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Validation of peripheral arterial 
tonometry as tool for sleep 
assessment in chronic obstructive 
pulmonary disease
nils Henrik Holmedahl  1*, odd-Magne fjeldstad1, Harald engan1, ingvild West Saxvig2 & 
Janne Grønli3

obstructive sleep apnea (oSA) worsens outcomes in chronic obstructive pulmonary Disease (copD), 
and reduced sleep quality is common in these patients. thus, objective sleep monitoring is needed, 
but polysomnography (pSG) is cumbersome and costly. the WatchpAt determines sleep by a pre-
programmed algorithm and has demonstrated moderate agreement with pSG in detecting sleep 
stages in normal subjects and in oSA patients. Here, we validated WatchpAt against pSG in copD 
patients, hypothesizing agreement in line with previous OSA studies. 16 COPD patients (7 men, mean 
age 61 years), underwent simultaneous overnight recordings with PSG and WatchPAT. Accuracy 
in wake and sleep staging, and concordance regarding total sleep time (TST), sleep efficiency (SE), 
and apnea hypopnea index (AHI) was calculated. Compared to the best fit PSG score, WatchPAT 
obtained 93% sensitivity (WatchPAT = sleep when pSG = sleep), 52% specificity (WatchPAT = wake 
when pSG = wake), 86% positive and 71% negative predictive value, Cohen’s Kappa (κ) = 0.496. 
Overall agreement between WatchPat and PSG in detecting all sleep stages was 63%, κ = 0.418. 
The mean(standard deviation) differences in TST, SE and AHI was 25(61) minutes (p = 0.119), 5(15) % 
(p = 0.166), and 1(5) (p = 0.536), respectively. We conclude that in COPD-patients, WatchPAT detects 
sleep stages in moderate to fair agreement with pSG, and AHi correlates well.

Chronic obstructive pulmonary disease (COPD) is associated with major morbidity and mortality, with a global 
prevalence of more than 10%1,2. COPD patients report more difficulties in initiating and maintaining sleep than 
the general population, and more than 50% of COPD patients report excessive daytime sleepiness3,4. Obstructive 
sleep apnea (OSA) is another common disorder and public health care burden leading to excessive daytime sleep-
iness5,6. The prevalence of OSA in elderly COPD patients referred to pulmonary rehabilitation has been shown 
to be as high as 66% in one study, and at our hospital we previously found 75% of moderate to severely ill COPD 
patients having an apnea/hypopnea index (AHI) ≥ 57,8. Patients with both COPD and OSA have greater mor-
bidity and mortality compared to those with COPD or OSA alone9. Thus, diagnostic sleep monitoring is often 
needed in COPD.

Polysomnography (PSG) is considered the gold standard for evaluating sleep and diagnosing OSA. However, 
PSG has several disadvantages; it is cumbersome for the patients and both hook-up and manual sleep scoring is 
time consuming, making it expensive and limiting the availability. Therefore, unattended portable monitors for 
simple diagnosis of OSA were included in the 2007 American Academy of Sleep Medicine (AASM)9. Presently 
in Europe, only about 1/3 of the OSA diagnoses are established by the use of PSG, the rest mainly by respiratory 
polygraphy (PG)10,11. As COPD patients often have fragmented sleep, and because PG does not record whether 
the patient is actually sleeping, the AASM recommends PSG in evaluating sleep disordered breathing in COPD9.

Respiratory events are known to trigger surges of sympathetic activity in alpha-adrenergic receptors, resulting 
in attenuation of digital, peripheral arterial tone (PAT). Recordings of this PAT-signal, as well as arterial oxygen 
saturation by pulse oximetry (SpO2), heart rate, snoring and body movement is utilized by the WatchPAT, a port-
able device estimating not only respiratory events but also sleep/wake stages. Comparing WatchPAT with PSG in 
OSA patients, Pang et al. demonstrated a high correlation (r = 0.93) for AHI12. In a multi-center study of normal 
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subjects and OSA patients, Hedner and colleagues found no significant differences in total sleep time (TST) and 
sleep efficiency (SE), and a moderate agreement (Cohen’s Kappa (κ) coefficient of 0.48) in detecting wakeful-
ness, light sleep, deep sleep and rapid eye movement (REM) sleep12–14. COPD and the medication used by these 
patients often causes increased sympathetic activity15,16. As the PAT signal based on sympathetic activity is central 
in the WatchPAT sleep scoring and breath analysis algorithm, it is plausible that the accuracy of the WatchPAT in 
COPD patients may differ from that in OSA patients and the normal population.

In this study we present the results from an investigation where WatchPAT was used to estimate sleep quality 
and AHI in COPD patients. The WatchPAT results were compared to PSG recordings analysed by two techni-
cians, blinded from each others’ results and from the automated WatchPAT score.

Material and Methods
Subjects. Patients attending a 4 week, in-patient pulmonary rehabilitation program at the LHL-clinics, 
Glittre, Norway, were recruited from September 2016 to June 2017. Prior to inclusion, a diagnosis of COPD in a 
stable state was verified by pulmonary function tests including post-bronchodilator spirometry, diffusion capacity 
of the lungs, body plethysmography and blood gas assessment. Exclusion criteria were COPD exacerbation within 
last 3 weeks, chronic respiratory failure (daytime arterial oxygen pressure (PaO2) ≤ 7.3 kPa or daytime arterial 
carbon dioxide pressure (PaCO2) ≥ 6.3 kPa), other diseases significantly affecting upper and lower airway func-
tion, a prior diagnosis of OSA, non-sinus cardiac arrhythmias, implanted pacemaker, coronary arterial disease 
with unstable angina pectoris or myocardial infarction last 3 months, uncontrolled hypertension, history of cere-
bral infarction, use of nitrate medication. All subjects used prescribed medication, but no respiratory depressant 
drugs were taken from 48 hours prior to first PSG-recording until end of study.

Informed consent was obtained from all individual participants included, all procedures performed were in 
accordance with the 1964 Helsinki declaration and its later amendments, and the study protocol was approved by 
The Regional Committee for Medical Research Ethics in Mid-Norway (2016/1360/rek midt).

Study design. Double-blind, randomized, crossover, intervention trial in which patients consumed 70 mL 
of either beetroot juice containing nitrate or placebo immediately before bedtime. Subjects slept three nights 
semi-unattended in their hospital room, hooked up to PSG and WatchPAT simultaneously. The first night for 
acquaintance with the equipment (no recording was done), the second and third nights were block randomized 
to nitrate intervention or control (placebo) according to sex and age. The pre-programmed WatchPAT and the 
PSG recording were started when the patient went to bed, and stopped by the department nurse when the patient 
wanted to get up in the morning. The nurse reported on time for lights off. Here, data from the control nights are 
presented (Fig. 1), whereas results from the nitrate intervention are published elsewhere.

polysomnography. PSG was recorded by Embla A10 (Medcare Flaga, Reykjavik, Iceland) according to the 
2007 recommendations from the AASM17, including electroencephalogram (F4-M1, C4-M1, O2-M1), left and 
right electrooculogram, and electromyogram submentalis monitoring. In addition, an electromyography of ante-
rior tibialis, thoracic and abdominal breathing movements, nasal airflow pressure, SpO2, and body position were 
measured. All signals were sampled using Somnologica Studio Version 3.3 software (Medcare Flaga).

As PSG is manually scored it implies some inter-rater variability, which should be addressed when comparing 
agreement with other devices. Thus, the PSG’s were scored independently by two experienced registered pol-
ysomnography technicians (RPSGT’s) according to the rules set by the AASM18. An apnea was scored when the 
nasal pressure dropped ≥90% for ≥10  econds. A hypopnea was scored when the nasal pressure dropped ≥30% 
for ≥10 seconds, causing a ≥4% drop in SpO2 from baseline. Parameters used for analyses include stage score 
(Wake, N1, N2, N3, REM sleep) for each epoch as well as TST, sleep efficiency (SE, percentage of sleeping time 
between lights off and lights on) and AHI.

peripheral arterial tonometry. The WatchPAT (version 200, Itamar Medical, Israel) is a wrist worn sleep 
data recorder, connected to a finger probe with a plethysmograph and a pulse oximeter, and a microphone with 
an actigraph taped below the sternal notch. Recordings were analysed by the software zzzPAT (Itamar Medical, 
Israel). Stages (wakefulness, light sleep, deep sleep, REM sleep) were scored in 30-second epochs based on spec-
tral components from the PAT-signal. Respiratory events (apneas, hypopneas) were scored based on PAT-signal 
amplitude, heart rate and SpO2. The algorithm was set to score hypopneas in the presence of ≥4% drop in SpO2. 

Figure 1. Selection of study population.
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Parameters used for analyses include stage score (wakefulness, light sleep, deep sleep, REM sleep) for each epoch 
as well as TST, SE and AHI.

outcomes and measurements. Prior to the epoch-by-epoch comparisons, the temporal synchronization 
between WatchPAT and PSG recordings were verified using the internal clock, position and movement record-
ings from both devices.

First, we analysed WatchPAT’s agreement with the RPSGT’s in scoring sleep and wake by calculating sen-
sitivity (e.g. WatchPAT = sleep when PSG = sleep) and specificity (e.g. WatchPAT = wake when PSG = wake). 
Then we calculated WatchPAT’s positive and negative predictive values, considering the PSG’s as gold standard. 
Subsequently, we performed an epoch-by-epoch comparison of sleep/wake stages, the PSG-scored stages N1 
and N2 considered equal to WatchPAT’s light sleep. Finally, the agreement in terms of TST, SE and AHI were 
calculated. All the above mentioned outcomes were also analysed comparing the results from the two RPSGT’s.

Statistical analysis. In their OSA study comparing WatchPAT to PSG, Pang et al. found AHI correlating 
with Pearson’s r = 0.929, 95% confidence interval 0.858-0.96512. Assuming we would find an equivalent correla-
tion in COPD patients, and a 5% level of significance with 80% power, a sample size of 15 subjects was calculated 
a priori.

Agreement was considered when an epoch had the same stage by both scorers (WatchPAT or RPSGT), 
reported as percentage of agreement and as Cohen’s κ coefficients. Other correlations were calculated as Pearson’s 
r. Intra-class correlation coefficients (ICC) was calculated for TST, SE and AHI, and the mean differences in TST, 
SE and AHI were compared by one sample T-tests, inspection of Bland Altman plots and linear regression of the 
differences. Two-sided P values of ≤0,05 were considered significant. All analyses were performed using IBM 
SPSS Statistics version 25.

Results
As shown in Fig. 1, five subjects withdrew after the first night, main reason was fear of not being able to sleep with 
electrodes on head and body. One sleep study was excluded as the WatchPAT did not start recording.

Thus, results from 16 patients were analyzed (7 men, two current smokers), with a mean (standard devia-
tion) age 61.4(9.1) years, body mass index (BMI) 26.4(5.3), post-bronchodilator forced expiratory volume in one 
second (FEV1) 46.1(19.6) % of expected, residual volume/total lung ratio volume (RV/TLC) 0.56(0.12), PaO2 
9.1(1.0) kPa, PaCO2 5.0(0.6) kPa, Epworth sleepiness scale score 5.3(2.5).

Sleep wake status. WatchPAT agreements with polysomnography technician number one (RPSGT#1) and 
two (RPSGT#2) in scoring sleep (specificity) were 93.4% and 93.6%, whereas agreements in wake (sensitivity) 
were 51.5% and 50.7%. Cohen’s κ for detecting sleep from wake was 0.496 and 0.492. The inter-scorer agreements 
between RPSGT#1 and RPSGT#2 was 97.9% in scoring sleep, and 96.0% for wake (κ 0.931).

WatchPAT’s ability to detect sleep (positive predictive value) was 85.9% and 85.4%, whereas it correctly scored 
wake (negative predictive value) in 71.2% and 71.9% of the epochs. WatchPAT correctly predicted non rapid 
eye movement (NREM) sleep in 80.6% and in 79.8% of the epochs. Other positive predictive values are listed in 
Table 1.

overall agreement. When the WatchPAT results were compared epoch-by-epoch to the PSG scorings, 
overall agreement with RPSGT#1 in wake, light sleep (N1 + N2), deep sleep (N3) and REM sleep was found in 
9279 out of 14670 epochs, and with RPSGT#2 in 9061 out of 14650 epochs (63.3% and 61.8%, Cohen’s κ 0.418 
and 0.407, respectively). RPSGT#2 agreed with RPSGT#1 in 13382 out of 14751 epochs (90.7%, κ 0.856). There 
was considerable inter-individual differences between the study subjects (Table 2). However, age, gender, COPD 
severity (as characterised by FEV1, RV/TLC ratio, BMI, PaO2, PaCO2) and daytime sleepiness (Epworth score) 
showed no significant correlations with the percentage of sleep score agreement or Cohen’s κ. In subject #1 and 
#2, a total of 948 epochs were scored as wake by RPSGT#1, but only 274(28.9%) of these were scored as wake by 
WatchPAT, the rest as light sleep 526(55.5%), deep sleep 59(6.2%) and REM sleep 89(9.4%). Equivalent numbers 
were found between WatchPAT and RPSGT#2.

Total sleep time, sleep efficiency and apnea hypopnea index. As shown in Table 3, ICC coefficients 
for WatchPAT versus each of the RPSGT’s regarding TST were low, but Table 4 shows that no significant difference 

WP vs 
RPSGT#1

WP vs 
RPSGT#2

RPSGT#2 vs 
RPSGT#1

Wake 71.2 71.9 96.0

Light sleep 67.9 64.4 88.8

Deep sleep 29.6 36.8 85.3

REM sleep 62.2 59.7 92.7

Table 1. WatchPAT’s positive predictive values in stages wake, light sleep (N1 + N2), deep sleep (N3) 
and REM sleep. Percentage of WatchPAT scored epochs where agreement exists with PSG out of the 
total number of WatchPAT scored epochs in the specified stage. WP = WatchPAT, RPSGT#1 and 
RPSGT#2 = polysomnographies scored by polysomnography technician number one and two, respectively. 
N1 + N2 = non rapid eye movement sleep (NREM) stage one and two, N3 = NREM stage 3, REM = rapid eye 
movement.

https://doi.org/10.1038/s41598-019-55958-2


4Scientific RepoRtS |         (2019) 9:19392  | https://doi.org/10.1038/s41598-019-55958-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

in TST was found. Notably, the 95% confidence intervals for the ICC standard deviations were high, and the 95% 
confidence intervals for TST difference ranged from −7 to +57 minutes (WatchPAT versus RPSGT#1) and from 
−3 to 59 minutes (WatchPAT versus RPSGT#2). Likewise, for the difference in sleep efficiency the 95% confi-
dence intervals were −2% to +13% between WatchPAT and each of the RPSGT’s.

Inspection of Bland Altman plots showed that subject #2 differed highly between WatchPAT and the two 
RPSGT’s, both in TST (188 and 187 min’s) and SE (40.6% and 40.3%). However the AHI-differences in this sub-
ject were only 3.5 and 3.1, and neither WatchPAT nor the RPSGT’s reported AHI ≥ 5 (i.e. not OSA). Linear 
regression did not show any proportional bias in the distribution of the TST and SE differences when controlling 
for subject#2.

The WatchPAT–PSG differences in TST were positively correlated with Cohen’s κ for detecting all sleep stages 
(RPSGT#1: r = 0.601, p = 0.014; and RPSGT#2: r = 0.628, p = 0.009). Positive correlations of similar magnitude 

Subject #

RPSGT#1 vs WP RPSGT#2 vs WP RPSGT#2 vs RPSGT#1

% κ N % κ N % κ N

1 36.2 0.087 916 36.8 0,087 915 92.3 0.880 924

2 47.2 0.215 927 47.0 0.216 925 97.0 0.939 925

3 62.6 0.473 846 60.7 0.418 845 89.1 0.824 845

4 59.3 0.369 760 60.0 0.384 758 93.5 0.887 758

5 70.6 0.510 856 70.9 0.513 855 95.6 0.927 855

6 79.3 0.542 911 66.3 0.382 909 82.0 0.686 909

7 79.2 0,660 1018 78.7 0.657 1017 93.7 0.898 1020

8 71.8 0.387 909 72.0 0.395 908 92.6 0.863 990

9 54.3 0.301 957 54.4 0.310 956 92.9 0.882 956

10 62.2 0.460 793 61.6 0.468 792 91.7 0.886 793

11 68.6 0.528 789 56.8 0.498 787 87.0 0.789 787

13 63.3 0.332 915 64.5 0.376 913 87.6 0.757 913

15 59.9 0.342 972 57.0 0.316 971 88.6 0.833 971

19 64.3 0.438 928 67.9 0.504 927 91.2 0.848 927

21 66.8 0.472 1080 63.4 0.443 1080 90.1 0.848 1086

22 64.0 0.466 1093 61.6 0.440 1092 87.2 0.811 1092

All subjects 63.3% 0.418 14670 61.8% 0.407 14650 90.7% 0.856 14751

Table 2. Epoch-by-epoch overall agreements in the detection of wake, light sleep, deep sleep and REM sleep, 
as percent and as Cohen’ κ coefficient. The overall agreement was defined as the number of epochs where 
agreement exists in any specific state divided by the total number of epochs. WP = WatchPAT, RPSGT#1 and 
RPSGT#2 = polysomnographies scored by registered polysomnography technician number one and two, 
respectively. N = number of epoch pairs.

WP versus RPSGT#1 p WP versus RPSGT#2 p
RPSGT#2 versus 
RPSGT#1 p

TST 0.488(−0.311–0.814) 0.087 0.497(−0.254–0.815) 0.074 0.997(0.991–0.999) 0.000

SE 0.375(−0.626–0.774) 0.174 0.414(−0.487–0.786) 0.138 0.997(0.993–0.999) 0.000

AHI 0.957(0.878–0.985) 0.000 0.954(0.872–0.984) 0.000 0.997(0.993–0.999) 0.000

Table 3. Intra-class correlation coefficients (95% confidence interval) for total sleep time, sleep efficiency 
and apnea/hypopnea index. N = 16. TST total sleep time, SE = sleep efficiency, AHI = apnea/hypopnea index, 
WP = WatchPAT, RPSGT#1 and RPSGT#2 = registered polysomnography technician number one and two, 
respectively.

WP RPSGT#1 RPSGT#2
WP- 
RPSGT#1 p

WP- 
RPSGT#2 p

RPSGT#2 - 
RPSGT#1 p

TST 376 (39) 351 (64) 348(62) 25 (61) 0.119 28(58) 0.075 −2.9(6.5) 0.097

SE 82.8(7.7) 76.5(14.7) 75.4(14.2) 5.3(14.6) 0.166 5.8(14.1) 0.124 −0.4(1.4) 0.243

AHI 9.6(11.9) 8.8(12.5) 8.4(13.3) 0.8(5.1) 0.536 1.2(5.3) 0.372 −0.4(1.3) 0.209

Table 4. Mean value (standard deviation) and mean difference in Total Sleep Time, Sleep Efficiency and Apnea 
Hypopnea Index as scored by WatchPAT, RPSGT#1 and RPSGT#2. N = 16. TST = minutes total sleep time, 
SE = percentage sleep efficiency, AHI = number of apneas and hypopneas per hour of sleep. WP = WatchPAT, 
RPSGT#1 and RPSGT#2 = polysomnographies scored by registered polysomnography technician number one 
and two, respectively.
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were also found for SE differences vs. Cohen’s κ, as well as for TST differences and SE differences vs. percentage of 
wake and sleep stage agreement. In other words; when WatchPAT failed in sleep staging, TST and SE was affected.

Intra-class correlation coefficients for AHI were high as shown in Table 3, and the WatchPAT’s AHI did 
not differ significantly from the RPSGT’s on a group level (Table 4). However, as indicated in Fig. 2, WatchPAT 
failed to detect correct OSA severity in two patients. In patient #19, AHI scored by WatchPAT was 1.0 whereas 
the RPSGT’s scored 14.0 and 13.0 (TST 356 min’s, 410 min’s and 402 min’s, respectively), and in patient #22, 
WatchPAT scored 14.2 vs 1.9 and 0.3 (TST 401 min’s, 381 min’s and 382 min’s) scored by RPSGT#1 and RPSGT #2, 
respectively. All subjects were scored likewise according to OSA severity by both RPSGT’s (Table 5).

Discussion
This study of patients with moderate to severe COPD demonstrated that the WatchPAT scores sleep with less 
agreement with PSG compared to previous studies of healthy individuals and OSA patients. TST and SE esti-
mated by WatchPAT does not correlate with PSG, however, despite wide individual variability in TST and SE the 
differences are not statistically different on a group level. The WatchPAT’s AHI is reasonably accurate.

Although we found the automated WatchPAT’s sensitivity in detecting sleep to be good, it’s specificity (as scor-
ing wake when the RPSGT’s scored wake) was only about 51%; compared to the 66–74% found by Hedner et al. in 
non-COPD subjects19. We found WatchPAT’s abilities in predicting wake, REM and light sleep to be in line with 
Hedner’s findings, however, it correctly scored deep sleep in only 30–37% of the epochs, compared to 69% found 
by Hedner14. In two subjects, more than half of the epochs scored as wake by the RPSGT’s were scored as light 

Figure 2. Bland-Altman Plots of apnea-hypopnea index. Horizontal lines represent mean difference (middle 
line) and 95% confidence interval (upper and lower lines). AHI = apnea-hypopnea index, RPSGT#1 and 
RPSGT#2 = polysomnography technician number one and number two, respectively.
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sleep by WatchPAT. As TST and SE were overestimated in these subjects and underestimated in others, the mean 
values did not differ significantly between the WatchPAT and the PSG recordings, but the individual differences 
could not be explained by demographic or COPD severity indices. Interestingly, although the TST difference 
between WatchPAT and the RPSGT’s in subject #2 was more than 3 hours, the AHI differed only between 3.1 and 
3.5, and the AHI was scored <5 both by WatchPAT and the RPSGT’s. Thus, differences in sleep status did not 
seem to affect the AHI in this case, but in subjects #19 and #22, significant AHI differences of >10 was accompa-
nied by TST differences of approx. 50 min’s and 20 min’s, respectively.

TST and SE were moderately correlated with the wake/sleep agreement, both according to percentage and as 
Cohen’s κ. The WatchPAT’s epoch-by-epoch agreement with the RPSGT’s in scoring wake, light sleep, deep sleep 
and REM sleep varied between the study subjects from 36% to 79%, with Cohen’s κ varying from 0.09 to 0.66 
(Table 2).

Jacob Cohen suggested the κ result to be interpreted as fair in the interval 0.21–0.40 and moderate in the inter-
val 0.41–0.6020. Thus, the overall agreement between WatchPAT and the RPSGT’s with a κ of 0.41–0.42 can be 
described as fair to moderate, in contrast to the κ of 0.48 previously found in normal subjects and OSA-patients 
published by Hedner’s group14. However, no definite consensus is established in considering what is an adequate 
agreement, some statisticians describe κ in the range 0.40–0.59 as weak, arguing that little confidence should be 
placed in results with κ < 0.6021.

The association between autonomic output and sleep states has previously been extensively studied, showing 
different autonomic patterns in wake, NREM and REM sleep as reflected in heart rate, heart rate variability, blood 
pressure and combinations of these22–25. In the transition from wake to sleep, sympathetic activity decreases and 
parasympathetic activity increases, with further progress as sleep is consolidated. REM sleep, however, is asso-
ciated with considerable sympathetic variability and smaller changes in parasympathetic activity, resulting in 
profound changes in vasoconstriction and heart rate variability in the PAT-recordings25,26. In OSA, peak sympa-
thetic activity is associated with the termination of respiratory events27. The algorithms in WatchPAT for detect-
ing sleep/wake status and differentiating between light sleep, deep sleep and REM-sleep, as well as identifying 
respiratory events (e.g. apneas and hypopneas) are based on these associations. In sleeping COPD patients, a 
marked worsening of breathing and arterial blood gases are often seen, especially during REM-sleep, in con-
trast to healthy individuals where sleep usually represent a restful period for the pulmonary and cardiovascular 
systems7,28. Arterial stiffness is increased in sleeping COPD patients compared to healthy controls, particularly 
during REM sleep, and their vascular tone was reduced in response to nasal high flow oxygen therapy29,30. It is 
unclear if the WatchPAT algorithm can identify and correct for these COPD specific changes in the PAT-signal, 
blood gases and heart rate variability. Thus, it is possible that the low κ correlation between WatchPAT and the 
PSG scores (approximately half of the study subjects had κ < 0.40) is due to autonomic dysfunction in some of 
the COPD patients. Likewise, the WatchPAT-PSG differences in AHI found in study subjects #19 and #22 can be 
due to changed sympathetic activity from altered lung mechanics, hypoxia and/or hypercapnia. Finally, Hedner’s 
group found that greater movement intensity in patients with severe OSA was associated with less agreement in 
sleep/wake status between the two methods, and pointed out that overestimation of sleep time appears to be a 
general limitation of actigraphy19. Thus, the low specificity and the wide individual differences we found in sleep 
staging, TST and SE might not depend on the chronic obstructive lung disease per se, but rather on the sleeping 
patients’ movements. On the other hand, despite the fact that half of the study population had a RPSGT-scored 
AHI ≥ 5 (Table 5), only one of these had AHI ≥ 15, indicating that the severity of Overlap COPD-OSA in this 
population was low.

To our knowledge, this is the first study comparing WatchPAT with PSG in COPD patients. As such, it has 
some limitations. First, the sample size was calculated on the assumption that the correlation would be in line 
with previous studies of OSA-patients. We fount the best match ICC coefficient (95% confidence interval) for 
AHI to be 0.96 (0.88–0.99), indeed comparable to Pang et al.'s Pearson’s r of 0.93 (0.86–0.97)12, but with only 
sixteen study subject, identifying possible characteristics in COPD that mislead the WatchPAT algorithm was 
not possible.

Also, although we synchronized the WatchPAT and PSG epochs by the internal clock, position and movement 
signals, an off-set of up to 30 seconds is possible. This implies that the first and last epoch in a given sleep stage 
may not match, resulting in several mismatches in very fragmented sleep. However, with more than 14600 epochs 
compared in all, we find it unlikely that this would significantly affect the agreement between the two methods 
at a group level.

COPD patients can have other sleep related breathing disorders than OSA, e.g. sleep related hypoventilation 
(SH)7, and as we did not record PCO2 during sleep it is possible that SH can explain some of the differences 
between WatchPAT and the PSG scorings.

Normal 
(AHI < 5)

Mild 
AHI 
5–14.9

Moderate 
AHI 
15–29.9

Severe 
AHI ≥ 30

WatchPAT 7 7 1 1

RPSGT#1 8 7 0 1

RPSGT#2 8 7 0 1

Table 5. Number of subjects in each category of severity according to apneas and hypopneas per hour of sleep. 
RPSGT#1 and RPSGT#2 = polysomnographies scored by registered polysomnography technician number one 
and two, respectively. AHI = number of apneas and hypopneas per hour of sleep.
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Finally, the zzzPAT does not report apneas and hypopneas on a continuous timeline, only as the total number 
of events, and in this study the RPSGT’s did not score hypopneas as obstructive or central. Thus, we were not able 
to explore the major differences in AHI found in two of the subjects.

conclusion
We have compared automated sleep scoring by WatchPAT to the gold standard PSG in moderate to severely 
ill COPD patients in a stable state of their disease, and found a good sensitivity (WatchPAT = sleep when 
PSG = sleep) but a weak specificity (WatchPAT = wake when PSG = wake). The WatchPAT underestimates deep 
NREM sleep and shows only fair to moderate agreement with PSG in the overall detection of wake, NREM light 
sleep, NREM deep sleep and REM sleep. TST and SE does not differ significantly, but wide individual differences 
makes WatchPAT’s usefulness in evaluating sleep quality questionable in these patients. However, AHI shows 
reasonably good correlation.

Autonome dysfunction in COPD can be a possible explanation for the discrepancies found here as compared 
to previous studies in normal populations and in OSA-patients, but our study was too small to explore such 
associations.

Until proven otherwise in bigger studies, we conclude that the WatchPAT must be used with caution for sleep 
evaluation in COPD, but AHI correlates well enough for screening of OSA in these patients.

Data availability
The datasets generated and analysed during this study are available from the corresponding author on reasonable 
request.
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