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Abstract: The ability to predict the skin sensitization potential of small organic molecules is of high
importance to the development and safe application of cosmetics, drugs and pesticides. One of the
most widely accepted methods for predicting this hazard is the local lymph node assay (LLNA).
The goal of this work was to develop in silico models for the prediction of the skin sensitization
potential of small molecules that go beyond the state of the art, with larger LLNA data sets and, most
importantly, a robust and intuitive definition of the applicability domain, paired with additional
indicators of the reliability of predictions. We explored a large variety of molecular descriptors and
fingerprints in combination with random forest and support vector machine classifiers. The most
suitable models were tested on holdout data, on which they yielded competitive performance
(Matthews correlation coefficients up to 0.52; accuracies up to 0.76; areas under the receiver operating
characteristic curves up to 0.83). The most favorable models are available via a public web service
that, in addition to predictions, provides assessments of the applicability domain and indicators of
the reliability of the individual predictions.

Keywords: skin sensitization potential; prediction; in silico models; machine learning; local lymph
node assay (LLNA); cosmetics; drugs; pesticides; chemical space; applicability domain

1. Introduction

Repeated exposure to reactive chemicals with skin-sensitizing properties can cause allergic contact
dermatitis (ACD) [1], an adverse cutaneous condition with a prevalence of ~20% among the general
population [2] and even higher prevalence among workers with chronic occupational exposure [3].
Understanding the skin sensitization potential of small organic molecules is therefore of essence to the
development and safe application of chemicals, including cosmetics and drugs.

Historically, animal tests have effectively been the only method for determining the skin
sensitization potential and potency of substances. The local lymph node assay (LLNA) is currently
considered to be the most advanced animal testing system [4]. In recent years, ethical considerations
and regulatory requirements have led to an intensification of the search for alternatives to animal
testing, in particular in the cosmetics industry [5]. New in vitro and in chemico methods have
been developed and evaluated [6–9], and computational approaches are starting to be recognized as
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important alternatives to animal testing [8–11]. The non-redundant combinatorial use of said methods
in defined approaches that assess several key events of the adverse outcome pathway (AOP) for skin
sensitization shows promising predictive capacity [12] and is currently evaluated in risk assessment
case studies.

The bottleneck in the development of in silico tools for the prediction of skin sensitization is
not related to technology but to the scarcity of available high-quality experimental data for model
development. Three strategies have been pursued to address this problem. The first one is to increase
the amount and coverage of data by employing data mining techniques to retrieve information from
various types of assays and sources [13,14]. Although this has been discussed as a promising strategy
to increase the applicability of models, it has also prompted controversial discussions regarding the
quality and relevance of the data [15,16]. The second strategy is to develop focused models based on
small, focused data sets of high-quality [17–21]. The third strategy is to pursue a middle way that aims
for a favorable balance between quantity and quality of the data. The LLNA data available in the public
domain are generally regarded as the most suitable source of information for this strategy [22–27].

The two largest curated collections of LLNA outcomes in the public domain are the data collections
of Alves et al. [28] and Di et al. [22]. The data were obtained from reliable sources and subjected
to deduplication procedures that reject discordant records. The data set of Alves et al. includes
(mainly) binary LLNA outcomes recorded for 1000 compounds. In addition, it contains human data
and outcomes from different types of in vitro and in chemico assays, although for substantially fewer
substances. Based on these data, the authors developed machine learning models for different assay
types and also a consensus model, all of which are available via an online platform (“PredSkin”) [19].
Their model for the prediction of binary LLNA outcomes reached a correct classification rate (CCR) of
0.77 during five-fold external cross-validation.

The data set published by Di et al. contains 1007 substances annotated with LLNA potency
classes [22]. Based on a subset of approximately 400 compounds for which an explicit reaction
mechanism could be derived with a structural alerts tool for protein binding implemented in the
OECD Toolbox [29], Di et al. developed a variety of models for the binary and ternary prediction of the
skin sensitization potential. These models included local models for four reaction domains as well as
global models. The best binary global model was reported to obtain an accuracy (ACC) of 0.84 during
cross-validation and an ACC of 0.81 on a test set.

Major challenges in the application of machine learning approaches for risk assessment are related
to the complexity of models that goes along with limited mechanistic interpretability. For these types
of models, transparency with respect to the applicability domain as well as the provision of confidence
estimates for individual predictions are of utmost importance to risk assessors, who ultimately are the
main stakeholders of these methods.

In this context, and building on the works of Alves et al. and Di et al., this study pursues four main
objectives to advance in silico capabilities for the prediction of the skin sensitization potential: (i) the
development of a detailed understanding of the chemical space covered by the available LLNA data
with respect to the chemical space of cosmetics, approved drugs and pesticides, (ii) the identification of
the most suitable (sets of) molecular descriptors for modeling, (iii) the maximization of the applicability
of the models by increasing the size and coverage of the data set used for model development, (iv) the
definition of robust measures of the models’ applicability domain as well as the provision of indicators
for the reliability of individual predictions, and (v) the provision of the most suitable models via a
public web service.

2. Results

2.1. Characterization of the LLNA Data Sets

In order to develop a detailed understanding of the relevance of the available LLNA data to
modeling the skin sensitization potential of xenobiotics, we analyzed the composition and molecular
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diversity of the LLNA data sets of Alves et al. and Di et al. In addition, we assessed how well the
individual LLNA data sets cover the chemical space of cosmetics, approved drugs and pesticides.

2.1.1. Data Set Composition

Whereas the data set compiled by Alves et al. is balanced (481 sensitizers; 519 non-sensitizers),
the data set of Di et al. contains almost twice as many non-sensitizers (n = 629) as sensitizers (n = 364;
Table 1). Roughly 40% of all compounds (567) are present in both data sets (Table 2). The LLNA data
set compiled by Alves et al. contains 7% of all substances listed in the cosmetics data set; coverage is
lower for approved drugs and pesticides (4% and 5%, respectively). The percentages are similar for
the LLNA data set of Di et al.: 5% overlaps with cosmetics, 3% with approved drugs and 4% with
pesticides. Merging the two LLNA data sets increases the number of unique compounds to 1416 and
the overlaps with cosmetics, approved drugs and pesticides to 8%, 5% and 5%, respectively.

2.1.2. Coverage of Chemical Space

Whereas only few of the cosmetics, approved drugs and pesticides listed in the reference data
sets are included in the LLNA data sets, principal component analysis (PCA) shows that the areas
in chemical space most densely populated with these xenobiotics are actually well-covered by the
merged LLNA data set (Figure 1). Nevertheless, scattered data points radiating from the area of high
data density towards the bottom and the top right corner of the PCA score plot indicate the existence
of drugs and cosmetic compounds without closely related substances listed in the merged data set.
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Figure 1. Score plot comparing the chemical space of compounds of the merged LLNA data set, 
cosmetics, approved drugs and pesticides. The plot is derived from a principal component analysis 
(PCA) based on 53 intuitive and physically meaningful molecular descriptors such as molecular 
weight and clogP (see Methods and Table S1 for details). Data points located in the lower parts of the 
PCA score plot are primarily cosmetics with long aliphatic and often halogenated chains; towards the 
top right corner of the diagram these are primarily large drug molecules with strong aromatic 
components. The variance explained by the first two principal components is reported in the axis 
titles. Four compounds of the cosmetics reference set and eight compounds of the approved drugs 
reference set are not shown because they are off the chosen limits of the plot (these are complex and 
large molecules, with a molecular weight of 2800 Da and higher). 

In addition to PCA analysis, the coverage of cosmetics, approved drugs and pesticides by the 
merged LLNA data set was quantified based on the distribution of maximum pairwise similarities. 
As shown in Figure 2, the merged LLNA data set covers cosmetics much better than approved drugs 
and pesticides: over 30% of all cosmetics are represented by the respective nearest neighbor in the 
merged LLNA data set with a minimum Tanimoto coefficient of 0.6, whereas this is the case for only 
10% and 13% of all approved drugs and pesticides, respectively. 

Figure 1. Score plot comparing the chemical space of compounds of the merged LLNA data set,
cosmetics, approved drugs and pesticides. The plot is derived from a principal component analysis
(PCA) based on 53 intuitive and physically meaningful molecular descriptors such as molecular
weight and clogP (see Methods and Table S1 for details). Data points located in the lower parts of the
PCA score plot are primarily cosmetics with long aliphatic and often halogenated chains; towards
the top right corner of the diagram these are primarily large drug molecules with strong aromatic
components. The variance explained by the first two principal components is reported in the axis
titles. Four compounds of the cosmetics reference set and eight compounds of the approved drugs
reference set are not shown because they are off the chosen limits of the plot (these are complex and
large molecules, with a molecular weight of 2800 Da and higher).
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Table 1. Overview of all data sets used in this work.

LLNA Data Set
Compiled by Alves et al.

LLNA Data Set
Compiled by Di et al.

Merged LLNA
Data Set

Cosmetic Substances and
Ingredients Data Set Approved Drugs Data Set Pesticides Data Set

Data source Chembench [30]1 Supporting information
of Di et al. [22]

LLNA data sets of
Alves et al. and Di et al. CosIng Database [31] “Approved Drugs” subset

of DrugBank [32,33]2
EU Pesticides
Database [34]

Number of compounds prior to
data preprocessing 1000 1007 1993 5937 2352 1383

Number of compounds after
data preprocessing 1000 9933 14164 (1132/284)5 46436 21557 8128

Number of sensitizers 481 364 572 (457/115)5 n/a n/a n/a
Number of non-sensitizers 519 629 844 (675/169)5 n/a n/a n/a

Number of Murcko scaffolds 312 354 453 856 1158 329
Proportion of compounds
without a Murcko scaffold 0.32 0.29 0.31 0.42 0.13 0.24

Proportion of singleton scaffolds 0.77 0.79 0.78 0.72 0.82 0.81
1 Chapel Hill, NC, United States. 2 Edmonton, Alberta, Canada. 3 Thirteen compounds were removed as part of the deduplication procedure; one compound was removed because of
conflicting activity assignments. 4 Five hundred and sixty-seven compounds were removed as part of the deduplication procedure; ten compounds were removed because of conflicting
activity assignments. 5 Number of compounds in the training set/test set prior to descriptor calculation. 6 One hundred and four compounds were removed by the salt filter because the
main component could not be unambiguously identified; 26 compounds were removed due to invalid input structure; 1164 compounds were removed as part of the deduplication
procedure. 7 Thirty-one compounds were removed by the salt filter because the main component could not be unambiguously identified; 166 compounds were removed as part of
the deduplication procedure. 8 The SMILES notation of 893 compounds present in the EU Pesticides Database were automatically retrieved with the Chemical Identifier Resolver [35].
Six compounds were removed by the salt filter because the main component could not be identified; 13 compounds were removed due to invalid input structure; 62 compounds were
removed as part of the deduplication procedure. Abbreviations: LLNA, local lymph node assay.

Table 2. Overlaps between the compounds contained in the LLNA data sets and the cosmetics, approved drugs and pesticides data sets.

Number of Compounds Data Set Compiled by Alves et al. Data Set Compiled by Di et al. Merged LLNA Data Set

Cosmetics 4643 324 252 387
Approved Drugs 2155 88 68 97

Pesticides 812 43 34 44

Abbreviations: LLNA, local lymph node assay.
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In addition to PCA analysis, the coverage of cosmetics, approved drugs and pesticides by the
merged LLNA data set was quantified based on the distribution of maximum pairwise similarities.
As shown in Figure 2, the merged LLNA data set covers cosmetics much better than approved drugs
and pesticides: over 30% of all cosmetics are represented by the respective nearest neighbor in the
merged LLNA data set with a minimum Tanimoto coefficient of 0.6, whereas this is the case for only
10% and 13% of all approved drugs and pesticides, respectively.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 7 of 27 
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It is important to note that the data set compiled by Di et al. includes many compounds that
populate areas in chemical space not (well) covered by the LLNA data set of Alves et al. (Figure 3).
It is therefore expected that models trained on the merged data set should be more widely applicable
than those based solely on the LLNA data compiled by Alves et al.
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Figure 3. Score plot comparing the chemical space of compounds of the local lymph node assay (LLNA)
data sets of Alves et al. and Di et al. The score plot was derived from a PCA based on the identical
setup described in the caption of Figure 1. Two data points are located outside the displayed intervals.
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2.1.3. Molecular Diversity

The molecular diversity of the merged LLNA data set and the reference data sets was assessed
in two different ways: by pairwise comparison of molecular structures and by counting of Murcko
scaffolds. Pairwise comparisons were again based on Tanimoto coefficients derived from Morgan2
fingerprints of a length of 2048 bits. The cosmetics data set exhibits a lower diversity compared to the
other data sets (Figure 4). This can be attributed, to some extent, to the larger size of the cosmetics
data set: 23% of all pairs of compounds in the cosmetic data set have fingerprints with a Tanimoto
coefficient of 0.8 or higher, whereas this percentage is 11% or lower for the merged LLNA, approved
drugs and pesticides data sets. Of all compounds included in the cosmetics data set, 220 have at least
one neighbor with identical molecular fingerprint. These are mostly pairs of molecules with long
aliphatic chains, differing only by the length of these chains (note that any duplicate molecules have
been removed during data preprocessing).
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Figure 4. Pairwise molecular similarity within the individual data sets (similarity quantified as Tanimoto
coefficient based on Morgan2 fingerprints with a length of 2048 bits).

The merged LLNA data set covers a total of 453 distinct Murcko scaffolds, which is roughly as
many as covered by the pesticides data set but only one-third and one-quarter of those covered by
the cosmetics and approved drugs data sets, respectively (Table 1). Taking into account the size of
the individual data sets, the approved drugs data set clearly is the most diverse data set. In contrast,
the cosmetics data set, which counts more molecular structures than all other data sets taken together,
is the least diverse data set. This is in part related to the fact that approximately 40% of all cosmetics
do not include a ring and, as such, do not have a Murcko scaffold.

Benzene is the most prominent Murcko scaffold across all data sets, with a prevalence of 27%,
28%, 10% and 23% among the merged LLNA, cosmetics, approved drugs and pesticides data sets.
Any other scaffolds are represented by only a few instances (Table S2). Note the high percentages of
singleton scaffolds (72% or higher) across all data sets, which, particularly in the case of the LLNA data
set, illustrate the scarcity of the data available for modeling.

2.2. Molecular Properties of Skin Sensitizers and Non-Sensitizers

The merged LLNA data set contains 572 skin sensitizers and 844 non-sensitizers. As shown in
Figure 5a, non-sensitizers cover a broader chemical space than sensitizers. A substantial number of
non-sensitizers are of higher molecular weight than sensitizers and have a stronger aromatic character
and larger topological polar surface area (Figure 5a,d). A cluster of skin sensitizers and non-sensitizers
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with long aliphatic and halogenated chains was identified, observed as a diagonal line in the lower left
of the score plot (Figure 5a,c). Interestingly, the compounds of this cluster can only be discriminated
in the “MOE 2D” descriptor space but not in the Morgan2 fingerprint space, since molecules with
identical halogen substitution but differing chain lengths can result in identical Morgan2 fingerprints.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 9 of 27 

 

sensitizers with long aliphatic and halogenated chains was identified, observed as a diagonal line in 
the lower left of the score plot (Figure 5a,c). Interestingly, the compounds of this cluster can only be 
discriminated in the “MOE 2D” descriptor space but not in the Morgan2 fingerprint space, since 
molecules with identical halogen substitution but differing chain lengths can result in identical 
Morgan2 fingerprints. 

 
Figure 5. Principal component analysis (PCA) of the physicochemical properties of skin sensitizers 
and non-sensitizers included in the merged local lymph node assay (LLNA) data set. The PCA is 
based on the identical setup described in the caption of Figure 1. (a) Score plot, with the percentage 
of variance explained by the individual principal components reported as part of the axis labels. Two 
data points are located outside the displayed intervals. (b) Loadings plot (an enlarged version is 
provided in Figure S1; the abbreviations of the individual molecular descriptors are explained in 
Table S1). (c) Detailed view of the lower left region of the score plot, where mainly sensitizers are 
observed to form a line of data points. These sensitizers are aliphatic, monohalogenated hydrocarbons 
that differ primarily by chain length and halogen atom type. (d) Detailed view of the upper right part 
of the score plot, where mainly non-sensitizing compounds are located, characterized by high 
molecular weight, aromaticity and a large topological polar surface area. 

2.3. Model Development 

Prior to model development, the merged LLNA data set was divided into a training (80%) and 
test (20%) set (Table 3; see Methods for details). All possible combinations of machine learning 
approaches (random forest (RF) and support vector machine (SVM)) with up to two different sets of 
molecular descriptors (including molecular fingerprints) were systematically explored (Table 4). One 
type of descriptors to highlight is a new fingerprint that we derive from the “Protein binding alerts 
for skin sensitization by OASIS” profiler implemented in the OECD toolbox [29]. This profiler assigns 
compounds to eleven mechanistic domains associated with skin sensitization, five of which are 
represented by more than 20 instances in the training set (i.e., Michael addition, SN2 reaction, Schiff 

Figure 5. Principal component analysis (PCA) of the physicochemical properties of skin sensitizers
and non-sensitizers included in the merged local lymph node assay (LLNA) data set. The PCA is
based on the identical setup described in the caption of Figure 1. (a) Score plot, with the percentage of
variance explained by the individual principal components reported as part of the axis labels. Two data
points are located outside the displayed intervals. (b) Loadings plot (an enlarged version is provided
in Figure S1; the abbreviations of the individual molecular descriptors are explained in Table S1).
(c) Detailed view of the lower left region of the score plot, where mainly sensitizers are observed to
form a line of data points. These sensitizers are aliphatic, monohalogenated hydrocarbons that differ
primarily by chain length and halogen atom type. (d) Detailed view of the upper right part of the score
plot, where mainly non-sensitizing compounds are located, characterized by high molecular weight,
aromaticity and a large topological polar surface area.

2.3. Model Development

Prior to model development, the merged LLNA data set was divided into a training (80%) and
test (20%) set (Table 3; see Methods for details). All possible combinations of machine learning
approaches (random forest (RF) and support vector machine (SVM)) with up to two different sets
of molecular descriptors (including molecular fingerprints) were systematically explored (Table 4).
One type of descriptors to highlight is a new fingerprint that we derive from the “Protein binding
alerts for skin sensitization by OASIS” profiler implemented in the OECD toolbox [29]. This profiler
assigns compounds to eleven mechanistic domains associated with skin sensitization, five of which
are represented by more than 20 instances in the training set (i.e., Michael addition, SN2 reaction,
Schiff base formation, acylation, and nucleophilic addition). The new fingerprint encodes the presence
or absence of alerts matching one or several of these five mechanistic domains.



Int. J. Mol. Sci. 2019, 20, 4833 8 of 23

Table 3. Overview of descriptor sets evaluated in this work.

Descriptor set Short Name
Number of

Descriptors/Length of
the Fingerprint

Calculated with Number of Successfully
Processed Molecules1

Training set Test set

0D, 1D and 2D descriptors MOE2D 206
MOE [36]; this set corresponds
to all descriptors listed as “2D

descriptors” in MOE
1132 284

Selection of 0D, 1D and 2D descriptors MOE2D_53 532 MOE [36] 1132 284

0D, 1D and 2D descriptors PaDEL 1444

PaDEL [37,38]; this is the
complete set of 0D, 1D and 2D

descriptors implemented in
PaDEL

1109 279

MACCS keys MACCS 166 RDKit [39] 1132 284
Morgan2 fingerprints Morgan2 2048 RDKit [39] 1132 284

OASIS skin sensitization protein binding
fingerprint OASIS 5 bit fingerprint OECD Toolbox [29] 1128 283

PaDEL estate fingerprint PaDEL_Est 79 PaDEL [37,38] 1132 284
PaDEL extended fingerprint PaDEL_Ext 1024 PaDEL [37,38] 1132 284

1 Descriptor calculation failed for individual compounds depending on the software used. For this reason, there are marginal differences in the composition of the individual data sets used
for model development. 2 Fifty-three manually selected, physically meaningful descriptors. A list of the selected descriptors can be found in Table S1. Abbreviations: MOE, Molecular
Operating Environment.
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Table 4. Overview of models and their performance during cross-validation.

Name Number of
Descriptors

Number of Compounds in
Training Data ACC ACC

STDEV MCC MCCSTDEV AUC CCR Se SP PPV NPV

SVM_MOE2D+OASIS 211 1128 0.78 0.054 0.55 0.109 0.83 0.78 0.77 0.78 0.71 0.83
SVM_PaDEL+MACCS 1610 1108 0.76 0.035 0.51 0.069 0.83 0.76 0.75 0.76 0.69 0.82
SVM_PaDEL+Morgan2 3492 1108 0.76 0.036 0.51 0.078 0.82 0.75 0.66 0.83 0.73 0.78

SVM_PaDEL+PaDEL-Ext 2468 1109 0.76 0.039 0.51 0.075 0.84 0.76 0.74 0.78 0.7 0.81
SVM_MOE2D+MACCS 372 1132 0.76 0.047 0.5 0.096 0.81 0.74 0.68 0.81 0.71 0.79
SVM_MOE2D+Morgan2 2254 1132 0.75 0.041 0.5 0.081 0.83 0.75 0.77 0.73 0.66 0.83
SVM_MOE2D+PaDEL 1680 1109 0.76 0.039 0.5 0.079 0.83 0.75 0.74 0.77 0.69 0.81

SVM_MOE2D+PaDEL-Est 285 1132 0.76 0.039 0.5 0.081 0.81 0.75 0.68 0.81 0.71 0.79
SVM_MOE2D+PaDEL-Ext 1230 1132 0.75 0.054 0.5 0.105 0.83 0.75 0.75 0.76 0.68 0.81

SVM_PaDEL 1444 1109 0.75 0.038 0.5 0.075 0.83 0.75 0.75 0.75 0.68 0.81
SVM_PaDEL+OASIS 1449 1109 0.75 0.038 0.5 0.075 0.83 0.75 0.75 0.75 0.68 0.81

SVM_PaDEL+PaDEL-Est 1523 1109 0.75 0.038 0.5 0.075 0.83 0.75 0.75 0.75 0.68 0.81
RF_PaDEL+MACCS 1610 1108 0.76 0.018 0.49 0.037 0.82 0.73 0.62 0.85 0.74 0.77
RF_PaDEL+Morgan2 3492 1108 0.76 0.02 0.49 0.042 0.82 0.74 0.64 0.84 0.73 0.77

RF_PaDEL+OASIS 1449 1109 0.76 0.02 0.49 0.043 0.82 0.74 0.62 0.85 0.74 0.77
RF_PaDEL+PaDEL-Ext 2468 1109 0.76 0.022 0.49 0.048 0.82 0.73 0.61 0.86 0.75 0.76

SVM_PaDEL-Est+MACCS 245 1132 0.75 0.051 0.49 0.106 0.81 0.74 0.69 0.8 0.7 0.79
RF_MOE2D+PaDEL 1680 1109 0.75 0.034 0.48 0.072 0.83 0.73 0.62 0.84 0.73 0.77

RF_Morgan2+PaDEL-Est 2127 1132 0.76 0.033 0.48 0.071 0.82 0.73 0.63 0.84 0.73 0.77
RF_PaDEL 1444 1109 0.75 0.015 0.48 0.033 0.82 0.73 0.62 0.84 0.73 0.76

RF_PaDEL-Est+OASIS 84 1128 0.75 0.043 0.48 0.091 0.8 0.74 0.65 0.82 0.72 0.78
SVM_MACCS+OASIS 171 1128 0.75 0.047 0.48 0.102 0.82 0.74 0.69 0.79 0.69 0.79

SVM_MOE2D 206 1132 0.74 0.037 0.48 0.067 0.82 0.74 0.75 0.74 0.66 0.82
SVM_Morgan2+PaDEL-Ext 3072 1132 0.75 0.044 0.48 0.09 0.82 0.74 0.68 0.8 0.7 0.79

RF_MACCS 166 1132 0.75 0.039 0.47 0.088 0.81 0.73 0.61 0.84 0.73 0.76
RF_MACCS+OASIS 171 1128 0.75 0.034 0.47 0.074 0.8 0.73 0.6 0.85 0.74 0.76

RF_PaDEL+PaDEL-Est 1523 1109 0.75 0.028 0.47 0.06 0.83 0.73 0.61 0.85 0.73 0.76
SVM_MACCS 166 1132 0.74 0.057 0.47 0.12 0.81 0.73 0.69 0.78 0.68 0.79

SVM_PaDEL-Est+OASIS 84 1128 0.74 0.048 0.47 0.099 0.8 0.74 0.71 0.76 0.67 0.8
SVM_PaDEL-Est+PaDEL-Ext 1103 1132 0.74 0.039 0.47 0.08 0.81 0.74 0.7 0.78 0.68 0.79

SVM_PaDEL-Ext 1024 1132 0.74 0.046 0.47 0.093 0.81 0.73 0.7 0.77 0.68 0.79
SVM_PaDEL-Ext+OASIS 1029 1128 0.74 0.036 0.47 0.072 0.82 0.74 0.7 0.77 0.68 0.79

RF_MOE2D+Morgan2 2254 1132 0.74 0.033 0.46 0.071 0.81 0.72 0.62 0.82 0.71 0.76
RF_PaDEL-Est+MACCS 245 1132 0.75 0.045 0.46 0.1 0.81 0.72 0.59 0.85 0.73 0.76
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Table 4. Cont.

Name Number of
Descriptors

Number of Compounds in
Training Data ACC ACC

STDEV MCC MCCSTDEV AUC CCR Se SP PPV NPV

RF_Morgan2 2048 1132 0.74 0.039 0.46 0.081 0.81 0.73 0.64 0.81 0.7 0.77
SVM_Morgan2+MACCS 2214 1132 0.74 0.058 0.46 0.117 0.8 0.73 0.68 0.78 0.68 0.78

SVM_PaDEL-Ext+MACCS 1190 1132 0.74 0.047 0.46 0.097 0.81 0.73 0.68 0.77 0.68 0.78
RF_MOE2D+OASIS 211 1128 0.74 0.041 0.45 0.09 0.81 0.71 0.6 0.83 0.71 0.75

RF_MOE2D+PaDEL-Est 285 1132 0.74 0.032 0.45 0.07 0.81 0.72 0.6 0.84 0.72 0.75
RF_MOE2D+PaDEL-Ext 1230 1132 0.74 0.017 0.45 0.037 0.82 0.72 0.58 0.85 0.73 0.75

RF_MOE2D 206 1132 0.73 0.036 0.44 0.078 0.81 0.71 0.59 0.83 0.71 0.75
RF_MOE2D+MACCS 372 1132 0.73 0.033 0.44 0.072 0.81 0.71 0.58 0.84 0.71 0.75
RF_Morgan2+MACCS 2214 1132 0.73 0.039 0.44 0.086 0.8 0.72 0.63 0.8 0.68 0.76
RF_Morgan2+OASIS 2053 1128 0.74 0.029 0.44 0.063 0.82 0.71 0.59 0.83 0.71 0.75

RF_Morgan2+PaDEL-Ext 3072 1132 0.73 0.036 0.44 0.081 0.81 0.71 0.56 0.85 0.72 0.74
SVM_MOE2D53 53 1132 0.71 0.037 0.44 0.069 0.78 0.72 0.76 0.68 0.62 0.81
SVM_PaDEL-Est 79 1132 0.72 0.037 0.44 0.073 0.77 0.72 0.71 0.73 0.64 0.79
RF_PaDEL-Est 79 1132 0.73 0.022 0.43 0.042 0.77 0.71 0.64 0.79 0.67 0.76

RF_PaDEL-Ext+MACCS 1190 1132 0.73 0.037 0.43 0.081 0.81 0.7 0.55 0.85 0.72 0.74
RF_PaDEL-Ext+OASIS 1029 1128 0.73 0.033 0.43 0.072 0.8 0.7 0.57 0.84 0.71 0.74

RF_PaDEL-Ext+PaDEL-Est 1103 1132 0.73 0.034 0.43 0.074 0.8 0.7 0.56 0.85 0.72 0.74
SVM_Morgan2+OASIS 2053 1128 0.73 0.038 0.43 0.089 0.8 0.69 0.51 0.88 0.75 0.73

SVM_Morgan2+PaDEL-Est 2127 1132 0.72 0.035 0.43 0.064 0.79 0.72 0.69 0.75 0.65 0.78
RF_MOE2D53 53 1132 0.73 0.039 0.42 0.086 0.78 0.7 0.58 0.83 0.69 0.74
RF_PaDEL-Ext 1024 1132 0.72 0.039 0.42 0.088 0.79 0.7 0.55 0.84 0.71 0.73
SVM_Morgan2 2048 1132 0.72 0.031 0.39 0.072 0.8 0.68 0.49 0.87 0.72 0.71

SVM_OASIS 5 1128 0.67 0.064 0.29 0.151 0.63 0.62 0.37 0.87 0.68 0.67
RF_OASIS 5 1128 0.66 0.054 0.27 0.122 0.64 0.63 0.43 0.82 0.62 0.68

Abbreviations: ACC, accuracy; AUC, area under the receiver operating characteristic curve; CCR, correct classification rate; MCC, Matthews correlation coefficient; NPV, negative
predictive value; PPV, positive predictive value; Se, sensitivity; Sp, specificity; STDEV, standard deviation.
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For any combination of machine learning algorithm and descriptor set(s), optimum hyperparameters
were identified via a grid search (Table 5). The grid search was performed within the framework of a
10-fold cross-validation, with Matthews correlation coefficient (MCC) [40] used as the scoring parameter.

Table 5. Overview of hyperparameters optimized by grid search.

Machine Learning Approach Parameter Explored Values

RF
n_estimators 1 10, 50, 100, 250, 500, 1000
max_features 2 ‘sqrt’, 0.2, 0.4, 0.6, 0.8, None

SVM
C 3 0.01, 0.1, 1, 10, 100, 1000

gamma 4 1, 0.1, 0.01, 0.001, 0.0001, 0.00001
1 Number of prediction trees. 2 Maximum depth of each tree. 3 Penalty parameter C of the error term. 4 Coefficient
for the radial basis function (rbf) kernel. Abbreviations: RF, random forest; SVM, support vector machine.

The outcomes of this grid search are summarized in Table S3. It can be seen that similar
hyperparameters tend to be selected by models based on related types and sets of molecular descriptors.
No strong preferences for specific hyperparameter values are apparent. This is likely related to the fact
that, within a broad value space, the hyperparameters only had a minor impact on model performance.

2.4. Model Performance

2.4.1. Measures for the Evaluation of Model Performance

Eight different measures were applied to describe the performance of the classifiers:

• Matthews correlation coefficient (MCC), which is regarded to be one of the best measures of binary
classification performance. It is robust against data imbalance and considers the proportion of
all four cases of predictions (i.e., true positive, false positive, true negative and false negative
predictions). Note that MCC values range from−1 to +1. A value of +1 indicates perfect prediction,
whereas a value of −1 indicates a prediction that is in total disagreement. A value of 0 indicates a
performance which is equal to random.

• ACC, which has been most commonly used by others to measure the performance of models
for the prediction of the skin sensitization potential. It is defined as the proportion of correct
predictions within all predictions made.

• Area under the receiver operating characteristic curve (AUC), which in this case quantifies the
ability to correctly rank compounds according to their skin sensitization potential. The AUC does
not rely on a decision threshold.

• Sensitivity (Se), which in this case quantifies the proportion of correctly identified skin sensitizers.
• Specificity (Sp), which in this case quantifies the proportion of correctly predicted non-sensitizers.
• Positive predictive value (PPV), which reports the proportion of true positive predictions among

all positive predictions.
• Negative predictive value (NPV), which reports the proportion of true negative predictions among

all negative predictions.
• CCR, which is the mean of Se and Sp.

2.4.2. Model Performance During Cross-Validation

Depending on the combination of machine learning algorithm (RF or SVM) and descriptor set(s)
used, MCC values ranged from 0.27 to 0.55, ACC values from 0.66 to 0.78, and AUC values from 0.63
to 0.84 (Table 4). The machine learning algorithms had only a minor impact on model performance.
The average MCC values obtained by RFs and SVMs were 0.45 and 0.48, respectively. Nevertheless,
the twelve predictors that obtained the highest MCC values are all based on SVMs. Most of the
observed variation in performance stemmed from the use of different descriptor sets.
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The best performance during cross-validation was obtained by the SVM_MOE2D+OASIS model.
This model yielded an MCC, ACC and AUC of 0.55, 0.78 and 0.83, respectively. The best model based
on a single set of descriptors was the SVM_PaDEL model. It reached an MCC, ACC and AUC of 0.50,
0.75 and 0.83, respectively. However, its lead over the corresponding RF model and other models
based on a single set of descriptors was small. For example, the best model based on a single type of
molecular fingerprint, RF_MACCS, obtained an MCC, ACC and AUC of 0.47, 0.75 and 0.81, respectively.
Models based on either machine learning algorithm in combination with “MOE 2D” descriptors or
MACCS fingerprints yielded comparable performance. Reduction of the full MOE2D descriptor set
to the subset of 53 interpretable MOE descriptors (previously used for analyzing the chemical space
coverage) led to a decline in MCC values by a maximum of 0.04. Caution needs to be exercised
when interpreting these small differences in performance because of the variance observed during
cross-validation. For example, for the SVM_MOE2D_53 model, the standard deviation observed for
the MCC during cross-validation was 0.069.

In most cases, the combination of two sets of molecular descriptors was beneficial to model
performance. Exceptions include models based on combinations of two sets of descriptors of the same
type (e.g., Morgan2 and MACCS fingerprints). These did not outperform the best models based on a
single set of descriptors. Also, combinations of 0D/1D/2D molecular descriptors with fingerprints did
not consistently outperform models based on a single set of descriptors, albeit nine out of twelve models
with MCC values greater than or equal to 0.5 are models combining non-binary molecular descriptors
(i.e., MOE2D or PaDEL) with molecular fingerprints. Tables S4 and S5 provide a comprehensive
overview of the impact of different combinations of descriptor sets on model performance.

Good performance was also obtained by models generated using non-commercial software only.
For example, the SVM_PaDEL+OASIS model obtained MCC, ACC and AUC values of 0.50, 0.75 and
0.83, respectively. With few exceptions, the OASIS fingerprint contributed positively to the performance
of models. For instance, adding the OASIS fingerprint to the SVM_MOE2D model led to an increase
of the MCC, ACC and AUC by 0.07, 0.04 and 0.01, respectively. Interestingly, with a total of just
84 bits, the RF_PaDEL−Est+OASIS model reached a level of performance that is comparable with
that of more complex models (MCC 0.48; ACC 0.75; AUC 0.80). However, when used on its own, the
OASIS fingerprint is not sufficient for good classification performance: the RF_OASIS and SVM_OASIS
models obtained the lowest MCC values across all models (i.e., 0.27 and 0.29, respectively).

2.4.3. In-Depth Analysis of Selected Models within the Cross-Validation Framework

Based on the cross-validation results, five of the most interesting models were selected for
additional studies:

• SVM_MOE2D+OASIS: the model with highest MCC.
• SVM_PaDEL+OASIS: a model performing comparable to the SVM_MOE2D+OASIS and based

on freely available software only.
• SVM_PaDEL: the best model based on a single set of molecular descriptors.
• RF_MACCS: the best model based on a single set of molecular fingerprints.
• SVM_PaDEL+MACCS: a model with good performance, combining the descriptor sets used by

the above two models.

Within the above-mentioned 10-fold cross-validation framework, we first analyzed how the
coverage of the query molecules by the training data affects model performance. For this analysis we
calculated the similarity between the individual query molecules and the one, three and five-nearest
neighbors in the training set. Two similarity measures were explored: Tanimoto coefficients in the
MACCS fingerprint space and negative Euclidean distances in the PaDEL descriptor space. The latter
did not correlate well with molecular similarity (likely caused by noise related to the large number
of molecular descriptors considered in this approach; Figure S2 and Table S6), for which reason we
decided to go ahead with the fingerprint-based distance measure.
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For all five models, a direct linear relationship was observed between MCC values and molecular
similarity. The relationship was consistent when considering different numbers of nearest neighbors
in the training data but tended to be more robust when taking more (i.e., 5) nearest neighbors into
account (Pearson correlation coefficient between 0.92 and 0.96 when considering five nearest neighbors).
As shown in Figure 6, for compounds dissimilar to those present in the training data (defined by
Tanimoto coefficients averaged over the five nearest neighbors of 0.5 or lower), MCC values were below
or around 0.4 for all five models. For compounds structurally related to the training data (defined by
Tanimoto coefficients of 0.7 or higher), MCC values were at least 0.5 or higher.
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Figure 6. Matthews correlation coefficient (MCC) as a function of molecular similarity between the
query compounds and the one, three and five nearest neighbors in the training data (calculated
as averaged Tanimoto coefficients based on MACCS fingerprints). (a) SVM_MOE2D+OASIS;
(b) SVM_PaDEL+OASIS; (c) SVM_PaDEL; (d) RF_MACCS; (e) SVM_PaDEL+MACCS. Pearson
correlation coefficients are reported in brackets in the figure legends. The number of compounds in
each bin is summarized in Table S7.
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Secondly, we investigated how changes to the decision threshold of the SVM and RF classifiers
(i.e., the value above which a compound is predicted to be a sensitizer) affect the sensitivity and
specificity of the models. As shown in Figure 7, both these metrics strongly depend on the selected
decision threshold. This allows users to define context-dependent thresholds. For example, in scenarios
where for a compound of interest any skin sensitization potential should be ruled out, users may opt
for lower decision thresholds to identify any hazard. In the case of the RF_MACCS model, lowering
the decision threshold to 0.3 results in a sensitivity of 0.84 and a specificity of 0.61 (Figure 7d).
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Figure 7. Matthews correlation coefficient (MCC), sensitivity and specificity as a function of the decision
threshold, for (a) SVM_MOE2D+OASIS; (b) SVM_PaDEL+OASIS; (c) SVM_PaDEL; (d) RF_MACCS;
(e) SVM_PaDEL+MACCS. Note that different X-axis scales are applied to the graphs illustrating the
performance of random forest (RF) and support vector machine (SVM) models.

Observing the predicted class probability can be of use for assessing the reliability of a prediction:
as shown in Figure 8, the reliability of predictions increases with the absolute distance between the
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class probability and the decision threshold. For SVM models, predictions with class probabilities
more than 0.5 away from the decision threshold had averaged MCC values between 0.63 and 0.67,
whereas predictions with class probabilities less than 0.5 away had averaged MCC values of just 0.20
to 0.29. For the RF_MACCS model, predictions with class probabilities more than 0.35 away from the
decision threshold had MCC values above 0.6, whereas predictions with class probabilities closer than
0.15 to the decision threshold had MCCs below 0.4. For the five investigated models, the Pearson
correlation coefficients for this relationship were between 0.92 and 0.98.
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class probabilities and the decision thresholds, for the (a) support vector machine (SVM) models and
(b) random forest (RF) model. The number of compounds in each bin is summarized in Table S8.

As a further way of analyzing the data, we looked into the reliability of predictions as a function
of the number of consecutive nearest neighbors in the training data that are of the same activity class
as the one predicted for a compound of interest. From Figure 9, it can be seen that predictions are
particularly reliable if the three nearest neighbors in the training data are of the identical class as the
class predicted for a compound of interest. The strongest correlation is observed for the RF_MACCS
model. For this model the MCC is close to zero for compounds where the predicted class is in conflict
with the class assigned to the nearest neighbor. In contrast, the MCC is above 0.6 for compounds where
the predicted class and the classes assigned to the three nearest neighbors are identical.

2.4.4. Performance of Selected Models on the Test Set

The performance of the five selected models was tested on holdout data. All models were stable,
with only minor losses in MCC, ACC and AUC when compared to the results from cross-validation
(Table 6). The largest losses in performance were observed for the RF_MACCS model, with MCC and
ACC values decreased by 0.06 and 0.03, respectively (AUC however +0.01).

By defining the applicability domain of the models to include any compounds with a minimum
Tanimoto coefficient of 0.75 averaged over the five-nearest neighbors in the training set (based on
MACCS fingerprints), MCC values increased, in the case of the RF_MACCS model from 0.41 to 0.59.
However, at the same time the coverage of the test set is reduced, in the case of RF_MACCS to 28%.

Defining the applicability domain with a cutoff of 0.50 rather than 0.75 led to only minor performance
improvements compared to the model without applicability domain definition. This is related to the
fact that only approximately 3% of the compounds of the test set are that dissimilar to the compounds
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in the training data. However, predictions for these compounds are unreliable (MCC values 0.2 or
lower). Therefore, it is important to observe the applicability domain of the individual models.
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Figure 9. Matthews correlation coefficient (MCC) as a function of the number of consecutive nearest
neighbors in the training data that are of the same activity class as the predicted class for a compound
of interest (molecular similarity quantified as Tanimoto coefficient based on MACCS fingerprints).
The number of compounds in each bin is summarized in Table S9. The graphs for SVM_PaDEL+OASIS
and SVM_PaDEL+MACCS are not shown because they are (almost) identical with that of SVM_PaDEL
and would overlap.

Table 6. Performance of selected models on the test set.

NAME

Mean Tanimoto
Similarity to the

Five Nearest
Neighbors

Number of
Compounds ACC MCC AUC CCR Se Sp PPV NPV

RF_MACCS ≥0 284 0.72 0.41 0.82 0.70 0.57 0.82 0.69 0.74
RF_MACCS ≥0.5 273 0.73 0.43 0.82 0.71 0.6 0.82 0.69 0.75
RF_MACCS ≥0.75 79 0.78 0.59 0.91 0.81 0.89 0.73 0.64 0.92
RF_MACCS <0.5 11 0.45 −0.29 0.60 0.42 0.00 0.83 0.00 0.50

SVM_MOE_2D+OASIS ≥0 283 0.76 0.52 0.83 0.76 0.81 0.72 0.66 0.85
SVM_MOE_2D+OASIS ≥0.5 273 0.76 0.53 0.84 0.77 0.82 0.72 0.67 0.86
SVM_MOE_2D+OASIS ≥0.75 79 0.81 0.64 0.89 0.84 0.93 0.75 0.67 0.95
SVM_MOE2D+OASIS <0.5 10 0.60 0.20 0.60 0.60 0.60 0.60 0.60 0.60

SVM_PaDEL ≥0 279 0.74 0.47 0.82 0.74 0.76 0.72 0.65 0.82
SVM_PaDEL ≥0.5 269 0.74 0.49 0.83 0.75 0.77 0.73 0.65 0.83
SVM_PaDEL ≥0.75 79 0.80 0.63 0.89 0.83 0.93 0.73 0.65 0.95
SVM_PaDEL <0.5 10 0.60 0.20 0.56 0.60 0.60 0.60 0.60 0.60

SVM_PaDEL+MACCS ≥0 279 0.75 0.50 0.82 0.75 0.78 0.73 0.66 0.83
SVM_PaDEL+MACCS ≥0.5 269 0.75 0.51 0.83 0.76 0.79 0.73 0.66 0.84
SVM_PaDEL+MACCS ≥0.75 79 0.80 0.63 0.89 0.83 0.93 0.73 0.65 0.95
SVM_PaDEL+MACCS <0.5 10 0.60 0.20 0.56 0.60 0.60 0.60 0.60 0.60
SVM_PaDEL+OASIS ≥0 279 0.74 0.48 0.82 0.74 0.76 0.73 0.65 0.82
SVM_PaDEL+OASIS ≥0.5 271 0.75 0.49 0.83 0.75 0.77 0.73 0.65 0.83
SVM_PaDEL+OASIS ≥0.75 79 0.80 0.63 0.89 0.83 0.93 0.73 0.65 0.95
SVM_PaDEL+OASIS <0.5 10 0.60 0.20 0.56 0.60 0.60 0.6 0.60 0.60

Abbreviations: ACC, accuracy; AUC, area under the receiver operating characteristic curve; CCR, correct classification
rate; MCC, Matthews correlation coefficient; NPV, negative predictive value; PPV, positive predictive value;
Se, sensitivity; Sp, specificity.

Besides the applicability domain definition, users are advised to consider two additional types of
information when judging the reliability of a prediction: (i) the distance between the predicted class
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probability from the decision threshold and (ii) the number of consecutive nearest neighbors that are of
the same activity class than the class predicted for a compound of interest.

Larger distances of the class probability to the decision threshold indicate higher reliability of the
prediction. For example, when considering only predictions with class probabilities 0.35 or further
away from the decision threshold, the MCC of the RF_MACCS model increases from 0.41 to 0.78
(this covers 23% of the test set; Table 7). Likewise, for the SVM models, MCC values increase from
approximately 0.5 to a maximum of 0.78 when considering predictions only if their class probability
is 1.25 or further away from the decision threshold (this covers 12% to 37% of the compounds in the
test set).

Table 7. Test set performance as a function of the distance of predicted class probabilities from the
decision threshold.

Name
Distance to

Decision
Threshold 1

Number of
Compounds ACC MCC AUC CCR Se Sp PPV NPV

RF-MACCS ≥0.15 175 0.85 0.67 0.46 0.84 0.81 0.87 0.76 0.90
RF-MACCS ≥0.35 66 0.91 0.78 0.42 0.89 0.85 0.93 0.85 0.93
RF-MACCS <0.15 109 0.51 0.04 0.42 0.52 0.32 0.72 0.55 0.50

SVM_MOE2D+OASIS ≥0.5 203 0.82 0.64 0.42 0.83 0.88 0.78 0.73 0.90
SVM_MOE2D+OASIS ≥1.25 106 0.89 0.76 0.41 0.89 0.89 0.88 0.81 0.94
SVM_MOE2D+OASIS <0.50 80 0.60 0.20 0.52 0.60 0.62 0.58 0.50 0.70

SVM_PaDEL ≥0.5 183 0.80 0.61 0.48 0.81 0.86 0.76 0.71 0.89
SVM_PaDEL ≥1.25 34 0.88 0.78 0.45 0.91 1.00 0.82 0.75 1.00
SVM_PaDEL <0.50 96 0.61 0.21 0.36 0.60 0.55 0.66 0.51 0.69

SVM_PaDEL+MACCS ≥0.5 183 0.80 0.62 0.49 0.82 0.88 0.75 0.71 0.90
SVM_PaDEL+MACCS ≥1.25 37 0.86 0.75 0.52 0.9 1.00 0.80 0.71 1.00
SVM_PaDEL+MACCS <0.50 96 0.65 0.27 0.39 0.63 0.58 0.69 0.55 0.71
SVM_PaDEL+OASIS ≥0.5 183 0.80 0.61 0.49 0.81 0.86 0.76 0.71 0.89
SVM_PaDEL+OASIS ≥1.25 34 0.88 0.78 0.45 0.91 1.00 0.82 0.75 1.00
SVM_PaDEL+OASIS <0.50 96 0.62 0.22 0.37 0.61 0.55 0.67 0.52 0.70
1 Distance of predicted class probabilities from the decision threshold. Abbreviations: ACC, accuracy; AUC, area
under the receiver operating characteristic curve; CCR, correct classification rate; MCC, Matthews correlation
coefficient; NPV, negative predictive value; PPV, positive predictive value; Se, sensitivity; Sp, specificity.

Predictions for query molecules that are consistent with the class assigned to the k-nearest
neighbors in the training data are more reliable than for those that are in conflict. This is also confirmed
by the results obtained for the test set (Table 8): Predictions that are in disagreement with the activity
class of the nearest neighbor resulted in MCC and ACC values no higher than 0.13 and 0.56, respectively.
MCC and ACC values increase to a maximum of 0.98 and 0.99 when considering predictions only if
they are consistent with three or more nearest neighbors.

2.4.5. Comparison of Model Performance to that of Existing Models

Major caveats must be considered when attempting to directly compare the performance reported
for existing models with those presented in this work. Not only do the underlying training and test
sets differ substantially, but also the protocols used for performance evaluation and the definitions
of the models’ applicability domains. Roughly summarized, Alves et al. reported their predictor
of binary LLNA outcomes to yield a CCR of 0.77 during external cross-validation [28]. Di et al.
reported their best global model for the binary prediction of LLNA outcomes, a SVM model based on
PaDEL-Ext descriptors (Ext-SVM), to have yielded an ACC of 0.84 during cross-validation and an ACC
of 0.81 on their test set (when considering the applicability domain according to their definition) [22].
In comparison, our best model (SVM_MOE2D+OASIS) yielded a CCR of 0.78 and identical ACC
during cross-validation (MCC 0.55), without consideration of the applicability domain. On the test
set, the SVM_MOE2D+OASIS model obtained a CCR of 0.76 and an MCC of 0.52. In this case,
the consideration of the applicability domain of the model (defined as including any compound with a
mean Tanimoto similarity to the five nearest neighbors in the training set of 0.50 or higher) did not
yield a further improvement of performance. The SVM_PaDEL and RF_MACCS models, which are
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available via a public web service, yielded comparable CCR values (0.74 and 0.70 without consideration
of the applicability domain; 0.75 and 0.71 with consideration of the applicability domain, respectively).
The latter model has the additional benefit of being based on a fingerprint with a length of only 166 bits.

Table 8. Test set performance as a function of the number of consecutive nearest neighbors with class
assignments consistent with the predicted class.

Name
Number of
Concordant
Neighbors1

Number of
Compounds ACC MCC AUC CCR Se Sp PPV NPV

RF_MACCS 0 87 0.33 -0.35 0.32 0.33 0.19 0.48 0.26 0.38

RF_MACCS ≥1 197 0.89 0.77 0.97 0.87 0.81 0.94 0.89 0.89

RF_MACCS ≥2 147 0.96 0.90 1.00 0.94 0.89 0.99 0.98 0.95

RF_MACCS ≥3 113 0.99 0.98 1.00 0.98 0.97 1.00 1.00 0.99

SVM_MOE2D+OASIS 0 85 0.56 0.13 0.56 0.57 0.62 0.51 0.55 0.58

SVM_MOE2D+OASIS ≥1 198 0.84 0.69 0.94 0.85 0.92 0.79 0.72 0.94

SVM_MOE2D+OASIS ≥2 146 0.91 0.81 0.99 0.92 0.95 0.89 0.79 0.98

SVM_MOE2D+OASIS ≥3 115 0.91 0.80 0.99 0.92 0.94 0.90 0.79 0.97

SVM_PaDEL 0 86 0.53 0.07 0.52 0.54 0.56 0.51 0.51 0.56

SVM_PaDEL ≥1 193 0.83 0.66 0.92 0.84 0.87 0.8 0.72 0.92

SVM_PaDEL ≥2 147 0.89 0.78 0.96 0.91 0.96 0.86 0.76 0.98

SVM_PaDEL ≥3 113 0.90 0.79 0.97 0.92 0.97 0.88 0.76 0.99

SVM_PaDEL+MACCS 0 86 0.55 0.10 0.53 0.55 0.59 0.51 0.52 0.57

SVM_PaDEL+MACCS ≥1 193 0.84 0.68 0.91 0.85 0.89 0.81 0.73 0.93

SVM_PaDEL+MACCS ≥2 147 0.90 0.80 0.96 0.92 0.96 0.88 0.79 0.98

SVM_PaDEL+MACCS ≥3 113 0.91 0.81 0.97 0.93 0.97 0.89 0.78 0.99

SVM_PaDEL+OASIS 0 86 0.53 0.07 0.52 0.54 0.56 0.51 0.51 0.56

SVM_PaDEL+OASIS ≥1 193 0.83 0.67 0.92 0.84 0.87 0.81 0.73 0.92

SVM_PaDEL+OASIS ≥2 147 0.9 0.79 0.96 0.91 0.96 0.87 0.77 0.98

SVM_PaDEL+OASIS ≥3 113 0.91 0.81 0.97 0.93 0.97 0.89 0.78 0.99
1 Number of consecutive nearest neighbors in the training data having the same activity class assigned as the
one predicted for the test compounds. Abbreviations: ACC, accuracy; AUC, area under the receiver operating
characteristic curve; CCR, correct classification rate; MCC, Matthews correlation coefficient; NPV, negative predictive
value; PPV, positive predictive value; Se, sensitivity; Sp, specificity.

2.5. Skin Doctor Web Service

The final RF_MACCS and SVM_PaDEL models, trained not on the cross-validation data set
but on the complete, preprocessed data set (1416 and 1388 compounds, depending on the number
of compounds for which descriptors could be successfully calculated) are provided via the New
E-Resource for Drug Discovery (NERDD) [41]. Queries can either be directly drawn or uploaded in
different formats. Users may change the default decision threshold to steer the model’s sensitivity and
specificity. Results are presented in a tabular overview and can be exported as a CSV file. For each
query they include information on (i) whether or not the query is within the applicability domain
of the model, (ii) the predicted activity classes, (iii) distances from the selected decision threshold,
(iv) mean similarity between the query compound and the five-nearest neighbors of the training set and
(v) number of consecutive nearest neighbors in the training data of which the activity label is consistent
with that of the prediction. The analysis and visualization of the corresponding effects presented in
this work may be used as guidance to choose the required confidence in the prediction, being aware of
the corresponding effects on the model’s applicability domain and the requirements for similarity.

Predictions are flagged with reliability warnings (a) if the mean similarity between the compound
of interest and the five nearest neighbors is less than 0.5, or (b) if the predictions are in conflict with the
activity of the nearest neighbor in the training data, or (c) if the distance to the decision threshold is
small (0.15 for the RF_MACCS model; 0.5 for the SVM_PaDEL model).
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3. Materials and Methods

3.1. Data Preparation

The LLNA data set compiled by Alves et al. was downloaded from Chembench. Binary class
labels (i.e., “sensitizer”, “non-sensitizer”) were obtained from the binary property “LLNA result” and
not altered. The LLNA data set of Di et al. was obtained from the supporting information associated
with their publication [22]. Binary class labels (i.e., “sensitizer”, “non-sensitizer”) were assigned based
on the information provided by the property “class”: any compounds with the value “negative” were
assigned the label “non-sensitizer”; any compounds with the value “weak”, “moderate”, “strong”
or “extreme” were assigned the label “sensitizer”. Reference data sets of cosmetic substances and
ingredients (hereafter “cosmetics”), approved drugs and pesticides were obtained from the EU CosIng
database, Drugbank and EU pesticides database.

All data sets were processed individually according to the following protocol: Any counterions
were removed and the remaining molecular structures neutralized as described in the work of
Stork et al. [42]. Tautomers were standardized with the “TautomerCanonicalizer” method implemented
in the “tautomer” class of MolVS [43]. This was followed by a deduplication of molecules based on
canonicalized SMILES. Stereochemical information was disregarded at this point, leading to conflicting
activity labels for one compound (which had different activity labels assigned to the two enantiomers).
This compound was removed from the data set.

A merged LLNA data set based on the LLNA data sets of Alves et al. and Di et al. was generated
by filtering duplicates based on canonical SMILES and removing any compounds with contradicting
class labels.

3.2. Descriptor Calculation

Molecular descriptors were computed with the Molecular Operating Environment (MOE) [36]
(“MOE descriptors”), RDKit [39] (Morgan and MACCS fingerprints) and PaDEL [37,38] (“PaDEL
descriptors” as well as the molecular fingerprints “PaDEL-Est” and “PaDEL-Ext”). “MOE 2D”
descriptors were calculated with default settings. Morgan fingerprints (2048 bits) were calculated with
a radius of 2. MACCS fingerprints were calculated with default settings. Also, the PaDEL descriptors
were calculated with default settings, with the exception of a maximum allowed runtime of 1000 s per
molecule. Structural alerts were computed with the OECD toolbox [29] using the “Protein binding
alerts for skin sensitization by OASIS” profiler with default settings. All non-binary descriptors were
scaled to unit variance and their mean shifted to zero prior to model building and data analysis using
the StandardScaler of scikit-learn [44].

3.3. Data Analysis

PCA was conducted with scikit-learn based on a subset of 53 physically meaningful, scaled “MOE
2D” descriptors (Table S1). RDKit was employed for generating Murcko scaffolds and calculating
molecular similarity.

3.4. Compilation of Data Sets for Model Development

The merged LLNA data set was divided into a training set (80%) and a test set (20%) by stratified
splitting with the train_test_split function of the model_selection module of scikit-learn (data shuffling
prior to data set splitting enabled). This procedure was assigned a random state of 43.

3.5. Model Generation

Models were generated with scikit-learn and a random_state value of 43. Default settings were
applied, with the exception of class_weight set to “balanced” for both RF and SVM. SVMs were
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used with a radial basis function (RBF) kernel. Optimal settings for n_estimators and max_features
(RF models) and C and gamma (SVM models) were derived during grid search.

3.6. Hardware and Software

All calculations were performed on Linux workstations running openSUSE Leap 15.0 and equipped
with Intel i5 processors (3.2 GHz) and 16 GB of main memory.

4. Conclusions

Building on the works of Alves et al. and Di et al., we have compiled a collection of 1416 compounds
annotated with binary LLNA outcomes. To our knowledge, this is the largest LLNA data set that
has been used for the development of models predicting the skin sensitization potential of small
organic molecules. As we show by chemical space analysis, those areas most densely populated by
cosmetics, approved drugs and pesticides are also well covered by this new LLNA data set. The
fraction of compounds covered by structurally related compounds in the new LLNA data set is
much higher for cosmetics (30%) than for approved drugs (10%) and pesticides (13%). Therefore, the
models are applicable to many compounds typically used in cosmetic products. However, there are
chemical classes of drugs and cosmetics that are not adequately represented by the available LLNA
data. This emphasizes the importance of considering the applicability domain of models.

An interesting observation to make was that a cluster of skin sensitizers and non-sensitizers
with long aliphatic and halogenated chains could only be discriminated in the “MOE 2D” descriptor
space but not in the Morgan2 fingerprint space, which should be taken into consideration for model
building. The best models derived from the new LLNA data set obtained MCC and ACC values of
up to 0.55 and 0.78 during cross-validation and of up to 0.52 and 0.76 on holdout data, respectively.
Importantly, some of the models based entirely on free software and/or molecular descriptors of low
complexity yielded comparable performance. We identified the RF_MACCS and SVM_PaDEL models
as our favorite models, yielding MCC values of 0.41 and 0.47 on the holdout data. Comparison to
existing models indicates that our models reach competitive performance. They are trained on a data
set consisting of almost 3.5 times as many compounds as the one used by Di et al. The full data set
used for modeling and testing is also 42% larger than that of Alves et al. given the fact that the data set
compiled by Di et al. holds in particular a diverse set of non-sensitizers not covered by Alves et al.
we expect that our models, as they are based on the amalgamated data set, are more widely applicable
and more reliable.

A major aspect of this work is the definition of an applicability domain for the individual models
and the elaboration of means to estimate the reliability of predictions. The applicability domain was
defined based on the mean similarity of a compound of interest to the five-nearest neighbors in the
training data (quantified in MACCS fingerprint space). The difference between the predicted class
probability and the decision threshold, as well as the number of consecutive nearest neighbors in the
training data having the same activity class assigned as the one predicted for the compound of interest
proved to be useful indicators of the reliability of predictions. We recommend considering predictions
as reliable if all of the following conditions are met:

1. The compound of interest is within the applicability domain of the model.
2. The distance between the predicted class probability and the decision threshold is at least 0.15 for

RF models and 0.5 for SVM models.
3. The predicted activity class for a compound of interest is in agreement with the class assigned to

the nearest neighbor in the training data.

The public web service, available at https://nerdd.zbh.uni-hamburg.de/, provides access to the
final RF_MACCS and SVM_PaDEL models (i.e., models trained on the complete LLNA data set).
Users are provided detailed information on whether or not a compound of interest fulfills the three
criteria itemized above. A warning is issued in case predictions are determined to be unreliable. Users

https://nerdd.zbh.uni-hamburg.de/
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may also adjust the decision threshold, allowing them, e.g., to increase the model’s sensitivity in
scenarios where it is desirable to flag even substances with a low likelihood of being skin sensitizers.

We hope that the models will be well received by the scientific community and will make a
contribution to the development and application of non-animal methods for the prediction of the skin
sensitization potential of small organic molecules.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/20/19/
4833/s1.
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ACC accuracy
ACD allergic contact dermatitis
AUC area under the receiver operating characteristic curve
CCR correct classification rate
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NERDD New E-Resource for Drug Discovery
NPV negative predictive value
PCA principal component analysis
RBF radial basis function
RF random forest
PPV positive predictive value
Se sensitivity
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