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Background: Prior studies suggest that activation of the tryptophan catabolism via the kynurenine
pathway by proinflammatory cytokines may be involved in the pathophysiology of depression. Elec-
troconvulsive therapy (ECT) is an effective treatment for major depression (MD) with immunomodula-
tion as one of the proposed modes of action.
Objective: The aim of this study was to investigate serum concentrations of tryptophan and kynurenine
pathway metabolites in MD patients and healthy controls, and to explore the effect of ECT on compo-
nents of the kynurenine pathway.
Methods: The study included 27 moderately to severely depressed patients referred to ECT. Blood
samples were collected prior to treatment and after the completed ECT-series. Baseline samples were
also collected from 14 healthy, age- and sex-matched controls. Serum concentrations of tryptophan,
kynurenine, 3-hydroxykynurenine (HK), kynurenic acid (KA), xanthurenic acid (XA), anthranilic acid
(AA), 3-hydroxyanthranilic acid (HAA), quinolinic acid (QA), picolinic acid (Pic), pyridoxal 50-phosphat
(PLP), riboflavin, neopterin and cotinine were measured.
Results: Patients with MD had lower levels of neuroprotective kynurenine-pathway metabolites (KA, XA
and Pic) and lower metabolite ratios (KA/Kyn and KA/QA) reflecting reduced neuroprotection compared
to controls. The concentration of the inflammatory marker neopterin was increased after ECT, along with
Pic and the redox active and immunosuppressive metabolite HAA.
Conclusion: In this pilot study, we found increased concentrations of inflammatory marker neopterin and
putative neuroprotective kynurenine metabolites HAA and Pic in MD patients after ECT. Further research
in larger cohorts is required to conclude whether ECT exerts its therapeutic effects via changes in the
kynurenine pathway.
© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Major depression (MD) is a severe and potentially life-
threatening psychiatric illness that accounts for a large part of the
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overall global burden of disease [1]. The neurobiology of depression
is complex and not fully understood [2]. However, it has been
shown that MD often is associated with increased levels of pro-
inflammatory cytokines, suggestive of a mild to moderate im-
mune and inflammation activation [3,4].

The kynurenine pathway of tryptophan metabolism [5] (Fig. 1)
has been proposed as a link between inflammatory processes and
depressive symptoms [6,7]. The essential amino acid tryptophan
is mainly (90%) metabolised to kynurenine (Kyn) and a small
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Fig. 1. The kynurenine pathway of tryptophan metabolism.
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portion serves as precursor of serotonin. Conversion of trypto-
phan to kynurenine is regulated by tryptophan 2,3-dioxygenase
(TDO) and indole 2,3-dioxygenase (IDO). The activity of IDO is
stimulated by proinflammatory cytokines, especially interferon
gamma (INF-g), but also tumor necrosis factor alpha (TNF-a) and
interleukin-6, whereas TDO is activated mainly by cortisol [8].
Through activation of IDO, inflammation leads to enhanced
catabolism of tryptophan via the kynurenine pathway. The
kynurenine to tryptophan ratio (KTR) functions as a proxy mea-
sure of INF-g mediated activation of cellular immunity and this
ratio has been shown to correlate positively with the concentra-
tion of other immune markers, like neopterin an established
marker of cellular immune activation [9]. However, while con-
version of tryptophan towards kynurenine is induced by both IFN-
g, through up-regulation of IDO, and by TDO, formation of neo-
pterin is induced by IFN-g only. Thus, circulating concentrations
of neopterin are considered more specific to immune
activation than is KTR. Kyn is metabolised further by the enzyme
kynurenine aminotransferase (KAT) to kynurenic acid (KA), an N-
methyl-D-aspartate receptor (NMDAr) antagonist and neuro-
protective agent [8], or by kynurenine 3-monooxygenase (KMO)
to 3-hydroxykynurenine (HK). HK is then metabolised through 3-
hydroxyanthranilic acid (HAA) to either picolinic acid (Pic) or
quinolinic acid (QA). Both HK and the NMDAr agonist QA are
thought to exert neurotoxic effects [8]. Like IDO, KMO is activated
by proinflammatory cytokines, directing metabolism through the
neurotoxic branch of the kynurenine pathway and thus disrupting
the balance between neuroprotective KA and the neurotoxic
metabolites HK and QA [8,10]. Several steps in the kynurenine
pathway are dependent on the coenzymes pyridoxal 50-phosphate
(PLP), the active form of vitamin B6, and flavine adenine dinu-
cleotide (FAD), the active form of riboflavin (vitamin B2) [11]
(Fig. 1). The serum level of these vitamins is affected by smoking
[12]. Cotinine, a metabolite of nicotine, is a commonly used serum
marker of recent nicotine exposure [13].
The status of the kynurenine pathway can be described by a set
of ratios starting with KTR as a marker of the first and rate-limiting
step catalysed by INF-g-responsive enzyme, IDO. The direction of
the Kyn breakdown and the flux through the downstream enzymes,
KAT and KMO, are reflected by KA/Kyn and HK/Kyn, while KA/HK
and KA/QA reflect the balance between the two main branches of
the pathway [14]. Several studies have shown that MD patients
have significantly lower plasma concentration of KA and lower KA/
KYN and KA/QA than healthy controls, indicating altered balance in
favour of neurotoxic metabolites [6,14e17]. The ratio XA/HK is a
useful marker for vitamin B6 [18], an important coenzyme in
several steps in the kynurenine pathway. Finally, the enzyme
aminocarboxymuconate semialdehyde decarboxylase (ACMSD)
limits QA formation by competitive production of the putative
neuroprotective metabolite Pic. It has been suggested that QA
might induce suicidal symptoms by affecting glutamate neuro-
transmission [19]. Furthermore, a study assessing the CFS and
plasma Pic to QA ratio in suicide attempters supported the hy-
pothesis that a reduced ACMSD activity underlies excess of
neurotoxic QA production observed in patients exhibiting suicidal
behavior [20]. The ratio of Pic and QA (Pic/QA) can be used as an
estimate of ACMSD activity.

Electroconvulsive therapy (ECT) is considered the most effective
treatment option for severe or treatment resistant MD [21]. It has
been suggested that ECT may act by modulating immunological
mechanisms [22e24]. Studies on how ECT impacts the immune
system have indicated that a single session of ECT might induce an
acute activation of immune response [25e27], while repetitive ECT
treatment can down-regulate proinflammatory markers [27e29].
Through this immunomodulating effect, ECT might also affect the
tryptophan metabolism [24]. Studies suggest that ECT in MD pa-
tients might shift the tryptophan metabolism towards metabolites
with neuroprotective properties, with increase in KA and KA/HK
[22] and decrease in QA after treatment with ECT [16]. However,
other studies found no significant changes in KA [30] or in KYN, KA
and KA/KYN [17].
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The aim of this study was to investigate serum concentrations of
tryptophan and a large panel of kynurenine pathwaymetabolites in
MD patients referred to ECT in comparison with healthy controls
and to explore the effect of ECT on the kynurenine pathway over a
whole course of ECT.

Material and methods

Study design

In this prospective, observational study we collected blood
samples and assessed the severity of depressive symptoms inmajor
depression patients before and after a series of ECT. Additionally,
the study included a group of age- and sex-matched healthy con-
trols that contributed with the same baseline data. The study
protocol has previously been reported in detail [31].

Ethical considerations

The study was approved by the Regional Committee for Medical
Research Ethics in South East Norway (2013/1032). All participants
provided informed written consent to participate in the study.

Participants

Between September 2013 and November 2016, 30 patients and
14 age- and sex-matched healthy controls fromHordaland, Norway,
were included into the study. Patients (age> 18) were referred to
and accepted for ECT because of a moderate to severe uni- or bi-
polar depressive episode with or without psychotic symptoms. The
diagnosis was established by the treating clinician based on a
clinical interview and information from medical records on
symptoms, course of illness, family history, and past treatment. The
following criteria were used for exclusion of patients: ECT within
the last 12 months and moderate kidney failure (serum creati-
nine> 120 mmol/L). Data on clinical characteristics were recorded
alongwithmedication use both before and after treatment. Healthy
controls were recruited by advertisement distributed in Bergen, in
Hordaland, Norway. Only those that had no current somatic dis-
ease, no use of medication except hormonal birth control agents,
and no history of psychiatric disorder were included. The healthy
controls underwent the same baseline investigations as the ECT
patient group, but did not receive ECT or anaesthesia.

ECT treatment

All patients received the standard ECT treatment as it is provided
at the ECT-department at the Haukeland University Hospital in
Bergen, Norway, administered with right unilateral electrode
placement and a Thymatron System IV device (Somatics Inc., Venice,
FL, USA), providing brief- or ultra-brief-pulse (0.25e0.5ms), square
wave, constant current (900mA). Anaesthesiawas obtainedwith the
short acting anaesthetic thiopental. Muscle relaxation was obtained
with succinylcholine (1mg/kg). Three sessions per week were given
until remission or until no further improvement of symptoms was
expected, with a maximum of 20 sessions. The initial stimulus dose
was determined based on age, and subsequent adjustments were
made after each treatment based on electroencephalographic pa-
rameters such as seizure duration, d-waves and postictal suppres-
sion, as well as reorientation time and clinical effect.

Assessments

Symptom intensity was measured with Montgomery and
Åsberg Depression Rating Scale (MADRS) [32] by the treating
clinician before and after completed ECT-series. Response was
defined as a reduction of more than 50% in MADRS score over the
treatment series, and remission as a MADRS score lower than 10
after ECT.

Blood samples

Venous blood samples were collected after at least 8 h of
fasting at two time points for each patient: prior to treatment and
one to two weeks after the completed ECT-series (median¼ 10 days,
interquartile range¼ 6 days). For controls, samples were collected at
baseline. The sampleswere centrifuged and the serum separated and
stored at �80 �C until analysis. Serum concentrations of tryptophan
and eight metabolites kynurenine (Kyn), 3-hydroxykynurenine (HK),
kynurenic acid (KA), xanthurenic acid (XA), anthranilic acid (AA), 3-
hydroxyanthranilic acid (HAA), quinolinic acid (QA) and picolinic
acid (Pic), as well as riboflavin (vitamin B2) and pyridoxal 50-phos-
phat (PLP, vitamin B6), inflammatory marker neopterin and the
nicotine metabolite cotinine were measured by Bevital (www.
bevital.no) using liquid chromatography-tandem mass spectrom-
etry [33]. QA and Pic, as well as isotope labelled internal standards
2H3-QA and 2H4-Pic, were added to the published assay [34] by
including the ion pairs 168.0/78.9, 124.2/78.0, 171.0/81.0, and 128.2/
82.0, respectively. Within-day and between-day CVs were 4e7% for
QA and Pic, precision data for the other biomarkers analysed by this
assay can be found in previous publication [34]. The renal function
marker creatinine was also measured at baseline for evaluation of
renal function [34].

Statistical analyses

Statistical analyses were performed using the Statistical Package
for the Social Sciences (SPSS) version 23.0 (IBM Corp., Armonk, New
York) and RStudio version 1.1.383 [35] with core package stats and
additional packages Tidyverse and ggsignif. Baseline clinical data for
controls and patients were compared using chi-square test for cat-
egorical variables andMann-WhitneyU test for continuous variables.
Baseline biochemical datawere compared using linear regression for
log-transformed variables both unadjusted and adjusted for smoking
using log-transformed levels of cotinine. Changes in patients' serum
concentrations from before to after treatment were analysed using
Wilcoxon paired test. The same analyses were also performed for
patients divided in subgroups based on ECT response and remission.

Results

Demographics and clinical characteristics

Out of the 30 patients recruited, three were excluded - one due
to missing baseline blood sample and two due to high serum
creatinine values (>120 mmol/L). The 27 remaining patients (15
female and 12 male) had a median age of 46.0 years while the 14
controls (8 female and 6 male (p¼ 1.00)) had a median age of 42.5
(p¼ 0.57). There were 5 (36%) smokers in the control group and 14
(52%) among the patients (p¼ 0.51). There was a significant dif-
ference in depression symptom load as measured with MADRS,
with a median score of 1.0 for the controls and 34.0 for the patients
(p< 0.001). Details on clinical characteristics and medication for
patients are given in Table 1.

ECT treatment variables and symptom severity before and after
treatment

Anaesthesia was given with a median of 3.88 (IQR¼ 1.88) mg
thiopental per kg body weight. ECT was delivered with a median

http://www.bevital.no
http://www.bevital.no


Table 1
Clinical characteristics and medication.

Total n (%)1/ Min. Max.

Median (IQR)2

Unipolar depression1 24 19 (79.2)
Bipolar depression1 24 5 (20.8)
Age at inclusion2 27 46 (21.0) 22 65
Age at debut of depressive symptoms2 26 20 (11.8) 10 60
Years since debut2 26 19.5 (25.3) 1 42
Number of depressive episodes2 20 3 (3.25) 1 50
Length in weeks of current depressive episode2 24 39 (44.2) 3 156
Psychotic symptoms in current depressive episode1 26 4 (15.4)
Previous ECT treatment1 26 2 (7.69)
No medication1 27 0 (0.00)
Only litium1 27 1 (3.70)
Only quetiapin1 27 2 (7.40)
Two or more medications1 27 24 (88.8)

Only patients were included (n¼ 27). Medication refers to the use of antidepressants, mood stabilisers and/or antipsychotics.Abbreviations: IQR, interquartile range.
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charge of 237.8mC (IQR¼ 134) and the median seizure length was
recorded as 50.7 s (IQR¼ 16). The median MADRS score decreased
from 34 pre-treatment to 15 post-treatment. Twelve patients
responded to treatment (57.1%), whereas remission occurred in
eight patients (38.1%). While the number of treatments did not
differ between the 12 responders and 9 non-responders (10.3 and
12.1, respectively), there was a significant difference in the number
of treatments between the 8 remitters and the 13 non-remitters
(8.3 and 12.8, respectively, p¼ 0.008).
Tryptophan metabolites in patients and controls

The comparison of serum concentrations of tryptophan and
metabolites for patients and the age and gender matched healthy
controls are given in Table 2. In the unadjusted analyses, patients
Table 2
Baseline concentrations and ratios or tryptophan metabolite and related metabolites in

Baseline values

Control Patient

(n¼ 14) (n¼ 27)

Median (IQR) Median (IQR)

Trp, mmol/L 77.2 (9.45) 75.2 (10.3)
Kyn, mmol/L 1.39 (0.47) 1.53 (0.42)
KA, nmol/L 45.3 (12.8) 37.4 (18.1)
HK, nmol/L 37.8 (7.77) 37.3 (13.3)
XA, nmol/L 15.9 (4.83) 10.2 (6.80)
AA, nmol/L 19.2 (9.15) 15.6 (6.75)
HAA, nmol/L 38.0 (13.6) 29.2 (12.6)
QA, nmol/L 318 (114) 329 (155)
Pic, nmol/L 32.9 (13.7) 25.2 (14.0)
KTR, ratioa 18.1 (4.07) 20.1 (5.62)
KA/Kyn, ratioa 31.9 (2.87) 26.1 (8.01)
KA/HK, ratiob 12.6 (1.97) 10.0 (3.20)
KA/QA, ratioc 15.2 (4.59) 10.9 (3.62)
XA/HK, ratioc 45.6 (10.8) 28.5 (14.4)
Pic/QA, ratioa 106 (37.3) 73.5 (31.3)
PLP, nmol/L 63.5 (14.4) 49.1 (34.9)
Riboflavin, nmol/L 11.9 (4.13) 14.6 (5.80)
Creatinine, mmol/L 71.8 (10.7) 73.8 (18.7)
Neopterin, nmol/L 14.3 (7.10) 17.7 (9.30)
Cotinine, nmol/L 0.49 (250) 298 (1120

Estimates and p-values from linear regression for log-transformed variables with and wit
0.05 are marked in bold. Abbreviations: Trp, tryptophan; Kyn, kynurenine; HK, 3-hydroxy
hydroxyanthranilic acid; QA, quinolinic acid; Pic, picolinic acid; PLP, pyridoxal 50-phosp

a 1000.
b 10 or.
c 100.
had significantly lower concentrations of KA, XA and Pic, as well as
lower KA/Kyn, KA/QA, XA/HK and Pic/QA, while there were no
statistical differences in measures of Trp, Kyn, HK, AA, HAA and QA
or KTR between the groups. Adjusted for cotinine, KTR was higher
while XA, KA/Kyn, KA/QA, XA/HK and Pic/QA were lower in the
patient group compared to controls.
Changes in tryptophan metabolites in MDD patients after ECT

Post-treatment blood samples were available for 21 patients, of
whom 12 responded to ECT while 9 did not. Wilcoxon analyses
showed significant increase of HAA (p¼ 0.028), Pic (p¼ 0.013), Pic/
QA (p¼ 0,018) and neopterin (p< 0.001) (Fig. 2, Supplementary
Table 1). With patients divided in subgroups based on treatment
response, there was significant increase in HK and Pic among
MDD patients compared to healthy controls.

Linear regression

Unadjusted Adjusted for

cotinine

Estimate p-value Estimate p-value

�0.07 0.18 �0.09 0.11
0.01 0.87 0.04 0.54
�0.21 0.04 �0.16 0.11
�0.07 0.46 �0.02 0.79
�0.47 0.00 �0.44 0.00
�0.11 0.26 �0.10 0.32
�0.20 0.10 �0.17 0.17
0.09 0.38 0.14 0.15
�0.29 0.01 �0.28 0.02
0.08 0.18 0.13 0.02
�0.22 0.00 �0.20 0.00
�0.14 0.16 �0.13 0.20
�0.30 0.00 �0.30 0.00
�0.40 0.01 �0.42 0.00
�0.38 0.00 �0.42 0.00
�0.19 0.21 �0.17 0.27
0.07 0.54 0.13 0.23
0.04 0.42 0.06 0.25
0.23 0.07 0.29 0.02

) 1.51 0.16

hout adjustment for log-transformed cotinine. p-values below significance threshold
kynurenine; KA, kynurenic acid; XA, xanthurenic acid; AA, anthranilic acid; HAA, 3-
hat; IQR, interquartile range. Ratios are multiplied by.



Fig. 2. MADRS and biomarker levels before and after ECT treatment. The horizontal box lines show the first (Q1), second (Q2) and third quartile (Q3). The whiskers cover all values
between Q1 - 1.5 * IQR and Q3 þ 1.5 * IQR. The p-value fromWilcoxon test of values before and after ECT is displayed for each variable. Y-axis scale is indicated below each variable's
name. Abbreviations: MADRS, Montgomery and Åsberg Depression Rating Scale; Trp, tryptophan; Kyn, kynurenine; KA, kynurenic acid; HK, 3-hydroxykynurenine; XA, xanthurenic
acid; AA, anthranilic acid; HAA, 3-hydroxyanthranilic acid; QA, quinolinic acid; Pic, picolinic acid; PLP, pyridoxal 50-phosphat; Ribo, riboflavin; Creat, creatinine; Neopt; neopterin;
Cot, cotinine.
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responders (Table 3). There was also a significant increase in neo-
pterin concentration both in responders and non-responders.
Other metabolites concentrations and ratios remained un-
changed. Analyses in remitters (n¼ 8) showed the same direction
of effect as in patients with treatment response though no changes
were significant. In the non-remitters (n¼ 13) there were signifi-
cantly increased levels of neopterin (Supplementary Table 2).
Discussion

This study aimed to investigate serum concentrations of
kynurenine metabolites in MD patients referred to ECT in com-
parison with healthy controls and to assess the effect of ECT on the
kynurenine pathway. There were three main findings:

i) Compared to healthy controls, patients had low levels of
kynurenine metabolites KA, XA and Pic and ratios KA/Kyn,
KA/QA, XA/HK and Pic/QA, indicative of an imbalance in
favour of neurotoxic substances.

ii) Comparing post-treatment to baseline concentrations, there
was no reduction of KTR as a proxy measure for inflamma-
tion, nor in the concentration of inflammation marker neo-
pterin. On the contrary, the concentration of neopterin was
significantly increased after ECT.

iii) After treatment there was an increase in patient concentra-
tions of HAA and Pic, metabolites with putative neuro-
protective properties, and in the Pic to QA ratio.

Altered kynurenine pathway metabolism has been proposed as
a link between mild chronic inflammation and depressive symp-
toms [5e7]. Inflammation can affect the kynurenine pathway both
by activation of IDO, reflected by an increased KTR, and by activa-
tion of KMO, increasing metabolism through the HK branch of the
pathway and causing an imbalance between neuroprotective and
neurotoxic metabolites. In our study, like in a recent meta-analysis



Table 3
Changes in tryptophan metabolite concentrations and ratios after ECT treatment for responders and non-responders.

Responders (n¼ 12) Non-responders (n¼ 9)

Before ECT After ECT p-value Before ECT After ECT p-value

Median (IQR) Median (IQR) Median (IQR) Median (IQR)

MADRS, score 34.0 (5.50) 8.00 (6.75) 0.00 35.0 (8.00) 23.0 (7.00) 0.01
Trp, mmol/L 73.1 (7.67) 73.9 (19.7) 1.00 75.2 (16.6) 66.9 (13.8) 0.13
Kyn, mmol/L 1.52 (0.53) 1.72 (0.41) 0.08 1.53 (0.64) 1.28 (0.26) 0.65
KA, nmol/L 38.0 (7.25) 38.7 (26.9) 0.23 29.5 (29.8) 35.6 (20.9) 0.50
HK, nmol/L 32.2 (13.7) 42.7 (12.2) 0.03 33.6 (12.9) 36.5 (26.5) 0.57
XA, nmol/L 8.79 (6.24) 11.2 (7.46) 0.20 9.71 (2.73) 11.4 (8.42) 0.65
AA, nmol/L 15.2 (4.05) 15.7 (6.53) 0.17 17.8 (6.30) 16.3 (4.90) 0.73
HAA, nmol/L 29.0 (11.3) 43.0 (20.2) 0.06 27.0 (14.1) 40.3 (17.5) 0.36
QA, nmol/L 351 (163) 367 (158) 0.14 319 (181) 385 (152) 1.00
Pic, nmol/L 25.0 (9.10) 34.2 (14.6) 0.03 21.3 (18.6) 29.4 (8.30) 0.20
KTR, ratioa 19.6 (6.89) 22.8 (9.11) 0.09 20.8 (4.68) 20.1 (4.29) 1.00
KA/Kyn, ratioa 27.4 (8.64) 25.3 (11.0) 0.47 25.5 (11.0) 28.5 (6.28) 0.36
KA/HK, ratiob 10.7 (4.66) 10.9 (4.49) 0.85 9.51 (1.99) 12.6 (5.77) 0.65
KA/QA, ratioc 10.9 (6.39) 12.1 (4.51) 0.52 10.9 (1.95) 10.7 (4.73) 0.50
XA/HK, ratioc 24.3 (13.9) 26.8 (11.3) 0.91 26.1 (9.13) 31.2 (12.5) 0.57
Pic/QA, ratioa 7.48 (3.43) 9.84 (3.84) 0.06 5.99 (1.94) 6.65 (4.13) 0.25
PLP, nmol/L 40.1 (35.0) 40.9 (16.0) 0.47 48.9 (30.3) 56.5 (66.8) 0.73
Riboflavin, nmol/L 13.7 (5.25) 13.0 (6.90) 0.96 11.4 (5.32) 12.2 (12.1) 0.73
Creatinine, mmol/L 73.5 (13.6) 75.5 (10.4) 0.47 76.6 (18.7) 71.3 (16.5) 0.03
Neopterin, nmol/L 19.4 (9.43) 24.4 (8.00) 0.03 16.0 (12.7) 21.4 (10.4) 0.01
Cotinine, nmol/L 432 (1138) 480 (1265) 0.12 2.34 (1030) 0.00 (709) 0.55

Wilcoxon paired test. p-values below the significance treshold 0.05 are marked in bold. Only patients without missing data were included (n¼ 21). Abbreviations: MADRS,
Montgomery and Åsberg Depression Rating Scale; Trp, tryptophan; Kyn, kynurenine; HK, 3-hydroxykynurenine; KA, kynurenic acid; XA, xanthurenic acid; AA, anthranilic
acid; HAA, 3-hydroxyanthranilic acid; QA, quinolinic acid; Pic, picolinic acid; PLP, pyridoxal 50-phosphat; IQR, interquartile range.Ratios are multiplied by.

a 1000.
b 10 or.
c 100.
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[36], there was no significant difference in KTR between healthy
controls and patients with MD in the unadjusted analyses. How-
ever, adjusted for cotinine, KTR was higher in patients, indicating
increased INF-g mediated activation of cellular immunity.
Furthermore, there were lower levels of KA, XA and Pic, and lower
KA/Kyn and KA/QA in patients compared to controls. This is in line
with other studies on blood and CSF samples from depressed or
suicidal patients showing an imbalance in the kynurenine pathway
in favour of neurotoxic metabolites [6,14e17,30,37,38]. Comparing
patients with healthy controls, these studies have shown higher
levels of neurotoxic kynurenines [37,38], lower levels of neuro-
protective kynurenines [6,17,30,38] and altered kynurenine ratios
with lower KA/Kyn [6,17] and KA/QA [14e16]. However, one study
found normal levels of kynurenines in depressed patients
compared to healthy controls [39].

ECT has been found to elevate KTR in a study with 23 patients
with MD [40]. Like two other studies assessing changes of KTR
during ECT [16,17], we found no such change in KTR after treat-
ment. However, after treatmentwe found significant increase in the
patient concentrations of the inflammation marker neopterin,
indicating an inflammatory response. Inflammation as response to
ECT has been demonstrated in several studies [24]. Increased levels
of proinflammatory cytokines have been observed as a short-term
effect of single ECT sessions [25e27]. In our study, the post-
treatment blood sample was drawn several days (median¼ 10
days, IQR¼ 6 days) after the last session in a series of ECT. Full series
of ECT treatments like this have mostly been associated with a
decrease in inflammation markers [27e29]. However, in a study by
Hoekstra et al. a significant increase in neopterin serum concen-
tration was detected in 20 severely depressed patients after ECT
series [41]. Similarly, after a series of ECT, Freire and colleagues
found increased levels of the proinflammatory cytokines TNF-a and
INF-g, both potent activators of kynurenine pathway enzymes IDO
and KMO, although IL-6 concentration was reduced [42].
Previous studies on changes in the balance between neuro-
protective and neurotoxic kynurenines after ECT have yielded
inconsistent results: Schwieler and colleagues [16] reported a
reduction in QA as well as in QA/KA in blood samples from 19 pa-
tients after ECT treatment. In addition to increased KTR, Guloksuz
and colleagues found increased levels of KA, KA/Kyn and KA/HK
after ECT [40]. In contrast, Olajossy and colleagues [30] found low
levels of KA in pre-treatment blood samples of 50 patients across
three diagnostic groups, but no significant increase in KA after
treatment. Similarly, Allen and colleagues [17] found low plasma
concentrations of KA and low KA/Kyn in patients before treatment,
but no increase in KA after treatment, independent of response
status. In the current study, only two kynurenine metabolites, HAA
and Pic, were significantly increased after treatment. These me-
tabolites both belong to the KMO branch of the kynurenine
pathway starting with the KMO mediated conversion of Kyn to HK.
It is interesting to note that both Pic and HAA are proposed as
neuroprotective substances and that Pic is though of as an escape
route preventing high levels of the neurotoxic QA (Fig.1) [20,43,44].

In sum, it is possible that an ECT associated inflammation
response has caused increased metabolism through KMO and the
neurotoxic branch of the kynurenine pathway. KMO is stimulated
by the same pro-inflammatory cytokines that cause activation of
neopterin producing macrophages [9,10], and higher KMO activity
could explain the observed increase in HAA and Pic.

To our knowledge this is the first study assessing a large panel of
metabolites of the kynurenine pathway of tryptophan degradation
and metabolite ratios reflecting enzymes involved in patients with
MD before and after ECT treatment. The kynurenine pathway
represents a potential mechanistic link between low-grade
inflammation in depression and neuroplasticity. However, the
small sample size, the lack of a control group of depressed patients
not receiving ECT, and the complex contribution of the various
kynurenine metabolites to the pathogenesis of depression, make it
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difficult to distinguish the antidepressant mechanisms of action of
ECT from other, nonspecific effects. Furthermore, there are impor-
tant variables, such as systemic inflammation, nutrition, BMI and
time of blood sampling, which could affect the tryptophan meta-
bolism that wewere unable to adjust for in this study. We excluded
patients with renal failure, which may increase plasma concen-
tration of metabolites with high renal clearance. Patients with so-
matic disorders other than renal failure were not excluded, and
medications for somatic and psychiatric disorder may possibly
affect concentrations of some metabolites. However, for each in-
dividual, medicationwas essentially stable during the study period,
as onlyminor changes were done in drug therapy, mainly reduction
of benzodiazepines and other substances raising seizure threshold.
Compared to population-based studies [45], the response and
remission rate in the current study are relatively low. This is
probably due to a selection bias, as the included patients were
younger and had a longer duration of the current episode, both
factors known to be associatedwith lower response rates. The small
sample size is a limitation of the study, as is the heterogeneous
study population consisting of both bipolar and unipolar depres-
sion patients. The statistical power and the ability to detect “true”
associations may be further reduced by normal variation in
metabolite concentration over time [46], and such attenuations are
likely because metabolite concentration was measured only at a
single time point before and after ECT. However, the ability to
detect biomarker status from a single measurement has been
evaluated in terms of intraclass correlation constants (ICCs) for
most kynurenine investigated, and ICCs varies in the range from 0.5
to 0.7 [47], which is considered as moderate to strong within-
subject reproducibility [48].

In summary, the current study explored the impact of ECT on a
large panel of kynurenine metabolites possibly involved in the
pathogenesis of depression. The results from the current study are
preliminary and should be followed up by studies in larger cohorts,
also including a control group of depressed patients not receiving
ECT. Future studies should also seek to measure a broader panel of
inflammation markers and should ideally include measurements
from cerebrospinal fluid (CSF). Furthermore, metabolites should be
measured before start of treatment and after a predefined number
of treatments, as well as at multiple time points after the final
treatment.

Conclusion

Patients with major depression referred to ECT showed lower
levels of neuroprotective kynurenine-pathway metabolites (KA, XA
and Pic) as well as lowered neuroprotection ratios (KA/Kyn and KA/
QA) compared to age- and sex-matched healthy controls. The re-
sults from this pilot study indicate that concentration of the
inflammation marker neopterinwas increased after ECT along with
increased levels of Pic and HAA, two kynurenine metabolites with
putative neuroprotective properties. Further research in larger co-
horts is required to conclude whether ECT exerts its therapeutic
effects via changes in the kynurenine pathway.
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