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SUMMARY

GAS6 signaling through AXL receptor contributes to the
progression of nonalcoholic steatohepatitis (NASH). Soluble

AXL significantly increases both in NASH patients and
mouse models. Experimental AXL inhibition by bemcentinib
diminishes inflammation and fibrosis, supporting its thera-
peutic use in NASH.

BACKGROUND AND AIMS: GAS6 signaling, through the TAM
receptor tyrosine kinases AXL and MERTK, participates in
chronic liver pathologies. Here, we addressed GAS6/TAM
involvement in Non-Alcoholic SteatoHepatitis (NASH)
development.

METHODS: GAS6/TAM signaling was analyzed in cultured
primary hepatocytes, hepatic stellate cells (HSC) and Kupffer
cells (KCs). AxI”", Mertk”” and wild-type C57BL/6 mice were
fed with Chow, High Fat Choline-Deficient Methionine-
Restricted (HFD) or methionine-choline-deficient (MCD) diet.
HSC activation, liver inflammation and cytokine/chemokine

production were measured by qPCR, mRNA Array analysis,
western blotting and ELISA. GAS6, soluble AXL (sAXL) and
MERTK (sMERTK) levels were analyzed in control individuals,
steatotic and NASH patients.

RESULTS: In primary mouse cultures, GAS6 or MERTK acti-
vation protected primary hepatocytes against lipid toxicity
via AKT/STAT-3 signaling, while bemcentinib (small molecule
AXL inhibitor BGB324) blocked AXL-induced fibrogenesis in
primary HSCs and cytokine production in LPS-treated KCs.
Accordingly; bemcentinib diminished liver inflammation and
fibrosis in MCD- and HFD-fed mice. Upregulation of AXL and
ADAM10/ADAM17 metalloproteinases increased sAXL in
HFD-fed mice. Transcriptome profiling revealed major
reduction in fibrotic- and inflammatory-related genes in HFD-
fed mice after bemcentinib administration. HFD-fed Mertk”"
mice exhibited enhanced NASH, while AxI”~ mice were
partially protected. In human serum, sAXL levels augmented
even at initial stages, whereas GAS6 and sMERTK increased
only in cirrhotic NASH patients. In agreement, sAXL increased
in HFD-fed mice before fibrosis establishment, while bem-
centinib prevented liver fibrosis/inflammation in early NASH.
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CONCLUSION: AXL signaling, increased in NASH patients,
promotes fibrosis in HSCs and inflammation in KCs, while GAS6
protects cultured hepatocytes against lipotoxicity via MERTK.
Bemcentinib, by blocking AXL signaling and increasing GAS6
levels, reduces experimental NASH, revealing AXL as an effec-
tive therapeutic target for clinical practice. (Cell Mol Gastro-
enterol  Hepatol 2019;m:m-m;  https://doi.org/10.1016/
jjemgh.2019.10.010)

Keywords: Liver Fibrosis; Hepatic Stellate Cells; Bemcentinib
(BGB324); GAS6/TAM Signaling; Liver Inflammation.

atients with nonalcoholic fatty liver disease
(NAFLD), despite being mostly asymptomatic, suffer
increased cardiovascular and mortality risk. Among them,
individuals with NASH, an increasing liver pathology in
developed countries, are predisposed to cirrhosis and liver-
related complications." In NASH patients, after cardio-
vascular disease and liver cancer, cirrhosis is the third
leading cause of death and it is expected to be the most
common indication for liver transplantation. At present,
lifestyle modification with dietary restrictions is the stan-
dard of treatment for patients with NASH.* Recently, ther-
apies based on the activation of specific nuclear factors such
as LXR (obeticholic acid) or PPAR (elafibranor), or directed
against chemokine receptors (cenicriviroc) have obtained
positive results in clinical trials.””” However, there are no
approved drug treatments for NAFLD and NASH. Several
other emerging therapies aimed to target NASH in a pre-
cirrhotic stage, when liver fibrosis and hepatic inflammation
are still recoverable, are being tested.” Liver fibrosis, char-
acterized by accumulation of extracellular matrix (ECM)
components from activated hepatic stellate cells (HSCs), is
associated to chronic liver injury and disease severity.”'° In
NASH, fibrosis is accompanied by liver inflammation from
both resident macrophages (Kupffer cells [KCs]) and infil-
trating cells, remodeling of the microenvironment that
promote liver degeneration and tumor development."**?
Growth arrest-specific gene 6 (GAS6) activates receptor
tyrosine kinases AXL, MERTK, and Tyro3, known as TAM
receptors, regulates innate immune response and it is
implicated in cancer progression.'”'® GAS6 shares struc-
tural and sequence similarity with the anticoagulant protein
S that also binds TAM receptors, however their biological
roles differ.'® In particular, GAS6 has no major role in
coagulation and protein S does not activate AXL under
physiological conditions. In liver pathologies, GAS6 is hep-
atoprotective in ischemia/reperfusion-induced damage,’
and participates in wound healing responses.'®*® Hepatic
expression of GAS6/AXL is mainly detected in macrophages,
including KCs, and in activated HSCs.”’ GAS6/AXL partici-
pates in HSC activation and in damage by CCl, exposure in
mice.”’ In patients, GAS6 and soluble AXL (SAXL) serum
levels increase during chronic liver disease progression in
alcoholic liver disease, and in hepatitis C virus patients.
Concurrently, messenger RNA (mRNA) expression of
MERTK, the other main receptor of GAS6 in the liver, has
been associated with liver fibrosis and NASH.?**® This

Cellular and Molecular Gastroenterology and Hepatology Vol. m, No. m Q1

scenario suggests a role of GAS6 signaling in NASH devel-
opment.”* Our current results reveal that sAXL is increased
in all NAFLD stages in human samples, whereas GAS6 and
soluble MERTK (sMERTK) are only enhanced in cirrhotic
NASH patients. Oral administration of bemcentinib, the first
selective small molecule inhibitor of AXL (BGB324) in phase
1l clinical trials for cancer,>® blocks HSC transdifferention
and macrophage activation, greatly diminishing liver
fibrosis and hepatic inflammation in mice fed with a NASH
diet. Our results identify AXL as an interesting serum
biomarker of in human NAFLD development and the GAS6/
AXL axis as a therapeutically targetable pathway to prevent
NASH progression. In summary, our data support specific
AXL inhibition as strategy for NASH treatment.

Results
GASG6 Protects Hepatocytes Against Lipotoxicity
Via MERTK Activation, While AXL Promotes Liver

Fibrosis in HSC and Inflammation in KCs

To study a potential role of GAS6 and their main re-
ceptors in the liver AXL and MERTK, we analyzed their
signaling in different liver cell populations using recombi-
nant mouse GAS6 and specific activating antibodies® for
AXL and MERTK. First, we tested the specificity of each
activator using knockout (KO)- and wild-type (WT)-derived
primary fibroblasts, cells that express endogenous levels of
both TAM receptors (Figure 14). «AXL induced AKT phos-
phorylation only in WT and Mertk™~ cells, while «aMERTK
induced p-AKT only in WT and AxI”~ but not in Mertk”~
cells, confirming their activation capabilities and specificity.

The hepatoprotective role of GAS6 has been described
during hypoxia of primary hepatocytes,'” so we tested the
potential participation of GAS6 signaling in hepatocellular
lipotoxicity, which contributes to the liver damage detected
in NASH. In primary mouse hepatocytes (PMHs) treated
with palmitic acid (PA), GAS6 diminished palmitic-induced
PMH cell death, a protection that was similarly accom-
plished via MERTK activation (Figure 1B). In contrast, AXL
activation did not alter the PA-induced lipotoxicity in PMHs.
As previously reported, PA toxicity in PMHs was mediated
by AKT and STAT3 de-phosphorylation.”’ Interestingly,

Abbreviations used in this paper: ADAM10, a disintegrin and metal-
loproteinase 10; ADAM17, a disintegrin and metalloproteinase 17;
cDNA, complementary DNA; ECM, extracellular matrix; ELISA,
enzyme-linked immunosorbent assay; GAS6, Growth arrest-specific
gene 6; H&E, hematoxylin and eosin; HCC, hepatocellular carcinoma;
HFD, high-fat choline-deficient methionine-restricted diet; HSC, he-
patic stellate cell; IL, interleukin; KC, Kupffer cell; KO, knockout; LPS,
lipopolysaccharide; MCD, methionine-choline-deficient diet; MCP-1,
monocyte chemoattractant protein-1; MMP9, matrix metal-
loproteinase-9; MPO, myeloperoxidase; mRNA, messenger RNA;
NAFLD, nonalcoholic fatty liver disease; NAS, NAFLD activity score;
NASH, nonalcoholic steatohepatitis; PA, palmitic acid; PBS,
phosphate-buffered saline; PMH, primary mouse hepatocyte; sAXL,
soluble AXL; sMERTK, soluble MERTK; TAM, Tyro3-AxI-Mertk; TNF,
tumor necrosis factor; WT, wild-type.

© 2019 The Authors. Published by Elsevier Inc. on behalf of the AGA
Institute. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
2352-345X
https://doi.org/10.1016/j.jcmgh.2019.10.010

FLA 5.6.0 DTD m JCMGHS539 nroof m 20 November 2019 m 2:44 pm B ce OB

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234


https://doi.org/10.1016/j.jcmgh.2019.10.010
https://doi.org/10.1016/j.jcmgh.2019.10.010
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jcmgh.2019.10.010

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

2019

A Mertk’-

Functional Role of GAS6/TAM in NASH Progression 3

Axi-  WT B

Figure 1.GAS6 protects -+ -+ -

+ aMERTK

PMHSs against cell death p-AKT |__ - -—

Primary mouse hepatocytes

induced by palmitic acid

via MERTK and bemcen- AKT | — -

—~

1 [ Vehicle
507 [1Gas6

tinib blocks LPS-induced p-actin |

* EHoAXL

inflammation in KCs. (A) Verti

AxF-  WT

Il cMER

Activating antibodies Y 1

+ oaAXL

against AXL (a-AXL) or
MERTK (a-MERTK) were

p-AKT )'-.

% Cell death

used in primary fibroblast

AKT [ e e s s s |

from WT, AXL, and MERTK
KO mice. AXL and MERTK

B-actin ‘

*
30
20 *
*
0 T i T T

‘ PA0.75mM  PA10mM PA1.25mM

activators (10 nM) were

exposed for 1 hour and p- C

AKT analyzed in cell ex-

tracts by Western blot. (B)

Cell death after 18 hours in

PMHs exposed to palmitic -

PA0.75 mM

pAXL | ==

acid (0.75/1.0/1.25 mM)

pretreated with recombi- P-AKT [ F5 - —

B-actin

nant GAS6 or activating
antibodies against AXL or
MERTK. Results  are

AKT

expressed as mean + SD.
*P < .05 vs palmitic acid-

p-STAT3

pMERTK . s ——

treated cells (n = 3). (C)
p-AKT and p-STAT3 levels

B-actin

B-actin

in PMHs after exposure to

GAS6, AXL, or MERTK

activators in the presence E

or absence of palmitic acid

(0.75 mM). (D) Changes in 80—
p-AXL and p-MERTK

levels after KC exposure to

GAS6, AXL, or MERTK 2 504
activators. (E, F) mRNA 3 e
expression levels of IL-18 g
and IL-6 in KCs exposed to & 307 & v
LPS (50 ng/mL, 2 hours),
activating antibodies, or 10+
bemcentinib (0.25 uM). *P 0L+

IL1b

Primary mouse KCs

mRNA levels

600 B

N

o

o
1

N
o
o
|
o
[ )

T T T
oAXL oMERTK BGB324

U T T T T
CTRL - aAXL oMERTK BGB324

Ry T
< .05 vs control cells (n = CTRL = _ -

6-8). LPS

GAS6 or MERTK not only induced AKT and STAT3 activa-
tion, but also were able to rescue p-AKT and p-STAT3
downregulation observed after palmitic acid exposure
(Figure 1C). These results point to GAS6 via the MERTK/
AKT/STAT3 axis as a mechanism of hepatoprotection
against lipotoxicity with potential relevance in NASH.

AXL deficiency has been reported to increase hepatic
inflammation after lipopolysaccharide (LPS) or acute carbon
tetrachloride (CCl,) administration,?® in contrast to previ-
ous data in chronic liver damage.?" To verify this point, we
analyzed the effect of AXL or MERTK activation in primary
KCs after LPS challenge. First, we verified that GAS6 induced
AXL and MERTK activation in primary mouse KCs, while
aAXL and «MERTK only induced AXL and MERTK phos-
phorylation, respectively (Figure 1D). Of note, LPS upregu-
lation of interleukin (IL)-18 and IL-6 mRNA in KCs was
potentiated exclusively by AXL (Figure 1E, F) but not by

FLA 5.6.0 DTD m JCMGHS539 proof m

LPS

MERTK activation. In addition, AXL inhibition reduced IL-18
and IL-6 gene transcription after LPS exposure. Therefore,
AXL plays a proinflammatory action in LPS-primed KCs that
could be blocked by bemcentinib administration.

Different studies have shown that GAS6 has a profibro-
genic action in HSC. To better differentiate the specific roles
of AXL and MERTK, mouse HSCs were exposed to mouse
activating antibodies for these receptors and fibrosis-related
genes were analyzed. Increased «-SMA and COL1A1 mRNA
levels were detected after AXL activation (Figure 24), a
feature that was not observed via MERTK. To validate these
results in activated human HSCs, LX2 cells were tested.
While recombinant human GAS6 upregulated a-SMA and
COL1A1 gene expression in LX2 cells (Figure 2B), GAS6
profibrogenic gene induction was completely abolished by
AXL inhibition with bemcentinib. These results were in
agreement with previous observations showing that GAS6
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upregulation of fibrosis-related genes through AXL/AKT not only GAS6-dependent a«-SMA and COL1A1 expression in
activation could be abolished by AXL silencing or pharma- LX2 cells, but also monocyte chemoattractant protein-1
cological AXL inhibition.”’ Bemcentinib completely blocked (MCP-1) release to the medium (Figure 2C). Remarkably,
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Figure 2. GAS6 and AXL activation induce profibrotic signaling in HSCs, being blocked by bemcentinib administration.
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a-SMA and COL1A1 mRNA levels in primary HSCs incubated with activating antibodies (A) against AXL or MERTK (10 nM) for 0932;

24 hours (n = 8) and (B) after GAS6 and/or bemcentinib incubation (n = 3-12). (C) MCP-1 release measured by ELISA in
cultured medium after 16 hours in GAS6-treated (1 ug/mL) LX2 cells preincubated with BGB324 (0.25 uM) or vehicle (n =
3-10). (D) p-AKT levels measured by ELISA in LX2 cell extracts after GAS6 addition (1 ug/mL, 15 minutes) and BGB324
preincubation (0-1.0 uM) or vehicle (n = 3-8). (E) Representative Western blot of p-AKT and AKT in LX2 cells treated with AXL
activating antibody («-AXL, 10 nM, 15 minutes) and bemcentinib (0.25 uM). (F) mRNA expression level of «-SMA and COL1A1
in LX2 cells treated with AXL activating antibody («-AXL, 10 nM, 24 hours) and bemcentinib (0.25 uM). *P < .05 vs control cells,
#P < .05 vs a-AXL- or GAS6-treated cells (n = 6). (G) Representative images of cell migration experiments in LX2 cells treated
with «-AXL (10 nM, 24 hours) or bemcentinib (0.25 uM). The percentage of migrated cells was quantified using ImageJ
software, establishing as 100% the rate of scratch replenishment after 24 hours in untreated LX2 cells. *P < .05 vs control
cells; #P < .05 vs GAS6- or a-AXL-treated cells.
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this effect was achieved at nanomolar concentration of
bemcentinib, which does not affect MERTK phosphoryla-
tion,”” being sufficient to eliminate GAS6-dependent AKT
activation in LX2 cells (Figure 2D).

To verify that AXL activation is sufficient to induce
fibrosis in HSCs, a human activating antibody30 was used in
LX2 cells. «AXL induction of AKT phosphorylation
(Figure 2E) and the increase expression of «-SMA and
COL1A1 (Figure 2F) levels were suppressed by bemcentinib.
In contrast, gene expression induced by transforming
growth factor 8 was not blocked by AXL inhibition (data not
shown) in agreement with a specific effect on AXL-
dependent signaling. Moreover, AXL activation potentiated
HSC migration (325 + 36%) in scratch assays in LX2 cells,
while bemcentinib reduced the motility of activated HSCs
(92 + 13%), particularly after treatment with «AXL (169 +
10%) (Figure 2G). These results reveal the profibrogenic
role of AXL in HSC signaling, promoting extracellular matrix
modification, macrophage recruitment, and HSC migration.
Therefore, the blockage of these pathological AXL-
dependent mechanisms by bemcentinib could be an inter-
esting strategy for NASH treatment.

Liver Fibrosis and Inflammation Induced by
Methionine- and Choline-Deficient Diet Is
Reduced by AXL Inhibition

We analyzed the role of AXL in an experimental murine
NASH model. Mice were fed with methionine- and choline-
deficient diet (MCD)** during 6 weeks and daily gavaged
with vehicle or bemcentinib (BGB324) for the last 2 weeks
before sacrifice. Hematoxylin and eosin (H&E) staining of
liver samples showed macrovesicular fat in MCD-fed mice
and collagen accumulation as visualized with Sirius Red dye
(Figure 3A). Fibrosis quantification showed that
bemcentinib-treated mice displayed reduced fiber formation
after MCD feeding. Similarly, collagen deposition was
reduced by bemcentinib administration as measured by
hydroxyproline levels (Figure 3B). Transaminase levels
(alanine aminotransferase) were similarly increased in all
MCD-treated mice (MCD: 204 + 56 U/L; MCD+BGB324:
212+68 U/L) compared with the control mice (42 + 6 U/L).
In line with fibrosis reduction, «-SMA mRNA levels were
decreased in MCD-fed mice receiving bemcentinib
(Figure 3C). In addition, diminished expression of inflam-
matory genes, such as tumor necrosis factor (TNF) or MCP-
1, was detected after AXL inhibition in MCD-fed mice, while
changes in macrophage population or neutrophil infiltration
were not significant (Figure 3C). Despite the positive results
observed after AXL inhibition, the progressive animal
weakening and body weight loss associated to MCD feeding,
without increase in the liver-to-body weight ratio
(Figure 3D, E), led us to look for a less harmful diet with
better correlation with human NASH.

HFD-Induced Liver Inflammation and Fibrosis Is
Decreased by AXL Inhibition

To verify bemcentinib efficacy, we tested a second diet
that allowed mice feeding for longer periods of time

Functional Role of GAS6/TAM in NASH Progression 5

(Figure 34),°*°% producing robust liver fibrosis in animals
with apparent good condition. Mice under a high-fat (60%)
choline-deficient methionine-restricted (0.1%) diet (HFD)
increased the liver-to-body weight ratio (Figure 4A4),
exhibiting extensive liver fibrosis and fatty liver after 2
months. High triglyceride levels (Figure 4B) and liver
damage (Figure 4C) were also observed. Bemcentinib
administration significantly reduced fibrosis development in
the liver as denoted after quantification of Sirius Red
staining (Figure 4D) and collagen deposition by hydroxy-
proline measurement (Figure 4E). Besides the improvement
in the fibrosis exhibited by HFD-fed mice treated with
bemcentinib, a reduction in the NAFLD activity score (NAS)
from marked to moderate activity was evident in
bemcentinib-treated animals (Figure 4F). While the stea-
tosis grade and hepatocyte ballooning were not altered, a
clear change in lobular inflammation, as denoted by the
reduced presence of inflammatory foci, was observed
(Figure 4G-I).

In agreement, mRNA levels of different profibrotic genes
such as «-SMA, COL1A1, or matrix metalloproteinase-9
(MMP9) were remarkably decreased by AXL inhibition
(Figure 5A4). a-SMA immunostaining reflected reduced o-
SMA protein expression in bemcentinib-treated mice
(Figure 5B). Not only was ECM status preserved in
bemcentinib-treated mice, but also a clear reduction in
proinflammatory genes was detected. After HFD feeding,
mRNA levels of the chemokine MCP-1 and its receptor CCR2
and of TNF were lowered by bemcentinib (Figure 54), as
well as neutrophil (myeloperoxidase [MPO]) and macro-
phage infiltration, as also denoted by F4/80 immunostain-
ing (Figure 50).

Regarding GAS6/TAM receptors signaling, GAS6, sAXL,
and sMERTK serum levels were all increased by the HFD
(Figure 6A4-C). Of note, bemcentinib administration
increased GAS6 serum levels without major changes in sAXL
or sMERTK levels.

To further characterize NASH-related genes and identify
AXL-dependent mechanisms, we analyzed an mRNA array
predesigned for fibrosis- and inflammation-related genes. As
observed (Figure 6D), AXL inhibition repressed the
expression of numerous NASH-induced mRNAs. Among the
genes more markedly affected by bemcentinib, we found not
only metalloproteinases, integrins, or collagens, but also
cytokines, chemokines, and enzymes that have been related
to NASH induction such as lysyl oxidase or urokinase, which
participates in extracellular matrix remodeling.

As several metalloproteinases that modify the hepatic
ECM are increased in NASH development, we analyzed the
mRNA levels of AXL and the a disintegrin and
metalloproteinase-10 (ADAM10) and ADAM17,***> poten-
tially responsible for sAXL serum increases. These shed-
dases detach ectodomains of numerous transmembrane
growth factors, cytokines, adhesion molecules or metal-
loproteinases. Among other targets, ADAM10 is needed for
Notch signaling, while ADAM17 controls TNF release. In
liver samples from NASH mice, AXL transcription was
upregulated after HFD-feeding. ADAM10 mRNA expression
was also increased, while ADAM17 was apparently
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Figure 3. AXL inhibition reduces liver fibrosis and inflammation in MCD-fed mice. (A) Representative images of liver
sections after H&E and Sirius Red staining; bar (200 um). Sirius Red quantifications using ImagedJ software in 6 random
sections from each animal are shown below the respective pictures. Student’s t test; *P < .05 vs control mice, #P < .05 vs
MCD-fed mice; n = 5-6 independent samples. (B) Collagen determination by hydroxyproline quantification in liver samples
(n = 4-5) and (C) mRNA expression level of MCP-1, TNF, a-SMA, MPO, F4/80, and §-actin in liver samples from treated mice.
Results are expressed as mean plus standard deviation (n = 4-5). *P < .05 vs control mice; #P < .05 vs MCD-fed mice;
Student’s t test. (D, E) Body and liver weight were measured after sacrifice in mice fed for 6 weeks with chow and MCD diet
that received vehicle or bemcentinib (BGB324) oral gavages for the last 2 weeks. *P < .05 vs control; n = 4-5. The results

shown are representative for 2 independent experiments.

unaffected (Figure 6E). Interestingly, while levels of the
precursor (pre) and processed (pro) ADAM10 protein were
slightly increased, in accordance to the observed mRNA
upregulation, no increment in the active form of ADAM10
was detected by Western blot (Figure 6F). In contrast,
ADAM17 protein levels were increased in HFD-fed animals
respect to mice fed with chow diet (1.0 + 0.3 in chow vs 2.3
+ 0.5 in HFD). In line with this protein expression and with
previous observations,*® ADAM17 activity was found clearly
and significantly increased in liver extracts after HFD
feeding (1.1 + 0.4 vs 2.3 + 0.2 RFU/ug/hour). Moreover, to
prove ADAM10/ADAM17 participation in sAXL release, LX2

cells were exposed to ADAM10 or ADAM17 inhibitors and
sAXL measured in the medium. AXL release to the medium
was almost abrogated by the combination of both inhibitors;
being ADAM17 the main contributor to sAXL release in LX2
cells (Figure 6G). These data suggest important roles for
these sheddases in TAM signaling during human NASH,
particularly for ADAM17, meriting further investigation.
Therefore, the strong induction of liver fibrosis and
inflammation observed in mice receiving HFD during 2
months was clearly diminished by bemcentinib adminis-
tration for the last 2 weeks. Interestingly, HFD increased
GAS6, sAXL and sMERTK serum levels, suggesting an
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Figure 5. Reduction of profibrotic and proinflammatory gene and protein expression by bemcentinib administration to
HFD-fed mice. (A) MmRNA expression level of a-SMA, COL1A1, MMP9, TNF, MCP1, CCR2, MPO, and F4/80 were measured in
liver samples from animals receiving chow or HFD diet with or without administration of AXL inhibitor bemcentinib.*P < .05, **P
< .01, and *™*P < .001 between groups; 1-way analysis of variance; n = 5-14. (B, C) Representative images of liver immu-
nohistochemistry of a-SMA and F4/80 expression in mice treated as above. Scale bar = 100 um.

upregulation of AXL and MERTK signaling during NASH. Of
note, bemcentinib administration not only blocked AXL
signaling but also increased GAS6 levels in serum, which
could provide hepatocellular protection in addition to AXL
inhibition.

AXL Knockout Mice Were Partially Protected
Against HFD-Induced Damage While MERTK-

Deficient Animals Suffered Aggravated Lesions
Bemcentinib reduced HFD-induced liver fibrosis and
inflammation by blocking AXL signaling while increasing

Figure 4. (See previous page). Bemcentinib reduces liver fibrosis and inflammation in HFD-fed mice. (A) Body and liver
weight, (B) triglycerides in liver extracts, and (C) serum alanine aminotransferase (ALT) transaminases were measured after
sacrifice in mice fed for 8 weeks with chow or HFD that received vehicle or bemcentinib (BGB324) oral gavages for the last 2
weeks (n = 5-14). (D) Representative images of liver sections after H&E and Sirius Red staining; bar (200 um). Sirius Red

quantifications are shown each picture. Student’s t test; *P <

.05 vs control mice, #P < .05 vs HFD-fed mice. (E) Hydroxy-

proline quantification in liver samples from treated mice. Student’s t test; *P < .05 vs control mice, #P < .05 vs HFD-fed mice;
n = 5-14. (F) NAFLD activation score, composed by (G) steatosis, (H) lobular inflammation, and (/) hepatocellular ballooning,
was evaluated in liver samples from treated mice. One-way analysis of variance; Student’s t test; *P < .05 vs HFD-fed mice;

n = 5-14.

FLA 5.6.0 DTD m JCMGHS539 nroof m 20 November 2019 m 2:44 pm B ce OB

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942



943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
9717
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001

web 4C/FPO

2019

sAXL

Functional Role of GAS6/TAM in NASH Progression

*k

9

sMERTK

CTRL BGB324

CTRL
1 2 3 4

Mmp3
Fasl
Itgb6
Plat
Col3a1
Col1a2
Itga2
Mmp2
Lox
Ccr2
Ccl12
Tgfb2
Itgb8
Thbs2
Serpinh1
Mmp13
Tgfb3
Plau
Ctgf
Ccl11
Snai1
Bcl2
Ltbp1
Acta2
Tgfbr1
Timp1
Pdgfb
Tnf
Ifng
Hgf
Ccl3
Timp3
Thbs1
Myc
Timp2

HFD HFD+BGB

HFD

5 6 1 2 3 4 5

6

CTRL BGB324

0,2 BGB 5,0

HCD+BGB
1 2 3 4 5

HFD HFD+BGB

E

AXL

CTRL BGB324 HFD HFD+BGB

ADAM10 ADAM17

3.0 1

2.5

J 2.0

mRNA levels

-

ADAM17

ADAM10

GAPDH

CTRL HFD

CTRL HFD CTRL HFD

CTRL HFD

« pre
<« pro

)
I!

<« act

*#

]

—-odo—

CTRL

ADAM10i  ADAV17i ADAVHO/17i

Figure 6.Increased serum sAXL in diet-induced NASH mice as consequence of ADAMs and AXL upregulation.
(A-C) Serum GASG6, sAXL, and MERTK levels were measured in mice fed with chow diet and HFD gavaged with vehicle or
bemcentinib.*P < .05, *P < .01, and **P < .001 between groups; 1-way analysis of variance; n = 5-8. (D) Analysis of AXL
inhibition in HFD-fed mice using an mRNA Array containing fibrosis- and inflammation-related genes (n = 6). (E) Expression
changes of AXL, ADAM10, and ADAM17 mRNA in HFD-fed mice. Results are expressed as mean plus standard deviation.*P <
.05 vs control mice; n = 3. (F) Representative Western blot of ADAM10, ADAM17, and GADPH protein expression in chow- and
HFD-fed mice. (G) Levels of sAXL secreted from LX2 cells in the presence or absence of ADAM10 inhibitor (GI254023X),
ADAM?17 inhibitor (TMI-005), or both. *P < .05 vs untreated cells; #P < .05 vs ADAM10 or ADAM17 inhibitors; n = 4-8.
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GAS6 serum levels. To verify if total absence of AXL may
recapitulate the protection observed after AXL inhibition,
AxI”~ mice were fed with HFD for 2 months. After NASH-
diet feeding, no significant differences in H&E (Figure 7A4)
or alanine aminotransferase levels (Figure 7B) were detec-
ted between AxI"/" and AXL-deficient mice. Although a
minor reduction in COL1A1 expression (Figure 7C) and
Sirius Red staining (Figure 7A4) could be observed in AxI”~
mice, did not reach the significance exhibited in
bemcentinib-treated mice. In contrast, a decrease in
inflammation-related genes (Figure 7D, E) such as TNF or
CCR2 was observed in HFD-fed AXL KO mice. In agreement,
the NAFLD activation score (Figure 7F) was reduced in HFD-
fed AxI”~ mice, mostly due to the greater presence of
inflammation foci in HFD-fed AxI*/* mice (Figure 7G-I).
Therefore, the protection detected in AXL-deficient mice did
not reach the level observed after bemcentinib treatment,
principally due to a minor reduction of the liver fibrosis.

MERTK, the other TAM receptor activated by GAS6 with
prominent expression in the liver, has recognized roles in
fibrogenesis, inflammation, and hepatoprotection.zz’23
Evident liver deterioration was detected on H&E slides
and in transaminase levels in Mertk”~ mice after HFD
feeding (Figure 84, B). In parallel, liver samples from HFD-
fed MERTK-deficient mice displayed a significant elevation
in collagen deposition compared with HFD-fed WT mice
(Figure 84). Moreover, proinflammatory gene expression
was enhanced as denoted by TNF and MPO mRNA levels
(Figure 8C, D). In line with these results, NAS was increased
in Mertk”~ mice (Figure 8E), principally due to higher
number of inflammatory foci (Figure 8F-H), underscoring
the protective role of MERTK signaling during NASH
development and instructing against compounds that could
inhibit MERTK in a context of active fibrogenesis and liver
inflammation.

AXL Levels Are Increased in the Serum and Liver

of NAFLD Patients

GAS6, sAXL, and sMERTK levels have been found altered
in patients suffering chronic liver disease.”'***”*% Howev-
er, not all 3 measurements have been performed simulta-
neously in serum from NAFLD patients with different
degrees of the disease. Addressing this issue, we detected by
enzyme-linked immunosorbent assay (ELISA) increased
levels of GAS6, sAXL, and sMERTK in cirrhotic NASH pa-
tients (Figure 94-C), compared with control individuals or
patients with low-grade NAFLD (simple steatosis or
fibrosis). However, only sAXL was augmented in early
stages of NAFLD, when liver fibrosis was still absent, with
mean values growing with the severity of the disease
(Figure 9C). Cardiovascular disease is a comorbidity that
could result in higher levels of sAXL and sMERTK,*” unre-
lated to NASH; however, no relationship with arterial hy-
pertension was detected in our cohort of patients. In
contrast, a clear tendency to increased sAXL levels was
observed in patients with diabetes in all groups analyzed.

As AXL activation leads to proteolytic shedding of the
AXL extracellular from the cell surface,?® the increase in

Cellular and Molecular Gastroenterology and Hepatology Vol. m, No. m

sAXL levels may suggest hepatic accumulation of AXL during
NAFLD progression. Accordingly, cirrhotic NASH patients
exhibited hepatic AXL overexpression (Figure 9D), with
main AXL staining in liver nonparenchymal cells. To better
characterize AXL upregulation, we analyzed AXL (green) by
immunofluorescence and compared it to «-SMA and F4/80
(red) hepatic distribution (Figure 9E). Most of the punctu-
ated AXL signal overlapped (yellow) with «-SMA-positive
cells (48 + 21%) and with macrophages (41 = 7%), in
agreement with its predicted main expression in activated
HSCs and KCs.

Bemcentinib Is Also Effective Reducing Liver
Fibrosis and Inflammation in Early NASH

As our patients’ data suggest that AXL activation is a
mechanism upregulated already in initial stages of NAFLD,
even before the onset of fibrosis, we decided to test if we
could recapitulate the beneficial effects of AXL inhibition in
an early NASH model. To do so, C57BL/6] mice were fed with
a chow diet or HFD for 1 month, receiving bemcentinib or
vehicle for the last 2 weeks. HFD-fed mice exhibited fatty
liver, increased liver to body weight, elevated alanine
aminotransferase transaminases and even the presence of
some collagen deposition after 1 month (Figure 10A4-C).
Interestingly, bemcentinib reduced incipient fiber accumu-
lation showing the importance of AXL signaling even in
initial NAFLD stages. Similarly, the induction of profibrotic
and inflammatory genes detected in HFD-fed liver was
clearly reduced after AXL inhibition (Figure 10F, G). As AxI”~
and Mertk™”~ mice share the same C57BL/6] background,
AXL- and MERTK-deficient mice were included in the study.
In agreement with previous results, Mertk”~ mice displayed
aggravated NASH pathology, with higher collagen deposition
and liver inflammation. In contrast, AxI”~ mice exhibited
some protection after HFD feeding although not as important
as after bemcentinib administration. Of note, HFD-fed AxI™/~
mice exhibited moderately increased GAS6 levels, but they
were significantly less to the GAS6 increase detected in HFD-
fed bemcentinib-treated mice (Figure 10D), suggesting
GAS6-derived hepatoprotection as a contributing factor in
bemcentinib efficacy.

Last, as sAXL was found increased in patients with
simple steatosis with no detected fibrosis after liver biopsy,
we wanted to verify this point in our animal model. After 2
weeks’ HFD feeding, fat deposition but not collagen accu-
mulation was observed in the livers of HFD-mice
(Figure 10H). Interestingly, fibrosis and inflammation-
related genes were already increased, as well as sAXL
levels (Figure 10I), showing again a clear relationship be-
tween AXL activation and early NAFLD development.

Discussion

Several therapies are currently being evaluated to target
NASH in a precirrhotic stage, when liver fibrosis and hepatic
inflammation are still reversible. GAS6 and TAM receptors
have been involved in other liver chronic pathologies; how-
ever, their therapeutic targeting in NASH has not been re-
ported. According to our data, levels of soluble AXL are
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Figure 8. MERTK deficiency increased liver fibrosis and inflammation in HFD-fed mice. (A) Representative images of liver
sections after H&E and Sirius Red staining from control and MERTK KO mice treated with chow or HFD diet. Scale bar = 200
um. Sirius Red quantification is shown below the respective pictures. Student’s t test; *P < .05 vs control mice, #P < .05 vs
HFD-fed mice; n = 3-6. (B) Alanine aminotransferase (ALT) serum levels from treated mice (n = 3-6). (C, D) mRNA expression
level of TNF and MPO in liver samples from treated mice. *P < .05 vs control mice; #P < .05 vs HFD-fed mice; n = 3-6.
(E) NAFLD activation score, composed by (F) steatosis, (G) lobular inflammation, and (H) hepatocellular ballooning, was
evaluated in liver samples from treated mice. One-way analysis of variance. *P < .05 vs HFD-fed mice; n = 3-6. The results
shown are representative for 2 independent experiments.

Figure 7. (See previous page). AXL-deficient mice display partial protection against liver fibrosis and inflammation in
HFD-fed mice. (A) Representative images of liver sections after H&E and Sirius Red staining from control and AXL KO mice
treated with chow or HFD diet. Scale bar = 200 um. Sirius Red quantification is shown below the respective pictures. Stu-
dent’s t test; *P < .05 vs control mice. (B) alanine aminotransferase (ALT) serum levels from treated mice (n = 3-6). (C-E) mRNA
expression level of COL1A1, TNF, and CCR2 in liver samples from treated mice (n = 3-6). (F) NAFLD Activation Score,
composed by (G) steatosis, (H) lobular inflammation, and (/) hepatocellular ballooning, was evaluated in liver samples from
treated mice. One-way analysis of variance; *P < .05 vs HFD-fed mice; n = 3-6. The results shown are representative for 2
independent experiments.
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Figure 9. Serum levels of sAXL are increased in NASH patients being expressed in activated HSCs and KCs. (A-C) GAS6
and soluble levels of AXL and MERTK (ng/mL) were measured in control individuals (n = 12) and in patients with different
degree of NASH progression: with steatosis (n = 12), fibrosis (n = 12), and cirrhosis (n = 12). *P < .05, *P < .01 and **P <
.001 between groups (1-way analysis of variance). (D) Representative images of liver IHC of AXL expression in control and
cirrhotic NASH patients. Scale bar = 50 um; n = 4. (E) Representative immunofluorescence images of AXL (green) and «-SMA/

F480 (red) in cirrhotic NASH patients (n = 4).

increased in NAFLD patients reflecting that AXL signaling is
activated in early NAFLD stages. Moreover, increased circu-
lating sAXL, which is known to be bound to GAS6 in serum,*°
is probably capturing locally released GAS6 and reducing its
cellular availability and its known hepatoprotective effect.'”

We and others have shown previously the profibrotic
capacities of GAS6 signaling, in the liver,”***” and recently
in other organs.”’ Our present results reveal that GAS6 or
AXL activation alone is enough to induce strong AKT phos-
phorylation and HSC activation, promoting profibrogenic
extracellular changes and migration (Figure 6F), and
reducing MCP-1 release and diminishing monocyte recruit-
ment. In addition, AXL has a proinflammatory effect in pri-
mary KCs, which displayed reduced LPS-induced
inflammatory gene expression in the presence of bemcenti-
nib. Besides AXL inhibition, bemcentinib induces GAS6
upregulation, possibly as a compensatory mechanism. The
hepatoprotective role of GAS6 via MERTK/AKT/STAT3, in
line with previously observed GAS6-induced protection
against hypoxia in primary hepatocytes,'” is evident in PMHs
after palmitic acid exposure. The AKT/STAT3 role in hepa-
tocellular lipotoxicity associated to NASH pathology has been

previously described.?” However, the participation in this
protection of GAS6/MERTK is novel information. In this
sense, the GAS6 induction, observed in bemcentinib treated
animals in comparison with AxI” /- mice, could be a distinctive
mechanism that helps therapy based on small molecule in-
hibition to be more effective. Evidently, other direct and off
targets effects may participate, similarly as we cannot discard
a potential compensatory effect on AKL KO mice. For
instance, recent data has shown that AXL inhibitors such as
bemcentinib, by blocking AXL phosphorylation and subse-
quent ubiquitination,** contribute to AXL and sAXL accu-
mulation in cells and medium. However, bemcentinib good
tolerability in patients, observed in trials, indicates that po-
tential side effects are not of clinical importance.

Consistent with the in vitro data, bemcentinib showed a
powerful antifibrotic response in NASH animal models.
Interestingly, pharmacological inhibition of GAS6/AXL by
bemcentinib showed better response in our animal NASH
models than genetic ablation in AxI”~ mice. It is possible
that bemcentinib targets the profibrotic and proin-
flammatory effect of AXL signaling, while preserving other
liver protecting functions of the GAS6 system. In fact, AxI”~
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mice did not exhibit changes in serum GAS6 levels, in
contrast to the increase observed after bemcentinib
administration. The protective role of GAS6 in ischemia/
reperfusion-induced liver damage,’” and in liver wound
healing response'®® may support GAS6 as a hep-
atoprotective factor induced by bemcentinib. Moreover, the
liver deterioration observed in Mertk”” mice corroborates
the anti-inflammatory role of GAS6 in macrophages via
MERTK. This result concurs with recent data underscoring
the role of MERTK in the homeostatic resolution of inflam-
mation after acute liver failure in human and experimental
models, and the aggravated damage described in Mertk™”~
mice exposed to acetaminophen overdose.**** Therefore,
despite the suggested anti-fibrotic effect of MERTK in-
hibitors in HSCs in vitro,?? dual AXL-MERTK inhibitors,*>*°
with potential value in cancer treatment, may jeopardize the
protection achieved by AXL blockade in NASH treatment.
Regarding this point, bemcentinib has a very low inhibitory
effect on MERTK, with an ICs5q 100 fold higher than for AXL,
which is not reached in in vivo administration.?’ Certainly,
achieving a receptor- and cell-specific inhibition of TAMs is
a challenge to devise a useful strategy for NASH that could
be translated to the clinic.

Interestingly, AXL inhibition by bemcentinib potentiates
antitumor immune response,””*® especially in combination
with checkpoint inhibitors such as the anti-PD-1 agent nivo-
lumab, recently Food and Drug Administration-approved for
advanced liver cancer. In fact, other approved cancer drugs,
such as cabozantinib and sunitinib, have potent activity
against AXL, indicating that this inhibition may be well
tolerated, or even beneficial, in the clinic.’ In HCC patients,
high levels of AXL and CXCL5 correlated with advanced tu-
mor stages, recruitment of neutrophils into HCC tissue, and
reduced survival’® Therefore, an antitumoral action of
bemcentinib could be an additional benefit for NASH in-
dividuals, predisposed to develop liver cancer due to their
protumorigenic liver microenvironment. The present use of
bemcentinib in cancer patients for long time periods, with
good safety and tolerability, underscores its potential for
future clinical trials in NASH.

In summary, our results indicate that AXL is a receptor
tyrosine kinase profibrogenic in HSCs and proinflammatory
in KCs, while GAS6 protects the hepatocyte against lip-
otoxicity by MERTK signaling. AXL increase during NAFLD
progression in patients and bemcentinib reduction of liver
fibrosis and inflammation in experimental NASH supports
AXL targeting as an interesting strategy in the treatment of
human NASH.
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Materials and Methods

Cell Culture and Treatments

Primary mouse hepatocytes, HSCs, and KCs were isolated
as previously indicated.*>°"** LX2 cells were kindly given
by Dr Ramén Bataller.”® Cells were treated with bemcenti-
nib (0.25 uM; BerGenBio, Oslo, Norway), LPS (Escherichia
coli 0111:B4, 50 ng/mL; Sigma-Aldrich, St. Louis, MO),
ADAM10 inhibitor (GI254023X, 10 uM; Sigma-Aldrich),
ADAM17 inhibitor (TMIO005, 10 uM; Axon Medchem,
Reston, VA), 1-ug/mL rGas6 (#986-GS, mouse; #885-GSB,
human; R&D Systems, Minneapolis, MN), 10-nM AXL acti-
vating antibody (#AF854, mouse; #AF154, human 10 nM;
R&D Systems), and MERTK activating antibody (#AF591,
mouse; #AF891, human, 10 nM; R&D Systems) or normal
Goat IgG Control (AB-108-C; R&D Systems). Cell death in
primary mouse hepatocytes was evaluated by MTT assay
and results were confirmed using standard trypan blue
(0.2%) exclusion assays by optical microscopy."’

In Vivo Models

Animal studies, in accordance with the principles and
procedures outlined in the National Institutes of Health
Guide for the Care and Use of Laboratory Animals, were
approved by the institutional animal care committee (Uni-
versitat de Barcelona).WT, AxI7~ (Mouse Strain #005777;
The Jackson Laboratory, Bar Harbor, ME) and Mertk”~ (Dr
Lemke Lab) male 8- to 10-week-old mice, all in the C57BL/
6] background, were used. In experiments using AxI”~ or
Mertk™" mice, control sibling AxI'/" or Mertk™ " littermates
were used. All mice were maintained with a 12-hour light/
dark cycle (lights on at 8:00 am) in a temperature-controlled
environment. To induce NASH, mice were fed an MCD (Open
Source diets #A02082002B) or an HFD (60% kcal) (Open
Source diets #A06071302) diet for 6 or 8 weeks, respec-
tively, receiving daily doses of bemcentinib (50 mg/kg twice
daily) or vehicle by oral gavage for the last 2 weeks. Alanine
and aspartate transaminases in serum samples and tri-
glycerides and cholesterol levels from liver extracts were
measured using a biochemical analyzer at the Clinic Hospital
Core (Barcelona, Spain).

H&E, Sirius Red Staining, and NAS Index

Livers were formalin-fixed and 7-um sections were
routinely stained with H&E or a 0.1% Sirius Red-picric so-
lution following standard procedures.”””" The slices were
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Figure 10.(See previous page). Bemcentinib reduces early liver fibrosis and inflammation in HFD-fed mice.
(A) Representative images of liver sections after H&E and Sirius Red staining from mice fed for 4 weeks with chow and HFD
diet that received vehicle or bemcentinib (BGB324) gavages for the last 2 weeks. Scale bar = 200 um. Sirius Red quantifi-
cations are shown under representative pictures. Student’s t test; *P < .05 vs control mice; #P < .05 vs HFD-fed mice; n = 3-6.
(B) Liver to body weight and (C) serum alanine aminotransferase (ALT) transaminases were measured (n = 3-6). (D) Serum
GAS6 and (E) sAXL were measured in mice fed with chow diet and HFD gavaged with vehicle or bemcentinib. One-way
analysis of variance; *P < .05 vs chow-fed mice; #P < .05 vs HFD-fed mice; n = 3-6. (F, G) mRNA expression level of
COL1A1 and CCR2 in liver samples from treated mice. *P < .05 vs chow-fed mice; #P < .05 vs HFD-fed mice; n = 3-6.
(H) Representative images of liver sections after H&E and Sirius Red staining from mice fed for 2 weeks with chow and HFD
diet. Scale bar = 200 um. (/) mRNA expression level of COL1A1 and CCR2 in liver samples and protein sAXL levels in serum
from treated mice. *P < .05 vs chow-fed mice; n = 5. The results shown are representative for 2 independent experiments.
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determination, a series of 6 random selected fields from
each slice were visualized and quantified using Image]
software (National Institutes of Health, Bethesda, MD).
NAFLD activity score (NAS) index was determined in H&E
samples as previously reported.”* In brief, NAS was
assessed blindly evaluating the degree of steatosis (0-3),
lobular inflammation (0-3), and ballooning (0-2). According
to this algorithm, NAFLD requires the presence of steatosis
in >5% of hepatocytes, and NASH, in addition to steatosis,
of hepatocellular ballooning of any degree and focus of in-
flammatory cells within the lobule.

Immunohistochemical Staining

The 5-um liver sections (paraffin-embedded) were
deparaffinized in xylene and dehydrated in graded alcohol
series. Heat-induced antigen retrieval was performed in
citrate buffer and endogenous peroxidase was blocked with
3% H,0, solution. Slides were incubated with primary
antibody (mouse anti-a-SMA: M0851, DAKO; rat anti-F4/80:
sc-59171; Santa Cruz Biotechnology, Dallas, TX; rabbit
anti-AXL: C89E7, Cell Signaling Technology, Danvers, MA)
overnight in a wet chamber at 4°C. After rinsing with
phosphate-buffered saline (PBS), the slides were incubated
with a biotinylated antibody for 45 minutes in a wet
chamber and developed with the ABC-HRP Kit (Vector
Laboratories, Burlingame, CA) and peroxidase substrate
DAB (Sigma-Aldrich). After rinsing the slides with tap water,
they were counterstained with hematoxylin and mounted
with Aquatex (Merck Millipore, Burlington, MA).

Immunofluorescence Staining

Paraffin molds containing liver sections were cut into 5-
um sections. The sections were deparaffinized in xylene and
dehydrated in graded alcohol series. Heat-induced antigen
retrieval was performed in citrate buffer. Slides were incu-
bated with primary antibody (mouse anti-a-SMA: M0851,
DAKO; rat anti-F4/80: sc-59171; Santa Cruz Biotechnology;
rabbit anti-AXL: C89E7; Cell Signaling) overnight in a wet
chamber at 4°C. After rinsing with PBS, the slides were
incubated with fluorescent secondary antibodies for 45
minutes in a wet chamber and mounted with ProLong Gold
Antifade Mountant (Invitrogen, Carlsbad, CA).

Liver Collagen Determination

Levels of hepatic hydroxyproline, a specific component
of collagen, were determined.”"*! Briefly, liver samples and
4-hydroxy-L-proline standards were hydrolyzed in 6N HCI
at 120°C for 25 minutes. Free hydroxyproline from each
hydrolysate was oxidized with Chloramine-T and after
addition of Ehrlich reagent; absorbance was read at 550 nm.
Data were normalized to liver wet weight.

MCP-1 and p-AKT Determination by ELISA

LX2 cells were seeded in 12-well plate (2 x 10° cells/
well) in Dulbecco’s modified Eagle medium/10% fetal
bovine serum and allowed to attach and grow for >24
hours. Before experiments cells were left 6 hours in

Cellular and Molecular Gastroenterology and Hepatology Vol. m, No. m

Dulbecco’s modified Eagle medium without fetal bovine
serum, pretreated with bemcentinib for 60 minutes before
addition of GAS6 (1 ug/mL), for 16 hours for MCP-1 and for
15 minutes for p-AKT determination. Cell lysis was per-
formed in 150 uL/well of 1-mM EDTA, 0.5% Triton X-100,
5-mM NaF, 6-M urea, 1-mM activated sodium orthovana-
date, 2.5-mM sodium pyrophosphate, 10-ug/mL leupeptin,
10-ug/mL pepstatin, 100-uM PMSF, and 3-ug/mL aprotinin
in PBS, pH 7.2-7.4. For assay lysates were diluted 1:6 in 1-
mM EDTA, 0.5% Triton X-100, and 5-mM NaF in PBS, pH
7.2-7.4. p-AKT standards were prepared in 1-mM EDTA,
0.5% Triton X-100, 5-mM NaF, 1-M urea in PBS, pH 7.2-7.4.
The ELISA kit employed for p-AKT determination was
DuoSet IC, Human/Mouse/Rat Phospho-Akt (Pan) (S473),
Catalog Number DYC887-2 (R&D Systems). For MCP-1
secretion to extracellular media, the Human MCP-1 (CCLZ2)
Mini TMB ELISA Development Kit (Cat#900-TM31; Pepro-
tech, Rocky Hill, N]J) was used following manufacturer’s in-
structions. Finally, color development was monitored using
an ELISA plate reader at 450 nm with wavelength correction
set at 620 nm.

Determination of GAS6, Soluble AXL (sAXL) and
Soluble MERTK (sMERTK) Levels

sAXL and sMERTK levels were determined in human and
mouse serum samples by specific sandwich ELISA using
commercial kits (DuoSet ELISA; R&D Systems) and
following manufacturer’s instructions, and GAS6 was
analyzed as described previously.”®

Cell Migration Assay

LX2 were plated in 6-well plates, and upon confluence, a
scratch was made in cell layer with a 200-uL sterile
micropipette tip. Cells were treated with bemcentinib and
AXL activating antibody. Cells were photographed at base-
line (t = 0 hours) and after 24 hours using an Olympus IX-
70 microscope. Image] software was used to measure
scratch closure and percentage of closure relative to control
was calculated.

Sodium Dodecy! Sulfate Protein Gel

Electrophoresis and Immunoblot Analysis

Cell lysates were prepared in RIPA buffer (50-mM
Tris-HCI, pH 8, 150-mM NaCl, 1% Nonidet P-40, 0.1% so-
dium dodecyl sulfate, 1% Triton X-100 plus proteinase in-
hibitors). Protein concentration was determined by
Bradford assay, and samples containing 10-50 ug were
separated by sodium dodecyl sulfate protein gel electro-
phoresis. Proteins were transferred to nitrocellulose mem-
branes. After this, membranes were blocked in 8% nonfat
milk in 20-mM Tris-HC], 150-mM NaCl, and 0.05% Tween
20 for 1hour at room temperature. Anti-AKT (sc-8312;
Santa Cruz Biotechnology) anti-phospho-AKT (#9271; Cell
Signaling);  phospho-AXL  (#PA5-39729; Invitrogen),
phospho-MERTK (#SAB4504621; Sigma-Aldrich), phospho-
STAT3 (#9145S; Cell Signaling), anti-ADAM10 (#ab1997;
Abcam, Cambridge, United Kingdom), anti-ADAM17
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Table 1.Biochemical Data From Control Individuals and NASH Patients

Steatosis (FO) Fibrosis (F1-F3) Cirrhosis (F4) Control Values

Men/women 9/3 10/2 8/4 7/5
Body mass index, kg/m? 36.0 + 2.27 32.6 + 1.67 325+ 1.47 <25
Age, y 57.0 + 3.25 60.7 + 2.0 63.5+ 1.5 51.7 + 10.4
Bilirubin, mg/dL 0.62 + 0.06 0.74 + 0.07 3.19 + 1.507 0.2-1.0
Albumin, g/L 445 + 0.6 441 + 0.7 37.3 + 1.8°°¢ 35-50
Quick, % 949 + 2.0 90.8 + 2.6 73.2 + 4.0°° 70 -100
Creatinine, mg/dL 0.9 + 0.1 0.9 + 0.1 0.8 + 0.1 0.6-1.2
AST, U/L 49.6 + 13.17 40.6 + 5.27 64.3 + 9.27° 10-40
ALT, U/L 80.0 + 25.67 58.0 + 9.47 55.2 + 8.67 10-35
GGT, U/L 97.3 + 36.67 131.4 + 34.2° 168.0 + 37.17 5-40
Platelets (x10%/mm?®) 218 + 20 202 + 15° 130 + 23°°¢ 125-400
Leukocytes (x10%/mm?) 8.2+ 09 6.7 + 0.4 56+ 0.8 3.5-11.0

Values are mean + SEM. For the control group, serums from 12 individuals (7 men and 5 women with average age of 51.7 +
10.4 years) with BMI <23 kg/m? were used to measure GAS6, sAXL, and sMERTK levels. Reference ranges for each
biochemical parameter are provided, as established for normal individuals according to the Hospital Clinic Core Lab (Bar-
celona, Spain).

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; GGT, y-glutamyliransferase;

NASH, nonalcoholic steatohepatitis.
4Means of control values.

bp < 05 vs steatosis group (FO).
°P < .05 vs fibrosis group (F1-F3).

(#sc-390859;
(#ab181602; Abcam),
Sigma-Aldrich).

Santa Cruz Biotechnology), anti-GAPDH
and anti-g-actin-HRP (#A3854;

RNA Isolation and Real-Time Polymerase Chain
Reaction

Total RNA was isolated with TRIzol reagent; 1 ug of RNA
was reverse-transcribed with iScript cDNA Synthesis Kit
(Bio-Rad Laboratories, Hercules, CA) and real-time poly-
merase chain reaction was performed with iTaq Universal
SYBR Green Supermix (Bio-Rad Laboratories) following the
manufacturer’s instructions. The primers sequences used
were:

mouse ¢-SMA, Fw 5'- ATG GCT CTG GGC TCT GTA AG -3’
and Rv 5’- CCC ATT CCA ACC ATT ACT CC -3’

mouse CollAl, Fw: 5'- GAG CGG AGA GTA CTG GAT CG
-3’ and Rv: 5'- GTT CGG GCT GAT GTA CCA GT -3’

mouse MMP9, Fw 5'- CAA ATT CTT CTG GCG TGT GA -3
and Rv 5'- CGG TTG AAG CAA AGA AGG AG -3’

mouse F4/80, Fw: 5-TTT CCT CGC CTG CTT CTT C-3’
and Rv: 5'-CCC CGT CTC TGT ATT CAA CC-3’

mouse CCR2, Fw: 5'-ATC CAC GGC ATA CTA TCA ACA TC-
3" and Rv: 5’- CAA GGC TCA CCA TCA TCG TAG-3’

mouse MPO, Fw: 5-TGC TGA AGA ACC TGG AGT TG-3’
and Rv: 5'-AAA CCG ATC ACC ATC ACG TA-3'

mouse TNF, Fw: 5'- CTG AAC TTC GGG GTG ATC GGT-3’
and Rv: 5'-ACG TGG GCT ACA GGC TTG TCA-3’

mouse MCP1, Fw: 5'-CAA GAA GGA ATG GGT CCA GA-3'
and Rv: 5'-GCT GAA GAC CTT AGG GCA GA-3'

mouse ADAM10, Fw: 5'-AAG GGA TAT GCA ATG GCT TC-
3" and Rv: 5’-TTG CCC ATT AAT GCA CAC TT-3'

mouse ADAM17, Fw: 5'- CTG GCA GAT AAC ATC GTT GG-
3’ and Rv: 5’- GAT GCG AAC AGA TGC TGA GT-3’

mouse B-actin, Fw: 5'-GAC GGC CAG GTC ATC ACT AT-
3’and Rv: 5/-CGG ATG TCA ACG TCA CAC TT-3'

Gene Array

A predesigned 384-well mouse fibrosis panel for use
with SYBR Green (Bio-Rad Laboratories) was used following
the manufacturer’s instructions. Briefly, after isolating RNA
with the TRIzol reagent, the corresponding complementary
DNA (cDNA) was synthesized using the iScript advanced
cDNA synthesis kit (Bio-Rad Laboratories). Once cDNA is
obtained the polymerase chain reaction mix is prepared
(iTaq Universal SYBR Green Supermix) and added to the
384-well plate in which all the primers are lyophilized.
Results are corrected and normalized to the housekeeping
genes $-actin and TBP.

Human Samples

We included a cohort of consecutive patients with
NAFLD diagnosed by liver biopsy at the Hospital Clinic of
Barcelona. Patients with alcoholic consumption were
excluded to avoid misclassification. Patients were catego-
rized in each group according to the presence of inflam-
mation, steatosis and fibrosis in the liver biopsy. The
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presence of steatohepatitis was described according to
validated specific scoring system for NAFLD and fibrosis
according to METAVIR score.”* Our cohort encompasses the
whole spectrum of NAFLD: patients with simple steatosis
(n = 12), patients with steatohepatitis and fibrosis (F1-F3;
n = 12), and patients with NAFLD cirrhosis (n = 12). As
expected, patients presented features of metabolic syn-
drome, 64% (n = 23 of 36) had arterial hypertension, 36%
(n = 13 of 36) had diabetes mellitus, 28% (n = 10 of 36)
presented dyslipidemia, and 14% (n = 5 of 36) had
concomitant cardiovascular disease. For the control group,
serum from 12 individuals with BMI <25 kg/m? was used
to measure GAS6, MERTK, and AXL levels. Additional
biochemical data are shown (Table 1). Human liver slides
from healthy individuals or cirrhotic NASH patients
(without hepatocellular carcinoma) were from the Biobank
of the Hospital Clinic. All subjects gave written informed
consent in accordance with the Declaration of Helsinki, and
the protocol, approved by ethical committees from the
Hospital Clinic, followed ethical guidelines on handling hu-
man samples.

Statistical Analysis

All in vitro and in vivo experiments were repeated at
least 3 times unless indicated. Statistical comparisons were
performed using unpaired 2-tailed Student’s t test or 1-way
analysis of variance followed by Newman-Keuls multiple
comparison test when indicated. All analyses were per-
formed using GraphPad Prism (GraphPad Software, San
Diego, CA). A P value <.05 was considered significant.

All authors had access to the study data and reviewed
and approved the final manuscript.
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