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Summary 

Understanding how competition for nutrients structures the flows of C, N, P, and 

other elements through the microbial food web may seem central to our 

understanding of the role and function of this part of aquatic ecosystems, both in 

biological and biogeochemical contexts. Competition between phytoplankton and 

heterotrophic bacteria potentially influences the species composition of the respective 

communities and the flow of carbon (C) and energy to higher trophic levels. The 

dominating hypotheses on algal – bacterial competition for inorganic substrates are 

based on studies from freshwater environments, there is relatively little work on the 

competition for organic substrates, and previous studies on this topic may seem 

contradictive. This thesis includes studies performed in nutrient manipulated coastal 

mesocosms where the algal – bacterial competition for organic and inorganic forms 

of P and N were assessed.  Algal – bacterial competition for these substrates was 

compared by means of biomass-specific affinity estimates. Biomass-specific affinity 

is regarded as the best index to measure competitive ability. However, we are not 

aware of any published papers reporting such data on organic P- and N-compounds. 

Results from two mesocosm studies, one focusing on P-competition and the other 

focusing on N-competition, demonstrates a potential for different structuring of the 

microbial food web in P- versus N-limited environments. One paper considers 

possible theoretical solutions to the coexistence of organisms competing for the same 

limiting nutrient. Traditionally, the smallest organisms have been viewed as superior 

competitors, based on a relatively constant relationship between volume and the 

intracellular content of the limiting element. However, the paper points out strategies 

in which organisms can benefit from other resources to change their stoichiometry 

and thus obtain competitive advantages, as well as predator defense.  Experimental 

evidence to support this theory was obtained from a chemostat experiment. The 

results demonstrated that Vibrio splendidus could use excess organic C (glucose) to 

increase in size thereby optimizing uptake of the limiting element (P).  
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Introduction 

As osmotrophic organisms, both bacteria and phytoplankton take up mineral nutrients 

through transport proteins located in their cell walls. Because of restricted 

permeability of the phytoplankton plasma-membrane and the bacterial cytoplasmic 

membrane, polymeric or phosphorylated organic compounds must be hydrolyzed 

before uptake in order to be available for osmotrophic organisms (for reviews, see 

Paul 1983; Cembella et al. 1984; Nikaido and Vaara 1985; Ammerman 1991; Berman 

and Bronk 2003; Hoppe 2003). Extracellular enzymes produced by osmotrophs 

hydrolyze substrates external to the cell, and are either excreted to the water-phase by 

the organisms or bound to the cell membrane (Wetzel 1991). The released molecule 

may thus be intermediately mixed into the background ambient pool of free inorganic 

mineral nutrients, or be physically connected to the cell before its uptake, potentially 

shifting competition to favour those organisms that possess membrane-bound 

enzymes. The hydrolysis of inorganic molecules from organic or other complex 

compounds, soluble or particulate, in which the hydrolyzed inorganic molecule is 

released outside the cell, is often referred to as regeneration. 

 Until 1983, when Azam et al. formalized the concept of the “microbial loop”, 

bacteria were regarded as remineralizers, i.e. responsible of transforming organic 

material to inorganic, thus recycling nutrients to the primary producers. The basis for 

the “microbial loop” (Figure 1) is that large amounts of dissolved organic 

extracellular products are produced by prokaryotes and small eukaryotes. The 

released energy, in the form of dissolved organic matter (DOM), is returned to the 

main food chain through the microbial loop by bacteria, flagellates and ciliates. 

Bacteria, excreting minerals and respiring carbon (C), have the advantage of a large 

surface to volume ratio and compete efficiently with phytoplankton for the mineral 

nutrients. The competition is influenced by flagellates controlling bacterial 

abundance. Heterotrophic flagellates and ciliates then remains as remineralizers; 

bacteria and phytoplankton as consumers (Azam et al. 1983).   
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Figure 1: A simplified diagram of an aquatic food web emphasizing the microbial loop connecting 

heterotrophic bacteria, phytoplankton, grazers, viruses and DOM.  Osmotrophs both take up and excrete 

inorganic nutrients, thus arrows between these indicate net flow. 

 

The dynamic behaviour of the “microbial loop” depends on the interacting ecological 

relationships of commensalism, competition, predation (Azam et al. 1983) and 

parasitism in the sense of bacterial (Bergh et al. 1989) and algal (Bratbak et al. 1993) 

virus infection. Competition for mineral nutrients is found between phytoplankton 

and bacteria and is influenced by predation and parasitism. Mineral nutrient limitation 

seems to stimulate phytoplankton excretion of extracellular organic C (EOC). 

Bacterial growth on EOC requires additional uptake of mineral nutrients. 

Commensalism thus occurs in the production of EOC by phytoplankton and 

utilization by bacteria. This competition – commensalism relationship between algae 

and bacteria is known as the ‘phytoplankton-bacteria paradox’ (Bratbak and 

Thingstad 1985) because phytoplankton stimulate their competitors to take up the 

lacking nutrients. The regeneration of mineral nutrients resulting from predation and 
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parasitism will provide a feedback of some of the material flows within the microbial 

loop. The net effect of the loop is to convert organic material to dissolved inorganic 

nutrients. However, the flux patterns are a result of intricate interactions of a diverse 

biota with a complex pool of organic matter. Thus, the classical version of the 

microbial loop (Figure 1) is a conceptual model simplified to emphasize the major 

path for DOM in the pelagic food web. But, as pointed out by Azam (1998), this 

approach should serve as a unifying theme and a framework to understand the 

maintenance of microbial diversity. Nevertheless, as predicted by Azam in the same 

paper: “It now seems that things will get even more complicated before they get 

simpler”...... 

 While phytoplankton acquires inorganic C while obtaining energy from light, 

heterotrophic bacteria get these from organic material. However, since the DOM-pool 

is very complex and poorly characterized, little is known about the utilization of 

various components of the DOM-pool. In principle, the algal – bacterial competition 

for major nutrients as dissolved organic phosphorus (DOP) and dissolved organic 

nitrogen (DON) may be shifted relative to the competition for the inorganic forms. 

This competition is to a large extent dependant upon the enzyme apparatus of the 

organisms. The competition for DOP, where both bacteria and algae are known to 

produce enzymes for the utilization of phosphorus (P) from organic substrates 

(Chróst 1990; Hoppe 2003), may be shifted relative to the competition for DON, 

where bacteria are traditionally expected to be more superior in the competition for 

nitrogen (N) (e.g. amino acid-N; Paul 1983; Berman and Bronk 2003). The principal 

questions of how uptake of P and N from the DOM-pool (Figure 1) is distributed 

between bacteria and phytoplankton, and which mechanisms regulate this 

distribution, is however unresolved (cf. Flaten et al. 2005; Andersson et al. 2006). In 

order to make reliable conceptual and mathematical models of the marine ecosystem, 

we need answers to these questions.   
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Scope of the study 

The purpose of this study was to find answers to the questions:  

(1) Is the uptake distribution of, and hence the algal – bacterial competition 

for, organic dissolved P and N between phytoplankton and bacteria 

different from the distribution of the inorganic dissolved forms?  

(2) Does algal – bacterial competition for P in P-deficient systems differ from 

the algal – bacterial competition for N in N-deficient systems, i.e. is the 

answer to (1) different in the P and N cases? 

 

Paper I and Paper II relate to the algal – bacterial competition for the potentially 

limiting nutrients P and N. The algal – bacterial competition for dissolved inorganic P 

(DIP; e.g. orthophosphate ( −3
4PO )) and DOP (e.g. ATP and dissolved DNA (dDNA)) 

was studied in mesocosms manipulated to varying degrees of P-deficiency and 

organic-C status, situated off the southwest coast of Finland in the Baltic Sea (Paper 

I). The algal – bacterial competition for dissolved inorganic N (DIN; e.g. ammonium 

( +
4NH ) and nitrate ( −

3NO )) and DON (e.g. leucine), as well as the competition for 

DOP and DIP, was studied in a mesocosm manipulated to an increasing degree of N-

deficiency, situated in a western Norwegian fjord (Paper II). 

Two papers address related topics such as life strategies to optimize uptake and 

minimize predation in pelagic osmotrophs, with particular interest on the effect of 

morphology and intracellular elemental composition on the uptake of limiting 

nutrients in heterotrophic bacteria. Paper III offers theoretical solutions to the 

coexistence of osmotrophs competing for one common limiting nutrient, focussing on 

different life strategies of competition specialized and defence specialized organisms. 

A laboratory study offering some experimental support for the strategy hypothesized 

in Paper III is presented in Paper IV.  
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Uptake of phosphorus and nitrogen; - algal – bacterial competition 

Through the normal processes of cell growth, exudation, and cell death by the 

combined contributions of autolysis, viral infection, and grazing, there is a continual 

production of dissolved nutrients, especially in the euphotic zone of the ocean. P and 

N are essential mineral nutrients known to limit the growth of osmotrophs in much of 

the world’s oceans and lakes.  The inorganic forms, as orthophosphate (Björkman and 

Karl 1994; Paper I) and ammonium (Veuger et al. 2004; Paper II), are the preferred 

sources of P and N, respectively, in marine osmotrophs. The bulk of the organic P 

(Cembella et al. 1984; Chróst 1990) and N (Paul 1983; Berman and Bronk 2003) 

resources require enzymatic hydrolysis prior to uptake by osmotrophs. Thus, when 

the inorganic forms are depleted from the environment, the nutrient acquisition 

capacity, and hence, the competitive ability of the organisms, is largely determined 

by their potential of enzymatic dissolution of organic matter. Because substrate 

molecules in nature generally occur at very low concentrations, the substrate uptake 

and growth of osmotrophs may also be limited by diffusion transport towards the cell 

rather than by physiological constraints. Diffusion theory then states that the 

competitive ability is determined by the size and shape of the cell, and the internal 

concentration of the limiting element. 

 

Utilization of dissolved P 

Orthophosphate ( −3
4PO ) represents less than 25% of the total dissolved P-pool in 

marine surface waters (Karl and Yanagi 1997). The remaining part of the P-pool is 

not yet extensively chemically characterized, but is dominated by low molecular 

weight (<10 kilo Dalton (kDa)) DOP in surface waters (Ridal and Moore 1990; 

Suzumura et al. 1998) and is believed to mainly consist of P esters (C-O-P bond 

structures including phosphoproteins, sugar phosphates, nucleotide phosphates and 

nucleic acids), phosphonates, and perhaps smaller amounts of pyrophosphates, 

inorganic polyphosphates and other inorganic derivatives (Karl and Yanagi 1997). 
−3

4PO  is considered the form of P preferentially utilized by both bacteria and algae, 
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but the available fraction of the DOP-pool is also actively utilized (Bentzen et al. 

1992; Paper I). 

 Regeneration of −3
4PO  from organic compounds is a result of hydrolytic 

degradation by free and cell-surface bound enzymes of phytoplankton and bacteria. In 

the marine environment, alkaline phosphatase (AP) and 5’-nucleotidase (5PN) are the 

enzymes which contribute most significantly to −3
4PO  regeneration (Cembella et al. 

1984; Ammerman and Azam 1985). AP activity (APA) is sensitive to low −3
4PO  

concentrations, and is therefore often used as an indicator for phosphate limitation 

(Hoppe 2003). AP, which is specific for the monophosphate ester bond, is found in 

highly variable amounts, in both bacterial and algal size fractions, as well as in the 

free dissolved state (Hoppe 2003). Studies in estuarine and marine environments have 

shown that the activity of the membrane bound 5PN, which hydrolyzes 5’-nucleotides 

and regenerates −3
4PO , is usually concentrated in the bacterial size fraction 

(Ammerman and Azam 1985; Ammerman and Azam 1991a; Siuda and Güde 1994). 

This corresponds to the findings that 5’-nucleotides and dissolved DNA (dDNA) are 

taken up primarily by bacteria in marine (Paul et al. 1987; Turk et al. 1992) and 

freshwater environments (Siuda and Güde 1996; Siuda et al. 1998). Nevertheless, 

both AP and 5PN activities have been found in phytoplankton, as well as in bacteria 

(Cembella et al. 1984).  

 Traditional methods for the measurement of enzyme activity in the field only 

allows for assessment of bulk activities. Size fractionation of enzymes is often 

difficult, and it is not easy to decide the origin of dissolved enzymes. Hence, only the 

physiology of the general microbial population can be identified. Therefore, the 

application of a novel method using the ELF-97 phosphate substrate, allowing for 

direct microscopic detection of enzyme activity, has been widely used to determine 

cell-specific APA in recent years (González-Gil et al. 1998; Rengefors et al. 2001; 

Dyhrman et al. 2002; Strojsová et al. 2003; Lomas et al. 2004). This method applied 

to natural phytoplankton (Rengefors et al. 2001; Strojsová et al. 2003; Lomas et al. 

2004) showed differences in the presence and localization, and seasonal variations, of 
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APA in the phytoplankton community. It thus provides a promising tool to obtain 

more detailed information about the ecology of specific organisms in their natural 

environment. If this method is further developed so that it can also be applied to 

natural heterotrophic bacteria, one may come closer to an answer to the often asked 

question (cf. Cotner and Biddanda 2002; Tanaka et al. 2003): how large fraction of 

total bacteria counts is actually active in uptake? 

  There is uncertainty as to whether phytoplankton or heterotrophic bacteria is 

more efficient in sequestering orthophosphate from the environment or in using DOP 

as a source of P. In general, the experimental results have indicated that heterotrophic 

bacteria are more competitive in taking up orthophosphate (Currie and Kalff 1984; 

Berman 1988; Jürgens and Güde 1990), suggesting that algae may rely on DOP as a 

supplemental source of P (Tarapchak and Moll 1990; Cotner and Wetzel 1992). It has 

long been known that algae have the ability to utilize DOP in the absence of 

inorganic P (Kuenzler and Perras 1965), but their efficiency in obtaining P in natural 

environments in competition with heterotrophic bacteria is unresolved. The existence 

of high-affinity P transport systems (Chróst and Overbeck 1987; Ammerman and 

Azam 1991b) and the presence of the enzyme 5PN in bacteria (Ammerman and 

Azam 1985) together appear to contribute to their competitive advantage. The 

available data, however, are incomplete and, in part, contradictory. This could be the 

result of natural variability among the different habitats investigated, or it may reflect 

actual differences in community composition in these studies. As an example, the 

dominance of DOP uptake by phytoplankton during warm water conditions in 

subtropical coastal waters (Huang and Hong 1999) as opposed to bacterial 

domination in mesocosms experiments outside the coast of Finland  (Tamminen 

1989; Paper I), could be assumed to be an effect of the different water temperatures 

at the two sites. APA in algae can increase by a factor of two as the ambient 

temperature doubles, but this does not mean that activity for a particular species is 

necessarily highest at the time of year when field temperatures are highest 

(Hernández et al. 2002). Similarly, the notion that phytoplankton appear to be unable 

to utilize dDNA in P-deficient freshwater systems (Siuda et al. 1998) as opposed to 

significant uptake by coastal phytoplankton (Paper I; Paper II), may be an effect of 
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differences in water chemistry, as well as in species composition. Several enzymes 

involved in the degradation of nucleic acids require the metal ions and salts of sea 

water to function optimally (Rangarajan and Shankar 2001).   

 In the mesocosm experiment presented in Paper I, we demonstrated tight 

coupling between DOP hydrolysis and uptake in P-starved mesocosms. When the 

algal – bacterial competition for inorganic and organic P was assessed by means of 

their respective biomass-specific affinities, we found that bacteria dominated the 

competition for all P substrates, although phytoplankton could take up significant 

proportions. No statistically significant shift in algal – bacterial competition for DOP 

relative to orthophosphate was found. Our data strongly suggest that competition 

should be assessed by means of specific affinity and not only as relative uptake in 

different size fractions or by kinetic parameters. In the mesocosm receiving organic 

C, a subpopulation of large, filamentous bacteria developed. We estimated this 

population to have high biomass-specific affinity for P-uptake.  Our data from Paper 

I thus shows that the P competition between compartments of marine osmotrophs is 

influenced by the availability of labile organic C. Additionally, the data corroborate 

that both phytoplankton and bacteria possess enzymes for the utilization of DOP 

(Ammerman 1991), and challenge the traditional view that bacteria must be small in 

order to compete efficiently for limiting nutrients. Since the affinity data for P-uptake 

in the large bacteria fraction were obtained based on conventional conversion factors 

for biomass estimates and separation of algal and bacterial processes calculated from 

simple principles (Paper I), some uncertainty is associated with these values. 

However, several lines of evidence, both theoretical (Paper III) and experimental 

(Paper IV), show that large cells with small surface to volume ratios, contrary to the 

traditional view, can take up limiting nutrients very effectively and thus dominate 

competition, provided that they keep the intracellular content of the limiting element 

low in proportion to their size. 
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Utilization of dissolved N 

+
4NH  is considered the form of N preferentially utilized by marine osmotrophs but 
−
3NO  and the available fraction of the DON-pool is also actively utilized (Veuger et 

al. 2004; Jørgensen 2006). +
4NH  uptake by bacteria varies strongly in different 

regimes and may effect the phytoplankton dynamics in N-limited as well as in non N-

limited systems (Kirchman and Wheeler 1998). −
3NO  is generally not thought to be 

important as an N-source for heterotrophic bacteria because they are often energy 

limited, hence the energy consuming reduction of −
3NO  is not favourable (Kirchman 

1994). Many studies have concluded that −
3NO  uptake by bacteria is negligible 

(Eppley et al. 1977; Wheeler and Kirchman 1986; Kirchman 1994). Nevertheless, 
−
3NO  taken up by bacteria can account for a fraction as high as, or higher than, +

4NH  

uptake (Kirchman and Wheeler 1998; Allen et al. 2002).   

 The DON fraction is dominated by proteins, nucleic acids and humic-like 

substances, and lower molecular weight compounds (<10 kDa) as peptides, urea, 

dissolved free amino acids (DFAA), purines, pyrimidines, pteridines and amides. 

Even though there has been progress understanding the DON-pool recently, much of 

it remains chemically uncharacterised, and the exact composition of the pool is 

unknown. The interaction of DON in the N-cycle is very complex and so far poorly 

understood (reviewed by Paul 1983; Berman and Bronk 2003). The former view of 

DON being an inert pool has been reversed in recent years. High turnover rates 

suggest that many DON-compounds are cycled very rapidly, and evidence for the 

biological cycling of DON has been given by stable isotope measurements (Benner et 

al. 1997; Veuger et al. 2004). The concentration of DON often exceeds that of DIN 

and may account for as much as 30-50% of daily phytoplankton N-demand (Benner 

et al. 1997).  

 Peptides and proteins make up the majority of the organic N-pool (Berman and 

Bronk 2003). Free amino acids are meant to be among the main sources of organic N 

to bacteria and phytoplankton, and therefore constitute a major link in the marine 
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food web. Amino acids are rapidly taken up by heterotrophic organisms for protein 

synthesis and bacterial growth (Hollibaugh and Azam 1983). Although heterotrophic 

uptake by bacteria has long been recognized as the major process removing amino 

acids from sea water (Paul 1983; Billen 1984), it has also been shown that algae can 

grow on some amino acids (Ietswaart et al. 1994; Pantoja and Lee 1994; Palenik and 

Henson 1997). Laboratory experiments leave no doubt that the majority of aquatic 

algal species are able to utilize common organic N-compounds as N sources for 

growth if sufficient substrate concentration is provided and enough time is allowed 

for metabolic adaptation (e.g. Antia et al. 1975; Berland et al. 1979). These studies, 

however, used axenic batch cultures growing on high initial concentrations of organic 

N substrates, thus the ability of organisms to exploit the much lower concentrations 

encountered in the environment in situ is unclear. Nevertheless, it seems reasonable 

that the utilization of DON by different populations of bacteria and algae can vary 

considerably (Berman and Bronk 2003).  

 Bacteria have been viewed as the main consumers of DON, whereas 

phytoplankton are, in general, thought to require mainly mineral N (and urea) 

regenerated by bacteria or from remineralization processes in the subphotic (‘new 

production’) or the photic layer (Eppley et al. 1973; Paul 1983; Billen 1984). 

Phytoplankton may utilize urea produced by bacteria during degradation of purines 

and other DON-compounds (Vogels and van Der Drift 1976). When available, 

bacteria prefer +
4NH  and amino acids to urea as a source of N, despite all compounds 

contain reduced N (Jørgensen 2006). In 1983, Hollibaugh and Azam concluded, 

contrary to the then present view, that dissolved enzymes were not important in 

protein degradation in natural sea water. They showed that proteins were hydrolyzed 

rapidly by bacteria, with exoproteases structurally bound to their cell membranes, and 

that only minor fractions of the amino acids hydrolyzed from proteins were mixed 

with the bulk phase (Hollibaugh and Azam 1983). Consistent with this view, 

proteolytic activity is often associated with the bacterial size fraction (Billen 1984; 

Rego et al. 1985; Rosso and Azam 1987). Nevertheless, a recent study using a wide 

array of peptide analogous substrates (Obayashi and Suzuki 2005) indicates that most 
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previous studies focused on degradation of proteins and peptides have significantly 

underestimated proteolytic enzyme activity. 

 Although bacteria are still assumed to be the major clients for utilizing proteins 

and amino acids in aquatic environments, it is now apparent that many phytoplankton 

species possess enzymes to use these as N-sources. Proteolytic activity has been 

found in association with eukaryotic algae (Berges and Falkowski 1996) and non-

nitrogen-fixing cyanobacteria (Martinez and Azam 1993; Zubkov and Tarran 2005), 

but there has been little work to quantify its importance to the nutrition of these 

organisms. One important question is whether cyanobacteria, being a diverse group 

of prokaryotic algae with cell envelope characteristics similar to those of their 

eubacterial counterparts (reviewed by Hoiczyk and Hansel 2000), are more like 

heterotrophic bacteria or eukaryotic algae in their uptake of mineral nutrients. 

 Another way of amino acid utilization in bacteria and phytoplankton is by 

virtue of possessing cell surface amino-oxidases (Palenik and Morel 1990; Pantoja 

and Lee 1994; Mulholland et al. 1998). This extracellular process involves the cell-

surface oxidation of L-amino acids or other primary amines to produce an oxidized 

organic product, (α-keto acid or aldehyde, respectively), peroxide, and +
4NH . The 

ammonium produced is assimilated by the cells, whereas the organic product and 

peroxide remains in solution. The use of this mechanism should be energetically 

preferred when the concentration of +
4NH  is low because it does not require synthesis 

of different transport enzymes necessary for processing amino acids (Palenik and 

Morel 1990). Pantoja and Lee (1994) showed that amino-oxidation rates can 

constitute as much as 40% of the total DFAA removal rate and can be done by 

phytoplankton at rates similar as those of bacteria. However, in the field, cell-surface 

oxidative deamination has only been detected at significant rates when the water 

temperature exceeds 20°C (Pantoja and Lee 1994; Mulholland et al. 1998), possibly 

explaining some of the variability in DON-uptake among the different habitats 

investigated.    
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 In Paper II, we explored the algal – bacterial competition in an N-deficient 

mesocosm and found that the algal community, dominated by Emiliania huxleyi, had 

significantly lower biomass-specific affinity for N derived from leucine, and 

significantly higher affinity for DIN, than heterotrophic bacteria. This contrasted the 

P-competition situation (Paper I), where no significant shift in algal – bacterial 

competition for DOP relative to orthophosphate was found. Because of the different 

community composition in the two investigations, (the phytoplankton community 

described in Paper I was dominated by N2-fixing cyanobacteria (Olli et al. 2005)), 

one should be careful to conclude that the competition for N is shifted compared to 

the competition for P.  

 

Is the microbial food web differently structured in P-limited vs. N-limited systems? 

We do not know if the dominating algal species in Paper I (N2-fixing cyanobacteria) 

and Paper II (E. huxleyi) represents average competitors for P and N, respectively. 

Thus, a direct comparison of the competition situation in the two systems does not 

allow firm conclusions whether the algal – bacterial competition shifts between P-

limited and N-limited systems. N2-fixing cyanobacteria (eg. Trichodesmium spp.) are 

considered poor competitors for DIP, but with a high potential for utilizing DOP 

(McCarthy and Carpenter 1979; Moutin et al. 2005). However, at higher DIP 

concentrations, Trichodesmium spp. can compete efficiently with other algal species 

(Fu et al. 2005). Compared to other algal species, E. huxleyi compete poorly to 

moderately for DIN (Riegman et al. 1992; Riegman et al. 2000), but rather good for 

neutral amino acids (Ietswaart et al. 1994; Palenik and Henson 1997). There are 

however a great variation in uptake efficiencies between strains in both 

Trichodesmium (Fu et al. 2005) and E. huxleyi (Paasche 2002).  

 Anyway, the results from studies such as those mentioned above, could 

support theories that (1) phytoplankton use DOP as an alternative source for P in 

phosphate depleted environments (cf. Cotner and Wetzel 1992), and DON as an 

alternative source of N in DIN-poor parts of the ocean (cf. Paasche 2002), hence, 
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phytoplankton rely on uptake from organic substrates in both P limited and N limited 

environments, thus the algal – bacterial competition may not be shifted between the 

two systems. Alternatively, as already mentioned, (2) in P-limited environments, 

where algae and bacteria both are believed to harbour enzymes for the utilization of 

DOP, competition is shifted compared to N-limited environments where bacteria 

dominate uptake of N from DON. 

 In Paper I we found no shift in the algal – bacterial competition for DOP 

relative to DIP. From (1), assuming N2-fixing cyanobacteria to compete good for 

DOP and poorly for DIP compared to other algae, one may expect the algal 

community to compete relatively better against bacteria for DOP than for DIP, but 

they did not. In Paper II, phytoplankton were superior in the competition for DIN, as 

were bacteria in the competition for DON, although E. huxleyi is regarded a fairly 

good algal competitor for DON but a poor competitor for DIN. Data from our 

experiments presented in Paper I and Paper II, thus supports the latter hypothesis 

(2); that bacteria and algae both utilize, and compete against each other, for DOP in 

P-limited systems, but in N-limited systems, bacteria do not experience significant 

competition from algae for DON.  

 If the competition for DON is indeed entirely dominated by bacteria, this 

changes the food web structure, since there will be a pool of dissolved N restricted to 

bacterial utilization. One effect of this would be that the probability of C limitation of 

bacterial growth could be larger in N-deficient regions than in P-deficient regions 

(Thingstad 2000a). Under such conditions, bacteria and phytoplankton thus not 

function as competitors for N, but rather that bacteria are remineralizers of N, 

supplying inorganic N to phytoplankton (Thingstad 2000a), adding another aspect of 

competition and commensalism to the concept of the microbial loop (Figure 1). This 

may also have implications for the climate through the global C-cycle, because DOC 

will be expected to accumulate faster in P-deficient compared to N-deficient systems.  
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Nutrient limitation and affinity 

The term nutrient limitation is not easy to define, but has been used rather loosely to 

indicate a state where a lack of one or more nutrients restricts osmotroph growth rate. 

There is an important difference between physiological limitation and systemic 

limitation, although both are closely linked (Paasche and Erga 1988; Thingstad and 

Rassoulzadegan 1995). Physiological nutrient limitation refers to a situation where 

the nutrient supply is too low to support essential metabolic processes, thus the 

growth rate of individual cells is reduced. Systemic nutrient limitation would be the 

limitation on total biomass in the system caused by the restricted amounts of nucleic 

acids, proteins or other essential cell components which can be formed on the 

restricted amount of the nutrient available (Thingstad and Rassoulzadegan 1995). 

This type of limitation would be demonstrated by an increase in biomass following an 

addition of the limiting nutrient to the system, and thus reflects the ability of the 

system to convert additional nutrients to new biomass. The coupling between 

physiological and systemic limitation may be illustrated by simple food chain models 

of the type analyzed by Thingstad and Sakshaug (1990) who suggested a model in 

which low total concentration (sum in all biological and biologically available pools) 

of the limiting nutrient in the photic zone would correspond to a food chain based on 

primary nutrient uptake in small-sized organisms, few predator levels with inefficient 

recycling, and a strong physiological limitation of the organisms doing the primary 

uptake. Increased total concentration of available nutrients would shift the 

equilibrium towards more predator steps with more recycling and less physiological 

nutrient limitation at the bottom of the food chain and, at sufficiently high total 

nutrient concentration, to the introduction of larger primary producers. 

 Hence, using P as an example; with most of the total P-pool (PT) in the 

orthophosphate pool, physiological limitation will be small or absent. With most of 

PT immobilized in osmotrophs biomass, there will be severe competition and high 

physiological limitation. In a system dominated by phagotrophs, however, the 

biomass of competitors will be small, the recycling rapid, and the physiological 

limitation reduced. 
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 Because the natural osmotroph community consists of species and groups with 

different nutrient demands and uptake kinetics, some osmotrophs may be under 

physiological limitation but others are not. In Paper I, we therefore use the less strict 

term ‘deficiency’ to illustrate that nutrient supply (e.g. P) is suboptimal for growth, 

while the term ‘limitation’ is restricted to a situation where most osmotrophs can be 

assumed to be under physiological limitation. However, the definition of limitation 

and deficiency for a mixed community is not as absolute as for a single species. 

  

Detection and diagnosis of nutrient limitation 

Dissolved nutrient concentrations were the earliest data used to indicate the trophic 

status of waters, and their ratios to infer nutrient limitation. It has later been 

acknowledged that nutrient limitation can not be assessed from dissolved nutrient 

data alone because of insufficient analytical capacity of the techniques applied (see 

Dodds 2003), and such data should not be used uncritically to calculate fluxes of 

nutrients in aquatic ecosystems. Hence, several researchers choose to base the 

bioavailable nutrient concentrations on kinetic experiments (Rigler 1966), methods 

that take advantage of the physiological response of inducible/ repressible enzymes 

(Thingstad and Mantoura 2005), or turnover time and rate (Thingstad et al. 1996; 

Moutin et al. 2002). One experimental basis for the latter is that the ambient −3
4PO  

concentrations can be estimated by multiplying −3
4PO  turnover times by −3

4PO  uptake 

rate derived from stoichiometric conversion of carbon based primary and bacterial 

production (Moutin et al. 2002). The rationale of this estimation is explained in detail 

elsewhere (Flaten et al. 2005; Tanaka et al. in press), but is briefly that −3
4PO  uptake 

by osmotrophs is proportional to their biomass and the ambient −3
4PO  concentration. 

Hence, assuming P-limitation of growth, the specific P-requirement calculated from 

production can be set to equal the in situ P uptake rates. This value multiplied by the 
−3

4PO  turnover time then corresponds to the concentration of bioavailable −3
4PO . Data 

in Paper I suggest that the molybdenum blue method to estimate soluble reactive P 

(SRP; see Karl and Yanagi 1997; Tanaka et al. in press) may overestimate the actual 
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bioavailable −3
4PO  concentration ten fold compared to values estimated by this 

approach. In theory, this method can also be applied to estimate bioavailable DIN in 

N-limited waters; the methodology is however limited by the difficulties in obtaining 

reliable DIN turnover times because the stable 15N-isotope technique does not allow 

for true tracer 15N enrichment when ambient concentrations are low, typically below 

the detection limit of chemical methods (Paper II). 

 Chemical composition and physiological measurements have been used to 

determine if osmotrophs are nutrient limited (Sakshaug and Olsen 1986; Vadstein et 

al. 1988). The experimental basis for such measurements is the Droop model, in 

which the internal stores of nutrients determine nutrient uptake and growth rates. 

Given the cellular quotas of limiting nutrients, one can examine the nutritional status 

of osmotrophs by simple models. The results presented in Paper IV demonstrate, 

however, that in methods applying elemental biomass not based on direct 

measurements, conversion factors should be locally derived and connected to the size 

of the organisms and the dominating species, at least factors used to calculate 

bacterial biomass. This is discussed in more detail later. 

 Nutrient enrichment bioassays have been widely applied for experimentally 

assessment of nutrient limitation. Based on the assumption that enrichment of 

potentially limiting nutrients will be followed by a measurable response, these 

experiments are often simple to carry out in small scale experiments (Paper IV), but 

may be difficult to interpret in high level systems (i.e., mesocosms; Paper I, Paper 

II) and the natural situation. Such studies will, however, be hampered by the 

questions of potential effects from water manipulation and confinement. Enzyme 

activity (Hollibaugh and Azam 1983; Sala et al. 2001; Hoppe 2003) and the velocity 

of uptake of added tracers (Bentzen et al. 1992; Andersson et al. 2006) are often used 

as indicators for nutrient status of natural systems. Related to osmotroph biomass, 

these parameters can serve as diagnostic tools for the detection of limitation (Nausch 

1998; Tanaka et al. in press; Paper I; Paper II).  
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Biomass-specific affinity 

Biomass-specific affinity is defined as the volume of water cleared for substrates per 

unit biomass per unit time. Biomass-specific affinity is thus analogous to the 

clearance rate of a phagotrophic organism. The relation between maximum biomass-

specific affinity (αmax) and the Michaelis-Menten parameters maximum biomass-

specific uptake rate (vmax) and half saturation constant (K) is illustrated in Figure 2.  

Biomass-specific uptake rate (v) is here V/B, were B is the biomass; hence, vmax is 

Vmax/B. 

 

 

 

 

 

 

 

Figure 2. Relationship between the Michaelis-Menten parameters and affinity. At substrate concentrations to 

the right of the line denoted the affinity constant the enzymatic apparatus of the organisms define their uptake 

capacity. Maximum biomass-specific affinity corresponds to the constant part of the slope of the Michaelis-

Menten-curve at origo where the substrate concentration (S) approaches zero (hatched area). The affinity 

constant defines the maximum uptake capacity for the organisms; thus assuming that all molecules hitting the 

cell surface are taken up.  

 

The theoretical maximum biomass-specific affinity, denoted αmax in this thesis, can be 

described through the equation αmax = Vmax/KB. Vmax and αmax describes how efficient 

organisms take up substrates at high and low substrate concentrations, respectively. 

K, however, has no such clear function. Biomass-specific affinity is thus regarded as 

the best index to measure competitive ability.  

v

S

vmax

½ vmax

K

Slope = affinity
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 Throughout the papers presented in this thesis, the term ‘theoretical maximum 

affinity’ has been used in stead of ‘affinity constant’. When normalizing affinity to 

the biomass of algae or bacteria, this is termed biomass specific affinity (α) (in 

algae/phytoplankton or bacteria, respectively). When normalizing affinity to the 

summed biomass of algae and bacteria, this is termed S-affinity (S-α).  

 In Paper I, II, and IV we applied the procedure to estimate  biomass-specific 

affinity from experimental data as proposed by Thingstad and Rassoulzadegan 

(1999). This procedure relies on accurate measurement of turnover time for the 

substrate in question, which necessitates addition of tracer amounts of the respective 

substrate. This is generally not a problem when radiolabelled 33P-compounds are 

applied because of its high specific affinity. However, the 15N mass spectrometry 

technique applied in Paper II did not allow this, thus our turnover time values for N 

uptake are overestimates, and hence the biomass-specific affinities are 

underestimates. Other sources of artefact are discussed in Paper II; these are the 

uncertainty associated with the use of conversion factors, the active fraction of 

bacteria, and the limitations posed by mechanical separation of algae and bacteria.  
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The concepts of diffusion limitation and maximum affinity 

At low ambient substrate concentrations, the uptake efficiency and competitive 

ability of the organism is characterized by the biomass-specific affinity. In Paper I 

and Paper II we compared biomass-specific affinity values derived from 

experimental data, and the theoretical maximum, to assess limitation and competitive 

ability.   

 

Diffusion theory 

A well-established biophysical theory, derived from Fick’s first law and based on the 

geometrical features of the simplest case of a spherical osmotroph organism, 

describes the size dependence of resource acquisition under nutrient limited 

conditions. Here, nutrient uptake (U) per unit cell volume (V) depends on nutrient 

diffusion to the cell surface: 
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where D is the substrate diffusion coefficient, r is cell radius and ΔC is the 

concentration gradient of nutrient from the cell surface to the concentration in the 

bulk media. Assuming that the cell is diffusion limited, i.e., that the cell’s uptake 

system is so efficient (and the bulk nutrient concentration so low) that all substrate 

molecules hitting the cell surface are captured; it is possible to derive a theoretical 

expression for maximum biomass-specific affinity (αmax) from Equation 1 (Paper 

III):  

 αmax = 3D/σr2   (2) 

σ is here the intracellular concentration of the element in question. Since αmax 

decreases with the inverse square of cell radius, small cells should be superior to 

larger ones in the competition for nutrients when nutrient diffusion transport towards 

the cell, - and not hydrolysis, is the limiting step. This has led to one of the central 
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dogmas within modern microbiology, which is now textbook knowledge; that being 

small, with a large surface to volume ratio, permits the cell to take up limiting 

nutrients more efficiently than larger cells. This is based on the principle that the 

cellular content of the required element is roughly proportional to cell volume, i.e., 

that σ is constant. However, this is not entirely true, as repeatedly demonstrated (see 

references in Paper III). As discussed in Paper III, any strategy to increase size 

without a proportional increase of the intracellular content of the limiting element 

will give a competitive advantage.  

 Equations 1 and 2 are however only valid for spherical cells. To apply for non-

spherical cells, one may introduce the term conductance (G), which is determined by 

the shape of the cell. Nutrient uptake can then be expresses as U = GDΔC and 

Equation 2 can be rewritten as (Paper IV): 

 αmax = GD/Vσ    (3) 

Since G of a non-spherical cell is always larger than that of a spherical cell of the 

same volume (Clift et al. 1978), Equation 3 illustrates that, for a given volume, non-

spherical cells will have a competitive advantage compared to spherical cells with the 

same internal cell concentration (σ). In Paper IV, we used the heterotrophic 

bacterium Vibrio splendidus as a model organism to document how a reduction of the 

internal concentration of the limiting nutrient and a transition from coccoid to rod-

shaped cells is used to optimize uptake. 

 

Optimum stoichiometry 

The internal cell concentration (σ) for N and P in marine osmotrophs may be derived 

from the assumption that bacteria and phytoplankton cells have a density of 1.1 g cm-

3, 50% dry weight of wet weight, 50% C of dry weight, and that the C:N:P ratio 

(mol:mol) is 106:16:1 for algae (Redfield et al. 1963) and 50:10:1 for bacteria 

(Goldman et al. 1987; Fagerbakke et al. 1996). Thus, algae have less N and P per 

volume compared to bacteria, and may benefit from a lower σ, in particular when 
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competing for P. From theoretical arguments (see also Thingstad and Rassoulzadegan 

1999; Tanaka et al. 2003; Paper I; Paper II), the model for diffusion limited uptake 

thus predicts algal – bacterial N and P competition as illustrated in Figure 3. Changes 

in the chemistry of the surrounding medium is however accompanied by changes in 

size and elemental stoichiometry of algal and bacterial biomass (Sakshaug and Olsen 

1986; Vrede et al. 2002; La Ferla and Leonardi 2005) complicating the theoretical 

prediction of Figure 3 (Paper IV).  
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Figure 3: Log-log plot of the theoretical reduction in maximum biomass-specific affinity for N (αmax; Volume 

water cleared per unit biomass-N per unit time) and P (Volume water cleared per unit biomass-P per unit time) 

with cell size for bacteria and algae, calculated from Equation 2.  The assumption for the diffusion model is 

that cell density is 1.1 g cm-3, dry weight is 50% of wet weight, carbon weight is 50% of dry weight, and the 

molar C:N:P ratio is 106:16:1 for algae and 50:10:1 for bacteria. Note that the graphs apply to N and P 

containing substrates, inorganic or organic, of comparable D, hence the dimensionless y-axis.  

 

If growth is regulated by the single nutrient in shortest supply, the species specific 

intracellular optimum nutrient ratios may be a basis for exclusion or coexistence of 

competing species (Rhee and Gotham 1980). The optimum nutrient ratio (Rhee and 

Gotham 1980) is the ratio at which a transition from one nutrient limitation to another 

takes place. The determination of optimum N:P ratio is based on the cell quotas (q), 

of N and P to the respective minimum intracellular subsistence quota (qo) ratio. From 

the Droop model, a limiting nutrient can be defined as the one with the smallest q:qo 
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ratio; a transition between P and N limitation in individual cells thus occurs when 

(Rhee and Gotham 1980):  

 
oP

P

oN

N

q
q

q
q

=   (4) 

The optimum N:P ratio by definition is this transition point at low growth rates when 

the proportion of the storage fraction in the cell quota is minimal. In Rhee and 

Gotham (1980), this concept is exemplified with two organisms, A and B, with 

optimum N:P ratios of 10 and 30, respectively. Both organisms are P-limited when 

N:P ratios in their habitat result in a cellular ratio greater than 30. Organism A, 

however, will be more P-limited than organism B because of its lower optimum N:P 

ratio. If their maximum growth rates are similar, B will competitively eliminate A. 

The reverse will take place, due to the differences in the degree of N limitation, when 

the N:P ratios in the water results in cellular ratios of less than 10. At N:P cellular 

ratios between 10 and 30 the two organisms will be limited by different nutrients: A 

by phosphate, B by nitrogen. Thus they can coexist according to Rhee and Gotham 

(1980), but the model does not explain coexistence of organisms competing for the 

same nutrient.  

 Relating this to algal – bacterial competition, means that bacteria, believed to 

have generally lower N:P ratios than algae, will have higher P requirements and thus 

be subject to P-limitation at higher ambient P concentrations than algae. Non-nitrogen 

fixing phytoplankton, on the other hand, may be more subject to N-limitation than 

bacteria.  

 

Structural stoichiometry 

Laboratory studies show that phytoplankton (Rhee and Gotham 1980; Klausmeier et 

al. 2004b) and bacteria (Bratbak 1985; Tezuka 1990) are flexible in their overall 

stoichiometry, often matching their nutrient supply at low growth rates. Although 

there is a large variability in phytoplankton N:P ratios, the average for the species is 
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remarkably close to the Redfield ratio of 16. However, some of the variability is due 

to stored nutrients: underneath these variable pools is the relative constant 

composition of the cell’s functional machinery, termed the structural stoichiometry 

by Klausmeier et al. (2004a). This structural stoichiometry determines the nutrient 

requirement of the cells. Building on the chemical composition of cellular machinery, 

the variability in the species specific N:P structural stoichiometry may be explained 

by considering two strategies for survival under nutrient limitation (Klausmeier et al. 

2004a). One strategy would be to put more resources into assembly machinery to 

maximize growth rates. Assembly machinery corresponds to nucleic acids and 

ribosomes containing N and P. Organisms with higher growth rates require a larger 

allocation to ribosomal RNA to satisfy higher rates of protein synthesis. This 

interpretation is called the ‘growth rate hypothesis’ (GRH) (Makino et al. 2003). 

Another strategy would be to put more resources into resource acquisition machinery, 

favouring competitive ability. Resource acquisition machinery corresponds to 

nutrient-uptake proteins and chloroplasts, which contain N and C, but little or no P.  

The optimal structural stoichiometry depends on which nutrient is limiting, but the 

resource acquisition strategy will always result in higher N:P ratios than the assembly 

machinery strategy. Light harvesting machinery in algae contains N-rich chloroplasts 

and ribosomes, favouring higher N:P ratios at light limitation. The optimal strategy at 

equilibrium depends on the mortality rate; so that intense grazing lead to greater 

allocation to assembly machinery and therefore a lower N:P ratio. In all cases, the 

optimal strategy balances the conflicting needs for resource acquisition and cellular 

assembly.  

 The models of Klausmeier et al. (2004a; 2004b) are based on the work of 

Droop (1974) on phytoplankton growth, they are however particularly relevant to the 

case of V. splendidus in Paper IV. In this chemostat experiment (Paper IV) the N:P 

ratio of the reservoirs was kept constant, while the glucose concentration was 

increased along the gradient; shifting the limiting factor from C to P. Cell size 

increased along this gradient. As the reservoir C:P ratio increased 150 fold, the 

cellular C:P ratio increased only two fold and was accompanied by an almost similar 

increase in the cellular N:P ratio. Thus, the increase in size in P-limited V. splendidus 
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may not be an effect of stored C alone (cf. Paper III), but perhaps also that the cells 

put more resources into C- and N-rich structures for their resource acquisition 

machinery than into P-rich nucleic acids for their assembly machinery. The 

theoretical benefits calculated from diffusion theory (Paper III, Paper IV), however, 

will be the same either the non-limiting element is stored as inclusion bodies or 

assimilated into the cell’s functional machinery.  

 As shown by Makino et al. (2003), the GRH alone is not sufficient to explain 

the large variation in bacterial biomass stoichiometry in nature. In accordance with 

our results (Paper IV), they suggested that single bacterial strains are homeostatic in 

their C:N:P stoichiometry (or at least more homeostatic than autotrophs), and that the 

variability observed in in situ bacteria are generated by shifts in the dominant species 

in the environment.  
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On the theory of uptake specialized and defence specialized osmotrophs 

The success of osmotrophs is often described as the balance between nutrient 

availability and predation pressure. These factors also influence the morphological 

structure of algal and bacterial assemblages. Marine bacteria can survive extended 

periods of starvation (Morita 1997); they do not die predominantly from the lack of 

resources. The main sources of bacterial mortality in the water column are currently 

considered to be viral-mediated lysis and grazing by protists (Thingstad 2000b). 

Several strategies to defend against grazers are proposed, but reduced vulnerability 

towards one type of grazer can imply enhanced vulnerability towards other predators 

as exemplified in a review by Jürgens and Güde (1994). Predator and prey size is 

generally an important variable for feeding ecology (Jürgens and Güde 1994; 

Boenigk et al. 2004). Both large (Hahn et al. 1999; Matz et al. 2002) and sufficiently 

small (Chrzanowski and Simek 1990; Boenigk et al. 2004) size can protect bacteria 

from their predators, or at least make them less vulnerable.  

 Coexistence of two organisms competing for the same nutrient is possible if 

one is an ‘uptake’ specialist, and the other a ‘predation defence’ specialist as 

illustrated in Figure 4. Small, spherical cells are traditionally believed to be more 

efficient in their uptake of nutrients because of their large surface to volume ratio. 

From the traditional view, small bacteria then represents the competition specialists in 

Figure 4, and larger osmotrophs represents the defence specialists, assuming an 

increase in size is a means to reduce predation. As we prove in Paper IV, however, 

large size does not necessarily represent a trade-off in resource competition. One may 

also hypothesize situations in which silicate, or light (for photosynthesis) can select 

for species (e.g. diatoms and Synechococcus, respectively) within the osmotroph 

community that can benefit from these resources, to change their stoichiometry and 

morphology to increase their nutrient uptake efficiencies (Paper III). An increase in 

size could thus represent a win-win situation, simultaneously increasing competitive 

ability and reducing predator vulnerability. Unfortunately, we were not able to fully 

explore this latter element of the proposed ‘Winnie-the-Pooh strategy’ (cf. Paper 

III).  
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Figure 4: Generic 3-member food web allowing co-existence of two competing osmotrophs with different life 

strategies on one common limiting substrate (redrawn from Paper III). The community structure of the 

microbial loop of Figure 1 is dependant upon the dynamics of the competition between osmotrophs. Illustrated 

here by a food web where the biomass of the competition specialist is kept in check by predator or parasite 

control (grazers or virus in Figure 1), which allows some of the limiting element to be incorporated into the 

defence specialist. 

 

Predation and anti-predator strategies 

Unpublished results from grazing experiments (we measured disappearance rate in 48 

h incubation experiments as obtained by epi-fluorescence microscopy) conducted 

with natural sea water, proved inconclusive. We used fluorescence labelled V. 

splendidus (FLB) (Sherr et al. 1987), grown under C- and P-limitation to yield small 

(0.2±0.1 µm3) and large (1.4±0.8 µm3) size, respectively, inoculated to <10% of the 

ambient bacterial concentration in 500 ml experimental containers. In two 

experiments conducted on natural sea water there were significant disappearance 

relative to a control experiment, but no statistically significant difference between the 

disappearance rates of small and large FLB’s. In an experiment conducted on sea 

water enriched to induce the growth of flagellates, large FLB’s disappeared 
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significantly faster than small FLB’s (p < 0.001). After 48 h incubation, the 

abundance of small protists was always highest in the containers incubated with small 

FLB, while the final abundance of large protists (>10 µm) was approximately the 

same. 

 Many factors in antipredator strategies can not be accounted for in experiments 

such as these (see reviews by Jürgens and Güde 1994; Pernthaler 2005), however, our 

results indicated that size alone did not protect P-limited, large V. splendidus from 

grazing relative to the smaller C-limited V. splendidus, given the existing grazer 

communities. Experiments of longer duration are needed to follow the succession of 

the grazer community. The effect of physiological change in V. splendidus on virus 

infection and infectivity is unknown. It is previously shown however, that bacterial 

porins, which are outer membrane transport channels often induced coregulated with 

substrate binding proteins and enzymes at low substrate concentrations, can serve as 

phage receptors (Nikaido and Vaara 1985).   

 The introduction of the bacterivorous flagellate Ochromonas into continuous 

cultures of large, rod-shaped Flectobacillus sp. (Hahn et al. 1999) led to an initial 

decrease in bacterial numbers, but after the mean length of bacteria increased, a 

steady state was established, in which bacterial length and cell numbers were 

constant. When Flectobacillus sp. was cultured without flagellates, an increase in 

growth rate (dilution rate) led to an increase in cell length similar to that in the 

grazing experiment (Hahn et al. 1999). Hahn et al. (1999) thus concluded that the 

formation of grazing resistant forms in bacteria is controlled by predation pressure 

and growth rate. Strong compensation of bacterial grazing mortality was observed in 

field mesocosms in which the grazing losses of edible bacteria were completely 

compensated for by growth of morphologically inedible forms, i.e. aggregated and 

filamentous bacteria (Jürgens et al. 1994). A clear succession in the grazer 

community was observed, but the 10 day duration of the experiment was too short to 

determine any effects of this succession on the bacterial community (Jürgens et al. 

1994). Interestingly, there is a relationship between aggregation and filament 

formation that was not accounted for in our grazing experiments; filamentation 
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benefits cells attached to a surface by increasing the specific surface area in direct 

contact with the solid medium (Young 2006). If an increase in size can be combined 

with aggregation, either to a solid medium or cell to cell, it may further reduce 

predation. Pernthaler et al. (1997) demonstrated that a slow-growing bacterial 

community reacted to the addition of bacterivorous flagellates within one day: one 

group produced filamentous, grazing resistant forms, and another group of bacteria 

reacted with a massive growth rate increase. Both responses are likely to be favoured 

by protistan grazing through a recycling of nutrients, and to reflect the different 

strategies proposed by Klausmeier et al. (2004a) and in Paper III and Paper IV.  

 

Excess C; respire or assimilate? 

Mesocosm experiments carried out on natural assemblages of freshwater bacteria 

(Jansson et al. 2006) showed that bacterial growth efficiency (Y), which can be 

defined as the organisms’ ability to convert organic C into biomass, decreased with 

increasing DOC:Pi supply ratio, i.e. that P-limited bacteria tended to respire a large 

portion of assimilated C, while C-limited bacteria used a greater share of DOC for 

growth. It thus may seem that high respiration was important for growth when growth 

was restricted by Pi (Jansson et al. 2006); i.e. that in this particular case, C was 

neither stored nor allocated to resource acquisition machinery. The environmental 

condition for the strategy of increasing cell size as proposed for V. splendidus would 

be access to a pool of assimilable organic C in excess of that required for growth. 

Growth and respiration must then be balanced so that there is a net intracellular 

increase of C.   

 Unpublished results from this experiment showed that, based on DOC-

consumption, Y was stable between 20-40% along the gradient of increasing DOC:Pi 

supply ratio (Figure 5; open symbols). However, unpublished respiration rate 

measurements showed that P-limited V. splendidus cultures with excess labile DOC 

had only twice as high respiration rates as C-limited cultures, which was low 

considering that their total C-biomass was >40 fold higher. Basing Y on respiration 
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measurements thus indicated that Y increased with increasing DOC:Pi supply ratio 

(Figure 5; closed symbols), contradictory to the results of Jansson et al. (2006). These 

contrasting results (Figure 5) could indicate that V. splendidus assimilated excess 

labile-DOC (i.e. glucose) that was later released to the cultures as refractory organic 

C. It is previously shown that bacteria in the natural environment not only take up 

DOC and convert it to biomass and CO2, but also release DOC into the water column 

as ‘semi-labile’ capsular material (Stoderegger and Herndl 1998). However, our 

procedure for respiration rate measurements was hampered by the low sensitivity of 

the Clark electrode. This necessitated incubation of samples in BOD-bottles (30-40 h) 

prior to measurements, inevitably altering both DOC:Pi ratios and total C-biomass 

compared to the chemostats. Drift in the electrode sensitivity led to problems in 

obtaining stable baseline measurements and additional uncertainties. Nevertheless, 

these preliminary results are interesting in light of the strategies discussed in Paper 

III, and further experiments with more sensitive instruments should be done.    
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Figure 5: Bacterial growth efficiency calculated as increase in C-biomass (ΔCB) divided by ΔCB + respiration 

(closed symbols) or ΔCB divided by DOC-consumption (open symbols) as a function of DOC:Pi supply ratios 

in V. splendidus. 
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Limits to size 

There are limits to how large a cell can be and still benefit from the proposed strategy 

of becoming large to optimize affinity for limiting nutrients. The most obvious would 

be that sinking loss must be balanced by growth. Assuming that the volume-specific 

nutrient content is not constant (Paper III; Paper IV), lowering intracellular nutrient 

concentrations would compensate sinking loss, as would active swimming or 

increased buoyancy (Thingstad 1998). It can be argued that ‘the minimum cell quota’ 

(cf. Paper III; Paper IV) will be larger for large cells compared to small cells 

because, for example, they would need more cell membrane components. Other 

associated elements are also needed in higher demand. As we see in Paper IV, large 

V. splendidus does indeed have higher P and N content than small cells, but when 

normalized to volume (and C) the concentration is smaller. From a surface to volume 

perspective, the coccoid forms as observed in the P-sufficient chemostats (Paper IV) 

is less favourable for acquiring resources than the rods observed in the P-limited 

chemostats, but it is ideal if the aim is to keep what is already taken up and to 

minimize internal diffusion distances. If more is allocated to assembly under P-

sufficient conditions, it may be better to minimize losses rather than to focus on 

acquisition. As the cell increases, so does also the internal diffusion distances. This 

can be compensated for by decreasing the internal viscosity. Many of the large 

bacteria harbour massive cell inclusions of known or unknown function that reduce 

the volume of metabolically active cytoplasm and, possibly, the internal diffusion 

limitation (Schulz and Jørgensen 2001). Similarly, the water filled vacuole in diatoms 

(cf. Paper III) may enhance both buoyancy and internal diffusion. 
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Conclusions 

In P-limited systems where the algal community was dominated by N2-fixing 

cyanobacteria, heterotrophic bacteria displayed significantly higher biomass-specific 

affinity for both DOP and DIP uptake than algae. However, the algae could compete 

well for all P-substrates, and there were no conclusive evidence for a shift in terms of 

algal – bacterial competition when P was available in the form of either monomeric 

or polymeric DOP contrary to −3
4PO .  

 

In N-limited systems where the algal community was dominated by E. huxleyi, 

heterotrophic bacteria were superior in the competition for DON, and algae were 

superior in the competition for DIN, and there were conclusive evidence for a shift in 

terms of algal – bacterial competition when N was available in the form of Leucine 

contrary to +
4NH . This was manifested by poor abilities of E. huxleyi to compete 

against heterotrophic bacteria for DON.  

 

By comparing experimentally derived biomass-specific affinity values to theoretical 

maximum estimates, it is shown that, diffusion transport to the cells, rather than 

hydrolysis, can be regarded as the limiting step for utilizing P from dissolved 

macromolecules like dDNA in severely P-limited marine environments.  

 

Reduced access to bioavailable P may induce a shift from larger organisms 

dominating the uptake to smaller organisms dominating the uptake that may again be 

modified in favour of larger organisms by increased availability of labile DOC. This 

is because subpopulations of heterotrophic bacteria use excess C to increase in size 

thereby optimizing their competitive ability.  
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Using V. splendidus as a model organisms, it is shown that, if a large size can be 

obtained with a less than proportional increase in the cell quota of the limiting 

element, large size is actually an advantage rather than a disadvantage, also at 

permanently low substrate concentrations. V. splendidus thus may represent an active 

subgroup within the bacterial community with the ability, under mineral nutrient – 

excess glucose conditions, to change its stoichiometry and morphology in a manner 

increasing its nutrient uptake efficiencies and obtaining a competitive advantage. 

 

The putative superiority of small, spherical bacteria in nutrient uptake should be 

viewed with some caution because the cellular content of the limiting element is not 

proportional to cell volume; i.e. the intracellular concentration is not constant. 

 

These findings demonstrate the need of using accurate and locally derived cell 

volume estimates combined with allometric volume to ‘elemental content’ factors in 

biomass estimates of bacteria.  

 

Future perspectives 

More investigation on algal – bacterial competition for organic substrates is needed. 

Experiments such as those described in Paper I and Paper II should be performed 

simultaneously in the same habitat, and competition should also be investigated in the 

natural environment under differing conditions. As proposed in Paper II, a wider 

range of model substrates should be applied. Additionally, the relationship between 

nutrient status in the system and predation need more focus. Taken together, this may 

increase our understanding of how the transport of C and energy is influenced by the 

P, N, and organic-C status of the environment, and allow for better predictions of the 

effects on ‘microbial food web dynamics’ and the global C-cycle. 
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Results from this work showed that conventional conversion factors must be used 

with care when estimating osmotroph biomass. The constant factor of 20 fg C 

bacterial cell-1 (Lee and Fuhrman 1987) has been widely used to estimate bacterial 

biomass. Although the authors (Lee and Fuhrman 1987) cautioned against 

extrapolation of this factor outside a narrow range of relatively small cells, we 

frequently observe that this is ignored (i.e. that the factor is used without any relation 

to size). Similarly, we find that C to Chlorophyll a conversion factors is sometimes 

used uncritically; in the Baltic Sea in summer, a factor of 50 (weight: weight) has 

been applied (Nausch 1998), although the experimentally derived C: Chlorophyll a 

ratio is 8 – 23.5 for the area and season (Gargas et al. 1979). Volume specific scaling 

factors, shown to correlate well between different habitats (see references in Paper 

IV), is therefore proposed to estimate biomass. The alternative is to directly measure 

bacterial biomass in the field, preferably by X-ray microanalysis. The combination of 

two or more of either cell sorting flow cytometry, transmission electron microscopy 

(TEM), X-ray microanalysis, and X-ray fluorescent (XRF) analysis may in the future 

help overcome these problems. Additionally, the application of cell specific analysis 

of enzyme activity may improve calculations of the active fraction of osmotrophs. 

 

The ‘black box’ approach has long served to understand the dynamics within the 

microbial food web (cf. Azam et al. 1983; Figure 1). Currently, the models arising 

from this conceptual framework implicitly assume that all heterotrophic bacteria are 

the same, thus they have been treated as one phylogenetic type. Similarly, 

phytoplankton has been divided into compartments from simple principles; even 

sometimes only by their difference in size. With the modern tools mentioned above, 

and many more novel techniques in the field of molecular biology, we are now able 

to look inside the boxes, enabling us to understand the phylogenetic diversity inside, - 

and internal dynamics between, their ecologically functional units.  One consequence 

of this is that bacteria with a low content of DNA, previously believed to represent 

less active components of related phylogeny and more or less ignored in studying the 

fate of DOM, are know viewed as superior to other osmotroph groups in the 
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competition for P (see Nishimura et al. 2005 and references therein), possibly 

benefiting from a lower P requirement and higher nutrient uptake efficiencies as 

discussed in Paper III and Paper IV. These interpretations are however debatable, 

and more experiments applying the modern tools are needed to elucidate the 

mechanisms of mass transfer in aquatic systems. Efforts should be made to include 

molecular methods in the studies of biogeochemical processes and seasonal dynamics 

of osmotrophs. Some pioneer work has been done, but as pointed out (Thompson et 

al. 2004; Allgaier and Grossart 2006), more specific studies are needed.  
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