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We present ampliCan, an analysis tool for genome editing that unites highly precise quantification and visualization of
genuine genome editing events. ampliCan features nuclease-optimized alignments, filtering of experimental artifacts,
event-specific normalization, and off-target read detection and quantifies insertions, deletions, HDR repair, as well as target-
ed base editing. It is scalable to thousands of amplicon sequencing–based experiments from any genome editing experiment,
including CRISPR. It enables automated integration of controls and accounts for biases at every step of the analysis. We
benchmarked ampliCan on both real and simulated data sets against other leading tools, demonstrating that it outper-
formed all in the face of common confounding factors.

[Supplemental material is available for this article.]

With the introduction of CRISPR (Jinek et al. 2012; Cong et al.
2013), researchers obtained an inexpensive and effective tool for
targeted mutagenesis. Despite some limitations, CRISPR has been
widely adopted in research settings and has made inroads into
medical applications (Courtney et al. 2016). Successful genome ed-
iting relies on the ability to confidently identify inducedmutations
after repair through nonhomologous end-joining (NHEJ) or ho-
mology directed repair (HDR). Insertions or deletions (indels) are
often identified by sequencing the targeted loci and comparing
the sequenced reads to a reference sequence. Deep sequencing
has the advantage of both capturing the nature of the indel,
readily identifying frameshiftmutations or disrupted regulatory el-
ements, and characterizing the heterogeneity of the introduced
mutations in a population. This is of particular importance when
the aim is allele-specific editing or the experiment can result in
mosaicism.

The reliability of a sequencing-based approach is dependent
on the processing and interpretation of the sequenced reads and
is contingent on factors such as the inclusion of controls, the
alignment algorithm, and the filtering of experimental artifacts.
To date, no tool considers and controls for the whole range of bi-
ases that can influence this interpretation and, therefore, distort
the estimate of the mutation efficiency and lead to erroneous con-
clusions. Here we introduce a fully automated tool, ampliCan, de-
signed to determine the true mutation frequencies of CRISPR
experiments from high-throughput DNA amplicon sequencing.
It scales to genome-wide experiments and can be used alone or in-
tegrated with the CHOPCHOP (Montague et al. 2014; Labun et al.
2016) guide RNA (gRNA) design tool.

Results

ampliCan accurately determines the true mutation efficiency

Estimation of the true mutation efficiency depends on multiple
steps all subject to different biases (Lindsay et al. 2016). Following
sequencing, reads have to be aligned to the correct reference and
filtered for artifacts, and then the mutation efficiency has to be
quantified and normalized (Fig. 1A). In most existing tools,
many of the choices made during these steps are typically hidden
from the user, leading to potential misinterpretation of the data.
These hidden steps can lead to widely different estimates of muta-
tion efficiency (in up to 67% of all experiments) when run on data
from real experiments (Supplemental Note S1; Supplemental Fig.
S1). Furthermore, steps are frequently relegated to other tools
that have not been optimized for CRISPR experiments. ampliCan
instead implements a complete pipeline from alignment to inter-
pretation and can therefore control for biases at every step.

Despite being arguably themost important step in any exper-
iment, the use of controls is frequently overlooked in CRISPR as-
says. Discrepancies between a reference genome and the genetic
variation in an organism of interest often lead to false positives
and the false impression that mutations have been introduced
(Gagnon et al. 2014). Although the use of controls is (in principle)
possible with any tool, it commonly requires running the treated
and control samples separately followed by a manual inspection
and comparison. In ampliCan, controls are an integrated part of
the pipeline, and mutation frequencies are normalized and esti-
mated automatically. ampliCan accomplishes this by normalizing
at the level of editing events (insertion, deletion, or mismatch)
rather than at the level of whole reads. This means that any puta-
tive editing event detected in the reads from the target sample that
also occurs in the reads from the control sample, above the level of
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noise, is ignored when calculating mutation frequencies. Impor-
tantly, this normalization process does not remove any reads
from the calculation; it only refrains from counting the specific ed-
iting events that are also present in the controls (Supplemental
Figs. S2–S4; Supplemental Table S1). Therefore, it also does not fil-
ter any genuine editing events that may co-occur on the same read
as a normalized event (see Supplemental Note S2). This process is
blind to the source of the event, which may include genetic vari-
ance as well as experimental and sequencing artifacts. To assess
the impact of controls, we generated 112 CRISPR data sets and
pooled them with data we previously generated (Gagnon et al.
2014) for a total of 263 experiments (Methods; Supplemental
Note S1; Supplemental Table S2). These consisted of pools of
CRISPR-injected zebrafish using wild-type fish as a control. This
experimental setup presents a challenging task to pipelines
because the genetic background may not be identical across all
fish and because the injected fish can be highly mosaic in their
mutational outcomes. This benchmark revealed that accounting
for the genetic background in the wild-type fish reduced the esti-
mated mutation frequencies substantially in several experiments
and is a necessary step to ensure accurate results (Fig. 1B,C; Supple-
mental Fig. S5).

Estimating mutation efficiency starts with the alignment of
the sequenced reads (Fig. 1A). A common strategy is to use stan-
dard genomic alignment tools. However, these tools do not align
using knowledge about the known mechanisms of CRISPR-in-

duced double-stranded breaks and DNA repair. Genome editing
typically results in a single deletion and/or insertion of variable
length. Hence, correctly aligned reads will often have a low num-
ber of events (optimally one deletion and/or one insertion after
normalization for controls) overlapping the cut site, whereas mis-
aligned readswill result in a highnumber of events throughout the
read owing to discrepancies to the correct loci. Therefore an align-
ment strategy that penalizesmultiple indel events (seeMethods) is
more consistent with DNA repair mechanisms and the CRISPR
mode of action. ampliCan uses the Needleman–Wunsch algo-
rithm with tuned parameters to ensure optimal alignments of
the reads to their loci and models the number of indel and mis-
match events to ensure that the reads originated from that loci
(see Methods; Supplemental Note S3). In contrast, nonoptimized
aligners can create fragmented alignments, resulting inmisleading
mutation profiles and possible distortion of downstream analyses
and frameshift estimation (Supplemental Fig. S6). In assessments,
ampliCan outperforms the tools CrispRVariants, CRISPResso, and
ampliconDIVider on the synthetic benchmarking previously used
to assess these tools (Lindsay et al. 2016), in which experiments
were contaminated with simulated off-target reads that resemble
the real on-target reads but have a mismatch rate of 30% per
base pair (Supplemental Fig. S7). A cause for concern is that the
mapping strategy used in the pipelines of several tools (Sup-
plemental Table S3) is not robust to small perturbations of this
mismatch rate, and when we simulated contaminant off-target
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Figure 1. Overview of ampliCan pipeline and normalization. (A) Estimation ofmutation efficiency consists of multiple steps. At each of these steps, biases
can be introduced. Controls are processed identically to the main experiment and used for normalization. (B) Overview of the change in estimated mu-
tation efficiency on real CRISPR experiments when using controls that account for natural genetic variance in 29 experiments (mean change of 30%).
Red dots show initial estimates based on unnormalized data, whereas black dots show the values after normalization. (C ) Alignment plot showing the
top 10 most abundant reads in a real experiment. The table shows relative efficiency (Freq) of read, absolute number of reads (Count), and the summed
size of the indel(s) (F), colored greenwhen inducing a frameshift. The bars (top right) show the fraction of reads that contain no indels (Match), those having
an indel without inducing frameshift (Edited), and frameshift-inducing indels (F). The left panel shows the estimated mutation efficiency from raw reads,
which is 14% (11% with frameshift, 3% without). The right panel shows the same genomic loci after normalization with controls, resulting in a mutation
efficiency of 0%. The deletion of 11 bp in 9% of the reads could not be found in the GRCz10.88 Ensembl Variation database and would, in the absence of
controls, give the impression of a real editing event.
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data with varying degrees of mismatches to the on-target loci (see
Supplemental Note S4), it led to a significant reduction in perfor-
mance (Fig. 2, left). In contrast, ampliCan’s strategy of modeling
editing events to ascertain whether a read originated from the
on-target or the off-target loci resulted in consistently high perfor-
mance across a broad range of mismatch rates (Fig. 2, left; Supple-
mental Figs. S7, S8).

ampliCan can detect long indels and estimate HDR efficiency

Targeted insertion of shorter fragments through co-opting of the
homology directed repair (HDR) pathway is becoming increasingly
popular (Lackner et al. 2015; Kuscu et al. 2017). This, together with
long indels occurring in regular CRISPR experiments (Supplemen-
tal Figs. S9, S10), presents a challenge for most CRISPR analysis
tools. To assess the ability of the leading tools in recognizing
long indels, we simulated data using the strategy from Lindsay
et al. (2016), but restricted to indels of ≥10 bp. This revealed an in-
ability of current pipelines to process these longer events (Fig. 2,
right), typically stemming from alignment strategies that are un-
able to assign reads with long indels to the correct loci. In previous
assessments, simulated data have often been restricted to short
indels in which this weakness would not be apparent (Supplemen-
tal Note S5). By using a localized alignment strategy, based on
primer matching (see Methods), ampliCan knows a priori which
loci the reads are supposed to originate from. This alignment strat-
egy therefore outperforms all other tools and robustly handles
these longer indels (>10 bp) when they occur unintentionally
(Fig. 2, right; Supplemental Fig. S11).

Intentional introduction of specific edits using donor tem-
plates is supported in ampliCan through an HDR mode in which
it first aligns the donor template to the reference in order to iden-
tify editing events that are expected to take place in a successful in-
tegration. The presence of these success-events is then quantified
in the edited samples, obtaining the frequency of integration. To
assess this strategy, we simulated experiments with different levels
of donor integration (a result of HDR) in the presence of different

levels of cut loci but with donor introduction (a result of nonho-
mologous end-joining [NHEJ]). This revealed that only ampliCan
can consistently recover both the true HDR and NHEJ efficiency
(Supplemental Note S6; Supplemental Fig. S12). An identical strat-
egy also makes it possible to quantify the efficiency of base editors
(Komor et al. 2016; Gaudelli et al. 2017) by supplying ampliCan
with templates in which the target bases have been altered.

ampliCan summarizes and aggregates results over
thousands of experiments

To aid analysis of heterogeneous outcomes, ampliCan quantifies
the heterogeneity of reads (Supplemental Fig. S13), the complete
mutation efficiency for an experiment, and the proportion of mu-
tations resulting in a frameshift (Fig. 1C, top right). It also aggre-
gates and quantifies mutation events of a specific type if a
particular outcome is desired (Supplemental Fig. S14). In addition,
ampliCan provides overviews of the impact of all filtering steps
(Supplemental Figs. S15, S16). Reports can be generated in several
formats (Supplemental Tables S4, S5) and aggregated at multiple
levels such as sequencing barcodes, gRNA, gene, loci, or any user-
specified grouping (Supplemental Note S7). This enables explora-
tion of questions beyond mutation efficiency such as the rules of
gRNA design, whether a particular researcher is better at designing
gRNAs than others (Supplemental Fig. S17), whether a given bar-
code is not working, or determining the stochasticity in the muta-
tion outcome from a given gRNA (Supplemental Fig. S18).

Discussion
ampliCan offers a complete pipeline for genome engineering con-
trolling for biases at every step of evaluation. When used with
CRISPR, it can be integrated with the CHOPCHOP tool for gRNA
design to incorporate all computational steps necessary for a
CRISPR experiment. It scales from a single experiment to ge-
nome-wide screens and can be run with a single command. For
more advanced users, it provides a complete and adaptable
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Figure 2. Benchmark of leading tools when estimating mutation efficiency under different data set conditions. Each dot shows the error of the estimate
to the correct value for a single experiment normalized to a 0–100 scale. Themedian performance (mixed indels) is indicated by the horizontal line. The left
panel shows comparison of tools when data sets contain contaminant reads (see text and Methods). The x-axis denotes how dissimilar the contaminant
reads are to the correct reads. In cases in which the contaminants are from homologous regions, this may be low (10%); for other contaminants, this is likely
to be higher (30%). The right panel shows performance of tools as a function of the length of indel events. The sets in the first column contain no indels
>10 bp; the second column (Mixed indels) contains a mix of shorter and longer events; the sets in the third and fourth columns contain insertions and
deletions >10 bp, respectively.
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framework, enabling further exploration of the data. Collectively,
these advances willminimizemisinterpretation of genome editing
experiments and allow effective analysis of the outcome in an au-
tomated fashion.

Methods

ampliCan pipeline

ampliCan is completely automated and accepts a configuration file
describing the experiment(s) and FASTQ files of sequenced reads as
input. The configuration file contains information about bar-
codes, gRNAs, forward and reverse primers, amplicons, and paths
to corresponding FASTQ files (Supplemental Table S6). From
here, ampliCan generates reports summarizing the key features
of the experiments.

In the first step, ampliCan filters low-quality reads that have
either ambiguous nucleotides, an average quality, or individual
base quality under a default or user-specified threshold (Supple-
mental Note S8). After quality filtering, ampliCan assigns reads to
the particular experiment by searching for matching primers (de-
fault up to twomismatches, but ampliCan supports different strin-
gency) (Supplemental Note S9). Unassigned reads are summarized
and reported separately for troubleshooting. After read assign-
ment, ampliCan uses the Biostrings (https://bioconductor.org/
packages/release/bioc/html/Biostrings.html) implementation of
the Needleman–Wunsch algorithm with optimized parameters
(gap opening=−25, gap extension= 0, match=5, mismatch=−4,
no end gap penalty) to align all assigned reads to the loci/amplicon
sequence. Subsequently, primerdimer reads are removedbydetect-
ing deletions larger than the size of the amplicon, subtracting the
lengthof the twoprimers anda short buffer.Additionally, sequenc-
es that contain a high number of indels or mismatch events com-
pared with the remainder of the reads are filtered as these are
potential sequencing artifacts or originate from off-target amplifi-
cation (Supplemental Note S8; Supplemental Fig. S19). Mutation
frequencies are calculated from the remaining reads using the fre-
quency of indels that (Supplemental Fig. S14) overlap a region (±
5 bp) around the expected cut site. If paired-end sequencing is
used, ampliCan follows consensus rules for the paired forward
and reverse read, generallypicking the readwith thebest alignment
in case of disagreement (for description, see Supplemental Figs.
S20, S21). The alternative strategy of merging the paired reads is
supported by ampliCan but has been shown to be detrimental to
performance (Lindsay et al. 2016). The expected cut site can be
specified as a larger region for nickase or TALEN experiments in
which the exact site is not known. Any indel or mismatch also ob-
served above a 1% threshold in the control is removed. Frameshifts
are identified by summing the impact of deletions and insertions
on the amplicon.

A series of automated reports is prepared in form of “.Rmd”
files, which can be converted tomultiple formats but also immedi-
ately transformed into HTML reports with knitr (https://yihui
.name/knitr/) for convenience. There are six different default re-
ports prepared by ampliCan with statistics grouped at the corre-
sponding level: identifier, barcode, gRNA, amplicon, summary,
and group (user-specified, but typically signifies the researcher
conducting the experiment, treatment of sample, or other group-
ing of interest). In addition to alignments of top reads (Fig. 1C;
Supplemental Fig. S5), reports contain plots summarized over all
deletions, insertions, and variants (Supplemental Fig. S14). In ad-
dition, a number of plots showing the general state of the experi-
ments is shown, including the heterogeneity of reads to
investigate mosaicism or sequencing issues (Supplemental Figs.

S13, S22, S23) and overviews of how many reads were filtered/as-
signed at each step (Supplemental Fig. S24). In addition to the de-
fault plots, ampliCan produces R objects that contain all
alignments and read information; these can be manipulated, ex-
tended, and visualized through the R statistical package.

ampliCan provides a versatile tool that can be used out-of-
the-box or as a highly flexible framework that can be extended
to more complex analysis. The default pipeline consists of a single
convenient wrapper, amplicanPipeline, which generates all de-
fault reports. More advanced users can gain complete control
over all processing steps (Supplemental Fig. S25) and produce nov-
el plots formore specialized use cases. Compatibilitywith themost
popular plotting packages ggplot2 (https://ggplot2.tidyverse.org)
and ggbio (Yin et al. 2012), as well as the most popular data pro-
cessing packages dplyr (https://dplyr.tidyverse.org) and data.table,
provides a full-fledged and elastic framework. Output files are en-
coded as GenomicRanges (Lawrence et al. 2013) tables of aligned
read events for easy parsing (Supplemental Table S5) and hu-
man-readable alignment results (Supplemental Table S4) and
FASTA. We would like to encourage users to communicate their
needs and give us feedback for future development.

Running parameters

Supplemental Code S1 and https://github.com/valenlab/ampli
can_manuscript both contain all code related to reproducibility
of benchmark and analyses. For benchmarking, all the tools were
used with their default options; specific versions of the tools and
software can be found in the description file.

Software availability

ampliCan is developed as an R package (R Core Team 2018) under
GNU General Public License version 3 and is available through
Bioconductor under http://bioconductor.org/packages/amplican
or https://github.com/valenlab/amplican. Supplemental Code S2
contains ampliCan source for installation, version 1.5.6.

Data access
All real data sets from this study come from the zebrafish TLAB
strain and have been submitted to the NCBI BioProject database
(BioProject; https://www.ncbi.nlm.nih.gov/bioproject/) under ac-
cession number PRJNA245510 (run 1 and run 5). Other data sets
used in this study, published previously, are described in the
SupplementalMaterial. Descriptions, treatments, and other details
of those data sets were previously described (Gagnon et al. 2014).
Synthetic data sets can be reconstructed with the use of code
from https://github.com/valenlab/amplican_manuscript (Supple-
mental Code S1). Synthetic data sets were created in a similar fash-
ion to the sets previously described (Lindsay et al. 2016) using 20
different loci edited at variable efficiency (0%, 33.3%, 66.7%,
and 90%) and with the possibility of adding HDR. Further details
can be found in the Supplemental Material.
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