the edges u'v' — u'x’ — w'x’), this implies that DISTg(v,w) <
r, and the edge vw would hence exist in G”. This contradicts that uv and wx were both in the
same induced matching M.
(b) Assume for the sake of contradiction that u; + vy < r — 2. Then, rather than Equation 1,
we get the following bound
Ug+vg+wg+x4 <2r—3

By (a) we know that u; +x; = r, so by a similar argument as above we get that vy +wy <r—3,
obtaining a contradiction. An analogous argument holds for w; + x .
(c) This follows immediately by substituting (a) into (b). g

We will now construct our induced matching M’. (Recall for the following arguments that
u€Aandv ¢ A.) We construct two candidates for M’, and we will pick the biggest one. First, we
construct M{, by including u'v' for each edge uv € M where DIST¢(u,u’) is even. Symetrically,
M| is constructed by including «'v' if DISTg(u,u’) is odd. Clearly, at least one of M, and M

contains at least Mg—l edges. It remains to show that M’ indeed forms an induced matching across
the cut (A,A) in G.

Consider two distinct edges ¢'v' and w'x’ from M’. By Claim 5.1, the corresponding paths
P,, and P, are vertex disjoint. If there is an edge violating that #’v' and w'x’ are both in the
same induced matching, it must be either u’x’ or v'w’. Without loss of generality we may assume
it is an edge of the type u'x’. By Claim 5.2(c), we then have that the parities of DISTg(u,u)
and DIST¢(w, w) are different. However, by the construction of M, this is not possible. This
concludes the proof. |

3.2 Graphs of Bounded Tree-Width or Clique-Width

In [31, Section 4.2], it is shown that any graph of clique-width w or tree-width w — 1 has
mim-width at most w. Theorem 5 hence implies that any power of a graph of clique-width w
or tree-width w — 1 has mim-width at most 2w. In this section we give tighter bounds on the
mim-width of powers of graphs of bounded clique-width and powers of graphs of bounded
tree-width.

In particular, we show that r-th powers of graphs of tree-width w — 1, path-width w, or
clique-width w all have mim-width at most w. We begin by proving the bound for graphs of
bounded tree-width with the following lemma capturing the essential property used in the proof.

Lemma 6. Let r and w be positive integers and let (A, B,C) be a vertex partition of graph G such
that there are no edges between A and C and B has size w. Let H:= G". Then, mimg(AUB) < w.

Proof. Let B:={by,by,...,b,}. Itis clear that forv € AUB and z € C, DISTg(v,z) < rif and
only if there exists i € {1,2,...,w} such that DISTg(v, b;) + DIST(z,b;) < r.

Suppose for a contradiction that mimg (A UB) > w. Let {y1z1,y222,- .-,z } be an induced
matching of size 7 > w+ 1 in H[AU B, C]. There are distinct integers 1,1, € {1,2,...,7} and an
integer j € {1,2,...,w} such that

DISTG(yr,,bj) + DISTG(z,,b;) < r and DISTG(yr,,b) + DISTG (21, b)) < 1.

Then we have either DISTG(y;,,b;) + DISTG(zs,,b) < ror DISTG(yr,, b)) +DISTg(z,,0;) < r,
which contradicts the assumption that y;, z;, and y,z;, are not edges in H. We conclude that
mimg(AUB) < w. O

104 8. Mim-width III. Graph powers and generalized distance domination problems.

Definition 7. A tree decomposition of a graph G is a pair (T,%) consisting of a tree T and a
family % = {B, },cy (1) of sets B, C V(G), called bags, satisfying the following three conditions:

® V(G) = UtEV(T)Bf’
(ii) for every edge uv of G, there exists a node 7 of T such that u,v € B, and
(iii) forty,1,13 € V(T), B;, N By, C B, whenever 1, is on the path from 7y to 73 in T.

The width of a tree decomposition (7, %) is max{|B;| —1:¢ € V(T)}. The tree-width of G is the
minimum width over all tree decompositions of G. A tree decomposition (7', % = {B; },cy (r))
is a nice tree decomposition with root node v € V(T) if T is a rooted tree with root node t, and
every node ¢ of T is one of the following:

(1) Aleaf node,i.e.tis aleaf of T and B, = 0.

(2) An introduce node, i.e. t has exactly one child #' and B, = B U{v} for some v € V(G) \ By
(3) A forget node, i.e. t has exactly one child #’ and B; = B\ {v} for some v € By.

(4) A join node, i.e. t has exactly two children #; and 1, and B; = B;, = B;,.

Theorem 8. Let r and w be positive integers and G be a graph that admits a nice tree decom-
position of width w, all of whose join bags are of size at most w. Then the r-th power of G has
mim-width at most w. Furthermore, given such a nice tree decomposition, we can output a
decomposition tree of mim-width at most w in polynomial time.

Proof. Let H = G', and let (T, % = {B: }cy(r)) be a nice tree decomposition of G of width w,
all of whose join bags have size at most w, with root node . We may assume that B. = 0 and
subsequently that v is a forget or a join node. (Otherwise, we add a path of forget nodes on top
of v and make the last node the new root of 7'.)

We obtain a decomposition tree (7”,.%) as follows:

- Let T” be the tree obtained from T by, for each forget node ¢ € V(T') forgetting a vertex v,
attaching a leaf node ¢, to 7, and assigning .Z(v) := /,.

- We obtain T’ from T” by deleting degree 1 nodes that are not assigned by .Z.

Since v is either a forget node or a join node in (7, %), t has not been removed in the second
step, so t € V(T'), and v has degree 2 in 7’. Furthermore, since for each vertex v € V(G),
there is a unique forget node forgetting v in (T, %), and all leaves that are not assigned by .&
have been removed, the map .Z constructed above is a bijection. Thus, (T/ ,-Z) is a (rooted)
decomposition tree with root node t.

We consider a cut (V;,V;) for some node ¢ € V(T”) in the rooted decomposition tree. If ¢ is a
leaf node, then mimg (V;) < 1. Assume ¢ is an internal node, then ¢ also appears in (7,%). Note
that V; consists precisely of all vertices that have been forgotten below ¢ in (7', %). We argue
that we can find a set of at most w vertices S C V; such that S separates V; from V; \ S which by
Lemma 6 will yield the claim.

Let S:= N(V;)NV; and consider a vertex x € S. By definition, x is a neighbor of some vertex
y that has been forgotten below ¢. By (ii) of the definition of a tree decomposition there is a
node, say ¢, such that By contains both x and y. Since y has been forgotten below ¢, ¢’ is below ¢.

105

As x € V,, there is also a node above ¢, say ¢, such that B, contains x (e.g. the bag below the
one that forgets x). Since ¢ lies on the path between ¢’ and ¢” in T, we have by property (iii) of
the definition of a tree decomposition that x € B;. We have that S C B;.

Furthermore, S separates V; from V; \ S. If ¢ is a forget node, then by definition |B;| < w
and hence |S| < w. If ¢ is a join node, then by assumption |B;| < w and hence |S| <w. If ¢ is
an introduce node introducing a vertex u € V(G), then u cannot have any neighbor in V;, since
all vertices in V; have been forgotten below 7. Hence, S C B; \ {u} and we can conclude that
IS| < w. O

It is well-known (see e.g. [21]) that any tree decomposition can be transformed in polynomial
time to a nice tree decomposition of the same width. As in a tree decomposition of width w — 1,
all bags (in particular bags at join nodes) have size at most w, the previous theorem implies the
following. Note that the bound for pathwidth is slightly tighter than the one for tree-width, as in
a path decomposition there are no join nodes.

Corollary 9. Let r and w be positive integers and let G be a graph of tree-widthw — 1 (path-width
w). Then the r-th power of G has mim-width at most w and given a tree decomposition (path
decomposition) of G of width w — 1 (w), one can compute a decomposition tree of mim-width w
in polynomial time.

The following notions are of importance in the field of phylogenetic studies, i.e. the
reconstruction of ancestral relations in biology, see e.g. [8]. A graph G is a leaf power if there
exists a threshold r and a tree T, called a leaf root, whose leaf set is V(G) such that uv € E if
and only if the distance between u and v in T is at most r. Similarly, G is called a min-leaf
power if uv € E if and only if the distance between u and v in T is more than r. Thus, G is a leaf
power if and only if its complement is a min-leaf power. It is easy to see that trees admit nice
tree decompositions all of whose join bags have size 1 and since every leaf power graph is an
induced subgraph of a power of some tree, it has mim-width at most 1 by Theorem 8. Together
with [31, Lemma 3.7.3], stating that the mim-width of a graph is 1 if and only if the mim-width
of its complement is 1, we have the following result.

Corollary 10. The leaf powers and min-leaf powers have mim-width at most 1 and given a leaf
root, we can compute in polynomial time a decomposition tree witnessing this.

Next, we consider powers of graphs of bounded clique-width. A graph is w-labeled if there
is a labeling function f : V(G) — [w], and we call f(v) the label of v. For a w-labeled graph G,
we call the set of all vertices with label i the label class i of G. The following can be thought as
a generalization of Lemma 6.

Lemma 11. Let r and w be positive integers and let (A, B) be a vertex partition of graph G such
that G[A] is w-labeled and for every pair of vertices x,y in the same label class of G[A], x and y
have the same neighborhood in B. Let H :== G". Then, mimg(A) < w.

Proof. Suppose for contradiction that mimg (A) > w. Let {y1z1,y222,...,:2} be an induced
matching of size at least w+ 1 in H[A,B]. For i € {1,2,...,r}, there is a path P; of length at
most r from y; to z; in G. Let A* C A be the set of vertices in A that have a neighbor in B. Let Q;
be the subpath of P; from the last vertex in A* to z;, and ¢; be the endpoint of Q; different from
zi, and let R; be the subpath of P; from y; to g;. Let a; be the length of R; and b; be the length of
Q;. By construction, a; + b; < r.

106 8. Mim-width III. Graph powers and generalized distance domination problems.

Figure 2: Illustration of the situation in the proof of Lemma 11.

(For an illustration of the following argument, see Figure 2.) Since t > w + 1, there are two
integers t1,1, € {1,2,...,¢} such that ¢;, and g;, are contained in the same label class of G[A].
Since a;, + b, < r and a,, + b, < r, we either have that a; +b,, <rora, +b;, <r.

Assume ay, +b;, < r. In this case, we show that the distance from y;, to z;, in G is at most
r, which contradicts the assumption that y; z;, is not an edge of H. Note that two vertices in
a label class of G[A] have the same neighborhood in B. Let x denote the vertex on Q;, that
is adjacent to g;,. Then, as ¢, and ¢, are in the same label class of G[A], we have that g;, is
also adjacent to x. Therefore, G[V(R;,) U (V(Qy,) \ {41, })] contains a path of length at most r
from y;, to z,. Analogously we can show that if a;, + b;, < r, then G[V(R;,) U (V(Qs,) \ {1, })]
contains a path of length at most r from y;, to z;,. But this is a contradiction and we conclude
that mimg (A) < w. O

Definition 12. The clique-width of a graph G is the minimum number of labels needed to
construct G using the following four operations:

(1) Creation of a new vertex v with label i (denoted by i(v)).
(2) Disjoint union of two labeled graphs G and H (denoted by G & H).

(3) Joining by an edge each vertex with label i to each vertex with label j (i # j, denoted by
Ni,j)-
(4) Renaming label i to j (denoted by p;_ ;).

A string of operations given in the previous definition is called a clique-width w-expression
or shortly a w-expression if it uses at most w distinct labels. We can represent this expression
as a tree-structure and such trees are known as syntactic trees associated with w-expressions.
An easy observation is that for a node ¢ in a syntactic tree associated with a w-expression, and
the vertex set V; consisting of vertices introduced in some descendants of z, G[V;] is a w-labeled
graph where two vertices in the same label class has the same neighborhood in V(G) \ V;.

Theorem 13. Let r and w be positive integers and G be a graph of clique-width w. Then the
r-th power of G has mim-width at most w. Furthermore, given a clique-width w-expression, we
can output a decomposition tree of mim-width at most w in polynomial time.

Proof. Let H be the r-th power of G and let ¢ be the given clique-width w-expression defining
G, and T be the syntactic tree of ¢ with root node t. We can assume that G contains at least
two vertices which implies that T has at least one join node. Let v’ be the join node in 7 with
minimum DISTr(t,t). Note that if v itself is a join node, then v/ = . Note also that for every

107

vertex v of G, there is a node of T creating v, see the first operation in the definition of clique-
width. In the following, we call such a node an introduce node. We obtain a decomposition tree
(T',%) as follows:

- We obtain 7’ from T as follows: If t # t/, we first remove all vertices in the path from t/
to vin 7 other than v. We fix t’ to be the root node of 7”.

- For each introduce node ¢, introducing a vertex v, we assign £ (v) := £,

For the first step, note that if the root ¢ of T is not a join node, then it must have degree one in 7.
This implies that T’ is connected, and that each introduce node is a descendant of t’. Consider a
cut (V;,V;) for some t € V(T'), where V; is the set of vertices that are introduced below ¢ in T,
and note that by construction this is also the set of vertices of G that are mapped to leaves in the
subtree of T’ rooted at . If ¢ is a leaf node, then mimg (V;) < 1. Assume ¢ is an internal node.
Then ¢ also appears in 7T'.

We observe that G[V;] is a w-labeled graph such that for any pair of vertices x,y in the same
label class, x and y have the same neighborhood in V(G) \ V;. So we can apply Lemma 11 to
conclude that we have mimg (V;) < w which implies that H has mim-width at most w. O

4 Algorithmic Consequences

Using the results from the previous section, we now give algorithmic consequences for distance-r
versions of (o, p) problems and more generally of LCVP problems (introduced below). In
particular, the results in this section follow from Theorem 5 which states that taking an arbitrary
power of a graph never increases its mim-width by more than a factor of two. The second
ingredient is the following simple observation about neighborhoods of r-th powers of graphs.

Observation 14. For a positive integer r, a graph G and a vertex u € V(G), the r-neighborhood
of u is equal to the neighborhood of u in G", i.e. Nj;(u) = Ngr(u).

The observation above shows that solving a distance-r (o, p) problem on G is the same as
solving the same standard distance-1 variation of the problem on G”. Hence, we may reduce our
problem to the standard version by simply computing the graph power. Combining Theorem 5
with the algorithms provided in Proposition 3, we have the following consequence.

Corollary 15. There is an algorithm that for all r € N, given a graph G and a decomposition tree
(T,Z) of G with w:= mimwg(T,.L) solves each distance-r (o, p) problem Il with d := d(II)

(i) in time O'(n*T4"), if T is a caterpillar;, and
(ii) in time O (n*+%1"), otherwise.

Proof. Let G be the input graph and (7,.%) the provided decomposition tree. We apply the
following algorithm:

Step 1. Compute the graph G”.

Step 2. Solve the standard (distance-1) version of the problem on G”, providing (7,.Z) as the
decomposition tree.

Step 3. Return the answer of the algorithm ran in Step 2 without modification.

108 8. Mim-width III. Graph powers and generalized distance domination problems.

Computing G” in Step 1 takes at most &'(n°) time using standard methods, Step 3 takes constant
time. The worst time complexity is hence found in Step 2. By Theorem 5, the mim-width
of (T,.Z) on G" is at most twice that of the same decomposition on G. The stated runtime
then follows from Proposition 3. The correctness of this procedure follows immediately from
Observation 14. U

LCVP Problems. A generalization of (o, p) problems are the locally checkable vertex par-
titioning (LCVP) problems which we now discuss. A degree constraint matrix D is a ¢ X g
matrix where each entry is a finite or co-finite subset of N. For a graph G and a partition of
its vertices ¥ = {V1,V»,...V,} (where some parts of the partition may possibly be empty), we
say that it is a D-partition if and only if, for each i, j € [¢] and each vertex v € V, it holds that
IN(v)NV;| € D[i, j].

For instance, let D3 be the 3 x 3 matrix whose diagonal entries are {0} and the non-diagonal
ones are N, i.e.

{0} N N
Dy=|N {0} N
N N {0}

Then, a graph G admits a 3-coloring if and only if it admits a D3-partition.

Typically, the natural algorithmic questions associated with LC VP properties are existential.>
Interesting problems which can be phrased in such terms include the H-COVERING and GRAPH
H-HOMOMORPHISM problems where H is fixed, as well as g-COLORING, PERFECT MATCHING
CuUT and more. We refer to [30] for an overview.

We generalize LCVP properties to their distance-r version, by considering the ball of radius
r around each vertex rather than just the immediate neighborhood.

Definition 16 (Distance-r neighborhood constraint matrix). A distance-r neighborhood con-
straint matrix D is a ¢ X ¢ matrix where each entry is a finite or co-finite subset of N. For a graph
G and a partition of its vertices ¥ = {V},V»,...V,} (where some parts of this partition may be
empty), we say that it is a D-distance-r-partition if and only if, for each i, j € [¢] and each vertex
v € V;, it holds that [N"(v) N V;| € DIi, j].

We say that an algorithmic problem is a distance-r LCVP problem if the property in question
can be described by a distance-r neighborhood constraint matrix. For example, the distance-r
version of a problem such as g-COLORING can be interpreted as an assignment of at most ¢
colours to vertices of a graph such that no two vertices are assigned the same colour if they are
at distance r or closer.

For a given distance-r LCVP problem IT, its d-value d(IT) is the maximum d-value over all
the sets in the corresponding neighborhood constraint matrix.

As in the case of (0,p) problems, combining Theorem 5 with Observation 14 and the
works [3, 7] we have the following result.

Corollary 17. There is an algorithm that for all r € N, given a graph G and a decomposition tree
(T, %) of G with w:= mimwg (T, L) solves each distance-r LCVP problem 1 with d := d(IT)

(i) in time ﬁ(n4+4qd'w), if T is a caterpillar, and

3Note however that each (o, p) problem can be stated as an LCVP problem via the matrix D py= {;— II:]I} s
$0 maximization or minimization of some block of the partition can be natural as well.

109

(ii) in time O (n*T%14"), otherwise.

As we state the runtime bounds in the previous corollary in a different way than in [7] where
they have been proved first, we would like to note that this is justified by an argument parallel to
the one we provided in the sketch of the proof of Proposition 3 presented in this work.

5 Lower Bounds

We show that several (o, p) problems are W[1]-hard parameterized by linear mim-width plus
solution size. Our reductions are based on two recent reductions due to Fomin, Golovach and
Raymond [13] who showed that INDEPENDENT SET and DOMINATING SET are W(1]-hard
parameterized by linear mim-width plus solution size. In fact they show hardness for the above
mentioned problems on H-graphs (the parameter being the number of edges in H plus solution
size) which we now define formally.

Definition 18 (H-Graph). Let X be a set and . a family of subsets of X. The intersection graph
of .7 is a graph with vertex set . such that S,7 € .% are adjacent if and only if SNT # 0.
Let H be a (multi-) graph. We say that G is an H-graph if there is a subdivision H' of H and
a family of subsets .# := {M, },cy () (called an H-representation) of V(H') where H'[M,] is
connected for all v € V(G), such that G is isomorphic to the intersection graph of .#. For a
vertex v € V(G), we call M, the model of v.

We make an immediate observation from the definition of H-graphs that will be useful in
later proofs of this section. For a graph H, we can construct a H-representation of itself: We
subdivide each edge of H once to obtain H'. Then, we create an H-representation .# of H by
adding for each vertex v € V(H) a model M,, := Ng[v].

Observation 19. Any graph H is an H-graph.

All of the hardness results presented in this section are obtained via reductions to the
respective problems on H-graphs, and the hardness for linear mim-width follows from the
following proposition.

Proposition 20 (Theorem 2 in [13]). Let G be an H-graph. Then, G has linear mim-width at
most 2 - ||H|| and a corresponding decomposition tree can be computed in polynomial time given
an H-representation of G.

5.1 Maximization Problems

The first lower bound concerns several maximization problems that can be expressed in the
(o, p) framework. Recall that the (MAXIMUM) INDEPENDENT SET problem can be formulated
as MAX-({0},N). The following result states that a large class of (¢, p) maximization problems
that are related to the INDEPENDENT SET problem according to their (o, p) formulation are
W/[1]-hard on H-graphs parameterized by ||H|| plus solution size. These problems include IN-
DUCED MATCHING, DOMINATING INDUCED MATCHING, INDUCED d-REGULAR SUBGRAPH,
and INDUCED SUBGRAPH OF MAXIMUM DEGREE d, see Table 1 for the details.

110 8. Mim-width III. Graph powers and generalized distance domination problems.

U2

(i,9) (i,3) Yy 1 (3,9
yf””yz Yp-1 e y§ o 23

Uq

K 209 (5,)
T z g
Uus wé"’]) I;lfl) P Tp rgjl) w;])

" w(1,3)

(a) Example of the graph H when k = 3. (b) The subdivisions done for a pair (i, j).

Figure 3: Illustration of the construction of Fomin et al. [13].

Theorem 21. For any fixedd € N and x < d + 1, the following holds. Let 6* C N<y withd € c™*.
Then, MAX-(0*,N>,) DOMINATION is W([l]|-hard on H-graphs parameterized by the number
of edges in H plus solution size, and the hardness holds even if an H-representation of the input
graph is given.

Proof. To prove the theorem, we provide a reduction from MULTICOLORED CLIQUE where
given a graph G and a partition Vi, ..., V; of V(G), the question is whether G contains a clique
of size k using precisely one vertex from each V; (i € [k]). This problem is known to be
WI[l]-complete [11, 25].

Let (G,V1,...,V;) be an instance of MULTICOLORED CLIQUE. We can assume that k > 3
and that |V;| = p for i € [k]. If the second assumption does not hold, let p := max;cy |V;| and
add p — |V;| isolated vertices to V;, for each i € [k]. (Note that adding isolated vertices does not
change the answer to the problem.) For i € [k], we denote by vi,... ,v; the vertices of V;. We
first describe the reduction of Fomin et al. [13] and then explain how to modify it to prove the
theorem.

The Construction of Fomin, Golovach and Raymond [13]. The graph H is obtained as
follows, see Figure 3a.

1. Construct k nodes u, ..., ug.

2. For every 1 <i < j <k, construct a node w; ; and two pairs of parallel edges u;w; ; and
ujw ;.
Wi j

We then construct the subdivision H' of H by first subdividing each edge p times. We denote
the subdivision nodes for 4 edges of H constructed for each pair 1 <i < j < k in Step 2 by

x(li’j), el ,xg’j), yY’j), e ,yg,i’j), xgj’i), . ,xﬁ,j’i), and ygj’i), e ,yg,j"i). This subdivision process is
depicted in Figure 3b. To simplify notation, we assume that u; = x(()l"/) = yg’j), uj= x(()J’l) = y(()j’l)

_ o) @)) ()
and Wij = xp+1 - yp+1 —p+l T yp+l '

We now construct the H-graph G” by defining its H-representation .# = {M,}yev(gr) where
each M, is a connected subset of V (H'). (Recall that G denotes the graph of the MULTICOLORED

CLIQUE instance.)

1. For each i € [k] and s € [p], construct a vertex z with model

U (47 A2} 0 72

111

2. For each edge viv/ € E(G) for s,t € [p] and 1 < i < j < k, construct a vertex rﬁf;f)

(5] (i-7) (i-7) (i,7)
Mrs(f;,-) 4—{xs ,...,po}U{ypﬂ,ﬂ,...,ypﬂ}
(i) (J:) (J:i) (Ji)
U{x, 7...7)617“}LJ{)IIFHI,...,))!,H}.
Throughout the following, for i € [k] and 1 < i < j < k, we use the notation

Z(i) = Use[p] {2} and R, j) = sucpp. {rﬁf}'”},

viv/€E(G)

with:

respectively. We now observe the crucial property of G”.

Observation 21.1 (Claim 18 in [13]). For every 1 <i < j <k, a vertex z§1 € V(G) (a vertex

z{; € V(@) is not adjacent to a vertex rﬁf,’j) e V(G') corresponding to the edge vév,j € E(G)if

andonly if h =5 (h=1).

We now describe how to obtain from G” a graph G’ that will be the graph of the instance of
MAX-(0*,N>,) DOMINATION, by adding a gadget attached to each set Z(i) and R(i, j) (for all
1<i< j<k).

The New Gadget and the Construction of G'. Let X be a set of vertices of a graph. The
gadget B(X) is a complete bipartite graph on 2d — 1 vertices and bipartition ({f11,...,B14},
{B2,1,--.,B2,a—1}) such that for i € [d], each vertex f; , is additionally adjacent to each vertex
in X.

The graph G’ is obtained from G” by adding the gadgets B(Z(i)) for all i € [k] and the
gadgets B(R(i, j)) forall 1 <i < j <k. To prove the theorem, we require G’ to be a K-graph for
some graph K whose number of edges is bounded by a function of k, and possibly d, as d is fixed.
We will show that G’ is a K-graph for some supergraph K of H that meets this requirement.

Motivated by Observation 19, and the fact that the bipartite graph in each gadget ®8(-) has
0(d?) edges, we do the following to obtain K from H: For each i € [k], we add the gadget
B({u;}), which will be used to encode B(Z(i)) in G'; furthermore, for each 1 <i < j <k, we
add the gadget B ({w(; j}), which will be used to encode B(R(i, j)) in G'. For an illustration of
K, see Figure 4. We obtain a subdivision K’ of K as follows:

(K1) For all edges in E(K) N E(H), we do the same subdivisions that were made to obtain H’
from H.

(K2) For each gadget B(-), we perform the edge subdivisions due to Observation 19 that allow
for encoding the bipartite graph in B(-) as a B(-)-graph.
(K3) Foreachi € [k], let {ﬁf,l’ . ﬁl’ e Bé‘l, o ﬁZi.d—l} be the vertices of B ({u;}). Then, for

each h € [d], we subdivide the edge ;3] ,, and denote the corresponding subdivision node
by s(i,h).

(K4) Similarly, foreach 1 <i< j <k, let {ﬁl(iij>, e fi;lj), 2<i’lj), e z(i[‘le} be the vertices
of B({w(; ;})- Then, for each & € [d], we subdivide the edge](i;lj), and denote the
corresponding subdivision node by s((i, j),h).

112 8. Mim-width III. Graph powers and generalized distance domination problems.

Figure 4: The graph K with respect to which the graph G’ constructed in the proof of Theorem 21
is a K-graph. In this example, we have k = 3 and d = 4.

We now give the K-representation of G', .#" = {M},cy ¢, Where each M, is a connected
subset of V(K'); for an illustration of G’ see Figure 5.

(R1) For each vertex v € V(G)NV (G"), we let M}, := M,,, where M, is the model of v defined
given in the construction of Fomin et al. which we described above. Note that each such
(i,4)

vertex is either some vertex z.. or some vertex r,;”’ for appropriate choices for i, j, s, and ¢.

(R2) For each i € [k], let {,31’1 ﬁf’d, ﬁ2’1 ﬁid_l} be the vertices of B({u;}). By the
subdivisions we did in Step K2, we obtain a corresponding complete bipartite graph on
vertices {b’m, b"Ld, bé,l, ...bh, }. Eachd!, wheret € [2] and h € [d] if r = 1 and
h e [d—1]if t =2, comes with a model from the subdivision of the complete bipartite
graph of B({u;}), which we initially use as M/, .

th

(R3) We proceed analogously to Step R2 with each B({w; ;}), where 1 <i < j <k.

(R4) For each i € [k], and each & € [d], we add the node s(i,) to the models of Z. for all s € [p],
and we add s(i, 1) to the model (in .#") of b} ,,. (This ensures that each &' , is complete to

Z(i).)

(R5) Foreach 1 <i< j<kands,t € [p] such that viv/ € E(G), and each h € [d], we add the

node s((i, j),h) to the model of rgf,’j), and we add s((i, j),h) to the model (in .#") of bﬁl‘,{).

(i.J)
h

(This ensures that each b} ;’ is complete to R(i, j).)

We count the size of K. For |K|, we observe that |H| = k+ (];) and each gadget B(+) has
K| =2d (k+ (5)) = dk(k+1). As

for ||K||, we observe that the number of edges in H is 4 (g) and each gadget B(-) introduces
d(d —1)+4d = d* edges. Hence,

||K||_4-<];) +d? <k+ <’;>> =0(d*-1P). 2)

2d — 1 nodes, and we add k + (/;) such gadgets. Hence,

113

\

\
\ L

Figure 5: A part of the graph G/, where 1 <i< j<kandd =4.

We introduce some more notation. For 1 <i< j <k, welet B (i) := {b’i‘l v bl b Bo(i) =
(B yoeo by g i1 Bi(ig) = (0 000Y and Bo(i, j) = {65),....b50) | }: furthermore
B(i) == B1(i) UBx(i), B(i, j) = B1(i,j) UBa(i, j), and B = Uiy B()) UU) << j<x B(i, j). Note
that |B| = (2d — 1)(k+ (4)). We furthermore use the notation

Z.p(i)==Z(i)UB(i) and R4+ 5(i,j) = R(i, j) UB(i, j).

We now turn to the correctness proof of the reduction. We let k' :=2d - (k+ (é)) and show
that G has a multicolored clique if and only if G’ has a (6*,Nx,) set of size k’. We first prove the
forward direction. Note that the following claim yields the forward direction of the correctness
proof, since a ({d},{d+1,...,d+k}) setisa (0*,N>,) set. (Recall thatd € p* andx <d+1.)
Claim 21.2. If G has a multicolored clique, then G’ has a ({d},{d +1,...,d +k}) set of size
K =2d-(k+ (5)) (assuming k > 3).

Proof. Let {v}l1 . ,vﬁk} be the vertex set in G that induces the multicolored clique. By Obser-
vation 21.1 we can verify that

1={zhd Jo{mi N <i<j<k} 3)

is an independent set in G'. We let S :=IU B and observe that S is a ({d},{d+1,...,d +k})
set: By construction, there is no edge between any pair of distinct sets of B(i), B(/'), B(i, j),
B(i', "), for any choice of 1 <i< j<kand1<i < j <k.

Consider any vertex x € S and suppose that x € Z, 5(i) for some i € [k]. (The case when
x € Ryp(i,j) can be argued for analogously.) If x = zzi, then x is adjacent to the d vertices
b"l_’l Ve ,b"l’d, ifx= bil,z for some £ € [d], then x is adjacent to zﬁ” and the vertices bal Ve 7b§,d71
and if x = b , for some ¢’ € [d — 1], then it is adjacent to the vertices b |,...,b} ,. Hence, in
all cases, x has precisely d neighbors in S.

Let y € V(G')\ S and note that (V(G')\S)NB =0. If y € Z(i) for some i € [k], then
Ny)ns2 {Zzivba.lv -, bY 4}, 50 [N(y)NS| > d+ 1. Since the only additional neighbors of
yin S are in the set R; := U1§j<l~R(j,i) UUi<j<kR(i,j) and R;NS C I, we can conclude that
IN(y)N(S\B)| < k—1, since I contains precisely one vertex from each set R(i, j). We have
argued that d+1 < |[N(y)NS| < d+k. If y € R(i, j) for some 1 <i < j <k, we can argue as

114 8. Mim-width III. Graph powers and generalized distance domination problems.

before that |N(y) NS| > d + 1 and since all neighbors of y in '\ B(i, j) are contained either in
Z(i) or Z(j), we can conclude that d + 1 < [N(y)NS| <d+3 < d +k.
It remains to count the size of S. Clearly, |I| = k+ ('2‘) and as observed above, |B| =

(2d = D)(k+ (5)). s0

st (B - ofos () (o ()

as claimed. J

We now prove the backward direction of the correctness of the reduction. We begin by
making several observations about the structure of (6*,N>,) sets in the graph G'.

Claim21.3. Let 1 <i< j<k.

(i) Any (0*,N>,) set in G’ contains at most d + 1 vertices from each Z(i) U By (i) or R(i, j) U
Bl (lv.])

(ii) Any (0*,N>,) set contains at most 2d vertices from each Z, 5(i) or Ry 5(i, j).

(iii) Ifa (0*,N>,) set S contains 2d vertices from some Z (i) (R4+5(i, j)), then it contains at
least one vertex from Z(i) (R(i, j)) and each such vertex in SNZ(i) (SNR(i, j)) has at least
d neighbors in SNZ, 5 (i) (SNR4 (i, j)).

Proof. (i) We prove the claim for a set Z(i) UBj (i). The proof for a set R(i, j) UBj (i, j) works
analogously. Suppose for the sake of a contradiction that there is a set S C V(G’) that contains at
least d 4 2 vertices from some Z(i) UB (i). Since |B;(i)| = d, we know that S contains a vertex
from Z(i), say x. However, by construction, all vertices in SN (Z(i) UBy(i)) \ {x} are adjacent
to x, implying that x has at least d + 1 neighbors in S, a contradiction with the fact that Sis a
(0*,N>,) set.

(ii) follows as a direct consequence, since Z1p (i) \ (Z(i) UB(i)) = B2(i) and |By(i)| =d — 1.
Similar for Ry g(i, j).

(iii). The claim that S contains at least one vertex from Z(i) is immediate since |SNZ;5(i)| =
2d and |Z, (i) \ Z(i)| = |B(i)| =2d — 1. Let x € SNZ(i) be such a vertex. Then, the only vertices
of Z_.p(i) that x is not adjacent to are the vertices B (i). Since |B,(i)| = d — 1, the remaining
vertices in (SN Z4p(i)) \ (B2(i) U {x}), of which there are at least d as we just argued, are
neighbors of x. Similar for R, p(i, j). a

Equipped with the previous claim, we can now finish the correctness proof of the reduction.

Claim 21.4. If G’ contains a (6*,N>,) set S of size k' = 2d (k + (’2‘)), then G contains a multi-
colored clique.

Proof. Let S be a (6*,N>,) set of size ¥ in G’. By Claim 21.3(ii), we can conclude that
S contains precisely 2d vertices from each Z, (i) and each R, (i, j) (where 1 <i < j <k).
Consider any pair i, j with 1 <i < j <k. By Claim 21.3(iii) we know that there are vertices

i, €Z(i)NS, <, €2(j)Ns, and 1)) €R(i.)NS.
for some s;,5;,1;,1; € [p]. Again by Claim 21.3(iii), z/. has d neighbors in Z, (i) NS, so if

zgirt(i{}{) € E(G'), then zéi has d 4 1 neighbors in S, a contradiction with the fact that S is a

115

(6*,N>,) set. Hence, zgirt(i{’,j) ¢ E(G') and zijrfi{}f) ¢ E(G'). By Observation 21.1, we then have
that s; = ; and s; = ¢;. We can conclude that vf;ivﬁ'j € E(G) and since the argument holds for any
pair of indices i, j, G has a multicolored clique. a

We would like to remark that by the proof of the previous claim, we have established that
any (6*,N>,) set S in G’ of size k' in fact contains all vertices from B and one vertex from
each Z(i) and from each R(i, j). Since this is precisely the shape of the set constructed in the
forward direction of the correctness proof, this shows that any (6*,N>,) set of size ¥’ in G’ is a
({d},{d+1,...,d+k}) set (assuming k > 3).

Claims 21.2 and 21.4 establish the correctness of the reduction. We observe that [V (G')| =
O([V(G)|+d?-k?) and clearly, G’ can be constructed from G in time polynomial in |V (G)|, d
and k as well. Furthermore, by (2), ||K|| = €'(d? - k*) which implies that ||K|| = &'(k?) since d
is a fixed constant and the theorem follows. OJ

By Proposition 20, the previous theorem has the following consequence.

Corollary 22. For any fixed d € N and x < d + 1, the following holds. Let 6* C N<4 with
d € o*. Then, MAX-(0*,N>,) DOMINATION is W[1]-hard parameterized by linear mim-width
plus solution size, and the hardness holds even if a corresponding decomposition tree is given.

5.2 Minimization Problems

In this section we prove W([1]-hardness of minimization versions of several (G, p) problems
parameterized by linear mim-width plus solution size. We obtain our results by modifying a
reduction from MULTICOLORED INDEPENDENT SET to MINIMUM DOMINATING SET on H-
graphs parameterized by solution size plus ||H|| due to Fomin et al. [13]. In the MULTICOLORED
INDEPENDENT SET problem we are given a graph G and a partition Vi, ..., V; of its vertex set
V(G) and the question is whether there is an independent set {vy,...,v»} C V(G) in G such
that for each i € [k], v; € V;. The W([1]-hardness of this problem follows immediately from the
W][1]-hardness of the MULTICOLORED CLIQUE problem.

The Reduction of Fomin et al. [13]. Let G be an instance of MULTICOLORED INDEPENDENT
SET with partition Vi, ...,V of V(G). Again we can assume that k > 3 and that |V;| = p for all
i € [k]. If the latter condition does not hold, let p := max;c) |Vi| and for each i € [k], add p — |V}
vertices to V; that are adjacent to all vertices in each V; where j # i. It is clear that the resulting
instance has a multicolored independent set if and only if the original instance does.

The graph G’ of the MINIMUM DOMINATING SET instances is obtained as follows. We take
the graph G” as constructed in the proof of Theorem 21, and for each i € [k], we add a vertex b;
whose model is {u;}, i. e. it is adjacent to all vertices in Z(i) and nothing else. We argue that G
has a multicolored independent set if and only if G’ has a dominating set of size k.

For the forward direction, if G has a multicolored independent set I := {Vllu yee ,v’;lk}, then
using Observation 21.1, one can verify that D := {Z,l, R ,zﬁk} is a dominating set in G: Clearly,
for each i € [k], the vertices in Z(i) U {b;} are dominated by zﬁli € D. Suppose there is a vertex

(i

rsfz’]) € R(i, j) that is not dominated by D, then in particular it is neither adjacent to ZZ,- nor to zi;j.

By Observation 21.1, this implies that G contains the edge "Z,Vf;/-’ a contradiction with the fact
that / is an independent set. '

116 8. Mim-width III. Graph powers and generalized distance domination problems.

For the backward direction, suppose that G’ has a dominating set D of size k. Due to
the vertices b; (for i € [k]), we can conclude that for all i € [k], DN (Z(i)) U{b;}) # 0. If
D contains b; for some i € [k], then we can replace b; by any vertex in Z(i) such that the
resulting set is still a dominating set of D, so we can assume that D = {z,lll7...,z’,‘lk}. We

claim that {v}” Jees ,vﬁk} is an independent set in G. Suppose that for i, j € [k], there is an edge
vﬁ” véj € E(G). Observation 21.1 implies that r,(;jl)l is neither adjacent to zzi nor to sz’ S0 r,(l'lﬁl is
not dominated by D, a contradiction.

Remark 23. We would like to remark that the above reduction is to the MIN-(c*, p*) DOMINA-
TION problem, for all 0* C N with 0 € 6* and p* C N* with {1,2} C p*.

Proposition 24 ([13]). For 6* CNwith0 € 6* and p* CN*t with {1,2} C p*, MIN-(c*, p*) DOM-
INATION is W[l]-hard on H-graphs parameterized by the number of edges in H plus solution
size, and the hardness holds even when an H-representation of the input graph is given.

Adaption to Total Domination Problems. Recall that the (o, p) formulation for DOMINAT-
ING SET is (N,N*1). We now explain how to modify the above reduction to obtain hardness for
total dominating set problems where each vertex in the solution has to have at least one neighbor
in the solution as well. These problems include TOTAL DOMINATING SET and DOMINATING
INDUCED MATCHING, which can be formulated as (N* NT) and ({1},N"), respectively. The
minimization problem of either of them is known to be NP-complete.

Theorem 25. For 6* C Nt with | € 6* and p* C N* with {1,2} C p*, MIN-(¢*,p*) DOMI-
NATION is W([1]-hard on H-graphs parameterized by the number of edges in H plus solution
size, and the hardness holds even when an H-representation of the input graph is given.

Proof. We modify the above reduction from MULTICOLORED INDEPENDENT SET as follows.
For each i € [k], we add another vertex ¢; to G’ which is only adjacent to b;. We let B:= e[y {b:}
and C = ;i {ci}. Note that these new vertices can be ‘hardcoded’ into H with the number of
edges in H increasing only by k. To argue the correctness of the reduction, we now show that G
has a multicolored independent set if and only if G’ has a (0™, p*) set of size k' := 2k.

For the forward direction, suppose that G has an independent set {v}ll,...,vﬁk}. Then,
D = {z}“ yee ,zﬁk} dominates all vertices in V(G’) \ C by the same argument as above and
D = D' UB dominates all vertices of G’. Furthermore, each x € D has precisely one neighbor in
D: For each such x, either x = zﬁll_ or x = b; for some i € [k]. In the former case, N(x) "D = {b;}
and in the latter case, N(x) D = {z}L} Now lety € V(G)\D. If y € Z(i) U{¢;} for i € [k],
then @ # N(y)ND C {zzi,bi}. Ify € R(i,j) for some 1 <i < j <k, theny is either dominated
by one of z;'” and z,’lj or by both and it cannot have any other neighbors in D by construction.
Since 1 € 0* and {1,2} C p*, Disa (c*,p*) set and clearly, |D| = 2k.

For the backward direction, suppose that G’ has a (o*,p*) set D of size 2k. Let i € [].
Since 0 ¢ o™ and 0 ¢ p*, we have that at least one of ¢; and b; is contained in D (either ¢; is
dominating or it needs to be dominated). Suppose ¢; € D. Since each vertex in D has to have
at least one neighbor in D and b; is the only neighbor of ¢;, we can conclude that b; € D. So,
in either case, we have that b; is contained in D and subsequently we have that B C D. Since
0 ¢ o*, all vertices of B have a neighbor in D. Suppose for some i € [k] that neighbor is ¢;. Then,
we can replace ¢; with some z;li € Z(i), without changing the fact that D is a (0™, p*) set. We
can assume that for each i € [k], the neighbor of b; that is contained in D is a vertex ZZ,- € Z(i).

117

Figure 6: An example graph K w.r.t. which the graph G’ constructed in the proof of Theorem 26
is a K-graph. In this example, k = 3.

We have that D = BU {leu yee ,z’,;k} and since D is a dominating set (in other words, 0 ¢ p*), we
can again argue using Observation 21.1 that {1),111 yee ,v’;k} is an independent set in G. OJ

As a somewhat orthogonal result to Theorem 21, we now show hardness of several problems
related to the d-DOMINATING SET problem, where each vertex that is not in the solution set has
to be dominated by at least some fixed number of d neighbors in the solution.

Adaption to d-Domination Problems. We use a similar gadget as the one constructed in the
proof of Theorem 21 to prove hardness of several (o, p) problems where each vertex has to be
dominated by at least d vertices. In particular, we prove the following theorem. Note that the
analogous statement of the following theorem for d = 1 is proved by the reduction explained in
the beginning of this section, see Remark 23.

Theorem 26. For any fixed d € N>, the following holds. Let 6* C N with {0,1,d — 1} C ¢*
and p* C N4 with {d,d + 1} C p*. Then, MIN-(c*, p*) DOMINATION is W][l]-hard on H-
graphs parameterized by the number of edges in H plus solution size, and the hardness even
holds when an H-representation of the input graph is given.

Proof. We modify the reduction from MULTICOLORED INDEPENDENT SET to DOMINATING
SET on H-graphs due to Fomin et al. [13] that we summarized in the beginning of this section.
Let G be a graph with vertex partition Vi,...,V; and |V;| = p for all i € [k] and assume k > 3.
We first describe the gadget we use and then we describe how to construct the graph G’ of the
MIN-(c*, p*) DOMINATION instance.

The Gadget €(i). Leti € [k]. The gadget €(i) is a complete bipartite graph with bipartition
(C1(i),Ca(i)) where C1(i) == {c} ,...,¢} ,} and Ca(i) = {CQ,N . ,cé)d} such that each vertex
cl j for j € [d—1] is additionally adjacent to all vertices in Z(i) as well as to all vertices in
R(i,j) for j > i. (Note that c’i ¢ does not have these additional adjacencies.) Throughout the
following, we let C(i) = C} (i) UC,(i) and C := Uiepy €(0).

The graph G’ is now obtained by constructing the graph G” as in the proof of Theorem 21
and then, for each i € [k], adding the gadget €(i) and adding a ‘satellite vertex’ s;, adjacent to all
vertices in Z(i) UC) (i). G’ is a K-graph for the graph K O H, obtained by ‘hardcoding’ each €(i),
for i € [k], into H. That is, for each i € [k], we add a complete bipartite graph with bipartition

118 8. Mim-width III. Graph powers and generalized distance domination problems.

Ca(1) Ca2(j)
Cr(i)\ {cia} Cr() \{c] 4}
8§ 85
Z(i) R(i, 7) Z(j)

Figure 7: Illustration of a part of G’ constructed in the proof of Theorem 26, where 1 <i < j <k
and d =4.

{1 Nats {Vorse Yoq}) and make all vertices 7{ ,, where h € [d — 1], adjacent to u; as
well as to all vertices wy; ;) with j > i. For an illustration of K see Figure 6. Note that

K[| = [|H]| +k(d® + 1)+

(k—i)(d—1)= O -d+k-d*.)

k
=1

We illustrate the structure of the graph G’ in Figure 7. We now argue that G’ is a K-graph.
We begin by constructing a subdivision K’ of K. First, we do Step K1 that was taken in the proof
of Theorem 21 (see page) to construct the subdivision, and then the analogue of Step K2 in the
proof of Theorem 21 for the gadgets €(i). We continue with the following two steps.

(K3) Foreachi € [k], let {yi T y{ & yé T ygd_l} be the vertices of the copy of the graph
of €(i) in K. For each h € [d — 1], we subdivide the edge u,-yf_h once, and denote the
corresponding subdivision node by s(i,).

(K4) Furthermore, for each i € [k], for each i < j <k, and h € [d — 1] we subdivide the edge
w(i.j)Yi » once, and denote the corresponding subdivision node by s((i, j),h).

We now sketch how to obtain a K-representation of G/, .#' = {ML}VEV(G’)’ where each M|,
is a connected subset of V (K'); for an illustration of G’ see Figure 7. As these steps are very
similar to Steps (R1) to (RS) in the proof of Theorem 21 (see page), we focus on pointing out
how to adapt them rather than fully restating all of them.

First, for each i € [k], the model for the vertex s; consists of the vertex u;, i.e. we add the
model M;, = {u;} to .#'. Then we do the steps analogous to Steps R1 and R2 taken in the proof
of Theorem 21. Following that, we take the steps analogous to R4 and R5, where in Step R4
we consider vertex c’i h instead of vertex b’i o and in Step R5, we consider vertex c’i n instead

of vertex b(li’hD. Furthermore, in Step R4, we additionally add s(i, /) to the model of s;. This
completes the construction of the K-representation for G'.

Claim 26.1. If G has a multicolored independent set, then G’ has a (6*,p*) set of size k' :=
k-(d+1).

119

Proof. Let {v}l1 yeees vﬁk} be the independent set in G. By the reduction proving Proposition 24
in the beginning of this section, we have that D’ := {z}“, - z/;lk} isa ({0},{1,2})-setof G —C
of size k (see also Remark 23). Let Cy == Ui C1(i), C2 = C\ C1 and D == D' UCy.

Since each vertex in V(G') \ (DUC) is adjacent to precisely d — 1 vertices in C; and to either
one or two vertices in D' (and D' NCy = @), we can conclude that each vertex in V(G') \ (DUC)
is adjacent to either d or d + 1 vertices in D. Since each C(i) induces a K 4, we can conclude that
all vertices in C; have d neighbors in D as well. Furthermore, N(s;) D = (C; (i) \ {c} ,})U {ZZ,-}’
so we have that all vertices in G’ that are not contained in D have either d or d + 1 néighbors in
D.

Let i € [k]. Then, N(zj,)ND = {c} |, ..., ¢| 4}, N(¢| ;)N D = 0 and for £ € [d — 1],
N(c} ,)ND = {Z;u} We can conclude that Dis a ({0,1,d —1},{d,d + 1})-set in G’ and clearly,
ID| =k +kd =K. J

In what follows, the strategy is to argue that each (6*, p*) set of size K’ = k- (d + 1) contains
aset {z} e ,z’,;k} which will imply that {\)}1l yeee ,v';lk} is an independent set in G. Throughout
the following, for i € [k], we let Z. (i) := Z(i) UC(i) U {s;}.

Claim 26.2. For all i € [k], any (0*,p*) set D in G’ contains at least d vertices from C(i) and at
least d + 1 vertices from Z_ (i).

Proof. We first show that each such D contains at least d vertices from C(i). Suppose not,
then [DNC(i)| < d — 1 for some i € [k]. If ¢} , ¢ D, then C,(i) C D, otherwise ¢! , cannot
have d or more neighbors in D. But |C,(i)| = d, a contradiction. We can assume that Cil, 4 €D.
Furthermore, there is at least one vertex cé ; for £ € [d] with cé ;& D. To ensure that cg ¢ has at
least d neighbors in D, we would have to 7include all remainiflg vertices from Cj (i) ifl D, but
then |[DNC(i)| > d, a contradiction. The second part of the claim now follows since the vertex
s; only has neighbors in Z, (i) and at most d — 1 neighbors in C(i) N D (namely Cy (i) \ {c} ,}):
Since D is a (6%, p*) set, it either has to contain s; or at least one additional neighbor of s;.

Claim 26.3. For all i € [k], any (0*,p*) set D of size at most k' = k(d + 1) contains C (i). We
furthermore can assume that it additionally contains some zﬁli € Z(i), where h; € [p].

Proof. By Claim 26.2 we have that D contains d + 1 vertices from each Z_.(i'), i’ € [k], and no
other vertices. Consider any vertex z; € Z(i) (where s € [p]) that is not contained in D. Recall
that 7/ has to have at least d neighbors in D. By Claim 26.2, 7/ has precisely one neighbor in
(Z(i)U {s;}) N D and since D does not contain any vertex from any R(j,i) (1 < j < i) or R(i,)
(i < j' < k), the only possible neighbors of z{ in D are (C1 (i) U {s;}) \ {¢| ,}. Furthermore, we
observe that c’i’d € D: for if c’i d ¢ D, then c’i d has to have either d or d + 1 neighbors in D.
However, D already contains the d — 1 vertices C; (i) \ {c} ;} that are not adjacent to ¢} > and
D contains d + 1 vertices from Z, (). So, at most two neighbors of ¢!, are contained in D. If
at most one neighbor of c’i 4 18 contained in D, this immediately giveé a contradiction with D
being a (0™, p*) set since d > 2. However, if d = 2, and two neighbors of Cil, 4 are contained
in D, then each vertex in Z(i) has only d — 1 neighbors in D, namely the ones in Cy (i) \ {c} ,},
again a contradiction with D being a (6™, p*) set. We can conclude that C, (i) C D. 7
Now suppose that s; € D. Then, after swapping s; with any vertex in Z(i), the resulting
set remains a (0¥, p*) set: Clearly, the condition of being a (6*, p*) set is not violated by any

120 8. Mim-width III. Graph powers and generalized distance domination problems.

vertex in Z, (i). For i < j <k, consider any vertex x € R(i, j). Then, N(x) N D contains the d — 1
vertices C (i) \ {c’1 4> and at most one more each from Z(i) and Z(j), as D can contain at most
one vertex from each Z(i'), i’ € [k]. Now, if we swapped s; with some vertex from Z(i), then this
means that initially, D contained d neighbors from N(x), namely Cy (i) \ {c} ,} and one vertex
from Z(j). Hence, after swapping, D contains d + 1 vertices and since d + 1 € p*, D remained
a (0*,p*) set. An analogous argument can be given for any R(j’,i), where 1 < j/ < i. 3

We are now ready to conclude the correctness proof of the reduction.
Claim 26.4. If G' has a (0*,p*) set of size k' = k(d + 1), then G has a multicolored independent

set.

Proof. Let D be a (6*,p*) set of size k. By Claim 26.3, we can assume that D = C; U
{z}l1 yee ,zﬁk} for some hy,...,h; € [p]. Now, since for each 1 <i < j <k, all vertices in R(i, j)
have precisely d — 1 neighbors in Cj, each of them has to have at least one of Z;n and zij asa

neighbor. By Observation 21.1, this allows us to conclude that {v}l1 yee ,v’;k} is an independent
setin G. a

Claims 26.1 and 26.4 establish the correctness of the reduction. Clearly, |V (G')| = O(|V(G)|+
d?-k) (and G’ can be constructed in polynomial time) and by (4), ||K|| = &' (k*-d +k-d?). Since
d is a fixed constant we have that ||K|| = ¢'(k?) and the theorem follows. O

Similarly to above, a combination of the previous two theorems with Proposition 20 yields
the following hardness results for (o, p) mimization problems on graphs of bounded linear
mim-width.

Corollary 27. Let 6* C N and p* C N. Then, MIN-(6*,p*) DOMINATION is W(1]-hard
parameterized by linear mim-width plus solution size, if one of the following holds.

(i) o* CNT with 1 € o* and p* C Nt with {1,2} C p*.
(ii) For some fixed d € N>y, {0,1,d —1} C 0" and p* C N>y with {d,d+ 1} C p*.

Furthermore, the hardness holds even if a corresponding decomposition tree is given.

6 Conclusion

We have introduced the class of distance-r (o, p) and LCVP problems. This generalizes well-
known graph distance problems like distance-r domination, distance-r independence, distance-r
coloring and perfect r-codes. It also introduces many new distance problems for which the
standard distance-1 version naturally captures a well-known graph property.

Using the graph parameter mim-width, we showed that all these problems are solvable in
polynomial time for many interesting graph classes. These meta-algorithms will have runtimes
which can likely be improved for a particular problem on a particular graph class. For instance,
blindly applying our results to solve DISTANCE-r DOMINATING SET on permutation graphs
yields an algorithm that runs in time ¢ (n®): Permutation graphs have linear mim-width 1 (with
a corresponding decomposition tree that can be computed in linear time) [3, Lemmas 2 and
5], so we can apply Corollary 15(i). However, there is an algorithm that solves DISTANCE-r
DOMINATING SET on permutation graphs in time ¢'(n?) [26]; a much faster runtime.

121

Recently, Chiarelli et al. [10] gave algorithms for the (TOTAL) k-DOMINATING SET prob-
lems on proper interval graphs that run in time ¢'(n*). The mim-width framework yields an
algorithm for these problems that runs in time & (n***#) which follows from Proposition 3(i)
and the result that interval graphs have linear mim-width 1 [3]. Hence the work [10] improves
the generic mim-width based algorithm whenever k£ < 4. We would like to remind the reader
however that prior to this work, the result formulated in Proposition 3(i) has not been explicitly
stated anywhere.

Regarding lower bounds, we expanded on the previous results by Fomin et al. [13] and
showed that many (o, p) problems are W[1]-hard parameterized by mim-width. However, it
remains open whether there exists a problem which is NP-hard in general, yet FPT parameterized
by mim-width. In particular, several (o, p) problems are not covered by the W][1]-hardness
results of Fomin et al. [13] and the ones presented in this paper. Examples include PERFECT
CODE and PERFECT DOMINATING SET, see e.g. Table 1. Even so, we conjecture that every
NP-hard (distance) (¢, p) problem is W([1]|-hard parameterized by mim-width.

Somewhat surprisingly, we proved that powers of graphs of bounded tree-width or clique-
width have bounded mim-width. Heggernes et al. [14] showed that the clique-width of the k-th
power of a path of length k(k -+ 1) is exactly k. This also shows that the expressive power of
mim-width is much stronger than clique-width, since all powers of paths have mim-width just 1.
As a special case, we show that leaf power graphs have mim-width 1. We believe the notion
of mim-width can be of benefit to the study of leaf power graphs. We remark that it is a big
open problem whether leaf power graphs can be recognized in polynomial time [6, 8, 22, 24].
Knowing that leaf powers have mim-width 1, we can connect this open problem to the open
problem regarding the recognition of graphs of bounded mim-width which has been repeatedly
stated (e.g. [18, 31]): A polynomial-time algorithm that recognizes graphs of mim-width 1 could
prove itself useful in devising a recognition algorithm for leaf power graphs.

Acknowledgements. We would like to thank the anonymous reviewers whose numerous
comments improved the quality of the presentation in this paper.

References

[1] Geir Agnarsson, Peter Damaschke, and Magnis M. Halldérsson. Powers of geometric
intersection graphs and dispersion algorithms. Discrete Appl. Math., 132(1-3):3-16, 2003.

[2] Gabor Bacsd, Daniel Marx, and Zsolt Tuza. H-free graphs, independent sets, and
subexponential-time algorithms. In Proc. IPEC ’16, volume 63 of LIPIcs, pages 3:1—
3:12. Schloss Dagstuhl, 2017.

[3] Rémy Belmonte and Martin Vatshelle. Graph classes with structured neighborhoods and
algorithmic applications. Theor. Comput. Sci., 511:54 — 65, 2013.

[4] Norman Biggs. Perfect codes in graphs. J. Combin. Theory, Ser. B, 15(3):289 — 296, 1973.
[5] A. Brandstédt, V. Le, and J. Spinrad. Graph Classes: A Survey. SIAM, 1999.

[6] Andreas Brandstddt. On leaf powers. Technical report, University of Rostock, 2010.

122

8. Mim-width III. Graph powers and generalized distance domination problems.

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Fast dynamic programming
for locally checkable vertex subset and vertex partitioning problems. Theor. Comput. Sci.,
511:66 — 76, 2013.

Tiziana Calamoneri and Blerina Sinaimeri. Pairwise compatibility graphs: A survey. SIAM
Review, 58(3):445-460, 2016.

Steven Chaplick, Martin Topfer, Jan Vobornik, and Peter Zeman. On H-topological
intersection graphs. In Proc. WG ’17, volume 10520 of LNCS, pages 167-179. Springer,
2017.

Nina Chiarelli, Tatiana Romina Hartinger, Valeria Alejandra Leoni, Maria Inés Lopez
Pujato, and Martin Milani¢. Improved algorithms for k-domination and total k-domination
in proper interval graphs. In Proc. ISCO ’18, pages 290 — 302, 2018.

Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On
the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci.,
410(1):53-61, 2009.

Carsten Flotow. On powers of m-trapezoid graphs. Discrete Appl. Math., 63(2):187 — 192,
1995.

Fedor V. Fomin, Petr A. Golovach, and Jean-Florent Raymond. On the tractability of
optimization problems on H-graphs. In Proc. ESA ’18, volume 112 of LIPIcs, pages 30:1 —
30:14. Schloss Dagstuhl, 2018.

Pinar Heggernes, Daniel Meister, Charis Papadopoulos, and Udi Rotics. Clique-width of
path powers. Discrete Applied Mathematics, 205:62-72, 2016.

M. A. Henning, Ortrud R. Oellermann, and Henda C. Swart. Bounds on distance domina-
tion parameters. J. Combin. Inform. Syst. Sci., 16(1):11-18, 1991.

Lars Jaffke, O-joung Kwon, Torstein J. F. Strgmme, and Jan Arne Telle. Generalized
distance domination problems and their complexity on graphs of bounded mim-width. In
Proc. IPEC ’18, volume 115 of LIPIcs, pages 6:1-6:13. Schloss Dagstuhl, 2018.

Lars Jaftke, O-joung Kwon, and Jan Arne Telle. Polynomial-time algorithms for the longest
induced path and induced disjoint paths problems on graphs of bounded mim-width. In
Proc. IPEC ’17, volume 89 of LIPIcs, pages 21:1-21:13. Schloss Dagstuhl, 2017.

Lars Jaffke, O-joung Kwon, and Jan Arne Telle. Mim-width I. Induced path problems.
Discrete Applied Mathematics, 2019. doi:https://doi.org/10.1016/j.dam.2019.
06.026.

Lars Jaffke, O-joung Kwon, and Jan Arne Telle. Mim-width II. The feed-
back vertex set problem. Algorithmica, 2019. doi:https://doi.org/10.1007/
s00453-019-00607-3.

Lars Jaffke, O-joung Kwon, and Jan Arne Telle. A unified polynomial-time algorithm for
feedback vertex set on graphs of bounded mim-width. In Proc. STACS ’18, volume 96 of
LIPIcs, pages 42:1-42:14. Schloss Dagstuhl, 2018.

123

[21] Ton Kloks. Treewidth: Computations and approximations, volume 842 of LNCS. Springer,
1994.

[22] Manuel Lafond. On strongly chordal graphs that are not leaf powers. In Proc. WG 17,
volume 10520 of LNCS, pages 386-398. Springer, 2017.

[23] Stefan Mengel. Lower bounds on the mim-width of some graph classes. Discrete Applied
Mathematics, 248:28-32, 2018.

[24] Ragnar Nevries and Christian Rosenke. Towards a characterization of leaf powers by
clique arrangements. Graphs and Combinatorics, 32(5):2053-2077, 2016.

[25] Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest
common supersequence and longest common subsequence problems. J. Comput. Syst. Sci.,
67(4):757-771, 2003.

[26] Akul Rana, Anita Pal, and Madhumangal Pal. An efficient algorithm to solve the distance
k-domination problem on permutation graphs. J. Discrete Math. Sci. Cryptography,
19(2):241-255, 2016.

[27] Arundhati Raychaudhuri. On powers of strongly chordal and circular arc graphs. Ars
Combin., 34:147-160, 1992.

[28] Sigve Hortemo Sether and Martin Vatshelle. Hardness of computing width parameters
based on branch decompositions over the vertex set. Theor. Comput. Sci., 615:120-125,
2016.

[29] Peter J. Slater. R-domination in graphs. J. ACM, 23(3):446-450, 1976.

[30] Jan Arne Telle and Andrzej Proskurowski. Algorithms for vertex partitioning problems on
partial k-trees. SIAM J. Discrete Math., 10(4):529-550, 1997.

[31] Martin Vatshelle. New width parameters of graphs. PhD thesis, University of Bergen,
Norway, 2012.

124 8. Mim-width III. Graph powers and generalized distance domination problems.

Chapter 9

Subgraph Complementation

Fedor V. Fomin, Petr A. Golovach, Torstein J. F. Streamme and Dimitrios M. Thilikos. In
Algorithmica (2020).

This paper is reprinted from the publication available with DOI 10.1007/s00453-020-00677-
8. It is licensed under Creative Commons Attribution 4.0 International License.

A preliminary version appeared in SWAT 2018, LIPIcs 101, Pages 21:1-21:13, 2018, and
is available online with DOI 10.4230/LIPIcs.SWAT.2018.21.

126 9. Subgraph Complementation

127

Subgraph Complementation*

Fedor V. Fomin!, Petr A. Golovachl, Torstein J. F. Strgz)mmeTl , and Dimitrios M.
Thilikos?

"University of Bergen, Bergen, Norway
2LIRMM, Univ. Montpellier, CNRS, Montpellier, France

Abstract

A subgraph complement of the graph G is a graph obtained from G by complementing all
the edges in one of its induced subgraphs. We study the following algorithmic question:
for a given graph G and graph class ¢, is there a subgraph complement of G which is in
%7 We show that this problem can be solved in polynomial time for various choices of the
graphs class ¢, such as bipartite, d-degenerate, or cographs. We complement these results
by proving that the problem is NP-complete when ¢ is the class of regular graphs.

1 Introduction

One of the most important questions in graph theory concerns the efficiency of recognition of a
graph class ¢. For example, how fast we can decide whether a graph is chordal, 2-connected,
triangle-free, of bounded treewidth, bipartite, 3-colorable, or excludes some fixed graph as a
minor? In particular, the recent developments in parameterized algorithms are partially driven
by the problems of recognizing of graph classes which differ only up to a “small disturbance”
from graph classes recognizable in polynomial time. The amount of disturbance is quantified
in “atomic” operations required for modifying an input graph into the “well-behaving” graph
class ¢. The standard operations could be edge/vertex deletions, additions or edge contractions.
Many problems in graph algorithms fall into this graph modification category: is it possible to
add at most k edges to make a graph 2-edge connected or to make it chordal? Or is it possible to
delete at most k vertices such that the resulting graph has no edges or contains no cycles?

A rich subclass of modification problems concerns edge editing problems. Here the “atomic”
operation is the change of adjacency, i. e. for a pair of vertices u, v, we can either add an edge
uv or delete the edge uv. For example, the CLUSTER EDITING problem asks to transform an
input graph into a cluster graph — that is, a disjoint union of cliques — by flipping at most k
adjacency relations.

*The first three authors have been supported by the Research Council of Norway via the projects “CLASSIS”
and “MULTIVAL”. The fourth author has been supported by project “DEMOGRAPH” (ANR-16-CE40-0028). An
extended abstract of this paper was presented in [9].

fCorresponding author.

128 9. Subgraph Complementation

Besides the basic edge editing, it is natural to consider problems where the set of removed
and added edges should satisfy some structural constraints. In particular, such problems were
considered for complementation problems. Recall that the complement of a graph G is a graph
H on the same vertices such that two distinct vertices of H are adjacent if and only if they are
not adjacent in G. Seidel (see [22, 23, 24]) introduced the operation that is now known as the
Seidel switch. For a vertex v of a graph G, this operation complements the adjacencies of v,
that is, it removes the edges incident to v and makes v adjacent to the non-neighbors of v in G.
Seidel switching a set of vertices U entails consecutively switching each vertex in the set. The
result is that all adjacencies between U and its complement V(G) \ U are flipped. The study
of the algorithmic question whether it is possible to obtain a graph from a given graph class
by the Seidel switch was initiated by Ehrenfeucht et al. [7]. Further results were established
in [14, 15, 16, 18, 19].

Another important operation of this type is the local complementation. For a vertex v of a
graph G, the local complementation of G at v is the graph obtained from G by replacing G[N(v)]
by its complement. This operation plays crucial role in the definition of vertex-minors [20] and
was investigated in this context (see, e.g. [6, 21]). See also [2, 17] for some algorithmic results
concerning local complementations.

In this paper we study the subgraph complement of a graph, which was introduced by
Kaminski, Lozin, and Milani€ in [17] in their study of the clique-width of a graph. A subgraph
complement of a graph G is a graph obtained from G by complementing all the edges of one
of its induced subgraphs. More formally, for a graph G and S C V(G), we define G& S as the
graph with the vertex set V(G) whose edge set is defined as follows: a pair of distinct vertices
u,v is an edge of G @ S if and only if one of the following holds:

e weE(G)N(ug¢SVves),or
e wgE(G)ANueSAveS.

Thus when the set S consists only of two vertices {u,v}, the operation simply changes the
adjacency between u and v, and for a larger set S, G & S changes the adjacency relations for all
pairs of vertices of S.

We say that a graph H is a subgraph complement of the graph G if H is isomorphic to
G @ S for some S C V(G). For a graph class ¢ and a graph G, we say that there is a subgraph
complement of G to ¢ if for some S C V(G), we have G® S € 4. We denote by 41 the class
of graphs such that its members can be subgraph complemented to ¢.

Let ¢ be a graph class. We consider the following generic algorithmic problem.

SUBGRAPH COMPLEMENT TO ¥4 (SC%)
Input: A simple undirected graph G.
Question: Is there a subgraph complement of G to ¢?

In other words, how difficult is it to recognize the class ¢ (19 In this paper we show that there
are many well-known graph classes ¢ such that ¢(!) is recognizable in polynomial time. We
show that

e SUBGRAPH COMPLEMENT TO ¢ is solvable in &(f(n)-n*+ n®) time when ¥ is a
triangle-free graph class recognizable in f(n) time. For example, this implies that when
& is the class of bipartite graphs, the class ¢(1) is recognizable in polynomial time. This
result is found in Section 3.

129

. . o) . .
e SUBGRAPH COMPLEMENT TO ¥ is solvable in f(n) 2" time when ¢ is a d-degenerate

graph class recognizable in f(n) time. Thus when ¥ is the class of planar graphs, class of
cubic graphs, class of graph of bounded treewidth, or class of H-minor free graphs, then
the class ¢ is recognizable in polynomial time. This result is found in Section 4.

e SUBGRAPH COMPLEMENT TO ¥ is solvable in polynomial time when ¥ is a class
of bounded clique-width expressible in monadic second-order logic (with no edge set
quantification). In particular, if ¢ is the class of P4-free graphs (cographs), then ¢(1) is
recognizable in polynomial time. This result is found in Section 6.

e SUBGRAPH COMPLEMENT TO ¥ is solvable in polynomial time when ¢ can be described
by a 2 x 2 M-partition matrix. Therefore ¢ OFN recognizable in polynomial time when ¢
is the class of split graphs, as they can be described by such a matrix. This result is found
in Section 5.

There are nevertheless cases when the problem is NP-hard. In particular, we prove that this
holds when ¢ is the class of regular graphs. This result is found in Section 7.

2 Preliminaries

We let N :={0,1,2 ...} be the set of the natural numbers, and we let N* := N\ {0} be the set
of positive integers. For a set A and a non-negative integer k € N, we denote the family of all
subsets of A of size k as (2) ={A'CA||A| =k}

Simple Graph. A (simple) graph is a pair G := (V, E), where V is a set of vertices and E C (g)
is a set of edges. For an edge {u,v} € E(G) we use the shorthand uv (or equivalently, vu). For a
given graph G, we refer to its vertex set as V(G), and its edge set as E(G). For a set of edges
F C E(G), we denote by V(F) the set of vertices that are contained in the edges of F, i.e.

V(F) = quEF{qu}'

(Induced) Subgraph. For graphs G and H we say that H is a subgraph of G, denoted by
HCGIifV(H) CV(G) and E(H) C E(G). For a set of vertices A C V(G), we denote by
GIA] the subgraph of G induced by A, i.e. G[A] := (A,E(G)N (3)). We use the notation
G—X :=G[V(G)\X] and for a set of edges F C E(G), G—F := (V(G),E(G) \ F). For a vertex
v € V(G) (or an edge e € E(G)), we use the shorthand G —x := G — {x} (or G—e := G — {e},
respectively).

Neighborhood. Let G be a graph. For a vertex v € V(G), we denote by Ng(v) the open
neighborhood of v, i.e. Ng(v) := {w | vw € E(G)}, and by Ng[v] the closed neighborhood
of v, i.e. Ng[v] :== {v} UNg(v). The degree of v is the size of its open neighborhood, i.e.
deg;(v) := |Ng(v)|. For a set of vertices X C V(G), we let Ng(X) := Uyex No(v) \ X and
Ng[X] := Ng(X)UX. We use the shorthand notations ‘N’ and ‘deg’ for ‘N’ and ‘degy’,
respectively, if G is clear from the context.

130 9. Subgraph Complementation

Monadic Second Order Logic. MSQOj is a restricted version of of MSQ, (Monadic Second
Order Logic) without quantifications over edge subsets. More precisely, the syntax of MSO;
of graphs includes the logical connectives V, A, =, <, =, variables for vertices and sets of
vertices, the quantifiers V, 3 that can be applied to these variables, and the following binary
relations:

1. u € U where u is a vertex variable and U is a vertex set variable;

2. adj(u,v), where u and v are vertex variables and the interpretation is that u and v are
adjacent;

3. equality of variables representing vertices and sets of vertices.

We refer to [3] for more information on MSO; and MSQO,.

3 Subgraph complementation to triangle-free graph classes

A triangle is a complete graph on three vertices. Many graph classes do not allow the triangle as
a subgraph, for instance trees, forests, or graphs with large girth. In this section we show that
subgraph complementation to triangle-free graphs can be decided in polynomial time.

More precisely, we show that if a graph class ¢ can be recognized in polynomial time and it
is triangle-free, then we can also solve SUBGRAPH COMPLEMENT TO ¥ in polynomial time.
Our algorithm is constructive, and returns a solution S C V(G), that is a set S such that G S is
in 4. We say that a solution hits an edge uv (or a non-edge uv), if both u and v are contained in
S.

Our algorithm considers each of the following cases.

(7)) There is a solution S containing two vertices that are non-adjacent in G.
(if) There is a solution S such that it forms a clique of size at least 2 in G.
(iii) G is a no-instance.
We start from analyzing the structure of a solution in Case (7). We need the following observation.

Observation 1. Let & be a class of triangle-free graphs and let G be an instance of SUBGRAPH
COMPLEMENT TO ¥, where S C V(G) is a valid solution. Then

a) G[S] does not contain an independent set of size 3, and
b) for every triangle {u,v,w} C V(G), at least two vertices are in S.

Because all non-edges between vertices in G[S] become edges in G & S and vice versa,
whereas all (non-) edges with an endpoint outside S remain untouched, we see that the observa-
tion holds.

Before delving into the analysis of Case (i) any further, let us recall that a graph G is a split
graph if its vertex set can be partitioned into V(G) = CUI, where C is a clique and I is an
independent set. Let us note that the vertex set of a split graph can have several split partitions,
i.e. partitions into a clique and independent set. However, the number of split partitions of an
n-vertex split graphs is at most n+ 1, and they can be enumerated in linear time. This builds on
the result of Hammer and Simone [12] (see also [11]), for completeness we provide a proof.

131

Lemma 2. Let G be a split graph on n vertices. Then G has at most n+ 1 split partitions.
Moreover, they can be enumerated in linear time.

Proof. Let { denote the cardinality of a maximum clique in G. It is known that every split
partition has a clique of size £ or £ — 1 [12]. We will show that there are at most n partitions
where the clique has cardinality ¢, and that these can be enumerated in linear time — since
the split partitions in G and its complement G are the same up to swapping the clique and
independent set, this is enough to prove the lemma with a bound of 2n. We will strengthen the
bound at the end of the proof.

Let V¢ C V(G) denote the set of vertices whose degree is at least £. We observe that in
every split partition, these vertices need to be in the clique; otherwise there is either an edge
between two vertices of the independent set, or it is possible to find a clique of size £+ 1.

Similarly, let V<;,—, C V(G) denote the set of vertices whose degree is at most £ —2. We
observe that every vertex of V<,_, must be in the independent set of a split partition where the
clique has size /.

It remains to partition the set of vertices V;_; C V(G) whose degrees are £ — 1. We claim
that every vertex of V;,_; must have V>, contained in its neighborhood, or else there is a unique
split partition whose clique of size £ is exactly V>,. Assume that there is a vertex u € V,_; whose
neighborhood does not include a vertex v € V>,. Since v is in every clique of size ¢, u can never
be in the clique, implying that all of u’s neighbors must be — but then those neighbors have
degree at least £, implying that |V>| > £.

We proceed with the case when |Vs| < £. Consider some subset U C V,_; such that U UV,
is a clique of size £. Then U is a clique, and vertices of U have no neighbors in V,_; \ U. Thus
G[Vy—1] is a collection of cliques, each of size £ — |Vs|. Each split partition of size ¢ will include
exactly one of these cliques in addition to V>,. However, observe that this implies that there is
either exactly one clique, or the cliques must have size 1 — otherwise there would be an edge
between two vertices in the independent set. This shows that there are at most n distinct split
partitions whose clique has size .

In order to enumerate the partitions in linear time, we first analyze the degree sequence to
find ¢ using the result of Hammer and Simone [12] (sorting vertices by degree can be done in
O'(n) time using bucket sort). We then find the sets V>, and Vy_;. If [V>| = ¢, we have a unique
partition; if |V>,UV,_;| = £ we also have a unique partition; otherwise |Vs¢| = ¢— 1, and V,_
is an independent set — the split partitions with a clique of size ¢ have one pick of vertex from
Vy_1 each.

It remains to tighten the bound on the number of split partitions to n+ 1. We show that if
there is more than one split partition with a clique of size /, then there is a single split partition
with a clique of size £ — 1. In more detail: if there is more than one split partition with a clique of
maximum size, we know from the above paragraph that V,_; is an independent set of size at least
two, and V> is a clique of size £ — 1. We claim that every clique of size £ — 1 in a split partition
contains V>, thus making the split partition unique. Assume for the sake of contradiction that
u € V>, is not in the clique. Recall that u is in the neighborhood of every vertex in V;_{, so a
split partition placing u in the independent set in must place V,_; in the clique. But V;_; is an
independent set of size at least two, so this is impossible.

We remark that the bound is tight, and can be obtained by an edgeless graph. |

Returning to the problem of subgraph complement to triangle free graph classes, we are now
ready for the analysis of Case (i): when there is a solution $ containing two vertices that are

132 9. Subgraph Complementation

non-adjacent in G.

Lemma 3. Let 4 be a class of triangle-free graphs and let G be an instance of SUBGRAPH
COMPLEMENT TO ¥. Let S C V(G) be a valid solution which is not a clique, and let u,v € S be
distinct vertices such that uv ¢ E(G). Then

a) the solution S is a subset of the union of the closed neighborhoods of u and v, that is
S C Ng[u] UNgv];

b) every common neighbor of u and v must be contained in the solution S, that is Ng(u) N
Ng(v) C S;

c) the graph G[N(u) \ N(v)] is a split graph. Moreover, (N(u) \N(v)) NS is a clique and
(N(u) \N(v))\ S is an independent set.

Proof. We will prove each point separately, and in order.

a) Assume for the sake of contradiction that the solution S contains a vertex w ¢ Ng[u]| UNg[v].
But then {u,v,w} is an independent set in G, which contradicts Observation 1a.

b) Assume for the sake of contradiction that the solution S does not contain a vertex w €
Ng(u) NNg(v). Then the edges uw and vw will both be present in G & S, as well as the edge
uv. Together, these form a triangle.

¢) We first claim that the solution S is a vertex cover for G[N(u) \ N(v)]. If it was not, then
there would exist an edge ujup of G[N(u)\ N(v)] such that both endpoints uj,us ¢ S, yet
uy,uy would form a triangle with u# in G & S, which would be a contradiction. Hence
(N(u) \N(v))\ S is an independent set. Secondly, we claim that (N(u) \ N(v)) NS forms a
clique. If not, then there would exist u;,up € (N(u) \ N(v)) NS which are nonadjacent. In
this case {uy,us,v} is an independent set, which contradicts Observation la. Taken together,
these claims imply the last item of the lemma.

O

We now move on to examine the structure of a solution for Case (ii), when there exists a
solution which is a clique. Note that we can assume the clique has size at least two, since if
|S] < 1 then subgraph complementation does not alter the graph.

Lemma 4. Let & be a class of triangle-free graphs and let G be an instance of SUBGRAPH
COMPLEMENT TO ¥. Let S C V(G) be a solution such that |S| > 2 and G|S] is a clique. Let
u,v € S be distinct. Then

a) the solution S is contained in their common neighborhood, that is S C Ng[u] N\ Ng[v], and
b) the graph G[Ng[u] N Ng[Vv]] is a split graph where (Ng[u] "\Ng[v]) \ S is an independent set.
Proof. We prove each point separately, and in order.

a) Assume for the sake of contradiction that the solution S contains a vertex w which is not in
the neighborhood of both u and v. This contradicts that S is a clique.

133

b) We claim that S is a vertex cover of G[Ng[u] N Ng[v]]. Because S is also a clique, the statement
of the lemma will then follow immediately. Assume for the sake of contradiction that S is
not a vertex cover. Then there exist an uncovered edge wiw,, where wi,ws € Ng[u]| N Ng[v],
and also wy,w; ¢ S. Since {u,w;,w,} form a triangle, we have by Observation 1b that at
least two of these vertices are in S. That is a contradiction, so our claim holds.

|
We now have everything in place to present the algorithm.

Algorithm 5 (SUBGRAPH COMPLEMENT TO ¢ where ¥ is triangle-free).

Input: An instance G of SC¥ where ¥ is a triangle-free graph class recognizable in f(n) time
for some function f.

Output: A set S C V(G) such that G® S is in ¢, or a correct report that no such set exists.

1. For every non-edge uv of G:

(a) If either G[N(u) \ N(v)] or G[N(v) \ N(u)] is not a split graph, skip this iteration and
try the next non-edge.
(b) Let (1,,C,) and (1,,C,) denote a split partition of G[Ng(u) \ Ng(v)] and G|[Ng(v) \
Ng(u)] respectively. For each pair of split partitions (1,,C,), (I,,Cy):
i. Construct solution candidate S’ := {u,v} U (Ng(u) NNg(v)) UC,UC,
ii. If G® S is a member of ¥4, return S’

2. For each edge uv € E(G):

(a) If G[Ng[u]] N Ng[v]] is not a split graph, skip this iteration and try the next edge.
(b) For each possible split partition (1,C) of G[Ng[u] "Ng[v]]:

i. Construct solution candidate S’ := {u,v} UC

ii. If G® S is a member of ¥4, return S’

3. Return ‘NONE’

Theorem 6. Let 4 be a class of triangle-free graphs such that deciding whether an n-vertex
graph is in 4 is solvable in f(n) time for some function f. Then SUBGRAPH COMPLEMENT TO
& is solvable in O0(n®+n*- f(n)) time.

Proof. We will prove that Algorithm 5 is correct, and that its running time is &'(n* - (n> + f(n))).
We begin by proving correctness. We have three cases to consider: (i) There exists a solution
which hits a non-edge, (ii) there is a solution S such that it forms a clique of size at least two in
G, and (iii) no solution exists.

In the case that there exists a solution S hitting a non-edge uv, we will at some point guess
this non-edge in Step 1 of the algorithm. By Lemma 3, we have that both G[Ng(«) \ Ng(v)] and
G[Ng(u) \ Ng(v)] are split graphs, so we do not miss the solution S in Step la. Since we try
every possible combination of split partitions in Step 1b, we will by Lemma 3 at some point
construct S’ correctly such that §' = S.

In the case that there exist only solutions which hit exactly a clique, we first find some edge
uv € E(G). At some point we guess uv such that both endpoints are in the same solution S. By

134 9. Subgraph Complementation

Lemma 4b we know that G[Ng(u) N Ng(v)] is a split graph, so we will not miss S in Step 2a.
Since we try every split partition in Step 2b, we will by Lemma 4 at some point construct S’
correctly such that §' = S.

Lastly, in the case that there is no solution, we know that there neither exists a solution
which hits a non-edge, nor a solution which hits a clique. Since these three cases exhaust
the possibilities, we can correctly report that there is no solution when none was found in the
previous steps.

For the runtime, recall that determining whether a graph is split can be done in &'(n) time
given the degree sequence [12], and Lemma 2 establish that enumerating all split partitions can
also be done in linear time.

The sub-procedure of Step 1 is performed at most &'(n?) times, where Step 1a takes &'(n)
time and Step 1b takes at most &' (n? - (n> 4 f(n)) time. In total, Step 1 will take no longer than
O(n*- (n*+ f(n))) time. The sub-procedure of Step 2 is performed at most ¢'(n?) times. Step
2a is done in @(n) time, and step 2b is done in @ (n - (n*> + f(n)) time; hence the asymptotic
runtime of the entire step 2 is @ (n® - (n®> + f(n))). The worst running time among these steps is
Step 1, and as such the runtime of Algorithm 5 is & (n*- (n> + f(n))). 0

4 Complement to d-degenerate graphs

For a constant integer d > 0, we say that a graph G is d-degenerate, if every (not necessarily
proper) subgraph of G has a vertex of degree at most d. For example, trees are 1-degenerate,
while planar graphs are 5-degenerate.

Theorem 7. Let & be a class of d-degenerate graphs such that deciding whether an n-vertex
graph is in 9 is solvable in f(n) time for some function f. Then SUBGRAPH COMPLEMENT TO

@ is solvable in f(n) 0% @) time.

Proof. Let G be an n-vertex graph. We are looking for a vertex subset S of G such that GBS € ¥.

We start from trying all vertex subsets of G of size at most 2d as a candidate for S. Thus, in
O (n*?- f(n)) time we either find a solution or conclude that a solution, if it exists, should be of
size more than 2d.

Now we assume that |S| > 2d. We try all subsets of V(G) of size 2d + 1. Then if G can be
complemented to ¢, at least one of these sets, say X, is a subset of S. In total, we enumerate
(24'sy) sets.

For each guess of X we consider the set ¥ of all vertices in V(G) \ X with at least d + 1
neighbors in X. The observation here is that most vertices from Y are in S. For every size
d + 1 subset X’ C X, there can be at most d vertices of ¥ \ S who have X’ contained in their
neighborhood — otherwise there remains a K1 441 not killed by S. Because every vertex of ¥
has at least d 4 1 neighbors in X, it follows that if more than

|X| 2d+1
o= -d = -d
(d +1 d+1
vertices of Y are not in S, then G® S contains a complete bipartite graph K| 441 as a subgraph,

and hence G @ S is not d-degenerate. Thus, we make at most (Z) guesses on which subset of Y
is (not) in S.

135

Similarly, let the set Z contain all vertices from V(G) \ X with at most d neighbors in X —
we observe that most vertices of Z must be outside S. Analogous to before, for any particular
size d + 1 subset X’ C X, at most d vertices of ZN .S can avoid X’ entirely in their neighborhood.
Since every vertex in Z have at least d 4+ 1 non-neighbors in X, it follows that at most a of
vertices from Z could belong to S. We make at most (g) guesses of which vertices of Z are in S.
Since V(G) = X UY UZ, if there is a solution S, it will be found in one from at most

n) n 2 :nﬁ*(“d)
2d +1 o

guesses. Since for each set S we can check in f(n) time whether G & S € ¢, this concludes the
proof. O

5 Complement to M-partition

Many graph classes can be defined by whether it is possible to partition the vertices of graphs
in the class such that certain constraints at met. For instance, a complete bipartite graph is
one which can be partitioned into two vertex sets such that every edge between the two sets
is present, and no edge exists within any of the partitions. Other graph classes which can be
described in a similar manner are split graphs and k-colorable graphs. Feder et al. [8] formalized
such partition properties of graph classes by making use of a symmetric matrix over {0, 1,*},
called an M-partition.

Definition 8 (M-partition). For a symmetric k X k matrix M over {0, I,x}, we say that a graph
G belongs to the graph class 9y if its vertices can be partitioned into k (possibly empty) sets
X1,X2,. .., X such that, for every i € [k]:

e if M[i,i] = 1, then X; is a clique, and
o if M[i,i] = 0, then X; is an independent set, and
forevery i, j € [k], i # J,
o if M[i, j] = 1, then every vertex of X; is adjacent to all vertices of X;, and
e if M[i, j] =0, then there is no edge between X; and X .

Note that if M[i, j] = «, then there is no restriction on the edges between vertices from X; and X;.

For example, for matrix
0 x
w=(25)

the corresponding class of graphs is the class of bipartite graphs, while matrix

0 *
=(21)
identifies the class of split graphs.
In this section we prove the following theorem.

136 9. Subgraph Complementation

Theorem 9. Let ¢ = 9y be a graph class described by an M-partition matrix of size 2 X 2.
Then SUBGRAPH COMPLEMENT TO ¥ is solvable in polynomial time.

In particular, Theorem 9 yields polynomial-time algorithms for SUBGRAPH COMPLEMENT
TO ¢ when ¥ is the class of split graphs or (complete) bipartite graphs. The proof of our theorem
is based on the following beautiful dichotomy result of Feder et al. [8] on the recognition of
classes %y described by 4 x 4 matrices. Note that a symmetric k X k matrix M is said to contain
another symmetric matrix M’ if there exists a set of indices X C [k] such that removing both
rows an columns corresponding to X from M yields M’

Proposition 10 ([8, Corollary 6.3]). Suppose M is a symmetric 4 x 4 matrix over {0, 1,x}. Then
the recognition problem for Gy is

e NP-complete when M contains the matrix for 3-coloring or its complement, and no
diagonal entry is x.

e Polynomial time solvable otherwise.

Lemma 11. Let M be a symmetric k x k matrix giving rise to the graph class 9y = <. Then there
exists a symmetric 2k x 2k matrix M such that for any input G to SUBGRAPH COMPLEMENT
TO ¥, it is a yes-instance if and only if G belongs to Gyp. Moreover, M’ can be constructed in
linear time such that there are equally many 1’s as 0’s on its diagonal.

Proof. Given M, we construct a matrix M’ in linear time. We let M’ be a matrix of dimen-
sion 2k x 2k, where entry M'[i, j] is defined as M([[5],[4]] if at least one of i, j is even, and

—.M[%, %] if i, j are both odd. Here, =1 = 0, =0 = 1, and —* = . For example, for matrix

v-(27)

the above construction results in

M =

X X O =
* x O O
—_— O * X
e

Observe that for each non-x diagonal entry in M, two diagonal entries are created in M’: one
1 and one O.

It remains to show that an instance G to SUBGRAPH COMPLEMENT TO ¥ is a yes-instance
if and only if G belongs to ¢,,. We prove the two directions of the claim separately.

(=) Assume there is a subgraph complementation G @ S into ¥ = %y. Let X1, X5, ..., X}
be an M-partition of G & S. We define partition X{,X,...,X}, of G as follows: for every vertex
veX;, 1 <i<k, weassignvto Xéiq if v € S and to X2/i otherwise.

We now show that every edge of G respects the requirements of M’. Let uv € E(G) be an
edge, and let u € X; and v € X;. If at least one vertex from {u,v}, say v, is not in S, then uv is
also an edge in G& S, thus M[i, j] #0. Since v & S, it belongs to set v € Xéj. Vertex u is assigned
to set X/, where £ is either 2i or 2i — 1, depending whether u belongs to S or not. But because 2 j
is even irrespectively of £, M'[¢,2j] = Mli, j] # 0.

137

Now consider the case when both u,v € S. Then the edge does not persist after the subgraph
complementation by S, and thus M[i, j] # 1. We further know that u is assigned to X3, ,
and v to X ;-1 Both 2i— 1 and 2j — I are odd, and by the construction of M', we have that
M'[2i —1,2j—1] # 0, and again the edge uv respects M’. An analogous argument shows that
also all non-edges respect M’

(<=) Assume that there is a partition X{,X,...,X), of G according to M’. Let the set §
consist of all vertices in odd-indexed parts of the partition. We now show that G& S can be
partitioned according to M. We define partition X;,Xp, . .., X by assigning each vertex u € X/ to

X@. It remains to show that X;,X>, ..., X} is an M-partition of G S.

Let u € X;, v € X;. Suppose first that uv € E(G @ S). If at least one of u,v is not in S, we
assume without loss of generality that v ¢ S. Then uv € E(G) and v € X, ;. For vertex u € X/,
irrespectively, whether £ is 2i or 2i — 1, we have that M'[¢,2 j] = M(i, j] # 0. Otherwise we have
u,v € S. Then uv is a non-edge in G, and thus M'[2i —1,2j — 1] # 1. But by the construction of
M’ we have that M £, j] # 0, and there is no violation of M. An analogous argument shows that
if u and v are not adjacent in G® S, it holds that M[i, j] # 1. Thus X;,X>,...,X; is an M-partition
of G@ S, which concludes the proof. O

Now we are ready to prove Theorem 9.

Proof of Theorem 9. For a given 2 x 2 matrix M, we use Lemma 11 to construct a matrix
M’. Since M’ has equally many 1’s as 0’s on its diagonal, it can not contain the 3-coloring
matrix. Then by Proposition 10, the recognition of whether G admits M’-partition is in P. Thus,
SUBGRAPH COMPLEMENT TO ¥ is solvable in polynomial time. OJ

6 Subgraph complementation to graph classes of
bounded clique-width

We show that SUBGRAPH COMPLEMENT TO ¢ can be solved in polynomial time when ¢ has
bounded clique-width and can be expressed by an MSQO, property. We refer to the book [3] for
the basic definitions. We will use the following result of Hlinény and Oum [13].

Proposition 12 ([13]). There is an algorithm that for every integer k and graph G in time
O(|V(G)) either computes a (21 — 1) expression for a graph G or correctly concludes that
the clique-width of G is more than k.

Note that the algorithm of Hlinény and Oum only approximates the clique-width but does
not provide an algorithm to construct an optimal k-expression tree for a graph G of clique-width
at most k. But this approximation is usually sufficient for algorithmic purposes.

Courcelle, Makowsky and Rotics [4] proved that every graph property that can be expressed
in MSO; can be recognized in linear time for graphs of bounded clique-width when given a
k-expression.

Proposition 13 ([4, Theorem 4]). Let ¥ be a class of graphs with clique-width bounded
by constant k such that for each graph G € ¢4, a corresponding k-expression can be found
in O(f(|[V(G)|,|E(G)|)) time. Then every MSO| property ¢ on &4 can be recognized in
O(f([V(G)|,|E(G)])-g(9,k))) time, for some function g.

138 9. Subgraph Complementation

The nice property of graphs with bounded clique-width is that their subgraph complementa-
tion has also bounded clique-width. In particular, Kaminski, Lozin, and Milani¢ [17] observed
that if G is a graph of clique-width k, then any subgraph complementation of G is of clique-width
at most g(k) for some computable function g. For completeness, we here provide a more accurate
upper bound.

Lemma 14. Let G be a graph, S CV(G). Then cWD(G & S) < 3cwD(G).

Proof. Let CWD(G) = k. To show the bound, it is more convenient to use expression trees
instead of k-expressions. An expression tree of a graph G is a rooted tree 7 with nodes of four
types i, U, 1 and p such that:

o Introduce nodes i(v) are leaves of T. For i € [k] and a vertex v € V(G), i(v) is associated
to the singleton graph where vertex v is labeled by i.

e Union node U stands for a disjoint union of k-graphs associated with its children.

® Relabel node p; . has one child and is associated with the k-graph obtained by applying
of the relabeling operation to the graph corresponding to its child.

e Join node 1; ; has one child and is associated with the k-graph resulting by applying the
join operation on the graph represented by its child: every vertex labeled with i is made
adjacent to every vertex labeled by j.

e The graph G is isomorphic to the graph associated with the root of 7' (with all labels
removed).

The width of the tree T is the number of different labels appearing in 7. If G is of clique-width
k, then by parsing the corresponding k-expression, one can construct an expression tree of
width k and, vise versa, given an expression tree of width k, it is straightforward to construct
a k-expression. Throughout the proof we call the elements of V(T') nodes to distinguish them
from the vertices of G. Given a node x of an expression tree, 7, denotes the subtree of 7' rooted
in x and the graph G, represents the k-graph formed by 7.

An expression tree T is irredundant if for any join node 7; ;, the vertices labeled by i and j
are not adjacent in the graph associated with its child. It was shown by Courcelle and Olariu [5]
that every expression tree T of G can be transformed into an irredundant expression tree 7’ of
the same width in time linear in the size of T'.

Let T be an irredundant expression tree of G of width k rooted in r. We construct the
expression tree T’ for G’ = G& S by modifying 7.

Recall that the vertices of the graphs Gy for x € V(T') are labeled 1,...,k. We introduce
three groups of distinct labels o, ..., 0, Bi,...,Br and ¥1,...,%. The labels a,..., 04 and
Bi1, ..., By correspond the the labels 1, ...,k for the vertices in S and V(G) \ S respectively. The
labels 7, . .., ¥ are auxiliary. Then for every node x of T we construct T using T starting the
process from the leaves. We denote by G, the k-graph corresponding to the root x of Ty.

For every introduce node i(v), we construct an introduce node o;(v) if v € S and an introduce
node B;(v) if v ¢ S. Let x be a non-leaf node of T and assume that we already constructed the
modified expression trees of the children of x.

Let x be a union node U of T and let y and z be its children.

139

We construct k relabel nodes pg, 5, for i € {1,...,k} that form a path, make one end-node of
the path adjacent to y in Ty' and make the other end-node denoted by y’ the root of T}f, constructed
from Ty' . Notice that in the corresponding graph G;, all the vertices of S are now labeled by
M,--., % instead of o, ..., 0.

Next, we construct a union node U denoted by x(1) with the children y' and z. This way we
construct the disjoint union of G;, and G..

Notice that vertices which are labeled by the same label in G, and G, are not adjacent in G.
In other words, we should make the vertices of V(Gy) NS and V(G,) NS with the same label
adjacent in G’. We achieve it by adding k join nodes g, 5, fori € {1,...,k}, forming a path out
of them and making one end-node of the path adjacent to x(1). We declare the other end-node of
the path denoted by x the new root.

Observe now that for the set of vertices Y; of Gy labeled i and the set of vertices Z; of G,
labeled by j where i, j € {1,...,k} are distinct, it holds that the vertices of ¥; and Z; are either
pairwise adjacent in G or pairwise nonadjacent. More precisely, on this stage of construction we
ensure that if the vertices of Y; are not adjacent to the vertices of Z;, then the vertices of Y; NS
and Z; N S are made adjacent in G'. To do it, for every two distinct i, j € {1,...,k} such that the
vertices of ¥; and Z; are not adjacent in G, construct a new join node 7y, o, and form a path with
all these nodes whose one end-node is adjacent to x?) and the other end-node x®) is the new
root (we assume that x3) = x() if have no new constructed nodes).

Finally, we add k relabel nodes py, o, for i € {1,...,k} that form a path, make one end-node
of the path adjacent to x) and make the other end-node denoted by x the root of the obtained
T!. Clearly, all the vertices of S in G, are labeled by a, ..., 0.

Let x be a relabel node p;,; of T and let y be its child. We construct two relabel nodes
Pa—a; and pg,_, B; denoted by x and x’ respectively. We make x the child of x and we make the
root y of 7y the child of x'.

Now, let x be a join node 1), ; of T and let y be its child. Recall that T is irredundant, that is,
the vertices labeled by i and j in Gy are not adjacent. Clearly, we should avoid making adjacent
the vertices in S in the construction of G’. We do it by constructing three new join nodes 1, , B>
Na;—p; and N, denoted by x,x’,x" respectively. We make x’ the child of x, x” the child of x’
and the node y of 7 is made the child of x”.

This completes the description of the construction of 7. Using standard inductive arguments,
it is straightforward to verify that G’ is isomorphic to the graph associated with the root of 77,
that is, cWD(G') < 3k. 0

Lemma 15. Let ¢ be an MSO| property describing the graph class 4. Then there exists an
MSO property ¢ describing the graph class 4") of size || € O(|0)).

Proof. We will construct ¢ from ¢ in the following way: We start by prepending 35 C V(G).
Then for each assessment of the existence of an edge in @, say uv € E(G), replace that term
with (u ¢ SVv ¢ S)Auv € E(G))V(ue SAveSAuv ¢ E(G)). Symmetrically, for each
assessment of the non-existence of an edge uv ¢ E(G), replace that term with ((u ¢ SV v ¢
S)Auv ¢ E(G))V(ue SAveSAuv € E(G)).

We observe that if ¢ is satisfiable for some graph G, then for every S C V(G), the subgraph
complementation G & S will yield a satisfying assignment to ¢. Conversely, if ¢ is satisfiable
for a graph G, then there exist some S such that ¢ is satisfied for G® S. For the size, we note
that each existence check for edges blows up by a constant factor. OJ

140 9. Subgraph Complementation

We are ready to prove the main result of this section.

Theorem 16. Let & be a graph class expressible in MSO\ which has clique-width bounded by
constant k. Then SUBGRAPH COMPLEMENT TO ¥ is solvable in polynomial time.

Proof. Let ¢ be the MSO; formula which describes ¢, and let G be an n-vertex input graph.
We apply Proposition 12 for G and in O(n?) time either obtain a K’ < 23%**+! — 1 -expression for
G or conclude that the clique-width of G is more than 3k. In the latter case, by Lemma 14, G
cannot be subgraph complemented to 4.

We then obtain an MSQ; formula ¢ from Lemma 15, and apply Proposition 13, which
works in &'(n® - g(¢,k’)) time for some function g. As ¢ and &’ depend only on constants ¢ and
k, the runtime of the algorithm is &'(n?). O

We remark that if clique-width expression is provided along with the input graphs, and ¢
can be expressed in MSQOy, then there is a linear time algorithm for SUBGRAPH COMPLEMENT
TO . This follows directly from Lemma 15 and Proposition 13.

Theorem 16 implies that for every class of graphs ¢ of bounded clique-width characterized
by a finite set of finite forbidden induced subgraphs, e. g. P4-free graphs (also known as cographs)
or classes of graphs discussed in [1], the SUBGRAPH COMPLEMENT TO ¢ problem is solvable
in polynomial time. However, Theorem 16 does not imply that SUBGRAPH COMPLEMENT TO
¢ is solvable in polynomial time for ¢ being of the class of graphs having clique-width at most
k. This is because such a class ¢ cannot be described by MSO). Interestingly, for the related
class ¢ of graphs of bounded rank-width (see [5] for the definition) at most k, the result of Oum
and Courcelle [6] combined with Theorem 16 implies that SUBGRAPH COMPLEMENT TO ¥ is
solvable in polynomial time.

7 Hardness of subgraph complementation to
regular graphs

Let us remind that a graph G is regular if all its vertices have the same degree. We consider
SUBGRAPH COMPLEMENT TO ¥ where ¥ is the class of regular graphs, which we call
SUBGRAPH COMPLEMENT TO REGULAR GRAPH (SCR). In this section, we show that this
problem is NP-complete by a reduction from CLIQUE IN REGULAR GRAPH.

CLIQUE IN REGULAR GRAPH (KR)
Input: An undirected simple graph G which is regular, a positive integer k.
Question: Does G contain a clique on k vertices?

We will need the following well-known proposition.
Proposition 17 ([10]). CLIQUE IN REGULAR GRAPH is NP-complete.

We remark that the above proposition follows because the INDEPENDENT SET problem is
NP-complete for cubic graphs [10]; finding an independent set is equivalent to finding a clique
in the complement graph, and the complement of a regular graph is also regular.

We are now ready to prove that CLIQUE IN REGULAR GRAPH is many-one reducible to
SUBGRAPH COMPLEMENT TO REGULAR GRAPH. We begin by defining a gadget which we
will use in the reduction.

141

Figure 1: The gadget graph Hy , is built of k parts, namely a clique Kj_1, and k — 1 complete
bipartite graphs Kr{,, e ,Kf;l with some rewiring.

Definition 18 (Gadget H; ,). For integers k > 2 and r > k such that r — k is even, we build the
gadget graph Hy , as follows. Initially, we let Hy , consist of one clique on k — 1 vertices, as
well as k — 1 distinct copies of K;.,. These are all the vertices of the gadget, which is a total of
(k—1)+2r- (k— 1) vertices. We denote the vertices of the clique cy,cz,...,cr_1, and we let
the complete bipartite graphs be denoted by K,{,, KE,, .. ,Klf,‘l. For a bipartite graph K; . let the
vertices of the two parts be denoted by a’i , aé, . ,ai and b’i , bé, e ,bi respectively.

If r = k, then the construction is already complete. Otherwise, we will now do some rewiring
of the edges to complete the construction of Hy ,. Recall that » — k is even. For each vertex c; of
the clique, add one edge from ¢; to each of a’i,a& . ,ai,;k . Similarly, add an edge from c¢; to

2
1

each of b’i, Dy ,bi,;k. Now remove the edges a’i bi“aébé, ...,d._,bi_.. Once this is done for

r—k“r—k-
2 = 7
every i € [k — 1], the construction is complete. See Figure 1.

We observe the following property of vertices aj-, b’J and ¢; of Hy .

Observation 19. For every i € [k— 1] and j € [r], it holds that the degrees ofai/ and b; in Hyr
are both exactly r, whereas the degree of c; is r — 2.

We now present our reduction in the form of an algorithm.

Algorithm 20 (Reduction KR to SCR).

Input: An instance (G,k) of KR. Let r denote the regularity of G (the degree of its vertices).
Output: An instance G’ of SCR such that it is a yes-instance if and only if (G, k) is a yes-instance
of KR.

1. If k <7 or k > r, solve the instance of KR by brute force. If it is a yes-instance, return a
trivial yes-instance to SCR, if it is a no-instance, return a trivial no-instance to SCR.

2. If r — k is odd, modify G by taking two copies of G which are joined by a perfect matching
between corresponding vertices. Then r increases by one, whereas k remains the same.
Going forth, we assume G (and r) have already undergone this transformation if required.

3. Construct the graph G’ by taking the disjoint union of G and the gadget Hy ,. Return G'.

Let n = |[V(G)|. We observe that the number of vertices in the returned instance is at most
2n+ (k—1)+2r- (k—1), which is €'(n?). The running time of the algorithm is ¢'(n”) and thus
is polynomial.

Correctness of the reduction follows from the following two lemmata.

142 9. Subgraph Complementation

Lemma 21. Let (G, k) be the input of Algorithm 20, and let G' be the returned result. If (G, k)
is a yes-instance to CLIQUE IN REGULAR GRAPH, then G’ is a yes-instance of SUBGRAPH
COMPLEMENT TO REGULAR GRAPH.

Proof. Let C C V(G) be a clique of size k in G. If the clique is found in step 1, then G’ is a
trivial yes-instance, so the claim holds. Thus, we can assume that the graph G’ was constructed
in step 3. If G was altered in step 2, we let C be the clique in one of the two copies that was
created. Let S C V(G') consist of the vertices of C as well as the vertices of the clique K;_; of
the gadget Hy .. We claim that S is a valid solution to G'.

We show that G’ @ S is r-regular. Any vertex not in S will have the same number of neighbors
as ithad in G’. Since the only vertices that weren’t originally of degree r were those in the gadget
clique Kj_1, all vertices outside S also have degree r in G’ & S. What remains is to examine the
degrees of vertices of C and of Kj,_ ;.

Let ¢; be a vertex of K;_q in G'. Then ¢; lost its k — 2 neighbors from K;_;, gained k
neighbors from C, and kept r — k neighbors in Kﬁ"r. We see that its new neighborhood has size
k+r—k=r.

Let u € C be a vertex of the clique from G. Then u lost k — 1 neighbors from C, gained
k — 1 neighbors from Kj_1, and kept r — (k — 1) neighbors from G — C. In total, u will have
r—(k—1)+ (k—1) = r neighbors in G’ @ S. Since every vertex of G’ @ S has degree r, it is
r-regular, and thus G’ is a yes-instance. O

Lemma 22. Let (G, k) be the input of Algorithm 20, and let G’ be the returned result. If G' is a
yes-instance to SUBGRAPH COMPLEMENT TO REGULAR GRAPH, then (G, k) is a yes-instance
of CLIQUE IN REGULAR GRAPH.

Proof. Let S C V(G') be a solution witnessing that G’ is a yes-instance. If G’ was the trivial
yes-instance returned in step 1 of Algorithm 20, the statement trivially holds. Going forward we
may thus assume G’ was returned in step 3, and that k > 7.

Our first claim is that G’ @ S is regular with regularity r. Assume for the sake of contradiction
it is regular with regularity 7’ # r. Note that if # is any other value than r — 2, then every vertex of
G’ must be in S, as degrees of vertices outside S do not change under subgraph complementation;
but then G’ @ S is simply the complement of G’, and it is not regular. So 7 must be r — 2. Then
every vertex except those in the gadget clique K;_; must be in S. Consider a vertex in one of the
complete bipartite graphs from the gadget — it will have at least n new incident edges (from the
graph G). Since n > r, the vertex will not have r — 2 neighbors in G’ & S, a contradiction.

We have established that G’ & S is r-regular. It must thus be the case that every vertex of the
gadget clique Kj_ is in S, since these vertices do not have degree r in G'.

Our second claim is that |S| = 2k — 1, and moreover, that no neighbor of K;_; is from §
in G'. To show this, we let p = |S\ Ki—1], and proceed to show that p = k. Towards this end,
consider a vertex ¢; € K;_1. This vertex has some number of neighbors in S\ K;_1, denoted
Xi = |Ng (c;) N (S\ Kr_1)|- We know that ¢; has r neighbors in G’ & S. Let us count them: some
neighbors are preserved by the subgraph complementation, namely r — k — x; of its neighbors,
found in K;'_’r. Some neighbors are gained, namely p — x; of the vertices in S. Thus, we have that

r=r—k—x;+ p—x;. The r’s cancel, and we get x; = p%k This is true for every i € [k — 1], so
we simply denote the number by x = x;, and get p = k+ 2x.

Towards the claim, it remains to show that x = 0. Because the neighborhoods of distinct c;
and ¢; are disjoint outside Kj_ in G, we get that p > (k— 1) - x. We substitute p, and get

k+2x>(k—1)-x

143

k

v

(k—3)-x
ko
k=3~

Recalling that k > 7, we have that x is either 1 or 0. Assume for th_e sake of contradiction that

x = 1. Then without loss of generality, each ¢; has some neighbor &', which is in §. Since a’j had

degree r in G/, it must hold that ag has equally many neighbors as non-neighbors in S. At most

one of @';’s neighbors in S is from K, in G/, this means that at least ‘S‘% vertices of K}, are in

S. Because k > 7 and the K.,’s are completely disjoint in G’ for different values of i € [k— 1],
we get that

S| -3 S| -3
12 B2 e 2 B2
1S]>3-1S] -9
9>2-|8

Seeing that |S| > k— 1 > 6, this is a contradiction. Thus, x must be 0, so p = k+2x = k and
the second claim holds.

We now show that S\ K;_ is a clique in G’. Assume for the sake of contradiction it is not,
and let u,v € S\ K;_; be vertices such that uv ¢ E(G’). Consider the vertex u. By the second
claim above we know that u does not have a neighbor from Kj_; in G’. It will thus gain at least
k edges going to K;_; U{v}, and lose at most k — 2 edges going to S\ (Kx_; U{u,v}). Because
u was of degree r in G’ yet gained more edges than it lost by the subgraph complementation, its
degree is strictly greater than r in G’ @ S. This is a contradiction, hence S\ K;_1 is a clique in G'.

Because k > 3, the clique S\ K;_; can not be contained in the gadget Hj , nor span across
both copies of G created in step 2 of the reduction (if that step was applied). It must therefore
be contained in the original G. Thus, G has a clique of size k, and (G, k) is a yes-instance of
CLIQUE IN REGULAR GRAPH. O

Theorem 23. SUBGRAPH COMPLEMENT TO REGULAR GRAPH is NP-complete.

Proof. Lemmata 21 and 22 together with Proposition 17 conclude the proof of NP-hardness.
Membership in NP is trivial, so NP-completeness holds. U

We remark that if the regularity r is a constant, the problem becomes polynomial time solvable
by Theorem 7.

8 Conclusion and open problems

In this paper we initiated the study of SUBGRAPH COMPLEMENT TO ¢. Many interesting
questions remain open. In particular, what is the complexity of the problem when ¥ is

o the class of chordal graphs,
o the class of interval graphs,
o the class of graph excluding a path Ps as an induced subgraph,

e the class of graphs with min degree > r for some constant r.

144 9. Subgraph Complementation

Another natural question is to consider a class %, such that %) can be recognized in
polynomial time. Let % denote the class of complement graphs to . Is it then also possible to
recognize ?(1) in polynomial time?

More broadly, it is also interesting to see what happens as we allow more than one subgraph
complementation; how quickly can we recognize the class %) for some class ¢? It will also be
interesting to investigate what happens if we combine subgraph complementation with other
graph modifications, such as the Seidel switch.

Acknowledgment We thank Saket Saurabh for helpful discussions, and also a great thanks to
the anonymous reviewers who provided valuable feedback.

References

[1] Alexandre Blanché, Konrad K. Dabrowski, Matthew Johnson, Vadim V. Lozin, Daniél
Paulusma, and Viktor Zamaraev. Clique-width for graph classes closed under comple-
mentation. In 42nd International Symposium on Mathematical Foundations of Computer
Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark, volume 83 of LIPIcs, pages
73:1-73:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[2] André Bouchet. Recognizing locally equivalent graphs. Discrete Mathematics, 114(1-
3):75-86, 1993.

[3] Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic
- A Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its
applications. Cambridge University Press, 2012.

[4] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125-150, 2000.

[5] Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1-3):77-114, 2000.

[6] Bruno Courcelle and Sang-il Oum. Vertex-minors, monadic second-order logic, and a
conjecture by Seese. J. Comb. Theory, Ser. B, 97(1):91-126, 2007.

[7] Andrzej Ehrenfeucht, Jurriaan Hage, Tero Harju, and Grzegorz Rozenberg. Complexity
issues in switching of graphs. In Theory and Application of Graph Transformations, 6th
International Workshop, TAGT 98, Paderborn, Germany, November 16-20, 1998, Selected
Papers, volume 1764 of Lecture Notes in Computer Science, pages 59-70. Springer, 2000.

[8] Tomas Feder, Pavol Hell, Sulamita Klein, and Rajeev Motwani. List partitions. STAM J.
Discrete Math., 16(3):449-478, 2003.

[9] Fedor V. Fomin, Petr A. Golovach, Torstein J. F. Stremme, and Dimitrios M. Thilikos. Par-
tial Complementation of Graphs. In David Eppstein, editor, 16th Scandinavian Symposium
and Workshops on Algorithm Theory (SWAT 2018), volume 101 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 21:1-21:13, Dagstuhl, Germany, 2018. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

145

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

Martin Charles Golumbic. Algorithmic graph theory and perfect graphs, volume 57.
Elsevier, 2004.

Peter L. Hammer and Bruno Simeone. The splittance of a graph. Combinatorica, 1(3):275—
284, 1981.

Petr Hlineny and Sang-il Oum. Finding branch-decompositions and rank-decompositions.
SIAM J. Comput., 38(3):1012-1032, 2008.

Vit Jelinek, Eva Jelinkov4, and Jan Kratochvil. On the hardness of switching to a small
number of edges. In Computing and Combinatorics - 22nd International Conference,
COCOON 2016, Ho Chi Minh City, Vietnam, August 2-4, 2016, Proceedings, volume 9797
of Lecture Notes in Computer Science, pages 159-170. Springer, 2016.

Eva Jelinkova and Jan Kratochvil. On switching to H-free graphs. Journal of Graph
Theory, 75(4):387-405, 2014.

Eva Jelinkovd, Ondrej Suchy, Petr Hlineny, and Jan Kratochvil. Parameterized problems
related to Seidel’s switching. Discrete Mathematics & Theoretical Computer Science,
13(2):19-44, 2011.

Marcin Kaminski, Vadim V. Lozin, and Martin Milanic. Recent developments on graphs
of bounded clique-width. Discrete Applied Mathematics, 157(12):2747-2761, 2009.

Jan Kratochvil. Complexity of hypergraph coloring and Seidel’s switching. In Graph-
Theoretic Concepts in Computer Science, 29th International Workshop, WG 2003, Elspeet,
The Netherlands, June 19-21, 2003, Revised Papers, volume 2880 of Lecture Notes in
Computer Science, pages 297-308. Springer, 2003.

Jan Kratochvil, Jaroslav Nesetfil, and Ondfej Zyka. On the computational complexity of
Seidel’s switching. In Fourth Czechoslovakian Symposium on Combinatorics, Graphs
and Complexity (Prachatice, 1990), volume 51 of Ann. Discrete Math., pages 161-166.
North-Holland, Amsterdam, 1992.

Sang-il Oum. Rank-width and vertex-minors. J. Comb. Theory, Ser. B, 95(1):79-100,
2005.

Sang-il Oum. Rank-width: Algorithmic and structural results. Discrete Applied Mathemat-
ics, 231:15-24, 2017.

J. J. Seidel. Graphs and two-graphs. pages 125-143. Congressus Numerantium, No. X,
1974.

J. J. Seidel. A survey of two-graphs. pages 481-511. Atti dei Convegni Lincei, No. 17,
1976.

J. J. Seidel and D. E. Taylor. Two-graphs, a second survey. In Algebraic methods in graph
theory, Vol. I, Il (Szeged, 1978), volume 25 of Collog. Math. Soc. Jdnos Bolyai, pages
689-711. North-Holland, Amsterdam-New York, 1981.

146 9. Subgraph Complementation

Chapter 10

Time-inconsistent planning: simple
motivation is hard to find

Fedor V. Fomin and Torstein J. F. Stramme. An extended abstract of this work was presented
at the 34th AAAI conference.

148 10. Time-inconsistent planning: simple motivation is hard to find

149

Time-inconsistent Planning:
Simple Motivation Is Hard to Find

Fedor V. Fomin,! Torstein J. F. Strgmme!

University of Bergen, Norway

Abstract

People sometimes act differently when making decisions affecting the present moment
versus decisions affecting the future only. This is referred to as time-inconsistent behavior,
and can be modeled as agents exhibiting present bias. A resulting phenomenon is abandon-
ment, which is when an agent initially pursues a task, but ultimately gives up before reaping
the rewards.

With the introduction of the graph-theoretic time-inconsistent planning model due to
Kleinberg and Oren, it has been possible to investigate the computational complexity of
how a task designer best can support a present-biased agent in completing the task. In this
paper, we study the complexity of finding a choice reduction for the agent; that is, how to
remove edges and vertices from the task graph such that a present-biased agent will remain
motivated to reach his target even for a limited reward. While this problem is NP-complete
in general, this is not necessarily true for instances which occur in practice, or for solutions
which are of interest to task designers. For instance, a task designer may desire to find the
best task graph which is not too complicated.

We therefore investigate the problem of finding simple motivating subgraphs. These are
structures where the agent will modify his plan at most k times along the way. We quantify
this simplicity in the time-inconsistency model as a structural parameter: The number of
branching vertices (vertices with out-degree at least 2) in a minimal motivating subgraph.

Our results are as follows: We give a linear algorithm for finding an optimal motivating
path, i.e. when k = 0. On the negative side, we show that finding a simple motivating
subgraph is NP-complete even if we allow only a single branching vertex — revealing that
simple motivating subgraphs are indeed hard to find. However, we give a pseudo-polynomial
algorithm for the case when £ is fixed and edge weights are rationals, which might be a
reasonable assumption in practice.

1 Introduction

Time-inconsistent behavior is a theme attracting great attention in behavioral economics and
psychology. The field investigates questions such as why people let their bills go to debt
collection, or buy gym memberships without actually using them. More generally, inconsistent
behavior over time occurs when an agent makes a multi-phase plan, but does not follow through

150 10. Time-inconsistent planning: simple motivation is hard to find

on his initial intentions despite circumstances remaining essentially unchanged. Resulting
phenomenons include procrastination and abandonment.

A common explanation for time-inconsistent behavior is the notion of present bias, which
states that agents give undue salience to events that are close in time and/or space. This
idea was described mathematically already in 1930’s when (Samuelson 1937) introduced the
discounted-utility model, which has since been refined in different versions (Laibson 1994).

George Akerlof describes in his lecture (Akerlof 1991) an even simpler mathematical model;
here, the agent simply has a salience factor causing immediate events to be emphasized more
than future ones. He goes on to show how even a very small salience factor in combination with
many repeated decisions can lead to arbitrary large extra costs for the agent. This salience factor
also has support from psychology, where (McClure et al. 2004) showed by using brain imaging
that separate neural systems are in play when humans value immediate and delayed rewards.!

In 2014, (Kleinberg and Oren 2018) introduced a graph-theoretic model which elegantly
captures the salience factor and scenarios of Akerlof. In this framework, where the agent is
maneuvering through a weighted directed acyclic graph, it is possible to model many interesting
situations. We will provide an example here.

1.1 Example

The student Bob is planning his studies. He considers taking a week-long course whose passing
grade is a reward he quantifies to be worth r = 59. And indeed, Bob discovers that he can
actually complete the course incurring costs and effort he quantifies to be only 46 — if he works
evenly throughout the week (the upper path in Figure 1). Bob will reevaluate the cost every day,
and as long as he perceives the cost to be at most equal to the reward, he will follow the path he
finds to have the lowest cost.

The first day of studies incurs a cost of 6 for Bob due to some mandatory tasks he needs to
do that day. But because Bob has a salience factor b = 3, he actually perceives the cost of that
day’s work to be 18, and of the course as a whole to be 58 (18 + 10+ 10+ 10+ 10). The reward

'We remark that quasi-hyperbolic discounting (discussed in (Laibson 1994; McClure et al. 2004)) can be seen
as a generalization of both the discounted-continuity model (Samuelson 1937) and the salience factor (Akerlof
1991). There has been some empirical support for this model; however there are also many known psychological
phenomena about time-inconsistent behavior it does not capture (Frederick, Loewenstein, and O’Donoghue 2002).

Figure 1: Acyclic digraph illustrating the ways in which Bob can distribute his efforts in order
to complete the course. The upper path (green dashed line) is Bob’s initial plan requiring the
least total effort. The middle path (blue, narrowly dotted line) is the plan which appears better
when at vertex x, and lower path (red, widely dotted line) is the plan he ultimately changes to at
vertex y.

151

is even greater, though, so Bob persists to the next day.

When the second day of studies is about to start, Bob quasi-subconsciously makes the
incorrect judgment that reducing his studies slightly now is the better strategy. He then changes
his plan to the middle path in Figure 1. In terms of our model, the agent Bob standing at vertex
x reevaluates the original plan (the upper path) to now cost 3- 10+ 10+ 10+ 10 = 60, whereas
the middle path is evaluated to only cost 3-6+ 10+ 16+ 10 = 54. He therefore chooses to go
on with the plan that postpones some work to later, incurring a small extra cost to be paid at that
time.

On the third day Bob finds himself at vertex y, and is yet again faced with a choice. The
salience factor, as before, cause him to do less work in the present moment at the expense of
more work in the future. He thus changes his plan to the lower path of Figure 1. However, it
turns out that the choice was fatal — on the last day of the course (at vertex z), Bob is facing
what he perceives to be a mountain of work so tall that it feels unjustified to complete the course;
he evaluates the cost to be 3 -21 = 63, strictly larger than the reward. He gives up and drops the
course.

Because Bob abandons the task in our example above, we say that the graph in Figure 1 is
not motivating. A natural question is to ask what we can do in order to make it so.

An easy solution for making a model motivating is to simply increase the reward. By
simulating the process, it is also straightforward to calculate the minimum required reward
to obtain this. However, it might be costly if we are the ones responsible for purchasing the
reward, or even impossible if the reward is not for us to decide. A more appealing strategy
might therefore be to allow the agent to only move around in a subgraph of the whole graph; for
instance, if the lower path did not exist in our example above, then the graph would actually be
motivating for Bob.? Finding such a subgraph is a form of choice reduction, and can be obtained
by introducing a set of rules the agent must follow; for instance deadlines.

The aim of the current paper is not, however, to delve into the details of any particular
scenario, but rather to investigate the formal underlying graph-theoretic framework. In the same
spirit, (Kleinberg and Oren 2018) showed that the structure of a minimal motivating subgraph is
actually quite restricted, and ask whether there is an efficient algorithm finding such subgraphs.
Unfortunately, (Tang et al. 2017) and (Albers and Kraft 2019) independently proved that this
problem is NP-complete in the general case. However, this does not exclude the existence
of polynomial time algorithms for more restricted classes of graphs, or algorithms where the
exponential blow-up occurs in parameters which in practical instances are small. This is what
we investigate in the current paper; specifically, we look at restricting the number of branching
vertices (vertices with out-degree at least 2) in a minimal motivating subgraph. This parameter
can also be understood as the number of times a present-biased agent changes his plan.

Before we present our results, let us introduce the model more formally.

1.2 Formal model

We here present the model due to (Kleinberg and Oren 2018). Formally, an instance of the
time-inconsistent planning model is a 6-tuple M = (G, w, s,t,r,b) where:

2Removing edges and/or vertices that destroys the lower path is also the only option for how to make the
example graph motivating; the upper path must be kept in its entirety, otherwise the agent will not be motivated to
move from s to x; the middle path must also be kept in its entirety, otherwise the agent will give up when at x.

152 10. Time-inconsistent planning: simple motivation is hard to find

G = (V(G),E(G)) is an acyclic digraph called a fask graph. V(G) is a set of elements
called vertices, and E(G) C V(G) x V(G) is a set of directed edges. The graph is acyclic,
which means that there exists an ordering of the vertices called a fopological order such
that, for each edge, its first endpoint comes strictly before its second endpoint in the
ordering. Informally speaking, vertices represent states of intermediate progress, whereas
edges represent possible actions that transitions an agent between states.

e w: E(G) — R is a function assigning non-negative weight to each edge. Informally
speaking, this is the cost incurred by performing a certain action.

s € V(G) is the start vertex.

t € V(G) is the target vertex.
o r € R>qis the reward.
e b < R is the agent’s salience factor.?

An agent with salience factor b is initially at vertex s and can move in the graph along edges
in their designated direction. The agent’s task is to reach the target ¢, at which point the agent
can pick up a reward worth ». We can usually assume that there is at least one path from s to
each vertex, and at least one path from each vertex to ¢, as otherwise these vertices are of no
interest to the agent.

When standing at a vertex u, the agent evaluates (with a present bias) all possible paths from
u to t. In particular, a u-t path P C G with edges ej,e,..., ¢, is evaluated by the agent standing
at u to cost §y(P) = b-wler) +YXr_,w(e;). We refer to this as the perceived cost of the path.
For a vertex u, its perceived cost to the target is the minimum perceived cost of any path to ¢,
Eum(u) = min{ &y (P) | P is a u-t path}. If the perceived cost from vertex u to the target is strictly
larger than the reward, {ys(u) > r, then an agent standing there abandons the task. Otherwise,
he will (non-deterministically) pick one of the paths which minimize perceived cost of reaching
t, and traverse its first edge. This repeats until the agent either reach 7 or abandons the task.

If every possible route chosen by the agent will lead him to ¢, then we say that the model
instance is motivating. If the model instance is clear from the context, we take that the graph is
motivating to mean the same thing, and we may drop the subscript s in the notation.

Definition 1 (Motivating subgraph). If G’ is a subgraph of G belonging to a time-inconsistent
planning model M = (G,w, s,t,r,b), then we call G' a motivating subgraph if G’ contains s and
t and M' = (G',w|g(g,s,t,1,b) is motivating.

In the current paper, we investigate the problem of finding a simple motivating subgraph. In
order to quantify what we mean by simple, we first provide the definition of a branching vertex:

Definition 2 (Branching vertex). The out-degree of a vertex u in a digraph G is the number of
edges in G that have u as its first endpoint. We say that u is a branching vertex, if its out-degree
is at least two.

3While we in the current paper use b for the salience factor as introduced in (Kleinberg and Oren 2018), the
literature about time-inconsistent planning commonly use the term § = b~ instead, which (while slightly more
convoluted to work with for our purposes) seamlessly integrates with the quasi-hyperbolic discounting model. An
artifact of our current definition is that the reward is not scaled by b when the agent is one leg away; however, both
algorithms and hardness proofs can be adapted to account for this technical difference.

153

For a set A and a constraint ¢ : A — {T,F}, the set A constrained to @
Agp denotes the elements of A that satisfy ¢, i.e. {a € A | ¢(a) = T}. For
example, Z>(indicates the set of all non-negative integers.

[x] For x € Z>y, [x] is the set {1,2,...,x}.

For sets, C is the standard subset notation. For graphs G and H, H is a

< subgraph of G, denoted H C G, if V(H) CV(G), and E(H) C E(G).
For a function f : B— C and a set A C B, the function f restricted to A is
Fla a function f4 : A — C such that for every a € A, f|a(a) = f(a).
Colu,v) Fc?r'a graph G and ve'rtices u,v € V(G), the (truc'a) cost from u to v is the
minimum sum of weights for a path from u to v in G.
GlA| For a directed graph G and vertex set A C V(G), the induced subgraph

GIA] is the graph where V(G[A]) = A and E(G[A]) = E(G)NA x A.

Table 1: Summary of notation.

In its most general form, we will investigate the following problem:

SIMPLE MOTIVATING SUBGRAPH

Input: A time-inconsistent planning model M = (G,w s,t,r,b), and a non-negative integer
ke Zzo.

Question: Does there exist a motivating subgraph G’ C G with at most k branching vertices?

1.3 Previous work

Time-inconsistent behavior is a field with a long history in behavioral economics, see (Akerlof
1991; Frederick, Loewenstein, and O’Donoghue 2002; O’Donoghue and Rabin 1999). The
model used in this paper was introduced by (Kleinberg and Oren 2018), and they also give
structural results concerning how much extra cost the salience factor can incur for an agent, and
how many values the salience factor can take which will lead the agent to follow distinct paths.
They raise the issue of motivating subgraphs, and give a characterization of the minimal among
them which we will see later.

(Tang et al. 2017) refine the structural results concerning extra costs caused by present
bias. Furthermore, they show that finding motivating subgraphs is NP-complete in the general
case by a reduction from 3-SAT. They also investigate a few variations of the problem where
intermediate rewards can be placed on vertices.

(Albers and Kraft 2019) independently show that finding motivating subgraphs is NP-
complete, by a reduction from the /-LINKAGE problem in acyclic digraphs. Furthermore, they
show that the approximation version of the problem (finding the smallest r such that a motivating
subgraph exists) cannot be approximated in polynomial time to a ratio of \/n/3 unless P =
NP; but a 1 + /n -approximation algorithm exists. They also explore another variation of the
problem with intermediate rewards.

There have been work on variations on the model and problem where the designer is free to
raise edge costs (Albers and Kraft 2017a), where the agents are more sophisticated (Kleinberg,
Oren, and Raghavan 2016), exhibit multiple biases simultaneously (Kleinberg, Oren, and
Raghavan 2017), or where the salience factor varies (Albers and Kraft 2017b; Gravin et al.
2016).

154 10. Time-inconsistent planning: simple motivation is hard to find

1.4 Our contribution

We prove two main results about the complexity of SIMPLE MOTIVATING SUBGRAPH. First,
we show that the problem is solvable in linear time when k£ = 0, and is NP-complete otherwise.
Secondly, we show that when the costs are bounded by some polynomial in the size of the task
graph, then it is solvable in polynomial time for every fixed k. More precisely, we show the
following.

Theorem 3. SIMPLE MOTIVATING SUBGRAPH is solvable in polynomial time for k =0, and is
NP-complete for any k > 1.

The reduction we use to prove NP-completeness of the problem in Theorem 3 is from
SUBSET SUM, which is weakly NP-complete. Indeed, our hardness reduction strongly exploits
constructions with exponentially large (or small) edge weights; the parameter W in our reduction
— the sum of all edge weights when scaled to integer values — is exponential in the number of
vertices in the graph. A natural question is hence whether SIMPLE MOTIVATING SUBGRAPH
can be solved by a pseudo-polynomial algorithm, i. e. an algorithm which runs in polynomial
time when W is bounded by some polynomial of the size of the graph. Unfortunately, this
is highly unlikely. A closer look at the NP-hardness proof of (Tang et al. 2017) for finding a
motivating subgraph, reveals that instances created in the reduction from 3-SAT have weights
that depend only on the constant b.

On the other hand, in the reduction of (Tang et al. 2017) the number of branchings in their
potential solutions grows linearly with the number of clauses in the 3-SAT instance. This leaves
a possibility that when W is bounded by a polynomial of the size of the input graph G and k is a
constant, then SIMPLE MOTIVATING SUBGRAPH is solvable in polynomial time. Theorem 4
confirms that this is exactly the case. (In this theorem we assume that all edge weights are
integers — but since scaling the reward and all edge weights by a common constant is trivially
allowed, it also works for rationals.)

Theorem 4. SIMPLE MOTIVATING SUBGRAPH is solvable in time (|V(G)|-W)?®) whenever
all edge weights are integers and W is the sum of all weights.

Theorem 4 naturally leads to another question, whether SIMPLE MOTIVATING SUBGRAPH
is solvable in time (|V(G)|-W)?™) . f(k) for some function f of k only. Or in other words,
whether the problem is fixed-parameter tractable parameterized by k when W is encoded unary?
We observe that the hardness proof of (Albers and Kraft 2019), reducing from the {-LINKAGE
problem in acyclic digraphs, combined with hardness result for the {-LINKAGE problem by
(Slivkins 2010), implies the following theorem.

Theorem 5. Unless FPT = W[l], there is no algorithm solving SIMPLE MOTIVATING SUB-
GRAPH in time (|V(G)|-W)?() . f(k) for any function f of k only.

2 A dichotomy (proof of Theorem 3)

In this section we prove Theorem 3. Recall that the theorem states that SIMPLE MOTIVATING
SUBGRAPH is solvable in polynomial time for k = 0, and is NP-complete for any k > 1. We
split the proof into two subsections. The first subsection contains a polynomial time algorithm
solving SIMPLE MOTIVATING SUBGRAPH for kK = 0 (Lemma 7). The second subsection proves
that the problem is NP-complete for every £ > 1 (Lemma 8).

155

2.1 A linear-time algorithm for motivating paths

Any connected graph without branching vertices is a path. Thus, we refer to the variant of
SIMPLE MOTIVATING SUBGRAPH with k = 0 as to the MOTIVATING PATH problem. This
algorithm is essentially a variation on the classical linear time algorithm computing a shortest
path in an acyclic digraph.

We give an algorithm which solves the MOTIVATING PATH problem in &(|V(G)|+ |E(G)|)
time. In fact, our algorithm will solve the problem of finding the minimum cost such path, if one
exists.

Algorithm 6: MOTIVATING PATH
Input: An instance of MOTIVATING PATH
Output: The cost of a cheapest motivating s-¢ path witnessing a yes-instance; or e if no
motivating path exists.
For each vertex u € V(G), let d, <— o0
For the target ¢, let d; +— 0
for each vertex u € V(G) in rev. topological order do
for each out-neighbor v € N(u) do
ifb-w(u)+d, <rand wuv)+d, < d, then
| dy < w(uw)+d,
end
end
end
return d;

Lemma 7. The MOTIVATING PATH problem can be solved in linear time.

Proof. We prove that Algorithm 6 is correct. We assume that every vertex has a path to ¢ in
G (otherwise we can simply remove it), hence ¢ will come last in the topological order. For
every u € V(G), we claim that d,, holds the minimum cost of a motivating path from u to r. We
observe that our base, u = ¢, is correct since d; = 0.

Consider some vertex u. Because the vertices are visited in reverse topological order, all
out-neighbors of u are already processed, and hold by the induction hypothesis the correct
value. An agent standing at vertex u is motivated to move to the next vertex v in a path P if
b-w(uv)+ Cp(v,t) < r. Hence, if the condition holds, prepending a motivating path from v to ¢
with u will also yield a motivating path. By choosing the minimum total cost among all feasible
candidates for the next step, the final value is in accordance with our claim.

Finally, we observe that the runtime is correct. Assuming an adjacency list representation of
the graph, a topological sort can be done in linear time. The algorithm then process each vertex
once and touches each edge once. OJ

We remark that the graph produced by Algorithm 6 is a (1 + /) -approximation to the
general motivating subgraph problem. This follows because the approximation algorithm of
(Albers and Kraft 2019) with the stated approximation ratio always produce a path; Algorithm 6
will on the other hand find the optimal path, and is hence at least as good.

156 10. Time-inconsistent planning: simple motivation is hard to find

2.2 Hardness of allowing branching vertices

Deciding whether there exists a path which will motivate a biased agent to reach the target turns
out to be easy, but we already know by the results of (Tang et al. 2017) and (Albers and Kraft
2019) that finding a motivating subgraph in general is NP-hard. Both aforementioned results give
hardness reductions where the feasible solutions to the reduced instance have a “complicated”
structure in the sense that they contain many branching vertices. A natural question is whether it
could be easier to find motivating subgraphs whose structure is simpler, as in the case of the
path.

A first question might be whether SIMPLE MOTIVATING SUBGRAPH is fixed parameter
tractable (FPT) parameterized by k, the number of branching vertices. Unfortunately, this is
already ruled out by the reduction of Albers and Kraft, since they reduce from the W[1]-hard
{-LINKAGE problem for acyclic digraphs — the number of branchings in their feasible solutions
is linear in £.

As the /-LINKAGE problem can be solved in time n/ O for acyclic digraphs (Bang-Jensen
and Gutin 2008), their reduction does not rule out an XP-algorithm. In this section we show
that SIMPLE MOTIVATING SUBGRAPH is actually NP-hard even for k = 1, and is thus an even
harder problem.

We show this by a reduction from the NP-hard SUBSET SUM problem. The reduction is
provided in the form of Algorithm 9, whereby someone who wants to solve SUBSET SUM can
give their problem instance as input, and receive a SIMPLE MOTIVATING SUBGRAPH-instance
with k = 1 as output. This can then be piped into an (imaginary) algorithm which solves SIMPLE
MOTIVATING SUBGRAPH efficiently for k = 1. If said imaginary algorithm runs in polynomial
time, this implies P=NP.

Lemma 8. The SIMPLE MOTIVATING SUBGRAPH problem is NP-complete for every k > 1.

Proof. Deciding whether a given graph is motivating can be done in polynomial time by simply
checking whether it is possible for the agent to reach a vertex where the perceived cost is greater
than the reward. This implies the membership of SIMPLE MOTIVATING SUBGRAPH in NP.

To prove NP-completeness, we reduce from the classical NP-complete problem SUBSET
SuM (Karp 1972).

SUBSET SUM
Input: A set of integers X = {x,x2,...,%,} C Z>o and a target W € Zxo.
Question: Does there exists a subset X’ C X such that its elements sums to W?

The reduction is described in the form of Algorithm 9 and an example is given in Figure 2.
Soundness of the reduction is proved in the following claim.

Claim 10. Algorithm 9 is safe. Given as input an instance I of SUBSET SUM and a salience
factor b € R+, the output instance I' of SIMPLE MOTIVATING SUBGRAPH is a yes-instance if
and only if I is a yes-instance.

Proof of claim. Before we begin the proof, we will adapt the following notation: For a vertex u
and subgraph H C G containing at least one path from u to ¢, we let g (u) denote the perceived
cost from vertex u to ¢ in H. In other words, g (1) = min{{(P) | P C H is a u-t path}.

For the forward direction of the proof, assume that / is a yes-instance and let X’ C X be a
witness to this. Let G’ C G be the graph where for each i € [n] the vertex ¢} and incident edges

157

Algorithm 9: Reduction from SUBSET SUM to SIMPLE MOTIVATING SUBGRAPH (k= 1)
Input: An instance I = (X = {x1,x2,...,%,},W) of SUBSET SUM; and any salience
factor b € R+ .
Output: An instance I’ = (G,w,s,t,b,r,k) of SIMPLE MOTIVATING SUBGRAPH with
k = 1 and salience factor b.
V(G) «+ {s,ap,a1,a2,a3,t} U{c1,c},c2,¢5,...,cn, i} U{Cuy1, Cnya}
E(G) < {sag,a0a1,a1a2,aza3, a3t} U {cic},ciciy1,¢icipr | i € [n]} U
{aocr, cnyicny2,cnrat}
azt —» 1

waz lljfwh(aﬁ)
ajay — l—w(aza?))—w(ay)
apa; — 1—w(alaz)—wb(aza3)—w(a3t)
e sag — 1—():,-zzow(aizfﬂ))—w(dsf) +£
Cniat — w(aszt)+¢€
Cuvicnia > wlapas) —2e — 25
CiCit1 w forie [n]
apcy +— W(doal)'i‘;%l
— 0 otherwise

return (G, w,s,t,b,r=1,k=1)

are removed if x; € X, and the edge c;c;| is removed if x; ¢ X’. We make a series of step-wise
observations which shows that G’ is motivating:

1. G’ contains a single vertex with out-degree at least 2, namely ag. There are two possible
paths from s to t:

e the a-path P, = [s,a0,a;,a,a3,t], and

e the c-path P. = [s,ap,c1,(c}),c2,(c3),...,cn, (C}), Cni1,Cnia,t] (Where for each i €
[n], P only include vertex ¢f when x; ¢ X”).

2. In the path P,, the agent will by construction perceive the cost of moving towards 7 to be 1,
regardless of which vertex he resides on. The only exception to this is when the agent is at
s; then the perceived cost of following the path P, is 1+ €. In other words, {(P,) =1+¢
and for each of i € {0,1,2,3}, {p,(a;) = 1.

3. The cost from ¢} t0 ¢,41 in G is ¥y exr Gwla@) pich simplifies to exactly w(ajaz). This

holds because X’ sums to W by the initial assumption. In other words, Cp,(c1,cy41) =
w(alaz).

4. The cost from ag to ¢ is € shorter in the c-path compared to the a-path, Cp.(ag,t) =
Cp,(ap,t) — €. This follows from (3) and how the remaining weights in the c-path are
defined.

5. The perceived cost from s to 7 in P is 1, {(P.) = 1 (follows by combining (2) and (4), and
observing that the two paths share their first leg). The agent is hence motivated to move
from s to ap with a plan of following P. towards the target.

158 10. Time-inconsistent planning: simple motivation is hard to find

1 1

8
1
2

2e %—1-8
6 7 1

TEY

Figure 2: The graph G constructed by Algorithm 9 on input X = {3,6,7},W = 10,b = 2.
The solution to SUBSET SUM is X’ = {3,7} and the corresponding motivating subgraph G’
is formed by thick arcs. In graph G the agent is tempted to pursue the lower path P, =
[s,a0,c1,¢},¢2,¢3,¢3,C5,¢4,¢5,1) but will lose motivation at node cs. In graph G’, at node s, the
agent’s plan will be to follow the lower path P! but at node ag the agent will switch to the upper
path P,. At every step on this path the agent is motivated to reach ¢.

6. The perceived cost from ag to ¢ in P. is € more than the perceived cost from ag to ¢ in P,.
This follows from the following chain of substitutions:

Cpc (a()) =b- W(a()C]) + CPC (C] ,l‘)
2¢e

=b-w(apa))+b- =1 +Cp.(c1,6n41) +w(cnti1cnta) +wlcpiat)

2¢ 2¢e
=b-w(apa1)+b- b1 +w(aiaz) +w(axaz) —2¢€ — h—1 +w(aszt)+¢€
2¢e

=b. =
b—1

apay) +w(ajaz) + w(azas) +wlast) +(b—1)-

w(
=b-w(apa1) +w(aiaz) +w(azaz) +w(ast) + €
=b-w(apa1)+Cp,(ar,t)+¢€

=Cp.(ao) + €

It follows from (6) that an agent standing at ag is not willing to walk along P., but change
his plan to walking along P, instead. The agent will stay motivated on the a-path, and will reach
the reward (2). Hence, the graph G’ is motivating.

For the reverse direction of the proof, assume there is a motivating subgraph G’ C G that
motivates the agent to reach r. We notice that G’ must contain the a-path, since any agent moving
out of the a-path will by the construction of G’ need to walk past ¢, ;» — however, an agent
standing at this vertex will by the construction always give up. We also notice that P, itself is not
motivating, hence G’ must contain at least one other path from s to z. Let P. denote the cheapest
s-t path that is different from P,.

We begin by observing that P. must start at s, include ag and c1,, a path from ¢; to ¢;; for
every i € [n], as well as the vertices ¢t1,¢n42, and 7.

There are some cost requirements that P. needs to fulfill in order for G’ to be motivating.
In order to motivate an agent at s to move to ag, the cost from ag to ¢t in P. can be at most
Cpa(ao,l‘) — €. This implies that CPC(C17C”+1) < w(alaz).

159

However, P. can not have so low cost that it tempts the agent to move off the a-path. In
particular, an agent standing at ap must perceive the a-path to be strictly cheaper than walking
along P.. We obtain the following inequality:

Cp,(a0) < Ep.(ao)
b-w(apar)+ Cp,(a1,t) < b-wlagc1) +Cp.(c1,1)
2¢e
Cp,(a1,1) < b +Cr.(c1,1)
2¢ 2e
w(aiaz) +w(agaz) +w(azt) <b- 1 Cp.(c1,cn41) +w(anaz) —2e — 1 +w(ast)+¢€
2e
w(aay) < (b—1)- quCp[(cl,an) —€

w(alaz) —&< CPC(C17Cn+1)

We now construct a solution X’ C X to SUBSET SUM by including x; in X" if P. use the edge
ciciy1. Notice that the sum of edge weights for these edges will make up the cost Cp (c1,cp1)-
We can lift the bounds for that cost to the sum of elements in X’:

w(aiaz) —€ < Cp.(c1,6n41) < w(a1az)
w(aiay)

Xi -
—& <
w(aiay) —€ < Z/ W <w(ajaz)
xieX
w
W—e <Y x <w

By choosing € strictly smaller than W(“Tm) we guarantee that the set X’ has value exactly W

(note: this bound on € is a function of b and W). This concludes the proof of the soundness of
the reduction. o

By the claim, SIMPLE MOTIVATING SUBGRAPH is NP-complete for k = 1 and hence is also
for every k > 1. O

3 A pseudo-polynomial algorithm (proof of Theorem 4)

The reduction in the previous section shows that restricting the number of branchings in the
motivating structures we look for does not make the task of finding them significantly easier.
However, we notice that the weights used in the graph constructed in the reduction can be
exponentially small, and depend on W as well as on b. On the other hand, in the hardness proof
for MOTIVATING SUBGRAPH by (Tang et al. 2017), the instances created in the reduction from
3-SAT have weights that depend only on the constant b; but the number of branchings in their
potential solutions grows linearly with the number of clauses in the 3-SAT instance.

Hence, MOTIVATING SUBGRAPH is hard even if the number of branchings in the solution
we are looking for is bounded, and it is also hard if the input instance only use integer weights
bounded by a constant. But what if we impose both restrictions simultaneously? In this section

160 10. Time-inconsistent planning: simple motivation is hard to find

we prove that if the input instance has bounded integer weights, then we can quickly determine
whether it contains a motivating subgraph with few branchings.

We will make a use of an auxiliary problem which is a variation of the exact /-LINKAGE
problem in acyclic digraphs, but which also impose restrictions on the links — requiring them
to be motivating for biased agents. We define the problem:

EXACT MOTIVATING k-LINKAGE IN DAG (EMKL)

Input: Anacyclic digraph G; edge weights w: E(G) — Z>0 8. t. ¥ocg(G) w(e) = W; sources
51,82,...,8 € V(G); sinks t1,1,...,t € V(G); target link weights ¢1,0s,...,0 € Z>p;
salience factors by,bs,...,by € R>y; and rewards ry,r2, ...,y € R>p.

Question: Does there exist (internally) vertex disjoint paths P;, P, ..., P, such that for each
i € [k], P, starts in s;, ends in #;, has weight ¢;, and is such that an agent with salience factor
b; will be motivated by a reward r; to move from s; to #;?

We solve the EXACT MOTIVATING k-LINKAGE IN DAG problem using dynamic program-
ming, inspired by the solution of (Fortune, Hopcroft, and Wyllie 1980) for the /-LINKAGE
problem in acyclic digraphs (see also (Bang-Jensen and Gutin 2008)).

Lemma 11. EXACT MOTIVATING k-LINKAGE IN DAG can be solved in time O (kn*T'W¥).

Proof. We will in the upcoming proof assume all sources and sinks are distinct. If they are
not, simply make multiple copies by splitting each such vertex, such that there is one for each
occurrence as a source or sink.

We solve the problem by dynamic programming using a Boolean table dp of size €' (n*W*).
The table is indexed by vertices u; € V(G) and weights d; € [W] for i € [k]. We define a cell:

dplui,ua, ... ug,dy,d,...,d] := TRUE if there exists vertex disjoint paths Py, Py, ..., P
such that for each i € [k] the following holds:
e P, starts in u; and ends in ¢#;, and
e P, has weight d;, and
e an agent with salience factor b; is motivated by
areward r; to move from u; to t; in P,.
FALSE otherwise.

Observe that the final answer to the EMKL instance will by this definition be found in
dplsi,s2,--.,8k,L1,02,. .., . We proceed to establish the base case of our recurrence, when the
vertices align perfectly with the sinks. To comply with the definition, the entry is TRUE if the
required distances are 0, and FALSE otherwise.

dpluy,ua,... ug,dy,d,...,d] < TRUE if forevery i € [k],u; =t and d; = 0.
FALSE if for every i € [k],u; =¢; and d; # 0.

We move on to describe the recurrence. The idea is to move one step forward, trying every
neighbor of each vertex in the current state, to see whether it is possible to find a slightly shorter
partial solution we can extend.

161

dpluy,uy, ... ug,d1,da,...,di) < TRUE if there exists i € [k] and v € N(u;) such that:
o forall j € [k]\ {i}, there is no path from u;
to u; in G, and

o forall j € [k],v+# u;

o (bi—1) -w(uw)+d; <r,and

o dpluy...,ui—1,v,uiy1,. .. ux,

diy....di—1,di —w(uv),dit1,...,d;] = TRUE.
FALSE otherwise.

Calculating the recurrence can be done in time & (kn) if efficient data structures are used for
storing the sets of reachable vertices for each vertex. Before we prove the correctness of the
recurrence, note that we can safely assume that no source contains any in-edges, and no sink
contains any out-edges; otherwise we do some simple prepossessing to ensure this holds. We
can further assume all sinks come at the end of a topological sort of the graph.

We begin by proving the forward direction. Assume there exist vertex disjoint paths
P, bB,... P which satisfy the required conditions. For a path P; and a positive integer j; <

[V(P)], " denote the tail of P; containing the j; last vertices. Further, let 57’ be the first
vertex of P/ ! and let d/ " be the we1ght of PJ . We clalm that for every combination of j; for
distinct i € [k], it holds that dp[s{',s3, ..., s] ,d{' Ly, d]"] = TRUE.

We prove the claim by induction on the sum of the lengths of the tails, J = } ;e ji- The
base case occurs at J = k, when every tail has length 1. The induction hypothesis when proving
the claim for larger J will be that the claim holds for J — 1, and from there we work our way up
to the case when J = Y |V ()], at which point the forward direction of the correctness proof
is complete.

In the base case J = k, we observe that j; = 1 for every i € [k], since the domains for the j;’s
are subsets of strictly positive integers, and their sum is k. Hence s "=t;and di] " =0. By the

base case of the recurrence, it then holds that d p[s1 ,séz, 8] ,df ! ,dﬁz, d,{"’] = TRUE.
For the inductive step, consider some combination of j; for all distinct i € [k] whose sum is
J. Among the first vertices of the corresponding tails, pick the one who comes first according to

some topological order, say s/". Recall that we can assume all sinks are last in the topological
,l

order, hence s;' is not a sink and Pl/" contains at least two vertices. Let v be the second vertex

of P.]‘ We observe that all the bullet points for the recurrence to give TRUE is satisfied when
we try i and v: Since s; Ji is the earliest in the topological order, no other start vertices has
a path to it. By virtue of Pi,P,,... P being a valid solution, we know v is not in another
path, and we know that the agent with salience factor b; is willing to move along the edge s/'v
when the distance from v to #; is dj T w(s Ji v). And by the induction hypothesis, we know that

dplsi',....s/o vsltl . dlj’ 3 7d” w(slv), dl]j:l], ,d{*] = TRUE. This concludes the proof
for the forward dlrectlon

For the backward direction, assume dp]si,s2, ...,k {1,%2,...,¢;] = TRUE. We retrieve a
solution as follows. Initially, let P, = s; for each i € [k]. Next, we iteratively append vertices to the
paths in the following manner: Starting with u; <— s; and d; < ¢; for j € [k], let i and v be a choice

in the recurrence that satisfied the bullet point requirements for dpuy,uz, ... ux,dy,do, . .., di].

162 10. Time-inconsistent planning: simple motivation is hard to find

Append v to P;, and let d; < d; —w(u;v) and u; < v in the next iteration. Continue until we are
left with only sinks.

We show that the paths created are disjoint. Assume for the sake of contradiction that two
paths P; and P; are not disjoint, and let v be the topologically first vertex they share. Let v; and
v’j be the predecessors of v in respectively P; and P;. Without loss of generality, assume v was
added to F; before it was added to P;. When v was added to j, it was done so when u; = vg. But
at the time, the vertex u; must have had a path to v as well (through v;-), hence the first condition
of the recurrence is not satisfied. This is a contradiction.

We observe that the distance of P, is ¢;, and that by the requirements in the recurrence an
agent will always be motivated to move along the path. Thus, the constructed paths do indeed
form a solution. This concludes the proof. O

Returning to our problem SIMPLE MOTIVATING SUBGRAPH with integer weights, we make
use of the following observations that enables us to give an algorithm.

Proposition 12 (Kleinberg and Oren 2018, Theorem 5.1). If G’ is a minimal motivating sub-
graph, then it contains a unique s-t path P C G’ that the agent will follow. Moreover; every node
of G’ has at most one outgoing edge that does not lie on P.

Note that a consequence of Proposition 12 is that all branching vertices of a minimal
motivating subgraph are on the path P.

Definition 13 (Merging vertex). The in-degree of a vertex v in a directed graph G is the number
of edges in G that have v as its second endpoint. We say that v is a merging vertex, if its in-degree
is at least two.

Observation 14. Consider an instance of the time-inconsistent planning model M = (G, w,s,t,1,b),
and let G' C G be a minimal motivating subgraph with k branchings. Then there are at most k
merging vertices in G

We now give the algorithm for SIMPLE MOTIVATING SUBGRAPH with integer weights,
where we use the algorithm for EXACT MOTIVATING k-LINKAGE IN DAG above as a subroutine.
In short, the approach is to first guess which &'(k) vertices that are “interesting” in the solution,
i. e. have either in-degree or out-degree (or both) larger than 1 in G', and then try every possible
way of connecting these points together using disjoint paths. Finally, we guess how heavy each
such path should be, and apply the algorithm for EXACT MOTIVATING k-LINKAGE IN DAG.
For details, see Algorithm 15.

Algorithm 15 (SIMPLE MOTIVATING SUBGRAPH with integer weights). Input: An instance
(G,w,s,t,b,1,k) of SIMPLE MOTIVATING SUBGRAPH, whose edge weights are integer that sum
to W. Output: TRUE if there exists a motivating subgraph G’ C G with at most k branchings,
FALSE otherwise.

We assume that k > 1, as otherwise we apply Algorithm 6. We also assume that there exists
no motivating subgraph with strictly less than & branching vertices; if we are unsure, we first run
this same algorithm with parameter £ — 1 (this will cause an extra factor £ in the runtime).

We begin the algorithm by guessing the “interesting” vertices (in addition to s and ¢) of the
subgraph we are looking for, G'. We guess:

163

A set B of k distinct branching vertices; we let B = {uj,uz,...,u;} C V(G) such that each
selected vertex has out-degree at least two in G. Vertices are named according to their
unique topological order — if there is no unique such order, skip this iteration (this is safe,
since if B does not have a unique topological order, then there can not exist a path that
visit all of B).

e A set B* of k distinct “next-step” vertices; these are the immediate next vertices our agent
will go to when standing at a branching vertex in G’. We let B* = {u},u5,...,u;} CV(G)
such that for each i € [k], u7 is in the out-neighborhood of u;. Furthermore, for each
i € [k— 1], u must have a path to u;1; (unless u} = u;y1).

e A set B°® of k (not necessarily distinct) “shortcut” vertices; these are vertices the agent will
not choose to go to from a branching vertex in G’. We let B® = {uf,u3,...,u;} CV(G)
be such that for each i € [k], u is in the out-neighborhood of u;, yet is different from u]".

e A set B™ of k (not necessarily distinct) merge vertices; these are the vertices of G’ with
in-degree at least two. We let B~ = {u] ,uj,...,u; } CV(G).

While it is at this point mostly clear how the agent’s path P will move through our set of vertices
(it will follow the unique topological order of BU B*) we still need to guess how the shortcuts
behave, and in particular how the merge vertices interact.

Towards this purpose, we create the (unweighted) reachability graph H, which illustrates
every possible way of interconnecting the interesting vertices of G’ we just guessed. Let
V(H)=BUB*UB°UB”~ U{s,1}, and let there be an edge if one vertex is reachable from another
in G without going through vertices of H — in other words, let E(H) = {uv € V(H) x V(H) |

there is a path from u to v in G[(V(G) \V(H)) U {u,v}]}.

We are now ready to guess exactly how the interesting points are interconnected in G'. We
will do this by guessing H’, a graph which can be obtained from G’ (if it exists) by repeatedly
smoothing non-interesting vertices. Smoothing a vertex is possible when it has both in-degree
and out-degree exactly 1, and entails replacing the vertex by an edge whose weigh is the sum of
the two previous edge weights. In particular, we guess:

e A subgraph H' C H that obeys the following constraints:
- V(H')=V(H).
— For each i € [k], the out-neighbors of u; are exactly u’ and u;.

— For each non-branching vertex u € V(H')\ (BU{r}), it has exactly one out-neighbor.

— There exists an s-7 path P’ that contains the edge u;u for every i € [k].
e A weight function w' : E(H') — Z> that obeys the following constraints:

— The sum of edges is bounded by W, i.e. ¥ocp(nr) w(e) < W.
— The weight function w’ is consistent with w: for each e € E(H')NE(G), w'(e) =
w(e).

— For each branching vertex u;, an agent standing there must evaluate the path along
P’ to be strictly better than moving to uf. More formally, for each i € [k], it holds
that b-w' (uju) + DISTyy (uf,t) < b-w' (uiuf) + DISTy (uf 7).

164 10. Time-inconsistent planning: simple motivation is hard to find

We now create an instance / of EXACT MOTIVATING k-LINKAGE IN DAG:
e Let G be the graph.

e Let w be the weight function.

e Let the source terminals be the startpoints of edges E(H’).

e Let the sink terminals be the endpoints of edges E(H').

e Let the target distances be the weight of edges in E(H') according to w'.

e Salience factor: If the corresponding edge uv € E(H') is also in P, then let the salience
factor be b. Otherwise, let it be 1.

e Reward: If the corresponding edge uv € E(H') is also in P/, let the reward be r minus the
shortest distance from v to ¢ in H'. Otherwise, let the reward equal to the target distance.

If I is a yes-instance of EXACT MOTIVATING k-LINKAGE IN DAG, we return TRUE. If all
created /-instances across all guesses are no-instances, we return FALSE.

Proof of Theorem 4. Recall that the theorem states that SIMPLE MOTIVATING SUBGRAPH can
be solved in time (|V(G)|-W)?®). We first prove that Algorithm 15 is correct, and return to
runtime at the end of the proof.

Observe that the pre-processing steps do not change the answer. For the forward direction,
assume G’ C G is a minimal solution witnessing that the input is a yes-instance with the minimum
possible number of branching vertices, and let P C G’ be the path taken by the agentin G'. Let k
be the number of branchings in G’ — we assume k > 1, as otherwise Algorithm 6 would suffice.
Let B={u €V (G') | |Ng(u)| > 2}. Since vertices of B all have out-degree at least 2 in G, this
set B will be guessed by Algorithm 15.

Similarly, let B* be the set of vertices which are immediate successors to a vertex of B in P,
let B® be the neighbors of vertices of B that are not an immediate successor of that same vertex
in P, and let B~ be the set of vertices of in-degree at least two in G’. Due to Observation 14 it
holds that |B™| < k, so we see that Algorithm 15 will at some point guess all these sets correctly.

Imagine that we create the reachability graph H' by repeatedly smoothing all vertices of G’
that have both in-degree and out-degree exactly 1, unless the vertex is in one of the sets B*, B®.
In the smoothing process of a vertex u, we give the resulting edge weight equal to the sum of
edge weights previously incident to u. By the minimality of G’, the graph that remains is on the
vertex set BUB*UB°UM U {s,r}. The number of edges in H' is exactly V(H') +k — 1, since
every vertex has one out-edge, except the k branching vertices, which have two each, and the
sink, which has none. Hence, H’' and its weight function will be guessed by Algorithm 15.

Conducting the same smoothing process on P will yield the path P’ found by the algorithm
as well. By virtue of G’ being a valid solution with P being the path taken by the agent, the
iteration where all of the above is guessed correctly will not be skipped due to some branch
tempting the agent to walk off the path. We observe that the resulting instance of EXACT
MOTIVATING k-LINKAGE IN DAG is a yes-instance — the smoothed segments of G’ to obtain
H' are internally vertex disjoint and have length equal to the corresponding edge in H’. For the
segments with motivation requirements, that is, edges in P’ corresponding to path segments of
P, we know that they satisfy the motivation requirement because they do so in G'.

165

For the backward direction, assume the algorithm returned TRUE, and let B, B*, B, B~, H',
and w' be the guesses that led to this conclusion, let P’ be the found path in H’, and let I be the
created yes-instance of EXACT MOTIVATING k-LINKAGE IN DAG. We build a solution G’ by
gluing together the vertices of H with the paths witnessing that [is a yes-instance, and let P
denote the expansion of P’ in G'. The agent will never be tempted to walk away from P, since
the next step of P always appears like the best option at all branching points in every guess of
w’. It remains to show that the agent is indeed motivated to move at all, for every edge of P.

Every edge uv € E(P) is part of some segment found in the solution to 1. Let s" and ¢’ be the
source and sink in / where uv was part of the solution. Since uv is in P, the edge s't’ was in P/,
and as such the corresponding salience factor &', was set to b in I. Since I is a yes-instance, the
agent is indeed motivated to move along every segment between s and ¢/, including across uv.

Finally, we argue for the runtime. The number of ways to guess B, B, B®, and B, is
O (n**). Notice that the number of edges in H' is exactly |V (H')| + k' — 1 < 5k + 1. However,
the out-edges of B and ¢ are not up for guessing, and the other vertices each have exactly one
out-edge each in H'. The number of ways to guess H' is thus &((4k)3). For the weights, 2k of
them are already fixed because they exist in E(G), so it remains to guess the weights for at most
3k + 1 of them. The number of ways to guess w’ is bounded by & (W3**1). Checking validity
of weight functions takes ¢'(k) and constructing I takes & (n+ m), but these will be dominated
by the & (kn®**2W3*+1) time spent to solve the EXACT MOTIVATING k-LINKAGE IN DAG
instance. Including the extra factor k for incrementally trying larger values of k, gives a total
runtime of & (kn**(4k)3*W3k+1 k2 5k+1) “which simplifies to (nW)?®). O

4 Proof of Theorem 5

In this section we make the observation that SIMPLE MOTIVATING SUBGRAPH can not be
solved in time (|V(G)|-W)?() . £(k) for any function f of k only, unless FPT=W[1].

It follows from Slivkins Slivkins 2010 that the /-LINKAGE problem is W[1]-hard parameter-
ized by ¢. In Albers and Kraft 2019, Albers and Kraft give a reduction from the /-LINKAGE
problem to MOTIVATING SUBGRAPH where all feasible minimal motivating subgraphs have
exactly ¢ branching vertices. Moreover, the edge weights in their reduction — when scaled
to integers — are bounded by a polynomial function of ¢. It thus follows that a run-time of
(IV(G)| - W)?M). (k) for SIMPLE MOTIVATING SUBGRAPH would place the /-LINKAGE
problem in FPT.

5 Conclusion

‘We have shown that the SIMPLE MOTIVATING SUBGRAPH problem is polynomial-time solvable
when k = 0, and NP-complete otherwise (Theorem 3). However, when edge weights are (scaled
to) integers and their sum is bounded by W, we gave a pseudo-polynomial algorithm which
solves the problem in time (|V (G)|-W)?®) (Theorem 4). Finally, we observed that an algorithm
with run-time (|V(G)|-W)?(). f(k) where f is a function of k only is not possible unless
FPT=W[1] (Theorem 5).

We end the paper with an open question and a reflection for further research. First, a question;
in Theorem 5, a more careful analysis reveals that the statement holds even when W € €'(k?).
But is it also the case when W is a constant?

166 10. Time-inconsistent planning: simple motivation is hard to find

Finally, a reflection. In Theorem 4 we give a pseudo-polynomial algorithm for SIMPLE
MOTIVATING SUBGRAPH when the edge weights are scaled to integer values and the number of
branchings is constant. While we can reasonably assume that edge weights are represented as
fractions or integers after storing them in a computer, this suggests that the values might have
been quantized or approximated in some way. However, this rounding could potentially alter
the solution space. In particular when the cost of two paths are perceived to be almost equal
at the branching point — then rounding values even a tiny bit can have big consequences. To
overcome this, one might change the model such that the perceived difference of costs must
exceed an epsilon for the agent’s choice to be unequivocal.

6 Acknowledgments

This work has been supported by the Research Council of Norway via the project “MULTIVAL”.
We also thank the AAAI reviewers for valuable suggestions.

References

Akerlof, George A. 1991. “Procrastination and obedience”. The American Economic Review 81
(2): 1-19.

Albers, Susanne, and Dennis Kraft. 2019. “Motivating time-inconsistent agents: A computational
approach”. Theory of Computing Systems 63 (3): 466—487.

— . 2017a. “On the Value of Penalties in Time-Inconsistent Planning”. In 44th International
Colloquium on Automata, Languages, and Programming (ICALP 2017), ed. by loannis
Chatzigiannakis et al., 80:10:1-10:12. Leibniz International Proceedings in Informatics
(LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. ISBN:
978-3-95977-041-5. doi:10.4230/LIPIcs. ICALP.2017.10. http://drops.dagstuhl.de/opus/
volltexte/2017/7387.

— . 2017b. “The price of uncertainty in present-biased planning”. In International Conference
on Web and Internet Economics, 325-339. Springer.

Bang-Jensen, J., and G.Z. Gutin. 2008. Digraphs: Theory, Algorithms and Applications. Springer
Monographs in Mathematics. Springer London. ISBN: 9781848009981. https://books.google.
no/books?id=5GdXCWhE4-MC.

Fortune, Steven, John Hopcroft, and James Wyllie. 1980. “The directed subgraph homeo-
morphism problem”. Theoretical Computer Science 10 (2): 111 —121. 1SSN: 0304-3975.
doi:https://doi.org/10.1016/0304-3975(80)90009-2. http://www.sciencedirect.com/science/
article/pii/0304397580900092.

Frederick, Shane, George Loewenstein, and Ted O’Donoghue. 2002. “Time Discounting and
Time Preference: A Critical Review”. Journal of Economic Literature 40 (2): 351-401. ISSN:
00220515. http://www.jstor.org/stable/2698382.

Gravin, Nick, et al. 2016. “Procrastination with Variable Present Bias”. In Proceedings of the
2016 ACM Conference on Economics and Computation, 361-361. ACM.

167

Karp, Richard M. 1972. “Reducibility among combinatorial problems”. In Complexity of Com-
puter Computations, 85—103. New York: Plenum Press.

Kleinberg, Jon, and Sigal Oren. 2018. “Time-inconsistent Planning: A Computational Problem
in Behavioral Economics”. Communications of the ACM (New York, NY, USA) 61, no. 3 ():
99-107. 1sSN: 0001-0782. doi:10.1145/3176189. http://doi.acm.org/10.1145/3176189.

Kleinberg, Jon, Sigal Oren, and Manish Raghavan. 2016. “Planning problems for sophisticated
agents with present bias”. In Proceedings of the 2016 ACM Conference on Economics and
Computation, 343-360. ACM.

— . 2017. “Planning with multiple biases”. In Proceedings of the 2017 ACM Conference on
Economics and Computation, 567-584. ACM.

Laibson, David I. 1994. “Hyperbolic Discounting and Consumption”. PhD thesis, Massachusetts
Institute of Technology, Department of Economics. http://hdl.handle.net/1721.1/11966.

McClure, Samuel M., et al. 2004. “Separate Neural Systems Value Immediate and Delayed
Monetary Rewards”. Science 306 (5695): 503-507. 1SSN: 0036-8075. doi:10.1126/science.
1100907. eprint: https://science.sciencemag.org/content/306/5695/503.full.pdf. https:
/Iscience.sciencemag.org/content/306/5695/503.

O’Donoghue, Ted, and Matthew Rabin. 1999. “Doing it now or later”. American Economic
Review 89 (1): 103-124.

Samuelson, Paul A. 1937. “A Note on Measurement of Utility”. The Review of Economic Studies
4,no0.2 (): 155-161. 1SSN: 0034-6527. do0i:10.2307/2967612. eprint: http://oup.prod.sis.lan/
restud/article-pdf/4/2/155/4345109/4-2-155.pdf. https://doi.org/10.2307/2967612.

Slivkins, Aleksandrs. 2010. “Parameterized Tractability of Edge-Disjoint Paths on Directed
Acyclic Graphs”. SIAM Journal on Discrete Mathematics 24 (1): 146-157. doi:10.1137/
070697781. https://doi.org/10.1137/070697781.

Tang, Pingzhong, et al. 2017. “Computational issues in time-inconsistent planning”. In Proceed-
ings of the 31st t AAAI Conference on Artificial Intelligence (AAAI).

ISBN: 9788230844021 (print)
9788230851104 (PDF)

s,
T,
Sy uofseyiunwiwoy saudiy :3utld / gif) ‘UoIsIAIQ UONEdIUNWLIO) :ubisap d1ydels “/////N

	154445 Torstein J. F. Strømme_Elektronisk
	154445 Torstein J. F. Strømme_innmat
	154445 Torstein J. F. StrømmeElektronsk_bakside

