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Abstract: Relevant logics have traditionally been viewed as paraconsistent.
This paper shows that this view of relevant logics is wrong. It does so by
showing forth a logic which extends classical logic, yet satisfies the Entail-
ment Theorem as well as the variable sharing property. In addition it has the
same S4-type modal feature as the original relevant logic E as well as the
same enthymematical deduction theorem.
The variable sharing property was only ever regarded as a necessary prop-
erty for a logic to have in order for it to not validate the so-called paradoxes
of implication. The Entailment Theorem on the other hand was regarded as
both necessary and sufficient. This paper shows that the latter theorem also
holds for classical logic, and so cannot be regarded as a sufficient property for
blocking the paradoxes. The concept of suppression is taken up, but shown to
be properly weaker than that of variable sharing.

Keywords: disjunctive syllogism · entailment · modality · paraconsistency ·
relevant logics · suppression

Of commandments, there is only one. Thou
shalt not use the disjunctive syllogism. Or
else one will be like the heathen.

The Relevantist1

Tore Fjetland Øgaard
Department of Philosophy, University of Bergen, PB 7805, 5020 Bergen, Norway E-mail:
Tore.Ogaard@uib.no

This is a post-peer-review, pre-copyedit version of an article published in Synthese. The final au-
thenticated version is available online at: https://doi.org/10.1007/s11229-019-02507-z. To read
the article free of charge, click here: https://rdcu.be/b0mGa

https://doi.org/10.1007/s11229-019-02507-z
https://doi.org/10.1007/s11229-019-02507-z
https://rdcu.be/b0mGa


2 Tore Fjetland Øgaard

1 Introduction

Received wisdom has it that relevant logics are inherently paraconsistent, where a
logic is classified as paraconsistent just in case it does not validate the inference from
A together with ∼A to an arbitrary B. That this is so is testified to by the following
quotes from both adherents and adversaries to the relevant school:

– relevance logic, any of a range of logics and philosophies of logic united
by their insistence that the premises of a valid inference must be relevant
to the conclusion. Standard, or classical, logic contains inferences that
break this requirement, e.g., the spread law, that from a contradiction any
proposition whatsoever follows. (?, p. 792)

– Relevant logic is paraconsistent, so we all count as paraconsistentists to
the extent that we count as relevantists. (?, p. 19)

– All relevantists agree in rejecting disjunctive syllogism (DS):

(DS)
p ∨ q
∼p
q

(?, p. 41)
– The most fully developed formal response to these ‘paradoxes’ consists

of abandoning C, the principle of disjunctive syllogism. Logics which do
this are called relevance logics [. . . ] (?, p. 204f.)

– Recently Bob Meyer has claimed that relevant logic is mistaken in reject-
ing DS∨[. . . ]. In contrast I claim that the rejection of DS∨ is central to the
whole conception of relevant logic.2 (?, p. 66)

– Relevance logic holds that disjunctive syllogism for truth functional dis-
junctions is an invalid argument form. (?, p. 131)

I make two substantive claims regarding relevant logics in this paper: the first is
that paraconsistency does not follow from concerns over relevance in the traditional
Anderson-Belnap understanding of this, where the two criteria of variable sharing and
that of satisfying the Entailment Theorem were regarded as, respectively, necessary
and necessary and sufficient, for avoiding the so-called fallacies of relevance. I will
show this by showing forth a logic which I have called ‘Π′E’ which has both these
properties, yet is not a paraconsistent logic.

The Entailment Theorem, as stated by Anderson and Belnap, cuts away logics
with more primitive rules than modus ponens and adjunction, and so does by defini-
tion cut away as non-relevant for instance Ackermann’s logic Π′ which has disjunc-
tive syllogism as a primitive rule. In light of all the weaker logics which are regarded
as relevant yet have more primitive rules than adjunction and modus ponens, this
property might be thought to be in need of weakening. I will show, however, that it
counts as relevant even classical logic. As a consequence one can’t uphold the claim

1The scornfully intended passage is from Meyer’s A Farewell to Entailment (?, p. 578). The Relevantist
is the personification of the position portrayed in ?.

2DS∨ is identified as the inference schema if A and p∼A ∨ Bq are true, then so is B.
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that this property is both necessary and sufficient for relevance. The second substan-
tive claim of this paper is therefore that the only properties currently available for
defining what the extension of ‘relevant logic’ is, are merely necessary ones.

Although somewhat ad hoc, Π′E is a fairly decent logic. However, it does not ex-
tend Anderson and Belnap’s favorite logic E. The sequel to this paper, Non-Boolean
Classical Relevant Logics II, shows that both E and R can be extended to the non-
paraconsistent logics Æ and M. Both these logics have interesting properties; both
extend classical logic, and Æ even extends the classical modal logic S4 and can be
naturally extended so as to also extend S5. Both logics, however, heavily rely on the
truth-constant known as the Ackermann constant, and so are better left to be dealt with
in a separate paper. That paper also gives an interpretation of the two consequence
relations commonly used and often confounded in debates regarding relevance and
paraconsistency.

The plan for the paper is as follows: section ?? gives a historical account of rele-
vant logics and sets the stage for the rest of the paper. Section ?? defines the Hilbert
consequence relation and presents Ackermann’s logic Π′, Anderson and Belnap’s E
and R as well as my own Π′E. I show that Π′E has the same modal properties as E and
that the variable sharing property holds for all these four logics. Section ?? shows
in what sense Π′ and Π′E are extensions of classical logic and proves that the de-
duction theorem for the material conditional holds for both Π′ and Π′E, and that an
enthymematical deduction theorem holds for Π′E, but fails for Π′. Section ?? then
shows that the Entailment Theorem holds for Π′E. From the proof it will be evident
that the Entailment Theorem holds for any axiomatic extension of Π′E, and therefore
also for pure classical logic. Section ?? gives a brief discussion of how best to under-
stand the concept of a relevant logic in light of this and also shows that the concept
of suppression freedom is properly weaker than that of variable sharing. Section ??
then sums up by way of looking at what has been achieved in relation to Anderson
and Belnap’s onslaught at disjunctive syllogism in the infamous section from ? called
The Dog.

In the event of the 10th anniversary of Meyer’s death, and in recognition of the
importance of his ideas for the field of relevant logic in general and for this paper in
particular, I dedicate this paper in his honor.

2 The birth of relevant logics

Entailment lies at the very heart of the philosophy of logic. The now agreed upon
usage of the term ‘entailment’ derives from a section of G. E. Moores essay External
and Internal Relations:

Let us express the relation which we assert to hold between a particular propo-
sition p and a particular proposition q, when we say that in this sense q “fol-
lows from” og “is deducible from” p, by the symbol “ent”; which I have cho-
sen to express it, because it may be used as an abbreviation for “entails,” and
because “p entails q” is a natural expression for “q follows from p,” i.e., “en-
tails” can naturally be used as the converse of “follows from.” (?, p. 53)
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Given this elucidation, it would seem that ‘entailment’ is to be more or less syn-
onymous with ‘implication’. At the time of writing his essay, however, that term was
used by Bertrand Russell to mean ‘material implication’. The russellian backdrop of
Moore’s essay can be found in Russell’s writings from the 1903 book The Principles
of Mathematics and onward. Implication is therein viewed as a truth-functional re-
lation holding between propositions the study of which being the main objective of
propositional logic. That implication is equated with material implication can be seen
from the following quote:

the assertion that q is true or p false turns out to be strictly equivalent to
“p implies q”; [. . . ]. It follows from the above equivalence that of any two
propositions there must be one which implies the other, that false propositions
imply all propositions, and true propositions are implied by all propositions.
(?, §16)

In formalism, these three consequences are rendered as

(PM1) (A ⊃ B) ∨ (B ⊃ A)
(PM2) ∼A ⊃ (A ⊃ B)
(PM3) A ⊃ (B ⊃ A)

and are often called the paradoxes of material implication and leveled against the
view that the material conditional might plausibly represent the relation of entailment.

Thus Russell anno 1903 seems to simply use ‘implication’ in places where readers
both at the time and later would have rather used ‘material implication’ or ‘material
conditional’. Had he not also been careless in using other words normally reserved
for contexts of entailment such as ‘premise’ or ‘hypothesis’ instead of ‘antecedent’,
and used ‘deduction’, ‘inference’ and ‘implication’ more or less interchangeably, the
matter might have been cleared up quickly. Although Russell quite explicitly differen-
tiated between material implication and entailment, insisting that one indeed needed
to in order to answer Lewis Carroll’s puzzle,3 some readers, Moore included, seem to
have interpreted Russell as equating entailment and material implication. Two other
such readers were the founders of modern modal logic, namely Hugh MacCall and
Clarence Irving Lewis.

That any true proposition should be implied by any and every proposition, and
furthermore that any false proposition should imply any and every proposition, or
that the relation of implication should hold, in one way or the other, between any
two propositions, seemed to both MacCall and Lewis abhorrent to both common
sense and the ordinary meaning of ‘implies’.4 Whereas there need be no connection
between antecedent and consequent in a true material conditional, there, according to
MacColl and Lewis, need to be such a connection if the corresponding implication-
relation is to hold. Both fleshed out this relation in terms of modality so that “A entails
B” is to be reckoned true just if it be impossible that A be true and B false. Lewis

3See ?, §38 where entailment is called “the notion of therefore”. The distinction is also drawn by ?,
p. 9.

4See for instance ? and ?. According to Stephen Read, MacColl developed the modal system T decades
before Fey and von Wright did. See his essay ? for detail and also for information on how MacColl’s work
relate to that of Lewis’.
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called this relation strict implication and introduced the the famous “fish-hook”, J,
for it. MacColl simply called the relation implication and used the colon, as in A : B,
to express it.

The first paradox of material implication—that between any two proposition, one
implies the other—does not hold for strict implication. However, the strict implication
has paradoxes akin to the latter two material ones; if the antecedent of a strict implica-
tion is necessarily false, then it will strictly imply every proposition. Likewise, if the
consequent is necessarily true it will be strictly implied by every proposition. Thus
just as there is no need for an extra connection between antecedent and consequent
of material conditional beyond that afforded by the space of classical truth-functions,
there seems to be no need of any such connection between antecedent and consequent
of a true strict conditional beyond that allowed by the space of modality over such
truth-functions. The following are instances of these paradoxes of strict implication:

(PS1) A ∧ ∼A J B
(PS2) A J B ∨ ∼B

One of the persons who thought this to show that strict implication is not the
same thing as entailment, was Wilhelm Ackermann. Ackermann wrote in 1956 an es-
say entitled Begründung einer Strengen Implikation, which translates to reasons for
a rigorous implication. Just as MacColl and Lewis, Ackermann also wanted his im-
plication to express entailment. However, he does not make any attempt at reducing it
to notions of modality as MacColl and Lewis did. Ackermann wanted modal notions
to be expressible within the system, but entailment is not fashioned as a modal no-
tion per se. The rigorous implication is rather to express a more intimate connection
between the antecedent and consequent. Ackermann writes in the introduction to the
essay:

The rigorous implication, expressed as A → B, expresses that there exists
a logical connection between A and B; that the content of B is part of the
content of A, or how now best to put it. That there exists such a connection
has nothing to do with the correctness or falsity of A and B. This is why
one ought to reject the validity of the formula A → (B → A); it expresses
that B → A can be inferred from A while it is obvious that the correctness
of A has no bearing on whether there is a logical connection between B and
A. The same reasons compel one to also reject the validity of the formulas
A → (B → A & B), A → (A → B) and A → ((A → B) → B). The
same holds for B → (A → A), since the validity of A → A is independent
of the correctness of B. My own rigorous implication differs from the strict
one in that the latter formula is rejected as a universally valid formula—the
same is true of (A & A) → B—on account of the fact that the concept of
implication—understood as a logical connection between two statements—
does not encompass statements which implies or is implied by every other. A
formula such as (A → B) → ((B → C) → (A → C)), on the other hand, is to
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be recognized as valid since the inference from B→ C to A→ C is logically
compelled given the assumption of A→ B. (?, p. 113)5

This leaves much to be desired in order to determine what type of connection
there needs to be between A and B in order for A to entail B. Despite the title, the
essay does not elaborate much more on the matter. Nor does the sequel-paper ? clear
up what the logical connection is supposed to consist in. In fact, ?, p. 214 states that
even Lewis wanted his strict implication to express such a logical connection, and that
he merely developed his own because one may doubt that such a logical connection
exists in the case of the paradoxes of strict implication.

What seems clear from Ackermann’s two papers, however, is that his concept of
rigorous implication is intended as a successor-concept of Lewis’ strict implication—
in fact, Ackermann showed in ? that Lewis’ S2 is in fact interpretable in his own
logic in that τ(A J B) is provable in Ackermann’s logic if A J B is provable in S2.
Thus rigorous implication seems to be akin to a strict conditional, but with an added
non-modal clause on the relationship between antecedent and consequent. One is,
however, left none the wiser as to the content of this clause.

Anderson and Belnap took up Ackermann’s ideas and turned them into a whole
research program in which not only Ackermann’s logic was scrutinized, but a whole
field of logics—the initial field of relevant logics—were examined in order to probe
the notion of entailment. The logical connection alluded to by Ackermann was re-
phrased as a connection of relevance, and failures to respect it branded fallacies
of relevance. They realized that this, like Ackermann’s, notion was quite obscure
and came up with two formal conditions for making it precise, namely the variable
sharing property, which they deemed to be only a necessary condition for relevance,
and the relevant deduction property, also called the Entailment Theorem, which they
deemed to be both necessary and sufficient (?, §5.1). Simply put, the variable sharing
property is the property a logic has if A → B is a logical theorem only if A and B
share a propositional variable. It is intended to give content to the idea that A and B
need to share content, or there need to be some commonality of meaning, for A→ B
to be logically true. The relevant deduction theorem gives content to the idea that
the premises of an argument need to be used in deriving the conclusion in order for
the premises to be relevant to the conclusion. Only the first of these criteria apply to
Ackermann’s own logic, however, and so a significant schism erupted between Ack-
ermann’s approach and that of Anderson and Belnap in that Ackermann’s logic has
the variable sharing property without having the relevant deduction property.

Anderson and Belnap created the research field of relevant logics by, essentially,
dropping disjunctive syllogism, the rule

(DS ) {A,∼A ∨ B} 
 B

5The translation is my own. Note that Ackermann seems to think that B J (A J A) holds in Lewis’
systems. This is true for normal modal logics such as S4, but it fails in Lewis’ preferred systems S2 and
S3. Note, however, that Ackermann does not mention B J (A J A) in the sequel-paper ? in which he
compares his logic to S2. See ?, ch. 11 and ?, ch. 4 for more on strict implication and its paradoxes.
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from Ackermann’s logic Π′.6 Their reason for doing so was, simply put, that if→ is
to express entailment, then one ought to expect that a deduction theorem is forthcom-
ing. However, since Ackermann’s logic validates (DS), it also validates the explosion
rule—that one may infer any B from a contradiction—and so no such simple de-
duction theorem can hold unless the logic also validates A ∧ ∼A → B, one of the
primordial examples of a relevant fallacy. Relevant logics have for more or less this
reason been regarded as paraconsistent logics.

For purposes of this paper it will be sufficient to define the paraconsistent/ex-
plosive divide in the, to quote ?, p. 344, “neither very restrictive nor substantive” way
as follows:

Definition 1 A consequence relation� is paraconsistent just in case it is not the case
that {A,∼A} � B holds for every A and B, and explosive if it does hold.

For the logics and their consequence relations presented in this paper it will be the
case that {A,∼A} � B holds if and only if {A,∼A ∨ B} � B holds, and so disjunctive
syllogism will hold for a consequence relation just in case it is explosive.

Now any relevant logic will regard A→ (B→ B) as incorrect since it violates the
variable sharing principle, and so no relevant logic can have a simple deduction the-
orem for its Hilbert consequence relation since A `h B→ B holds for even Anderson
and Belnap’s two favorite logics, E and R. The deduction theorem held forth by An-
derson and Belnap was rather that which related their notion of a relevant deduction
to that of being a logical theorem in either the Hilbert consequence relation, or, what
Anderson and Belnap rather preferred, a Fitch-style natural deduction calculus. But
if it’s not a simple deduction theorem that is required, then why can’t (DS) be a valid
rule of inference for the Hilbert consequence relation?

One might, of course, have good reasons for opting for a paraconsistent logic. The
main goal of this essay, however, is to show and argue that relevance does not force
paraconsistency for the Hilbert consequence relation. The historical reason, however,
for relevant logics being viewed as paraconsistent logics has to do with a shift in the
notion of what counts as a Hilbert-style proof as a result of Anderson and Belnap’s
insistence upon a simple deduction theorem; in their own words, “In fact, the search
for a suitable deduction theorem for Ackermann’s systems [...] provided the initial
impetus leading us to the research reported in this book.” (?, p. 261). As a conse-
quence of the shift, Anderson and Belnap argue not against (DS) understood in the
Hilbert-tradition, but against an axiomatic version of it, namely A ∧ (∼A ∨ B)→ B. I
will show, however, that it is possible to modify Ackermann’s Π′ in a slightly different
manner than Anderson and Belnap did in such a way as to make (DS) derivable while
at the same time retaining the variable sharing property and a relevant deduction the-
orem. Even though A ∧ (∼A ∨ B) → B will not be a theorem, there will be theorems
on the form (A ∧ (∼A ∨ B)) ∧C → B, where C is a logical theorem, and so it will be
the case that {A,∼A ∨ B,C} `r B, where `r is the relevant consequence relation. An-
derson and Belnap considered this, but tossed it aside as yet another confused idea by
The Man.7 This, then, was rather rash; I will show that there is a logic which validate

6Ackermann designated that rule by ‘γ’, and so much literature on relevant logics will refer to the rule,
and variants of it, as precisely this.

7Read “the classical logician”.
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the Entailment Theorem, has the variable sharing property, has the modal features
desired by Anderson and Belnap, as well as having both a deduction theorem for the
material conditional, and hence is explosive with regards to the Hilbert consequence
relation, as well has having an enthymematical deduction theorem. Thus relevance
does not force paraconsistency for the Hilbert consequence relation even under these
extra requirements.

Anderson and Belnap defined `r by adding restrictions on what counts as a Hilbert
derivation. The reason they defined it the way they did, was to tease out a notion of
premise use. However, the consequence relation can more easily be defined as fol-
lows: Θ `i A =d f ∅ `

h ∧Θ f → A where Θ f is some finite subset of Θ. Such a
definition is in fact possible for any logic and any implication connective and of-
ten gives rise to a consequence relation quite different from the one from which it
is defined. For instance, the Hilbert consequence relation of the logic LP is para-
consistent, but since LP is theorem-vise identical to classical logic (?, Thm. III.13)
it follows that the consequence relation `i

LP is identical to the consequence relation
of classical logic and therefore not paraconsistent. The case, as we shall see, is the
opposite for the logic presented in this paper; Π′E’s Hilbert consequence relation is
explosive, whereas its relevant consequence relation is paraconsistent.

3 Relevant logics: definitions and variable sharing

This section sets forth the axioms and rules of the logics Π′, E, Π′E and R, Π′E being
a mixture of Π′ and E. I then show that all these logics have the variable sharing
property before I give a brief discussion on the modal aspects of these logics.

Every logic in this paper will be thought of as a set of axioms together with a set
of rules. Rules will be on form Γ 
 A where Γ is a finite set. For each logic there are
two different consequence relations which both will be important in this paper. The
easiest one to specify is the Hilbert consequence relation for a logic:

Definition 2 [The Hilbert consequence relation of a logic] A Hilbert proof of a for-
mula A from a set of formulas Γ in the logic L is defined to be a finite list A1, . . . , An

such that An = A and every Ai≤n is either a member of Γ, a logical axiom of L, or
there is a set ∆ ⊆ {A j | j < i} such that ∆ 
 Ai is an instance of a rule of L. The
existential claim that there is such a proof is written Γ `h

L A and expressed as “there
exists a Hilbert-derivation of A from Γ in the logic L”, or more casually as “the rule
Γ `h A is derivable in L”.

Definition 3 (Parenthesis conventions and defined connectives) Both ∨ and ∧ are
to bind tighter than →, and so I’ll usually drop parenthesis enclosing conjunctions
and disjunctions whenever possible. The material conditional, relevant equivalence
and the modal operator 2 are defined as follows:

A ⊃ B =d f ∼A ∨ B
A↔ B =d f (A→ B) ∧ (B→ A)

2A =d f (A→ A)→ A
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Definition 4 (Ackermann’s Π′) The following list of axioms and rules are a slightly
more economical set than those given in ? for the logic Π′:

(Ax1) A→ A
(Ax2) A→ A ∨ B and B→ A ∨ B
(Ax3) A ∧ B→ A and A ∧ B→ B
(Ax4) A ∧ (B ∨C)→ (A ∧ B) ∨ (A ∧C)
(Ax5) (A→ B) ∧ (A→ C)→ (A→ B ∧C)
(Ax6) (A→ C) ∧ (B→ C)→ (A ∨ B→ C)
(Ax7) (A→ (A→ B))→ (A→ B)
(Ax8) (A→ B)→ ((C → A)→ (C → B))
(Ax9) (A→ B)→ ((B→ C)→ (A→ C))

(Ax10) ∼∼A→ A
(Ax11) (A→ ∼B)→ (B→ ∼A)
(Ax12) (A→ ∼A)→ ∼A

(α) {A, A→ B} 
 B
(β) {A, B} 
 A ∧ B
(γ) {A,∼A ∨ B} 
 B
(δ) {A→ (B→ C), B} 
 A→ C

In January 1959, two and a half years after the publication of ?, Anderson and
Belnap read a paper entitled A modification of Ackermann’s “rigorous implication”
(?) for the twenty-third annual meeting of the Association for Symbolic logic. The
modification of Π′ presented was the logic E:

Definition 5 (Anderson and Belnap’s E) Anderson and Belnap’s E consists of ax-
ioms (Ax1)–(Ax12), together with the rules (α) and (β) above, as well as the follow-
ing two axioms:

(Ax13) ((A→ A)→ B)→ B
(Ax14) 2A ∧2B→ 2(A ∧ B)

Anderson and Belnap initially had (((A → A) ∧ (B → B)) → C) → C instead
of (Ax13) and (Ax14). These are equivalent axiomatizations, and so Anderson and
Belnap later preferred the variant given here since it splits apart the conjunctive and
implicational properties of the logic and makes the modal character of it more ex-
plicit; (Ax13) is a slightly generalized version of the modal T axiom 2A → A,8

whereas (Ax14) is needed to enforce that 2, on the definition given by Anderson and
Belnap, interacts with conjunction in the way it should given the intended reading of
2 as logical necessity. The nice feature of the simpler axiomatization, though, is that
it makes it evident that E is a sublogic of Π′.

Ackermann augmented his logic Π′ with a truth-constant, f, which was to be read
das Absurde, and defined 2A as ∼A → f. Anderson and Belnap then realized that
2A can in fact be equivalently defined as (A→ A)→ A and show in ? that 2 defined
this way has the modal features of a S4 modality. Π′ and E turn out to be theorem-
vise identical, and so E has this feature as well. Both Ackermann as well as Anderson

8The slight generalization is needed, as the proof below shows, for the proof of the admissibility of the
necessitation rule to go through.
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and Belnap wanted their logic to have modal features. Ackermann definitely wanted
his logic to be able to express modality, whereas Anderson and Belnap thought of
the conditional of E itself as a strict and relevant conditional, and therefore that the
conditional itself had modal features. In fact, by adding the Ackermann constant t—
by and large the negation of Ackermann’s f—it becomes evident that it is legitimate
to read 2A not only as A is logically necessary, but also, and equivalently, as A is
entailed by logic. This is further dealt with in the sequel to this paper, Non-Boolean
Classical Relevant Logics II. The stronger logic R, on the other hand, was from the
outset thought of as a non-modal logic.

Definition 6 (Anderson and Belnap’s R) Anderson and Belnap’s R is got by adding
(Ax15), the axiom called assertion, to E and deleting the then superfluous (Ax13) and
(Ax14).

(Ax15) A→ ((A→ B)→ B)

It is easy to see that the modal reading of 2A is lost in R since A→ 2A is in fact
an instance of the assertion axiom. This is why Anderson and Belnap differentiate
between entailment, which they take to be a modal concept, and implication in that
they talk of E as a (the) logic of entailment, whereas the R is merely a logic of relevant
implication.9

Definition 7 (Π′E) My own mixture of Π′ and E, Π′E, is the logic which is to be
identified as axioms (Ax1)–(Ax7), (Ax10)–(Ax14) and the rules (α) and (β) above,
as well as the following axioms:

(Ax8[) (A→ B) ∧ (C → C)→ ((C → A)→ (C → B))
(Ax9[) (A→ B) ∧ (C → C)→ ((B→ C)→ (A→ C))
(Ax16) (A→ B) ∧ (B→ C)→ (A→ C)
(Ax17) (A ∧ (∼A ∨ B)) ∧ (B→ B)→ B

(K) 2(A→ B)→ (2A→ 2B)
(4) 2A→ 22A

The motivation behind Π′E is to preserve as much as possible of E, while making
sure that (DS) becomes derivable. Most importantly it should preserve E’s deduction
theorem, and so can’t, as I will later show, simply be replaced by E strengthened by
(γ). Adding further primitive rules beyond (α) and (β) tend to make such a deduction
theorem impossible, and so the only plausible solution is to ensure that (DS) becomes
a derivable rule. Thus one needs an explosive axiom—an axiom the addition of which
suffices for making the consequence relation `h explosive—which here is (Ax17).
Notice that (Ax8[) and (Ax9[), as well as (Ax17), add an extra self-implication to the
antecedent. This trick is well known amongst relevantists. It is, for instance, often
pointed out that Factor, the formula (A → B) → (A ∧ C → B ∧ C) is not a theorem
of R, but that (A → B) ∧ (C → C) → (A ∧ C → B ∧ C) is. The motivation for
weakening the pre- and suffixing axioms, (Ax8) and (Ax9), is purely technical in that

9Since this difference between entailment and implication is not a widely accepted one, I will continue
to use these two concepts interchangeably.
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I haven’t been able to prove the variable sharing property without weakening them.10

The conjunct (B → B) in (Ax17) is also there solely in order to ensure that the
variable sharing property will hold. The modal axioms (K) and (4) are derivable in
E, but are not so with only (Ax8[) and (Ax9[) available, and so are added as separate
axioms to Π′E in order to preserve E’s S4-modality. (Ax16) is yet another theorem of
E for which the minor pre- and suffixing axioms of Π′E prove insufficient to derive.11

Π′E has several nice properties deemed important by Anderson and Belnap for an
entailment logic to have—primarily (1) satisfying the variable sharing property, (2)
having a definable S4-modality and (3) satisfying the relevant deduction/Entailment
theorem. Despite this, Π′E is rather ad hoc in that its modal features are simply super-
imposed and do not flow from the properties of the conditional. The foremost purpose
of showing forth Π′E, however, is to show that it is possible for a truth-constant-free
logic to have an explosive `h-relation, while also satisfying the three listed properties.
In the sequel to this paper I’ll show that the core idea of Π′E is expressible in a much
more natural way if Ackermann’s truth constant t is available.

Before I show that Π′E has the variable sharing property, I’ll prove that both the
necessitation rule and the (δ) rule are admissible for any extension of both E and Π′E,
thus showing that the 2 of Π′E is, like the 2 of E, a S4-modality.

Lemma 1 Any logic considered in this essay will have the following derived rules:

(transitivity) A→ B, B→ C `h A→ C
(prefixing rule) A→ B `h (C → A)→ (C → B)
(suffixing rule) A→ B `h (B→ C)→ (A→ C)
(leftER) A→ (B→ C),D→ B `h A→ (D→ C)

Proof Left for the reader. ut

Theorem 1 The necessitation rule A `h 2A is admissible in any→-axiomatic exten-
sion L of either E or Π′E, i.e. if ∅ `h

L A, then ∅ `h
L 2A.

Proof The proof is by induction on the length of proof. In the base case, A is an
axiom. Since all axioms of L are→-formulas we get 2A from the following general
proof that B→ C `h

L 2(B→ C):

(1) B→ C assumption
(2) (B→ B)→ (B→ C) 1, prefixing rule
(3) ((B→ C)→ (B→ C))→ ((B→ C)→ (B→ C)) Ax1
(4) ((B→ C)→ (B→ C))→ ((B→ B)→ (B→ C)) 2, 3, leftER
(5) ((B→ B)→ (B→ C))→ (B→ C) Ax13
(6) ((B→ C)→ (B→ C))→ (B→ C) 4, 5, transitivity
(7) 2(B→ C) 6, def. of 2

10Incidentally, Lewis abandoned S3 in favor of S2 when it was pointed out to him that the suffixing
axiom, (Ax9), was derivable in S3 (see ? for references). This is, presumably, why Ackermann mentions
(Ax9) in the introduction to ? quoted from above. It is, however, easy to verify that (Ax8[) and (Ax9[),
with→ of course replaced by J, are theorems of S2.

11MaGIC finds a 12-element algebra which is a countermodel to (Ax16) for Π′E minus (Ax16). MaGIC—
an acronym for Matrix Generator for Implication Connectives—is an open source computer program
created by John K. Slaney (?).
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Now for the inductive part:

(α) : Assume that A is got by applying (α), i.e. modus ponens. Thus for some formula
B, both B and B → A are logical theorems. For inductive hypothesis we may
assume that 2B is a logical theorem as well.

(1) B→ A assumed logical theorem
(2) 2B assumed logical theorem
(3) (B→ B)→ B 2, def. of 2
(4) (B→ A)→ ((B→ B)→ A) 3, suffixing-rule
(5) ((B→ B)→ A)→ A Ax13
(6) (A→ A)→ (B→ A) 1, suffixing-rule
(7) (A→ A)→ A 4–6, transitivity
(8) 2A 7, def. of 2

(β) : Assume that A is the formula B∧C and is got by (β). For inductive hypothesis we
may assume that 2B and 2C are logic theorems. Using (β) itself we get 2B∧2C
which is the antecedent of (Ax14) which then yields 2(B ∧C).

ut

Anderson and Belnap conceived of E as a logic of both necessity and relevance.
The above theorem lends some support for the idea that the 2 of both Π′E and E
may indeed be interpreted as a logical necessity. That interpretation is harder to jus-
tify for Ackermann’s logic Π′, since the necessitation rule, A `h 2A is not merely
admissible, but derivable in Π′ due to it having (δ) as a primitive rule. This was,
however, precisely why Ackermann hastened to note (?, p. 120) that (δ) needs to be
restricted so as not to apply to “non-logical” assumptions. Anderson and Belnap then
realized that Ackermann’s idea of restricting (δ) can be achieved by adding (Ax13)
instead. In fact, (δ) is not only an admissible rule in E, but (Ax13) makes the variant
A→ (B→ C),2B `h

L A→ C a derivable rule:

Theorem 2
1. A→ (B→ C),2B `h

L A→ C is a derivable rule in both E and Π′E.
2. (δ) is an admissible rule in any→-axiomatic extension of either E or Π′E.

Proof
1.

(1) A→ (B→ C) assumption
(2) 2B assumption
(3) (B→ B)→ B 2, def. of 2
(4) A→ ((B→ B)→ C) 1, 3, leftER
(5) ((B→ B)→ C)→ C Ax13
(6) A→ C 4, 5, transitivity

2. Assume that both A→ (B→ C) and B are logical theorems. Thm. ?? entails that
2B is also a logical theorem, and so the above derivation shows that A→ C is a
logical theorem too.

ut
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Neither E nor R has (γ), that is disjunctive syllogism, as a derivable rule, and so
both count as paraconsistent logics. However, it was early realized that even though
this is so, (γ) could still be admissible in these logics. This was one of the open
problems stated in ? and subsequently solved in the positive for both E and R in ?.
Since (Ax13) and (Ax14) of E are derivable in Π′, and both (γ) and (δ) are admissible
in E, it follows that these two logics are in fact theorem-vise identical.

3.1 Variable sharing

We saw earlier that Ackermann spoke of a logical connection which needs to hold
between A and B in order for A to entail B. One way to specify this is as a claim
about meanings, that there needs to be some connection between the meaning of A
and that of B for the entailment to hold. Belnap, then, made the following suggestion
in his 1960-essay Entailment and Relevance:

Confining our attention to propositional logic, a partial solution becomes al-
most obvious once we note that in propositional logic, commonality of mean-
ing is carried by identity of propositional variables. Thus, for A to be relevant
to B in the required sense, a necessary condition is that A and B have some
propositional variable in common. (?, p. 144)

Definition 8 A logic L without truth-constants has the variable sharing property
just in case for every formula A and B, ∅ `h

L A→ B only if A and B share a proposi-
tional parameter.

Belnap’s goal was to show that E has this property, but also remarked (?, fn. 3)
that the proof also covers Ackermann’s Π′. It was later remarked that the model is
also a model for R, and that therefore it as well has the variable sharing property.

To show this, Belnap constructed the 8-valued model shown in Fig. ?? in which
T is the set of designated elements, ∼, 2 and → are interpreted according to the
displayed matrices and conjunction and disjunction are interpreted as infimum and
supremum over the displayed ordering. Rules are regarded to hold in the model if they
preserve designated values—if the premises are all evaluated to designated values,
then the conclusion is also evaluated to some designated value.

Theorem 3 Π′, E and R all have the variable sharing property.

Proof Assume that A and B share no propositional variable. Assign to every propo-
sitional variable in A the value +1, and +2 to every variable in B. It is easy to
check that both {−1,+1} and {−2,+2} are closed under the functions which inter-
prets ∼,2,∧,∨,→, and so A will be assigned either −1 or +1 and B either −2 or +2.
It is then easy to check that A → B will be assigned −3. Since the model is a model
for all the axioms and rules of Π′, E and R (left for the reader), it follows that A→ B
is not a theorem which then ends the proof. ut
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T = {+0,+1,+2,+3}

+3

+1

==

−0

OO

+2

aa

−1

OO ==

+0

aa ==

−2

OOaa

−3

aa ==OO

→ −3 −2 −1 −0 +0 +1 +2 +3 ∼ 2

−3 +3 +3 +3 +3 +3 +3 +3 +3 +3 −3
−2 −3 +2 −3 +2 −3 −3 +2 +3 +2 −2
−1 −3 −3 +1 +1 −3 +1 −3 +3 +1 −1
−0 −3 −3 −3 +0 −3 −3 −3 +3 +0 −0
+0 −3 −2 −1 −0 +0 +1 +2 +3 −0 +0
+1 −3 −3 −1 −1 −3 +1 −3 +3 −1 +1
+2 −3 −2 −3 −2 −3 −3 +2 +3 −2 +2
+3 −3 −3 −3 −3 −3 −3 −3 +3 −3 +3

Fig. 1 Belnap’s model of relevance

So Π′, E and R all have the variable sharing property.12 Belnap’s model validates
Ackermann’s (γ)-rule. However, it does not validate Π′E’s axiom (A∧(∼A∨B))∧(B→
B)→ B, and so is not a model for Π′E. The following model, however, found by MaGIC
(?), is a model for Π′E:

Theorem 4 Π′E has the variable sharing property.

Proof Belnap’s proof works also in this case: the model in Fig. ?? validates all ax-
ioms and rules of Π′E and {−1,+1} and {−2,+2} are still closed under all the propo-
sitional functions. ut

Belnap noted that his model of relevance validated Ackermann’s (γ), i.e. disjunc-
tive syllogism. Simply from this fact it follows that the concept of variable sharing
does not entail paraconsistency. However, Anderson and Belnap were dissatisfied
with Π′ since they could not find a suitable deduction theorem for it. Such a deduc-
tion theorem typically holds provided the logic does not have primitive rules beyond
(α) and (β) which, therefore, half-way at least, explains why Ackermann’s two addi-
tional rules were cut. That Π′E also has the variable-sharing property shows that an
explosive logic can have this property despite having only (α) and (β) as primitive
rules. I will later show that the deduction theorem they found for E, the Entailment

12Are there algebras with fewer than eight elements which can be used to show the same thing? The
smallest such, according to Slaney’s MaGIC, is the following six-element algebra for R. In it {2} and {3} do
the same job as {−1,+1} and {−2,+2} do in Belnap’s model:

T = {1, 2, 3, 4, 5}

5

4

OO

2

@@

3

^^

1

^^ @@

0

OO

→ 0 1 2 3 4 5 ∼

0 5 5 5 5 5 5 5
1 0 1 2 3 4 5 4
2 0 0 2 0 2 5 2
3 0 0 0 3 3 5 3
4 0 0 0 0 1 5 1
5 0 0 0 0 0 5 0

Figure 2. A 6-element model for variable sharing

This model, however, is not a model for Π′ since it does not validate (γ): 1 ∧ (∼1 ∨ 0) ∈ T , but 0 < T .
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T = {+0,+1,+2,+3}

+3

+1

==

−0

OO

+2

aa

−1

OO ==

+0

aa ==

−2

OOaa

−3

aa ==OO

→ −3 −2 −1 −0 +0 +1 +2 +3 ∼ 2

−3 +0 +2 +1 +3 +0 +1 +2 +3 +3 −3
−2 −3 +2 −3 +2 −3 −3 +2 +2 +2 −2
−1 −3 −3 +1 +1 −3 +1 −3 +1 +1 −1
−0 −3 −3 −3 +0 −3 −3 −3 +0 +0 −0
+0 −3 −2 −1 −0 +0 +1 +2 +3 −0 +0
+1 −3 −3 −1 −1 −3 +1 −3 +1 −1 +1
+2 −3 −2 −3 −2 −3 −3 +2 +2 −2 +2
+3 −3 −3 −3 −3 −3 −3 −3 +0 −3 +3

Fig. 3 Π′E’s model of relevance

Theorem, as well the so-called enthymematical deduction theorem, also holds for Π′E,
thus putting it beyond doubt that Anderson and Belnap accepted the relevant impli-
cation of paraconsistency quite foolhardily.

Before I do so, however, let’s look at the possibility of adding (Ax17) to R. I have
not been able to decide whether A∧∼A→ B is derivable in this logic, only that it does
not suffice for making the so-called Mingle axiom A → (A → A) derivable, which
when added to R yields an irrelevant logic since, for instance, the Kleene axiom
A ∧ ∼A → B ∨ ∼B is a theorem of RM.13 However, if one adds the Church constant
>, axiomatized simply by A → >, then A ∧ ∼A → B does become derivable.14 This
shows also that the logic is at best such that the Church constant can only be added
non-conservatively, which I believe is a rather unwelcomed feature. One could then
rather weaken (Ax17) to

(A ∧ (∼A ∨ B)) ∧ ((A→ A) ∧ (B→ B))→ B.

MaGIC verifies that one can add this to R> without incurring A∧∼A→ B, but the logic
would then fail to satisfy the variable sharing property as, on the assumption of >’s
presence, (A∧∼A)∧ (A→ A)→ B becomes derivable. There might be other ways of
weakening (Ax17) which could be added to R> without yielding an irrelevant logic,
but I have so far not found one. As noted in ?, p. 298, however, (A∧(∼A∨B))∧C → B,
where C itself is any theorem of R, fails to hold in Belnap’s model of relevance. Of
course, that fact does not show, as Anderson and Belnap seem to imply, that there
can’t be any model which shows that R plus (A∧ (∼A∨ B))∧C → B has the variable
sharing property, where C itself is a logical theorem of the extended logic.15 I’ll come
back to the this argument of Anderson and Belnap in the last section of this paper.

13That Mingle is not derivable in R plus (Ax17) is easily verified by MaGIC.
14This is easily seen by noting that > → (⊥ → ⊥) is a theorem, where ⊥ =d f ∼>, and that therefore the

instance (A ∧ (∼A ∨ ⊥)) ∧ (⊥ → ⊥)→ ⊥ suffices for deriving A ∧ ∼A→ B.
15This is in fact in effect how the logics Æ and M in the sequel to this paper are defined for which even

Belnap’s original model suffice for proving the variable sharing property.
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4 Relation to classical logic and deduction theorems

This section first explains the sense in which Π′ and Π′E extend classical logic, and
how this is different from Anderson and Belnap’s logics E and R. I then go on to
prove that the deduction theorem for the material conditional holds for both Π′ and
Π′E and that the enthymematic deduction theorem holds for Π′E, but fails for Π′.

4.1 Relation to classical logic

Let TV be classical logic. Both Π′ and Π′E extend classical logic in the sense that
they are closed under the consequence relation of classical logic; intuitively, if one
can derive A1, . . . , An from Γ in Π′(Π′E) and B is a logical consequence of the Ai’s
in classical logic, then B is a logical consequence of Γ in Π′(Π′E). The following
definition and theorem make this precise.

Definition 9 τ is the translation from the set form of formulas generated by the set
of propositional variables {pi | i ∈ N} and the connectives {∼,∨,∧,→} to the set
of formulas generated by {pi | i ∈ N} ∪ {qi j | i, j ∈ N} over the set of connectives
{∼,∨,∧}, determined by the following clauses:

• τ(pi) =d f pi • τ(∼A) =d f ∼τ(A) • τ(A→ B) =d f q#A#B

• τ(A ∧ B) =d f τ(A) ∧ τ(B) • τ(A ∨ B) =d f τ(A) ∨ τ(B) • ∆τ =d f {τ(A) | A ∈ ∆}

where # is an enumeration of every formula in form and ∆ is any subset of form.

Theorem 5 (Classical extension) For L ∈ {Π′,Π′E}, if ∆τ `h
TV τ(B), then Γ `h

L B,
where ∆ is any set of formulas such that ∆ ⊆ {A | Γ `h

L A}.

Proof Left for the reader. ut

This sets Π′ and Π′E apart from Anderson and Belnap’s E and R in which (γ) is
only an admissible rule, which entails that, although the logical theorems of the latter
two logics are extensions of that of classical logic, classical reasoning is not always
supported by E and R. An important case where this is not so is Peano arithmetic:
? showed that relevant arithmetic, R#, is not closed under (γ); even though R# `h

R
0 , 0 ∨ A for every classical arithmetical sentence A provable in classical Peano
arithmetic, Meyer and Friedman showed that there are theorems of classical Peano
arithmetic which are not theorems of R#. Since R# `h

R 0 = 0, it therefore follows that
there are interesting cases where (γ) fails. Thus neither E nor R are extensions of
classical logic in the way that Π′ and Π′E are.16

16In order for this to work for E one seems to need to add A 
 0 = 0→ A as an additional arithmetical
rule, where, then, 0 = 0 gets the same logical properties as Restall’s truth-constant t in ?, namely that both
t → A `h A and A `h t → A are derivable. It is shown in ?, thm. 11.27 that L# `hL ∼t∨A holds for classical
Peano theorems A for a variety of contraction-free logics L and so easily carries over to to E# provided the
extra arithmetical rule is added.
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4.2 Deduction theorems

As I mentioned in section ?? there can’t be a simple deduction theorem for relevant
logics. There are, however, interesting weaker such theorems and I will now prove
some of them.

Theorem 6 (Extensional deduction theorem) For L ∈ {Π′,Π′E},

Γ ∪ {A} `h
L B⇐⇒ Γ `h

L A ⊃ B.

Proof The right to left direction is trivial since (DS) is a derived rule of both Π′

and Π′E. The other direction is an induction on the length of proof. So assume that
B1, . . . , Bn is a Hilbert proof of B from Γ ∪ {A}. The proof is a simple induction
showing that Γ `h

L A ⊃ Bi for every i. Base case: if Bi is in Γ, then rather trivially we
get Γ `h

L A ⊃ Bi. If Bi is A, then since A ∨ ∼A is a logical theorem, we also get that
Γ `h

L A ⊃ Bi. Assume now for induction that Γ `h
L A ⊃ B j and Γ `h

L A ⊃ Bk.
First assume that Bi is got from B j and Bk using adjunction (β). Using (β) we may

infer that Γ `h
L (∼A∨B j)∧ (∼A∨Bk). Contraposing the distribution axiom (Ax4) and

using (α) we get that Γ `h
L ∼A ∨ (B j ∧ Bk), and therefore Γ `h

L A ⊃ (B j ∧ Bk) by the
definition of ⊃.

Bi obtained by (α): We may assume that Bk = B j → Bi. Again we get that Γ `h
L

A ⊃ (B j∧ (B j → Bi)). From the contraction axiom (Ax7) we get that ∅ `h
L B j∧ (B j →

Bi) → Bi, and so fiddling then yields that ∅ `h
L (A ⊃ (B j ∧ (B j → Bi))) → (A ⊃ Bi)

and therefore Γ `h
L A ⊃ Bi.

Bi obtained by (γ): We may assume that Γ `h
L A ⊃ B j and Γ `h

L A ⊃ (B j ⊃ Bi).
Since ∅ `h

L ∼B j ∨ B j, we then easily get that Γ `h
L A ⊃ Bi which ends the proof. ut

Note that the above proof would also hold for E and R strengthened by (γ); thus
all of Π′, Π′E, E[γ] and R[γ] have the variable sharing property and a simple deduction
theorem, although one using ⊃, not →. We have already seen why such a simple
deduction theorem can’t hold using→. The following theorem shows, however, that
an enthymematical deduction theorem holds for Π′E, E and R:17

Theorem 7 (Enthymematic deduction theorem) For L ∈ {Π′E,E,R},

{A1, . . . , An} `
h
L B⇐⇒ ∅ `h

L

∧
i≤n

Ai ∧ Axioms→ B

where Axioms is some conjunction of axioms of the logic in question.

Proof The right to left direction is trivial. The other direction is an induction on the
length of proof. So assume that B1, . . . , Bn is the Hilbert proof of B from {A1, . . . , An}.
The goal is to prove by induction that ∅ `h

L
∧

i≤n Ai ∧ Axioms→ B j for every j ≤ n.
If B j is one of the Ai’s,

∧
i≤n Ai ∧ Axioms→ B j is obviously a logical theorem. If

B j is an axiom, then it may me assumed to be one of the conjuncts in Axioms, and so∧
i≤n Ai ∧ Axioms→ B j is again an obvious logical theorem.

17The following theorem is an easy consequence of Anderson and Belnap’s Entailment Theorem which
we’ll get back to later. For more on deduction theorems in relevant logics, see ?, §1.4.
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Now assume that B j is got from some Bk and Bl using (β). We may then assume
for inductive hypothesis that both

∧
i≤n Ai∧Axioms→ Bk and

∧
i≤n Ai∧Axioms→ Bl

are theorems. Since
(
∧

i≤n Ai ∧ Axioms→ Bk) ∧ (
∧

i≤n Ai ∧ Axioms→ Bl)
→ (
∧

i≤n Ai ∧ Axioms→ Bk ∧ Bl)

is an instance of (Ax5), we then easily get that
∧

i≤n Ai ∧ Axioms→ Bk ∧ Bl.
Assume lastly that B j is got from some Bk and Bl using (α), and let Bl therefore be

the formula Bk → B j. From the inductive hypothesis that both
∧

i≤n Ai∧Axioms→ Bk

and
∧

i≤n Ai ∧ Axioms → (Bk → B j) are theorems, one gets
∧

i≤n Ai ∧ Axioms → B j

using leftER and contraction (Ax7) which then ends the proof. ut

I noted above that adding (γ) to E or R suffices for yielding the ⊃-deduction
theorem. That this deduction theorem fails for E and R is used by Anderson and
Belnap as an argument against ⊃ being a proper conditional: “But of course A ∨ B
is no kind of conditional, since modus ponens fails for it, as we have remarked ad
nauseam before.” (?, p. 259). What is true at least is that they use such a petitio ad
nauseam. An extenuating fact—one which they ought to have shown forth, but, to
my knowledge at least, never did—is the fact that if one simply adds (γ) to either E
or R, then the enthymematical deduction theorem will fail:

Theorem 8 The enthymematic deduction theorem fails for E[γ], Π′ and R[γ]

Proof It was noted earlier that Belnap’s model of relevance (Fig. ??) validates (γ)
and so is a model for E[γ], Π′ and R[γ]. As ?, p. 298 notes, however, (A∧ (∼A∨B))∧
Axioms → B can be made to fail in the model, where Axioms is any conjunction of
axioms of R.18 Let A and B be propositional variables, and assign +1 to A and let B,
as well as every propositional variable in Axioms, be assigned to −3. Inspecting the
model it is then easy to verify that {−3,−1,+1,+3} is closed under all propositional
functions, and therefore that (A∧(∼A∨B))∧Axioms will be assigned to −1. However,
−1→ −3 = −3, and so the the model is not a model for (A∧(∼A∨B))∧Axioms→ B.
Thus the enthymematical deduction theorem fails for E[γ], Π′ and R[γ]. ut

One might have thought that the cost of having (γ) was the enthymematical de-
duction theorem. The above theorem shows that the enthymematical deduction the-
orem is lost in some cases where (γ) is added as a primitive rule. The existence
of Π′E shows that this is not so in general, however. It also shows that the variable
sharing property can not be used, not even in conjunction with the demand for an
enthymematical deduction theorem and a S4-modality, to exclude ⊃ as a bona fide
conditional. However, variable sharing was only deemed to be a necessary condi-
tion, whereas the Entailment Theorem was by Anderson and Belnap regarded as both
necessary and sufficient.19 Section ?? looks closer at this alleged necessary and suf-
ficient property for relevance before section ?? takes a quick look at the concept of
suppression before the last section finally sums up by way of looking at Anderson and
Belnap’s judgement over the formula (A ∧ (∼A ∨ B)) ∧ Axioms→ B in the infamous
part of their book, entitled The Dog.

18Their argument could in fact easily be extended to also cover any theorem of R.
19It is somewhat strange that they never tried to show that the variable sharing property follows from

the Entailment Theorem. We’ll see in the next section why this would have been doomed to fail.
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5 Relevant deduction aufgehoben

In giving a proof that A is a logical consequence of the set of formulas Γ, one will typ-
ically state some of the Γ-formulas as premises, and then use the logic’s resources—
its axioms and rules—in order to derive A. However, a Hilbert derivation may use
axioms and rules which are not conducive, so to speak, to the conclusion. For in-
stance, “there exists a Hilbert-derivation of A → A from B → B” will be a correct
claim for all logics in this essay even though B→ B is not used, in any familiar sense
of the word at least, in obtaining the conclusion. The notion of a relevant deduction,
however, is designed to tease out a more conducive notion of premise use.

Definition 10 [The relevant consequence relation of a logic] A relevant deduction
of a formula A from a set of formulas Γ in the logic L having only modus ponens,
(α), and adjunction, (β), as primitive rules, is defined as a Hilbert proof A1, . . . , An of
A from Γ such that it is possible to mark the Ai’s with #’s according to the following
rules:

1. If Ai ∈ Γ, then Ai is marked.
2. If Ai is got from A j and Ak using modus ponens, then Ai is marked if either or

both of A j and Ak are marked.
3. Adjunction is only used on premises which are either both marked or both un-

marked.
4. If Ai is got from A j and Ak using adjunction and both of A j and Ak are marked,

then Ai is marked.
5. No other formulas are marked.
6. As a consequence of (1–5), An is marked.

The existential claim that there is such a proof is written Γ `r
L A and expressed as

“there exists a relevant derivation of A from Γ in the logic L”.

Thus a relevant derivation is a special case of a Hilbert proof. The #-markings are
intended to give content to the idea that premises need to be used in arriving at the
conclusion. Note that it does so both by restricting the use of adjunction and the use
of axioms. An ordinary Hilbert proof does not differentiate between logical axioms
and members of the premise set Γ, and so even though it is quite OK to put logical
axioms into Γ, this will have no effect on the outcome. Quite the contrary is true for
relevant deduction. If one thinks of the #-marked formulas as those which are, taken
together,20 conducive to the conclusion, then logical axioms are not conducive unless
they are members of Γ or themselves relevantly derivable from Γ. And so one will
often have to include in Γ logical axioms in order to be able to use them conducively
to derive the conclusion.

Now the Entailment Theorem is a mere variant of the enthymematical deduc-
tion theorem. The latter theorem, however, states that Ψ `h A if and only if the →-
conditional which has A as its consequent, and has its antecedent made up of the

20The notion of “taking together” here is the extensional-conjunctive one. There is also a stricter
intensional-conjunctive sense of “taking together” which gives rise to a stricter notion of relevant deduc-
tion in which all the premises in Γ need to be used. Anderson and Belnap, however, prefer the notion where
it is sufficient that some of the premises be used to obtain the conclusion (?, p. 36). The next subsection
deals with this notion of premise use.
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conjunction of some of the Ψ ’s together with Axioms is a logical truth in the sense
of `h. This does not give any details on which axioms may enter into the conjunction
Axioms. Even the way that Axioms is constructed in the proof of the theorem may
produce conjunctions which are in a quite clear sense not used in the Hilbert proof of
A from Ψ : for instance A, B → B, A is an acceptable Hilbert proof of A from A, but
Axioms will in this case be the formula B → B even though no real use is made this
axiom in the proof.

Note, then, that also relevant deductions can have non-conducive, as it were, for-
mulas. For instance, A#, B → B, A# is an acceptable relevant deduction of A from A
too, only with displayed #-markings. With such markings, `r is supposed to hone in
on a notion of premise use, and so the Entailment Theorem states that Ψ ∪ Θ `r A,
where the formulas in Ψ are non-logical axioms, whereas Θ consists of only logical
axioms, if and only if the →-conditional which has A as its consequent and has its
conjunctive antecedent made up of a conjunction of the Ψ ’s together with the con-
junction of Θ’s actually used in the relevant deduction of A from Ψ ∪ Θ, is a logical
theorem in the sense of `h. To prove the theorem we first need a lemma which shows
that all unmarked formulas in a relevant deduction are of a special kind:

Lemma 2 Let L be any logic with only modus ponens and adjunction as primitive
rules so that `r

L is defined. Assume that Θ `r
L A and let A1, . . . , An be a relevant

deduction with #-markings according to the rules (1)–(6) in Def. ?? above. Claim: If
Ai is unmarked, then ∅ `h

L Ai.

Proof By induction: in the base case Ai is a logical axiom not in Θ, and so ∅ `h
L Ai.

If Ai is got by either adjunction or modus ponens, then since it is unmarked it is got
from two unmarked premises according to (2)–(5), and so we may assume that the
premises are logical theorems. However, since every rule is theorem-preserving, it
follows that Ai is a logical theorem as well.

Theorem 9 (Relevant Deduction/Entailment Theorem) For L ∈ {E,R,Π′E},

Ψ ∪ Θ `r
L B⇐⇒ ∅ `h

L

∧
i≤n

ψi ∧
∧
i≤m

θi → B

where {θ1, . . . , θm} ⊆ Θ ⊆ AxiomsL is the set of logical axioms of L used in the
relevant deduction of B from Ψ ∪Θ, and {ψ1, . . . , ψn} ⊆ Ψ , where Ψ ∩ AxiomsL = ∅,
and the ψi’s make out the set of every such non-logical assumption used in the relevant
deduction of B from Ψ ∪ Θ.

Proof Assume first that Ψ ∪ Θ `r
L B, and let B1, . . . , Bk be the relevant deduction of

B from Ψ ∪ Θ where the list is supplied with an analysis which legitimizes the steps
according to the rules for relevant deducibility.

Let ψ1, . . . , ψn and θ1, . . . , θm be all the formulas from, respectively, Ψ and Θ
which occur on the list B1, . . . , Bk with justification (1). Such formulas are by defini-
tion marked by #. The rest of the proof is a simple induction to show that for all B j≤k

which are marked by #, ∅ `h
L
∧

i≤n ψi ∧
∧

i≤m θi → B j.
Assume first that B j is obtained without using a rule. Since B j is #-marked, it is

amongst {ψ1, . . . , ψn} ∪ {θ1, . . . , θm} and so ∅ `h
L
∧

i≤n ψi ∧
∧

i≤m θi → B j.
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Now for the rules. Assume first that B j is obtained from Bg and Bh using adjunc-
tion. Since B j is by assumption marked, we can infer from (3)–(5) of Def. ?? that both
Bg and Bh are marked. As induction hypothesis we may therefore assume that both

∅ `h
L
∧

i≤n ψi ∧
∧

i≤m θi → Bg and ∅ `h
L
∧

i≤n ψi ∧
∧

i≤m θi → Bh.

Using (Ax5) one then gets that ∅ `h
L
∧

i≤n ψi ∧
∧

i≤m θi → Bg ∧ Bh.
Lastly, assume that B j is obtained from Bg and Bh using modus ponens, and let

Bh be Bg → B j. The proof now splits into three parts since modus ponens can be use
to obtain a marked formula in three different ways:

1. Assume first that both premises are marked. We can then assume as induction
hypothesis that both

∅ `h
L
∧

i≤n ψi ∧
∧

i≤m θi → Bg and ∅ `h
L
∧

i≤n ψi ∧
∧

i≤m θi → (Bg → B j).

∅ `h
L
∧

i≤n ψi ∧
∧

i≤m θi → B j now follows by using leftER and contraction (Ax7).
2. Assume now that only Bg is marked. We may then assume as induction hypothesis

that ∅ `h
L
∧

i≤n ψi ∧
∧

i≤m θi → Bg. However, since Bg → B j is not marked,
Lem. ?? entails that ∅ `h

L Bg → B j, so ∅ `h
L
∧

i≤n ψi ∧
∧

i≤m θi → B j follows
using transitivity.

3. Lastly, assume that only Bg → B j is marked. We may then assume as induction
hypothesis that ∅ `h

L
∧

i≤n ψi ∧
∧

i≤m θi → (Bg → B j). However, since Bg is
not marked, Lem. ?? entails that `h

L Bg. The (δ)-rule is admissible, according to
Thm. ??.2, in any axiomatic extension of either E or Π′E, and so `h

L
∧

i≤n ψi ∧∧
i≤m θi → B j.

Thus ∅ `h
L
∧

i≤n ψi ∧
∧

i≤m θi → B j for all marked B j’s in the relevant deduction
B1, . . . , Bk of B from Ψ ∪Θ. However, since B is, according to (6) of Def. ??, marked,
it follows that also ∅ `h

L
∧

i≤n ψi ∧
∧

i≤m θi → B which therefore ends the first half of
the proof.

Assume now that ∅ `h
L
∧

i≤n ψi ∧
∧

i≤m θi → B, where the θ’s are logical axiom of
L and the ψ’s are not. Let H1, . . . ,H j be a Hilbert derivation of

∧
i≤n ψi∧

∧
i≤m θi → B.

The following list, where square brackets are added for readability, is a Hilbert proof
of B from any set Ψ ∪ Θ where the ψ’s are all members of Ψ and the θ’s are all
members of Θ:

[ψ1], . . . , [ψn], [ψ1 ∧ ψ2], [(ψ1 ∧ ψ2) ∧ ψ3], . . . , [
∧

i≤n ψi],
[θ1], . . . , [θm], [θ1 ∧ θ2], [(θ1 ∧ θ2) ∧ θ3], . . . , [

∧
i≤m θi],

[
∧

i≤n ψi ∧
∧

i≤m θi], [H1], . . . , [
∧

i≤n ψi ∧
∧

i≤m θi → B], [B]

Now all the ψ’s and all the θ’s and therefore any conjunction thereof can be #-marked
according to (1) and (4) of Def. ??. Thus

∧
i≤n ψi ∧

∧
i≤m θi is marked. But then re-

gardless of whether the Hi’s are marked, we get that B is marked according to (2) of
Def. ?? since it is got from H j and a marked formula using modus ponens. ut

Thus → of all of E,R, and Π′E expresses, in a sense, the relation of relevant
deducibility. Let’s look at how this plays out by looking at disjunctive syllogism for
`r

L. Is it the case for any of our logics that {A,∼A∨B} `r
L B? Now we know that (γ) is
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not derivable in E or R, but it is in Π′E as the following easy Hilbert derivation makes
plain:

(1) A assumption
(2) ∼A ∨ B assumption
(3) A ∧ (∼A ∨ B) 1, 2, (β)
(4) B→ B logical axiom of Π′E
(5) (A ∧ (∼A ∨ B)) ∧ (B→ B) 3, 4, (β)
(6) (A ∧ (∼A ∨ B)) ∧ (B→ B)→ B logical axiom of Π′E
(7) B 5, 6, (α)

These lines can’t, however, be marked by # according to the rules of a relevant deriva-
tion; lines 1–3 will all be marked, but line 4 can’t be. The same, therefore, goes for
line 5. Line 6 can’t be marked, and so line 7 will not be either. However, if one only
adds B → B as an additional assumption, then line 4 will be marked, and therefore
line 5. Line 6 is still unmarked, but since modus ponens carries # forth provided at
least one of the premises are marked, it follows that 7 will be marked as well. Thus
despite {A,∼A∨B} 0r

Π′E
B, we do have that {A,∼A∨B, B→ B} `r

Π′E
B. In a similar vein

we get that despite the fact that {A,∼A} 0r
Π′E

B, we do have that {A,∼A, B→ B} `r
Π′E

B.
Thus `r

L is a paraconsistent consequence relation not only for E and R, but also for
Π′E. Is that so for all logics? Definitely not. Let RX be R strengthened by the axiom
form of disjunctive syllogism, A ∧ (∼A ∨ B)→ B.21 The proof

(1) A assumption
(2) ∼A ∨ B assumption
(3) A ∧ (∼A ∨ B) 1, 2, (β)
(4) A ∧ (∼A ∨ B)→ B logical axiom of RX
(5) B 3, 4, (α)

is easily seen to be a relevant proof of B from premises A and ∼A ∨ B in the logic
RX. Thus {A,∼A ∨ B} `r

RX B. Inspecting the proof of the Entailment Theorem it is
easy to see that it holds for a wide class of logics: in fact any axiomatic extension of
the positive fragment of Π′E minus (Ax4), (Ax14), (Ax16), (K) and (4) will do.

Thus it also holds for RX and it even holds for classical logic. It is strange, then,
that Anderson and Belnap think of the Entailment Theorem—in fact they even state
the theorem only as the left to right part of what I did above—as a necessary and
sufficient criterion for a logic to be truly relevant.

That the use criterion of relevance precisified by the concept of relevant deducibil-
ity is blatantly circular was noted even as early as 1974 by Meyer who in his axiom-
atization of CR—R with Boolean negation—points out:

21?, p. 176 claims that R so strengthened yields classical logic. This is not so: the weakening axiom
A→ (B→ A) fails in the following model for RX:

T = {1, 3}
JAK = 1
JBK = 3

3

1

@@

2

^^

0

^^ @@

→ 0 1 2 3 ∼

0 3 3 3 3 3
1 0 1 2 3 2
2 0 0 1 3 1
3 0 0 0 3 0

Figure 4. Counter-model to weakening for RX
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Eventually, even the worthy old use criterion has to go.[. . . ] The point is
rather that the use criterion motivates whatever system one wants to motivate,
within very broad limits, depending on one’s antecedent understanding of
what constitutes a deduction; [. . . ]. (Another reason why the use criterion has
to go is its circularity; since the use in question is the use of modus ponens
for→, and since→ is the very connective which we are using the criterion to
explicate, our pre-understanding of → assumes an unwarranted importance.
Of course, the classicist might say (though none have been quite so nasty),
one can use A to get B ∨ B; plug A in as antecedent of the logical truth A →
B∨ B. The circularity of the refutation, alas, exposes the circularity of what it
refutes.) (?, pp. 56–57)

Now, finally someone had the guts to be that nasty. The definition of a relevant de-
duction makes it plain that the concept is secondary to that of the ordinary Hilbertian
and its notion of a logical axiom. Anderson and Belnap preferred proof-system was
a Fitch-style natural deduction calculus with an explicit premise-coding designed to
keep track of dependencies. The concept of deduction in such a system is not de-
pendent on the notion of a Hilbert proof, but Meyer finds this way to fare no better,
however:

These technical flaggings, whether or not we find pre-theoretic intuitions in
which to ground them securely, do have their point; we keep track of as-
sumptions in an E-valid deduction, in a way that causes these assumptions
relevantly to entail their conclusions as the logic E determines that they shall.
They have another point only if we can find some independent ground for
the specific maneuvers. [. . . ] Nor should it be overlooked that some of the
Anderson-Belnap “natural deduction” rules are evidently cooked to motivate
the corresponding E-thesis. (?, pp. 615–616)

This section has shown that Π′E has the relevant deduction theorem. However,
that concept was also shown to be both rather trivial, and to be parasitic on that
of Hilbert derivability and unable to supply a justification of which logical axioms to
include from the outset. The concept was intended to give the necessary and sufficient
condition needed in order to avoid the so-called paradoxes of implication. Since,
however, it also applies to classical logic, it evidently can not.

What it does point to, however, is the two different ways one can understand
premises. The relevant sense of premise is one where nothing may be tacitly as-
sumed; not even logical truths. The other sense is where logical truths may be sup-
pressed. Logical consequence with the latter notion of premise can be enthymemat-
ical expressed in the object language due to the enthymematical deduction theorem,
whereas the Entailment Theorem shows that the first is expressed by the relevant
conditional →. That Π′E has both the variable sharing property, the enthymematical
deduction theorem, as well as the the Entailment Theorem, shows that one can inter-
pret explosive claims such as “everything follows from a contradiction”, even when
“follows from” is interpreted as an object-language conditional, charitably without
committing the speaker to a fallacy of relevance. The charitable reading, then, is sim-
ply the enthymematical one, where the antecedent clause “in normal situations, where
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logic holds, . . . ” is assumed as tacitly implied. Sometimes, however, such assump-
tions should not be made, as when rebutting the claim by insistingly appending “that
is true in normal situations!, but...”. This latter notion of consequence, then, forces
one to make premises out of logical truths as well. This kind of logical pluralism is
further expanded upon in the sequel to this paper.

The charitable reading alluded to here did occur to Anderson and Belnap, but they
tossed it away as a confused idea of The Man. The last section sums up this paper by
way of looking closer at the infamous section of ? called The Dog. Before we get to
the summary, however, I will first take a quick look at a different notion of relevant
deducibility and the notion of substructurality as well as to look closer at the concept
of suppression and the attempt at using it to ground relevance.

5.1 Substructurality

Relevant logics are often characterized as substructural logics. This short section
gives a brief discussion of substructurality and how this relates to the notion of
premise use.

Notice first of all that both `h and `r satisfy the three Tarski conditions of a closure
relation, that is for �∈ {`h, `r},

Reflexivity: Θ � A if A ∈ Θ
Weakening: Θ ∪ ∆ � A if Θ � A

Cut: Θ ∪ ∆ � B if Θ � A and ∆ ∪ {A} � B.

The three other structural properties of contraction, commutativity and associativ-
ity hold trivially since both `h and `r relate sets of formulas to a single formula.22

A consequence relation is said to be substructural if at least one of these six struc-
tural properties fail. Since all hold for both `h and `r, neither of them classifies as
substructural.

Anderson and Belnap thought that the proper notion of entailment related a set
of formulas, the correct premise combination of which was extensional conjunction,
to a single formula. The consequence of this is that the notion of use appealed to by
them is a weak one in which it is sufficient that

some, but not necessarily all, of the premisses must be used in arriving at
B. This guarantees that the conjunction of the premisses is relevant to the
conclusion, which is what is required of a sensible account of entailment [. . . ].
(?, p. 278)

They did consider the stricter notion of use which requires all premises to be used,
but deem that

22Both reflexivity and weakening drop quite immediate from the definition of both `h and `r . That cut
holds is easily seen by the usual replacing proof: simply replace the assumption A in the proof of B from
{A} ∪ ∆ by the proof of A from Θ. This will evidently be a `h-proof of A from Θ ∪ ∆. That this also yields
a `r-proof is seen by noting that since A is #-marked if it is used in the `r-proof of B from {A} ∪ ∆ and it is
marked in the `r-proof of A from Θ, it follows that so replacing A allows every succeeding inference step
to be justified by the same #-rules as the rest of the `r-proof of B from {A} ∪ ∆.
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if in fact a proof fails to use all the apparatus in the hypothesis, the argument
is faulted on grounds of inelegance rather than logical incorrectness—and it
is only the latter problem which is of overriding importance for E. (?, p. 279).

This is, essentially, the reason why their relevant consequence relation retains all the
structural properties. However, there seems to be nothing essential within the relevant
ideology for insisting on extensional premise combination. Relevant logics are often
fitted with an intensional conjunction, the fusion-connective ◦, which then allows one
to have a notion of intensional premise combination also in the object language.23

The question, then, is whether the stricter notion of premise use can do the job of
being a necessary and sufficient property for relevance.

This stricter notion of consequence can, in the case of R, be got by modifying
the notion of a `r-proof slightly: use different tags for each non-logical premise and
demand that each tag be preserved through the derivation to the conclusion, with uses
of modus ponens carrying the tags of the premises forwards and adjunction restricted
to premises with the same tags. This notion of consequence for R is substructural
as weakening does not hold for it: {A} `r2 A holds, but {A, B} 0r2 A. ?, building on
work by Moh and Church, proved that T, E and R all have deduction theorems on
the form24

{A1, . . . , An} `
r2 B⇐⇒ ∅ `h A1 → (A2 → . . . (An → B)).

Now the pressing question here is not if such a deduction theorem also holds for
Π′E—a question that I will not address—but rather whether `r2 hones in on a notion
of premise use which fares better than the extensional one at play in `r. The answer
is ‘no’: to see this, note that the notion of premise use also here is dependent on a
prior notion of logically available resources: by simply adding the weakening axiom
A → (B → A) to R one gets classical logic. Here, again, it is possible to use both A
and B to get, now in the `r2 sense, A from the premise set {A, B}, as

A#1 , B#2 , A→ (B→ A), (B→ A)#1 , A#1,#2

is a `r2 -proof of A from {A, B} where both premises are used.
The way `r and `r2 are defined make them conceptually dependent on `h, some-

thing which might seem rather unsatisfactory. As already mentioned, Anderson and
Belnap made use of a natural deduction calculus with indices to keep track of depen-
dencies. If one is after a substructural notion of consequence, one might rather prefer
a substructural proof theory, like the natural deduction calculus presented in ?. Nei-
ther calculi require the prior notion of a Hilbert proof to make sense of consequence
relations akin to `r or `r2 . Maybe it is the link to `h which so decidedly destroys the
usefulness of the use criterion in the way that I have presented it. We have, how-
ever, seen that Meyer doubted the independence of the use criterion also in the case
of Anderson and Belnap’s favorite proof system. According to Restall, “For relevant
logics the conditional A → B encodes the fact that we used A in a deduction of B. If

23The minimal conditions on ◦ are the residuation rules: A ◦ B → C 
 A → (B → C) and A → (B →
C) 
 A ◦ B→ C. A ◦ B is not definable in E, but is definable as ∼(A→ ∼B) in strong logics like R.

24In the case of T and E, further restrictions on the use of modus ponens are required.
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we allow ourselves weakening, then we lose all sight of what was actually used in a
deduction” (?, p. 26). Note, then, that also in the case of Restall’s proof system for
logics with weakening it is possible to use both A and B, in the intensional sense of
‘and’, to get A as the following proof using his system makes clear:

A ` A B ` B (◦I)
A; B ` A ◦ B

A ` A (weakening)
A; B ` A

(◦E)
A; B ` A

This section has shown that Anderson and Belnap’s way of precisifying the in-
tuitive notion of premise use, both its extensional and intensional variants, is unsuc-
cessful in that it does not do the job Anderson and Belnap intended for it. This is not
to say that it is impossible to make the notion of premise use precise and thus put it
to good relevant use. At this point, however, it seems fair to claim that the burden of
proof is on the adherent of the use criterion. Since this paper is dedicated in honor of
Meyer, let me therefore end this section by yet another quote from his “A Farewell to
Entailment”:

The pre-theoretical questions that one has about relevance—what sort of as-
sociation is required for A to be relevant to B?—are also systematic questions.
Answer them differently, and one will have different notions of what is rele-
vant to what. While it is a great merit of Anderson and Belnap to have raised
the question, the elusive notion will remain elusive so long as the human
mind is capable of entertaining alternative views as to what entails what. [. . . ]
Relevance, as a component in Relevant motivation, has, over the years, been
producing steadily diminishing philosophical and technical returns. While an
occasional appeal thereto may still be useful in fixing the logical intuitions,
nothing hangs on it, any more. To relevance, farewell! (?, pp. 618–619)

6 Anti-suppression to the rescue?

Anderson and Belnap proposed the variable sharing property as a necessary criterion
for avoiding the paradoxes, whereas the Entailment Theorem was set forth as both
necessary and sufficient. I have shown that the latter property also applies to classical
logic. Since classical logic does not have the variable sharing property, however, the
latter property can’t be sufficient if the first is to be necessary. Giving up the variable
sharing property seems out of the question, and so we are left with at best two neces-
sary properties, but no suggestions for how to curtail the extension of ‘relevant logic’
beyond this.

There is another tradition within relevant logics going back to ? which did not fo-
cused Anderson and Belnap’s Entailment Theorem to the same extent. That tradition
had a bent towards weaker logics than Anderson and Belnap’s E and rather focused on
the property of variable sharing as the more important property. They claim, however,
that the implicational paradoxes are not simply due to violation of this property, but
rather due to the more fundamental feature of suppression. To quote Priest’s approval
of their dictum: “the Routleys argue cogently that the failure of relevance, in the tech-
nical sense, is but a symptom of suppression, which is the fundamental malaise.” (?,
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p. 90). Maybe freedom from suppression, then, can be viewed as a sufficient property.
The Anti-Suppression Principle is in ? formulated as follows

for every statement p there is some statement q such that the consequences
of q are a proper subset of the joint consequences of p and q. There is no
privileged class of statements which are generally suppressible. (?, p. 146)

Now ‘consequences of’ here can’t mean Hilbert-derivability since logical theorems
are suppressible for this notion of consequence . Let’s therefore interpret it as a kind
of relevant derivability. One suggestion, then, is to interpret the principle as follows:

Definition 11 A logic L is Anti-Suppressive just in case for every formula A, there
exist formulas B and C such that `h

L A ∧ B→ C, but 0hL B→ C.

Alas, as the next two results show, anti-suppresiveness turns out to be properly
weaker than variable sharing, and so, contra the claims of ?, cannot be the more
fundamental phenomenon.25

Definition 12 A logic L without truth-constants has the quasi variable sharing prop-
erty (QVSP) just in case for every formula A and B, `L A → B only if either A and
B share a propositional parameter, or both `L ∼A and `L B.

Theorem 10 If a reasonable logic has the quasi variable sharing property, then it is
anti-suppressive, where a logic is reasonable just in case (a) `h

L A ∧ B → A for all
formulas A and B, and (b) 0hL l for all literals l.

Proof Assume that L has (QVSP). Let A be any formula. Let B be a propositional
variable not in A, and let C be identical to A. Then `L A ∧ B→ C. However, since B
and C do not share any propositional variables, and furthermore, 0L ∼B, it follows
from the fact that L has (QVSP) that 0L B→ C.

Corollary 1 The Anti-Suppressive principle is properly weaker than the variable
sharing property.

Proof The above theorem shows that Anti-Suppression is at least weaker than the
variable sharing property. That it is properly weaker follows simply by noting that it is
possible to satisfy the quasi variable sharing property, and therefore Anti-Suppression,
without satisfying the variable sharing property. One such logic is RM, R with the
mingle axiom, A→ (A→ A), added (?, p. 417).

«Parenthetical remark. Priest gives a slightly different account of suppression.
Priest’s claim is that strict implication is not the correct conditional

since it allows the suppression of necessarily true antecedents and of neces-
sarily false consequents. That is, the following are valid:

{Lα, α ∧ β→ γ} � β→ γ (1)
{L∼γ, α→ β ∨ γ} � α→ β (2)

(?, p. 90)

25There is much more that ought to be said about suppression and how it relates to intuitions behind
relevant logics. This will, however, have to wait for another occasion.
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‘L’ is here Priest’s defined necessity operator. Let’s translate Priests ‘L’ into ‘2’ and
replace � with `h and call a logic 2-suppression free just in case it validates neither
of (1) or (2) on this translation. Even though Priest’s principle pertains to reasoning
from premises which neither variable sharing nor the above anti-suppression principle
does, it too is entailed by quasi variable sharing. The proof here is in fact quite similar
to the one above, and so I leave it to the reader. End parenthetical.»

Relevant logics seem therefore to be an ill-defined family of logics. One way
to solve this is to liberalize the concept to simply include any logic which has the
variable sharing property for some binary connective or other. This seems to be the
way that for instance Priest understands the term: “A propositional logic is relevant
iff whenever A→ B is logically valid, then A and B have a propositional parameter in
common.” (?, § 9.7.8).26 This will then rule out classical logic as relevant, yet allow
as relevant very uninteresting logics such as classical logic with only A → A added
as a logic axiom, but with no rules governing →. One could try to hone in on the
more common usage as for instance “any extension of the first degree fragment of
E having the variable sharing property”, but that will rule out logics which do not
have the extensional connectives such as the logics argued to be relevant in ?. To also
accommodate the tradition of weaker relevant logics with more rules than merely
(α) and (β), it seems therefore that the concept of relevant logic is best taken to be
coextensional with that of having the variable sharing property.

7 Summary: the revenge of The Man

I have in this paper shown that the two properties held forth by the Anderson-Belnap
tradition of relevant logic to guard against the so-called implicational paradoxes do
not force paraconsistency upon us. I showed this by showing forth Π′E, a logic which
has both the variable sharing property and the Entailment Theorem—the two prop-
erties deemed by Anderson and Belnap to be, respectively, necessary and necessary
and sufficient for avoiding the paradoxes. Π′E, despite having both these properties,
as well as having the same modal features and enthymematical deduction theorem as
Anderson and Belnap’s favorite logic E, has disjunctive syllogism as a derivable rule
for its Hilbert consequence relation. Even though the variable sharing property—as
well as the weaker concept of suppression-freedom—is a substantive property, and
does seem to do the curtailing job needed to block the implicational paradoxes with
regards to the→-formulas, it is not sufficient to block the logical truth of the material
paradoxes, nor the strict paradoxes; all of

(PM1) (A ⊃ B) ∨ (B ⊃ A) (PM2) ∼A ⊃ (A ⊃ B) (PM3) A ⊃ (B ⊃ A)
(PS1) A ∧ ∼A J B (PS2) A J B ∨ ∼B

where the strict conditional is defined as usual, are in fact logically true in Π′E. Neither
⊃, J, nor the enthymematically suppressed conditional expresses the relevant conse-
quence relation, however, and it was only for this consequence relation that relevant

26This is also how ?, p. 4 defines relevant logic.
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restrictions were ever intended to apply. This holds despite the result shown in this
paper that the Entailment Theorem can’t be regarded as a necessary and sufficient
condition for avoiding the paradoxes since it holds for pure classical logic.

Π′E does not extend E and its modal features do not flow in a natural way from the
properties of the conditional in the same way as is the case with E. This ad hoc feature
might be reason to regarded Π′E as a poor replacement for E. A natural explosive logic
which does extends E—Æ—as well as a stronger sibling, M, which extends R—is
presented in the sequel to this paper. The point of this one being first and foremost to
bring the point home that considerations of relevance do no entail paraconsistency as
commonly thought. This now being established, it is worth, then, to look a bit closer
at the highly rhetorical—and plainly false as it turns out—claims made by Anderson
and Belnap concerning disjunctive syllogism.

Anderson and Belnap picked up a story told by Sextus Empiricus in which one is
told about a dog tracking an animal when coming to a fork in the road.

after smelling at the two roads by which the quarry did not pass, he rushes off

at once by the third without stopping to smell. For, says the old writer, The
Dog implicitly reasons thus: “The creature went either by this road, or by that,
or by the other: but it did not go by this road or by that: therefore it went by
the other.” (?, p. 296)

Now Anderson and Belnap claim that the or in this tale is intensional. If one de-
fines the fission connective + as simply ∼A → B, then surely disjunctive syllogism
will be valid, since A,∼A + B `h B is simply modus ponens for → together with a
little negation-fiddling. Thus The Dog makes no inferential mistake in using fission-
disjunctive syllogism in this tale since it amount simply to modus ponens for→. What
they didn’t accept, however, was that disjunctive syllogism should hold in conditional
form with extensional conjunction and disjunction. It is in this context that they claim
that in using disjunctive syllogism one is committing an inferential blunder on either
of the two interpretations which assigns to the inferer the inference expressed by
A ∧ (∼A ∨ B)→ B or that expressed by (A ∧ (∼A ∨ B)) ∧ Axioms→ B:

we do hold that the inference from A and A ∨ B to B is in error: it is a simple
inferential mistake, such as only a dog would make (see §25.1, “The Dog”).
Such an inference commits nothing less than a fallacy of relevance. (?, p. 165)

They back this claim, though, by pointing out that A,∼A ∨ B 0rE B. Even when
given the charitable reading that what the inferer—derogatorily called The Man by
Anderson and Belnap—intended was that A and ∼A ∨ B, together with some con-
junction of axioms, entail B, Anderson and Belnap retort that this is also an inferential
blunder since 0hE (A∧∼(A∨B))∧Axioms→ B. It is hard, then, not to simply view all of
Anderson and Belnap’ brawling claims of fallacy of relevance regarding disjunctive
syllogism as a mere petitio. Provided that their favorite logic gives a correct account
of entailment, then disjunctive syllogism is a hotbed for fallacies. But then again, any
rule is in any logic in which it is not valid. I have shown, however, that Anderson and
Belnap’s two criteria for relevance—variable sharing and relevant deduction—do not
in any way show that the inference licensed by disjunctive syllogism commits one
to a fallacy of relevance. They are correct that if the claim was that expressed by the
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sentence A∧ (∼A∨ B)→ B, then that claim can’t be logically true if variable sharing
is to be upheld. This is simply because the logical truth of A ∧ (∼A ∨ B) → B suf-
fices for the logical truth of A ∧ ∼A → B which clearly violates the variable sharing
property. So if what “The Man” intended was that B follows from A and ∼A ∨ B in
the pure `r-sense, then one might more plausibly charge him of committing a fallacy
of relevance. Relevant logics have, however, two notions of therefore—the Hilbertian
consequence relation and the relevant one. Because of the deduction theorems—the
Entailment theorem with regards to `r and the enthymematical deduction theorem in
the case of `h—E, R as well as Π′E can express these consequences within the object
language. In the case of Π′E, A ∧ (∼A ∨ B) → B does express the, in general false,
claim that B follows from, in the `r sense of follows from, A and ∼A ∨ B, whereas
both (A∧(∼A∨B))∧(B→ B)→ B and A∧(∼A∨B) ⊃ B express that B so follows, in
the `h sense of follows, but fall short of expressing that B follows from A and ∼A∨ B
in the stronger `r sense. One may still claim that it is a fallacy of relevance to infer B
from only A and ∼A ∨ B, in the pure `r sense of inferring. However, asserting either
A∧ (∼A∨B) ⊃ B or (A∧ (∼A∨B))∧ (B→ B)→ B, and therefore that B does follow
from A and ∼A ∨ B in either the `h sense of “follows from” or in the suppressed `r

sense, does not, as I’ve meticulously shown in this paper, commit one to a fallacy by
any standard put forward by Anderson and Belnap, nor by the suppression-tradition
of the Routleys. Thus no inferential blunder need be involved in inferring B from A
and ∼A ∨ B.

That this has gone more or less unnoticed by for so long should be cause enough
rethink the value of the polemical tone initiated by Anderson and Belnap, which has,
in my view, hindered their own research project and reception thereof considerably.
To use the John Wisdom quote which Anderson and Belnap make use of themselves:
“It’s not the stuff, it’s the style that stupefies.” (?, p. 261).

And so, by rejecting error,
Dog finds the truth.

The Bestiarist27
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