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Rheumatoid arthritis (RA) is a chronic autoimmune, inflammatory disease, characterized

by synovitis in small- and medium-sized joints and, if not treated early and efficiently, joint

damage, and destruction. RA is a heterogeneous disease with a plethora of treatment

options. The pro-inflammatory cytokine tumor necrosis factor (TNF) plays a central role

in the pathogenesis of RA, and TNF inhibitors effectively repress inflammatory activity

in RA. Currently, treatment decisions are primarily based on empirics and economic

considerations. However, the considerable interpatient variability in response to treatment

is a challenge. Markers for a more exact patient classification and stratification are

lacking. The objective of this study was to identify markers in immune cell populations

that distinguish RA patients from healthy donors with an emphasis on TNF signaling.

We employed mass cytometry (CyTOF) with a panel of 13 phenotyping and 10

functional markers to explore signaling in unstimulated and TNF-stimulated peripheral

blood mononuclear cells from 20 newly diagnosed, untreated RA patients and 20

healthy donors. The resulting high-dimensional data were analyzed in three independent

analysis pipelines, characterized by differences in both data clean-up, identification of

cell subsets/clustering and statistical approaches. All three analysis pipelines identified

p-p38, IkBa, p-cJun, p-NFkB, and CD86 in cells of both the innate arm (myeloid dendritic

cells and classical monocytes) and the adaptive arm (memory CD4+ T cells) of the

immune system as markers for differentiation between RA patients and healthy donors.

Inclusion of the markers p-Akt and CD120b resulted in the correct classification of 18 of

20 RA patients and 17 of 20 healthy donors in regression modeling based on a combined

model of basal and TNF-induced signal. Expression patterns in a set of functional markers

and specific immune cell subsets were distinct in RA patients compared to healthy

individuals. These signatures may support studies of disease pathogenesis, provide

candidate markers for response, and non-response to TNF inhibitor treatment, and aid

the identification of future therapeutic targets.
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INTRODUCTION

Rheumatoid arthritis (RA) is a chronic autoimmune
disease characterized by synovial inflammation that, if
not treated early and efficiently, causes joint damage. The
pro-inflammatory cytokine tumor necrosis factor (TNF)
plays a central role in the pathogenesis of RA and is the
target of treatment with TNF inhibitors. TNF inhibitors are
generally effective and well-tolerated (1, 2); however, up
to one-third of patients are primary non-responders, and
responses in up to one-third of initial responders abate over
time (3, 4).

Currently, only a few markers for diagnostic and stratification
purposes are used in daily clinical practice in patients with
RA. Anti-citrullinated peptide antibodies are a highly disease-
specific biomarker with an impact mostly on diagnosis and
classification (5). TNF inhibitor drug levels and anti-drug
antibodies are indicative of treatment responses; however, these
markers are not standardized for clinical application (3, 6,
7). Several candidate biomarkers for prediction of treatment
responses have been suggested based on gene, cytokine, and
immune cell profiles, but none have added significant value to
patient stratification in a clinical setting (8). Previous studies
have indicated the potential of single-cell profiling by flow or
mass cytometry in patient stratification in RA and in other
autoimmune conditions (9, 10). Distinct signaling patterns
have been found in RA patients before and during treatment
with TNF inhibitors in exploratory and proof-of-principle
studies (11, 12).

We hypothesize that signaling patterns in RA are distinct
from those of healthy donors. The unbiased identification of
RA-specific signaling patterns in immune cell subsets before
treatment may improve diagnosis, therapeutic stratification,
and monitoring, and may also facilitate studies of disease
pathogenesis and the development of drugs that target
dysfunctional pathways with high precision.

In this study, we used mass cytometry to explore signaling
responses to TNF in single immune cells of RA patients and
healthy donors. In mass cytometry metal-tagged antibodies serve
as markers with a read-out in a mass spectrometry time-of-flight
chamber (13). Using mass cytometry, up to 50 markers can be
simultaneously analyzed with single cell resolution with relatively
little signal overlap and very low background noise (14, 15). Here
we used a panel of 13 phenotyping and 10 functional markers for
an in-depth characterization of peripheral blood mononuclear
cells (PBMCs) from patients and controls with and without
stimulation with TNF. Based on results from three different
analysis pipelines, we suggest a smaller set of phenotyping and
functional markers, which strongly correlate with disease status
for future use in e.g., flow cytometry.

MATERIALS AND METHODS

In-depth information on material, methods and results is
provided in the Supplementary Material in the same order and
with the same headings/sub-headings as in the main article.

Healthy Donors and RA Patients
Twenty healthy donors (HD, 4 male, 16 female, ages 39–67) and
20 RA patients (4 male, 16 female, ages 31–76) were included in
this study (Table 1). All RA patients were included at the time
of diagnosis and fulfilled the ACR/EULAR 2010 criteria for RA.
None of the patients had received synthetic or biologic disease-
modifying anti-rheumatic drugs, but five had been prescribed
low to moderate dosages of prednisolone by their general
practitioners prior to the first consultation with a rheumatologist.
Despite ongoing prednisolone-treatment at inclusion (range 2.5–
15mg), these patients had high disease activity with a mean
disease activity score (DAS28) of 6.1 (range 5.4–7).

All donors and patients gave written informed consent for
inclusion into the Norwegian Arthritis Registry (NorArtritt)
and the Research Biobank for Rheumatic Diseases in Western
Norway (approval REK 2012/1689). Utilization of registry data
and biobankmaterial for this study was approved by the Regional
Ethics Committee (approval REK 2014/317).

Peripheral Blood Mononuclear Cells
(PBMCs)
PBMCs were chosen due to the possibility of culturing and
application of standardized and simultaneous conditions (such
as e.g., cytokine stimulation) after cryo-preservation.

PBMCs were harvested by density gradient centrifugation
(BD Vacutainer R© CPTTM Mononuclear Cell Preparation Tube—
Sodium Citrate), processed for cryo-preservation within 4 h and
stored in liquid nitrogen in 50% hematopoietic cell medium (X-
VIVOTM, Lonza), 42.5% freezing medium (ProFreezeTM, Lonza),
and 7.5% dimethyl sulfoxide (Sigma-Aldrich).

TABLE 1 | Patient and healthy donor characteristics.

Healthy donors (HD)

Female/male 16/4

Median age (range) 49 (34–67) years

RA patients (RA)

Female/male 16/4

Median age (range) 63.5 (31–76)

Disease characteristics

RF+ 14

ACPA+ 11

RF+ ACPA+ 9

RF- ACPA- 4

Mean DAS28 (range) 5.37 (3–7.6)

Mean DAS28–CRP (range) 4.86 (2.5–7.2)

Mean CRP (range) 25.3 (1–156)

Mean ESR (range) 36.6 (6–104)

Medication

Prednisolone 5 of 20 patients

Prednisolone daily dose 2.5-15mg (2.5, 2.5, 12.5, 12.5, 15mg)

RF, rheumatoid factor; ACPA, anti-citrullinated peptide antibodies; DAS28, disease activity

score with 28 joint count; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate.
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Antibody Panel
All antibodies used in this study (Table 2) were titrated on
PBMCs from one healthy donor. Titrations were performed
on unstimulated PBMCs and cells stimulated with TNF and
phorbol myristate acetate (PMA) for optimization of pathway
activationmarkers. The antibodies against CD120a, CD120b, and
p-cJun were conjugated to metals in our laboratory (conjugation
kits and protocols by Fluidigm), all other antibodies were pre-
conjugated (Fluidigm).

Thirteen markers were applied to define common PBMC
subsets; these were used in both automated clustering and

TABLE 2 | Antibody panel with epitopes, antibody clones, conjugated metals, and

target cell populations or signaling pathways.

Epitope Clone Metal Target/Function Abbrev.

PHENOTYPING

CD20 2H7 147Sm B lymphocytes Bc

CD3 UCHT1 170Er T lymphocytes

CD4 RPA-T4 145Nd CD4+ T lymphocytes CD4 Tc

CD8a RPA-T8 146Nd CD8+ T lymphocytes CD8 Tc

CD45RA HI100 169Tm Naïve/effector vs.

memory

Naïve,

mem

CD56 NCAM16.2 176Yb Natural killer cells NKc

CD16 3G8 148Nd NK T cells NK Tc

CD14 M5E2 160Gd Classical monocytes cM

CD61 VI-PL2 209Bi Monocytes cM

CD11c Bu15 159Tb Myeloid dendritic cells mDc

CD123

(IL-3R)

6H6 151Eu Plasmacytoid dendritic

cells

pDc

HLA-DR L243 174Yb MHCII, antigen

presentation

CD45 HI30 89Y Leukocyte Common

Antigen

FUNCTIONAL

Cleaved

Caspase 3

D3E9 142Nd Apoptotic signaling Caspase3

p-p38

[T180/Y182]

D3F9 156Gd MAPK pathway p-p38

p-Erk1/2

[T202/Y204]*

D13.14.4E 171Yb MAPK pathway p-Erk

p-Akt

[S473]

D9E 152Sm PI3K-Akt pathway p-Akt

p-cJun

[S73]**

D47G9 167Er SAPK/JNK signaling p-cJun

p-NFkB

p65 [S529]

K10-895.12.50 166Er NFkB canonical

pathway

p-NFkB

IkBa L35A5 164Dy with IkBa degradation IkBa

CD120a** MABTNFR1-B1 155Gd TNF receptor 1 TNFR1

CD120b** hTNR-M1 165Ho TNF receptor 2 TNFR2

CD86 IT2.2 150Nd Regulation of T cell

activity

CD86

*p-Erk1/2 was omitted from the panel after TNF titration experiments, since TNF

stimulation did not alter p-Erk1/2 expression.

**Metal-conjugation carried out at our laboratory (all other antibodies were purchased pre-

conjugated).

manual gating. Functional markers for TNF signaling were
the cleaved caspase 3 as a marker for apoptosis signaling; p-
p38 [T180/Y182] and p-Erk1/2 [T202/Y204] as markers for the
MAPK-pathway activation; IkBa and p-NFkB p65 [S529] for
the NFkB canonical pathway; p-Akt [S473] for the PI3K-Akt
pathway; and p-cJun [S73] for the SAPK/JNK signaling pathway.
CD86 was added as a marker of T cell regulation and analyzed
as functional marker, although signaling through this pathway is
not directly related to TNF.

Treatment with PMA resulted in significant increases in
Erk1/2 phosphorylation, whereas TNF treatment did not have
significant effects on Erk1/2 phosphorylation. This marker was
therefore omitted from experiments after panel titration.

Experimental Workflow
Cryopreserved PBMCs were thawed, rapidly transferred to warm
X-VIVOTM containing a nuclease (Benzonase R© Nuclease, Merck
Millipore, 25 U/mL), followed by centrifugation and resting in X-
VIVOTM for 4 h at 37◦C, 5%CO2. The resting time was optimized
in set-up experiments (data not shown). Viability staining was
performed according to the manufacturer’s instructions with
Cell-IDTM cisplatin (Fluidigm). PBMCs from each individual
were split into two aliquots; one was not stimulated, and
the other was stimulated with 50 ng/mL TNF for 12min.
Stimulation time and dose had been defined after a series of
TNF time and dose titrations. Cells in both samples were fixed
in proteomic stabilizer (Smart Tubes Inc.) for 10min and stored
at −80◦C until barcoding and staining. All cells were barcoded
simultaneously with 20-plex Cell-IDTM barcoding kits (Fluidigm)
as recommended by the manufacturer. After pooling, surface
staining, methanol-permeabilization, and intracellular staining
were carried out. PBMCs were then stained with MaxPar DNA
intercalator overnight (Fluidigm) and analyzed the following
day on a Helios mass cytometer (Fluidigm) after addition
of normalization beads (Fluidigm). Raw FCS-files were bead-
normalized, concatenated, and debarcoded with software tools
from Fluidigm before subsequent analysis.

Data Analysis Workflow
Three independent analysis pipelines were performed to test and
share different approaches as well as to validate our in-house
NM2B algorithm (pipeline 1).

Pipeline 1: NM2B Algorithm
This algorithm consisted of three main steps: preprocessing (A),
finding cell types (B) and classification (C).

A. Preprocessing: We fitted a mixture of two Gaussian
distributions to mean-variance scaled “Event_length,”
“Center,” “Offset,” “Width,” “Residual,” “191Ir_DNA1,”
“193Ir_DNA2” markers for cleanup and discarded
data belonging to the smaller cluster as doublets and
debris (16, 17).

B. Finding cell types: We used the following phenotyping
markers to detect cell types: “147Sm_CD20,” “170Er_CD3,”
“145Nd_CD4,” “146Nd_CD8a,” “169Tm_CD45RA,”
“176Yb_CD56,” “148Nd_CD16,” “160Gd_CD14,”
“209Bi_CD61,” “159Tb_CD11c,” “151Eu_CD123,” and
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“174Yb_HLA-DR.” We performed farthest point sampling to
find 49 clusters. Farthest point sampling is an approximation
to k-means clustering, which can be calculated for large
datasets. Clusters of size less than 1/100,000 of the total data
size were discarded. We then employed complete linkage
meta-clustering of the farthest points with 15 meta-clusters
and discarded all meta-clusters of less than 0.5% of the total
data size. The final 12 meta-clusters contained a total of
18,374,011 cell events (Supplementary Figure 3).

C. Classification: We used the following functional markers
as features for classification of individuals as patients or
controls: “142Nd_Caspase3,” “156Gd_p-p38,” “152Sm_p-
Akt,” “167Er_p-cJun,” “166Er_p-NFkB,” “164Dy_IkBa,”
“155Gd_CD120a,” “165Ho_CD120b,” “150Nd_CD86.”
For each meta-cluster we calculated the median and 90%
quantile of each of the functional markers for all basal
cells. In addition, we calculated the arcsinh ratios of
the expression of functional markers in stimulated and
basal cells. We tested three models, based on either only
basal variables (basal), or only arcsinh ratios between
stimulated and basal variables (ratio) or both basal and
arcsinh ratios (combined). We fitted a logistic lasso
regression model, that is a logistic regression model with
automatic variable selection, using double leave-one-out
cross validation. For details of how double leave-one-
out cross-validation was performed we refer to the
Supplementary Material. We report cross-validation
accuracy, area under the ROC curve (AUC), and all
non-zero coefficients.

Pipeline 2: CITRUS Algorithm
Normalized, concatenated and debarcoded files were imported in
Cytobank for downstream analysis (18). Data were cleaned for
doublets, debris and dead cells by biaxial gating and analyzed
with the cluster identification, characterization, and regression
tool CITRUS in cytobank.org, applying the predictive regression
model Nearest Shrunken Centroid/PAMR (19). CITRUS was run
on the same data set, but with independent downsampling, with
3 repetitions.

Pipeline 3: Manual Analysis
Normalized, concatenated, and debarcoded files were imported
in Cytobank. Data were cleaned for doublets, debris, and
dead cells by biaxial gating. viSNE analysis based on t-
distributed stochastic neighbor embedding was performed for
each donor and patient after downsampling to 50,000 cell
events per individual and condition (20), and cell subsets
were gated on individual viSNE plots (Supplementary Figure 6).
Expression of functional markers was compared in all cell
subsets, both unstimulated and TNF-stimulated, by applying
non-parametric Mann-Whitney U tests using GraphPad prism
version 7.0c for Mac OS X. A correction for multiple
comparisons was not conducted due to the explorative character
of this study.

RESULTS

Pipeline 1: NM2B Algorithm
Single-cell data from all 40 individuals were clustered and meta-
clustered, and different numbers of clusters and meta-clusters
were tested. The model used provided the best translation of
meta-clusters into common immune cell subsets. The numbers
of clusters andmeta-clusters influenced cross-validation accuracy
for the classification of RA patients and healthy donors, but when
higher numbers of meta-clusters were used, the results were more
difficult to interpret with regards to common cell subsets (data
not shown).

Results presented here are based on 49 clusters and 12
meta-clusters; the latter include one B cell meta-cluster (4.3%),
four of T cells (75.3%), two of natural killer cells (5%),
one of classical monocytes (5.7%), three of myeloid dendritic
cells (8.8%) and one of plasmacytoid dendritic cells (1%).
Phenotyping markers are differentially expressed in the meta-
clusters (Figure 1A); differences in expression of phenotyping
markers in healthy donors vs. RA patients were not significant
(Supplementary Figure 10).

A regression model based on both basal expression of
functional markers and arcsinh ratios (“combined model”)
provided the best predictive TNF signaling patterns for healthy
donors and RA patients. In this model seven functional
markers (IkBa, CD120b, CD86, p-cJun, p-NFkB, p-p38,
and p-Akt) in five cell subsets (memory CD4+ T cells,
CD11c+HLA-DR+CD14lowCD61low myeloid dendritic cells,
naïve CD4+CD45RA+CD11clow T cells, classical monocytes,
and CD11chighHLA-DRhighCD61low myeloid dendritic cells)
were identified as predictive markers (Figure 1B). Applying
these markers, the combined model correctly classified 18
of 20 RA patients and 17 of 20 healthy donors (Figure 1C).
The two patients who were not classified correctly were both
females older than 67 years with high disease activity (DAS28
5.3/6.4). One was seronegative and one was being treated with
prednisolone at 12.5mg per day. Principle component analysis
(PCA) of features identified by the Lasso-regression showed a
good separation of HD vs. RA in the combined (Figure 1D)
and basal model, but to a lesser degree in the ratio model
(Supplementary Figures 7–9).

Pipeline 2: CITRUS Algorithm
We performed four repetitive CITRUS analyses of basal
expression of functional markers. p-p38, IkBa, p-cJun, p-
NFkB, and CD86 were identified as predictive markers by
CITRUS, with memory CD4+ T cells being the most relevant
cell subset for both p-p38, IkBa, and p-cJun, while clusters
within myeloid dendritic cell subets (mDc) and classical
monocytes (cM) were the most relevant for p-NFkB and CD86
(Supplementary Figure 11 and Supplementary Table 10).
There was not always a clear distinction between myeloid
dendritic cells and classical monocytes in hierarchical
clustering in CITRUS, and both these cell subsets were
relevant for the markers p-NFkB and CD86 (Figure 1E and
Supplementary Table 10).
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FIGURE 1 | Results. (A) Heatmap over the expression of phenotyping markers in 12 meta-clusters (columns). Meta-clusters were identified as B cells (Bc), CD4+ T

cells (CD4 Tc), CD8+ T cells (CD8 Tc), natural killer cells (NKc), classical monocytes (cM), myeloid dendritic cells (mDc), and plasmacytoid dendritic cells (pDc).

Relative abundance is given for each cell subset in percent. (B) Results from Lasso regression: predictive features (functional markers and cell subsets) and their

contribution to the classification of healthy donors (HD) and RA patients (RA). Only nonzero coefficients are shown. Coefficients for CD86 and p-cJun are based on

ratios and therefore inverted compared to CITRUS and manual comparisons of basal marker expression. (C) Cross-validation accuracy for all three NM2B analyses

(“basal,” “ratio,” and “combined”), with area-under-the-curve (AUC) values for ROC analysis. (D) Principle component analysis (PCA) of features identified by

Lasso-regression (combined model) for the classification of RA patients and healthy donors. (E) Cluster identification, characterization, and regression algorithm

(CITRUS) and non-parametric testing (Manual). CITRUS results are presented in boxplots, as provided by the algorithm. Results from manual analysis are presented in

scatter dot plots. Medians (CITRUS) and 75th percentiles (manual) are plotted for each RA patient (blue) and healthy donor (red); median, and upper and lower

quartile. Asterisks indicate level of significance without correction for multiple comparisons (***p < 0.001, ****p < 0.0001).

Compared to the NM2B and manual analysis, there were
slight differences in the weighting of cell subsets for p-cJun
(Figure 1E). In four CITRUS analyses, memory CD4+ T cells
were the primary cell subset of interest for p-cJun, whereas
automated analysis pointed to naïve CD4+ T cells as the most
significant cell subset. In manual analysis, p-cJun expression was
significantly different between HD and RA in both naïve and
memory CD4 Tc.

Exemplary CITRUS results and cross validation model error
rates can be found in Supplementary Figures 11, 12.

Pipeline 3: Manual Analysis
The manual analysis generally confirmed results from regression
data modeling (Figure 1E). For the p-NFkB, regression tools had
suggested significant differences in myeloid dendritic cell and
classical monocyte subsets. However, in non-parametric testing,

p-NFkB expression was not significantly different in myeloid
dendritic cell and classical monocyte subsets of healthy donors
vs. RA patients, but there were differences in p-NFkB in memory
CD4+ T cells. Complete results from manual analysis are shown
in Supplementary Figures 13–15.

In summary, and based on all three analysis pipelines, we
suggest that the phenotypingmarkers CD4, CD45RA, and CD11c
(to identify CD4 naïve and memory CD4+ T cells, and myeloid
dendritic cells) and the functional markers p-p38, IkBa, p-cJun,
p-NFkB, and CD86 may be candidate markers for a simplified
setup, e.g., in confirmatory studies by flow cytometry.

DISCUSSION

In this study, comprehensive investigation of signaling patterns
in unstimulated and TNF-stimulated immune cells by mass
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cytometry revealed cell type specific differences in RA patients
compared to healthy donors of the same gender and with similar
ages. Applying predictive regression models, we found that
the basal expression of p-p38 and IkBa in memory CD4+ T
cells, p-cJun in naïve, and memory CD4+ T cells, and p-NFkB
and CD86 in myeloid dendritic cells and classical monocytes
differentiated between healthy donors and RA patients. We want
to emphasize the explorative character of our study and the role
of mass cytometry in this setting. Mass cytometry and related
analysis tools are currently not used in routine clinical practice.
However, in this study we suggest a smaller set of markers for
the distinction between HD and RA. These markers could make
our approach applicable and feasible in future research e.g., on
a flow cytometry platform. Our data indicate that phenotyping
markers CD4, CD45RA, CD11c for the identification of CD4+

T cell subsets and myeloid dendritic cells, and p-p38, IkBa, p-
cJun, p-NFkB, and CD86 as relevant functional markers could
be used to analyze unstimulated PBMCs by flow cytometry for
diagnosis and stratification in RA.

Studies of signaling pathways in arthritis are often limited to
one or two distinct cell subsets and a few functional markers
and are frequently carried out in animal arthritis models.
Comprehensive investigation of signaling in immune cell subsets
in patients and healthy individuals has been challenging due
to technical limitations. High-dimensional mass cytometry can
fill a gap as it enables the simultaneous investigation of many
markers in millions of heterogeneous cells with a single-cell
resolution. Our study utilized a total of 34 channels (including
barcoding and beads) and only partially exploited the potential
of the technology.

In an analysis of a single RA patient and one healthy
donor Nair et al. demonstrated that a complex mass cytometry
setup distinguished between health and disease and was able
to detect changes after TNF inhibitor treatment (12). Due
to the illustrational character of their study, differences in
signaling were not quantified, but both p-p38 and p-NFkB were
differentiating markers in several cell subsets. Their data pointed
to granulocytes as a cell population altered by TNF pathway
activation. In support of this, another study had previously
shown that granulocytes express high levels of TNF receptors
(21). Unfortunately, our study did not include granulocytes as
we studied PBMCs. PBMCs were selected to provide a detailed
insight into non-granulocyte white blood cell populations,
allowing for simultaneous stimulation of cells from the entire
cohort under standardized conditions after cryo-preservation.

The use of cryo-preserved PBMCs introduces several potential
contributors to variation, and deprives cells from their individual
surroundings by the removal of plasma (22–26). We reduced
variation through stringent use of standard operating procedures
for the handling of live cells from the time of collection to
cryo-preservation to resting and stimulation. Moreover, the
experimental steps were conducted simultaneously on cells
from all donors whenever feasible. However, for future study
we would recommend the use of peripheral blood leukocytes
with immediate fixation after sample acquisition from patient
and donor.

Galligan et al. performed a phospho-flow analysis on PBMCs
on a less homogeneous RA population than our cohort. The
Galligan et al. cohort included RA patients at different disease
stages treated with different medications and patients with
osteoarthritis and healthy donors (11). In agreement with our
results, they found elevated levels of several phospho-epitopes in
CD4+ T cell subsets in RA patients compared to healthy donors,
and, to a lesser degree, to osteoarthritis patients. Interestingly,
there were not significant differences in p38 phosphorylation
levels between RA patients and healthy controls in the Galligan
et al. study. Unfortunately, markers for the canonical NFkB-
signaling pathway were not included.

To identify differences between “healthy” and “sick”
representative cohorts of both groups are required. However, the
number of simultaneously applicable barcodes, parallel handling
of all samples, read-out time on the mass cytometer, and analysis
of multi-dimensional data on millions of events set currently
limits on cohort sizes. Based on a total of 40 individuals, our
study is primarily of explorative character. Our cohorts were
sex-matched. We aimed to achieve an age match between
patients and healthy donors, although immune status has been
shown to be rather stable over time in healthy adults (27). Our
experimental setup allowed for a high degree of simultaneous
analysis, running 80 samples (20HD+20RA in two conditions)
at the same time. For future studies with more samples, it
is important to assure that results are robust across different
cytometry runs, e.g., through the use of a reference sample.

We only included newly diagnosed patients, in whom disease-
related immune status was unaffected by immune-modulatory
or immune-suppressive treatment with the exception of low-
to-moderate dosages of prednisolone in five of the 20 patients.
While prednisolone treatment may introduce an unwanted
heterogeneity, this reflects the real-life situation at rheumatology
outpatient clinics, with some patients being referred after pre-
treatment. In a sub-group analysis with CITRUS we couldn’t
identify factors that differentiated prednisolone-treated from
prednisolone-naïve patients.

RA is an inflammatory condition, and untreated patients are
expected to express signs of inflammation on a cellular level
compared to healthy donors. In our RA cohort, 15 patients had
elevated levels of CRP, including all five patients treated with
prednisolone. The higher levels of markers known to be involved
in inflammatory signaling pathways, such as the canonical NFkB
and the MAPK signaling pathways, in patients compared to
healthy donors in this cohort was, therefore, not a surprise. We
did not include patients with different inflammatory conditions
in our study, hence the specificity of the observed signaling
signatures for RA compared to other inflammatory conditions is
not known. For future studies, cohorts with other TNF-driven
conditions such as e.g., inflammatory bowel diseases should be
added as disease controls.

That CD86 was consistently expressed to a lesser degree on
classical monocytes and myeloid dendritic cells of RA patients
compared to healthy donors is likely relevant to the pathogenesis
of RA. CD86 is highly expressed on antigen-presenting cells in
synovial fluid and synovia of RA patients, whereas CD28, the T
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cell counterpart of CD86, is expressed at lower levels in patients
with active RA compared to healthy donors (28).

In conclusion, this study provided insight into TNF-mediated
signaling patterns, which are distinct for RA patients compared
to healthy individuals. A comprehensive understanding of
signaling signaturesmay facilitatemore accurate diagnosis, better
stratification of patients to guide treatment decisions, and the
identification of candidate treatment targets in RA patients.
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