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Abstract 

Multiple sclerosis (MS) is a chronic disease characterized by inflammation, 

demyelination, and neurodegeneration of the central nervous system (CNS). There is 

no cure. Current treatments target the autoimmune aspects of MS but do not directly 

improve CNS remyelination. Pro-remyelinating treatment might optimize the 

treatment of MS patients. In this project, we aimed to investigate different strategies to 

improve remyelination and mitigate axonal damage in the cuprizone model, an animal 

model for de- and remyelination. Our goal was to determine the effect of biologically 

active vitamin D (calcitriol) on remyelination (Paper I), and axonal damage (Paper II). 

Moreover, we investigated the effect of the MS-medication fingolimod on 

remyelination and axonal damage in the cerebellum (Paper III). Finally, we assessed 

the impact of fingolimod in the cerebrum (Paper IV). 

 

C57Bl/6 mice were exposed to the neurotoxicant cuprizone. In the vitamin D 

experiment, high-dose calcitriol or placebo was given by intraperitoneal injections 

twice a week. In the fingolimod experiment, fingolimod or placebo was given by oral 

gavage daily. In both experiments, mice were investigated at several time points during 

remyelination. Histochemistry and immunohistochemistry were used to investigate 

remyelination, axonal damage, and loss. We analyzed the brain proteome by proteomic 

analysis to further determine the CNS effects of fingolimod exposure.  

 

Treatment with high-dose calcitriol improved the remyelination process (paper I). 

Vitamin D given before, but not after cuprizone-induced demyelination prevented 

acute axonal damage and axonal loss (paper II). Given after cuprizone-induced 

demyelination, fingolimod did not affect cerebellar remyelination, the number of 

oligodendrocytes, microglia or astrocyte activation, or acute axonal damage at any time 

point (paper III). Fingolimod was functionally active during remyelination, resulting in 

a downregulation of sphingosine-1-phosphate receptor 1 protein levels in the brain. We 

found, however, no difference in the degree of remyelination, oligodendrocyte 

numbers, nor the degree of axonal damage or loss in the corpus callosum (paper IV).  
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In the cuprizone model, high-dose calcitriol given during remyelination improved 

remyelination. However, axonal damage was only prevented if vitamin D was given 

before demyelination occurred. Fingolimod modulated the sphingosine-1-phosphate 

receptor 1 levels in the cerebrum but did not increase remyelination, nor protect against 

axonal injury or loss in the cerebellum or cerebrum when given after cuprizone-induced 

demyelination. 
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1 Introduction 

1.1 Multiple sclerosis 

 

Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system 

(CNS), characterized by inflammation, demyelination, and neurodegeneration. Loss of 

myelin results in neurologic symptoms, e.g., reduced motor and sensory function, 

visual impairment, and cognitive dysfunction. The particular triggering event(s) 

remains unknown, but both genetic and environmental factors seem to be involved. MS 

mainly affects young adults and gives symptoms from the whole CNS (Compston and 

Coles 2002).  

 

Already in 1838, the first portrayal of disseminated plaques in the CNS was published 

in the “Pathological Anatomy” by Robert Carswell. Later, in 1849, the German 

pathologist Friedrich von Frerichs described a disease with motor and visual 

symptoms. He believed that the disease was caused by sclerotic lesions disseminated 

throughout the CNS and became the first to diagnose living patients with 

“Hirnsklerose” (Murray 2009). However, it was during the three last decades of the 

19th century that the studies of la sclerose en plaques disseminées, later called MS, 

started with the works of the French neurologist Jean-Martin Charcot (Compston, 

Lassmann et al. 2006).  

 

There is no curative treatment, but there is a rapid development of new immune-

modulating therapies. A challenge in the field of MS is to develop treatments that have 

the ability to prevent the progression of disability and to repair the damage that has 

already occurred. Remyelination is the brain’s way to regenerate myelin after CNS 

damage and demyelination. Remyelination therapy may contribute to existing therapies 

to optimize MS treatment and halt disease progression in MS patients (Plemel, Liu et 

al. 2017).  
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1.1.1 Epidemiology  

Norway has one of the highest prevalence of MS in the world. MS affects about 

203/100 000, and it is estimated that 10 500 Norwegians have MS (Grytten, Torkildsen 

et al. 2015). However, the prevalence may be underestimated, and more than 12 000 

individuals may be living with the disease (Aarseth, Smedal et al. 2018). Worldwide 

data show that over 22 million people are affected (Collaborators 2019), and the 

prevalence is increasing due to increasing incidence (Magyari and Sorensen 2019), 

reduced mortality, and earlier diagnosis (Rotstein, Chen et al. 2018).  

 

There is a large geographical variance in the distribution of MS. MS seems to be most 

prevalent in temperate zones, typical in high-income countries and is not common in 

tropical areas and low-income countries (Koch-Henriksen and Sorensen 2010). 

Generally, the prevalence of MS is low around the equator. The variation in 

geographical distribution may reflect differences in environmental factors and genetic 

predisposition. 

 

The onset of the disease is usually during the third or fourth decade; MS is rare in 

individuals before the age of 10 years. MS is one of the most common causes of 

neurological disability in young adults (Compston and Coles 2002), and the disease 

has a considerable economic impact both to the patients and society. The disease affects 

females more often than men in a 2-3:1 F: M ratio (Dobson and Giovannoni 2019).  
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1.1.2 Symptoms and classification  

MS can present itself like a mono- or polysymptomatic disease. The clinical 

manifestations of MS depend on the areas affected, and the symptoms reflect the 

location of the lesions. The symptoms are extremely diverse, but the most common 

presenting symptoms are sensory symptoms, optic neuritis, and motor deficits 

(Weinshenker, Bass et al. 1989). Other clinical signs include diplopia, clumsiness, 

bladder, bowel, and sexual dysfunction, as well as cognitive and mood alterations, 

fatigue, and temperature sensitivity (Compston and Coles 2008).  

 

In 1996, the National MS Society (USA) Advisory Committee on Clinical Trials in MS 

(Lublin and Reingold 1996) defined the course of MS by four clinical subtypes, 

relapsing-remitting, secondary progressive, primary progressive and progressive 

relapsing. The classification was revised in 2013 (Lublin, Reingold et al. 2014). 

Accordingly, MS is still divided into the two main groups, also called MS disease 

modifiers phenotypes, relapsing-remitting MS (RRMS) and primary progressive MS 

(PPMS). The RRMS group includes active or not active RRMS and clinically isolated 

syndrome (CIS). The PPMS group includes PPMS and secondary progressive MS 

(SPMS), active or not active, with or without progression (Figure 1 and 2). The 

previous progressive relapsing (PR) form was eliminated and is now a part of PPMS 

with activity. 
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1.1.2.1 Relapsing-remitting MS 

Relapsing-remitting MS (RRMS) is the most common disease course and characterizes 

around 80-85%. RRMS is characterized by acute exacerbation (relapses) followed by 

complete or partial recovery (remission) as residual symptoms may persist. Relapses 

are clinical episodes where the patients have subjective and/or objective MS symptoms 

reflecting an inflammatory CNS lesion, lasting more than 24 hours, in the absence of 

fever and infection. Between relapses, the patients are clinically stable (Thompson, 

Banwell et al. 2018). The percentage of patients who convert from RR- to SPMS 

increases with disease duration. Untreated, around 90% of the patients are estimated to 

evolve into a secondary progressive phase after about 25 years (Weinshenker, Bass et 

al. 1989). However, the increase in treatment options, earlier treatment initiation, and 

more efficient therapies have resulted in a slower disease progression (Tedeholm, 

Lycke et al. 2013, Brown, Coles et al. 2019).  
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Figure 1 

The 1996 vs 2013 multiple sclerosis phenotype descriptions for relapsing disease 

*Activity determined by clinical relapses and/or MRI activity (contrast-enhancing 

lesions; new or unequivocally enlarging T2 lesions assessed at least annually); if 

assessments are not available, activity is “indeterminate.” **CIS, if subsequently 

clinically active and fulfilling current multiple sclerosis (MS) diagnostic criteria, 

becomes relapsing-remitting MS (RRMS). 

Permission to share according to the terms of Creative Commons Attribution-

Noncommercial No Derivative 3.0 License. (Lublin, Reingold et al. 2014). 
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1.1.2.2 Primary progressive MS 

About 5-20% of MS patients have a clinical course compatible with PPMS (Lublin and 

Reingold 1996, Dobson and Giovannoni 2019). PPMS is characterized by disease 

progression from onset without clear relapses prior to clinical deterioration, with 

sporadic plateaus or minor fluctuations (Lublin and Reingold 1996, Thompson, 

Banwell et al. 2018). PPMS has a later onset than RRMS, typically in the 5th decade. 
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multiple sclerosis; PP 5 primary progressive; PR 5 progressive relapsing; SP 5 

secondary progressive.

Permission to share according to the terms of Creative Commons Attribution-
Noncommercial No Derivative 3.0 License. 

Figure 2 

*Activity determined by clinical relapses assessed at least annually and/or MRI activity

(contrast-enhancing lesions; new and unequivocally enlarging T2 lesions).

**Progression measured by clinical evaluation, assessed at least annually. If

assessments are not available, activity and progression are “indeterminate.” MS 5
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1.1.3 Diagnosis  

The current diagnosis of MS is based on diagnostic criteria, established by the 

International Panel on the Diagnosis of Multiple Sclerosis, known as the “McDonald 

Criteria” first in 2001, then revised in 2005, 2010, and finally by Polman et al., leading 

to the 2017 revision of the criteria by Thompson et al. (Thompson, Banwell et al. 2018). 

The diagnosis of MS can be based solely upon clinical grounds. Usually, the diagnosis 

is based on clinical history, neurological examination, magnetic resonance imaging 

(MRI), cerebrospinal fluid (CSF) examination, and exclusion of differential diagnosis. 

CSF oligoclonal bands confirm pathological inflammation (Compston and Coles 

2002). The hallmark for the RRMS-diagnosis is disease dissemination in time and 

space within the CNS, while the PPMS diagnosis is made on the basis of disability 

progression independent of clinical relapses. In patients with CIS combined with 

clinical or MRI lesions with dissemination in space, the presence of CSF-specific 

oligoclonal bands may lead to the diagnosis of MS. Moreover, symptomatic lesions 

may demonstrate dissemination in space or time in patients with supratentorial, 

infratentorial, or spinal cord syndrome. Finally, cortical lesions can be used to 

demonstrate dissemination in space.  
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1.1.4 Treatment 

During the last 25 years, there has been great progress in the development of new MS 

drugs resulting in a dramatic improvement in the prognosis of newly diagnosed MS 

patients (Tedeholm, Lycke et al. 2013). Despite this development, still, there is no 

curative treatment, and progressive MS has few available options.  

 

There are four therapeutic target principles in MS treatment. First, to halt the severity 

and duration of an attack, patients are treated with high-dose of oral or intravenous 

glucocorticoid (methylprednisolone) (Miller, Weinstock-Guttman et al. 2000).  

Second, treatments that aim to prevent MS activity (disease-modifying treatments 

(DMTs)). This may hamper and delay disability progression; however, it does not 

usually improve an already acquired disability. DMTs limit the availability and activity 

of immune cells. The first peroral treatment fingolimod (FTY720, Gilenya), showed a 

reduction in annual relapse rate (ARR) and MRI lesions compared to placebo (Kappos, 

Radue et al. 2010) and interferon (IFN)-b-1a (Cohen, Barkhof et al. 2010). Third, to 

treat symptoms, there are several symptomatic treatment options available, which can 

alleviate ailments, such as spasticity and fatigue (Newsome, Aliotta et al. 2017). 

Fourth, treatments that aim to regenerate the brain after damage. Remyelination is a 

complex process that occurs in varying degrees; treatments that enhance this 

endogenous regenerative mechanism could possibly reverse disease progression. As 

remyelinating therapies may be neuroprotective, they could benefit MS patients 

throughout the entire disease course. There are several promising pro-remyelinating 

agents; however, at the current moment, none are approved. In this thesis, we 

investigate two compounds, vitamin D and fingolimod, and their effect on 

remyelination.  
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1.1.5 Etiology  

MS is believed to be caused by a complex interaction between several environmental 

factors and a genetic vulnerability (Compston and Coles 2002, Dobson and Giovannoni 

2019).  

1.1.5.1 Genetics 
Both the incidence and the prevalence of MS are higher in family members of affected 

individuals compared to the general population, where the lifetime risk for developing 

MS is around 0.1-0.3%. The concordance rate for monozygotic twins is around 20-

30% and high compared to dizygotic twins who have a rate of about 2-5%. Lifetime 

risk in siblings of an affected individual is about 3% (Compston and Coles 2008, Canto 

and Oksenberg 2018).  

 

The major histocompatibility complex (MHC) gene complex is associated with MS 

susceptibility and dominates the genetic influences on MS risk (Canto and Oksenberg 

2018). Human Leukocyte Antigen (HLA) genes are located within MHC and encode 

for cell surface glycoproteins on different cells. These are involved in immune 

regulation, through exposure to non-self proteins (class I) or extracellular proteins 

(class II). The HLA gene cluster on chromosome 6 is viewed as the strongest genetic 

locus for MS with HLA-DRB1*15:01 as the major candidate allele, with a moderate 

effect on causing the disease. The association has been confirmed by genome-wide 

association studies (GWAS); in addition, more than 200 genetic loci beyond the MHC 

region have been uncovered (Patsopoulos 2018).  
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1.1.5.2 Vitamin D  
High latitudes, low sun exposure, and low levels of vitamin D were early associated 

with MS-risk (Acheson, Bachrach et al. 1960, Goldberg 2007). Munger and colleagues 

have investigated data from two prospective cohorts and found that vitamin D 

supplements reduced the risk of MS in women (Munger, Zhang et al. 2004). In another 

large, prospective, nested case-control study, the MS risk among whites decreased with 

increasing vitamin 25(OH)D levels, supporting a protective role of vitamin D in the 

risk of developing the disease. High vitamin D levels before the age of 20 had 

especially protective effects (Munger, Levin et al. 2006). More recently, Mendelian 

randomization studies have supported a causal role of vitamin D in MS susceptibility 

(Mokry, Ross et al. 2015, Rhead, Baarnhielm et al. 2016). A genetically dependent 

reduction of vitamin D levels increases the risk of MS. Yet, the studies do not tell us 

whether vitamin D also could modulate the disease course. Altogether, low vitamin D 

was strongly associated with an increased risk of developing MS; hence, vitamin D 

supplementation might also reduce MS in those at risk.  
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1.1.5.3 Epstein-Barr virus  
Epstein-Barr virus (EBV) is the main infectious agent linked to MS risk (Belbasis, 

Bellou et al. 2015). The risk of developing MS is low in EBV-negative individuals but 

increases drastically after EVB infection with subsequent infectious mononucleosis 

(symptomatic infection) in the adolescents (Thacker, Mirzaei et al. 2006). Thus, 

especially infectious mononucleosis and Epstein-Barr nuclear antigen (EBNA) IgG 

seropositivity is associated with MS. Due to an increase in serum antibody titers to 

EBV antigens in the late teens to the mid-20s, before the clinical onset of MS, EBV is 

suggested to be involved in the early stages of MS pathogenesis (Levin, Munger et al. 

2005, Munger, Levin et al. 2011).  

 

Several studies have suggested a link between EBV and vitamin D (Holmoy 2008, 

Disanto, Meier et al. 2011, Wergeland, Myhr et al. 2016). The vitamin D receptor 

(VDR) is expressed on different cell types, including immune cells, and vitamin D 

regulates the immune response (Kamen and Tangpricha 2010). There is an association 

between low 25(OH)D levels and increased EBV antibody levels in MS patients 

(Salzer, Nystrom et al. 2013, Wergeland, Myhr et al. 2016) and vitamin D deficiency 

may influence the immune response to EBV (Disanto, Meier et al. 2011). EBV-infected 

B-cells are transformed into immortalized lymphoblasts, which grow as cell lines in 

vitro and, amongst others, express six nuclear proteins. One of these proteins, EBNA-

3, have been shown to bind to the VDR and downregulate/block the activation of 

vitamin D regulated genes and thus protect lymphoblastoid cell lines from VDR-

induced arrest growth/ apoptosis (Yenamandra, Hellman et al. 2010). Moreover, Røsjø 

and colleagues found that high-dose vitamin D3 may have a transient effect on the 

humoral immune response against EBNA-1 in RRMS patients (Rosjo, Lossius et al. 

2017). Altogether, data points towards a link between two of the most important risk 

factors of MS.   
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1.1.5.4 Smoking and obesity  
Several reports have suggested that smoking increases the risk of MS and worsens MS 

symptoms and smoking has also been suggested to explain the increasing female/male 

gender ratio (Ascherio and Munger 2007, Rosso and Chitnis 2019). Obesity and high 

body mass index also seem to increase the risk of the disease (Wesnes, Riise et al. 

2015).  
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1.1.6 Pathology  

The pathologic hallmark of MS is focal, white matter, inflammatory, demyelinating 

lesions, that may become sclerotic plaques, hence the name multiple sclerosis 

(Compston and Coles 2002). Autoimmune inflammation has long been seen as the 

primary disease mechanism, where immune cells migrate across a compromised blood-

brain barrier (BBB) (Compston and Coles 2008).  

 

Active lesions are dominated by perivascular T-cell infiltration, where CD8+ T-cells 

are highly represented from the start together with microglia cells. Microglia cells exert 

dual roles, as pro-inflammatory (M1) cells or anti-inflammatory (M2) cells, which clear 

myelin and contain remnants of myelin-sheaths. Further, a secondary T-cell mediated 

inflammation wave evolves, including CD8+ and CD4+ T-lymphocytes, B-

lymphocytes, and plasma cells. Moreover, the lesions are characterized by 

oligodendrocyte (OLG) death, demyelination, and astrogliosis (Kutzelnigg and 

Lassmann 2014, Lassmann 2018). Acute axonal injury is highly variable and 

accompanies the inflammation (Trapp, Peterson et al. 1998). As the lesions develop 

into an inactive lesion, the inflammatory infiltrate decreases. At this stage, 

oligodendrocyte precursor cells (OPCs) have been/are recruited, differentiated, and 

remyelination may occur (Lassmann 2011). Remyelinated plaques are more 

susceptible to recurrent demyelinating events compared to normal-appearing white 

matter myelin (NAWM) (Bramow, Frischer et al. 2010). The end-stage of the 

formation of plaques is gliotic scars with ongoing axonal injury (Lassmann 2018). 

While active lesions are most prominent in the early phases of the disease, the 

progressive phase is dominated by the slow expansion of inactive lesions (smoldering 

plaques) (Frischer, Weigand et al. 2015). The disease progression is related to the 

accumulation of axonal degeneration (Compston and Coles 2008). 

 

Demyelination in cortex was unrecognized for a long time until Trapp/Bø and colleges 

did systematic immunohistochemical analyses to show that cortical demyelination is 

extensive in MS patients (Peterson, Bo et al. 2001, Bø, Vedeler et al. 2003). Cortical 

demyelination is now established from early disease onset, but is more prominent in 
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progressive MS (Popescu and Lucchinetti 2012). The lesions show demyelination, 

OLG loss, and variable neurodegeneration. Chronic lesions show less permeability of 

the BBB, decreased inflammation and microglia activation, and the absence of 

macrophages and lymphocytes (Lassmann 2011). However, early cortical lesions have 

more features in common with white matter lesions (Popescu and Lucchinetti 2012). 

Data show that grey matter lesion load correlates better with disability in patients than 

white matter lesion load (Rahmanzadeh, Bruck et al. 2018). The demyelination process 

may be driven by meningeal inflammatory infiltrates (Lassmann 2011, Popescu and 

Lucchinetti 2012). Remyelination has been shown to be extensive in cortical lesions, 

with little failure in the recruitment of OPCs (Strijbis, Kooi et al. 2017). Moreover, 

neurodegeneration in the cerebral cortex seems to be, at least to a large extent, 

independent of cortical demyelination (Klaver, Popescu et al. 2015).  

 

At the same time, diffuse alterations are present in the NAWM and normal-appearing 

grey matter (NAGM) (Frischer, Bramow et al. 2009, Beer, Biberacher et al. 2016). 

Thus, MS is a global CNS disease and lesions are disseminated throughout the CNS. 

Predilection sites are the optic nerves, periventricular white matter, juxtacortical, 

subpial spinal cord, brainstem, and cerebellum (Popescu, Pirko et al. 2013).  
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1.1.7 Myelination  

Andreas Vesalius was the first to describe white and grey matter in the cerebrum in 

1543, and myelinated fibers were first described by Antoni van Leeuwenhoek in the 

early 1700s. Myelin comes from Greek myelos; after bone marrow color and texture. 

In 1854, the pathologist Rudolf Virchow minted the word myelin. However, it was first 

in 1868, that the neurologist Jean-Martin Charcot used the word myelin in its modern 

meaning. Myelin was, for a long time, hypothesized to originate from the axon itself. 

Pío del Río-Hortega introduced the name oligodendroglia cell in 1921, yet it took some 

time before it was accepted that CNS-myelin is produced by mature OLGs (Boullerne 

2016). Myelin consists mainly of different types of lipids and proteins. Myelination is 

the process of forming a myelin sheath around nerve fibers (Yamafuji and Matsuki 

1989). The axon is wrapped by myelin several times, where the thickness is determined 

by the axon diameter. However, OLGs may form myelin sheaths in the absence of 

molecular axonal cues. Thus, the sheath length may not solely depend on the fiber but 

on the regional origin of the OLG. These regional properties are determined before OPC 

differentiation (Bechler, Byrne et al. 2015). 
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Figure 3  

Normal neuron with an intact axonal myelin ensheathment (light purple). During 

demyelination, the myelin-sheath is destroyed. Image downloaded from 

https://smart.servier.com/image-set-download/. Servier Medical Art by Servier is 

licensed under a Creative Commons Attribution 3.0 Unported License.  

The myelin sheaths (internodes) are separated by small gaps – the nodes of Ranvier 

(discovered by Louis-Antoine Ranvier in 1871). The myelin sheath increases the 

conduction velocity in axons as it lets the action potential jump from node to node; this 

is termed saltatory conduction. Myelin is essential for proper connections within the 

neural circuits and provides trophic support to the axon. Furthermore, myelin also has 

a role in brain plasticity and learning, as myelination may be triggered by activity 

including, reading and piano playing (Nave and Werner 2014).  

Myelin may not be protective per se as axons can persist without myelin. This is 

probably due to neurotrophic factors produced by mature OLGs and astrocytes that 

could stimulate sprouting and survival of the axons (Smith, Cooksey et al. 2013). 

Moreover, axonal damage may occur although myelin is present, as shown in the 

cuprizone model for de- and remyelination (Manrique-Hoyos, Jurgens et al. 2012).   

The myelination process is a complex process, which involves several steps (Nave and 

Werner 2014). First, there is an initiation of proliferation and migration of OPCs. 

Nucleus 

Myelin sheath 
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Node of 
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During migration OPCs extend, and retract processes (Yamafuji and Matsuki 1989). 

Excess OLGs are produced and subsequently eliminated, to make sure that the number 

of OLGs matches the number of axons ready for myelination (myelin-receptive axons) 

(Trapp, Nishiyama et al. 1997). Through glia signaling, target axons are located. After 

glia-axonal contact and retraction, the axon segment is selected, and the contact 

between the OPC and axon stabilized. OPCs may differentiate into pre-myelinating 

(immature) OLGs or myelinating (mature) OLGs. Differentiation is regulated by 

inhibitory axonal signals. Further, different signaling pathways are essential in driving 

the myelin formation. Moreover, the process of membrane outgrowth and axonal 

wrapping are followed by the trafficking of membrane components, before myelin 

compaction and formation of the nodes of Ranvier. Compacted myelin provides high 

electrical resistance and low capacitance, increasing the saltatory conduction velocity 

of the action potentials. The myelination process is controlled/influenced by a plethora 

of different inhibitory, growth, and survival factors (Yamafuji and Matsuki 1989).  

 

Figure 4 

Two normal neurons, connected by a mature OLG (dark purple) maintaining the 

myelin-sheaths (light purple), surrounded by microglia (blue) and astrocytes (green). 

Image downloaded from https://smart.servier.com/image-set-download/. Servier 

Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported 

License.  
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1.1.8 Demyelination  

Demyelination is the destruction of the myelin of axons. It is a pathological process 

and is usually a consequence of OLG injury (primary demyelination). Demyelination 

causes impaired function and is associated with axonal conduction block. Eventually, 

demyelination will cause neurodegeneration. The two major mechanisms that may lead 

to primary demyelination of the CNS are genetic abnormalities (leukodystrophies) and 

inflammatory damage that affects myelin and OLGs. In MS patients, demyelination is 

thought to be initiated by inflammation (Franklin and Ffrench-Constant 2008).  

 

Lucchinetti and colleagues investigated active, demyelinating lesions in MS patients. 

They divided the lesions into four distinct patterns of demyelination based on type of 

infiltrate, complement activation, oligodendrocyte and myelin protein loss. Patterns I 

and II are described as autoimmune-mediated, while III and IV resemble a primary 

oligodendrogliapathy. All lesions had an inflammatory reaction dominated by T-

lymphocytes and macrophages. In pattern I and II, demyelination was typically 

centered around veins/venules and sharply demarcated, with effective remyelination of 

the lesions. Pattern II had deposition of activated complement. In type III lesions, the 

inflammation was not centered around veins. Other features of this pattern were ill-

defined lesion borders and preferential loss of myelin-associated glycoprotein (MAG), 

a profound OLG loss, and a lack of remyelination. The features of pattern IV were 

sharply demarcated perivenous lesions, and simultaneous loss of all myelin proteins, 

similar with type I and II lesions. However, type IV lesions were characterized by an 

extensive OLG loss and lack of remyelination (Lucchinetti, Bruck et al. 2000). More 

recently, Metz and colleagues investigated the immunopathological patterns in human 

tissue. Their findings supported the interindividual immunopathological heterogeneity 

in early, active MS lesions (Metz, Weigand et al. 2014).  
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Damaged myelin is engulfed and degraded by activated microglia and macrophages. 

Therefore, the MS lesion stage can be determined by the temporal development of 

degradation of myelin proteins and the pattern of immune cell infiltrate. 

Immunohistochemically, the minor myelin proteins (first degraded) may be stained by 

myelin oligodendrocyte glycoprotein (MOG) or MAG, while major (later degraded) 

myelin proteins are stained by myelin basic protein (MBP) or myelin proteolipid 

protein (PLP). An alternative histochemical stain is Luxol Fast Blue (LFB) staining, 

especially for shadow plaques (remyelinated plaques). Hematoxylin and eosin give an 

overview and indication of the degree of cell infiltration and inflammation. Preferably, 

in immunohistochemistry (IHC) stains, the nucleus should be counterstained with, for 

example, hematoxylin (Kuhlmann, Ludwin et al. 2017). Anti-Mac-3 (Lindner, Fokuhl 

et al. 2009) and anti-CD68 are reliable markers for microglia/macrophage cells. 

Further, mature OLGs can be stained by anti-Nogo-A (Neurite Outgrowth Inhibitor 

Protein A), astrocytes by anti-GFAP (Glial fibrillary acidic protein), T-cells by anti-

CD3, axonal damage by anti-APP (Kuhlmann, Ludwin et al. 2017) and non-

phosphorylated neurofilament heavy chain (anti-NFH) (Lindner, Fokuhl et al. 2009). 

Neurofilament light chain (NFL) is a major structural protein in neurons and a marker 

for axonal damage (Lycke, Karlsson et al. 1998); reduced NFL-immunoreactivity 

reflects increased axonal loss.  
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1.1.9 Remyelination  

Remyelination is the creation of new myelin sheaths subsequent to demyelination. This 

regeneration of myelin by OLGs restores the cytoarchitecture and function of axons 

(Franklin and Ffrench-Constant 2008). Remyelination is extensive in MS patients 

(Patrikios, Stadelmann et al. 2006, Patani, Balaratnam et al. 2007), and the structure of 

and conduction in axons may be restored. Thus, protecting axons from further 

degeneration could prevent disability and disease progression in MS patients (Irvine 

and Blakemore 2008). There are two ways to improve remyelination: 1) exogenous 

remyelination by transplantation of cells or 2) promoting the present endogenous 

remyelination (Blakemore and Irvine 2008). 

The remyelination process differs from developmental myelination as it follows 

demyelination and immune response (Plemel, Liu et al. 2017). The process is thought 

to involve the generation of new OLGs, mainly from CNS stem cells or OPCs 

widespread in the CNS. OPCs are activated from a quiescent state to a regenerative 

state; the activation is associated with injury and changes in astrocytes and microglia. 

After the recruitment phase (migration and proliferation of OPCs), the differentiation 

phase follows: OPCs are differentiated into pre-myelinating and mature (myelinating) 

OLGs. Axon contact is established, new myelin generated, wrapped and compacted 

(Franklin and Goldman 2015, Neumann, Segel et al. 2019). Differentiation is suggested 

to be the most vulnerable phase and the most likely time point for remyelination failure.  

 

After remyelination, the myelin-sheaths are completely reconstructed (Franklin and 

Ffrench-Constant 2008), but thinner than compared to original, non-damaged myelin-

sheaths. Myelin thickness is expressed by the g ratio, calculated as axon diameter/ axon 

diameter + myelin-sheath. Thus, remyelinated axons have a higher g ratio compared to 

normally myelinated axons. However, in areas such as the corpus callosum where we 

find axons with a smaller diameter with usually thinner myelin sheaths, the g ratio may 

remain unchanged after remyelination (Stidworthy, Genoud et al. 2003, Franklin and 

Ffrench-Constant 2017). As the reduction in thickness is mainly evident in lager axons, 

it may be difficult to distinguish remyelination and myelination in small axons by the 
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g ratio (Blakemore and Franklin 2008). The development of OLGs and remyelination 

is regulated by negative and positive factors such as growth factors, cytokines, and 

chemokines; however, the mechanisms behind how remyelination is controlled are not 

completely known (Plemel, Liu et al. 2017). Recent studies suggest that also old OLGs 

participate in remyelination in animal models and humans (Duncan, Radcliff et al. 

2018, Yeung, Djelloul et al. 2019). Mature OLGs, from post-mortem brain tissue, were 

birth-dated to assess the dynamics of OLGs in MS patients. Surprisingly, the study 

found that OLGs in shadow plaques were old and not newly generated. Hence, the 

remyelination of lesions may be conducted by old, spared OLGs and not newly formed 

OLGs. Moreover, there might be principal differences in the dynamics of remyelination 

in rodents and humans (Yeung, Djelloul et al. 2019).  

 

Furthermore, inflammation is necessary and has a key role in remyelination. 

Inflammatory cells express pro-inflammatory factors that may affect the regeneration 

of damaged tissue. The innate immune response is essential, and microglia/macrophage 

activation is associated with both damage and regeneration (Franklin and Goldman 

2015). Resident macrophages (microglia) and monocyte-derived macrophages 

coordinate CNS myelin regeneration (Lloyd and Miron 2019). Myelin has an inhibitory 

effect on OPC differentiation. Therefore, myelin debris needs to be efficiently cleared 

to ensure subsequent remyelination after a demyelinating event. Both monocytes of the 

innate immune system and microglia can develop into macrophages and are crucial in 

the process of removing debris. Thus, microglia facilitate OPC recruitment, 

differentiation, and remyelination. Simplified, microglia activation can be divided into 

M1 microglia and M2 microglia, where M1 is pro-inflammatory and associated with 

OPC recruitment. M2 is anti-inflammatory/immune-regulatory and associated with 

myelin phagocytosis, secretion of regenerative factors, enhancing of OPC 

differentiation, and remyelination. Thus, both M1 and M2 are important for sufficient 

remyelination (Miron and Franklin 2014). The switch from M1 to M2 macrophages 

have been shown to be delayed by aging; activation, recruitment, and differentiation of 

OPCs declines with age, consequently, also remyelination.  
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Astrocytes are the most abundant cell in the CNS. They are believed to be supporting 

cells that adapt their functions to their environment and are involved in CNS 

development, homeostasis, and injury repair. However, astrocytes have roles beyond 

support, for example, during myelination and remyelination by secreting both 

regenerative and inhibiting factors that communicate with other cells (Nair, Frederick 

et al. 2008). As microglia, astrocytes have a simplified categorization, where A1 is pro-

inflammatory and facilitate inflammation and damage, and A2 are more pro-repair and 

beneficial. In MS patients, astrocytes make glial scars, which may limit inflammation, 

but less beneficially inhibit OPCs migrating into the area. Astrocytes interact with 

microglia and regulate their function, including regulation of microglia activation, 

phagocytosis by microglia, and factors secreted by microglia. On the other side, 

microglia may also influence astrocytes (Molina-Gonzalez and Miron 2019). During 

cuprizone-induced demyelination, astrocyte ablation was shown to impair 

remyelination, probably due to reduced chemokine secretion with subsequently less 

microglia activation and less myelin debris phagocytosis (Skripuletz, Hackstette et al. 

2013).  
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Figure 5  

The figure illustrates myelination, demyelination, and subsequently remyelination by 

newly formed OLGs on an intact axon. Recent studies suggest that old OLGs may 

contribute to remyelination in animal models and humans. Of note, the remyelination 

process may differ in animal models and humans. Remyelination failure halt the axonal 

conduction and loss of the supportive myelin. Further leading to energy deficiency, 

perturbed axonal transport, and eventually axonal degeneration. Adapted from 

Regenerating CNS myelin - from mechanisms to experimental medicines, accessed Feb. 

2., 2020 (Franklin and Ffrench-Constant 2017).  
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In MS patients, remyelination occurs in varying degrees, frequently at the border of 

lesions. However, repair may occur in the whole plaque in approximately 20% of MS 

lesions (Patrikios, Stadelmann et al. 2006, Patani, Balaratnam et al. 2007). Completely 

remyelinated areas are referred to as shadow plaques and show a lighter staining pattern 

compared to staining of normal white matter, owing to the fact that remyelinated axons 

are covered with thinner myelin sheaths and have shortened internodes compared to 

normal myelin sheaths (Blakemore 1974, Prineas and Connell 1979). Remyelination 

may occur during ongoing demyelination within the same lesion (Prineas, Kwon et al. 

1984). Hence, remyelination starts shortly after or during demyelination (Kutzelnigg 

and Lassmann 2014). Remyelination occurs during the whole disease course, yet to a 

lesser extent in chronic/inactive lesions. The process is heterogeneous in and between 

patients and depends on the location of the lesion; remyelination is shown to be more 

pronounced in the subcortical area and deep white matter compared to periventricular 

plaques and cerebellum (Patrikios, Stadelmann et al. 2006, Goldschmidt, Antel et al. 

2009). However, the number of myelin receptive axons have been shown to be higher 

in the corpus callosum than in the cerebral cortex (Trapp, Nishiyama et al. 1997). 

Factors such as the presence of OPCs, their potential to migrate and differentiate, the 

number of susceptible axons, and repetitive de- and remyelination could all play a role 

in the repair process (Lassmann 2018).  
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1.1.9.1 Causes of remyelination failure 
 

Persisting demyelination results in axonal and neuronal loss. Despite adequate 

medication and an apparently stable, relapse-free disease, patients may experience 

increasing disability and progression, possibly due to remyelination failure. 

Remyelination efficiency is affected by general factors like gender, genetics, and age. 

However, regeneration failure could also be caused by more disease-specific factors. 

Factors as OPC deficiency, failure of recruitment, differentiation, repopulation, and 

maturation could impact remyelination efficiency. Older OPCs may be less efficient, 

and larger demyelinated areas need a higher number of functioning OPCs (Franklin 

and Ffrench-Constant 2008). The OPCs ability to remyelinate might differ according 

to the brain areas, as neuronal activity contributes to OPC proliferation, areas with 

higher neuronal activity might have more extensive repair (Goldschmidt, Antel et al. 

2009). Failure in the differentiation and maturation of OPCs into OLGs has been 

suggested to be the most vulnerable stage regarding remyelination in MS patients. 

Moreover, failure can be caused by dysregulation of several events in a preset sequence 

(the dysregulation hypothesis). Demyelinated axons may also be less receptive to 

remyelination than healthy axons (Franklin and Ffrench-Constant 2008).  

 

Naturally, regeneration becomes less efficient with aging; thus, age is suggested to be 

a primary reason for remyelination failure. Changes due to aging in the development 

of mature OLGs are especially important, as well as age-related changes to 

microglia/macrophages and their pro-myelination factors, and the removal of myelin 

debris. Although less investigated, changes in astrocytes would likely impact their 

ability to support the process (Neumann, Segel et al. 2019).  

 

Delayed remyelination leaves the axon more exposed and vulnerable to degeneration. 

Although remyelination has been shown to be evident and efficient in some MS 

patients, it often fails during the disease course. However, robust remyelination exists 

in some patients; therefore, enhancing remyelination should be possible through 

therapeutic agents. There are a large number of ongoing experimental studies 



 
 

41 

investigating the effect of different compounds on remyelination. Several compounds 

have been tested out in clinical trials (Plemel, Liu et al. 2017). We have studied two 

compounds, calcitriol and fingolimod; both cross the BBB and have the ability to bind 

to receptors on CNS cells. Therefore they could affect the endogenous remyelination 

process and possibly mitigate axonal degeneration. 
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1.2 Vitamin D  

 
1.2.1 Metabolism and sources  

When the skin is exposed to solar UVB radiation (wavelength 290-315), photons are 

absorbed by 7-dehydrocholesterol, which is transformed into pre-vitamin D3 and 

rapidly converted to vitamin D3 (cholecalciferol). Excess vitamin D3 is degraded to 

inactive photoproducts. Although the major source of vitamin D is the sun, vitamin 

D2 (ergocalciferol) and D3 from dietary sources as fish, egg yolk, and fortified food 

are important. Vitamin D is stored in adipocytes, bound to vitamin binding protein in 

the circulation, and converted to 25-hydroxyvitamin D (25(OH)D, calcidiol) by 

vitamin D-25-hydroxylase in the liver. 25(OH)D is the major circulating form; 

however, it is biologically inactive and must be further converted to biologically 

active 1.25-dihydroxyvitamin D (1.25(OH)2D, calcitriol) by 25-hydroxyvitamin D-1-

ahydroxylase (1-a-OHase) in the kidneys and other tissues. Excess calcitriol is 

degraded by 1.25(OH)2D-24-hydroxylase (24-OHase) to calcitroic acid and secreted 

through the bile (figure 6) (Holick 2007, Ascherio, Munger et al. 2010).  

 

 
Figure 6 

Vitamin D metabolism. The bold arrow indicates activation and the dash arrow 

inactivation of vitamin D. Reprinted from Trends in Endocrinology & Metabolism, 

Volume 13, Garcion, E. Wion-Barbot, N. Montero-Menei, C. N. Berger, F.Wion, D., 

New clues about vitamin D functions in the nervous system, Pages No. 100-5. 

Copyright (2002), with permission from Elsevier Science Ltd., (Garcion, Wion-Barbot 

et al. 2002).  
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1.2.2 Vitamin D mechanisms 

The classical function of calcitriol is the regulation of calcium and phosphorus 

absorption, and calcitriol synthesis is regulated through the calcium-phosphate-

parathyroid hormone (PTH) axis (Holick 2007). Vitamin D is lipid-soluble, and 

calcitriol has endocrine effects. Moreover, vitamin D also has key roles in the immune 

system and the brain (Garcion, Wion-Barbot et al. 2002, Christakos, Li et al. 2019). 

Vitamin D signaling is mainly mediated through the VDR. The VDR is expressed in 

almost every tissue (Bikle 2014), including brain-, and immune cells, supporting a role 

for vitamin D in immune modulation. VDR and 1a-OHase immunoreactivity was 

shown to be widely distributed in the brain and respectively located to the nucleus and 

cytoplasm in neurons and glia (Eyles, Smith et al. 2005). VDR forms a heterodimer 

together with the retinoid X receptor (RXR), interacting with DNA sequences causing 

up- or downregulation of transcription (Christakos, Li et al. 2019).  
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1.2.3 Measuring vitamin D  

As the major circulating form in the blood, and due to the short half-life of calcitriol, 

25(OH)D is usually measured to evaluate vitamin D status. The conversion of vitamin 

D to 25(OH)D is believed to be little influenced by feedback regulation by 25(OH)D 

or calcitriol. There is no consensus of what is the adequate level of 25(OH)D. The 

recommendations vary from country to country, and the results from the studies may 

not reflect the appropriate level for healthy groups and different patient groups 

(Christakos, Li et al. 2019). Of note, the interindividual variability of the vitamin D 

concentration is not only due to sun exposure, geographical latitude, and vitamin D 

intake. The individual genetic variations are suggested to increase the risk of vitamin 

D insufficiency (Wang, Zhang et al. 2010). The recommended daily supplemental dose 

for healthy people is around 600 international units (IU) (Christakos, Li et al. 2019). In 

MS patients, supplements of 1000-2000 IU daily may prevent low vitamin D levels 

associated with insufficient bone mineral density. Studies point towards target 

25(OH)D levels around 100 nmol/L, which could be achieved with higher doses, 

depending on sun exposure, season, and home country (Smolders, Torkildsen et al. 

2019).  
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1.2.4 Vitamin D and MS 

1.2.4.1 Animal studies  
 
Calcitriol administrated before, and during the immunization-phase prevents the 

development of EAE in rodents (Lemire and Archer 1991). Thus, suggesting an 

immunosuppressive role in the EAE model for MS. In a study by Cantorna and 

colleagues, calcitriol was reported to prevent the development of EAE and reverse EAE 

progression; and in addition, vitamin D deficiency accelerated EAE onset (Cantorna, 

Hayes et al. 1996). In our research group, several studies have been conducted using 

the cuprizone model. Mice receiving a salmon-based diet had reduced demyelination, 

microglia/macrophage infiltration, and MRI lesion load compared to cod liver and 

soybean diets (Torkildsen, Brunborg et al. 2009). High-dose cholecalciferol reduced 

demyelination and microglia/macrophage activation in cuprizone mice. More 

unexpectedly, two weeks after cuprizone discontinuation, mice fed low-dose 

cholecalciferol had improved remyelination compared to those fed high-dose 

cholecalciferol (Wergeland, Torkildsen et al. 2011). These studies mainly laid the 

foundation for investigating how high-dose vitamin D affects remyelination and axonal 

damage in the cuprizone model, which is addressed in papers I and II.  
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1.2.4.2 Clinical trials  
 

The association between low vitamin D levels and increased MS risk, suggests that 

high-dose vitamin D could be beneficial for MS patients. Evidence up to date remains 

inconclusive in the answer of the effect of vitamin D on the course of MS. Goldberg 

and colleagues treated MS patients with cod liver oil, equivalent to 5000 IU daily, 

resulting in a significant decrease in the number of relapses (Goldberg, Fleming et al. 

1986). A double-blind RCT compared high- versus low-dose D2 for six months. There 

was no difference between the groups in the primary endpoint, brain MRI disease 

activity. Exit EDSS was higher in the high-dose group; however, after adjusting entry 

EDSS, there was only an insignificant trend towards higher exit EDSS following high-

dose treatment. Further, there was no therapeutic advantage of high-dose vitamin D 

(Stein, Liu et al. 2011). In a 96-weeks long RCT with 68 participants, designed to study 

vitamin D’s effect on bone and mass density in MS patients, 20 000 IU cholecalciferol 

weekly were compared to placebo. Based on results from ARR, EDSS, and other 

clinical measures, although not powered to address clinical outcomes, the study 

concluded with no beneficial effect of high-dose cholecalciferol. A prospective cohort 

study, including 145 patients, investigated if higher levels of 25(OH)D could reduce 

the relapse risk among MS patients. They reported an association between increasing 

levels of 25(OH)D and reduced hazard of relapse (Simpson, Taylor et al. 2010). In a 

Cochrane review from 2018, aiming to evaluate the benefit and safety of vitamin D in 

the treatment of MS patients, the authors conclude that evidence points towards no 

effect of vitamin D on the recurrence of relapses, EDSS or new MRI gadolinium-

enhancing T1 lesions in MS patients. Due to few and small trials, short follow-up time, 

and high risk of bias, the evidence is of deficient quality; thus, the conclusion is vague 

(Jagannath, Filippini et al. 2018).  

 

More recently, results from larger RCTs have been published. In the SOLAR 

(Hupperts, Smolders et al. 2019) and CHOLINE (Camu, Lehert et al. 2019) studies, 

high-dose cholecalciferol compared to placebo were investigated for respectively 48 

and 96 weeks, in randomized MS patients treated with IFN-β-1a. Primary endpoints of 
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NEDA-3 (no evidence of disease activity) and ARR were not reached. However, the 

studies suggested an effect on secondary endpoints. The results from the SOLAR study 

suggested an effect of high-dose cholecalciferol on MRI lesion activity. In the 

CHOLINE study, there was a reduction in new T1 lesions and a decrease in the volume 

of hypointense T1-weighted MRI lesions and lower EDSS progression in those who 

received cholecalciferol compared to placebo. Moreover, the EVIDIMS study, 

comparing low- versus high-dose cholecalciferol, did not find differences in clinical or 

MRI parameters. The study did not disprove or support a favorable effect of high-dose 

cholecalciferol (Dorr, Backer-Koduah et al. 2020).  

 

Vitamin D is affordable, easy to administrate, and safe (Kimball, Ursell et al. 2007). 

Therefore, vitamin D could potentially serve as add-on therapy to the standard 

therapies. That the findings are inconclusive could be due to vitamin Ds immunologic 

mechanisms (inhibition of monocytes, T-regulator cell differentiation, shifting from 

TH2 to TH1 cellular response), which overlaps the effect of different DMTs. Thus, the 

impact of vitamin D could be redundant when compared to DMTs (Rotstein, Healy et 

al. 2015).  
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1.2.4.3 Remyelination  
 

Few studies have investigated the effect of vitamin D on remyelination. Goudarzvand 

and colleagues studied the effects of vitamin E and D3 on de- and remyelination in the 

hippocampus of rats after ethidium bromide-induced damage. Both vitamins were 

suggested to exert a protective effect against apoptosis and demyelination and increase 

remyelination (Goudarzvand, Javan et al. 2010). Shirazi et al. demonstrated that neural 

stem cells (NSCs) express VDR and that calcitriol upregulated VDR expression. 

Further, calcitriol promoted proliferation of NSC and enhanced the differentiation into 

neurons and OLGs in vitro. The results indicated a direct effect of calcitriol on NSC 

development and differentiation. Thus, vitamin D might affect neurodegeneration and 

repair (Shirazi, Rasouli et al. 2015). In an in vivo study by the same group, calcitriol 

suppressed ongoing EAE, induced NSC proliferation, and differentiation into 

OPCs/OLGs and increased remyelination (Shirazi, Rasouli et al. 2017).  

 

Retinoid X receptor gamma (RXRg) signaling may improve OPC differentiation. 

RXRg binds to several nuclear receptors, VDR is one of them. RXRg forms a complex 

with the VDR receptor, and a study by de la Fuenta demonstrated that calcitriol 

promoted OPC differentiation through RXR-VDR complex signaling. The findings 

support that vitamin D could improve repair. Moreover, VDR was highly expressed in 

a broad specter of CNS cells, including OLGs, microglia, and astrocytes in MS plaques. 

The VDR expression was more pronounced in active than in chronic MS plaques (de 

la Fuente, Errea et al. 2015). Furthermore, injections of cholecalciferol compared to 

placebo was shown to increase the expression of the myelin proteins MOG and 2', 3'-

cyclic nucleotide 3'-phosphodiesterase (CNPase) in the cortex of cuprizone mice 

(Mashayekhi and Salehi 2016). Treatment with cholecalciferol, in rats before and after 

lysolecithin injections, was suggested to improve proliferation and differentiation of 

NSCs. Moreover, the study showed increased differentiation of OPCs and enhanced 

MBP and PLP expression, indicating reduced myelin loss and improved remyelination 

(Gomez-Pinedo, Cuevas et al. 2020). Altogether, these studies indicate that vitamin D 

could have a decisive role in remyelination.   
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1.3 Fingolimod  

 

1.3.1 Mechanisms of action 

Fingolimod (2-amino-2-[2-(4-octylphenyl)ethyl]propane-1.3-diol) is the synthetic 

form of natural sphingosine-1-phosphate (S1P), a lipid mediator, included in the family 

of lysophospholipids. S1P regulates a variety of physiological processes in the body. 

In vivo, the pro-drug fingolimod is phosphorylated to the active metabolite fingolimod-

phosphate (fingolimod-p) by sphingosine kinases (SphK 1 or 2). S1P and fingolimod-

p bind to cell surface G-protein-coupled receptors, sphingosine-1-phosphate receptors 

(S1PRs). Five subtypes exist (S1PR1-5), and fingolimod-p modulates four of them, 

S1PR1 and S1PR3-5. S1PRs are distributed and expressed on a wide range of cell types 

in the immune and central nervous system (Chun and Hartung 2010).  

 

Lymphocytes express both S1PRs and chemokine receptor seven (CCR7), where the 

latter inhibits lymphocyte migration from the lymph node. When S1P interacts with its 

receptor (mainly S1PR1) on the lymphocyte surface, this overcomes the inhibitory 

signals by CCR7, and the lymphocyte leaves the lymph node. When fingolimod-p 

binds to S1PRs, the product is internalized, and the receptor is degraded, which 

prevents further cell surface signaling. Initially, fingolimod-p is an agonist, but the 

irreversible receptor internalization leads to functional antagonism (Groves, Kihara et 

al. 2013). Thus, the lymphocytes are sequestered in the lymph node. As a result, the 

autoreactive lymphocytes are prevented from crossing the BBB and damaging the CNS 

(Chun and Hartung 2010, Subei and Cohen 2015). Of note, fingolimod causes 

redistribution rather than depletion of lymphocytes; when fingolimod is discontinued, 

the immune system will be restored. Moreover, S1P is synthesized from 

sphingomyelin, studies have found that MS patients have lower levels of 

sphingomyelin in white matter (Wheeler, Bandaru et al. 2008) and the levels of S1P 

are increased in CSF (Kulakowska, Zendzian-Piotrowska et al. 2010). Hence, S1P 

signaling may be interrupted in MS patients. 
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1.3.2 Treatment of MS 

Several RCTs have assessed the effect and safety of fingolimod. In FREEDOMS I 

(FTY720 Research Evaluating Effects of Daily Oral Therapy in MS) (Kappos, Radue 

et al. 2010) and FREEDOMS II (Calabresi, Radue et al. 2014) fingolimod reduced the 

ARRs compared to placebo. Likewise, in TRANSFORMS (Trial Assessing injectable 

IFN versus FTY720 Oral in Relapsing-remitting MS) when compared to IFN-b1a 

(Cohen, Barkhof et al. 2010). All trials showed an effect on MRI lesion activity and 

brain volume loss. Only FREEDOMS I showed a reduced impact on disability 

worsening. Due to fingolimod’s nonselective modulation of S1PRs, several adverse 

effects were reported, e.g., bradycardia, macular edema, and infections. Another RCT, 

INFORMS, assessing fingolimod’s effect in PPMS, did not find differences in brain 

volume loss or disability progression compared to placebo (Lublin, Miller et al. 2016). 

More S1PR selective drugs have been developed, and the S1P1 and S1P5 modulator, 

siponimod (BAF312), have shown a modest reduction in disability progression and 

brain volume loss in SPMS patients compared to placebo, suggesting a neuroprotective 

effect (Kappos, Bar-Or et al. 2018). In March 2019, the Food and Drug Administration 

(FDA) approved siponimod in the treatment of SPMS. Several selective S1PR 

modulators have been/ are under investigation (Chaudhry, Cohen et al. 2017).  
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1.3.3 Fingolimod and remyelination  

S1PRs are expressed by CNS cells like OLGs (Jaillard, Harrison et al. 2005), astrocytes 

(Pebay, Toutant et al. 2001) neurons, and microglia (Chun and Hartung 2010). 

Fingolimod is lipophilic and crosses the BBB (Foster, Howard et al. 2007, Hunter, 

Bowen et al. 2016). Binding of S1PRs results in the activation of several intracellular 

signaling pathways. Moreover, S1P signaling could mediate processes like astrogliosis 

and demyelination. Hence, fingolimod may exert a direct CNS effect and have an 

impact on neuropathological processes, thus promoting neuroprotection (Hunter, 

Bowen et al. 2016). As there might be undesired interactions between an 

immunomodulator and a pro-remyelinating substance, it would be a great advantage to 

find a compound that possesses both properties.  

 

Several studies have tried to determine whether fingolimod has a positive impact on 

the remyelination process. Studies of organotypic cerebellar slices cultures have 

indicated that fingolimod increase remyelination, process extension in OPCs and 

OLGs, the number of microglia cells, and astrocyte activation after 

lysophosphatidylcholine (LPC)-induced demyelination. The effects on remyelination 

and astrocytes were mainly mediated through S1P3 and S1P5 (Miron, Ludwin et al. 

2010). Jackson and colleagues used a reaggregate spheroid cell culture model 

combined with LPC-induced demyelination and investigated fingolimod during the 

following spontaneous remyelination. They found that fingolimod increased the levels 

of MBP in the remyelination phase, possibly through ameliorating pathological effects 

related to microglia activation (Jackson, Giovannoni et al. 2011).  

 

In vivo, fingolimod given before LPC-induced demyelination decreased inflammation 

and demyelination. Additionally, the study reported increased OPC recruitment, 

oligodendrogenesis, and remyelination (Yazdi, Baharvand et al. 2015). Early 

intervention with fingolimod inhibits relapses in relapsing EAE, but long-term 

treatment initiated at a later time point does not slow the worsening, and secondary 

progression continues (Al-Izki, Pryce et al. 2011). Another study in the EAE model 

found that fingolimod treatment initiated post-onset of EAE symptoms, enhanced 
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remyelination, OPC proliferation and -differentiation (Zhang, Zhang et al. 2015). 

Fingolimod attenuated demyelination, acute axonal damage, astrocyte, and microglia 

activity and increased the number of OLGs during cuprizone induced demyelination 

when given from day one. However, when investigating the effect of rescue treatment 

on remyelination, they found no difference in remyelination, the number of OLGs, 

OPCs, or microglia compared to placebo. Moreover, there was an increased number of 

astrocytes (Kim, Miron et al. 2011). Rescue therapy with fingolimod has failed to 

improve remyelination in the cuprizone model, although fingolimod increased OPC 

proliferation and astrocyte activation (Hu, Lee et al. 2011). In a study of acute and 

chronic cuprizone-induced demyelination, Slowik et al. found that fingolimod did not 

affect remyelination, microglia or astrocytes in the corpus callosum and the cerebral 

cortex of mice. However, the study reported less acute axonal damage in fingolimod-

treated mice compared to placebo in both acute and chronic lesions (Slowik, Schmidt 

et al. 2015). Early treatment with fingolimod was shown to suppress demyelination, 

OLG death, microglia, and astrocyte activation, possibly through S1PR1 signaling. 

However, fingolimod, as rescue therapy, failed to increase remyelination (Kim, 

Bielawski et al. 2018).  
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2 Aims of the thesis 

2.1 General aim:  

 

The overall objective of the thesis was to investigate the effects of calcitriol and 

fingolimod on remyelination in the cuprizone model for de- and remyelination.   

 

2.2 Specific aims:  

 

1) To examine the effect of high-dose calcitriol on remyelination, axonal damage, 

and axonal loss in the cerebrum of cuprizone mice by applying IHC. This is 

addressed in papers I and II.  

 

2) To investigate how fingolimod impacts remyelination, axonal damage, and 

axonal loss in the cerebrum and cerebellum of cuprizone mice by applying IHC 

and proteomics. This is addressed in papers III and IV.  
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3 Methodological considerations 

3.1 Experimental models  

 

There are several experimental MS-models that replicate different pathophysiological 

aspects of the disease. Since the availability of brain tissue research samples from MS 

patients is limited, especially from the early disease phases, experimental models are 

an essential contribution to MS research as they allow us to look at different 

pathological mechanisms and hypotheses under controlled conditions. The models 

illustrate demyelination, but some of them also allow us to investigate and achieve 

more insight into the process of remyelination, why it fails, and how compounds may 

enhance this process. However, all the models have limitations and reflect only part of 

the pathological spectrum. MS is a human disease, and none of the animal models 

entirely describes the pathophysiology underlying MS. The models are classified as 

autoimmune, viral, or toxin-induced demyelination (Blakemore and Franklin 2008).  

 

3.1.1 Experimental autoimmune encephalomyelitis (EAE) 

The experimental autoimmune encephalomyelitis (EAE) model was first studied by 

Rivers and Schwentker in monkeys (Rivers and Schwentker 1935). EAE is induced by 

immunization with CNS antigens emulsified in Freund’s adjuvant (active EAE) or by 

adoptive transfer of lymph node cells, T-cells, and clones from immunized animals to 

naïve recipients (passive EAE). Spontaneous EAE develops in T cell receptor 

transgenic mice. The model works mainly through T-cell (CD4+) driven autoimmunity 

towards CNS myelin proteins or peptides. The animals develop encephalomyelitis with 

pathologic changes in the BBB, T-cell infiltration, demyelination, and neuronal 

degeneration, resulting in neurologic episodes with paralysis (Kipp, van der Star et al. 

2012). EAE has contributed to the comprehension of CNS autoimmunity and the 

development of new DMTs for MS patients. Even though EAE and MS have 

similarities regarding inflammation, demyelination and overlapping pathology, they 

differ in pathogenesis, clinical presentation, and therapy response (Lassmann 2019). 

The autoimmune destruction affects both myelin and axons unpredictably and in 
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different locations. Therefore this model, with its limitations, may not be the most 

reliable for studying the mechanisms of endogenous remyelination (Skripuletz, Gudi 

et al. 2011).  

 

3.1.2 Viral models 

In animals, natural infections with viruses can induce myelin damage in the CNS. 

Inoculation of a virus in susceptible animals leads to inflammation and demyelination. 

Some of the viruses used are measles, semliki forest virus, and mouse hepatitis virus 

(Kipp, van der Star et al. 2012). One of the most widely used models is Theiler’s virus-

induced encephalitis, where infection with the picornavirus leads to progressive 

demyelination due to T-lymphocyte infiltration (Theiler 1934, Kipp, van der Star et al. 

2012).  

 

3.1.3 Toxin models  

Toxin models may be induced by focal injections or systemic administration. Among 

the most used toxins to induce focal demyelination is lysolecithin (LPC) (Hall 1972) 

and ethidium bromide (Yajima and Suzuki 1979). Remyelination and varying degrees 

of OPC, OLG, and astrocyte death occur in both models (Blakemore and Franklin 

2008). These models require special equipment (Kipp, van der Star et al. 2012), for 

stereotaxic lesioning of white matter tracts in the rodent brain. Thus, the technique 

may be better suited for studies in larger animals, such as rats (Stidworthy, Genoud et 

al. 2003).  
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3.1.3.1 The cuprizone model for de- and remyelination 
 

For this thesis, we used a model of the systemic toxin, cuprizone (bis-cyclohexanone 

oxaldihydrazone). This model is commonly used to study de- and remyelination 

(Skripuletz, Gudi et al. 2011). Gustav Nilsson was the first to describe cuprizone in 

the 1950s (Praet, Guglielmetti et al. 2014). However, cuprizone was established as a 

neurotoxin for mice first by W.W. Carlton and was originally described to cause 

spongy degeneration and hydrocephalus (Carlton 1966). Much of the early work by 

Ludwin, Blakemore, and colleagues created the basis for further work in the model 

(Blakemore 1973, Blakemore 1973, Ludwin 1978). Later, Matsushima and 

colleagues refined the model (Matsushima and Morell 2001).  

 

Cellular effects of cuprizone exposure 

The cuprizone model is a mechanism model that allows studying specific aspects of 

MS pathology, such as de- and remyelination. Cuprizone mainly affects OLGs, 

causing inflammation, OLG death, and demyelination; OPCs and astrocytes are 

spared (Blakemore and Franklin 2008). Microglia/macrophages are observed at week 

one of cuprizone exposure, the number usually peaks between weeks four and six 

(Hiremath, Saito et al. 1998). Astrocyte activation is evident after three weeks and 

peak around week five (Skripuletz, Gudi et al. 2011). In contrast to the more transient 

microglia activation, astrocytosis may persist for weeks (Gudi, Gingele et al. 2014). 

During week three of exposure, OPCs are recruited and start to differentiate in week 

five. Remyelination occurs already in week 5, during cuprizone exposure, and is 

evident in week six (Matsushima and Morell 2001). Microglia/macrophages 

phagocyte myelin debris and dead cells, recruit OPCs, give trophic support, and 

facilitate tissue remodeling (Praet, Guglielmetti et al. 2014). Moreover, astrocytes 

have been suggested to modulate the removal of myelin debris and facilitate 

remyelination by recruiting microglia/macrophages (Skripuletz, Hackstette et al. 

2013). Astrocytes and microglia/macrophages co-operate, and both cells respond to 

and actively participate in de- and remyelination. Thus, a controlled inflammatory 
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response seems to be required for successful myelin regeneration (Gudi, Gingele et 

al. 2014).  

In the cuprizone model, the BBB remains intact (Bakker and Ludwin 1987), in part 

explaining the lack of B and T lymphocytes. Only a few T lymphocytes are present 

(Wergeland, Torkildsen et al. 2012). Moreover, axonal damage is present, and 

remyelination may protect against axonal degeneration after cuprizone-induced 

demyelination (Irvine and Blakemore 2008). Although mice seem to recover 

completely, the axonal damage continues (Manrique-Hoyos, Jurgens et al. 2012), and 

prolonged cuprizone exposure results in increased axonal degeneration, despite 

remyelination (Lindner, Fokuhl et al. 2009).  

 

Mechanisms of cuprizone  

Copper (Cu) is a cofactor in several enzymatic processes, and disturbance in Cu 

homeostasis may be the reason for cuprizone pathology. Cuprizone has been suggested 

to entrap Cu within the cell or to induce Cu deficiency by Cu chelation, resulting in the 

pathologic effects of cuprizone (Rossi, Lombardo et al. 2004). Cu brain content 

decreased after cuprizone exposure (Venturini 1973); cuprizone does not cross the 

intestinal barrier and does not accumulate in the liver or the brain, supporting that the 

neurotoxic effect could be due to Cu chelation resulting in Cu deficiency (Benetti, 

Ventura et al. 2010). Other studies have speculated that cuprizone has to be present in 

the brain; the physicochemical behavior of cuprizone is reviewed by Praet and 

colleagues (Praet, Guglielmetti et al. 2014). Carlton et al. failed to antidote the effect 

of cuprizone by feeding Cu supplements (Carlton 1967), suggesting that cuprizone (or 

a metabolite of cuprizone) could be toxic per se regardless of Cu deficiency (Kipp, 

Clarner et al. 2009). Feeding a 0.5% cuprizone diet leads to status spongiosus 

(vacuolation) in the CNS and formation of megamitochondria in the liver (Suzuki and 

Kikkawa 1969). Moreover, Venturini and colleagues showed that cuprizone affects 

mitochondrial proteins by inhibiting monoamine oxidase (MAO), cytochrome oxidase 

(complex IV), and increasing the succinate dehydrogenase (complex II) activity. They 

concluded that the mechanism could be enzymatic inhibition affecting the cellular 

respiration. Inhibition of mitochondrial respiration might reduce the adenosine 
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triphosphate (ATP) synthesis, and status spongiosus could be a result of inhibition of 

active transport (Venturini 1973). In addition, to produce ATP, mitochondria play a 

key role in other processes, such as calcium homeostasis and apoptosis; thus, 

disturbance in mitochondria and the energy metabolism could induce cell death 

(Skripuletz, Gudi et al. 2011). Megamitochondria in the liver are not observed with a 

0.2% diet (Hiremath, Saito et al. 1998).  

 

Cuprizone seems to have selective toxicity to OLGs in vitro (Benardais, Kotsiari et al. 

2013), and may elevate the production of ROS/RNS, resulting in increased oxidative 

stress in OLGs (Praet, Guglielmetti et al. 2014). Cuprizone especially inhibits complex 

IV activity (Acs, Selak et al. 2013). OLG death is extensive in the cuprizone model, 

and OLGs seem to be especially susceptible to cuprizone, Cu deficiency, or other 

alterations in the Cu homeostasis. Furthermore, oxidative stress could lead to stress on 

the ER, and ER stress reduce mRNA transcription/translation (preventing the 

accumulation of misfolded proteins) (Praet, Guglielmetti et al. 2014). Thus, 

downregulation of myelin protein is observed early after cuprizone exposure; however, 

re-expression occurs (Morell, Barrett et al. 1998, Lindner, Heine et al. 2008, Kipp, 

Clarner et al. 2009). Werner et al found proteomic analysis to be a useful tool to 

highlight effects during de- and remyelination in the cuprizone model. Mitochondrial 

function was shown to be the most altered cellular function subsequent to cuprizone 

exposure. Moreover, myelin-related and OLG-specific proteins decreased after 

cuprizone exposure and increased towards control levels during recovery (Werner, 

Saha et al. 2010). Proteomic analysis of the cortex, spleen, and skeletal muscle of 

cuprizone mice, revealed wider biochemical and cellular effects of cuprizone. Protein 

alterations in the cortex were related to axon growth, energy metabolism, and calcium 

signaling (Partridge, Gopinath et al. 2016). Cuprizone also affects the myelin lipid 

metabolism, shown by the decrease in the myelin-specific lipids cerebroside and 

cholesterol (Jurevics, Largent et al. 2002), in addition to phospholipids. These represent 

the largest portion of lipids in myelin.  
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The most well-known and plausible hypothesis is that maintenance of myelin causes a 

high metabolic demand in OLGs; when there is too little energy, these cells become 

especially vulnerable (Matsushima and Morell 2001, Kipp, van der Star et al. 2012). 

OPCs survive cuprizone exposure, this could be due to a less energy demanding 

metabolism, as OPCs become vulnerable when they differentiate into OLGs. 

Moreover, under continuous cuprizone exposure, newly differentiated OLGs die 

around week eight of exposure; and remyelination is limited. This is probably due to a 

depletion in available OPCs and, or increase in inhibitory or decrease in stimulation 

signals that result in halted OPC recruitment/differentiation (Praet, Guglielmetti et al. 

2014). A critical time window for remyelination has been suggested as cuprizone 

exposure over one and a half week seems to drive axonal damage beyond repair 

(Crawford, Mangiardi et al. 2009). Axonal degeneration may continue on a low level, 

gradually accumulate and eventually become evident, despite initially completed 

remyelination (Manrique-Hoyos, Jurgens et al. 2012). Therefore, initiating early 

remyelination, before demyelination-induced axonal damage, may be crucial to 

improve axon recovery and inhibit disease progression. Nevertheless, it seems like 

once OLGs are disturbed by cuprizone, an irreversible sequence of cellular and 

inflammatory events starts that results in OLG death and demyelination. In recent 

years, the mechanism of the cuprizone model has become more elucidated, yet further 

work remains before the model is fully understood. Altogether, current knowledge 

indicates that Cu chelation by cuprizone leads to disturbances in the Cu homeostasis, 

alteration in mitochondria enzyme function, with further increase in oxidative stress. 

ER stress disrupts the myelin protein and lipid synthesis. Prolonged mitochondria stress 

and activation of the innate immune system result in OLG death and demyelination 

(Praet, Guglielmetti et al. 2014).  
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Cuprizone administration  

The cuprizone toxin can be mixed into animal food and is easy to administrate. 

Although cuprizone easily induce demyelination, the effect depends on the specifics of 

the experiment. Cuprizone has been used in rats, guinea pigs (Carlton 1969), as well as 

several mice strains (Praet, Guglielmetti et al. 2014). The effect of cuprizone depends 

on the mice strain (Skripuletz, Lindner et al. 2008), and C57Bl/6 mice are usually used 

in cuprizone experiments (Skripuletz, Gudi et al. 2011, Gudi, Gingele et al. 2014). 

Early studies showed that a 0.5% cuprizone diet caused growth restriction, 

demyelination, and hydrocephalus (Carlton 1966). However, 0.2% cuprizone diet 

reduced the toxic effect of cuprizone (Carlton 1967). Thus, the dose has to be taken 

into concern according to the strain (Matsushima and Morell 2001, Skripuletz, Gudi et 

al. 2011).  

 

Moreover, the duration of exposure is crucial. To mimic acute demyelination and 

subsequent remyelination, six weeks of exposure is common. However, it is also 

possible to mimic chronic demyelination, 12 weeks of exposure is common and without 

further detrimental effects. Age at the time of cuprizone exposure is also essential; 8-

10 weeks old mice have shown reproducible demyelination and fewer unwanted side 

effects such as liver toxicity and death. Established by Hiremath and colleagues, the 

most common cuprizone protocol is to feed 8-week-old C57Bl/6 mice 0.2% cuprizone 

for six weeks. Demyelination is evident at the third week and completed during the 

fifth-sixth week of exposure, depending on the investigated area (Hiremath, Saito et al. 

1998). Complete demyelination occurs in the corpus callosum after five weeks and in 

the cortex after six weeks (Gudi, Gingele et al. 2014). The model is also used in 

transgenic C57Bl/6 mice (Praet, Guglielmetti et al. 2014). Demyelination is 

anatomically localized, and the corpus callosum is the most investigated area. 

However, demyelination also occurs in several other areas. Later studies established 

that demyelination is evident and widespread in the grey matter (Skripuletz, Lindner et 

al. 2008, Skripuletz, Gudi et al. 2011, Goldberg, Clarner et al. 2015).  
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There is regional heterogeneity in the pathology between the corpus callosum and 

cortex (Wergeland, Torkildsen et al. 2012). Demyelination and remyelination of the 

cerebellum are well described in mice (Groebe, Clarner et al. 2009, Skripuletz, 

Bussmann et al. 2010), demyelination is possibly less pronounced in the cerebellar 

cortex (Groebe, Clarner et al. 2009).  

 

Gender may affect the degree of demyelination. Nevertheless, both male and female 

C57Bl/6 mice showed a similar pattern of de- and remyelination (Taylor, Gilmore et 

al. 2010). Initial body weight is critical for the outcome of the experiment (Kipp, 

Clarner et al. 2009), and the weight is influenced by the dose of cuprizone, as diets 

above 0.2% cause extensive weight loss (Hiremath, Saito et al. 1998). Cuprizone 

causes subtle behavioral changes, and parameters such as motor, anxiety, fatigue, sleep, 

and pain, have been studied, and there are several standardized tests. Motor behavior 

is the most frequently studied parameter, and the RotaRod test is the most commonly 

used test (Sen, Mahns et al. 2019).  
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Cuprizone – value in MS research 
 
Based on the heterogeneity within active MS lesions, the four distinct patterns of 

demyelination were described by Lucchinetti and colleagues. Patterns I and II are 

described as autoimmune-mediated, while III and IV resemble a primary 

oligodendrogliapathy (Lucchinetti, Bruck et al. 2000). Cuprizone-induced 

demyelination is more similar to pattern III, and to a lesser extent pattern IV pathology. 

This is due to OLG disturbance and apoptosis, and ill-defined demyelination lesion 

with many microglia/macrophages. Axonal swelling is observed both in pattern III and 

cuprizone lesions. The pattern does not correspond accurately; for example, the 

cuprizone demyelinated lesions lack perivenous distribution and inflammation, BBB 

breakdown, and infiltration of T-lymphocytes (Lucchinetti, Bruck et al. 2000, Kipp, 

Clarner et al. 2009). Thus, the cuprizone model only elucidates some of the 

mechanisms involved in MS. Nevertheless, in order to examine the direct CNS effects 

of compounds, especially during remyelination and independently of the adaptive 

immune system, a mechanistic model like the cuprizone model is a good option. The 

model is easy to administrate, requires little equipment, and is well characterized and 

reproducible (Skripuletz, Gudi et al. 2011, Zendedel, Beyer et al. 2013). 
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3.2 Design of the study on the effect of high-dose 1.25-dihydroxyvitamin D3 on 

remyelination and axonal damage in the cuprizone model (paper I and II) 

 

In paper I, we investigated the effect of high-dose calcitriol on remyelination. Paper II 

assessed axonal damage in two different experiments; in the demyelinating experiment, 

the analysis was performed on mice obtained from an earlier study by Wergeland and 

colleagues. Mice were randomized into four different diets with supplements of 

cholecalciferol. The experiment showed that high-dose cholecalciferol did not improve 

the rate or degree of remyelination (Wergeland, Torkildsen et al. 2011) The 

remyelinating experiment (presented in paper I and II) was a follow-up study of the 

results of Wergeland et al., investigating the effects of calcitriol on remyelination and 

axonal damage.  

 

3.2.1 Mouse strain 

In the first experiment of the thesis (paper I and II), we used 48, female C57Bl/6 mice. 

The strain was chosen as de- and remyelination has been established in this strain 

(Hiremath, Saito et al. 1998). The strain is the most investigated (Skripuletz, Gudi et 

al. 2011), allowing comparison with other studies. The genetic background and 

phenotype of this strain is uniform. Therefore, genetic variation does not need to be 

taken into consideration in the planning of the study (Torkildsen, Brunborg et al. 2008). 

Male mice are more commonly used; however, the pattern of de- and remyelination is 

similar between genders in this strain (Taylor, Gilmore et al. 2010). As female mice 

have less aggressive behavior towards each other and humans than male mice, female 

mice were chosen for the experiment.  
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3.2.2 Study design of the remyelination experiment 

In paper I, the results from three different time points during remyelination are 

presented. Due to a large amount of data and findings pointing in the same direction 

(data not published), we chose to only present data from three weeks of remyelination, 

in paper II.  

 

Figure 7 

Overview of weeks, experimental groups, cuprizone exposure, intraperitoneal (ip.) 

injections and euthanasia for the remyelination experiment presented in papers I and 

II.  
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3.2.3 Administration of cuprizone, calcitriol, and cholecalciferol 

Mice were randomized to ip. injections of either 0.2 μg calcitriol or placebo twice 

weekly from week six throughout week nine. The determination of the dose was based 

on a study in EAE mice, where daily ip. injections of 20 ng calcitriol prevented EAE. 

Further, injection of 300 ng calcitriol at EAE symptom onset halted EAE progression. 

The latter dose increased the calcium levels, yet the treatment was well tolerated 

(Cantorna, Hayes et al. 1996). To monitor adverse effects associated with calcitriol, we 

measured serum levels of calcium, 25(OH)-vitamin D3, and 24.25(OH)2-vitamin D3. 

Due to the short half-life, it is not convenient to measure serum calcitriol.  

Cantorna et al. used ip. injections, which might reduce variation in bioavailability. 

Based on this, we chose ip. injections, even though administration through diet, which 

is an easy and established method, could have been an option. Another reason for ip. 

injections were that the previous study by Wergeland and colleagues showed that it 

took several weeks to obtain steady-state serum levels of cholecalciferol when 

cholecalciferol was added to the diet. Calcitriol is the biologically active form of 

vitamin D and does not need to be enzymatically converted to achieve an effect. 

Avoiding the need for enzymatic conversion by using calcitriol and securing rapid 

uptake through ip. injections allowed us to study the limited time of regeneration after 

cuprizone termination, while calcitriol exerts its effect, in the best possible way.   

 

Demyelination was induced by 0.2% cuprizone, as this is shown to give sufficient 

demyelination with subsequent spontaneous remyelination and a minimum of adverse 

side effects. Cuprizone was added to the milled mouse chow (Skripuletz, Gudi et al. 

2011), which is easy to administrate and gives an adequate intake of cuprizone. The 

cuprizone exposure was continued for seven weeks to ensure a high serum level of 

calcitriol within and throughout the remyelination phase.  
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3.2.4 Investigated areas in the cerebrum  

In papers I and II, we investigated the midline of the corpus callosum at the bregma ± 

1mm. The level of bregma in a C57Bl/6 mouse brain is illustrated by zero in figure 8 

and in a coronal section of the brain (figure 9).  

 

 

 
Figure 8 

The mouse brain, bregma = 0 (http://www.mbl.org/atlas170/atlas170_frame.html). 

 

 
Figure 9 

Coronal section of the mouse brain.  

Neurogenetics at UT Health Science Center ©1999 RW Williams, design by AG 

Williams, atlas by T Capra (http://www.mbl.org/atlas170/atlas170_frame.html). 
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3.2.5 Histochemistry and immunohistochemistry 

We investigated different features such as myelin loss, OLGs, astrogliosis, 

microglia/macrophage activation, T-lymphocytes, and axonal damage using 

histochemistry (HC) or IHC. Sections were evaluated in the midline area of the corpus 

callosum, from the bregma ± 1 mm. In paper II, three different immunohistochemical 

markers of axonal damage and loss were used. The primary antibodies for papers I and 

II are specified in table 1. 

 

Antibody Host, 

isotype 

Working 

dilution 

Incubation 

time/ 

Temperature 

Demasking Provider 

Paper I      

Anti-GFAP Rabbit, 

IgG1 

1:2000  ½h/RT  Tris-EDTA Dako 

(Agilent) 

Anti-NOGO-A Rabbit, 

pAb 

1:1000 1h/RT Citrate Chemicon  

Anti-MAC-3 Rat,  

IgG1 

1:200 24h/RT Citrate BD 

Biosciences  

Anti- CD3 Rabbit, 

pAb 

1:500 ½h/RT Tris-EDTA Dako 

 Paper II 
 
Anti-NFL Mouse 

mAb 

1:1600  1h/ RT  Tris-EDTA Millipore 

Anti-NFH  

(non-p) 

Mouse 

mAb 

1:2000 1h/RT Citrate Millipore 

Anti-APP Mouse 

mAb 

1:2000 24h/RT Citrate Millipore 

Table 1  

Papers I and II, antibodies used for immunohistochemistry specified. 

pAb = polyclonal antibody, RT = room temperature, non-p = non-phosphorylated. 
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Semi-quantitative methods 
 
To study remyelination, we chose an easy yet reliable semi‐quantitative method. Based 

on studies by Lindner and colleagues, we used the histochemical staining with LFB 

where myelin loss is quantified by a semi‐quantitative scoring system from completely 

myelinated (0) to completely demyelinated (3) (Hiremath, Saito et al. 1998, Lindner, 

Heine et al. 2008). Astrocytosis was assessed semi‐quantitatively: no (0), minimal (1), 

moderate (2), or severe (3) reactive astrocytosis, as described before (Bruck, Pfortner 

et al. 2012, Wergeland, Torkildsen et al. 2012). Although GFAP staining is not specific 

and only labels a small fraction of astrocytes, this is the most widely used method 

(Molina-Gonzalez and Miron 2019).  

 

Density of cells 

To evaluate the density of cells, we used an ocular morphometric grid to count the 

number of immunoreactive cells in an area of 0.0625 mm2 at 40x. Mature OLG density 

was quantified as the number of NOGO‐A immunopositive cells in the area. This 

method has been earlier validated in the cuprizone model (Kuhlmann, Remington et al. 

2007). No molecular marker differentiates between myelinated and remyelinated axons 

(Kuhlmann, Ludwin et al. 2017). However, BCAS1+ cells have been suggested to 

represent early, myelinating OLGs, and might identify active re-/myelination. The 

marker was found in both active and inactive lesions (Fard, van der Meer et al. 2017). 

Thus, adding this marker could be of value in future experiments. Moreover, we chose 

to quantify microglia/macrophages, T-cells, and acute axonal damage by using the 

reliable and well-described markers Mac-3 (Lindner, Fokuhl et al. 2009), CD3 and APP 

(Kuhlmann, Ludwin et al. 2017).  

 

Neurofilaments 

The specialized intermediate filament of nerve cells, neurofilament, is a structural 

protein that consists of three subunits; heavy (NFH), medium (NFM), and light (NFL) 

in reference to their molecular mass. Neurofilaments have important functions in the 

development and maintenance of neurons. A disruption in neurofilament structure may 

result in axonal disorganization and in the end, axonal degeneration. SMI-32 
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recognizes the non-phosphorylated epitope of the heavy and medium neurofilament 

subunits (Ouda, Druga et al. 2012). The reaction is masked when the epitope is 

phosphorylated. Neurofilaments in healthy myelinated axons are phosphorylated, and 

therefore not stained by SMI-32. Thus, SMI-32 immunoreactivity, in normally 

myelinated regions of the brain, provides a sensitive marker for axonal injury (Trapp, 

Peterson et al. 1998). Previously, in the cuprizone model, SMI-32 staining has been 

observed after long-term demyelination (after eight weeks) as punctuations, ovoids, 

and continuous lines. The same study hypothesized that SMI-32 represents another 

pattern of axonal damage, detecting slow degeneration of axons, in contrast to APP 

staining, which is associated with acute axonal damage and transection (Lindner, 

Fokuhl et al. 2009). Moreover, we used anti-NFL to label axonal loss. Of note, a major 

advantage of the latter marker is that NFL may also be measured in CSF and blood 

(Disanto, Barro et al. 2017). 

Quantifying immunoreactivity 

An image-based technique for calculating immunoreactivity was used when analyzing 

phosphorylated NFL and non-phosphorylated NFH (SMI-32). By using the program 

Image J (Rasband 2012), an original image was converted into a greyscale image, 

before unspecific background staining was manually adjusted. Then the picture was 

again compared to the original image before calculating the area of the fraction of 

immunopositive staining. The image-based technique is an alternative to semi-

quantitative calculation (Wergeland, Torkildsen et al. 2012). In paper II, only a few 

SMI-32 positive axons were detected after six weeks of cuprizone exposure, consistent 

with the observations of Lindner and colleagues. Therefore, at least in the cuprizone 

model, SMI-32 might be more suitable to show axonal damage after long-term 

demyelination.  
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3.2.6 Weight and RotaRod test 

Weight measurements were conducted twice weekly. The initial mean weight was 

19.6 g ± SD 1.5 (Nystad, Wergeland et al. 2014). One mouse weighed 15 g and died 

during week six; this was probably due to the low initial weight (Skripuletz, Gudi et al. 

2011). Motor coordination was tested twice weekly throughout the experimental period 

using the RotaRod test. This test is one of the most frequently used motor behavior 

tests. The mice are placed on a rotating rod, where the rotation speed increases with 

constant acceleration. Mice with impaired motor/coordination skills will have reduced 

capacity to stay on the rod, thus, shorter time intervals (Sen, Mahns et al. 2019). We 

could not detect any differences between the groups during the remyelination process. 

Although the RotaRod test is the most commonly used motor performance test, it may 

be less sensitive and reliable compared to other tests, and we cannot exclude that other 

tests would have been better suited. However, as cuprizone mice show little reduction 

in motor performance, and the conduction of behavioral tests are time-consuming, 

additional tests would yield limited information. Other tests might be better suited to 

demonstrate a difference in behavior (Skripuletz, Gudi et al. 2011); however, this was 

beyond the scope of the study.  
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3.3 Design of the study of effects of and mechanisms of fingolimod on remyelination 

and axonal damage in the cuprizone model (papers III and IV) 
 
3.3.1 Study design, cuprizone, and fingolimod/placebo administration 

In paper III and IV, we investigated the effect of fingolimod on remyelination and 

axonal damage. We used 48, female C57Bl/6 mice. After 12 days of acclimatization, 

the mice (n=48) were randomized into four groups: healthy controls (n=6), cuprizone 

controls (n=6), cuprizone + fingolimod (n=18) and cuprizone + placebo (n=18). In this 

experiment, we followed a frequently used protocol adding 0.2% cuprizone to milled 

mouse chow for six weeks. Subsequently, mice were fed normal chow.  

 

Based on earlier studies, fingolimod, 1 mg/kg (Hu, Lee et al. 2011, Kim, Miron et al. 

2011, Deshmukh, Tardif et al. 2013), reconstituted in distilled water, or placebo 

(equivalent volume of water) was administered by oral gavage once daily from week 

five. Gavage administration is an alternative to ip. injections, gavage was chosen to 

resemble the normal daily intake of the drug. There was a one week overlap in 

cuprizone exposure and fingolimod treatment to ensure that fingolimod was taken up 

and phosphorylated to its active compound during the cuprizone exposure and the 

remyelination process. 
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Figure 10 

Overview of weeks, experimental groups, cuprizone exposure, daily gavage of 

fingolimod or placebo, and euthanasia for the remyelination experiment presented in 

papers III and IV.  
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3.3.2 Regional sampling sites for HC and IHC  

 
The sampling sites for the cerebellum (paper III) are stated in the manuscript. Two 

areas in the subcortical region, the purkinje cell layer, and the internal granule layer 

were investigated. In paper IV, we expanded the number of areas investigated, shown 

in figure 11. However, due to the extensive amount of data pointing towards the same 

direction (data not published), we chose to present data mainly from the corpus 

callosum. 

 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11 

Overview of areas investigated in paper IV.  
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3.3.3 Histopathology and immunohistochemistry 

For papers III and IV, we added several antibodies, elucidating remyelination, and 

axonal damage and loss. Although the time points for euthanasia are presented slightly 

differently in the two manuscripts, they correspond, and the analysis for cerebrum and 

cerebellum are, thus, comparable (1 wr = DM, 2wr = 1RM, 4wr = 3RM). However, to 

avoid confusion and increase comprehension, the manuscripts could have benefited 

from a more equal and precise presentation. Moreover, the use of identical markers in 

both tissues would have made it easier to compare the data directly. IHC for paper III 

was performed by Alme and colleagues, and are stated in paper III.  Primary antibodies 

for paper IV are specified in table 2. 

 

Antibody Host, 

isotype 

Working 

dilution 

Incubation 

time/ 

Temperature 

Demasking Provider 

Anti-PLP Mouse, 

monoclonal 

1:1000 24h/4°C Citrate Serotec 

Anti-GFAP Rabbit, 

monoclonal 

1:2000  ½h/RT  Tris-EDTA Dako 

(Agilent) 

Anti-NOGO-A Rabbit, 

polyclonal 

1:1000 1h/RT Citrate Chemicon  

Anti-MAC-3 Rat,  

monoclonal 

1:200 24h/RT Citrate BD 

Biosciences  

Anti-CD3 Rabbit, 

polyclonal 

1:500 ½h/RT Tris-EDTA Dako 

Anti-APP Mouse, 

monoclonal 

1:2000 24h/4°C Citrate Merck 
 

Anti-NFL Mouse, 

monoclonal 

1:1600 1h/RT Tris-EDTA Merck 

Table 2  

Paper IV, antibodies used for immunohistochemistry specified.  
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3.3.4 Quantitative mass spectrometry-based proteomics 

 

Through quantitative proteomics, it is possible to identify and quantify thousands of 

proteins simultaneously and compare them quantitatively between biological 

conditions. In this approach, the proteins are typically proteolytically cut into shorter 

sequences called peptides, e.g., by the sequence-specific protease trypsin. The resulting 

peptides are separated by high-performance liquid chromatography and analyzed by 

the mass spectrometer, e.g., by liquid-chromatography electrospray-ionization mass 

spectrometry system (LC-MS). Simply put, the mass spectrometer contains an ion 

source that provides molecules with charges, a mass analyzer that measure the mass-

to-charge ratio (m/z) of the charged molecules, and a detector that records signal 

intensity. Following mass spectrometry analysis, the information is stored in spectra 

and used to identify and quantify peptides, and subsequently proteins, using software 

tools. The technique is sensitive and allows a high throughput of proteins as reviewed 

in (Aebersold and Mann 2003) and (Pappireddi, Martin et al. 2019).  

 

In paper IV, the frontal right hemisphere of mice receiving fingolimod or placebo was 

dissected and prepared for analysis by quantitative proteomics. The six biological 

replicates in each condition were divided into three pools containing two biological 

replicates in each and, following the trypsinization, the samples were individually 

labeled with tandem mass tags (TMT-tags). TMT tags are stable isotopes that allow 

simultaneous analysis of up to 16 samples in one LC-MS/MS run, thereby reducing the 

number of runs and technical variation (Ragnhild Lereim, personal communication). 

Following labeling, the TMT experiments were fractionated to reduce the sample 

complexity and maximize the number of proteins identified and quantified by LC-

MS/MS.  

 

Werner et al. used proteomic analysis to identify altered brain proteins during de- and 

remyelination in the cuprizone model. The results suggested that whole-brain proteome 

analysis could be a useful method to elucidate de- and remyelination in this model 

(Werner, Saha et al. 2010). In the present proteomic analysis, we used tissue from the 
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right, frontal brain, including tissue from the corpus callosum for the proteomic 

analysis, meaning that the proteomic results show an overall average difference, where 

several cell types and signaling pathways may be included. Moreover, as we used pools 

for proteomic analysis, the results do not say anything about individual changes. We 

do not show in which specific region the proteomic changes occur. As cuprizone-

induced demyelination are region specific (Skripuletz, Gudi et al. 2011), using specific 

regions for the proteomic analysis could be more optimal. However, analysis of 

particular areas, such as the corpus callosum, would require a large number of mice to 

obtain a sufficient amount of tissue. In addition, microdissection of the mouse brain is 

very demanding, both technically and time-wise. Another limitation is that we could 

not discern specific cell types. Thus, we can’t show if there is an altered protein 

expression between different types of cells. This was, however, outside the scope of 

our study. All the proteomic analyses, statistical calculations, and interpretation were 

in collaboration with colleagues at PROBE.   
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3.4 Statistics 

 

The calcitriol experiment was based on the results from previous results in our group 

(Wergeland, Torkildsen et al. 2011). The power calculation of the fingolimod 

experiment was based on the calcitriol experiment. Based on the difference in myelin 

content between calcitriol- and placebo-treated mice from (Nystad, Wergeland et al. 

2014), a sample size of six animals per experimental group would give a power of 0.7 

to detect a difference corresponding to an effect size δ of 1.67 (mean LFB-score of 2.0 

± SD 0.6 and 1.0 ± 0.6 after three weeks of remyelination). Due to some technical 

issues with slicing and staining, all animals could not be included for the analysis; thus, 

the power could be less than 0.7. To get more robust data, a higher sample size could 

have been included in the experiment to get more power.  

 

We used the Kolmogorov-Smirnov test and/or Shapiro-Wilk test to assess the normal 

distribution of the data together with the assessment of descriptive data such as 

histograms, boxplots, and Q-Q plots. The boxplots were investigated for outliers, which 

were removed when applicable. Descriptive statistics were presented as mean or 

median with SD. In paper I, we presented the data with mean and SEM; however, a 

more common presentation would have been with SD. For parametric data t-test or 

one-way analysis of variance (ANOVA) with Fisher’s least significant difference 

(LSD) for post hoc analysis was used. Non-parametric data were analyzed by using the 

Mann-Whitney U test or Kruskal-Wallis H-test. For non-parametric related data, 

Wilcoxon’s signed-rank test was used. For all manuscripts, differences were 

considered significant at p < .05. The latest version of SPSS was at all times used to 

calculate the results.  
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3.5 Ethics 

 

The cuprizone model provides isolated OLG death and demyelination, allowing us to 

study the remyelination process without the infiltration of T-cells. Examination of de- 

and remyelination is not possible in tissue cultures, and satisfactory in vitro models are 

not available (Franklin and Kotter 2008). There are currently no other models that can 

replace animal models for this type of experiment. Therefore, it is difficult to replace 

this experiment and find better options to investigate this issue.  

 

Cuprizone given in the appropriate doses has previously not been reported to cause 

significant discomfort or pain to the animals. The mice do not get paralysis when the 

right amounts and duration of cuprizone is given. Unlike in other animal models, 

demyelination is almost completely reversible in the cuprizone model. Weight loss and 

decreased activity or hyperactivity have been observed during cuprizone 

administration. However, the mice seem not to be distressed, they regain weight and a 

normal activity level (Morell, Barrett et al. 1998).  

 

We performed two animal experiments. During the trial period, the mice were 

inspected daily and assessed for weight loss, dehydration, and loss of motor skills. Mice 

experiencing signs of discomfort or major weight loss were sacrificed. At the end of 

the experiments, to minimize discomfort, the animals were anesthetized and killed by 

exsanguination (cardiac puncture). Aiming to reduce the number of animals in the 

experiment, we did an a priori statistical power analysis and reduced the number of 

control animals. Different species of animals react differently to cuprizone; C57Bl/6 

mice are the most widely used mice strain in this model (Torkildsen, Brunborg et al. 

2008). The experiments were carried out in accordance with the Federation for 

European Laboratory Animal Science Associations recommendations, and the 

protocols were approved by the Norwegian Animal Research Authority (permit # 2012-

4421 and # 2013-5682).  
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4 Summary of the papers 

4.1 “Effect of high-dose 1.25 dihydroxyvitamin D3 on remyelination in the cuprizone 

model” 

Nystad AE, Wergeland S, Aksnes L, Myhr KM, Bø L, Torkildsen O.  

APMIS. 2014 Dec;122(12):1178-86. 

 

After six weeks of cuprizone exposure, there was a significant loss of myelin compared 

to healthy mice. Calcitriol-treated mice had less myelin compared to placebo-treated 

mice after seven weeks of cuprizone exposure. However, the myelin in the placebo 

group had an unstructured pattern, resembling damaged myelin. There was no 

difference between the groups after one week of remyelination. However, after three 

weeks of remyelination, calcitriol-treated mice had more myelin compared to placebo-

treated mice. The number of mature OLGs were higher in the calcitriol-treated mice 

compared to placebo at all time points; the difference was significant after one week of 

remyelination. The calcitriol group had earlier astrocyte activation than the placebo 

group. The difference was significant after seven weeks of cuprizone exposure. We 

saw the same pattern for microglia/macrophage activation. Initially, the activation was 

increased in the calcitriol group, but the difference was only significant after one week 

of remyelination, where the placebo group had increased activation compared to the 

calcitriol group. The s-calcium levels were normal at all time points. There was no 

difference in motor performance between the groups.  
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4.2 “Effects of vitamin D on axonal damage during de- and remyelination in the 

cuprizone model” 

Nystad AE, Torkildsen Ø, Wergeland S. 

J Neuroimmunol. 2018 Aug 15;321:61-65.  

 

We investigated the effects of high-dose versus low-dose cholecalciferol and high-dose 

calcitriol versus placebo, on axonal damage and loss in the cuprizone model. Two 

experiments in the cuprizone model were used. In the first experiment, mice were fed 

high-dose or low-dose cholecalciferol before and during cuprizone induced 

demyelination. In the second experiment, mice were injected with high-dose calcitriol 

or placebo, after cuprizone induced demyelination, and during remyelination. IHC was 

used to assess axonal damage and axonal loss in the corpus callosum. After six weeks 

of cuprizone exposure, mice treated with high-dose of cholecalciferol had less axonal 

loss as measured by NFL immunopositivity compared to mice treated with low-dose 

cholecalciferol. There was more acute axonal damage in the low-dose group, as 

measured by the density of APP immunopositive bulbs; however, the difference was 

not statistically significant. In the remyelination experiment, there was no difference in 

APP, SMI-32, or NFL immunoreactivity in calcitriol mice compared to placebo.  
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4.3 “Fingolimod does not enhance cerebellar remyelination in the cuprizone model”  

Alme MN, Nystad AE, Bø L, Myhr KM, Vedeler CA, Wergeland S, Torkildsen Ø. 

J Neuroimmunol. 2015 Aug 15;285:180-6.  

 

Mice were exposed to cuprizone for six weeks; treatment with 1 mg fingolimod or 

placebo daily by gavage was initiated from week five. Mice were assessed and scored 

in the subcortex and two areas of the rostral parts of the cerebellum. De- and 

remyelination was evaluated by PLP1- and MBP-staining. Subcortical demyelination 

was robust in cuprizone controls. Cuprizone caused demyelination in the cortex of the 

cerebellum compared to healthy control mice. There was evident remyelination in both 

fingolimod- and placebo-treated mice. However, there were no differences between the 

groups at any time point in all areas investigated. In both subcortical and cortical 

cerebellum, there was a loss of mature OLGs, as measured by NOGO-A 

immunopositivity, after cuprizone exposure. During remyelination, the number of 

OLGs increased similarly in both fingolimod- and placebo-treated mice. Astrocytosis 

was measured by the number of GFAP immunopositive cells. In the subcortex, there 

was an increase in GFAP-immunopositivity in cuprizone-exposed mice.  During the 

regeneration process, the immunopositivity remained high, without differences 

between fingolimod- and placebo-treated mice. Microglia/macrophages were stained 

by Iba1. Cuprizone caused a subcortical increase in Iba1-positive 

microglia/macrophages. The cerebellar cortex showed no significant changes in 

astrocytosis or microgliosis. Acute axonal damage was assessed by counting b-APP 

positive spheroids. Cuprizone control mice had increased axonal damage. Fingolimod 

caused no difference in subcortical acute axonal damage compared to placebo. There 

was no loss of axons after cuprizone exposure as measured by phosphorylated NFL at 

any time points. Fingolimod did not affect remyelination, mature OLG density, 

astrocytosis, microgliosis, or axonal damage.  
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4.4 “Fingolimod downregulates brain sphingosine-1-phosphate receptor 1 levels but 

does not promote remyelination or neuroprotection in the cuprizone model” 

Nystad AE, Lereim RR, Wergeland S, Oveland E, Myhr KM, Bø L, Torkildsen Ø. 

J Neuroimmunol. 2019 Oct 31;339:577091.  

 

In the study of the effect of fingolimod on remyelination in the cerebrum, we used 

TMT-labeling and proteomic analysis and detected 7949 proteins, of which 7183 were 

quantified. Further, 6386 of these formed the basis for the statistical analysis. Two 

proteins (S1PR1 and GNG5) in fingolimod-treated mice were downregulated at all time 

points compared to placebo-treated mice. However, only S1PR1 remained significant 

after false discovery rate correction. Hence, fingolimod was functionally active by 

downregulating S1PR1. LFB staining showed cuprizone induced demyelination in the 

corpus callosum after five weeks of exposure. There was no difference in myelin loss, 

as measured by LFB and PLP, in the corpus callosum or the cortex of mice fed 

fingolimod compared to placebo. Fingolimod-treated mice had increased density of 

mature OLG in the cortex after three weeks of remyelination, however, not at earlier 

time points, and there was no difference in the corpus callosum between the 

intervention groups. Supported by proteomic markers of myelination, the fingolimod-

treated groups did not show an increased expression of myelin proteins or mature OLGs 

compared to the placebo group. Both groups had a time-dependent increase in myelin-

associated proteins during the repair phase. Cuprizone caused increased 

microglia/macrophage and astrocyte activation after five weeks of exposure. 

Fingolimod did not affect microgliosis or astrocytosis in the corpus callosum or the 

cortex. The findings were supported by no difference in the proteomic markers between 

the intervention groups.  
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5 General discussion 

Current MS treatment is primarily immunomodulating and affects the inflammatory 

feature of the disease. Nonetheless, neurodegeneration causes deterioration and 

disability progression in MS patients. Therefore, to treat the aspect of repair in the 

disease is of high importance. In this Ph.D. project, we investigated the effect of 

calcitriol and fingolimod on the remyelination process and axonal damage in the 

cuprizone model, and partly the mechanisms that would be behind this effect. The 

articles included in this thesis support that calcitriol might be beneficial for the 

remyelination process in a mice model, which is thought to illustrate some of the 

immunopathological mechanisms behind MS. We could not show that fingolimod had 

the same beneficial effect.  

 

A major limitation of the results and implication of the studies is the choice of the 

cuprizone model. The exact mechanisms in this model are not fully known; this could 

affect the investigation of compounds in this model, especially during the 

demyelination process. However, in the experiments in this thesis, we investigated 

remyelination, which makes it less likely that cuprizone would affect the substances 

we studied. Moreover, the cuprizone model has been shown to be a reliable model to 

investigate remyelination (Skripuletz, Gudi et al. 2011). Cuprizone 0.2% diet, causes 

acute demyelination with subsequent remyelination. Although the repair process may 

begin in week five of cuprizone exposure, there is little overlap between de- and 

remyelination. The repair takes mainly place between two-three weeks after cuprizone 

withdrawal in week six. This allows investigation of remyelination relatively 

independent from the initial process of demyelination. In other models like EAE, it is 

difficult to separate the processes of de- and remyelination as they occur in parallel 

(Franklin and Kotter 2008). Supporting that the cuprizone model may be the most 

suitable animal model to investigate the repair process, although it could never 

perfectly mimic the repair process in MS patients.  
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5.1  Papers I and II 

 

Several studies in the cuprizone model in our group formed the basis for choosing this 

model to study remyelination (Torkildsen, Brunborg et al. 2009, Wergeland, 

Torkildsen et al. 2011). We started calcitriol injections in week six of cuprizone 

exposure. To achieve a higher serum level of calcitriol during remyelination, we chose 

to continue the cuprizone exposure throughout week seven, which could make a delay 

in the remyelination process. In retrospect, we could ideally have started calcitriol 

injections in week five of cuprizone exposure and terminated cuprizone in week six, 

alternatively in week five, as suggested by Skripuletz and colleagues (Skripuletz, Gudi 

et al. 2011). One extra week of cuprizone possibly resulted in an initially slower 

remyelination process; it has been showed that prolonged cuprizone exposure extends 

the regeneration phase (Lindner, Fokuhl et al. 2009). However, while remyelination is 

detectable the first week after cuprizone withdrawal, it is probably most evident during 

week two-three of the repair process (Vega-Riquer, Mendez-Victoriano et al. 2019).  

Using our protocol for cuprizone exposure, we observed an increase in remyelination 

throughout the whole study period after ending cuprizone exposure.  

 

As pointed out earlier in the thesis, several studies have found that vitamin D deficiency 

increases the susceptibility risk of MS. Vitamin D deficiency may adversely affect the 

course of illness and MS patients are recommended to take supplements of vitamin D. 

In paper I, we found that high-dose calcitriol might have a positive effect on 

remyelination, possibly through stimulating early OLG maturation, microglia, and 

astrocyte activation. The calcitriol-treatment led to less myelin in the early stages of 

remyelination, compared to the placebo group. Nevertheless, after three weeks of 

remyelination the calcitriol-treated mice had more myelin than the placebo group. Mice 

receiving calcitriol also showed an increase in myelin during the remyelination phase. 

To our knowledge, our study was the first to elucidate the effect of high-dose calcitriol 

on remyelination in the cuprizone model. Our results support that biologically active 

vitamin D affects myelin regeneration. Previously, it was found that rats injected with 

ethidium bromide and treated with cholecalciferol showed increased remyelination, as 
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measured by MBP expression, the authors suggested that the increase in remyelination 

could be due to a positive effect on proliferation, migration, and differentiation of OPCs 

into OLGs (Goudarzvand, Javan et al. 2010). Mature, myelin-producing OLGs, is a 

prerequisite for the regeneration of myelin. Corresponding to the increase in myelin in 

our study, the calcitriol group had more mature OLGs at all measured time points, and 

the difference was significant between the groups after one week of remyelination. 

Supporting our findings, Shirazi et al. found that calcitriol might affect the 

development and differentiation of NSC into OLGs in vitro (Shirazi, Rasouli et al. 

2015). In vivo, calcitriol increased the proliferation and differentiation of NSC into 

OPCs/OLGs and was suggested to improve remyelination in the spinal cord of EAE 

mice (Shirazi, Rasouli et al. 2017). More recently, rats treated with cholecalciferol 

before and after LPC-induced demyelination, showed increased OPC proliferation and 

differentiation, in addition to increased levels of MBP and PLP (Gomez-Pinedo, 

Cuevas et al. 2020). The aforementioned studies support our findings in paper I, 

suggesting that vitamin D may have a favorable effect, improving remyelination 

through stimulation of OPCs and OLGs.  

 

In paper I, we found that astrocytosis increased early in the calcitriol group and 

gradually decreased, while the placebo group had a slower astrocyte activation. Similar 

was the case for microglia activation as the placebo group showed delayed microglia 

activation compared to the placebo mice. As stated previously in this thesis, both 

astrocytes and microglia have supportive and detrimental functions in remyelination, 

and their interaction are thought to facilitate remyelination. Moreover, glia cells also 

communicate with OLGs (Lloyd and Miron 2019, Molina-Gonzalez and Miron 2019). 

As calcitriol mice had an earlier glia activation, this might have caused more efficient 

removal of damaged myelin and possibly improved cell communication; hence, earlier 

recruitment of mature OLGs and increased remyelination. Of note, the study by 

Gomes-Pinedo et al. did not confirm that cholecalciferol-treatment increased microglia 

activation as they found less marked microglia activation in rats receiving 

cholecalciferol (Gomez-Pinedo, Cuevas et al. 2020). There may be several reasons why 
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our findings are inconsistent, for example, the use of different animal models, and time 

and dose of cholecalciferol or calcitriol administration.  

 

Few have investigated the mechanisms behind the effect of vitamin D in remyelination. 

Shirazi et al. found that several neurotrophic factors were upregulated during the 

presence of calcitriol, which could explain some of the mechanisms behind the effect 

of calcitriol on NSC proliferation and differentiation into OPCs and OLGs (Shirazi, 

Rasouli et al. 2015). As a follow-up study of paper I, not included in this thesis, we 

investigated the mechanisms by adding proteomics (Oveland, Nystad et al. 2018). Six 

myelin related proteins were found, and the levels of these proteins were generally 

higher in the calcitriol group, supporting our findings in paper I. We found that 125 

proteins were regulated differently in the brain tissue of mice that received calcitriol 

compared to placebo. Among these were proteins involved in calcium homeostasis and 

mitochondrial function. More research needs to be done to elucidate the mechanisms 

further. Future studies should address how the modulation of vitamin D regulated 

proteins affects the remyelination process. Efforts should be made to find signaling 

pathways involved in the remyelination process.  

 

It is conceivable that remyelination failure may contribute to axonal loss (Irvine and 

Blakemore 2008). However, axonal degeneration is proposed to continue at a low level 

despite remyelination (Manrique-Hoyos, Jurgens et al. 2012). Hence, it would be 

optimal if vitamin D not only improved remyelination but also prevented or at least 

reduced axonal damage. Therefore, in paper II, we examined how 1) cholecalciferol 

given before and during demyelination, and 2) how calcitriol given during 

remyelination, affected axonal damage in cuprizone mice. We found that high-dose 

cholecalciferol given before and during demyelination mitigated axonal loss in the 

corpus callosum. In EAE mice, calcitriol-treatment from peak clinical severity 

decreased the amount of axonal loss (Sloka, Zhornitsky et al. 2015). In an animal model 

of peripheral nerve trauma, rats fed high-dose cholecalciferol showed an increased 

number of preserved or new axons (Chabas, Stephan et al. 2013). The findings were 

confirmed in another study by the same group. Moreover, new findings suggested that 
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cholecalciferol had to be given promptly to promote efficient repair (Gueye, Marqueste 

et al. 2015). This supports our findings that high-dose calcitriol given after cuprizone-

induced demyelination did not affect axonal damage and loss (paper II). Altogether, 

data indicates that vitamin D should be administrated before, or at least during, 

demyelination to diminish axonal damage.  
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5.2  Papers III and IV 

 

Fingolimod could exert a direct CNS effect and promote neuroprotection (Hunter, 

Bowen et al. 2016). To find a substance that promotes neuroprotective strategies would 

be vital in the treatment of MS patients. Previous experimental studies show 

inconsistent results regarding fingolimod’s effect on remyelination. In paper III and 

IV, we aimed to clarify if fingolimod could affect remyelination and axonal damage 

when given after cuprizone-induced demyelination.  

 

We found no difference in remyelination between the fingolimod- and placebo-treated 

groups. Fingolimod-treated mice had not increased numbers of OLGs in the cerebellum 

or in the corpus callosum. After three weeks of remyelination, we found that 

fingolimod-treated mice had an increased number of OLGs in the secondary motor 

cortex. Nevertheless, it did not affect the degree of remyelination. The results were 

further supported by no difference in the levels of proteins involved in myelination 

between the groups (paper IV).  

 

In vitro, fingolimod affected the membrane dynamics and survival of human, mature 

OLGs. The effects were dependent on the dose and treatment duration (Miron, Hall et 

al. 2008). Fingolimod exerted dose- and time-dependent effects on human OPC process 

extension, differentiation, and survival (Miron, Jung et al. 2008). Moreover, 

fingolimod enhanced remyelination in organotypic cerebellar slices after LPC-induced 

demyelination (Miron, Ludwin et al. 2010). In vivo, fingolimod given before LPC-

induced demyelination resulted in increased OPC recruitment, oligodendrogenesis, and 

remyelination (Yazdi, Baharvand et al. 2015). Fingolimod given post-onset of EAE 

symptoms improved remyelination, OPC proliferation, and differentiation (Zhang, 

Zhang et al. 2015). However, most studies using rescue treatment with fingolimod did 

not show effect on remyelination (Hu, Lee et al. 2011, Kim, Miron et al. 2011, Slowik, 

Schmidt et al. 2015, Kim, Bielawski et al. 2018) or the number of OPCs and OLGs 

(Kim, Miron et al. 2011, Slowik, Schmidt et al. 2015). 
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In papers III and IV, the degree of acute axonal damage was not affected by fingolimod-

treatment in the cerebellum of cuprizone mice. In the lateral corpus callosum, 

fingolimod-treated mice had more acute axonal damage after three weeks of 

remyelination. However, the proteomic results did not show an overall difference in 

axonal damage at any time point. Few studies have investigated the effect of fingolimod 

on axonal damage during remyelination. Kim et al. found that fingolimod given during 

cuprizone-induced demyelination exerted protective effects on myelin, OLGs, and 

axons. However, this was not the case when fingolimod was given from week four of 

demyelination. Axonal damage was not assessed during remyelination (Kim, Miron et 

al. 2011). In the study by Slowik et al., fingolimod did not affect remyelination; 

nonetheless, the study reported attenuated acute axonal damage in both acute and 

chronic lesions of fingolimod-treated mice (Slowik, Schmidt et al. 2015). The authors 

highlight that an absence of promyelinating effects of fingolimod does not necessarily 

exclude neuroprotective features. Although remyelination is not the cause of the 

neuroprotective effect, they point out that there may be other underlying mechanisms 

that are affected by fingolimod. We could not confirm that fingolimod mitigates acute 

axonal damage or axonal loss in the cerebellum or in the cerebrum. Our findings were 

further supported by no difference in the proteomic markers of axonal damage (paper 

IV).  

  

While the treatment window and dose of 1mg/kg fingolimod daily were based on 

reports from earlier studies in the cuprizone and EAE model available while planning 

the experiment (Kataoka, Sugahara et al. 2005, Al-Izki, Pryce et al. 2011, Hu, Lee et 

al. 2011, Kim, Miron et al. 2011); later studies have used other doses, and we are aware 

of that this could have affected our result (discussed in paper IV). The dose of 

fingolimod and the time and duration of administration could be crucial to the 

remyelination process. Due to a possible dose-response effect, e.g., a lower dose of 

fingolimod could have shown a more beneficial effect. In a larger experiment, it would 

have been interesting to test lower doses of fingolimod as some studies using lower 

doses have found an effect on remyelination and axonal damage. Moreover, it would 

have been advantageous to use human-equivalent doses. This would, however, require 
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proper tools to convert and adjust the doses for use in mice. In addition, there are 

several other reasons for the discrepant findings between our study and other studies, 

such as the animal model, experimental settings, the different antibodies used, time 

points, and the brain regions investigated. Furthermore, blood samples could have been 

obtained and measured for fingolimod and fingolimod-p concentration to confirm 

adequate absorption. We could have included a control group receiving fingolimod; 

this would have given information about any changes caused by fingolimod in the 

normal mice brain proteome. 

 

Next-generation selective S1PR modulators like siponimod have shown promising 

results (Kappos, Bar-Or et al. 2018). At the European Council for Treatment and 

Research in MS (ECTRIMS) 2019, Behrangi et al. presented that siponimod given 

during cuprizone-induced demyelination ameliorated demyelination, acute axonal 

damage, microglia and astrocyte activation (Behrangi and Kipp 2019), indicating a 

CNS-intrinsic mechanism of action. However, as siponimod were given during 

cuprizone administration, the positive effects might have been due to an initially anti-

inflammatory effect and not necessarily a pro-regenerative effect. In a recent study, 

promising promyelinating therapeutics were tested in a Xenopus transgenic line. The 

findings indicated that siponimod was among the most efficient compounds possessing 

a promyelinating effect, probably induced through S1PR5 modulation (Mannioui, 

Vauzanges et al. 2018). A non-classical dose-effect relationship has been suggested 

both for fingolimod (Yazdi, Ghasemi-Kasman et al. 2020) and siponimod (Martin 

2019), and higher doses may reduce a pro-remyelinating effect; thus, this should be 

taken into account in future studies and finding the appropriate dose for an optimal pro-

regenerative effect is of high importance.  

 

In paper IV, both LFB and PLP showed a significant difference in demyelination 

between healthy controls and the cuprizone control group; however, at later time points, 

there was less remyelination than expected (compared to findings in paper I). This 

could be due to weak staining, which could have led to misinterpretation during the 

scoring of the brain sections. Another possibility is that there were too few individuals 
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in the group to show a difference. Electron microscopy (EM) is considered the gold 

standard for assessing remyelination, and LFB may not be equally suited to separate 

remyelination from normal myelin (Blakemore and Franklin 2008). Even though 

studies have demonstrated that EM correlates well with LFB staining (Lindner, Heine 

et al. 2008) and PLP staining detects early myelin-regeneration after cuprizone 

withdrawal (Wergeland, Torkildsen et al. 2012), EM could have added valuable 

information to the study. However, since HC- and IHC-staining methods are widely 

accepted, easier to perform, allows quantification of several brain regions, and is less 

time consuming (Skripuletz, Gudi et al. 2011), we chose this approach for the 

experiment.  

 

IHC of S1PRs could have strengthened our results, although S1PRs are expressed in 

the CNS, IHC of S1PRs is not widely studied. We performed several unsuccessful 

attempts to stain for S1PR1. The IHC stainings for S1PR1 showed no clear staining of 

any particular cell type. At that time, there were few publications to give us support. 

However, one publication had detected S1PR1 in human brain astrocytes (Nishimura, 

Akiyama et al. 2010). This was confirmed in another study by Brana and colleagues; 

in control and MS lesions, S1PR1 expression was restricted to astrocytes and 

endothelial cells, while S1PR5 expression was limited to myelin and OLGs (Brana, 

Frossard et al. 2014). We conducted new tests with a monoclonal antibody, but the 

staining was not specific, and due to background staining, it was impossible to interpret 

the sections. Our and others’ experiences show that, for unknown reasons, IHC staining 

of S1PRs seems to be difficult in rodent tissue.  
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6 Conclusions 

I 

Our results suggest that calcitriol may improve remyelination through oligodendrocyte 

maturation, microglia, and astrocyte activation. Functional studies may elucidate the 

mechanisms behind calcitriol and remyelination.  

 

II 

Our results indicate that high-dose cholecalciferol mitigates axonal loss if given before 

and during cuprizone exposure. Conversely, high-dose calcitriol, given after 

demyelination and during remyelination, did not affect axonal damage or loss.  

 

III 

Fingolimod did not affect remyelination, the number of mature OLGs, microgliosis, 

astrocytosis, axonal damage, or loss at any time point in the cerebellum. We conclude 

that fingolimod does not enhance remyelination in the cerebellum when given after 

cuprizone-induced demyelination.  

 

IV 

Fingolimod-treated mice showed downregulation of brain S1PR1 levels at all time 

points compared to placebo. Fingolimod-treated mice had slightly more OLGs in the 

cortex after three weeks of remyelination. Nevertheless, fingolimod did not improve 

myelin density, axonal damage, or mitigate axonal loss compared to placebo, as 

measured by proteomics, histochemistry, and immunohistochemistry.  
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7 Future perspectives 

In this thesis, we have contributed to the research field of remyelination by using a 

well-known animal model for de- and remyelination. Thereby, we have taken the 

research on remyelination a few steps forward. Our results add to the evidence that it 

is possible to enhance remyelination in vivo.  

 

We have conducted two separate experiments testing two different compounds, 

calcitriol and fingolimod, where calcitriol seems to enhance remyelination, whereas 

fingolimod does not. Further, the results have been supported by proteomic analysis. 

Supported by our findings and earlier research, the cuprizone model, without the 

interference of the adaptive immune system, seems to be a suitable model to determine 

if a substance may affect the remyelination process. Although improvements can still 

be made, we have established a pipeline for testing the ability of compounds to enhance 

remyelination in the cuprizone model by adding HC, IHC, and proteomics analysis. 

7.1 Papers I and II 

 

Our findings of calcitriol improving remyelination in the cuprizone model are novel 

and suggest further research. Results should be replicated in the cuprizone model as 

well as in clinical trials on remyelination. Several clinical studies on remyelination 

have paved the way for how future remyelination studies may be conducted. Further 

investigation of the molecular mechanisms of how vitamin D affects remyelination 

could give us new opportunities in the development of regenerative medicines.  
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7.2 Papers III and IV 

 

In this study, we add more knowledge to the ongoing debate on whether fingolimod 

may affect remyelination and neuroprotection. The study provides negative findings 

that complement some of the prior work of fingolimod on remyelination. The results 

in this thesis suggest further investigation of the effect of S1PR receptor modulators on 

remyelination and neuroprotection both in animal models and eventually in clinical 

trials. Fingolimod successors like siponimod, which is approved for the treatment of 

SPMS, are interesting candidates for new experiments. The cuprizone model, 

combined with quantitative proteomics, would be a suitable pipeline to test, for 

example, siponimod versus placebo. For comparison, fingolimod could be included in 

the same experiment. Due to the fact that there may be a dose-dependent effect, it will 

be appropriate to test various doses. In the present experiment, we tested 1 mg/kg 

fingolimod daily. In future experiments, it will be favorable to test lower doses; 

moreover, the doses should be equivalent to human doses.  
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10  Errata 

Paper I:  

Histopathology. Sentence six: Paraformaldehyde = formaldehyde. 

Paper II:  

Section 2.2.2. Remyelination experiment. Typos, sentence five: 2 microgram corrected 

to 0.2 microgram calcitriol. 

Supplementary table 2. 3) 2μg calcitriol cuprizone and 4) 2μg placebo cuprizone.  

Table legend corrected to 3) 0.2μg calcitriol cuprizone and 4) placebo cuprizone.  

Section 2.3. Histopathology. Sentence five: Paraformaldehyde = formaldehyde.  

Paper III 

Section 2.2. Study design, cuprizone administration and fingolimod treatment. Last 

sentence: Paraformaldehyde = formaldehyde. 
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Effect of high-dose 1.25 dihydroxyvitamin D3 on

remyelination in the cuprizone model

AGNES E. NYSTAD,1,2 STIG WERGELAND,1,2 LAGE AKSNES,3,4 KJELL-MORTEN MYHR,1,2 LARS
BØ1,2 and ØIVIND TORKILDSEN1,2

1Department of Neurology, Norwegian Multiple Sclerosis Competence Centre, Haukeland University
Hospital, Bergen; 2Kristian Gerhard Jebsen MS Research Centre, Department of Clinical Medicine,
University of Bergen, Bergen; 3Department of Clinical Science, University of Bergen, Bergen; and
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Vitamin D supplementation is increasingly recommended to patients with multiple sclerosis (MS). To study the effect
of high-dose vitamin D on remyelination, female C57Bl/6 mice were demyelinated with dietary 0.2% cuprizone for
7 weeks. The mice received intraperitoneal injections of 1.25-dihydroxyvitamin D3 (calcitriol) or placebo (vehicle) injec-
tions twice a week, from week 6, throughout week 9. Mice that received calcitriol had initially increased demyelination
(p = 0.021), astrocytosis (p = 0.043), and microglia activation. However, levels of astrocytosis and microglia activation
dropped below those of the placebo group during the remyelination phase. There was a significant increase in myelina-
tion in the calcitriol group throughout the remyelination phase (p = 0.041), while the remyelination in the placebo
group was not significant (p = 0.317). After 3 weeks of remyelination, the calcitriol group had more myelin than the
placebo group (p = 0.001). The calcitriol group had a higher density of NOGO-A positive cells throughout the remyeli-
nation phase, and the number of NOGO-A positive cells was significantly higher in the calcitriol group at one week of
remyelination (p = 0.019). There were no significant differences in extent of T-lymphocyte infiltration. High-dose calcit-
riol seems to be safe regarding remyelination. Our results indicate that this treatment could actually promote the repair
process, possibly through a stimulating effect on oligodendrocyte maturation and astrocyte activation. The potential of
calcitriol to stimulate the remyelination process should be investigated further in functional studies.
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Multiple Sclerosis (MS) is an immune-mediated
disease of the central nervous system (CNS). The
cause of the disease is unknown, but it seems to
evolve as a result of a complex interplay between
genetic and environmental risk factors (1, 2). Vita-
min D deficiency is emerging as one of the most
promising environmental risk factor candidates (3).
Studies have repeatedly found associations between
vitamin D levels and disease activity (4, 5), and sev-
eral authors have suggested that supplementation of
vitamin D should be recommended to MS patients
(6–8). It has, however, been found that high-dose
vitamin D supplements does not have any therapeu-
tic advantages compared with low-dose supplements,

and that high-dose vitamin D treatment might even
have negative effects (9, 10).

The cuprizone model is a toxic non-T cell-depen-
dent model of CNS demyelination in mice. The cop-
per chelator cuprizone mainly targets mature
oligodendrocytes. Oligodendrocyte precursor cells
and other glial cells are not or only marginally
affected (11). Cuprizone induces oligodendrocyte
death with subsequent myelin disruption, and
microglia- and macrophage activation. Astroglial
activation occurs in the early stages of demyelination
(12, 13). The model demonstrates acute demyelina-
tion with subsequent spontaneous remyelination
within days after termination of cuprizone exposure
(14–16).

We have previously used the cuprizone model to
study how vitamin D3 affects demyelination (17).Received 25 October 2013. Accepted 10 March 2014
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Our earlier findings suggested that although vitamin
D seemed to have a protective effect on demyelina-
tion, the mice exposed to high-dose vitamin D had
less initial remyelination. As high-dose vitamin D
supplementation is increasingly recommended to MS
patients, it is of crucial importance to determine any
possibly adverse effect of this treatment (18). The
present study aimed to determine the safety of high
doses of the active vitamin D metabolite calcitriol on
remyelination in the cuprizone model.

MATERIALS AND METHODS

Animals

Forty-eight five-week-old female C57Bl/6 mice (Tacomic,
Tornbjerg, Denmark) were used for this experiment. Mean
weight was 19.6 g � SD 1.5. The mice were acclimatized
for 12 days prior to the experiment. They were housed six
together in GreenLine type II cages with open top, (Scan-
bur, Karlslunde, Denmark), in standard laboratory condi-
tions. Cage maintenance was performed once a week and
the animals were handled by the same individuals
throughout the experimental period. Food and tap water
was available ad libitum throughout the acclimatization
and experimental period. The experiment was carried out
in accordance with the European Laboratory Animal
Science Associations recommendations, and the protocol
was approved by the Norwegian Animal Research
Authority (permit # 2012–4421).

Study design, cuprizone administration, and high-dose

calcitriol injections

After acclimatization, 36 mice were randomized to injec-
tions of either 0.2 lg calcitriol (n = 18) or placebo (vehicle)

(n = 18). In addition, 6 mice served as healthy controls (no
cuprizone or ip. injections) and six mice served as cuprizone
controls (cuprizone exposure for 6 weeks without any injec-
tions). To induce demyelination, 0.2% cuprizone (bis-cyclo-
hexanone-oxaldihydrazone, Sigma-Aldrich, St. Louis, MO,
USA) was added to milled mouse chow. Cuprizone expo-
sure was discontinued after seven weeks. The mice received
ip. injections of calcitriol or placebo (vehicle) twice weekly,
from week 6 throughout week 9 (Table 1).

Histopathology

The animals were anesthetized with midazolam (Dormi-
cum ‘Roche’) in combination with fentanyl/fluanisone
(Hypnorm ‘VetaPharma’) and sacrificed at four different
time points (start of week 6, 7, 8, and 10). Sacrifice and
serum collection were conducted by cardiac puncture.
Brains were removed and post-fixed in 4% paraformalde-
hyde (PFA) for at least 7 days before paraffin embedding.
Analyses were performed on 7 � 1 lm sections from the
bregma � 1 mm (19). Sections were stained with Luxol
Fast Blue (LFB) and hematoxylin. For immunohistochem-
istry, the sections were dewaxed, rehydrated, and micro-
waved for antigen retrieval. Demasking was performed by
boiling (microwaving) sections in either citrate or TRIS-
EDTA buffer at 900 W for 10 min and 450 W for 15 min.
Sections were then immunostained for oligodendrocytes
Neurite Outgrowth Inhibitor Protein A (NOGO-A), astro-
cytes Glial Fibrillary Acidic Protein (GFAP), microglia
(Mac3), and T-lymphocytes (CD3). Buffer, dilution, incu-
bation time and temperature for the primary antibodies are
specified in (Table S1). Sections were blocked with peroxi-
dase blocking solution (DAKO, Glostrup, Denmark) and
visualized with EnVision 3.3. – diaminobenzidine (1:50);
2 9 3 min at room temperature (RT); (DAKO), then
counterstained with hematoxylin. For LFB, GFAP,
NOGO-A, and Mac-3 normal brain tissue from healthy
controls served as positive controls. For CD-3, sections

Table 1. Overview of experimental groups, cuprizone exposure, intra-peritoneal (Ip.) injections and euthanasia through the
experimental period

Week 1 2 3 4 5 6 7 8 9 10

Healthy controls (n=6)

Sacrifice •

Cuprizone only (n=6)

Cuprizone

Sacrifice •

Calcitriol (n=18) 

Cuprizone

Ip. Injections calcitriol

Sacrifice • • •
Placebo (n=18) 
Cuprizone
Ip. Injections placebo
Sacrifice • • •

Twice weekly

Demyelination Remyelination

Twice weekly
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from tonsil tissue served as positive controls. Omission of
the primary antibodies served as negative controls.

Characterization of brain tissue

Sections were scored in a blinded manner by two
observers, using light microscopy (Zeiss, Axio Imager
A2, 40x, Oberkochen, Germany) . For quantification of
myelin loss, we used a semi-quantitative scoring system:
no (0), minimal (0. 5), <33% (1), 33–66% (2) and
>66% (3) demyelination. As astrocyte reactivity is char-
acterized both by an increase in the number of astro-
cytes, hypertrophy, hyperplasia and an increased GFAP
immunoreactivity in astrocyte processes(20), astrocytosis
was evaluated semi-quantitatively: no (0), minimal (1),
moderate (2) or severe (3) reactive astrocytosis (21). The
density of mature oligodendrocytes (NOGO-A immuno-
positive cells) was determined; microglia Mac-3 and T-
cells (CD3) were counted in an area of 0.0625 mm2 at
40x, using an ocular morphometric grid. All sections
were scored in the midline area of corpus callosum,
from the bregma � 1 mm.

Analyses of vitamin D3 metabolites and calcium

Serum was collected at two time points during the experi-
mental period; from the healthy control group at the start
point of the study, and from all mice when sacrificed. The
25(OH)-vitamin D3 and 24.25(OH)2 vitamin D3 analysis
were performed in accordance with a modified version of a
method previously described (22). 25 ll serum samples
were spiked with 26.27 dexadeuterium-25-OH-Vitamin D3

(Syntetica AS, Oslo, Norway) as internal standard and
extracted with methanol and n-hexane. The n-hexane
phase was collected, evaporated to dryness and injected
into a reverse-phase high-performance liquid chromatogra-
phy system. Elution of the vitamin D-metabolites was per-
formed with methanol/water (88:12, v/v, with 0.1 formic
acid) and the eluate was monitored by a LC/MSMS –
detector (G6410A, Agilent Technology Inc., Santa Clara,
CA, USA) equipped with an ESI ion-source. 25(OH)-vita-
min D3 was monitored at 401.5 m/z and 383.5 m/z as pre-
cursor- and production- ions, respectively (401.5/383.5 m/
z). 24.25(OH)2-vitamin D3 was monitored at 417.5/
381.5 m/z and the internal standard at 407.5/389.5 m/z.
mSerum calcium was analyzed using Calcium AS FS (Dia-
Sys Diagnostic System GmbH, Holtzheim, Germany) (23).

Weight and RotaRod test

Weight measurements were conducted twice weekly
(Figure S1). The mice’s motor performance was tested
twice a week throughout the experimental period using
the LE8200 Accelerating RotaRod for five mice, Panlab,
(Figure S2), which previously has been reported to assess
motor coordination and balance in cuprizone-exposed
mice (24). The test was administrated within the 12-h light
cycle in an isolated restricted-access room. To test the
performance, the mice were placed on the rotating rod,
which accelerated to a maximum speed over 200 s. Time
to the mice fell off the rotating cylinder was registered,
and averaged over three consecutive experiments at each
time point. All groups were tested; up to three mice were
evaluated at the same time.

Statistical methods

One-way analysis of variance (ANOVA) was used to analyze
parametric data, followed by Fisher’s least significant dif-
ference (LSD) for post hoc analysis, where applicable. The
Mann–Whitney test was used to analyzing non-parametric
data. For non-parametric-related data, Wilcoxon’s signed
rank test was performed. All calculations were carried out
using SPSS 20.0 (IBM; 2011). Differences were considered
significant at p < 0.05.

RESULTS

Effects on de- and remyelination

Significant loss of myelin, as evaluated by LFB stain-
ing, was evident in all cuprizone-exposed mice after 6
and 7 weeks, compared with the healthy controls (p
< 0.005). After 7 weeks of cuprizone exposure, mice
in the calcitriol group that had been receiving calcitri-
ol for only one week had significantly lower
LFB-score than the placebo group (p = 0.021,
Fig. 1A–B). After one week of remyelination (week
8), the difference was no longer significant (p = 0.593)
and after three weeks of remyelination, the calcitriol
group had more myelin than the placebo group
(p = 0.001). There was a gain of myelin in the calcitri-
ol group during the three weeks after ending cupriz-
one exposure (p = 0.041). Although remyelination
also occurred in the placebo group in this period, the
increase of myelin was not significant (p = 0.317).

Effects on NOGO-A-positive oligodendrocytes

An extensive loss of NOGO-A-positive cells was
observed in all cuprizone-treated groups compared
with healthy controls (p < 0.005). At all measured
points, the number of mature oligodendrocytes was
higher in the calcitriol than in the placebo group
(Fig. 2A–B). There was a non-significant trend of a
higher number of NOGO-A-positive oligodendro-
cytes in the calcitriol group after discontinuation of
the cuprizone diet (p = 0.055, Table S2). There was
a significant difference between the groups with
regard to the number of mature oligodendrocytes
after one week of remyelination (p = 0.019). After
three weeks of remyelination, there were no signifi-
cant differences between the groups.

Astrocyte activation

At the end of cuprizone exposure, increased astro-
cyte activity, as measured by GFAP-positivity, was
observed in all cuprizone-exposed groups compared
with the controls (p < 0.0001). After seven weeks of
cuprizone exposure, mice that received calcitriol
had an increased astrocytosis compared with the
placebo group (p = 0.043, Fig. 3). One week after
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ending cuprizone exposure, there was a non-signifi-
cant increase in astrocytosis in the placebo group
(p = 0.109), while the astrocyte activity decreased in
the calcitriol group.

Macrophage/microglia activation and T-lymphocyte

infiltration during remyelination

After 6 weeks of cuprizone exposure, increased mi-
croglia activation was observed in cuprizone-
exposed mice, compared with the controls
(p < 0.0001). After ending cuprizone exposure, mi-
croglia activation was more prominent in the calcit-
riol group, compared with the placebo group, and
then fell gradually (Fig. 4). Placebo- treated mice
had an equally extensive, but delayed microglia
activation compared with the calcitriol-treated mice.

After one week of remyelination, the density of
Mac-3 cells in the placebo group was higher than
in the calcitriol group (p = 0.019, Table S2). One to
five CD-3 positive lymphocytes were observed per
area counted in the cuprizone-exposed mice, none
in the controls (Table S2). There was no significant
difference between the calcitriol or placebo group.

Serum levels

Serum calcium (s-ca) levels were normal in both
calcitriol and placebo-treated mice, and there was
no significant difference between the groups at any
time points. Thus, the mice who received high-dose
calcitriol had normal s-ca levels at all time points
(Table S3). As calcitriol has a short half-life
and there is a reciprocal relationship between

A

B

Fig. 1. Myelin status in the midline of corpus callosum after 7 weeks of demyelination, 1 and 3 weeks of remyelination.
(A) There was significant remyelination in the calcitriol group from week 7 until three weeks of remyelination (*;
p = 0.041). Mice given calcitriol had less myelin remaining at week 7, than the placebo group (**; p = 0.021). The remain-
ing myelin in the placebo group had, however, a more unstructured pattern typical for damaged myelin. After three weeks
of remyelination, the calcitriol group had more myelin than the mice that received placebo (***; p = 0.001). Scale: no (0),
minimal (0. 5), <33% (1), 33–66% (2) and >66% demyelination. (B) Sections stained with Luxol Fast Blue and hematoxy-
lin. Error bars: 1 SEM. All images at 40x.
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self-production of calcitriol and 24.25-(OH)2-vitamin
D3, we used the metabolite 24.25-(OH)2-vitamin D3

as an indirect measure of levels of calcitriol. The mice
who received calcitriol had significant lower levels of
24.25-(OH)2-vitamin D3 than mice that received
placebo injections (week 7, 9, and 10, p < 0.014).
The calcitriol group also had significantly lower
levels of 25-OH-D3 at all time points measured
(p < 0.033, Table S3).

Weight and RotaRod test

Cuprizone exposure led to weight loss in the cupriz-
one-exposed mice compared with the mice receiving
a standard diet. At the endpoint of the study, the
cuprizone-exposed mice regained almost all of the
weight loss, and had a mean weight of 21.6 � 1.5 g.

vs. 23.4 � 1.6 g in the controls (Figure S1). Mice
exposed to cuprizone had an increased motor perfor-
mance compared with the control group, as mea-
sured with the RotaRod test. Over time, the motor
performance fell in the cuprizone-exposed mice
(Figure S2). There were no significant differences in
RotaRod performances between mice given calcitriol
or placebo supplementation.

DISCUSSION

In this study, we aimed to determine the safety of
high-dose vitamin D3 on the remyelination process
in a T cell-independent model for de- and remyeli-
nation. We have shown that high-dose injections of
calcitriol have no negative effects on remyelination,

A

B

Fig. 2. Mature oligodendrocyte cells in the midline of corpus callosum after 7 weeks of demyelination, 1 and 3 weeks of
remyelination. (A) After 7 weeks of demyelination, there was a difference in oligodendrocyte density, but this was not sig-
nificant. (**; p = 0.055). The calcitriol group had a higher number of mature oligodendrocytes after one week of remyeli-
nation (***; p = 0.019). After 3 weeks of remyeliniation, there was no longer a significant difference between the groups.
Cell counts are provided as mean (�SEM) number of cells per 0.0625 mm2, midline corpus callosum, bregma � 1 mm. (B)
Sections stained for Neurite Outgrowth Inhibitor Protein A and hematoxylin. Error bars: 1 SEM. All images at 40x.
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as measured with LFB staining, but could actually
have a potential in promoting oligodendrocyte mat-
uration and myelin regeneration. Most effects of
vitamin D are mediated by 1.25-(OH)2D binding to
the vitamin D receptor (VDR). The VDR is abun-
dantly expressed on T cells, and much of the effect
of vitamin D in autoimmune diseases has been sug-
gested to be mediated through an immunomodula-
tory effect on these cells (25). Immunohistochemical
studies have demonstrated that the VDR is also
present in gray matter neurons and astrocytes (26).
Recently, it has been found nuclear staining for
VDR in oligodendrocyte-like cells, astrocytes and
microglia, implicating that vitamin D also has a

regulatory function in these cells (27). Our experi-
mental findings, in a T cell-independent model of
de- and remyelination, confer that vitamin D may
have a functional role in the CNS not only in regu-
lating T-cell function but also in myelin regenera-
tion. The activation of microglia is a physiological
response to CNS injury; its role is to support and
protect neurons (28). It has been suggested that as-
trocytes may play a key role in regulation of demy-
elinating diseases in the CNS (29). Astrocytes have
been demonstrated to provide an environment that
forms the basis for recruitment of microglia. The
removal of myelin debris by microglia is required
for subsequent remyelination and delayed removal

A

B

Fig. 3. Astrocytosis in the midline of corpus callosum after 7 weeks of demyelination, 1 and 3 weeks of remyelination. (A)
Mice that received calcitriol had an increased GFAP immunopositivity at week 7 of demyelination, compared with the pla-
cebo group (**; p = 0.043). In the placebo group, there was a non-significant increase in astrocytosis after one week of re-
myelination (p = 0.109). The astrocyte activity decreased steadily in the calcitriol group. Scale: no (0), minimal (1),
moderate (2) or severe (3) reactive astrocytosis. Sections were scored in the midline area of corpus callosum, from the
bregma � 1 mm. (B) Sections stained for Glial Fibrillary Acidic Protein and hematoxylin. Error bars: 1 SEM. All images
at 40x.
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of damaged myelin will prevent the early remyeli-
nation (30). The mice receiving calcitriol had an
initially increased astrocyte activation, microglia
recruitment and clearance of damaged myelin. The
stimulating effects on remyelination could partly
have been caused by increased clearance of dam-
aged myelin, through stimulation of astrocytes
and microglia, which were initially more activated
in the calcitriol group. In addition, we detected an
increased number of oligodendrocytes in the calcit-
riol group compared with the placebo group.

There are no animal models that fully describe the
complexity of the mechanisms underlying MS. Yet,
the cuprizone model has been proved to be
particularly suitable for studying the repair process
after demyelination, this without interference
of infiltrating immune cells, such as T cells (30).

(16, 31). When cuprizone is administered for 6 weeks,
remyelination usually starts after about 5 weeks of
cuprizone exposure and is usually almost complete
after 3 weeks of remyelination (16). We chose to give
cuprizone administration for 7 weeks to achieve a
high serum level of calcitriol throughout the remyeli-
nation phase. This seems to have resulted in a slower
remyelination in both groups than what has been
observed in studies using a shorter period of cupriz-
one exposure. It has been demonstrated that mice
exposed to cuprizone for longer periods have a
prolonged remyelination phase (31). Still, the
mice given high-dose calcitriol had a significantly
higher degree of remyelination and oligodendrocyte
maturation than the placebo group. The main limita-
tion to our experiment was that we were not able to
conduct functional studies on exactly how vitamin D

A

B

Fig. 4. Microglia activation in the midline of corpus callosum after 7 weeks of demyelination, 1 and 3 weeks of remyelina-
tion. (A) After 7 weeks of demyelination, microglia activation was most prominent in the calcitriol group, compared with
the placebo group. The activation fell gradually. After 1 week of remyelination, there was a significant increase in the num-
ber of MAC-3 cells in the placebo group (**; p = 0.019). Cell counts are provided as mean (�SEM) number of cells per 0.
0625 mm2, midline area of corpus callosum, from the bregma � 1 mm. (B) Sections stained for MAC-3 and hematoxylin.
Error bars: 1 SEM. All images at 40x.
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affects astrocytes, microglia and oligodendrocytes.
This is an important question, which should be
addressed in future studies.

By our knowledge, this is the first study that
examines the effect of high-dose calcitriol on
remyelination in the cuprizone model. We have
previously demonstrated that 25-OH-vitamin D3

has a protective effect against demyelination and
oligodendrocyte loss in the same model (17). We
have now investigated vitamin D in both de- and
remyelination by using the cuprizone model. Our
findings may have implications in the understand-
ing of the role of vitamin D in the remyelination of
the brain. The results indicate that it is not harmful
to give high doses of calcitriol. Our findings suggest
that vitamin D could have a positive effect not only
in decreasing inflammation but also in enhancing
the repair process. Several randomized trials of
vitamin D intervention in MS are currently being
conducted (32, 33), and our findings could have
implications for the future interpretation of these
studies.

In conclusion, we demonstrate that high-dose
treatment with calcitriol has no negative effects on
remyelination in a T cell-independent animal model
for demyelination. Contrary, our results suggest
that calcitriol could have a positive effect on the re-
myelination process, possibly through a stimulating
effect on oligodendrocyte maturation and astrocyte
activation. The potential of calcitriol to stimulate
oligodendrocyte maturation and remyelination
should be investigated further, with functional data
to clarify the exact mechanism for this effect.
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Additional Supporting Information may be found
in the online version of this article:

Table S1. Antibodies used for immunohistochemis-
try
Table S2. Density of NOGO-A immunopositive
mature oligodendrocytes, Mac-3 immunopositive
microglia and macrophages and CD3 immunoposi-
tive t-lymphocytes, midline corpus callosum. Cell
counts are provided as mean (�SD) number of cells
per 0.0625 mm2.
Table S3. Serum Ca (S-Ca) levels were normal in
both groups and there was no significant difference
between the placebo and vitamin D groups at any
time points. We used the metabolite 24.25 D3 as an
indirect measure of levels of 1.25-dihydroxy-vitamin
D3. The mice who received 1.25-dihydroxy-vitamin
D3 had significantly lower levels of 24.25 D3 than
mice that received placebo injections (weeks 7,9,
and 10) (p < 0.014). The vitamin D group had also
a lower level of 25-OH-D3 at all measured points
(p < 0.033).
Fig. S1. Weight changes (in grams) for all days.
The cuprizone mice had an initial weight loss and
then stabilized at a lower level than the controls.
When the cuprizone diet was terminated, the weight
increased again to 21.6 � 1.5 g, control mice
weight stabilized at 23.4 � 1.6 g.
Fig. S2. The mice’s motor behavior was tested twice
a week using the Rotarod apparatus. The average
time of three experiments was measured. All groups
were tested throughout the experimental period;
three mice were evaluated at the same time. Mice
exposed to cuprizone mice had an increased activity
level compared with the control group. There was
no significant difference in the results of tests
between mice given calcitriol or placebo supplemen-
tation.
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Target 
antigen 

Species/ Working 
dilution 

Incubation 
time/ 

Antigen/ 
demasking* Source 

isotype Temperature     

Neurite 
Outgrowth 
Inhibitor 
Protein A 
(NOGO-A) 

Rabbit 
polyclonal 1:1000 1h/RT Citrate 

Chemicon, 
Temecula 
(CA), USA 

MAC-3 Rat IgG1, κ 1:200 24h/RT Citrate BD 
Biosciences  

CD3 Rabbit 
polyclonal 1:500 ½h/RT Tris-EDTA Dako 

Glial 
Fibrillary 
Acidic 
Protein 
(GFAP) 

Rabbit, IgG1 1:2000 
 ½h/ RT  Tris-EDTA Dako 
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Supplementary table 2. Density of NOGO-A immunopositve mature oligodendrocytes, Mac-3 

immunopositive microglia and macrophages and CD3 immunopositive t-lymphocytes, midline corpus 

callosum. Cell counts are provided as mean (±SD) number of cells per 0.0625 mm
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Week 
M SD M SD M SD M SD M SD 
56.7 (10.90) 17.5 (9.90) 

Calcitriol 52.4 (9.90) 24 (7.40) 56.2 (22.80) 
Placebo 29.7 (19.50) 10 (4.40) 47.2 (12.40) 

0 (0.00) 124 (76.55) 
Calcitriol 51.8 (21.30) 30.25 (20.00) 12 (7.80) 
Placebo 36.67 (22.30) 60 (13.70) 9.7 (8.00) 

0 (0.00) 0.5 (0.80) 
Calcitriol 1.6 (0.80) 2.25 (0.50) 2.2 (1.90) 
Placebo 1.6 (2.00) 2.2 (1.70) 1.4 (1.10) 

NOGO-A 

Mac-3 

CD3 

Controls 
Demyelination 

6 7 8 10 
Remyelination 

 

Calcitriol or placebo treated Only Cuprizone 
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Supplementary table 3. Serum Ca (S-Ca) levels were normal in both groups and there was no 

significant difference between the placebo and vitamin D groups at any time points. We used the 

metabolite 24.25 D3 as an indirect measure of levels of 1.25-dihydroxy-vitamin D3. The mice who 

received 1.25-dihydroxy-vitamin D3 had significantly lower levels of 24.25 D3, than mice that received 

placebo injections (week 7,9 and 10) (p’s<0.014). The vitamin D group had also a lower level of 25-

OH-D3 at all measured points (p’s<0.033).  

 

  

Week 
M SD M SD M SD M SD M SD 
2.3 (0.20) 2.4 (0.30) 

Calcitriol 2.7 (0.17) 2.8 (0.60) 2.6 (0.60) 
Placebo 2.3 (0.10) 2.1 (0.20) 2.4 (0.20) 

40.8 (5.30) 37 (8.90) 
Calcitriol 19.9 (4.70) 22.85 (11.10) 21.9 (2.90) 
Placebo 35.5 (5.00) 32.3 (2.90) 37.1 (9.20) 

12.1 (1.30) 10.5 (4.20) 
Calcitriol 2 (0.40) 2.85 (0.40) 1.74 (0.60) 
Placebo 7.5 (0.80) 9.1 (1.40) 7.7 (3.60) 

10 

25-OH-D3 

24.25 D3 

s-calcium 

Demyelination Remyelination 
 6 7 8 

Controls Only Cuprizone Calcitriol or placebo treated 
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Supplemental figure 1. Weight changes (in grams) for all days. The cuprizone mice had a initially weight 

loss and then stabilized at a lower level than the controls. When the cuprizone diet was terminated 

the weight increased again to 21.6±1.5g, control mice weight stabilized at 23.4±1.6g. 
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Supplemental figure 2. The mice's motor behavior was tested twice a week using the Rotarod 

apparatus. The average time of three experiments was measured. All groups were tested throughout 

the experimental period; three mice were evaluated at the same time. 

Mice exposed to cuprizone mice had an increased activity level compared with the control group. 

There was no significant difference in the results of tests between mice given calcitriol or placebo 

supplementation. 
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A B S T R A C T

Vitamin D deficiency is a risk factor for multiple sclerosis and associated with higher disease activity. The aim of
this study was to investigate the effects of cholecalciferol and calcitriol on axonal damage during de- and re-
myelination in the cuprizone model. We found significantly less reduction of neurofilament immunopositive
axons in the high vs. low cholecalciferol group, while high dose calcitriol, given during remyelination, did not
influence axonal regeneration. Our results indicate that high dose vitamin D could protect against axonal loss in
an experimental model for demyelination, if given before and during the demyelination.

1. Introduction

Multiple sclerosis (MS) is a chronic neurological disease character-
ized by inflammation, demyelination and axonal damage in the central
nervous system (CNS). Axonal injury is suggested to be associated with
inflammation in all lesions and disease stages of the disease (Frischer
et al., 2009; Dutta and Trapp, 2011). Axonal conduction block, due to
inflammation and demyelination, leads to neurological disability
during the acute relapses in MS, while axonal transection and sub-
sequent loss of neurons is the cause of permanent neurological deficits
(Trapp et al., 1999; Trapp and Nave, 2008). To study neuronal and
axonal protective strategies is of high importance to prevent disease
progression.

Vitamin D deficiency is an environmental factor that has been
shown to increase both risk and disease activity of MS (Holmøy et al.,
2012; Holmøy and Torkildsen, 2016; Smolders et al., 2016; Shoemaker
and Mowry, 2018). It is unclear how vitamin D affects axonal damage
in an MS affected brain.

We have previously studied the effect of vitamin D, cholecalciferol,
on experimental demyelination, using the cuprizone model for de- and
remyelination. The results suggested that cholecalciferol had a protec-
tive effect against demyelination (Wergeland et al., 2011). Further, we
used the model for investigating the impact of high dose calcitriol on
remyelination, and the results indicated that calcitriol could promote
the repair process, probably by stimulating oligodendrocyte maturation
and astrocyte activation (Nystad et al., 2014). Early remyelination
seems to provide a protective effect against axonal damage (Irvine and

Blakemore, 2008; Lindner et al., 2009). In another animal model for
MS, experimental autoimmune encephalomyelitis (EAE), calcitriol
treatment diminished the level of clinical disability and reduced the loss
of axons, when initiated at peak disease severity (Sloka et al., 2015).

Here, we investigate the effects of high dose cholecalciferol and
calcitriol on axonal damage in the cuprizone model respectively during
de- and remyelination. We hypothesized that vitamin D could have a
protective effect against axonal damage, leading to less axonal loss in
cuprizone mice receiving vitamin D than in the control group.

2. Materials and methods

2.1. Mice

Five-week-old female c57Bl/6 mice, n=72, (Taconic, Tornbjerg,
Denmark), with a mean weight of 20.4 g ± SD 1.0, were used for the
demyelination experiment. For the remyelination experiment, we used
five-week-old female c57Bl/6 mice, n=48. Mean weight was
19.6 g ± SD 1.5. The mice were housed six together in GreenLine type
II individually ventilated cages (Scanbur, Karlslunde, Denmark), in
standard laboratory conditions. Maintenance was performed once a
week, and the same individuals handled the animals throughout the
experimental period. They were weighed twice a week. Food and tap
water were available ad libitum throughout the acclimatization and
trial period. We have previously published serum levels of vitamin D
and calcium for both experiments (Wergeland et al., 2011; Nystad et al.,
2014). The experiments were carried out following the European
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Laboratory Animal Science Associations recommendations, and the
Norwegian Animal Research Authority approved the protocols (permits
#2009-1767 and #2012-4421).

2.2. Study design, vitamin D-diet, high dose calcitriol injections and
cuprizone administration

2.2.1. Demyelination experiment
After one week of acclimatization the animals (n=72) were ran-

domized to one of four experimental diets (n=18 per diet group). Two
weeks later, 2/3 (n=12) of the mice in each diet group were rando-
mized to cuprizone exposure. To induce demyelination, 0.2% cuprizone
(bis-cyclohexanone-oxaldihydrazone, Sigma-Aldrich, St. Louis, MO,
USA) was added to milled mouse chow (Altromin GmbH, Lage,
Germany) for six weeks. The remaining 1/3 (n=6) served as healthy
controls for each diet group (Table S1). The differing vitamin D content
for the groups was 1)< 50 IU/kg, 2) 500 IU/kg, 3) 6200 IU/kg and 4)
12500 IU/kg. The content was verified by high-performance liquid
chromatography (HPLC) in an independent laboratory (Norwegian
Institute for Nutrition and Seafood Research, Bergen, Norway). An as-
sumed intake of 5 g chow each day gave human equivalent doses ran-
ging from<76 IU/day to 19,003 IU/day, as described before
(Wergeland et al., 2011; Farinotti et al., 2012). The animals were eu-
thanized after 9 and 11weeks (Table S1).

2.2.2. Remyelination experiment
After 12 days of acclimatization, the mice (n=48) were rando-

mized into one of four groups. One group served as healthy controls
(n=6) and one as cuprizone-exposed controls (n= 6). The remaining
mice (n=36) were randomized to either intraperitoneal (ip.) injections
of 2 μg calcitriol or placebo, twice weekly, from week 6 throughout
week 9 (Table S2). We have previously shown that it takes weeks to
obtain steady-state serum concentration with cholecalciferol treatment
(Wergeland et al., 2011). Thus, we used calcitriol injections, instead of
cholecalciferol supplements to achieve a faster serum increase. In this
way, we also avoided that the serum increase came after the majority of
the remyelination was over. To induce demyelination, 0.2% cuprizone
was added to milled mouse chow, the cuprizone exposure was dis-
continued after six weeks in the cuprizone control group, and after
seven weeks in the remaining groups to achieve a high serum level of
calcitriol throughout the remyelination phase. The animals were eu-
thanized after 6, 7, 8 and 10weeks (Table S2).

2.3. Histopathology

The animals were euthanized by CO2 asphyxiation or by ex-
sanguination under anaesthesia by midazolam (Dormicum “Roche”) in
combination with fentanyl/fuanisone (Hypnorm “VetaPharma”) and
sacrificed by exsanguination at different time points (Tables S1 and S2).
Brains were removed and post-fixed in 4% paraformaldehyde for at
least 7 days before paraffin embedding. Analyses were performed on
7 ± 1 μm coronal sections from the bregma±1mm (Paxinos, 2008).
For immunohistochemistry (IHC), the sections were deparaffinised in
xylene and rehydrated in serial dilutions of ethanol. Antigen retrieval
was performed by microwaving sections in either citrate (pH 6.1) or
TRIS-EDTA (pH 9.0) buffer. Sections were then immunostained for
amyloid precursor protein A4 (APP), non-phosphorylated neurofila-
ment H (SMI-32) and pan-phosphorylated neurofilament light antibody
(NFL). Species, buffer, dilution, incubation time, temperature, target
and source for the primary antibodies are specified in Table S3. Sections
were blocked with peroxidase blocking solution (DAKO, Glostrup,
Denmark) and visualized with EnVision 3.3. – diaminobenzidine (1:50);
2× 3 minutes at room temperature (DAKO, Glostrup, Denmark), then
counterstained with hematoxylin. For each antibody normal brain
tissue from healthy mice served as controls.

2.4. Assessment of brain tissue

Axonal transection was quantified as the density of APP-im-
munopositive bulbs in the midline of the corpus callosum, using an
ocular morphometric grid. Immunopositivity for NFL and SMI-32 were
quantified using digital densitometry. The midline of the corpus cal-
losum was photographed with identical exposure settings at 40×
magnifications (Zeiss, Axio Imager A2 with AxioCam ERc5 digital
camera). Greyscale images were thresholded to ameliorate background
staining (ImageJ ver 1.41, Research Services Branch, National Institute
of Mental Health, Bethesda, Maryland, USA). Immunopositivity was
expressed as the relative (%) area of immunopositivity to the total
image area.

2.5. Statistical methods

All calculations were performed using SPSS (IBM Corp. Released
2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM
Corp). Shapiro-Wilk and Kolmogorov-Smirnov test tested normal dis-
tribution. For statistical analyses, the Mann-Whitney U test was used
due to non-normality in the dataset. Differences were considered sig-
nificant at p < .05.

3. Results

3.1. Effects of cholecalciferol on axonal loss and damage during
demyelination

After six weeks of cuprizone exposure, the two groups receiving the
diets with the highest vitamin D3 content (6200 and 12,500 IU/kg) had
less axonal loss in the corpus callosum, than the groups receiving a diet
low or deficient of vitamin D (< 50 IU/kg, or 500 IU/kg), as measured
by the relative area of NFL immunopositivity, 78.5% ± SD 9.3 (high
dose) vs. 50.3% ± SD 26.6 (low dose, p= .006, Fig. 1, Table 1). There
were no differences in the density of damaged axons, as measured by
the relative area of SMI-32 immunopositivity, 49.1% ± SD 27.7 (high
dose) vs. 36.0% ± SD 20.1 (low dose) p= .24 (Fig. 1, Table 1). As
assessed by immunohistochemical staining for APP, the density of
transected axons was lower in the high diet groups than in the low-diet
groups, but this difference did not reach statistical significance, 74.9
APP+ bulbs/0.0625mm2 ± SD 57.2 (high dose) vs. 109.7 ± SD 38.9
(low dose) p= .064 (Fig. 1, Table 1).

3.2. Effects of calcitriol on axonal loss and damage during remyelination

There were no differences between the calcitriol and the placebo
group after 3 weeks of remyelination, as measured by the relative area
of NFL immunopositivity 81.8% ± SD 12.2 (calcitriol) vs.
80.8% ± SD 7.0 (placebo), p= .69. Positively stained axons, as mea-
sured by the relative area of SMI-32 immunopositivity, could be ob-
served from week 5 in the remyelination experiment. There was no
difference between the groups at 3 weeks of remyelination 5.0% ± SD
6.3 (calcitriol) vs. 3.3% ± SD 3.5 (placebo), p= .54 (Fig. 2, Table 2).
There was no significant difference in APP-immunopositivity between
the groups after 3 weeks of remyelination, 23.4 ± SD 8.7 (calcitriol)
vs. 25.2 ± SD 4.3 (placebo), p= .92 (Fig. 2, Table 2). The axonal
transection diminished throughout the remyelination period in both the
calcitriol and placebo group (data not shown).

4. Discussion

Our results indicate that cholecalciferol given before and during
demyelination may mitigate axonal loss. The results are consistent with
previous data. Chabas et al. have found that higher levels of chole-
calciferol protect against axonal damage, as well as improve myelina-
tion and recovery after nerve injury, probably by modifying expression
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of genes involved in axogenesis and myelination (Chabas et al., 2013).
In a study of rats subjected to nerve damage, cholecalciferol was able to
improve movement, breath, and spasticity, probably due to improved
myelination or increased number of preserved or newly formed axons.
The same study showed that vitamin D had to be given as soon as
possible after the damage, to promote effective repair (Gueye et al.,
2015). The possibly protective mechanism could be mediated by

increased vitamin D receptor mRNA expression providing neuropro-
tection against excitotoxicity of glutamate (Taniura et al., 2006). Pre-
treatment with calcitriol, but not co-treatment, has also been suggested
to protect dopaminergic neurons against cytotoxicity caused by gluta-
mate and dopaminergic toxins, through reduction of oxidative stress
(Ibi et al., 2001). Another study reported that calcitriol had a neuro-
protective effect in a primary neuron culture from rats, as dopamine
neurons increased due to upregulation of the gene expression of glial-
derived neurotrophic factor (Orme et al., 2013).

The NFL is a CSF marker of axonal degradation in the CNS and is
increased in the CSF of patients with relapsing-remitting MS (Lycke
et al., 1998). High vitamin D levels are associated with lower levels of
CSF-NFL (Sandberg et al., 2015). Our results also indicate less neuro-
filament loss in mice brain, after receiving cholecalciferol before and
during demyelination. Calcitriol, given after demyelination seems not
to have the same effect. SMI-32 is a marker for the non-phosphorylated
epitope of the heavy and medium neurofilament subunits. The reaction
is masked when the epitope is phosphorylated. SMI-32 antibodies do
therefore not stain neurofilaments in myelinated axons. Thus, SMI-32

HIGH DOSE CHOLECALCIFEROLLOW DOSE CHOLECALCIFEROL

NFL

APP

SMI-32

Fig. 1. Demyelination.
NFL, SMI-32 and APP immunostaining in the midline of corpus callosum after six weeks of cuprizone exposure in the low and high vitamin D diet groups. The mice
receiving a high vitamin D diet (6200 IU/kg or 12,500 IU/kg) had less axonal loss vs. mice on a low diet (< 50 IU/kg or 500 IU/kg) (p= .006). All images at 40×.
Scale bar= 20 μm.

Table 1
Demyelination – 6weeks cuprizone exposure.

Low cholecalciferol High cholecalciferol p

Mean (SD) Mean (SD)

NFL area 50.3 (26.6) 78.5 (9.3) 0.006
SMI-32 area 36.0 (20.1) 49.1 (27.7) 0.235
APP density 109.7 (38.9) 74.9 (57.2) 0.064

Mean and standard deviation (SD) quantified by NFL and SMI-32 staining in %
area and APP density, area after 6 weeks of cuprizone exposure (week 9).
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immunoreactivity provides a sensitive marker for demyelination or
axonal injury (Trapp et al., 1998; Ouda et al., 2012). In the cuprizone
model SMI-32 has been observed after long-term demyelination (after
8 weeks) as punctuations, ovoids and continuous lines (Lindner et al.,
2009). In the present study, as expected, few SMI-32 positive axons
were detected after cuprizone exposure, and there were no significant
group differences. We have not examined the effect of vitamin D on
chronic demyelination (Armstrong et al., 2006) and during

remyelination, over a prolonged period. Axonal damage is postulated to
happen over time when the brain no longer can compensate for further
axonal loss (Dutta and Trapp, 2011). The duration of cuprizone ex-
posure may have been too short to evaluate the extent of, and group
differences in SMI-32 immunopositivity.

The APP is a membrane glycoprotein, present in neuronal cells. In
damaged axons, APP accumulates locally but is redistributed if axonal
transport is restored, or if the axon degenerates (Lavi and
Constantinescu, 2005; Lindner et al., 2009). Few have studied the effect
of vitamin D on APP. In a mice model for Alzheimer disease, Durk et al.
demonstrated that long-term calcitriol treatment decreased the levels of
soluble and insoluble amyloid beta (Aβ), particularly in the hippo-
campus (Durk et al., 2014). Calcitriol has also been shown to increase
the clearance of Aβ and decrease Aβ in the hippocampus of aged rats
(Briones and Darwish, 2012) In our study, there were fewer transected
axons in the high cholecalciferol diet groups than in the low diet
groups, the difference was not significant. Our group assessed APP in
the corpus callosum of mice, and the results cannot be directly com-
pared to the previous findings in the hippocampus.

Failure of remyelination after cuprizone-induced demyelination

PLACEBO HIGH DOSE CALCITRIOL

NFL

APP

SMI-32

Fig. 2. Remyelination.
NFL, SMI-32 and APP immunostaining in the midline of corpus callosum after three weeks of remyelination in mice receiving intraperitoneal injections of 2 μg
calcitriol vs. placebo. There were no significant differences between the calcitriol- and placebo-treated mice. All images at 40×. Scale bar= 20 μm.

Table 2
Remyelination – 3weeks of remyelination.

Placebo Calcitriol p

Mean (SD) Mean (SD)

NFL area 80.8 (7.0) 81.8 (12.2) 0.690
SMI-32 area 3.3 (3.5) 5.0 (6.3) 0.537
APP density 25.2 (4.3) 23.4 (8.7) 0.916

Mean and standard deviation (SD) quantified by NFL and SMI-32 staining in %
area and APP density, area after 3 weeks of remyelination (week 10).
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results in an increase in demyelination-associated axonal degeneration,
and remyelination may protect axons and increase axonal survival
(Irvine and Blakemore, 2008). Previously, we have found that mice
given calcitriol are less demyelinated after three weeks of remyelination
than mice receiving placebo (Nystad et al., 2014). However, calcitriol
given during remyelination seemed not to diminish axonal loss or
promote axonal repair in the current study despite more efficient re-
myelination. Continuous axonal damage despite sufficient remyelina-
tion has been described after chronic cuprizone-induced demyelination
(Lindner et al., 2009). Despite remyelination, axonal degeneration
continues at a low level and accumulates over time (Manrique-Hoyos
et al., 2012; Zendedel et al., 2013). This could indicate that vitamin D
should be given before, or at least at the same time as demyelination
occurs, to affect axonal damage and loss.

A limitation of the present study was that we did not perform
functional studies on the pathophysiological mechanisms underlying
the effects of cholecalciferol on the axonal injury during demyelination.
Several research groups have used the cuprizone model to study de-
myelination, remyelination and axonal damage, but the model does not
directly mimic human MS pathology (Kipp et al., 2009; Zendedel et al.,
2013).

5. Conclusion

High dose cholecalciferol, given before and during cuprizone ex-
posure, appears to have a protective effect on axonal loss, while high
dose calcitriol, given after the demyelination phase, seems not to in-
fluence axonal regeneration. In the future, clinical trials are necessary
to gain a deeper insight into vitamin D's effects on axonal loss and
damage.
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Supplementary table 1 (Table S1) Demyelination  
 
   Demyelination Remyelination 
Week 1 2 3 4 5 6 7 8 9 10 11 
Cuprizone (n = 12 x 4)            
Vitamin D diets  
Cuprizone       
Euthanasia         �  � 
Controls (n = 6 x 4)            
Vitamin D diets  
Cuprizone            
Euthanasia           � 
 

Overview of experimental groups, cuprizone exposure, vitamin D-diet and euthanasia through the 

experimental period. 72 mice were randomized to one of four groups, 1) <50 IU/kg, 2) 500 IU/kg, 3) 

6200 IU/kg and 4) 12500 IU/kg. After two weeks 48 mice were randomized to 6 weeks cuprizone 

exposure. The animals were euthanized after 9 and 11 weeks. Published results for week 9 (6 weeks 

cuprizone exposure).  



Supplementary table 2 (Table S2) Remyelination 

 

 

Overview of experimental groups, cuprizone exposure, intra-peritoneal (ip.) injections twice weekly 

and euthanasia through the experimental period. 48 mice were randomized to one of four groups, 1) 

healthy controls, 2) cuprizone only, 3) 2µg calcitriol cuprizone and 4) 2µg placebo cuprizone. After 

two weeks 42 mice were exposed to cuprizone. The animals were euthanized after 6, 7, 8 and 10 

weeks. Published results from week 10 (3 weeks remyelination).  

 

 Demyelination Remyelination  
Week  1 2 3 4 5 6 7 8 9 10 
Healthy controls (n = 6)           
Euthanasia          � 
Cuprizone only (n = 6)           
Cuprizone           
Euthanasia      �     
Calcitriol (n =18)           
Cuprizone           
Ip. injection calcitriol            
Euthanasia       � �  � 
Placebo (n = 18)           
Cuprizone           
Ip. injection placebo           
Euthanasia       � �  � 



Supplementary table 3 (Table S3) 
 
Antigen Species/isotype Antigen 

retrieval 
Working 
dilution 

Incubation 
time and 
room 
temperature 
(RT) 

Target Source 

NFL1 Mouse 
IgG1, mAb 
 

Tris-
EDTA 

1:1600 1h/RT Phosphorylated 
neurofilament 
chain L 

Millipore 

       
SMI-322 Mouse 

IgG1, mAb 
 

Citrate 1:2000 1h/RT Non-
Phosfoylated 
chain H 

Millipore 

       
APP3 Mouse 

IgG1, mAb 
 

Citrate 1:2000 24h/RT APP: protein A4 Millipore 

 
 
Antibodies used for immunohistochemistry specified. 

mAb = monoclonal antibody. 

1Anti-Neurofilament 70 kDa antibody, clone DA2, MAB1615. 

2Anti-Neurofilament H Non-Phosphorylated. 

3Anti-Alzheimer Precursor Protein A4, clone 22C11. 
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Fingolimod (FTY720) is approved for treatment of relapsing–remitting multiple sclerosis. In vitro studies have
found that fingolimod stimulates remyelination in cerebellar slices, but in vivo animal studies have not detected
any positive effect on cerebral remyelination. The discrepant findings could be a result of different mechanisms
underlying cerebral and cerebellar remyelination. The cuprizone model for de- and remyelination was used to
evaluate whether fingolimod had an impact on cerebellar remyelination in vivo. We found that fingolimod did
not have any effect on cerebellar remyelination, number of mature oligodendrocytes, microglia or astrocytes
when fed after cuprizone exposure.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Fingolimod (FTY720) is a non-selective sphingosine 1-phosphate
(S1P) receptor modulator that regulates lymphocyte trafficking and re-
tains lymphocytes within the lymph node. It is widely used for the treat-
ment of relapsing–remittingmultiple sclerosis (RRMS). S1P receptors are
also expressed on neuroglia and fingolimod could therefore have a role in
neuroprotection and remyelination independent on its role on peripheral
lymphocytes (Brinkmann et al., 2010; Groves et al., 2013; Sobel et al.,
2015). It has been demonstrated that fingolimod enhances oligodendro-
cyte survival (Miron et al., 2008a,b), as well as remyelination in
organotypic cerebellar slices in vitro (Miron et al., 2010). However,
fingolimod is not able to promote remyelination in the corpus callosum
(Hu et al., 2011; Kim et al., 2011; Slowik et al., 2015) or cerebral cortex
(Slowik et al., 2015) of mice after experimentally induced demyelination.
Different mechanisms seem to underlay cortical and white matter

remyelination (Gudi et al., 2009), as well as cerebellar remyelination
(Skripuletz et al., 2010), suggesting that the discrepant findings could
have resulted from comparisons of different brain areas.

The cuprizone model is a T cell independent experimental model of
toxic CNS demyelination. The copper chelator bis-cyclohexanone
oxaldihydrazone (cuprizone) induces apoptosis of mature oligodendro-
cytes with subsequent myelin disruption, microglia activation, astro-
gliosis and infiltration of blood monocytes (macrophages) (Blakemore,
1973a; Torkildsen et al., 2008; Praet et al., 2014). Themodel demonstrates
acute, selective demyelination with subsequent spontaneous remye-
lination after five weeks of cuprizone exposure (Blakemore, 1973b;
Skripuletz et al., 2011; Wergeland et al., 2012). Although most studies
using this model have focused on corpus callosum demyelination, demy-
elination and remyelination in the cerebellum have been well-studied
and described (Groebe et al., 2009; Skripuletz et al., 2010), making it an
idealmodel to study the effects of fingolimod on cerebellar remyelination
in vivo.

2. Methods

2.1. Mice

Five-week-old female c57Bl/6 mice (total n = 32) were purchased
from Tacomic, Tornbjerg, Denmark. Mean weight was 18.5 g +/− SD
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1.1. The mice were acclimatized for 12 days prior to the experiment.
They were housed by six together in GreenLine type II cages with
open top (Scanbur, Karlslunde, Denmark), in standard laboratory condi-
tions. Cage maintenance was performed once a week and the animals
were handled by the same individuals throughout the experimental pe-
riod. Food and tapwater were available ad libitum throughout the accli-
matization and experimental period. The experimentwas carried out in
accordance with the European Laboratory Animal Science Associations
recommendations, and the protocol was approved by the Norwegian
Animal Research Authority (permit 2013*5682).

2.2. Study design, cuprizone administration and fingolimod treatment

To induce demyelination, all mice were fed with 0.2% cuprizone
(Sigma, St. Louis, MO, USA) mixed into ground mouse chow for six
weeks. Cuprizone exposure was then discontinued. Control group (no
demyelination) got normal mouse chow for the entire period. To study
the effect on cerebellar remyelination, fingolimod was reconstituted in
distilled water and given orally 1×/d by gavage at 1 mg/kg (Hu et al.,
2011; Kim et al., 2011; Deshmukh et al., 2013) body weight from week
five. Cuprizone exposure and fingolimod treatment overlapped with
one week to make sure that the drug was taken up and phosphorylated
to its active compound while cuprizone was still present. For compari-
son, animals in the cuprizone control group (maximal demyelination)
were given the same volume of water (vehicle) by gavage. To study
the dynamic effect of fingolimod on remyelination, animals in each
group (n = 4) were sacrificed at weeks 5, 6 (1 wr), 7 (2 wr) and 9
(4 wr) as illustrated in Fig. 1. The animals were anesthetized with mid-
azolam (Dormicum; F. Hoffmann-La Roche AG, Basel, Switzerland) in
combination with fentanyl/fluanisone (Hypnorm, VetaPharma Ltd., UK)
and sacrificed by cardiac puncture. Cerebelli were removed, post-fixed
in 4% paraformaldehyde (PFA) and cryo-preserved.

2.3. Immunohistochemsitry

Sagittal 8 μm sections were cut on a Leica CM1960 cryostat. Antigen
retrieval was performed using the 2100 Retriever and Diva decloaker
buffer as described by the manufacturer (Dako, Glostrup, Denmark),
unless otherwise specified. Antibodies used: Iba1 (1:1000, Wako
chemicals 019-19741), GFAP (1:1000, Sigma G3893), NOGO-A (1:500,
Millipore AB5664P), β-APP (1:1000, Abcam ab32136), PLP1 (1:1000,
AbD Serotec MCA839G), MBP (1:500, without antigen retrieval,
Abcam ab24567), and neurofilament (1:1000, Millipore MAB1615).
Secondary antibodies were Alexa Fluor 488 and 594 anti-mouse or
anti-rabbit. Pictures were taken with a Nikon TE2000, with a 10× or
40× objective, or a Leica Confocal SP2 with 40× or 63× objective. Mye-
lin was analysed by visual scoring of demyelination on a scale from 0
(no demyelination) to 3 (total demyelination), as previously described
(Skripuletz et al., 2010; Wergeland et al., 2011). Results are given as a
mean between the score for PLP1 and MBP. For cell number analysis,
numbers are given as a mean from 2 pictures within the subcortical

region and 2 pictures from the cerebellar cortex (Fig. 1b). β-APP was
measured by counting particles in the range of 10–600 pixels using
the FIJI software. 2–4 sections were analysed for each animal per anti-
body. All analyses were done blinded.

2.4. Statistics

One-way analysis of variance (ANOVA) was used to analyse para-
metric data, followed by Fisher's least significant difference (LSD) for
post-hoc analysis when applicable. Kruskal–Wallis H-test was used to
analyse non-parametric data. Statistical analyses were done using IBM
SPSS statistics 22.

3. Results

3.1. Mice

After five weeks of cuprizone exposure, cuprizone-exposed mice
had a mean weight 18.5 g +/− 1.1 (SD) compared to 22.1 +/− 1.2
(SD) in healthy controls (p b 0.0001). There were no significant differ-
ences between mice randomized to fingolimod or vehicle treatment
(p = 0.23). After ending cuprizone exposure, no significant weight dif-
ference between fingolimod and vehicle treated mice was observed at
any time points (data not shown). One mouse died of unknown cause.

3.2. Remyelination

To evaluate cerebellar de- and remyelination, PLP1- andMBP- stain-
ingwas scored in the subcortex and two areas of rostral parts of cerebel-
lar cortex as shown in Fig. 1b. The myelin scores are provided as the
mean of PLP1 andMBP scores. Subcortical demyelination of the cerebel-
lum was robust and significant in animals exposed to cuprizone (p b

0.0005) (Fig. 2). After 2 weeks of recovery, there was a mild and signif-
icant subcortical remyelination for both placebo (p b 0.0005) and
fingolimod (p = 0.05). After 4 weeks of recovery, remyelination was
clearer (p b 0.0005 for both placebo and fingolimod compared to the
cuprizone control group), although not complete (significant demyelin-
ation for both groups compared to the control group, p b 0.0005).
Cuprizone exposure led to mild demyelination of the cerebellar cortex
that did not reach significance on group level (p = 0.054). Single com-
parison between the control group and cuprizone control group showed
significant demyelination. Similar single comparison showed significant
remyelination after 4 weeks (both placebo and fingolimod) compared
to the cuprizone control group. There were no significant effects of
fingolimod at any time points, neither in the cerebellar subcortex nor
in the cerebellar cortex (Fig. 2).

3.3. Axonal damage

Accumulation of β-APP was measured to study acute axonal dam-
age. Cuprizone exposure led to a significant increase in β-APP positive

Fig. 1. Study design.Micewere fedwith cuprizone for 6weeks. Fromweek 5, either fingolimod or placebo (vehicle) was given by gauge. Micewere sacrificed and cerebellum taken for IHC
at 5 weeks cuprizone exposure (cuprizone control), 1 wr, 2 wr, and 4 wr (A). Mouse cerebellum with rectangles showing the regions examined with IHC, red; subcortical region, green;
Purkinje cell and internal granule layer (B). Wr: weeks of recovery. IHC: immunohistochemistry.
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axons in the subcortical region (p b 0.0005) (Fig. 3a). Therewas no loss of
neurofilament positive axons after cuprizone treatment (Fig. 3b). After
1 week of recovery β-APP positive axons were almost not detectable,
and the levels remained low and close to baseline in the recovery period

(p b 0.0005 for all groups compared to 5 weeks of cuprizone exposure).
There were no differences in the number of β-APP positive axons
between fingolimod- and placebo treated mice. In cerebellar cortical
regions, no β-APP positive axons were detected (results not shown).

Fig. 2. Effect of fingolimod on remyelination in cerebellum of cuprizone-exposed mice. Robust subcortical demyelination was apparent after 5 weeks of cuprizone exposure compared to
untreated controls. After 2 weeks of recovery, both placebo and fingolimod groups were significantly remyelinated and remyelination proceeded throughout the recovery period (A).
Cuprizone exposure led to a mild, but not significant, demyelination of the cerebellar cortex (B). Representative pictures show myelination (PLP1 and MBP) in the subcortex and cortex
ofmouse cerebellum for control, 5 weeks of cuprizone exposure and after 4weeks of fingolimod/placebo treatment. For subcortex, higher magnification pictures (63×) of the regionwith
highest degree ofmyelination (arrow) and lowest degree ofmyelination (arrowhead) are given (C). 2–4 sectionswere analysedper animal (n=3–4). ###p b 0.001 to control group. ***pb

0.001, *p b 0.5 to cuprizone group. Scale bars: 250 μm for subcortex (10×), 25 μm for subcortex (63×) and 50 μm cortex (63×).

182 M.N. Alme et al. / Journal of Neuroimmunology 285 (2015) 180–186



3.4. Mature oligodendrocytes, astrocytes and microglia

Cuprizone exposure led to a significant subcortical and cortical loss
of NOGO-A positive mature oligodendrocytes (p = 0.003 and p =
0.001). In both regions, the number of NOGO-A positive oligodendro-
cytes increased during the recovery period, reaching normal levels by
4 weeks of recovery. Fingolimod did not have any significant effect on
NOGO-A positive (mature) oligodendrocytes (Fig. 4a and b).

There was a subcortical increase in GFAP-positive astrocytes after
5 weeks of cuprizone treatment (N4-fold, p b 0.0005) (Fig. 4 c). During
remyelination, the number of GFAP-positive astrocytes remained high
in both placebo- and fingolimod-groups, with no significant differences
at any time points. In the cerebellar cortex, there were no changes in
number of GFAP-immunopositive astrocytes at any time points.

In line with previous studies (Groebe et al., 2009; Ingwersen et al.,
2012), 5 weeks of cuprizone exposure led to a robust subcortical in-
crease in Iba1-positive microglia/macrophages (12-fold, p b 0.0005)
(Fig. 5a). It has previously been found that cuprizone-induced
microgliosis is a combination of strong local proliferation of brain resi-
dent microglia and infiltration of blood-derived monocytes (macro-
phages) (Praet et al., 2014). In this study, microglia and infiltrated
macrophages were not distinguished and are referred to as microglia.
During the recovery phase, the number of microglia steadily decreased,
although not to normal levels. In the cerebellar cortex, therewas no sig-
nificantmicrogliosis (Fig. 5b). Fingolimod did not have any effect onmi-
croglia numbers at any time points.

4. Discussion

The aim of this study was to investigate the possible effect of
fingolimod on cerebellar remyelination in vivo by using the cuprizone
model. We analysed three time points during the recovery phase with-
out detecting any effect of fingolimod on cerebellar remyelination. We
did not detect any effect of fingolimod on maturation of oligodendro-
cytes, microglia numbers or GFAP positive astrocytes in the recovery
period after cuprizone induced demyelination.

The cuprizone mouse model is a highly reproducible and well
described animal model used to study mechanisms underlying de-
and remyelination (Torkildsen et al., 2008; Wergeland et al., 2012;
Praet et al., 2014). Previous work from our group has shown that a vita-
min D rich diet can reduce demyelination (Torkildsen et al., 2009;
Wergeland et al., 2011) and promote remyelination (Nystad et al.,
2014) in the corpus callosum of cuprizone-exposed mice.

In line with previous studies (Groebe et al., 2009; Skripuletz et al.,
2010), cuprizone exposure induced cerebellar demyelination. Subcorti-
cal regions were severely demyelinated, while demyelination was
minor in the cerebellar cortex after five weeks of cuprizone exposure.
We did not detect remyelination after the first week of recovery, sug-
gesting that cerebellar remyelination is delayed compared to the rapid
remyelination seen in the corpus callosum (Skripuletz et al., 2008;
Wergeland et al., 2012). Remyelination is known to be initiated by pro-
liferation and migration of oligodendrocyte precursor cells towards the
lesion site where theymature intomyelin formingmature oligodendro-
cytes in a process that is dependent on a plethora of growth factors and
signalling molecules (Praet et al., 2014). S1P is considered a survival
factor for mature oligodendrocytes (Jaillard et al., 2005) and when
fingolimod is given together with cuprizone, it protects mature oligo-
dendrocytes from apoptosis (Kim et al., 2011). In our study, fingolimod
was given after cuprizone-induced remyelination, at a time point where
hardly any mature oligodendrocytes were present in the demyelinated
area. The number of NOGO-A positivemature oligodendrocytes steadily
increased during the recovery phase, corresponding to subcortical
remyelination, without any influence from fingolimod.

It has been shown that fingolimod may have neuroprotective prop-
erties, reducing axonal damage in the corpus callosum after acute and
chronic cuprizone-induced demyelination (Slowik et al., 2015). Howev-
er, we did not detect any effect of fingolimod on axonal damage in the
cerebellum, as subcortical β-APP positive axonswere almost at baseline
levels after one week of remyelination and there were no differences in
neurofilament levels or number of APP-positive axons between placebo
and fingolimod groups throughout the recovery phase.

Cuprizone exposure resulted in sustained subcortical astrogliosis
throughout the remyelination period. This is in linewith previous studies
(Groebe et al., 2009; Hibbits et al., 2012), and has been suggested that
astrocytes promote remyelination by supporting oligodendrocyte differ-
entiation and recruitment of microglia/macrophages to lesion sites (Nair
et al., 2008; Praet et al., 2014; Tanaka and Yoshida, 2014). Five weeks of
cuprizone exposure induced extensive subcortical microgliosis, which
declined during the recovery phase independent of fingolimod treat-
ment. This is in line with recent results from the corpus callosum

Fig. 3. Effect from fingolimod on accumulation of subcortical β-APP accumulation and
neurofilment integrity. Five weeks of cuprizone exposure led to an increased subcortical
accumulation of β-APP with no change of neurofilament integrity. After 1 week of recov-
ery β-APP positive axons were hardly detected. Fingolimod did not affect the accumula-
tion of β-APP particles throughout the recovery period (A). Subcortical β-APP (red) and
neurofilament (green) staining of control, after 5 weeks of cuprizone exposure and after
4 weeks of recovery (B). 2–4 sections were analysed per animal (n = 3–4). β-APP: amy-
loid β precursor protein. ***p b 0.001. Scale bar 25 μm.
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(Slowik et al., 2015). Whether fingolimod has any clinical significant
effect on microglia is debated (Groves et al., 2013). The use of different
experimental model systems, inducing CNS damage with different aeti-
ologies, could be a plausible explanation for the discrepant findings. Re-
generative functions of microglia depend on their phenotype. Microglia
in a pro-inflammatory state are considered inhibitory to remyelination
while microglia in an anti-inflammatory state could promote
remyelination by phagocytosis of myelin debris and secretion of cyto-
kines and growth factors (Miron and Franklin, 2014). In this study we

analysed the total number of microglia without distinguishing between
different functional phenotypes and it is therefore possible that
fingolimod has functional effects on microglia that we did not detect.
However, regardless of any effects on microglia functions, we did not
find that fingolimod promotes remyelination in the cuprizone model.

Fingolimod is effective in preventing acute attacks in RRMS by
internalising T cells in the lymph nodes (Brinkmann et al., 2010;
Ingwersen et al., 2012). From murine models it has been found that
fingolimod is distributed to and phosphorylated to its active form

Fig. 4. Effect from fingolimod onmature oligodendrocytes and astrocytes inmouse cerebellum after cuprizone exposure. Numbers of NOGO-Apositive oligodendrocyteswere significantly
reduced in the subcortex (A) and cortex (B) after 5 weeks of cuprizone exposure. During the recovery period, there was a steady increase in NOGO-A positive oligodendrocytes in both
regions, reaching normal levels after 4 weeks of recovery (A and B). Cuprizone exposure led to robust subcortical astrogliosis that sustained during the recovery phase (C). No astrogliosis
was seen in the cerebellar cortex (D). NOGO-A positive mature oligodendrocytes (red) and GFAP-expressing astrocytes (green) in subcortex and cortex in control, 5 weeks of cuprizone
exposure and after 4 weeks of recovery (E). 3–4 sections were analysed per animal (n = 3–4). ***p b 0.001, **p b 0.01,*p b 0.05 to cuprizone, ###p b 0.001 to control group, GL: granule
layer. Scale bar 25 μm.
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within the brain (Meno-Tetang et al., 2006). It has therefore been sug-
gested thatfingolimod couldmodulate immune responses and promote
CNS regeneration by targeting neurons and neuroglia (Miron et al.,
2008c; Groves et al., 2013). As S1P is involved in immune cell trafficking,
vascular homeostasis and cell communication in the CNS, it has been
suggested that S1P canmediate activation and proliferation of neuroglia
during inflammatory responses (Brinkmann, 2007). Results from the
present study show that there is no effect of fingolimod on maturation
of oligodendrocytes, astrogliosis or microgliosis in the cerebellum after
cuprizone exposure. This indicates that modulating neuroglial S1P re-
ceptors by fingolimod does not have any clear regenerative effects al-
though it has been found to have some neuroprotective effects during
cuprizone induced CNS damage (Kim et al., 2011).

5. Conclusions

We show that fingolimod does not affect cerebellar remyelination,
number of mature oligodendrocytes, microglia or astrocytes in the re-
covery phase after cuprizone-induced demyelination. This suggests
that fingolimod does not have any effect on cerebellar remyelination
in vivo. Our conclusions are in line with the previous reported in vivo
studies on the corpus callosum (Hu et al., 2011; Kim et al., 2011;
Slowik et al., 2015), but differ from the in vitro study using organotypic
cerebellar slices (Miron et al., 2010). We suggest that the discrepant
results are caused by the use of different experimental models and
not by different effects from fingolimod on cerebral and cerebellar
remyelination.
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A B S T R A C T

Fingolimod is used to treat patients with relapsing-remitting multiple sclerosis; it crosses the blood-brain barrier
and modulates sphingosine-1-phosphate receptors (S1PRs). Oligodendrocytes, astrocytes, microglia, and neu-
ronal cells express S1PRs, and fingolimod could potentially improve remyelination and be neuroprotective. We
used the cuprizone animal model, histo-, immunohistochemistry, and quantitative proteomics to study the effect
of fingolimod on remyelination and axonal damage. Fingolimod was functionally active during remyelination by
downregulating S1PR1 brain levels, and fingolimod-treated mice had more oligodendrocytes in the secondary
motor cortex after three weeks of remyelination. However, there were no differences in remyelination or axonal
damage compared to placebo. Thus, fingolimod does not seem to directly promote remyelination or protect
against axonal injury or loss when given after cuprizone-induced demyelination.

1. Introduction

Multiple sclerosis (MS) is a chronic immune-mediated disease,
characterized by inflammation, demyelination, and axonal degenera-
tion of the central nervous system (CNS) (Lassmann, 2018). Current
treatments target the inflammatory aspects of MS but do not directly
promote CNS remyelination (Plemel et al., 2017). Pro-remyelinating
substances may be an important supplement to immunomodulating
therapies to optimize MS therapy. Fingolimod (2-amino-2-[2-(4-octyl-
phenyl)ethyl]propane-1,3-diol) (Kiuchi et al., 1998) is used in the
treatment of relapsing-remitting multiple sclerosis (RRMS) (Kappos
et al., 2010; Calabresi et al., 2014; Thompson et al., 2018). The medi-
cation binds to and modulates sphingosine-1-phosphate receptors
(S1PRs), causing sequestration of lymphocytes within lymph nodes by
S1P1 downregulation, which reduces lymphocyte infiltration into the
CNS parenchyma (Chiba et al., 1998; Brinkmann et al., 2000). A wide
range of cell types within the CNS expresses S1PRs, including oligo-
dendrocytes (Jaillard et al., 2005), neurons, astrocytes (Pebay et al.,

2001) and microglia (Chun and Hartung, 2010). Fingolimod crosses the
blood-brain barrier (Brinkmann, 2007; Chun and Hartung, 2010;
Groves et al., 2013) and may have a direct impact on CNS remyelina-
tion. However, results from experimental studies on the effects of fin-
golimod on remyelination are inconsistent. In vitro studies have in-
dicated that fingolimod enhances remyelination in cerebellar slices
(Miron et al., 2010) and promotes remyelination in a rat CNS spheroid
culture (Jackson et al., 2011). In vivo, fingolimod improved re-
myelination following lysolecithin-induced demyelination in mice
(Yazdi et al., 2015) and promoted the proliferation and differentiation
of oligodendrocyte progenitors facilitating remyelination in experi-
mental autoimmune encephalomyelitis (EAE) (Zhang, Zhang et al.,
2015). However, other studies have not found that fingolimod improves
remyelination (Hu et al., 2011; Kim et al., 2011; Alme et al., 2015;
Slowik et al., 2015; Kim et al., 2018). A recent review indicates that
fingolimod might have a direct and regulatory role in remyelination
and that the dose of fingolimod and the time of administration are
crucial to the remyelination process (Yazdi et al., 2019). In the present
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study, we aimed to clarify if fingolimod could promote remyelination
and possibly diminish axonal damage in the cerebrum of mice in the
cuprizone model for de- and remyelination.

2. Materials and methods

Additional information is available in the Supplementary methods.

2.1. Mice

Forty-eight, female, five-week-old c57Bl/6 mice were obtained from
Taconic (Tornbjerg, Denmark), mean weight was 18,54 g ± 1,14 (SD).
The mice were housed six together in GreenLine type II cages (Scanbur,
Karlslunde, Denmark), in standard laboratory conditions. Food and tap
water were available ad libitum. Cage maintenance was performed
once a week, and the same individuals handled the mice throughout the
experimental period. The experiment followed the recommendations of
the Federation of European Laboratory Animal Science Associations,
and the protocol was approved by the Norwegian Animal Research
Authority (permit # 2013-5682).

2.2. Study design, cuprizone, and fingolimod/placebo administration

After 12 days of acclimatization, the mice (n=48) were rando-
mized into four groups: healthy controls (n=6), cuprizone controls
(n= 6), cuprizone+ fingolimod (n=18) and cuprizone+placebo
(n=18). We added 0.2% cuprizone (bis-cyclohexanone-oxaldihy-
drazone, Sigma-Aldrich, St. Louis, MO, USA) to milled mouse chow for
six weeks, to induce demyelination. Subsequently, mice were fed
normal chow. Fingolimod, 1mg/kg (Hu et al., 2011; Kim et al., 2011;
Deshmukh et al., 2013) reconstituted in distilled water or placebo
(equivalent volume of water), was administered by oral gavage once
daily from week 5. There was a one week overlap in cuprizone exposure
and fingolimod treatment to make sure that fingolimod was taken up
and phosphorylated to its active compound during the cuprizone ex-
posure (Fig. S1A). For unknown reasons, one mouse died during the
experiment resulting in 47 mice for analysis.

2.3. Histopathology and immunohistochemistry

In anesthesia by midazolam (Dormicum “Roche”) and fentanyl/
fuanisone (Hypnorm “VetaPharma”), the animals were euthanized by
cardiac puncture after five weeks (cuprizone controls), six weeks (DM,
maximal demyelination), one week of remyelination (1RM) and after
three weeks of remyelination (3RM) (Fig. S1A). Brains were dissected
and post-fixed in 4% formaldehyde for at least seven days before par-
affin embedding. For analyses, we used 3–7 μm coronal sections from
the bregma±1mm (Paxinos, 2008). Sections were histochemically
stained with Luxol Fast Blue (LFB) to evaluate myelination. Before
immunostaining, paraffin-embedded sections were dewaxed and rehy-
drated, and antigens were retrieved by microwaving sections in either
TRIS-EDTA (pH 9.0) or citrate buffer (pH 6.1) (Nystad et al., 2014).
Sections were stained for myelin (anti-Proteolipid Protein, PLP), mature
oligodendrocytes (Neurite Outgrowth Inhibitor Protein A, NOGO-A),
astrocytes (Glial Fibrillary Acidic Protein, GFAP), macrophages and
microglia (MAC-3), T-cells (CD3), axonal transection and loss (respec-
tively, amyloid precursor protein A4, APP, and phosphorylated neuro-
filament light, NFL). The use of buffers, dilutions, incubation times, and
temperatures for the antibodies are specified in Table S1. Sections were
blocked with peroxidase blocking solution and visualized with EnVision
3.3. – diaminobenzidine (1:50, 3min at RT) (DAKO, Glostrup, Den-
mark). Furthermore, counterstained with hematoxylin, dehydrated, and
fixated. Brain tissue from healthy or demyelinated mice controls served
as controls for all stainings.

2.4. Analyzes of brain sections

We used light microscopy to analyze the sections (Zeiss Axio
Imager.A2, Oberkochen, Germany). Myelin loss (LFB staining) was
quantified by two blinded observers, using a semi-quantitative scoring
system from no (0) to complete demyelination (3) as described before
(Nystad et al., 2014). Reactive astrocytosis (GFAP immunoreactivity)
was evaluated by a semi-quantitative scale as no (0), minimal (1),
moderate (2) or extensive (3) (Wergeland et al., 2012). To evaluate the
density of mature oligodendrocytes (NOGO-A immunopositive cells),
activated microglia and macrophages (MAC-3 immunopositive cells), T-
cells (CD3 immunopositive cells) and acute axonal damage (APP im-
munopositive cells), one blinded observer counted immunopositive
cells within an area of 0.0625mm2 at 40×, using an ocular morpho-
metric grid. Immunopositivity for pan-phosphorylated NFL and PLP
was quantified using digital densitometry. The area of interest was
photographed with identical exposure settings at 40× magnifications
(Zeiss Axio Imager.A2 with AxioCam ERc5 digital camera). Greyscale
images were thresholded using ImageJ, v1.41 (Research Services
Branch, National Institute of Mental Health, Bethesda, Maryland, USA)
to diminish background staining. Immunopositivity was expressed as
the area of immunopositivity relative to (%) the total image area.
Sections were assessed in the midline of the corpus callosum (CC), the
lateral corpus callosum area, the supplemental somatosensory area, the
secondary motor cortex (M2) and deep grey matter – striatum (Fig.
S1B).

2.5. Statistical methods

We did a priori sample size calculations based on the differences in
the myelin content between calicitriol- and placebo-treated mice from
(Nystad et al., 2014), a sample size of six animals per experimental
group would give a power of 0.7 (mean LFB.score of 2.0 ± SD 0.6 and
1.0 ± SD 0.6 after three weeks of remyelination). Kolmogorov-
Smirnov and Shapiro-Wilk tests of normality were used to test the as-
sumption of normally distributed data. We used independent sample t-
tests to compare parametric data and the Mann-Whitney test for non-
parametric data. Differences were considered significant at p < 0.05.
The calculations were carried out unblinded, using Statistical Package
for the Social Sciences (IBM Corp. Released 2017. IBM SPSS Statistics
for Windows, Version 25.0. Armonk, NY: IBM Corp).

2.6. Quantitative proteomics

We prepared the samples of mouse brain lysates as previously de-
scribed (Lereim et al., 2016). Briefly, the individual frontal right
hemisphere of mice receiving fingolimod or placebo were lysed in 4%
SDS, 100mM Tris/HCl pH 7.6, 0.1M DTT, and the protein concentra-
tion estimated. Before digestion, the samples were pooled (Table S2),
and 50 μg of each pool was digested by the Filter-aided sample pre-
paration (FASP) protocol (Wiśniewski et al., 2009). The samples were
tagged by a tandem mass tag (TMT) 10-plex set (Thermo Scientific) that
was split in two, enabling simultaneous tagging of 20 samples; 18
sample pools and two identical reference samples enabling combining
and comparing the two 10 plexes (Table S2). Each TMT 10 plex ex-
periment was fractioned by mixed-mode reverse phase chromatography
as previously described (Lereim et al., 2016). This resulted in 58 frac-
tions each 10 plex that was lyophilized and dissolved in 1% formic acid
(FA)/2% acetonitrile (ACN) prior to LC-MS/MS analysis (supplemen-
tary methods). Following LC-MS/MS, peptides were identified, quan-
tified, and normalized in Proteome discoverer 2.0 (Thermo Scientific).
The samples were analyzed by the statistical software limma (Ritchie
et al., 2015) in R. The script used to analyze the samples and create the
graphics is available on GitHub (https://github.com/RagnhildRLereim/
Fingolimod). We analyzed Gene Ontology Biological process enrich-
ment for the proteins considered to be significantly different in Panther
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(Thomas et al., 2006; Mi et al., 2019). The proteomics data is available
in the PRIDE database (Vizcaino et al., 2016) under accession
PXD012676 (Username: reviewer53224@ebi.ac.uk, Password:
VJxAVcfS). For additional information about the quantitative pro-
teomics experiment, see Supplementary methods.

3. Results

3.1. Effects of fingolimod treatment on the brain proteome during
remyelination

Using TMT labeling and proteomics, we identified 7949 proteins, of
which 7183 were quantified. In total, the same 6386 proteins were
identified and quantified in both TMT 10-plexes and formed the basis of
our statistical analysis with three mini pools for each condition, where
each pool contained equal amounts of two biological replicates (Table
S2). Significant proteomic changes were seen in the dataset (p < 0.01,
log2 fold change (FC) Fingolimod – Placebo<−0.2,> 0.2) between
the fingolimod and the placebo-treated animals, albeit the distribution
of mean expression values were narrow (Fig. S2) and comparison
analysis showed moderate fold changes (min log2 FC -1.17, max= 1.7,
normal values= 0.4–3.2). A detailed table of the significant proteins
from each comparison can be found in Supplementary tables S3–S5.
Gene Ontology enrichment analysis of these proteins did not show any
significantly overrepresented biological processes at any time point.

3.2. Fingolimod was functionally active during remyelination by
downregulating S1PR1 levels

The two proteins, S1PR1, and guanine nucleotide-binding protein
gamma 5 (GNG5) were significantly regulated in the samples from the
fingolimod-treated mice compared to placebo at all measured time
points (Fig. 1). Both S1PR1 and GNG5 were less abundant in samples
from fingolimod-treated mice; however, only S1PR1 was significant
after false discovery rate (FDR) correction (q < 0.01). At one week of
remyelination, the protein Lysosomal thioesterase (PPT2) was sig-
nificantly downregulated in the samples from fingolimod-treated mice
after FDR correction.

3.3. Fingolimod did not affect remyelination

3.3.1. Remyelination in the corpus callosum and the cortex
There was a detectable loss of myelin in the midline of the corpus

callosum (CC), as measured by LFB score after five weeks in the cu-
prizone-treated mice (1.5 ± SD 0.5) compared to healthy controls
(0.33 ± SD 0.52, p=0.036) (Fig. 2, Table S6A). There was no dif-
ference in myelin loss in the CC between the fingolimod group and
placebo group after six weeks of demyelination (DM: 1.83 vs. 2.0,
p=0.38), one week of remyelination (1RM: 2.2 vs. 2.1, p=1.0) or
three weeks of remyelination (3RM: 1.7 vs. 1.25, p=0.40) (Fig. 2,
Table S6B–D). Similarly, there were no differences in PLP staining, at
any time point (DM: p=0.64, 1RM: p=0.96, 3RM: p=0.28, Fig. 3,
Table S6B–D). Fingolimod did not affect the density of mature oligo-
dendrocytes (NOGO-A, DM: p=0.58, 1RM: p=0.31, 3RM: p=0.90,
Fig. 4, Table S6B–D). In the secondary motor cortex, there was no
difference in the LFB score (DM: p=1.0, 1RM: p=0.77, 3RM:
p=1.0.) or PLP immunopositivity (DM: p=0.128, 1RM: p=0.481,
3RM: p=0.662) between the intervention groups. The density of ma-
ture oligodendrocytes was increased in fingolimod-treated mice com-
pared to mice in the placebo group after three weeks of remyelination
(5.17 ± SD 4.26 vs. 1.6 ± SD 0.55, p=0.032). However, the number
of mature oligodendrocytes were not increased in fingolimod mice after
six weeks of demyelination (p=0.23) or at one week of remyelination
(p= 0.66) compared to placebo mice (Table S7B–D).

3.3.2. Proteomic markers of remyelination
During the remyelination phase, there was a time-dependent in-

crease in proteins involved in myelination (Fig. 5). There were, how-
ever, no differences in levels of myelin basic protein (MBP), myelin-
associated glycoprotein (MAG), myelin-oligodendrocyte glycoprotein
(MOG), oligodendrocyte-myelin glycoprotein (OMG), myelin expres-
sion factor 2 (MYEF2), myelin-associated oligodendrocyte basic protein
(MOBP), myelin transcription factor 1-like protein (MYT1l) or PLP
between the intervention groups at any time points (Fig. 5). Corre-
spondingly, no difference was detected in the protein abundance of
NOGO between fingolimod- and placebo-treated mice at any time point
(Fig. S3).

Fig. 1. Protein levels of S1PR1, GNG5 and PPT2 measured by quantitative proteomics.
Sphingosine-1-phosphate receptor-1 (S1PR1) and guanine nucleotide binding protein gamma 5 (GNG5) were significantly less abundant (p-value< 0.01, log2 FC
Fingolimod – Placebo>0.2,<−0.2) in fingolimod animals after six weeks of demyelination (DM), one week of remyelination (1RM) and 3weeks of remyelination
(3RM). S1PR1 was significantly different in all comparisons after FDR correction (q-value< 0.05). Lysosomal thioesterase (PPT2) was significantly downregulated at
1RM in fingolimod-treated mice after FDR correction. The average log2 abundance is plotted; the error bars represent the standard deviation based on three sample
pools containing two biological replicates each.
***= p-value < 0.001, ****=p-value≪ 0.0001.
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Fig. 2. Myelin loss measured by Luxol fast blue.
A) Myelin loss in the midline of corpus callosum in the placebo and fingolimod
group after six weeks of demyelination (DM), one week of remyelination (1RM)
and three weeks of remyelination (3RM), as measured by Luxol fast blue. Scale:
no (0), minimal (0.5),< 33% (1), 33–66% (2) and > 66% (3) demyelination.
Data presented as mean, error bars:± 1 SD. Number (n) of animals included:
DM placebo (n: 6), DM fingolimod (n: 6), 1RM placebo (n: 6), 1RM fingolimod
(n: 5), 3RM placebo (n: 5), 3RM fingolimod (n: 5).
B) Luxol Fast Blue (LFB) stained sections. DM= six weeks of demyelination,
1RM=one week of remyelination, 3RM= three weeks of remyelination. All
images at 40×. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. Myelin loss measured by proteolipid protein immunoreactivity.
A) Immunoreactivity in % for PLP in the fingolimod and placebo group after six
weeks of demyelination, one week of remyelination and three weeks of re-
myelination. There were no differences between the groups at any time point.
Sections were scored in the midline of corpus callosum. Data presented as
mean, error bars:± 1 SD. Number (n) of animals included: DM placebo (n: 5),
DM fingolimod (n: 5), 1RM placebo (n: 4), 1RM fingolimod (n: 4), 3RM placebo
(n: 4), 3RM fingolimod (n: 5).
B) PLP and hematoxylin stained sections. DM= six weeks of demyelination,
1RM=one week of remyelination, 3RM= three weeks of remyelination. All
images at 40×.
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3.4. Fingolimod did not affect astrocytosis or microglia activation

3.4.1. Astrocytosis and microglia activation in the corpus callosum and the
cortex

There was increased GFAP immunopositivity in the CC of cuprizone
controls compared to healthy controls (0.7 ± SD 0.27 vs. 1.83 ± SD
0.58, p=0.024, Table S6A). Astrocytosis remained moderate to
minimal during remyelination in the fingolimod and placebo groups.
No differences in astrocytosis were detected at any time points (DM:
p=0.93, 1RM: p=0.36, 3RM: p=0.81, Fig. 6, Table S6B–D). In-
creased microglia and macrophage activation, as measured by the
density of MAC-3 immunopositive cells, was observed in the cuprizone
controls compared to healthy controls (0.0 ± SD 0.0 vs. 14 ± SD
6.56, p=0.018, Table S6A). We found no difference in MAC-3 im-
munopositivity between the fingolimod or placebo exposed mice at any
time points (DM: p=0.058, 1RM: p=0.42, 3RM: p=0.10, Fig. 7,

Fig. 4. Mature oligodendrocytes measured by Neurite outgrowth inhibitor
protein A immunoreactivity.
A) Number of mature oligodendrocytes in the fingolimod and placebo group
after six weeks of demyelination, one week of remyelination and three weeks of
remyelination. There were no differences between the fingolimod and the
placebo group at any time point. Cell counts are provided as mean number of
cells per 0.0625mm2, in the midline of the corpus callosum. Error bars:± 1 SD.
Number (n) of animals included: DM placebo (n: 5), DM fingolimod (n: 3), 1RM
placebo (n: 6), 1RM fingolimod (n: 5), 3RM placebo (n: 5), 3RM fingolimod (n:
6).
B) NOGO-A and hematoxylin stained sections. DM= six weeks of demyelina-
tion, 1RM=one week of remyelination, 3RM= three weeks of remyelination.
All images at 40×.

Fig. 5. Myelin protein levels measured by quantitative proteomics.
The average log2 abundances based on three pools, each containing two bio-
logical replicates and their standard deviation. PLP: Myelin Proteolipid Protein,
MBP: myelin basic protein, MAG: myelin-associated glycoprotein, MOG:
myelin-oligodendrocyte glycoprotein, OMG: oligodendrocyte-myelin glycopro-
tein, MYEF2: myelin expression factor 2, MOBP: myelin-associated oligoden-
drocyte basic protein, MYT1l: myelin transcription factor 1-like protein.
DM= six weeks of demyelination, 1RM=one week of remyelination,
3RM= three weeks of remyelination.

A.E. Nystad, et al. Journal of Neuroimmunology 339 (2020) 577091

5



Fig. 6. Astrocytosis measured by Glial fibrillary acidic protein im-
munoreactivity.
A) Degree of GFAP immunopositivity in the fingolimod and placebo group after
six weeks of demyelination, one week of remyelination and three weeks of re-
myelination. We could not find any difference between the fingolimod and the
placebo group at any time point. Scale: no (0), minimal (1), moderate (2), se-
vere (3) astrocytosis. Sections were scored in the midline of corpus callosum.
Data presented as mean, error bars:± 1 SD. Number (n) of animals included:
DM placebo (n: 5), DM fingolimod (n: 4), 1RM placebo (n: 6), 1RM fingolimod
(n: 6), 3RM placebo (n: 4), 3RM fingolimod (n: 5).
B) GFAP and hematoxylin stained sections. DM= six weeks of demyelination,
1RM=one week of remyelination, 3RM= three weeks of remyelination. All
images at 40×.

Fig. 7. Microglia/macrophages measured by MAC-3 immunoreactivity.
A) Number of microglia/macrophages (MAC-3 immunopositivity) in the fin-
golimod and placebo group after six weeks of demyelination, one week of re-
myelination and three weeks of remyelination. There were no significant dif-
ferences between the fingolimod and the placebo group at any time point. Cell
counts are provided as mean number of cells per 0.0625mm2, in the midline of
the corpus callosum. Error bars:± 1 SD. Number (n) of animals included: DM
placebo (n: 5), DM fingolimod (n: 4), 1RM placebo (n: 6), 1RM fingolimod (n:
4), 3RM placebo (n: 5), 3RM fingolimod (n: 5).
B) MAC-3 and hematoxylin stained sections. DM= six weeks of demyelination,
1RM=one week of remyelination, 3RM= three weeks of remyelination. All
images at 40×.
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Table S6B–D). As expected, (Matsushima and Morell, 2001; Wergeland
et al., 2012) we only observed 0–3 CD3 immunopositive lymphocytes
per counted area and no differences between the groups (Fig. S4, Table
S6A–D). In the secondary motor cortex,there was no difference in as-
trocytosis (DM: p=0.16, 1RM: p=0.17, 3RM: p=0.64) or MAC-3
immunopositivity (DM: p=0.95, 1RM: p=0.65, 3RM: p=0.78, Table
S7B–D) between the fingolimod and placebo exposed mice at any time
points.

3.4.2. Proteomic markers of astrocytosis and microglia activation
There was a reduction in the average log2 abundances of GFAP in

both intervention groups from six weeks of demyelination throughout
the remyelination phase (Fig. S3). After one week of remyelination, the
fingolimod-treated mice had increased proteomic expression of MAC-3
(p < 0.01). The difference was not considered significant under our
criteria as the fold change was<20% compared to placebo. Thus, there
were no differences (p < 0.01, log2 FC > ±0.2) between the fingo-
limod-treated and placebo-treated animals (Fig. S3).

3.5. Fingolimod did not lead to less axonal loss

3.5.1. Axonal damage in corpus callosum and the cortex
Cuprizone exposure led to an increased density of APP-positive

bulbs in the CC (0.0 cells/0.0625mm2 ± SD 0.0 vs. 29.0 ± SD 28.5,
p=0.002, Table S6A). Treatment with fingolimod caused no difference
in acute axonal damage compared to placebo at the different time
points (DM: p=0.80, 1RM: p=0.25, 3RM: p=0.35, Fig. 8, Table
S6B–D). In the lateral CC, the fingolimod-treated mice had significantly
more APP-positive bulbs after 3RM compared to placebo (11.0 ± SD
4.2 vs. 3.4 ± SD 2.51, p=0.006).

The cuprizone exposed mice had less NFL immunopositivity than
the healthy controls (90.87 ± SD 2.55 vs. 63.2 ± SD 24.89,
p=0.041, Table S6A). There were, however, no differences in NFL loss
between the fingolimod-treated and placebo-treated mice (DM:
p=0.81, 1RM: p=0.30, 3RM: p=0.26, Fig. 9, Table S6B–D). In the
secondary motor cortex,we found no APP-positive bulbs in the fingo-
limod or placebo group. The fingolimod group had less NFL im-
munopositivity after six weeks of demyelination (9.37 ± SD 4.25 vs.
19.9 ± SD 5.19, p=0.005, Table S7B). However, there were no dif-
ferences between the groups at later time points (Table S7C–D).

3.5.2. Proteomic markers of axonal damage
There were no differences (p < 0.01, log2 FC > ±0.2) between

the fingolimod- and placebo-treated mice in the proteomic expression
of APP or NFL (Fig. S3).

4. Discussion

Fingolimod downregulated S1PR1 in the cerebrum of cuprizone-
treated mice at all time points investigated. When examining the corpus
callosum and the secondary motor cortex in cuprizone mice, at three
different time points, we found that fingolimod given after cuprizone-
induced demyelination did not enhance remyelination, as supported by
our earlier experiments in the cerebellum (Alme et al., 2015) and by
other groups (Hu et al., 2011; Kim et al., 2011; Slowik et al., 2015; Kim
et al., 2018). In our study, fingolimod increased the number of mature
oligodendrocytes in the secondary motor cortex after three weeks of
remyelination but did not improve remyelination. There could be sev-
eral explanations for this discrepancy. Gudi et al. found that the density
of oligodendrocytes is lower in the cortex compared to the corpus cal-
losum. Moreover, oligodendrocytes may not be capable of driving the
remyelination process in the cortex as in the corpus callosum. They
hypothesized that the demyelination process in the cortex may be de-
layed compared to corpus callosum or that signals that drive the re-
myelination process in corpus callosum are deficient in the cortex.
Further, they speculated that few mature oligodendrocytes might not

Fig. 8. Acute axonal damage measured by Amyloid precursor protein im-
munoreactivity.
A) Number of APP immunopositive bulbs in the fingolimod and placebo group
after six weeks of demyelination, one week of remyelination and three weeks of
remyelination. There was no difference between the fingolimod and the placebo
group at any time point. Cell counts are provided as mean number of cells per
0.0625mm2, in the midline of the corpus callosum. Error bars:± 1 SD. Number
(n) of animals included: DM placebo (n: 6), DM fingolimod (n: 6), 1RM placebo
(n: 6), 1RM fingolimod (n: 5), 3RM placebo (n: 5), 3RM fingolimod (n: 6).
B) APP and hematoxylin stained sections. DM= six weeks of demyelination,
1RM=one week of remyelination, 3RM= three weeks of remyelination. All
images at 40×.
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have the capacity to drive detectable remyelination (Gudi et al., 2009).
Another possibility is that fingolimod stimulates the recruitment and
differentiation of oligodendrocytes in the cortex yet fails to increase
remyelination of the axons. Electron microscopy (EM) is considered the
gold standard for assessing remyelination but was not used to assess
remyelination in this experiment. However, Lindner et al. have de-
monstrated that EM correlates well with LFB myelin staining (Lindner
et al., 2008) and Wergeland et al. have found that PLP staining detect
myelin-regeneration after one week of cuprizone withdrawal
(Wergeland et al., 2012).

The cuprizone model is a well-described and reliable animal model
(Matsushima and Morell, 2001; Torkildsen et al., 2008; Kipp et al.,
2009; Wergeland et al., 2012). Through our IHC and proteomic ana-
lyses, we demonstrate the well-established time-dependent changes in
remyelination (Matsushima and Morell, 2001; Lindner et al., 2008;
Kipp et al., 2009; Werner et al., 2010) in both fingolimod- and placebo-
treated cuprizone mice. After six weeks of cuprizone-induced demye-
lination, myelin proteins are reduced with a subsequent increase during
recovery in cuprizone mice compared to controls. Furthermore, the
protein abundance of GFAP is increased after six weeks, and gradually
returns to control levels during remyelination (Werner et al., 2010).
Correspondingly, we show downregulation of myelin and upregulation
of GFAP protein levels after six weeks of demyelination. As expected,
the myelin protein levels increased, and GFAP levels decreased
throughout the remyelination phase. Proteomics appeared to have a
higher sensitivity than IHC for monitoring the time-dependent changes
in GFAP. This difference may be due to variations in the areas that were
analyzed. Although the cuprizone model does not directly mimic MS
pathology, robust de- and remyelination in the absence of adaptive
immune responses makes this model well suited to study remyelination
(Kipp and Amor, 2012). It is not possible to generalize results directly
from the model to humans, yet findings can indicate effects on re-
myelination and the mechanisms involved.

To our knowledge, the present study is the first to apply proteomics
to elucidate the mechanisms of action of fingolimod on remyelination
and axonal damage after cuprizone exposure. Fingolimod treatment
caused downregulation of the total level of S1PR1in the mouse brain.
Healthy control mice treated with fingolimod would have strengthened
our study. Nevertheless, the difference in the S1PR1 abundance be-
tween the fingolimod and placebo group is reliable, as S1PR1 was
significantly downregulated after FDR correction (q < 0.01).

S1P levels decrease during cuprizone exposure but recover during
remyelination after cuprizone withdrawal (Kim et al., 2012). The level
of S1P also decreases in cuprizone exposed mice cotreated with fingo-
limod (Kim et al., 2018). In healthy CBA/CaHArc mice, S1PR1 is up-
regulated after two months of intraperitoneal treatment with fingo-
limod (7.5 mg/kg/week) compared to vehicle control (Gupta et al.,
2017). Fingolimod regulates S1PRs in cuprizone mice but does not
prevent a cuprizone-induced S1P drop (Kim et al., 2018). In cuprizone
exposed mice, the expression of S1PR1 was moderately increased, and
S1PR3 and -5 significantly increased compared to controls. However,
only the protein level of S1PR1 was downregulated by fingolimod co-
treatment (Kim et al., 2018). Unlike us, Kim et al. did not investigate
S1PRs protein levels during remyelination after fingolimod rescue
treatment.

In the proteomics experiment, we analyzed the right frontal brain
section; thus, the quantified proteins represent the bulk of proteins
originating from different cell types in this particular section.
Therefore, we cannot rule out that S1PR1 and other proteins could be
more down- or upregulated in some cell types than others or be dif-
ferently regulated in other parts of the CNS. Both S1PR1 and GNG5
were less abundant in samples from fingolimod-treated mice than pla-
cebo-treated mice. After one week of remyelination, the protein PPT2
was downregulated in fingolimod-treated mice. The aforementioned
proteins are, to our knowledge, not known to be involved in the re-
myelination process. The GNG5 is a G-protein and an interactor with

Fig. 9. Axonal loss measured by Neurofilament light chain immunoreactivity.
A) Immunoreactivity in % for NFL in the fingolimod and placebo group after
six weeks of demyelination, one week of remyelination and three weeks of re-
myelination. There were no differences between the groups at any time point.
Sections were scored in the midline of corpus callosum. Data presented as
mean, error bars:± 1 SD. Number (n) of animals included: DM placebo (n: 6),
DM fingolimod (n: 6), 1RM placebo (n: 6), 1RM fingolimod (n: 6), 3RM placebo
(n: 3), 3RM fingolimod (n: 6).
B) NFL and hematoxylin stained sections. DM= six weeks of demyelination,
1RM=one week of remyelination, 3RM= three weeks of remyelination. All
images at 40×.
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S1PR1 (Huttlin et al., 2017). Therefore, both S1PR1 and GNG5 could be
downregulated because of a refractory phase of signaling occurring
after prolonged activation of the S1PR1 pathway. Such a non-re-
sponsive phase of signaling might occur as a negative feedback me-
chanism set to play by internalization of receptor complexes by en-
docytosis followed by degradation by the lysosomal pathway (Reeves
et al., 2016). PPT2 is a lysosomal enzyme involved in removing
thioester-linked fatty acyl groups from various substrates, including G-
proteins, during lysosomal degradation processes (Soyombo and
Hofmann, 1997). However, its role in S1PR1 signaling is not clear
(Reeves et al., 2016). Myelin proteins (MOG, MAG, MBP, MOBP, PLP)
(Han et al., 2013) and proteins reflecting axonal damage and loss (APP,
NFL) (Teunissen et al., 2005) were not regulated between the fingo-
limod-treated and placebo-treated groups. Thus, the results support that
fingolimod does not promote the remyelination process or mitigate
axonal loss.

In our experiment, principal component analysis of the log2 relative
protein abundances showed an apparent batch effect between the two
TMT experiments, likely introduced by technical variance. In un-
balanced experiments, especially when the sample sizes are small, a
technical variance can overshadow biological variance and induce
differences between groups. Attempts were made to reduce the tech-
nical variance observed by applying a normalization strategy for com-
bining TMT experiments (Plubell et al., 2017), though without im-
provement (data not shown). Several methods to tackle batch effects
exist (Leek et al., 2010; Nygaard et al., 2016), limma (Ritchie et al.,
2015) was selected due to the unbalanced nature of the study and the
small number of biological replicates in each group. A linear model was
created, taking the batch effect into account, prior to empirical Bayes
statistics for differential Expression and Benjamini Hochberg FDR cor-
rection. After FDR correction, the downregulation of the S1PR1 re-
ceptor was identified.

In the lysolecithin model, force-feeding fingolimod (0,3mg/kg and
1mg/kg) before lysophosphatidylcholine (LPC) exposure decreased
inflammation and the extent of demyelination; and the low dose of
fingolimod increased oligodendrocyte precursor cells recruitment, oli-
godendrogenesis, and remyelination (Yazdi et al., 2015). However,
inflammatory cytokines may cause cell death and prevent oligoden-
drocyte precursor cell differentiation (Feldhaus et al., 2004); the en-
hanced myelination may thus have been caused by a reduced in-
flammation with subsequent less demyelination (Yazdi et al., 2015).
Oral fingolimod did not promote remyelination after LPC injection or
after cuprizone exposure (Hu et al., 2011). At a late disease stage,
where the axonal loss is prominent, there is less capacity to compensate
for nerve damage and further nerve loss; this will consequently increase
functional impairment. In line with our results, Hu et al. concluded that
patients treated with fingolimod might benefit from add-on therapy to
promote remyelination.

Prophylactic treatment with fingolimod (0.4mg/kg) in EAE Dark
Agouti (DA) rats prevents the onset and development of EAE symptoms.
Rescue therapy with fingolimod reversed EAE symptoms and restored
the nerve conductance in rats with fully established EAE. The fingo-
limod and the control group had comparable levels of remyelination.
The authors speculated that fingolimod could exert a centralized effect
in the CNS through interaction with S1PRs on glial cells, yet, they did
not exclude that the effect of fingolimod is due to its known anti-in-
flammatory effect (Balatoni et al., 2007). During relapsing EAE early
intervention with fingolimod inhibited subsequent relapses and neu-
rodegeneration, yet late initiated, long-term treatment could not im-
pede the disease deterioration in progressive EAE (Al-Izki et al., 2011).
Fingolimod (0.3mg/kg) initiated at EAE symptom onset, promoted
proliferation and differentiation of oligodendrocyte precursor cell in
mice, and increased the MBP levels (Zhang et al., 2015). The findings
could be a consequence of attenuated inflammation and myelin pro-
tection, rather than remyelination through direct CNS effects, as the
same group found that fingolimod (0.3mg/kg) alone failed to enhance

remyelination in the secondary progressive (SP) stage of EAE (Zhang
et al., 2017). Due to the interference of and indirect effects by the
systemic immune cell responses, it is challenging to monitor re-
myelination separately in the EAE model.

Fingolimod may enhance the MBP expression and remyelination at
low doses (< 5 nM in vitro and 0.3mg/kg/day in vivo). However,
fingolimod seems to cause oligodendrocyte death at higher concentra-
tions (Zhang et al., 2017). In humans, oligodendrocyte precursor cells
and mature oligodendrocytes may show dose-dependent, cell-type-
specific, and differing cytoskeletal responses to fingolimod. Miron et al.
indicated that disparities in human- and rat oligodendrocyte-responses
make it challenging to transfer interpretations from rodent in vitro
studies to human cells (Miron et al., 2008a). In another study, fingo-
limod had dose- and time-dependent effects on process extension, dif-
ferentiation, and survival in oligodendrocyte precursor cells (Miron
et al., 2008b). Moreover, a low dose (100 pmol/L) fingolimod could
enhance remyelination and affect oligodendrocyte precursor cells in
organotypic cerebellar slices after LPC-induced demyelination (Miron
et al., 2010). In the rat telencephalon reaggregate spheroid cell culture
system, 1 and 10 nM fingolimod did not affect remyelination when
given before LPC-induced demyelination (Jackson et al., 2011). Slowik
et al. gave mice a low dose (0.3 mg/kg) of fingolimod after cuprizone-
induced demyelination, yet there was no difference in remyelination
between the fingolimod and placebo after acute or chronic demyeli-
nation. However, fingolimod seemed to decrease axonal damage
(Slowik et al., 2015).

In the present study, we used 1mg/kg/day fingolimod, as used in
several other studies (Kataoka et al., 2005; Al-Izki et al., 2011; Hu et al.,
2011; Kim et al., 2011; Kim et al., 2018). We found that fingolimod
does not decrease acute axonal injury or axonal loss after acute cupri-
zone demyelination, as fingolimod-treated mice compared to placebo
had increased acute axonal injury (APP immunoreactivity) after three
weeks of remyelination. However, this was not confirmed by proteomic
analyses, as we found no difference in axonal damage or loss between
the intervention groups. We cannot exclude that a lower dose of fin-
golimod could have a beneficial effect. Kim et al. found that fingolimod
given during cuprizone exposure led to diminished injury to oligoden-
drocytes, myelin, and axons (Kim et al., 2011) and suppressed astro-
cytosis and microgliosis (Kim et al., 2018). Nonetheless, fingolimod
(1mg or 5mg/kg) did not reduce inflammation, oligodendrocytes loss,
or enhance remyelination if given after the occurrence of oligoden-
drocyte apoptosis and myelin damage (Kim et al., 2018). Thus, whether
fingolimod is administrated before or during cuprizone exposure would
affect the degree of de- and remyelination. The discrepant findings
between our results and other studies could be due to the chosen animal
model, degree and capacity of de- and remyelination, experimental
settings, the time point for fingolimod initiation, doses, duration of
treatment, and different brain regions analyzed.

Our data give a new insight into the mechanisms of action behind
fingolimod during remyelination. Based on the current research, the
hypothetical direct effect of fingolimod on S1PRs in the brain does not
appear to have any significant influence on remyelination. The
INFORMS study, a phase three, randomized controlled trial (RCT), did
not find any advantages of fingolimod in primary progressive MS pa-
tients, as they found no effect on brain volume loss and disability
progression (Lublin et al., 2016). This supports that fingolimod has to
be given at an early disease stage, before damage has occurred, to exert
neuroprotective effects. Another RCT (EXPAND), investigated the im-
pact of the selective S1P1 and S1P5 modulator, siponimod, on patients
with secondary progressive MS. The results showed that siponimod, to
some extent, reduced the risk of disability progression and could be
used to treat patients with secondary progressive MS (Kappos et al.,
2018). In the future, well-designed clinical trials are necessary to de-
termine to what extent fingolimod and other substances may affect
myelin repair and axonal loss in MS patients.
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5. Conclusion

Fingolimod was functionally active during remyelination by
downregulating S1PR1 brain levels in fingolimod-treated cuprizone
mice. We detected more oligodendrocytes in the secondary motor
cortex after three weeks of remyelination in the fingolimod compared
to placebo-exposed mice. However, HC, IHC, and proteomic analyses
detected no differences in the degree of remyelination, axonal damage
or loss in fingolimod-treated mice compared to placebo. In conclusion,
fingolimod does not seem to directly promote remyelination or protect
against axonal injury or loss when given after cuprizone-induced de-
myelination.
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Supplementary figures  
 

Figure S1A 

Study design.  

 
 
 
 

 
 
                                             

 

Supplementary figure 1.  

The figure shows the timeline for the experiment, including cuprizone exposure. Fingolimod or 

placebo was given by gavage daily from week five until euthanasia. Cuprizone controls and healthy 

controls were euthanized after 5 and 9 weeks, respectively. Brain samples for cuprizone mice treated 

with fingolimod or placebo were prepared for immunohistochemistry and proteomics at three different 

time points, 6 weeks of demyelination (DM), 1 week of remyelination (1RM) and 3 weeks of 

remyelination (3RM).  
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Figure S1B 
 
 
Regional sampling sites for histochemistry and immunohistochemistry in the mouse brain. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Red: Supplementary motor cortex (M2), green: Medial corpus callosum (cc), blue: Lateral corpus 

callosum (cingulum, cg), yellow: Deep gray matter –striatum (CPu), grey: 2nd somatosensory cortex 

(S2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
Figure S2 
 

 
 

Supplementary figure 2: Distribution of the average protein log2 abundances prior to statistical 

analysis in limma. The averages are based on three pools, each containing two biological replicates. 

DM= six weeks of demyelination, 1RM= one week of remyelination, 3RM = three weeks of 

remyelination.  

 

 

 

 

 

 

 



 

Figure S3 

 

 

Supplementary figure 3: The average log2 abundances based on three pools, each containing two 

biological replicates and their standard deviation. NOGO-A: Neurite Outgrowth Inhibitor Protein A, 

GFAP: Glial Fibrillary Acidic Protein, MAC-3: macrophages and microglia, APP: amyloid precursor 



protein A4, NFL: phosphorylated neurofilament light. DM= six weeks of demyelination, 1RM= one 

week of remyelination, 3RM= three weeks of remyelination.  

Figure S4. CD3 immunopositivity 
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Figure S4. CD3 immunoreactivity 

A) Number of CD3 immunopositive cells in the fingolimod and placebo group after 6 weeks of 

demyelination, 1 week of remyelination and 3 weeks of remyelination. We did not find a difference 

between the fingolimod and the placebo group at any time point. Cell counts are provided as mean 

number of cells per 0.0625 mm2, in the midline of the corpus callosum. Error bars: ±1 SD. 

 

B) CD3 and hematoxyline stained sections. DM= six weeks of demyelination, 1RM= one week of 

remyelination, 3RM= three weeks of remyelination. All images at 40x. 

  



Supplementary methods 

 

LC-MS analysis of TMT-labeled samples 

About 0.5 µg tryptic peptides were injected into an Ultimate 3000 RSLC system (Thermo Scientific, 

Sunnyvale, California, USA) connected to a Q-Exactive HF equipped with a nanospray Flex ion 

source (Thermo Scientific, Bremen, Germany). The sample was loaded and on a pre-column Acclaim 

PepMap 100, 2cm x 75µm i.d. nanoViper column, packed with 3µm C18 beads at a flow rate of 

3µl/min for 5 min with 0.1% TFA (trifluoroacetic acid, vol/vol). Peptides were separated during a 

biphasic ACN gradient from two nanoflow UPLC pumps (flow rate of 0.250 µl/min) on a 25 cm 

analytical column (Easy-Spray 802, 25cm x 75µm i.d. PepMap RSLC column, packed with 2µm C18 

beads (Thermo Scientific). Solvent A was 0.1% FA (vol/vol) in water, and solvent B was 100% ACN. 

The fractions were applied different LC-methods depending on their elution from the mixed mode 

column. 

 

LC-gradients for the TMT-labeled fractions in the LC-MS analysis 

The mixed mode fractions were applied different LC-gradients depending on their elution from the 

mixed mode column, solvent A was 0.1% FA (vol/vol) in water and solvent B was 100% ACN. 

Fraction 1-6 had a gradient of 5 % B 0-5 min, then 5-12 % B 5-65 min, 12-30 % B from 65-87 min, 

30-90 % B from 87-92 min, 90 % B from 92-102 min, 90-5 % B from 102-105 min and held at 5% B 

until the end. Fractions 7-36 had a gradient of 5 % B from 0-5 min, 5-7 % B from 5-5,5 min, 7-22 % B 

from 5.5-65 min, 22-35% B from 65-87 min, 35-90 % B from 87-92 min, 90 % B from 92-102 min, 

90-5 % B from 102-105 min, 5 % B from 108-120. Fractions 37-60 had a gradient of 5 % B 0-5 min, 

5-7 % B from 5-5,5 min, 7-40 % B from 5,5-87 min, 40-90 % B from 87-92 min, 90 % B from 92-102 

min, 90-5 % B from 102-105 min, and 5% from 105-120 min.  

 

 

 

  



Mass spectrometer settings 

The mass spectrometer was operated in the data-dependent-acquisition mode to automatically switch 

between full scan MS1 and MS2 acquisition. The instrument was controlled through Q-Excative HF 

Tune 2.4 and Xcalibur 3.0. MS1 spectra were acquired to detect precursors in the scan range 375-1500 

m/z with resolution R = 60,000 at 200 m/z. The automatic gain control (AGC) had an ion target of 3e6 

and a maximum injection time (IT) of 50 milliseconds (ms). The 15 most intense precursors with 

charge states 2 or higher and above intensity threshold 5e4 were sequentially isolated. The target AGC 

value for MS2 was 1e5, aquired at R = 30,000. The ions were collected with IT 45 ms and fragmented 

with a normalized collision energy of 32 %. The precursor isolation window was 1.6 m/z, and with 

isolation offset of 0.3 Da. A dynamic exclusion of 30 seconds was used to prevent precursor re-

sampling and to maximize the number of sampled precursors. Lock-mass internal calibration was 

used, and isotype exclusion was on. 

 
 

Quantification of TMT data in Proteome Discoverer 

Following LC-MS analysis, data from the two TMT-10 plex experiments were collected and analyzed 

in Proteome Discoverer 2.0 (Thermo Scientific), using Sequest HT, and MS Amanda (version 

1.4.4.2822) and the SwissProt Mus musculus downloaded 15.10.2015 (canonical sequences not 

including isoforms) and the cRAP contaminants database from 30.01.2015 

(ftp://ftp.thegpm.org/fasta/cRAP/). The following settings were used for both search engines. Trypsin 

was set as the enzyme, and maximum two missed cleavages were allowed. TMT tagging of N-

terminals and lysines were established as a fixed modification, in addition to carbamidomethylation of 

cysteine. Oxidation of methionine was set as a variable modification. The fragment mass tolerance 

was set to 0.01 Da for MS Amanda and 0.02 for Sequest HT. The identification deviance was set to 10 

ppm for MS1 precursors. The PSM validation from all search engines was performed using Percolator, 

with a strict and relaxed target FDR of 0.01 and 0.05, respectively. TMT 10-plex was set as the 

quantification method with the integration tolerance 20 ppm and the integration method most 



confident centroid. All samples were normalized to the reference sample within each TMT 10-plex 

using Proteome Discoverer. Unique peptides were used for quantification.  

The two 10-plexes were merged globally by search engine type, and PSMs with low confidence were 

discarded. The reporter ion isotopic distribution provided with the TMT kit was used to minimize 

cross-contamination in the TMT channels. The co-isolation threshold was set to 50%. The reporter 

abundance was based on a signal to noise values when available, if not intensities were used. The 

average signal to noise threshold was set to 10 s/n. Only proteins identified with unambiguously 

identified high confidence peptides (FDR <1%) were used. The datasets were normalized to the total 

peptide amount.  The resulting quantified proteins were filtered so that only master proteins were 

exported for analysis.  

 

Statistical analysis in R 

Prior to data upload to R, contaminants and proteins containing missing values were removed. 

The dataset was analyzed by the statistical software limma (Ritchie et al., 2015), where the batch 

effect was taken into account. Specifically, a linear model with the function abundance = 

condition+batch (condition = Placebo DM, Placebo 1RM, Placebo 3RM, Fingolimod DM, Fingolimod 

1RM, Fingolimod 3RM) (batch = 0 or 1 depending on the TMT experiment) was generated before 

empirical Bayes statistics (Smyth, 2004) on the resulting values for condition. Proteins with a p-value 

<0.01 and a log2 FC >0.2 or <-0.2 was considered significant. Benjamini Hochberg correction was 

used to adjust the p-values for multiple comparisons (q-value <0.05). The graphics package ggplot2 

(H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009) was 

used to generate figures. Gene Ontology Biological process enrichment analysis was carried out for 

the proteins considered to be significantly different in Panther (Mi, Muruganujan, Ebert, Huang, & 

Thomas, 2019; Thomas et al., 2006). The R script used for statistical analysis and graphics is publicly 

available at https://github.com/RagnhildRLereim/Fingolimod. 
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Supplementary tables 

Table S1. Antibodies used for immunohistochemistry specified. 

 
Target 
antigen 

Species, 
type 

Working 
dilution 

Incubation 
time/ 
Temperature 

Demasking Provider 

PLP Mouse, 
monoclonal 

1:1000 24h/4°C Citrate Serotec 

GFAP Rabbit, 
monoclonal 

1:2000  ½h/ RT  Tris-EDTA Dako 
(Agilent) 

NOGO-A Rabbit, 
polyclonal 

1:1000 1h/RT Citrate Chemicon, 
Temecula  

MAC-3 Rat,  
monoclonal 

1:200 24h/RT Citrate BD 
Biosciences  

CD3 Rabbit, 
polyclonal 

1:500 ½h/RT Tris-EDTA Dako 

APP Mouse, 
monoclonal 

1:2000 24h/4°C Citrate Merck  

NFL Mouse, 
monoclonal 

1:1600 1h/RT Tris-EDTA Merck 

 

RT = room temperature 

 

PLP: anti-Proteolipid Protein 

GFAP: anti-Glial Fibrillary Acidic Protein  

NOGO-A: anti-Neurite Outgrowth Inhibitor Protein A 

CD3: cluster of differentiation 3 

APP: anti-Alzheimer Precursor Protein A4, clone 22C11 

NFL: anti-phosphorylated Neurofilament light  

 
 
 
 
 
 
 



 
 
 
 
 
Table S2.  
Pooling strategy for the proteomics experiment. 
 

Fingolimod Placebo Reference 
DM 1RM 3RM DM 1RM 3RM 

 

2 biological 
samples 
TMT 126 

2 biological 
samples 
TMT 127N 

2 biological 
samples 
TMT 128N 

2 biological 
samples  
TMT 129N 

2 biological 
samples 
TMT 130C 

2 biological 
samples 
TMT 130N 

36 
samples 
TMT 131 

2 biological 
samples 
TMT 127C 

2 biological 
samples 
TMT 128C 

2 biological 
samples 
TMT 129C 

2 biological 
samples 
TMT 128C 

2 biological 
samples 
TMT 129C 

2 biological 
samples 
TMT 130C 

36 
samples 
TMT131 

2 biological 
samples  
TMT 126 

2 biological 
samples 
TMT 127C 

2 biological 
samples 
TMT 127N 

2 biological 
samples 
TMT 128N 

2 biological 
samples 
TMT 129N 

2 biological 
samples 
TMT 130N 

 

 

The brain samples (n=6 in each condition) were randomized and divided into 3 mini-pools. Each 

condition was represented in both TMT 10 plex experiment 1 (White) and 2 (Blue). One reference 

pool containing equal amounts of each brain lysate was included in each TMT 10-plex to enable 

comparison in the post analysis. 

 
Table S3.  
Proteins significantly different (p<0.01 log2 FC Fingolimod - Placebo >20%) after 6 weeks of 
demyelination. 

Accession Description Gene short log2 FC p-value 

O08530 Sphingosine 1-phosphate receptor 1  S1pr1 -0.54 0.0000005 

Q7M6Z0 Reticulon-4 receptor-like 2  Rtn4rl2 0.21 0.0002 

Q80SZ7 
Guanine nucleotide-binding protein 
G(I)/G(S)/G(O) subunit gamma-5  Gng5 -0.45 0.0003 

Q8CJ61 
CKLF-like MARVEL transmembrane 
domain-containing protein 4  Cmtm4 -0.29 0.0003 

Q6PGG6 
Guanine nucleotide-binding protein-like 3-like 
protein  Gnl3l -0.43 0.0005 

Q8BUV8 Protein GPR107  Gpr107 -0.47 0.001 

Q922W5 
Pyrroline-5-carboxylate reductase 1, 
mitochondrial  Pycr1 -0.35 0.001 



Q8K209 G-protein coupled receptor 56  Gpr56 -0.39 0.002 

E9Q5K9 YTH domain-containing protein 1  Ythdc1 -0.26 0.002 

Q810B8 SLIT and NTRK-like protein 4  Slitrk4 -0.22 0.003 

Q9CX11 rRNA-processing protein UTP23 homolog  Utp23 -0.29 0.003 

O89020 Afamin  Afm -0.68 0.003 

P46662 Merlin  Nf2 -0.32 0.003 

Q3UHF7 Transcription factor HIVEP2  Hivep2 -0.23 0.004 

Q8BHR8 UPF0705 protein C11orf49 homolog  1 SV=1 -0.26 0.004 

Q5RJH6 Protein SMG7  Smg7 -0.34 0.006 

Q6PDY0 Coiled-coil domain-containing protein 85B  Ccdc85b 0.22 0.007 

Q62313 
Trans-Golgi network integral membrane 
protein 1  Tgoln1 -0.22 0.008 

Q8CI11 Guanine nucleotide-binding protein-like 3  Gnl3 -0.23 0.009 

Q91W92 Cdc42 effector protein 1  Cdc42ep1 -0.46 0.009 

A2AV25 Fibrinogen C domain-containing protein 1  Fibcd1 -0.32 0.010 
 
 
 
 
 
Table S4.  
Proteins significantly different (p<0.01, log2 FC Fingolimod – Placebo >20%) after 1 week of 
remyelination. 
 
 
Accession Description     Gene short   log2 FC p-value 

O08530 Sphingosine 1-phosphate receptor 1  S1pr1 -0.84 0.000000003 

O35448 Lysosomal thioesterase PPT2  Ppt2 -0.49 0.000004 

Q80SZ7 
Guanine nucleotide-binding protein 
G(I)/G(S)/G(O) subunit gamma-5  Gng5 -0.47 0.0001 

O55236 mRNA-capping enzyme  Rngtt -0.21 0.002 

Q8BHK1 Magnesium transporter NIPA1  Nipa1 -0.21 0.002 

Q9QXN3 Activating signal cointegrator 1  Trip4 0.28 0.003 

Q9D1G2 Phosphomevalonate kinase  Pmvk -0.33 0.004 

Q9CR24 
Nucleoside diphosphate-linked moiety 
X motif 8, mitochondrial  Nudt8 0.28 0.004 



Q3TRM8 Hexokinase-3  Hk3 -0.38 0.004 

Q9WTQ8 
Mitochondrial import inner membrane 
translocase subunit Tim23  Timm23 0.22 0.005 

Q9DC04 Regulator of G-protein signaling 3  Rgs3 0.22 0.005 

Q8BNA6 Protocadherin Fat 3  Fat3 0.25 0.005 

Q69ZN7 Myoferlin  Myof -0.28 0.006 

Q00623 Apolipoprotein A-I  Apoa1 -0.24 0.007 

Q8CFJ9 WD repeat-containing protein 24  Wdr24 -0.23 0.009 

Q8BGS7 
Choline/ethanolaminephosphotransferase 
1  Cept1 0.20 0.009 

 
 
 
 
Table S5.  
Proteins significantly different (p<0.01, log2 FC Fingolimod – Placebo >20%) after 3 weeks of 
remyelination.  

Accession Description Gene short log2 FC p-value 

O08530 Sphingosine 1-phosphate receptor 1  S1pr1 -0.87 0.000000002 

Q9WVA4 Transgelin-2  Tagln2 0.21 0.0005 

Q9JHK5 Pleckstrin  Plek 0.21 0.001 

Q80SZ7 
Guanine nucleotide-binding protein 
G(I)/G(S)/G(O) subunit gamma-5  Gng5 -0.39 0.001 

P08207 Protein S100-A10  S100a10 0.58 0.001 

O88878 AN1-type zinc finger protein 5  Zfand5 0.43 0.001 

Q8CAM5 Ras-related protein Rab-36  Rab36 0.49 0.002 

Q9CX11 rRNA-processing protein UTP23 homolog  Utp23 0.31 0.002 

Q9JJR9 Nuclear receptor-interacting protein 3  Nrip3 0.26 0.002 

Q8BWU8 Ethanolamine-phosphate phospho-lyase  Etnppl 0.27 0.002 

Q8VCM7 Fibrinogen gamma chain  Fgg 0.28 0.002 

P97433 Rho guanine nucleotide exchange factor 28  Arhgef28 -0.40 0.002 

P31649 
Sodium- and chloride-dependent GABA 
transporter 2  Slc6a13 0.44 0.003 

Q8BFR6 AN1-type zinc finger protein 1  Zfand1 -0.30 0.003 

Q9QXE0 2-hydroxyacyl-CoA lyase 1  Hacl1 -0.26 0.003 



Q8R5F3 O-acetyl-ADP-ribose deacetylase 1  Oard1 0.24 0.003 

Q08091 Calponin-1  Cnn1 0.62 0.003 

Q9CQ28 Diphthine--ammonia ligase  Dph6 0.31 0.004 

Q63959 
Potassium voltage-gated channel subfamily 
C member 3  Kcnc3 0.21 0.004 

Q8VC16 Leucine-rich repeat-containing protein 14  Lrrc14 0.20 0.004 

Q64339 Ubiquitin-like protein ISG15  Isg15 -0.23 0.005 

Q9D658 Protein tyrosine phosphatase type IVA 3  Ptp4a3 -0.29 0.006 

Q64345 
Interferon-induced protein with 
tetratricopeptide repeats 3  Ifit3 -0.25 0.006 

Q9EP71 Ankycorbin  Rai14 0.23 0.006 

P28653 Biglycan  Bgn 0.46 0.006 

Q8K353 
Cysteine-rich and transmembrane domain-
containing protein 1  Cystm1 0.27 0.007 

Q9CZE3 Ras-related protein Rab-32  Rab32 0.40 0.008 

P37804 Transgelin  Tagln 0.71 0.009 

Q8BHG9 CGG triplet repeat-binding protein 1  Cggbp1 0.22 0.009 

Q9ES52 
Phosphatidylinositol 3,4,5-trisphosphate 5-
phosphatase 1  Inpp5d -0.27 0.009 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
  



Table S6A  
Histochemistry and immunohistochemistry data from the midline of corpus callosum. 
 
Controls 
 
 Healthy Control    Cuprizone Control   
 Mean and Median  SD Mean and Median SD p 
LFB       0.3       0.0     0.5           1.5      1.5 0.5 0.036 
PLP     90.2     91.9  5.5          71.3    64.1  13.7 0.13 
GFAP       0.7       0.5  0.3            1.8      1.5    0.6 0.024 
MAC-3       0.0       0.0  0.0          14.0    15.0    6.6 0.018 
NOGO-A     29.8     29.5   16.4          15.5    15.5  12.0 0.21 
NFL     90.9     91.0     2.6          63.2    64.9  24.9 0.041 
APP       0.0       0.0 0.0       29.0     28.5  17.1 0.002 
CD3       0.5       0.0    1.2         1.0       1.0 1.0 0.46 
 

p = Sig. (2-tailed), Exact. Sig. (2-tailed) when Mann-Whitney is used. 

 

 
 
 
 
  



Table S6B  
Histochemistry and immunohistochemistry data from the midline of corpus callosum. 
 
6 weeks of cuprizone exposure  

 
 

 

 

 

 

 

 

 

p = Sig. (2-tailed), Exact. Sig. (2-tailed) when Mann-Whitney is used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 Fingolimod   Placebo  
 Mean and Median  SD Mean and Median SD p  
LFB        1.8       2.0  0.5         2.0       2.5    0.7  0.38 
PLP      64.3     66.7   16.4       57.1     65.2  22.9  0.64 
GFAP        1.8       1.8  0.7         1.8       2.0    0.8  0.93 
MAC-3      21.8     22.0  4.0       12.1     10.0    7.3 0.058 
NOGO-A      10.0       5.0  9.5         6.4       7.0 1.5  0.58 
NFL       80.7     84.4   13.1       78.9     82.2  12.4  0.81 
APP       18.8     18.5     1.9       22.5     20.5 8.1  0.80 
CD3          0.0       0.0  0.0         0.2       0.0 0.4  1.00 



Table S6C  
Histochemistry and immunohistochemistry data from the midline of corpus callosum. 
 
1 week of remyelination 

 
 
 
 
 
 
 
 
 
 

 

 

p = Sig. (2-tailed), Exact. Sig. (2-tailed) when Mann-Whitney is used. 

 
 
 
 
  

     
 Fingolimod   Placebo   
 Mean and Median  SD Mean and Median SD p  
LFB       2.2       2.0  0.3       2.1        2.0    0.4   1.00 
PLP     50.8     39.5   28.4 51.8     54.8  23.8 0.96 
GFAP       2.1       2.0  0.6       1.8        2.0    0.5 0.36 
MAC-3     14.0     12.5  9.1     10.0        9.0 5.8 0.42 
NOGO-A     24.2     22.0  9.2     30.0      29.0 8.5 0.31 
NFL     79.9     81.6  8.5     85.1      85.2 7.9 0.30 
APP       7.0       5.0   5.2     13.5      15.5 8.3 0.25 
CD3         0.8       0.0   1.5       0.5        0.5 0.6  0.79 



Table S6D  
Histochemistry and immunohistochemistry data from the midline of corpus callosum. 
 
3 weeks of remyelination 

 
 
 
 
 

p = Sig. (2-tailed), Exact. Sig. (2-tailed) when Mann-Whitney is used. 

  

 Fingolimod   Placebo   
 Mean and Median  SD Mean and Median  SD p  
LFB       1.7       1.5  0.3       1.3       1.3  0.7     0.40 
PLP     71.6     70.9  4.8     62.6     57.6   12.0     0.28 
GFAP       1.8       1.5  0.5       1.8       2.0     0.3     0.81 
MAC-3       5.4       5.0  3.5     10.4       9.0     5.0     0.10 
NOGO-A     30.0     32.5  9.9     31.4     29.0     7.5     0.90 
NFL     84.7     85.5  4.4     88.6     90.9  4.0      0.26 
APP       5.7       5.0   3.9       4.2       2.0   3.5     0.35 
CD3         0.4       0.0  0.6       1.0       0.5  1.4     0.76 



Table S7A  
Histochemistry and immunohistochemistry data from the secondary motor cortex 
 
Controls 
 
 Healthy Control   Cuprizone Control   
 Mean and Median (SD) Mean and Median (SD) p 
LFB          1.4        1.5    1.3          3.0        3.0 0.0 0.15 
PLP          7.9        7.3 5.9          0.9        1.1 0.4 0.053 
GFAP          0.0        0.0 0.0          2.0        2.0 0.0 0.008 
MAC-3          0.0        0.0 0.0        14.0        5.0 6.6 0.018 
NOGO-A        10.3        9.0 4.3          4.5        4.5 6.4 0.004 
NFL        16.2        5.5  16.0        13.1      12.6 9.6 0.697 
      
 
p = Sig. (2-tailed), Exact. Sig. (2-tailed) when Mann-Whitney is used. 

  



Table S7B  
 
6 weeks of cuprizone exposure  
 
 Fingolimod  Placebo   
 Mean and Median (SD) Mean and Median (SD) p  
LFB           3.0       3.0 0.0          2.9         3.0 0.2   1.0 
PLP           1.0       1.0    0.3          2.9         1.8 2.7 0.128 
GFAP           2.4       2.5 0.6          1.7         1.5 0.8 0.160 
MAC-3         21.8       5.5 4.0        12.2         4.0 7.5 0.530 
NOGO-A           0.7       0.0 1.2          7.2         8.0 5.8 0.084 
NFL            9.4       8.7 4.3        19.9       19.2 5.2 0.005 
 

 
p = Sig. (2-tailed), Exact. Sig. (2-tailed) when Mann-Whitney is used. 

  



 
Table S7C 
 
1 week of remyelination 
 
 Fingolimod  Placebo   
 Mean and Median (SD) Mean and Median (SD) p 
LFB          2.5        3.0    0.9          2.8        3.0 0.3 0.773 
PLP          2.1        2.3 0.8          4.7        4.9 3.7 0.481 
GFAP          1.6        1.5 0.3          1.9        2.0 0.5 0.171 
MAC-3        14.0        4.5 9.1        10.0        2.5 5.8 0.065 
NOGO-A          4.2        3.0 2.7          4.5        4.5 2.6 0.749 
NFL        21.1      19.7  12.0        16.1      16.9 8.2 0.419 
 

p = Sig. (2-tailed), Exact. Sig. (2-tailed) when Mann-Whitney is used. 

  



Table S7D  
 
3 weeks of remyelination 
 
 Fingolimod  Placebo   
 Mean and Median (SD) Mean and Median (SD) p 
LFB          2.4        2.5 0.7          2.5        2.5    0.6   1.0 
PLP          3.3        2.0 3.2          3.8        2.6 2.6 0.662 
GFAP          1.2        1.0 0.3          1.0        1.0 0.5 0.643 
MAC-3          5.4        1.0 3.5        10.4        0.0 5.0 0.784 
NOGO-A          5.2        3.5 4.3          1.6        2.0 0.6 0.032 
NFL        14.0      13.4 7.1        12.9      13.7 3.8 0.824 
 

 
p = Sig. (2-tailed), Exact. Sig. (2-tailed) when Mann-Whitney is used. 
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