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Abstract 
 
The Norwegian Petroleum Directorate required that a polymer field pilot should be performed 

in the Johan Sverdrup field in the second phase of the field development to confirm potential 

enhanced recovery potential at the field and collect valuable data. Polymer increases the 

viscosity of the aqueous phase, which gives a more favourable mobility ratio and improved 

volumetric sweep efficiency during production of high viscous oil or production in 

heterogeneous reservoirs. Although polymer injection is an established enhanced oil recovery 

method, it is still not established if injection of a hydrophilic polymer (HPAM) alter the 

wettability preference of oil-wet rock towards water-wet. This is important to answer because 

wettability largely dictates important flow functions.  

 

This experimental thesis evaluates change in wetting preferences during polymer injection 

using heterogeneous limestone rock core samples. A previously verified rock/brine/oil system 

was utilized to produce oil-wet rock surfaces, and systematic core scale tests have been used to 

describe important properties including: wetting preference stability in brine/oil systems, and 

the influence of hydrophilic polymers on wettability. Multiple Amott-Harvey cycles were used 

to determine wettability preferences and alterations in 29 core plugs. In-situ visualization by 

MRI, high-resolution CT and PET-CT assisted in the interpretation.  

 

Amott-Harvey cycles were first performed to determine wetting preference stability in brine/oil 

systems, where the core plugs were aged to slightly oil-wet conditions. Spontaneous imbibition 

of oil was recorded during the first three Amott-Harvey cycles and the wettability remained 

stable. Previous studies have not been performed beyond three cycles, but in this study two 

additional cycles were performed. During the 4th and 5th cycle, spontaneous imbibition of oil 

stopped, and small volumes of water imbibed spontaneously into some core plugs. Hence; the 

wettability changed from slightly oil-wet towards neutral or slightly water-wet conditions 

during completion of five subsequent Amott-Harvey cycles.  

 

When polymer was introduced to slightly oil-wet core plugs, oil imbibition ceased in the second 

Amott-Harvey cycle and polymer imbibition started in the third, i.e. polymer initiated a quicker 

change in wettability, and yielded stronger water-wet conditions than brine. Relative 

permeabilities of water and oil decreased when polymer was present in the pore volume. A 
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larger decrease in relative permeability of water than the relative permeability of oil was 

observed both in water-wet and oil-wet cores.   

 

PET-imaging showed that oil and water displacement fronts propagated faster through a core 

plug when polymer was present in the pore volume, which indicated that the pore volume 

available for flow had been reduced by polymer injection. Blocking of narrow pores and pore 

throats by polymer, and adsorption of polymer layers on the pore walls was proposed as viable 

explanations for the observed behavior.   
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Nomenclature 
 
Abbreviations 
AFO All Faces Open 

A-H Amott-Harvey 
BT Break through 
CT Computed Tomography 
DPR Disproportionate Permeability Reduction 
EOR Enhanced Oil Recovery 
FW Fractionally wet 
HPAM Hydrolysed Polyacrylamide 
IFT Interfacial tension 
MRI Magnetic Resonance Imaging 
MWL Mixes-wet large 
MWS Mixed-wet small 
NMR Nuclear Magnetic Resonance 
NWP Non-wetting phase 
PET Positron Emission Tomography 
PV Pore volume 
SI Spontaneous imbibition 

 
 
Nomenclature 
Symbol Description 

θ!"  Oil/water wetting angle  

	λ	$  Displacing fluid mobility 

	λ	%  Displaced fluid mobility 

	𝜆	&  Mobility of a fluid i 

µ Dynamic viscosity 

𝜇'(  The geometric mean of the water and oil viscosities  

𝜇& Dynamic viscosity of a fluid i 

𝜙)*) Total porosity 

𝜙+,, Effective porosity 

𝜌& Density of a fluid i 

σ	 Interfacial tension  
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𝜏 Shear stress 

𝐴 Core plug cross sectional area  

𝑑-  Diameter of a core plug 

I./  Amott-Harvey wettability index 

I!  Wettability index of oil 

I"  Wettability index of water 

𝐾 Absolute permeability 

k01 Effective permeability of fluid i 

k20 Relative permeability of fluid i 

𝑘3*,&5  End-point relative permeability of oil 

𝑘35,*3  End-point relative permeability of aqueous phase 

𝐿  Length of core plug 

𝑀67  Mobility ratio between displacing fluid D and displaced fluid d 

𝑀*5  Mobility ratio between oil and aqueous phase 

𝑀5*  Mobility ratio between aqueous phase and oil 

𝑚738  Mass of dry core plug 

𝑚5+) Mass of wet core plug 

P9  Capillary pressure 

P:" Non-wetting phase pressure 

P" Wetting phase pressure 

𝑄 Volumetric flow rate 

𝑅;, 𝑅< Principal radii of the interface curvature 

𝑟 Core plug radius / radius of capillary tube 

∆S"= Change in water saturation during spontaneous imbibition 

ΔS"> Total change in water saturation during spontaneous imbibition and forced injection 

∆S!= Change in oil saturation during spontaneous imbibition 

ΔS!> Total change in oil saturation during spontaneous imbibition and forced injection 

S Surface area 

𝑆&  Saturation of a fluid i  

𝑠,  standard deviation of the function f 

𝑡6  Dimensionless time 

𝑇<  Transversal relaxation time 
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𝑉?  Bulk Volume 

𝑉&  Volume of a fluid i present in a core plug 

𝑉(  Matrix Volume 

𝑉@  Pore Volume 

𝑉@,+,,  Effective Pore Volume 

𝑥A&  The distance from the imbibition face to the no-flow boundary 
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1 Introduction  
The population and the energy demand in the world are steadily increasing. In the 20th century, 

the population quadrupled, and the world energy demand went up 16 times. Currently, about 

13 terawatts (TW) of energy is needed to sustain the lifestyle of 6.5 billion people worldwide. 

By the year 2050, an additional 10 TW of clean energy is needed to maintain the current lifestyle 

(Kamat, 2007). Figure 1.1 represents the global electricity demand by region from 2000-2040 

in the stated policies scenario, where global electricity demand grows at 2.1% per year to 2040 

(IEA, 2019c).  

 
Figure 1.1: The global electricity demand by region in the period 2000-2040. (Modified from 
IEA (2019a)). 
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Figure 1.2: Total primary energy supply by source in the world from 1990-2017. (Modified 
from IEA (2019b)). 

 
Oil is currently the main supplying energy source in the world (Figure 1.2). In 2017, 3% of the 

world electricity generation came from oil (IEA, 2019c). Only 20-50% of oil originally in place 

(OIIP) is possible to produce from a reservoir by primary and secondary recovery (Ali and 

Thomas, 1996). Huge volumes of oil are left behind; and are important resources to produce in 

order to meet the future energy needs. Polymer injection is a well-known and field-proven 

method to enhance oil recovery. Polymers increase the viscosity of the aqueous phase and 

reduce its relative permeability, which gives a more favourable mobility ratio and improved 

volumetric sweep efficiency during production of high viscous oil or production in 

heterogeneous reservoirs. Several authors report that polymer flooding has been more efficient 

than expected, which propose that other mechanisms are in play apart from increased aqueous 

viscosity (Zaitoun and Kohler, 1988, Liang et al., 1995, Nilsson et al., 1998, Al-Sharji et al., 

1999, Willhite et al., 2002). Proposed mechanisms for this behaviour include 

shrinking/swelling, preferred pathways, wall effects and wettability effects. This thesis 

emphasized the effect of wettability, through systematic experimental work on the core scale. 

The influence of hydrophilic polymer (HPAM) on core plug wettability preference was 

investigated. The core material was Edwards Yellow Limestone from West Texas. Limestone 

is a carbonate rock, and according to Bjorlykke (2010), carbonate reservoir rocks contain almost 

40% of the oil reserves in the world. Carbonate reservoirs are characterized by extremely 

heterogeneous porosity and permeability, caused by the wide spectrum of depositional 
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environments and by the susceptibility of the rocks to diagenetic alteration. 29 different core 

plugs with a diameter of 1.5” and lengths between 6.4cm and 7.6cm have been used for 

experiments. A total of 20 core plugs were aged towards oil-wet conditions by crude oil using 

two different aging methods: static aging and dynamic aging. The resulting wetting preference, 

and stability of the altered wettability, was investigated through several full Amott-Harvey 

cycles. Up to five Amott-Harvey cycles were performed, where wetting stability was assessed 

with and without the presence of polymers in the aqueous phase. Ekofisk brine, polymer 

solution or glycerol solution constituted the aqueous phase during spontaneous imbibition and 

forced displacement, while mineral oil (Decane) constituted the oil phase.  Pore scale 

assessment of fluid distribution was performed by Magnetic Resonance Imaging (MRI) in one 

dynamically aged core plug. In-situ imaging by PET/CT was applied to visualize the 

displacement fronts before and after polymer injection in one of the core plugs. CT-images of 

two core plugs were used to assess the heterogeneity of the core material.* 

 

 

 

* Due to the circumstances around the covid-19 pandemic, some experimental work was not completed. 

This includes some MRI measurements and quantitative analysis of PET/CT data. This is further 

described in the subsections of this thesis. 
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2 Theory 
In this chapter, theory describing the core material used, wettability, methods for wettability 

measurement, wettability alteration and wettability alteration by polymers will be presented. 

Fundamental concepts in core analysis, i.e. porosity, permeability, saturation, and capillary 

pressure, are further described in Appendix A-C. These concepts are important in order to 

understand the mechanism behind wettability and wettability alteration. 

 

2.1 Basics of core analysis and the core material 
Core plugs are small pieces of rock that are drilled out from geologic reservoirs or outcrops and 

further used for laboratory experiments. Core analysis is an important source of information, 

both when it comes to petrophysical and geological properties of reservoir rocks, and in regard 

to fluid flow through representative porous media. Recovery mechanisms and rock/fluid 

interactions may be investigated in detail on smaller scales, and upscaled to yield useful 

information about e.g. reservoir production. Outcrop limestone core plugs were used in this 

thesis, acquired from the Edwards formation in West-Texas. Edwards limestone is 

heterogeneous with a trimodal pore size distribution with both microporosity and vugs. Outcrop 

rock is expected to be water-wet.  

 

Tipura (2008) presented a linear porosity-permeability relationship for Edwards limestone used 

in her work (Figure 2.1). The porosity was in range 16.9-26.9% and the permeability in range 

4.4-28.5mD. The same core material was used in this work, but from a new supplier, so the 

core properties were expected to be in the same range. 

 
Figure 2.1: Linear porosity-permeability relationship for Edwards limestone (Tipura, 2008). 
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Figure 2.2: Thin section of Edwards limestone from Tipura (2008). A scale of 0.5 mm is 
displayed in the bottom corner. 

 
Tipura (2008) presented a brief analysis of a thin section of Edwards limestone. The thin section 

is shown in Figure 2.2. Special blue epoxy was used to saturate the pores, while rock minerals 

and fragmental organic remains were represented by black and grey tone colours. The rock is 

clearly heterogeneous, with a variety of pore sizes (in the range 2mm to a few microns) 

randomly distributed in the rock. Two types of porosity were recognized in the thin section: 

primary porosity filled with sparry calcite cement and secondary porosity, which was dominant. 

No vugs were present in the rock. Pore size distributions of three Edwards limestone core plugs 

were also presented by Tipura (2008). The pore size distributions were obtained by mercury 

injection at certain pressure where volume of mercury was recorded. The intrusion pressures 

were transformed into pore throat radii with the Young-Laplace equation assuming cylindrical 

pore neck shapes (equation (C.3)). dV/dlogP, which is a measure of intensity/frequency for the 

given pore throat size, was plotted as a function of pore throat size (Figure 2.3). The largest 

pore throat radius for all core plugs was ~90 microns, while the lowest was between 0.1 and 

0.01 microns.  
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Figure 2.3: Pore throat distribution of three Edwards limestone samples from Tipura (2008). 
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2.2 Definition of wettability 
Wettability can be defined as “the tendency of one fluid to spread on or adhere to a solid surface 

in the presence of other immiscible fluids” (Craig, 1971). When water preferentially spreads on 

the rock surface, the rock is said to be water-wet, while a surface is oil-wet when oil 

preferentially spreads on it. Figure 2.4 illustrates contact angles for different types of 

wettability. The contact angle may be measured through the water phase on a simplified mineral 

surface, but is here used to illustrate different types of wettability.  

 

 
Figure 2.4: Contact angles representative of different wettabilities. 

 
Wettability strongly influence capillary pressure, relative permeability and water flood 

behaviour (Anderson, 1986b). According to Bobek et al. (1958), core analysis also frequently 

show oil recoveries from preferentially water-wet systems to be significant higher than from 

preferentially oil-wet systems. In order to understand oil recovery on field scale, recovery on 

smaller scales (e.g. core scale) has to be understood. This thesis investigates whether polymer 

injection can alter the wettability preference of an aged core plug towards water-wet. 

 

2.3 Wettability measurement 
Many different methods for wettability measurements on the core scale are proposed, both 

quantitative and qualitative. Quantitative methods used in this thesis are the Amott-Harvey 

index, which is based on spontaneous imbibition and forced displacement, and magnetic 

resonance imaging (MRI). Scaled spontaneous imbibition curves and end-point relative 

permeabilities of oil and water are qualitative methods that may be used to indicate wettability 

or wettability changes. The different methods will be described in detail below. 

 

2.3.1 Amott-Harvey Wettability Index 

Amott (1959) devised a method to quantify the average wetting state of a porous medium. One 

full Amott-Harvey cycle consists of the following four steps (illustrated in Figure 2.5):  
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(1) spontaneous imbibition of water, (2) forced water injection, (3) spontaneous imbibition of 

oil, (4) forced oil injection, and is based on the fact that the wetting fluid will generally imbibe 

spontaneously into the core, displacing the nonwetting fluid (Anderson, 1986a). The Amott-

Harvey wettability index, 𝐼AB, is given by: 

 𝐼AB = 𝐼5 −	𝐼*	 (2.1) 

 

where 𝐼5 is the wettability index of water and 𝐼* is the wettability index of oil.  

 

The wettability indices of water and oil are quantified by measuring the increase in water and 

oil saturation during spontaneous imbibition (∆𝑆5C and ∆𝑆*C) and the overall increase in water 

and oil saturation (𝛥𝑆5) and 𝛥𝑆*) ) after forced displacement. 

 

The wettability index for water and oil, respectively, are given by:  

 𝐼5 =
∆𝑆5C
𝛥𝑆5)

	 (2.2) 

 𝐼* =
∆𝑆*C
𝛥𝑆*)

	 (2.3) 

 

 

  
Figure 2.5: The four steps of one full Amott-Harvey cycle: Spontaneous water imbibition, 
forced water injection, spontaneous oil imbibition, and forced oil injection. 
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Table 2.1: Approximate relationship between wettability and the Amott-Harvey wettability 
Index. 

 Amott-Harvey Index 

Water-Wet 0.3 ≤	 𝐼	AB ≤ 1.0 

Neutrally Wet -0.3 ≤	 𝐼	AB ≤ 0.3 

Oil-Wet -1.0 ≤	 𝐼	AB ≤ -0.3 

 

Table 2.1 gives approximate values of the Amott-Harvey index for water-wet, naturally wet 

and oil-wet cores. The Amott-Harvey method is insensitive near neutral wettability. This is 

because the volume of fluids spontaneously imbibed is much lower than for strongly wetted 

systems. The method is therefore more accurate on strongly water-wet or strongly oil-wet core 

plugs, where the volume imbibed is higher. The Amott-Harvey index is therefore not an ideal 

measure of the wettability of all aged core plugs in this work. The Amott-Harvey method still 

provides valuable information in core analysis of weakly wetted systems: the method is cheap 

and reproducible, it is possible to repeat it for many cycles, thereby indicating a change of 

wettability within a given core, and it is possible to do wettability measurements in many core 

plugs simultaneously to provide statistics. Complementary imaging by magnetic resonance 

imaging (MRI) provides spatial information concerning the wettability distribution within core 

plugs, although the method is both expensive and time-consuming. The wettability distribution 

of one dynamically aged core plug was performed using MRI, described further in section 3.9.1.  

 

2.3.2 Spontaneous imbibition 

Capillary pressure (defined in Appendix C) is the driving force for spontaneous imbibition. The 

wettability of a core plug affects the rate and amount of spontaneous imbibition of water or oil 

by affecting the capillary pressure. 

 

The recovery efficiency is also affected by the capillary pressure. The rate of spontaneous 

imbibition and the capillary pressure curve versus water saturation can be used to determine the 

wettability of a core plug. Spontaneous imbibition of water from irreducible water saturation 

may increase the water saturation to the residual oil saturation in a strongly water-wet system 

(Donaldson, 2008). Lower imbibition rates and smaller volumes imbibed indicate more weakly 

wetted systems. If no water is imbibed, the core is either oil-wet or neutrally wet (Anderson, 

1986a). According to Viksund et al. (1998), the relative rate of imbibition will increase with 

increase in initial water saturation. 
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2.3.2.1 Scaling of spontaneous imbibition 

Scaling of spontaneous imbibition is important to be able to predict recovery behaviour on field 

scale from laboratory imbibition on the core scale. Recovery curves normalized by a reference 

volume are usually plotted versus a scaling time group in scaling practices (Mirzaei-Paiaman 

and Masihi, 2013). How to scale the non-wetting phase (NWP) recovery by counter-current 

spontaneous imbibition is therefore an important challenge that has been a focus of research for 

decades.  

 

The scaling equations do not consider variations in wettability but provides a useful method to 

compare experiments with varying wetting phase viscosity and correct for small variations in 

core plug dimensions. According to Fischer and Morrow (2006), the correlation of imbibition 

data is obtained by compensating the geometric mean of the viscosities for an overall systematic 

increase in dimensionless time for recovery. The scaling equation developed by  Ma et al. 

(1999) accounts for the effect of differences in viscosity ratio. It was found that imbibition rate 

depends on the square root of the oil/water viscosity. This is necessary to consider during 

spontaneous imbibition of high viscous polymer -and glycerol solutions, which is performed in 

this work. 𝑡6 is dimensionless time, and is given by: 

 

 𝑡6 = 𝑡H
𝐾
𝜑

𝜎
𝜇'(

1
𝐿D<

 (2.4) 

where 𝐾 is the absolute permeability of the core plug, 𝜑 is the porosity, 𝜎 is the interfacial 

tension between the wetting and the non-wetting phase and 𝑡 is the time.	𝜇'( is the geometric 

mean of the water and oil viscosities	(	𝜇5 , 𝜇*): 

 𝜇'( = N𝜇5𝜇* (2.5) 

 

𝐿E is the characteristic length, compensating for different boundary conditions. The general 

equation is (Ma et al., 1999):  

 𝐿E = O
𝑉?

P 𝐴&
𝑥A&
	

&FG

&F;

	 (2.6) 

 

where 𝑥A& is the distance from the imbibition face to the no-flow boundary. In this work all 

faces open (AFO) boundary condition were used during spontaneous imbibition in most 
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experiments. The characteristic length for this boundary condition was derived by Zhang et al. 

(1996) and is given by: 

 

 𝐿E =
𝐿-𝑑-

2N𝑑-< + 2𝐿-<
	 (2.7) 

where 𝐿- is the length of the core plug and 𝑑- is the diameter of the core plug. 

  

Interfacial tension  

Interfacial tension (IFT) is a property of the interface between two immiscible phases (e.g. 

oil/water) and is one of the parameters in the scaling equation for spontaneous imbibition. 

Interfacial tension between the aqueous phase and the oil phase was not measured in this work, 

but measurements of IFT between brine/decane, 5000ppm HPAM/decane and 69wt% 

glycerol/decane were performed by Reite (2019). The interfacial tension measurements for all 

combinations of oleic and aqueous phases are presented in Figure 2.6. An average of the 

measured IFTs for each fluid combination was used for calculations in this thesis.  

 

 
Figure 2.6: Interfacial tension measurements with error bars. IFT for each combination of 
fluids were measured 10 times. The deviation is equal to one standard deviation. (effl.) means 
effluent (Reite, 2019). 

 
Viscosity 

Viscosity is a parameter defining the internal resistance of a fluid to shear and is also a 

parameter in the scaling equation. The resistance occurs due to interaction between the 

molecules of the flowing fluid. Generally, the viscosity increases with molecular weight and 

decreases rapidly with increase in temperature (McCabe, 2005). The Newton model, quantifies 
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viscosity, 𝜇, as the proportionality constant between the applied shear stress, 𝜏, and the shear 

rate 𝑑𝑢 𝑑𝑦⁄  of a linear flow: 

 𝜏 = 𝜇
𝑑𝑢
𝑑𝑦 (2.8) 

 

Most gases and liquids follow this relation and are called Newtonian fluids. Some fluids have 

rheological behaviour different from Newtonian fluids. These fluids, which are called non-

Newtonian fluids, do not have a linear relationship between shear stress and shear rate (Metzner 

and Otto, 1957). Viscosity is an important aspect in this thesis because polymer solutions are 

used in spontaneous imbibition and forced displacement core scale experiments. Polymer 

solutions are non-Newtonian and have higher viscosities than e.g. oil or water (Newtonian 

fluids). Partially hydrolysed polyacrylamide (HPAM) polymer and glycerol were used to 

increase brine viscosity by a factor of 20-40 in this thesis (see chapter 3.1.1 and 4.5.1).  

 

Waterflood in a hydrocarbon reservoir is highly affected by the oil/water viscosity ratio 𝜇* 𝜇5⁄ . 

The mobility of a fluid i, 	𝜆	& , decreases with an increase in viscosity. Mobility is defined as: 

 	𝜆	& =
𝑘3&
𝜇&
	 (2.9) 

 

where 𝑘3& is the relative permeability of the given fluid and 𝜇& is its viscosity.  
 

The mobility ratio is defined as the ratio of the displacing fluid mobility, 	𝜆	6, to the displaced 

fluid mobility, 	𝜆	7: 

 𝑀 =
	𝜆	6
	𝜆	7

=
𝑘36
𝜇6

𝜇7
𝑘37

 (2.10) 

 

where 𝑘36 and 𝜇6 are the relative permeability and viscosity of the displacing fluid, and 𝑘37 

and 𝜇7 are the relative permeability and viscosity of the displaced fluid. The mobility ratio 

influences two-phase flow processes, e.g. the time of water break-through and duration of 

transient period (period of two-phase production). 

 

2.3.3 End-point relative permeability 

Relative permeability curves can give an indication of the wettability of a core plug, especially 

by considering the end-point relative permeability at irreducible wetting and non-wetting phase 
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saturation (permeability is defined in Appendix A). In a uniformly and strongly water-wet core 

plug, water will be located as a thin film in the larger pores, and fully saturating the smaller 

pores. The non-wetting fluid (e.g. oil) is located in the middle of the larger pores. The end-point 

relative permeability of the non-wetting fluid is generally higher than the end-point relative 

permeability of the wetting fluid. This occurs because the non-wetting fluid will easily flow in 

the larger pores, while the wetting fluid will flow through films and in the smaller pores 

(Anderson, 1987). Craig (1971) stated rules of thumb to attribute differences in the relative 

permeability curves to different wettabilities, Figure 2.7.  

 

Figure 2.7: Craig’s rules of thumb, and typical water-oil relative permeability curves of 
strongly water-wet rock to the left and strongly oil-wet rock to the right.  

 

2.3.4 In-situ imaging 

Three different imaging techniques used in petroleum engineering research are presented 

below: Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and Positron 

Emission Tomography (PET). MRI is a quantitative method that can be used to quantify spatial 

wettability distribution in a core plug, while CT-imaging and PET-imaging are qualitative 

methods that can be used to describe wettability by quantifying fluid flow in the core.  
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2.3.4.1 Magnetic Resonance Imaging (MRI) 

Magnetic Resonance Imaging (MRI) is a medical imaging technique that uses the principles of 

nuclear magnetic resonance (NMR), to record the stimulated absorption and emission of energy 

from nuclei placed within a magnetic field, thereby forming images representing the anatomy 

and/or the physiological processes of the body. MRI has also been used for studying the 

properties of water and/or oil saturated rocks since the early 1950´s. MRI provides information 

on the saturating fluid in the rock, and also yield information about pore size distribution, rock 

type and rock properties (Dunn, 2002). Tipura (2008) used MRI to study displacement 

mechanism in Edwards limestone as a function of wettability. A linear relationship between the 

MRI intensities and Decane saturation was found in the core samples. In addition, T2 relaxation 

properties of oil- and water-saturated limestone were measured at various wettabilities and 

various fluid saturations in order to characterize wettability. The T2 relaxation time for the oil 

phase at irreducible water saturation, 𝑆5&, decreased almost linearly for stronger oil-wet 

conditions. In this thesis, MRI was used to evaluate the spatial wettability distribution in one 

core plug: first at strongly water-wet conditions, thereafter at oil-wet conditions after dynamic 

aging. Due to the circumstances surrounding the covid-19 pandemic it was not possible to 

complete the measurements on the aged core plug. The performed and planned experiments 

will be presented in section 3.9.1 and 4.2.1. 

 
2.3.4.2 Computed Tomography (CT) 

CT-imaging, which also is an imaging technique developed for clinical use, is based on an X-

ray source that illuminates an object (e.g. a core plug) and projects the transmitted X-ray 

intensity onto an imaging device. Many X-ray measurements from different orientations are 

taken to create cross-sectional images of the object (Heindel, 2011).  CT-imaging is also widely 

used as a qualitative and quantitative tool in petroleum engineering research (Akin and 

Kovscek, 2003). Withjack (1988) used CT-scanning to determine average porosities of Berea 

sandstone and dolomite core plugs. Close agreement (±1	porosity %) was reported between the 

CT-derived porosities and those determined by conventional methods. CT-imaging has also 

been used to estimate permeability distribution by measuring in-situ flood-front velocities by 

CT-scanning (Withjack et al., 1991), or by measuring in-situ tracer concentrations by CT-

scanning (Mohanty and Johnson, 1993, Johns et al., 1993), to visualize miscible and immiscible 

fluid displacements in core plugs (Fransham and Jelen, 1987, Peters and Hardham, 1990), and 

to characterize the nature of (homogeneous or heterogeneous) porous media (Bergosh and Lord, 

1987, Peters and Afzal, 1992, Karacan and Okandan, 1999). In this thesis, CT-imaging was 
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used to assess and visualize the heterogeneity of the Edwards limestone core material. The 

results are presented in section 4.2.2. 

 

2.3.4.3 Positron Emission Tomography (PET) 

Positron Emission Tomography (PET) imaging is another frequently used method for medical 

in-situ 3D-imaging, but is also a valuable tool for in-situ characterization of fluid transport in 

porous media at the laboratory scale (Zahasky et al., 2019).   

The flowing phase is labelled by positron-emitting radiotracers. When two phases are present, 

only one of the phases (injected or displaced) needs to be labelled in order to quantify fluid 

flow. As a result of the radioactive decay, positrons will be emitted. The positron will lose 

energy and slow down as it travels through the surrounding material. When the energy is low 

enough, the positrons interact with surrounding electrons which results in a complete 

annihilation of both particles. Two 511 keV photons (gamma rays) will be emitted in opposite 

directions to conserve momentum. A detector array in the PET scanner register the photons 

with time and use tomographic reconstruction methods to create 3D images of annihilation 

events within the defined time frame. The PET resolution is primarily limited by the positron 

travel distance before annihilation, which can be estimated with an uncertainty of ~1mm. 

 

Fernø et al. (2015) successfully implemented combined PET/CT imaging to visualize and 

quantify fluid flow in sedimentary rocks. It was found that this method provided more 

information than from each method separately, and that it can be applied to a larger range of 

rock types and displacement processes. Brattekås et al. (2016) used PET/CT imaging to 

quantify the behaviour and blocking capacity of Cr(ⅠⅠⅠ)-acetate hydrolysed polyacrylamide gel 

during chase waterflooding. In this thesis, PET/CT imaging was used to visualize displacement 

fronts in a core plug during water, oil and polymer injection, further detailed in section 3.9.3. 
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2.4 Groups of wetting 
The wettability of a core plug can range from strongly water-wet to strongly oil-wet. When 

water preferentially spreads on a surface in presence of oil, it is characterized as water-wet, 

while the surface is oil wet when oil preferentially spreads on it in presence of water. If the core 

plug has no strong preference for either oil or water, it is neutral wet (Anderson, 1986b). In 

addition, three intermediate wetting states can be defined: fractional wet (FW), mixed-wet large 

(MWL) and mixed-wet small (MWS). A FW core plug has one fraction of water-wet pores and 

another fraction of oil-wet pores, and the wettability distribution is uncorrelated to pore size. In 

a core plug that has MWL wettability, the largest pores are oil-wet while the smallest pores are 

water-wet. This relation is opposite for a core plug of MWS wettability (Skauge et al., 2007).  

 
 
2.5 Wettability alteration (aging) 
Most reservoir minerals are strongly water-wet in their original state. The rock wettability can 

change towards oil-wet by adsorption of polar compounds and/or the deposition of organic 

matter originally in the crude oil (Anderson, 1986b). Oil composition is key to wettability 

changes, because any wettability-altering components are in the oil phase in a water/oil/rock 

system (Abdallah et al., 2007). The same core material can be affected differently by different 

crudes and the same crude oil can cause different wettability effects in various core material. In 

addition to the oil and mineral surface composition, wetting alteration is also dependent on 

pressure, temperature, mineral surface, and brine chemistry, including ionic composition and 

pH (Bobek et al., 1958, Anderson, 1986b).  

 

Buckley et al. (1989) performed adhesion tests in a rectangular glass cell with a contact angle 

goniometer for observations of oil-drop/water/glass contacts. An oil drop was introduced to the 

system for varying amounts of time before the oil was slowly retracted back into a burette. Two 

types of behavior were observed: non-adhesion, where the oil separated cleanly from the plate, 

and adhesion, where a drop of oil was left on the glass surface.  It was found that the adhesion 

of the crude oil only occurred below a critical value of pH and above a critical Na+ 

concentration. Liu and Buckley (1999) performed wettability alteration experiments on 

muscovite mica instead of glass. Mica has different surface structure and surface roughness 

compared to the glass cell. Wettability alteration of mica surfaces were observed by exposure 

to crude oils, but the adhesive areas were smaller than the corresponding areas on glass.  
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Graue et al. (2002) described two methods of wettability alteration: dynamic and static aging. 

The dynamic aging was based on continuous crude oil flooding through Rørdal chalk core plugs 

at elevated temperature with low injection rate for a specified period of time. Static aging was 

performed by flooding the core with crude oil to initial water saturation and thereafter 

submerging the core in crude oil at elevated temperature for a specified period of time. Flooding 

the core with crude oil during the entire aging process (dynamic aging), and reversing the flow 

direction halfway through the process, produced the most uniform wettability condition. Aging 

was more efficient at lower initial water saturations, i.e. yielding lower 𝐼AB. 

 

Ferno et al. (2010) performed dynamic aging of Rørdal chalk core plugs using variable duration 

of aging (48, 96 and 192h) and flow rates (1, 3, and 5 cm3/h). An increase in the duration of 

aging yielded decreased Amott-Harvey water index. When the duration of aging was kept 

constant and injection rates varied, different wetting preferences were established. The lowest 

flow rate (1 cm3/h) provided the least change in wetting, with a measured water index of 𝐼5 =

0.53. The water index was reduced to 𝐼5=0.31 when the flow rate was increased to 3 cm3/h. A 

further increase in the injection rate to 5 cm3/h increased the water index to 𝐼5 = 0.44. It was 

suggested that the crude oil injection rate influenced the bulk crude oil interactions active in the 

wettability alteration process and that an optimal crude oil injection rate between 1 and 5 cm3/h 

exists. Static aging was less effective than dynamic aging in altering wettability. Aging 

durations of up to 12 days were tested (Ferno et al., 2010).  

 

In this thesis dynamic aging was performed using an injection rate of 1.5 ml/h (corresponding 

to 3 cm3/h for 2-inch diameter core plugs) and aging duration of 144h. Static aging was 

performed by crude oil injection until initial water saturation was reached, and thereafter storing 

the core in a beaker of crude oil for 1000h at 80℃. The experimental procedures are described 

in detail in chapter 3.5.  

 

Most of the core plugs used in this thesis were aged towards oil-wet conditions, but some cores 

spontaneously imbibed both water and oil. Submerging a core in an Amott cell filled with either 

water or oil will therefore be described as spontaneous imbibition of water or oil, respectively. 
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2.6 Wettability alteration by polymers 

2.6.1 Polymers 

Polymers are large molecules composed of many repeated subunits (monomers), that can be 

added to water to increase its viscosity. Polymer flooding also reduces the relative permeability 

to the aqueous phase, which promotes more favourable mobility ratio. Improved volumetric 

sweep efficiency during production of high viscous oil or production in heterogeneous 

reservoirs (Ali and Thomas, 1996) may therefore be seen. 

 

Two types of polymers are used for Enhanced Oil Recovery (EOR); hydrolysed or partly 

hydrolysed polyacrylamide (HPAM) and biopolymers (such as xanthan gum). HPAM costs less 

and exhibits significantly greater viscoelasticity, and is therefore, by far, most applied (Sheng 

et al., 2015), but has not been widely used on the Norwegian Continental Shelf due to PLONOR 

regulations: chemicals are divided into different categories based on their environmental 

properties (black, red, yellow and green). Green chemicals, which are listed on the PLONOR 

list, are considered to pose little or have no negative impact on the environment. Permission is 

needed to emit chemicals that are not listed on the PLONOR list, i.e. are not in the green 

category. HPAM is in the red category (Wennberg and Petersen, 2017).  

 

Polyacrylamides can be manufactured by polymerization of the acrylamide monomer, to 

produce a polymer that resembles a flexible coil. Macromolecules with average molecular 

weights ranging from 0.5 million to 30 million are produced during polymerization. The 

polyacrylamide, which adsorbs strongly on mineral surfaces, is partially hydrolysed to reduce 

adsorption by reacting polyacrylamide with a base. Hydrolysis converts some of the amide 

groups (𝑁𝐻<) to carboxyl groups (𝐶𝑂𝑂H), as shown in Figure 2.8 (Green, 1998). 
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Figure 2.8: Molecular structure of high-molecular-weight polyacrylamides (Green, 1998). 

 
Aqueous polymer solutions often exhibit non-Newtonian rheological behaviour, where the 

apparent viscosity decreases as shear rate increases. Fluids with this rheological characteristic 

are classified as shear thinning. Salinity content may also affect the rheological behaviour of 

polymer solutions, depending on the degree of hydrolysis. Hydrolysis of polyacrylamide 

introduces negative charges on the backbone of the polymer chain, which at low salinities can 

cause the polymer chain to stretch. Each polymer molecule occupies more space in solution, 

and the apparent viscosity of a dilute solution increases accordingly (Green, 1998). 

 

Retention is a term used to cover all the mechanisms responsible for the reduction of mean 

velocity of polymer molecules during their propagation through porous media. Polymer 

retention varies with polymer type, polymer concentration, molecular weight, rock 

characteristics and composition, brine salinity hardness and pH, flow rate and temperature 

(Lake, 2014). All polymers experience retention in permeable media, predominantly by two 

mechanisms; adsorption of polymer molecules on the surface of large pores and mechanical 

entrapment in small pores (Huh et al., 1990). In addition, precipitation of polymer molecules 

can arise. These mechanisms are illustrated in Figure 2.9. The HPAM polymer solutions used 

in the experiments in this work were filtered before use to remove larger clusters of polymers 

and prevent unnecessary mechanical entrapment.  
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Figure 2.9: Types of Polymer Retention in Porous Media and Inaccessible Pore Volume, from  

Zolotuchin (2000). 

In this thesis, partially hydrolysed polyacrylamide (HPAM) was used to investigate the effect 

of polymer injection on core plug wettability. Baseline experiments were performed using 

Glycerol as a viscosifying agent. Glycerol is a trihydric alcohol, of 1500 cP viscosity at 20℃. 

Glycerol is miscible with water and ethanol in all proportions, and immiscible with 

hydrocarbons. Viscosity decreases with increase in temperature and with addition of water, and 

increases with addition of electrolytes to its aqueous solutions (Monick, 1968, Takamura et al., 

2012). Glycerol has previously been used as a viscosifying agent for aqueous solutions (Kyte 

and Rapoport, 1958, Rapoport and Leas, 1953, Fischer and Morrow, 2006, Reite, 2019, Saunes, 

2018). Glycerol was used for spontaneous imbibition and forced injection in this thesis because 

the viscosity of a brine solution can be increased to the same level as with polymer, but without 

the presence of surface-active components that will potentially impact wettability. 

 

2.6.1.1 Short summary of previous research 

Elmkies et al. (2001) performed static crude oil aging at a temperature of 60 ℃ for 6 weeks on 

St-Maximin limestone and on Estaillades limestone. The crude oil aging was found to modify 

the wettability of the cores towards less water-wet and slightly oil-wet conditions. A nonionic 

polyacrylamide polymer was injected in the limestone cores and it was found that adsorption 

of the hydrophilic polymer in partially oil-wet cores, partly restored the initial water-wet 

wettability.  

 

Barreau et al. (1997) flooded water-wet and oil-wet (silane-treated) sandstone core plugs with 

brine, mineral oil, and 2500ppm polymer solution made of a high-molecular-weight nonionic 
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polyacrylamide (PAM) and brine. Capillary pressure, relative permeability and end-point 

saturations were measured before and after polymer injection. There was a strong increase in 

irreducible water saturation after polymer adsorption both in the water-wet and the oil-wet cores 

(from 0.33 to 0.39 for water-wet cores and from 0.32 to 0.49 in oil wet cores). The residual oil 

saturation was almost unchanged after polymer injection in the water-wet core, while it 

decreased significantly (from 0.54 to 0.22) in the oil-wet core. The capillary pressure was 

strongly increased over the whole saturation range by the presence of adsorbed polymer in the 

water-wet core. The capillary pressure for the oil-wet core changed from negative to positive, 

with a higher maximum value, after polymer adsorption in the core. Because brine/oil and 

polymer-solution/oil IFTs are almost the same, this behaviour was explained by wettability 

improvements (stronger water-wet conditions) and pore-size reduction by the adsorbed polymer 

layer. For water-wet media, the increase in capillary pressure was suggested to be mainly the 

result of pore throat reduction, while for the oil-wet medium, a complete change of wettability 

was observed in addition to pore-size restriction. The relative permeability curves showed a 

greater reduction in relative permeability of water compared to relative permeability of oil, and 

the effect was stronger in the water-wet medium. 

 

Juarez-Morejon et al. (2017) did spontaneous imbibition experiments in Bentheimer sandstone 

with intermediate wettability. Four types of experiments were performed: Amott tests in brine 

and in polymer solution (HPAM solution with a concentration of 2500ppm) to measure 

wettability index and determine the wettability of the cores, spontaneous imbibition using brine, 

polymer solution, and brine followed by polymer solution. Spontaneous imbibition in polymer 

solution showed a better efficiency in oil recovery than spontaneous imbibition in brine. The 

oil recovery was also enhanced when spontaneous polymer imbibition was performed after 

spontaneous brine imbibition. Amott-Harvey wettability indices were measured for two core 

plugs: one where brine constituted the aqueous phase and one where polymer constituted the 

aqueous phase. The measured brine wettability index was lower (𝐼AB =0.08) than the measured 

polymer wettability index (𝐼AB =0.81), indicating stronger water-wet conditions with polymer 

present in the pore network.  
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2.6.2 Disproportionate Permeability Reduction 

Polymer injection influence the relative permeability of water more than oil; which must be 

understood in the interpretation of experiments. The end-point relative permeability of water is 

more reduced than the end-point relative permeability of oil when polymers or polymer gels 

saturate a porous medium. This phenomenon is usually referred to as disproportionate 

permeability reduction (DPR) (Zaitoun and Kohler, 1988, Liang et al., 1995, Nilsson et al., 

1998, Al-Sharji et al., 1999, Willhite et al., 2002). DPR may be studied using pore-filling 

polymer gels, which will behave as polymer solutions during injection. After injection, the 

gelant solution (made by adding a crosslinker, e.g. chrome (Cr(III)) acetate, to the polymer 

solution) forms to gel. Polymer gels can be used to block high permeability zones in a reservoir, 

to reduce water cut and improve oil recovery. The mechanisms causing DPR are not well 

understood, and several possible mechanisms have been proposed, e.g. gravity effect and 

lubrication effects, gel shrinking and swelling, segregation of oil and water pathways and 

wettability effects. 

 

Liang et al. (1995) flooded core plugs with Cr(III)-acetate/HPAM polymer gel, and suggested 

segregation of oil and water pathways within the porous medium to be the dominant mechanism 

for DPR. The aqueous gelant followed the water preferred pathways and blocked these when 

gel formed. Thus, many of the oil preferred pathways remained connected. Analogously, an oil-

based gel would reduce the permeability of oil more than water. DPR was observed in systems 

of intermediate wettability as well as in strongly water-wet systems. The DPR was even more 

evident in a core of intermediate wettability than in a strongly water-wet core when a 

resorcinol/formaldehyde gel was used. The effect of wettability varied with the gel. Although 

the results showed that wettability effects could play a role in the DPR, but it was not suggested 

to be the main mechanism.  

 

Nilsson et al. (1998) injected brine, white oil, HPAM based polymer with an added crosslinker, 

and biopolymer into water-wet, oil-wet and fractional wet sand packs. End-point relative 

permeabilities to oil and water were measured before and after polymer injection, and residual 

resistance factors (ratio of end-point relative permeability before and after gel treatment) of 

water and oil (𝑅𝑅𝐹5/	𝑅𝑅𝐹*) were calculated. When HPAM gel was injected at 25% brine 

saturation in the oil-wet sand pack, a 𝑅𝑅𝐹5 of 810 was measured, while an 𝑅𝑅𝐹* of 50 was 

measured.  When the gel was placed at 40% brine saturation the core was completely blocked. 



   
 

23 
 

Complete blocking was also obtained when HPAM gel was placed at 𝑆*3 in a water-wet system. 

HPAM gel was placed in two fractionally wet core plugs by simultaneously injecting gel and 

oil. The water end-point relative permeability was reduced by a factor of 50 in one of the cores, 

and by a factor of 3 in the other core. The oil end-point relative permeability was only reduced 

by factors of 4 and 1.1. It is important to preserve oil continuous channels after gel treatment, 

which was obtained in fractional wetted cores and oil-wet cores, but to a lesser extent in water-

wet cores. The results supported segregated pathways for oil and water as the main mechanism 

causing DPR.   

 

Flooding of sand packs and Berea sandstone cores using Cr(III)-acetate/HPAM gelant was 

performed by Willhite et al. (2002) and Nguyen et al. (2006). They discovered that new flow 

paths for brine and oil were created after injection of gelant and subsequent gelation. The new 

pathways were primarily caused by the dehydration of the gel by injection of oil.  In this thesis 

gel was not used, but gel dehydration is anticipated to be analogous to polymer solution 

displaced by oil in my experiments. They suggested that the trapping of residual oil in this new 

pore space within gel, caused the decreased brine relative permeability as illustrated in Figure 

2.10. Seright et al. (2004) and Seright et al. (2006) used X-ray computed microtomography to 

investigate DPR in small cores of water-wet Berea sandstone and oil-wet porous polyethylene 

after injection of Cr(III)-acetate/HPAM gel. When oil was injected after gel placement, the oil 

reduced the gel volume by 55% in the water-wet Berea core (insensitive to pore size), while it 

reduced the gel volume by only 16.3% in the oil-wet polyethylene core (mainly in the smaller 

pores). The resistance factor for water was 15 for the water-wet core after gel placement, while 

it was 24 for the oil-wet core. The results supported the gel dehydration (shrinking) as the main 

mechanism for DPR. 𝑆*3 in the Berea core increased from 18.4% to 51% after gel placement, 

and it was assumed that the increase in trapped oil restricted the water flow, giving a resistance 

factor for water of 1220. In polyethylene, 𝑆*3 was significantly lower after gel placement than 

before gel placement, although the resistance factor for water was 2130. Thus, oil trapping 

could not explain the large DPR seen in polyethylene, and gel rehydration was suggested as an 

explanation for this.  
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Figure 2.10: (a) Encapsulation of waterflood residual oil following in-situ gelation of chrome-
acetate-polyacrylamide gelant; (b) generation of new pore space when gel is dehydrated by 
injection of oil; (c) trapping of residual oil in new pore space during brine flood, leading to 
disproportionate permeability reduction of brine; (d) flow paths of oil through new pore space, 
trapping low saturations of brine. Moderated from Willhite et al. (2002). 
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3 Experimental Procedures 
A detailed description of how the different experiments were conducted is presented in this 

chapter. Procedures for fluid preparation and viscosity measurements are described in section 

3.1 and 3.2. Section 3.3 and 3.4 describes core plug preparation, porosity measurement and 

permeability measurement. The two different aging procedures are described in section 3.5 and 

the procedure used to split core plugs is presented in section 3.6. Methods used for wettability 

measurements, spontaneous imbibition and end-point relative permeability, are explained in 

section 3.7 and 3.8. All these experiments were performed at the Department of Physics and 

Technology at the University of Bergen. In section 3.9 the in-situ imaging experiments (CT, 

PET and MRI) are described. In-situ PET-imaging was performed at the Molecular Imaging 

Centre at the Department of Biomedicine, CT-imaging was performed at the Department of 

Earth science, and MRI was performed at the MRI centre at Equinor, Sandsli.  

 

3.1 Fluids 
Properties of fluids used in this thesis are listed in Table 3.1. In section 3.1.1 and 3.1.2 the 

preparation of the fluids is described in detail. 

 

Table 3.1: Fluid properties. 

Fluids Contents Density 
20℃ 

[𝑔/𝑐𝑚I] 

Density 
80℃ 

[𝑔/𝑐𝑚I] 

Viscosity 
20℃ 
[𝑐𝑃] 

Viscosity 
80℃ 
[𝑐𝑃] 

Ekofisk 
brine 

NaCl: 4 wt% 
CaCl2: 3.4 wt% 
MgCl2: 0.5 wt% 
0.01 wt% NaN3 

 
1.05 

 
- 

 
1.09 

 
- 

n-Decane Mineral oil, C10H22  
0.73 

 
0.68 

 
0.92 

 
0.40 

Decahydro- 
naphtalene 
(Decalin) 

Mineral oil, 
𝐶;J𝐻;K 

 
- 

 
0.90 

 
- 

 
0.85 

North Sea 
Crude Oil 

Acid Number: 0.09 mgKOH/g 
Base Number: 1.2 mgKOH/g 

Saturates: 53 wt% 
Aromates: 35 wt% 

Resins: 12 wt% 
Asphaltenes: 0.9 wt% 

 
 

0.85 

 
 

0.85 

 
 

14.3 

 
 

2.7 
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3.1.1 Aqueous fluids 

Three different aqueous fluids were used for spontaneous imbibition and injection: Ekofisk 

brine, 5000ppm polymer solution, 61wt% glycerol and 69wt% glycerol.  

 

Brine 

Ekofisk brine was made by mixing 1000g of distilled water with 40g of NaCl, 34g of CaCl2 and 

5g of MgCl2 using a magnetic stirrer until all salt was dissolved. 0.05 ml NaN3 was added to 

the solution to prevent bacterial growth in the core plugs. 

 

Polymer solution 

Polymer solution was used as the aqueous phase in spontaneous imbibition and forced injection 

to investigate whether injection of a hydrophilic polymer (HPAM) could alter the wettability 

preference of an aged core plug towards water-wet. Alcoflood 935, which is a partially 

hydrolyzed polyacrylamide, was used in the experiments. This acrylamide polymer is 

commercially available and has a nominal molecular weight of 5 × 10L g/mol, and is 

hydrolyzed to a degree of 50-10 mole% (Sydansk et al., 2004). To make one liter of 5000 ppm 

HPAM solution, 5g of Alcoflood 935 powder was mixed with 1024.8g of pre-made Ekofisk 

brine. The powder was slowly added to the brine, in a vortex created by magnetic stirring, to 

prevent aggregation. When all the powder was dissolved in the brine, the speed of the magnetic 

stirrer was reduced to a minimum over night to ensure complete hydration. The polymer 

solution was filtered through a filter with a pore size of 5𝜇𝑚 before use to remove microgels 

and other nonlinear, multimolecular structures (Foshee et al., 1977). The setup used for filtering 

is shown in Figure 3.1. The polymer solution was exposed to vacuum to promote flow of 

polymer solution through the filter. The polymer solutions were visually clearer and more 

transparent after filtration. Seven different polymer solutions were used in this thesis, all with 

the same polymer concentration.  
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Figure 3.1: The setup used for filtration of the polymer solutions.  

 
Glycerol 

Glycerol was used as a viscosifying agent, because it can produce a solution with similar 

viscosity as a polymer solution but does not contain polar components that adsorb to mineral 

surfaces. The impact of glycerol imbibition and injection on aged core plugs therefore 

constituted a baseline to which polymer imbibition and injection could be compared. The 

glycerol solutions were made by mixing pre-made Ekofisk brine and a predetermined volume 

of glycerol. A magnetic stirrer was used to stir the solution until it appeared homogenous. The 

equations in Figure 3.2 were used to calculate which glycerol concentration was expected to 

yield viscosity similar to the polymer solutions. Four glycerol solutions were made, one 

containing 61wt% glycerol and three containing 69wt% glycerol, to produce a variation of 

viscosities (calculated range 13.6-24.9cP). The glycerol solutions were not filtered.  
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Figure 3.2: Aqueous phase viscosity of (a) glycerol/brine and (b) glycerol/distilled water, from 
(Fischer and Morrow, 2006). 

 

3.1.2 Oleic fluids 

Oleic fluids used in the experiments were North Sea Crude oil, n-Decane and Decaline. To 

remove surface active components, n-Decane was filtered through a column of glass wool, 

aluminum oxide, and silica gel, as suggested by Fernø et al. (2013). After filtering, the filtering 

components became discolored and the n-Decane was visually clearer. The setup for filtration 

of n-Decane is shown in Figure 3.3. Decaline was not filtered before use. 

 

 
Figure 3.3: Column of glass wool, aluminium oxide, and silica gel for filtration of n-Decane.  
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3.2 Viscosity Measurements 
To measure dynamic viscosities of polymer -and glycerol solutions, a Brookfield DV-Ⅱ+Pro 

Viscometer (Model LVDV-Ⅱ+Pro, cone part no. CPA-42Z) was used. The measurements were 

performed at ambient, constant temperature. 1 ml of fluid was placed in the middle of the 

sample cup. The cup was gently attached to the viscometer. Measurements were performed 

when the temperature stabilized at ambient conditions. Different rotation speeds were used for 

the measurements, and the viscosity, torque and temperature were recorded for each speed. The 

viscometer was cleaned between each viscosity measurement by spraying distilled water and 

Acetone in the sample cup and on the spindle until the devices were clean. In order to not 

destroy the apparatus, it could not be touched during cleaning. Viscosity of each polymer and 

glycerol solution was measured at least twice. In addition, viscosities of 20 production effluents 

were measured (only one measurement was done for each) to check if the viscosities were equal 

to the samples that had not been in contact with a core plug. Equations used to measure the 

shear stress the fluid samples were subjected to during viscosity measurements, and full-scale 

viscosity range for a given RPM are given in Appendix D. 

 

3.3 Preparations 
Porosity measurements 

1.5” core plugs of Edward Limestone core material were drilled from an outcrop rock from 

West Texas. The core plugs were washed gently with tap water to remove loose particles and 

dried for two weeks in a heating cabinet holding 65℃. Core plug length, diameter and matrix 

weight were measured. The core plugs were thereafter placed in a glass cell for saturation. The 

experimental setup is illustrated in Figure 3.4. The glass cells containing core plugs and brine 

were first vacuum evacuated separately. Brine was thereafter introduced to the core plugs by 

opening the valve between the two glass cells until brine fully covered the core plugs.  The core 

plugs were taken out of the container after 24 hours. The weight of each water saturated core 

plug was measured, and the effective pore volume, 𝑉@,+,,, and the effective porosity, 𝜙+,,, 

(porosity is defined in Appendix A) were calculated from weight measurements using a 

gravimetric method, where the weight increase between a dry and saturated core plug were 

divided by the density of the saturating fluid, 𝜌& (Jenkins, 1966) and equation (A.1):  

 𝜙+,, =	
𝑉@,+,,
𝑉?

=	
j𝑚5+) −𝑚738k
𝐿 ∙ 𝜋𝑟< ∙ 𝜌&

 (3.1) 
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where 𝑚738 and 𝑚5+) are the weight of the core plug before and after it was saturated, 

respectively. Ekofisk brine was used as the saturating fluid for all core plugs.  

 
Figure 3.4: Schematic illustration of the setup used for vacuum evacuation and fluid saturation 
of core plugs. 

 
3.4 Permeability measurements 
The core plug was placed in a Hassler biaxial core holder with a confinement pressure for 

absolute permeability measurements (permeability is defined in Appendix A). Ekofisk brine 

was injected at a constant volumetric flow rate using a Quizix QX pump, and the pressure drop 

across the core plug was measured. The volumetric flow rate was increased consecutively, and 

the pressure drop recorded for each rate. The permeability was calculated using Darcy’s law: 

 

 𝑄 =
𝐾𝐴
𝜇
𝑑𝑝
𝑑𝑥 (3.2) 

   

where Q is the volumetric flow rate of a fluid with viscosity 𝜇 flowing through a porous medium 

with cross section area A. 𝑑𝑝/𝑑𝑥 is the differential pressure drop over a unit length of the 

porous medium. 

 

The experimental setup is illustrated in Figure 3.5.  
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Figure 3.5: Experimental setup for absolute permeability measurements. 

 
3.5 Wettability Alteration 
In this section two different aging procedures will be described in detail: dynamic aging and 

static aging. In total 16 core plugs were dynamically aged, and four core plugs were statically 

aged. 10 of the core plugs (LS1-LS10) were aged in collaboration with Ph.D. student Jaquelin 

Cobos Mora. The experimental setup illustrated in Figure 3.6 was used for both dynamic and 

static aging. 

 

3.5.1 Dynamic aging 

Crude oil from the same barrel was used for aging all the core plugs. The barrel of North Sea 

crude oil was rotated to mix the crude oil before collecting it. The unfiltered crude oil was 

placed in an accumulator inside a heating cabinet and heated to 80℃. Thereafter, the crude oil 

was injected through a limestone filter at constant rate to remove impurities. After filtration, 

the crude oil was stored in closed containers at 80℃. 

 
The dynamic aging setup is illustrated in Figure 3.6. The procedure of Fernø et al. (2010) was 

followed. A fully water-saturated core plug was placed in a Hassler biaxial core holder with a 

confinement pressure inside a heating cabinet holding 80℃.  The core was oil-flooded, 2.5 pore 

volumes (PV) in both directions, by crude oil injection at high differential pressure (2 bar/cm) 

before the injection rate was reduced to 1.5 ml/h. Crude oil was continuously injected 

throughout the entire aging process, and the flow direction was reversed after 72h (midway in 

the process). The aging was completed after 144h (6 days). After aging, the core was flooded 

with 2.5 PV decahydronaphthalene (Decaline) in both directions to prevent crude oil and n-

Decane mixing, which would likely cause asphaltene precipitation. 2.5 PV of n-Decane was 
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thereafter injected in both directions. The aged core plug was taken out of the core holder, 

placed in a container filled with n-Decane and cooled to ambient conditions. N-Decane was 

used as the oleic phase in all further experimental steps. 

 
Figure 3.6: Experimental setup for the dynamic and static aging procedures. 

 
 
3.5.2 Static Aging 

A fully water-saturated core plug was placed in a Hassler biaxial core holder with a confinement 

pressure inside a heating cabinet holding 80℃. 2.5 PV of crude oil was injected in both 

directions through the core plug at a high differential pressure (2bar/cm), and the core plug was 

taken out of the core holder and placed in a beaker filled with filtered crude oil. The beaker was 

covered with aluminium foil and stored inside a heating cabinet at 80℃ for 1000h. Next, the 

core plug was placed back in the core holder and flooded with 2.5 PV of decahydronaphthalene 

(Decaline) in both directions, and thereafter 2.5 PV of n-Decane in both directions to avoid 

asphaltene precipitation. The core plug was taken out of the core holder and cooled to ambient 

conditions in a container filled with n-Decane. 
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3.6 Splitting Procedure 
Some core plugs were split longitudinally to investigate wetting distribution and stability. The 

fracturing method was inspired by the Brazilian test described by Mellor and Hawkes (1971). 

The fracturing device was made up of two thick metal plates with indents to fit a circular core 

plug. The core plug was placed in the centre of the fracturing device, between the two sharp 

edges, and pressure from a hydraulic press was gradually applied onto the device until the core 

plug was fractured (Grøteide 2017). Rough fractures were made by this method. The fracturing 

device with a core plug placed inside and a core plug after splitting are shown in Figure 3.7.  

 

  
Figure 3.7: The fracturing device with a core plug inside to the left, and a split core plug to 
the right. 
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Wettability measurements 
3.7 Spontaneous Imbibition (Amott-Harvey Index) 

The boundary conditions during spontaneous imbibition (SI) were all faces open (AFO) for all 

experiments with whole core plugs, meaning the wetting fluid could invade the cylindrical core 

plug uninhibited through all faces, i.e. the core circumference and both end faces. SI was also 

performed on split core plugs where the inner part of the core plugs was exposed to the imbibing 

fluid as well. Core plugs at the irreducible water saturation (𝑆&5) were placed in Amott cells 

filled with the aqueous phase for at least 168 hours and oil production was measured as a 

function of time. Core plugs at the residual oil saturation (𝑆*3) were placed in Amott cells filled 

with n-Decane (the oleic phase). Spontaneous imbibition of water or oil in Amott cells is 

illustrated in Figure 3.8. When no production was observed for several days, SI was assumed 

to have ended and the cores were taken out of the Amott cell. Because most core plugs used 

were not strongly wetted, saturation end points were not reached during SI. Forced injections 

were then performed to obtain end point saturations. 

 

 

 

 
Figure 3.8: Core plugs placed in Amott cells for spontaneous imbibition. Spontaneous water 

imbibition to the left and spontaneous oil imbibition to the right. 
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Forced injections 

To reach the irreducible fluid saturations, forced injections of the aqueous phase or n-Decane 

were performed. The experimental setup consisted of a Quizix QX pump connected to a Hassler 

biaxial core holder (see Figure 3.5).  At least 2.5 PV of fluid was injected into the core plug in 

both directions with a differential pressure of 2 bar/cm. Effluent production was measured, and 

the saturation development monitored using material balance (described in Appendix B). A full 

Amott-Harvey cycle consisted of: spontaneous imbibition and forced injection of aqueous 

phase to measure the water index (𝐼5), calculated using equation (2.2), and spontaneous 

imbibition and forced injection of oil to measure the oil index (𝐼*). The oil index was calculated 

using equation (2.3). The water -and oil index was used to calculate the Amott-Harvey index 

(𝐼AB) using equation (2.1).  

 

The setup was modified for injection of polymer/glycerol. An accumulator containing polymer 

or glycerol was connected between the Quizix pump and the core holder. At least 1.5 PV of 

polymer/glycerol was injected into the core plugs in both directions with a differential pressure 

of 2 bar/cm. Injection of polymer/glycerol was performed at much lower flow rates (between 5 

and 20 ml/h) compared to injection of brine/oil (between 100 and 900 ml/h) due to rapid 

pressure build-up. In some of the cores brine injection was performed after polymer/glycerol 

injection to remove the polymer/glycerol from the pore network before spontaneous oil 

imbibition, and to assess the effect on spontaneous imbibition and end-point relative 

permeability. Table 3.2 gives an overview of injected fluids for each Amott-Harvey cycle in 

cores where polymer or glycerol was injected. 

 

Table 3.2: Overview of injected fluids for each Amott-Harvey cycle in cores where polymer or 
glycerol was injected. 

core First cycle Second cycle Third cycle Fourth cycle Fifth cycle 

LS11 Brine/oil Polymer/oil Polymer/oil Polymer/oil Polymer/oil 

LS14 Brine/oil Polymer/oil Polymer+brine/oil Polymer+brine/oil Polymer+brine/oil 

LS17 Brine/oil Glycerol/oil Glycerol/oil Glycerol/oil Glycerol/oil 

LS18 Brine/oil Glycerol/oil Glycerol+brine/oil Glycerol+brine/oil Glycerol+brine/oil 

LS20 Brine/oil Brine/oil Polymer/oil Polymer/oil - 

LS21 Brine/oil Brine/oil Polymer/oil Polymer+brine/oil Brine/oil 

LS22 Brine/oil Brine/oil Glycerol/oil Glycerol/oil Brine/oil 
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During forced injection of water or oil into the fractured cores, a piece of rubber was placed in 

the fracture volume to seal the fracture. Aluminium tape was wrapped around the core, 

consisting of two core halves with the rubber pieces in the middle, as illustrated in Figure 3.9. 

This made it possible to perform forced injections at elevated pressures, i.e. using constant 

differential pressures of at least 1.5 bar/cm.  

 
Figure 3.9: Fractured core plug with rubber pieces in the fracture, and aluminium tape 
wrapped around the core.  

 
3.8 End-point relative permeability 

End-point relative permeability was measured at the end of each forced injection, when the 

production of the displaced phase (now at irreducible saturation) had stopped. The pressure 

drop across the core plug was measured consecutively for at least three different volumetric 

flow rates, and the flowing phase relative permeability was calculated using equation (A.3) and 

(A.4). In cores where polymer or glycerol was injected, a longer period of time was needed to 

reach a stable differential pressure for a given flow rate (often one hour compared to 2-5 minutes 

in cores where water or oil were injected). Figure 3.10 shows the differential pressure 

development over time for different volumetric flow rates during water injection and polymer 

injection.  
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Figure 3.10: Differential pressure over time for different flow rates during water injection in 
LS19 to the left, and differential pressure over time for different flow rates during polymer 
injection in LS11 to the right.
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3.9 In-situ imaging 

3.9.1 MRI 

An MRI-scanner (MRI centre, Equinor, Sandsli) was used to investigate the spatial wettability 

distribution in one Edwards limestone core plug, at strongly water-wet and dynamically aged 

to oil-wet conditions. The MRI-scanner was equipped with a superconductive magnet (BioSpec 

47/40 USR, Bruker, Rheinstetten, Germany) with a magnetic field strength of 4.7 T (200MHz). 

The experimental setup is shown in Figure 3.11. One fully water saturated core plug, LS26, was 

placed inside a core holder made from polyether ether ketone and titanium materials. 

Confinement pressure was applied using nitrogen gas. The core holder was placed inside the 

MRI-scanner and Decane was injected at flow rates between 10 and 180 ml/h using a Quizix 

QX pump. Water production was measured with time, and the oil injection was stopped when 

residual oil saturation was reached. Static MRI-imaging and T2 relaxation time measurements 

were performed before and after the injection (at 𝑆5 = 1 and at 𝑆5&). The core plug was brought 

back to the Department of Physics and Technology at the University of Bergen for dynamic 

aging. The procedure in section 3.3.1 was followed, but the crude oil was injected with a 

maximum differential pressure of 3.5 bar (the maximum injection pressure reached during oil 

injection in the MRI-scanner) to avoid additional water production. After aging, one full Amott-

Harvey cycle was performed to measure the wettability index.  

 

MRI-imaging and T2 relaxation time measurements should be performed before and after aging 

of the core plug, but due to the covid-19 pandemic it was not possible to complete the 

measurements: the aged core plug (at 𝑆5&) should, according to the plan, be imaged using MRI 

during consecutive water and polymer injections. It was planned to perform static MRI-imaging 

and T2 relaxation time measurements before and after each injection, in addition to dynamic 

measurements during both injections.  
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Figure 3.11: Experimental setup for fluid injections imaged by MRI at Equinor, Sandsli. 

 
3.9.2 CT imaging 

CT imaging of two core plugs was performed using a ProCon X-ray CT-ALPHA Computed 

Tomography (CT) scanner belonging to the Department of Earth Science at the University of 

Bergen, located at Realfagsbygget. The purpose of the CT-images was to visualize and quantify 

heterogeneities within the core plugs, which could influence displacement processes. The 

scanner is equipped with a 240kV micro-focus tube and 3000x3000 pixel detector scanning up 

to 150 cm long sediment cores with a diameter up to 125mm in a continuous helix motion, and 

is shown in Figure 3.12. Each core plug was placed inside a closed container filled with n-

Decane, and attached to the top of a rotating device inside the CT shield cabinet.  

 

 
Figure 3.12: A core plug placed inside the CT-scanner at the Department of Earth Science.  
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3.9.3 PET imaging 

The nanoScan PET/CT belonging to the Department of Biomedicine at the University of 

Bergen, located at the Molecular Imaging Centre at Haukeland University hospital, was used 

to visualize displacement fronts before and after polymer injection in one dynamically aged 

Edwards limestone core plug. This PET/CT scanner is mainly for mice and rats but is also used 

by the reservoir physics group at the Department of Physics and Technology at the University 

of Bergen. The experimental setup is illustrated in Figure 3.13.  

 

 
Figure 3.13: Experimental PET/CT set up at Haukeland University Hospital. The accumulator 
was used only for polymer injection. 

 
The dynamically aged core plug was flooded with oil, polymer, and water in the PET-scanner. 

The order of injections is presented below: 

• Injection of radioactive brine at 𝑆*3 

• Oil injection 

• Injection of radioactive 5000ppm polymer solution 

• Second oil injection 

• Second injection of radioactive brine 

• Third oil injection 

Table 3.3 gives an overview of radioactivity added to the injected brine/polymer. 
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Table 3.3: Overview of radioactivity added to the injected brine/polymer. 

 Volume of fluid Radioactivity [MBq] 

First brine injection 200 ml brine 204.8 

Polymer injection 185ml polymer solution 

+ 20 ml brine  

270.5 

Second brine injection 175 ml brine 103.8 

 

The core plug was placed inside a core holder, and a confinement pressure was applied using 

an ISCO pump filled with pump oil. Initial CT images were acquired to determine the position 

of the core plug. The core holder was thereafter moved into the PET scanner field of view. A 

Quizix-5000 pump was used for injection of fluids (brine, oil or polymer solution). The fluids 

were injected at low flow rates, between 10 and 30 ml/h, and produced effluents were monitored 

over time. Each injection was stopped when the average core saturation was stable. Inlet and 

outlet pressures were measured using two ESI pressure transducers. 
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4 Results and Discussion 
This section presents results and discussions of the experimental work conducted in this thesis. 

A total of 29 Edwards limestone core plugs from the Edwards plateau in West Texas were 

prepared. 20 core plugs were aged using two different methods – static aging and dynamic 

aging. In total, four cores were statically aged, and 16 cores were dynamically aged. Multiple 

Amott-Harvey cycles were performed to estimate wettability, investigate the wetting stability 

resulting from each aging method and to assess whether polymer injection alters the wettability 

of the core plugs. Ekofisk brine, polymer solution or glycerol solution were used as the aqueous 

phase, and n-Decane constituted the oleic phase. One core plug was flooded with polymer, oil 

and water in a PET-scanner to visualize displacement fronts before and after polymer. CT-

imaging was used to visualize the structure of the pore network and to create pore size 

distributions of two core plugs. MRI was used to describe the distribution of different pore sizes 

in one Edwards limestone core.  

 

4.1 Core properties 
Basic core properties were measured for 29 different limestone core plugs and are listed in 

Table 4.1. The core plug lengths ranged between 6.35cm and 7.59cm. Average porosity was 

23.4% (measured range: 20.2 to 28.1%) and average permeability was 26.7mD (measured 

range: 14.1 to 52.6mD). A linear relationship between permeability and porosity was obtained, 

as shown in Figure 4.1. The linear trend is more obvious for lower porosity values but also more 

measurements are done in this specter than for cores with high porosity. The significant 

variations in permeability indicate heterogeneous core plugs. 

 
Core properties of Edwards limestone core plugs were previously measured by other master 

students. Riskedal (2008) and Tipura (2008) used 34 different limestone core plugs with 

porosities between 16.9% and 26.9%, and permeabilities between 2.6mD and 28.5mD. Opdal 

(2014) measured porosity and permeability on 14 different core plugs, where the porosity was 

in range 21.3% to 25.5%, and permeability in range 12mD to 33mD. The 17 limestone core 

plugs used in the work of Skjelsvik (2018) had porosity values between 22.0 and 27.8%, and 

permeability values between 14mD and 68mD. The core plugs used in this work came from a 

new supplier but corresponded well with the previously measured ranges. 
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Figure 4.1: Linear porosity-permeability relationship for the Limestone cores. 
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Table 4.1: Basic core properties. 

 

Core  Length 
± 

0.01[cm] 

Diameter 
± 

0.01 [cm] 

Pore Volume 
± 

0.01 [ml] 

Porosity 
±  

0.06 [%] 

Permeability 
±  

0.05 [mD] 

Aging method Aging 
time 
[h] 

LS1 7.39 3.80 18.82 22.45 20.56  Static 1000 
LS2 7.20 3.80 19.64 24.05 31.34  Dynamic 144 

LS3 7.40 3.80 17.43 20.77 23.42  Dynamic 144 

LS4 7.50 3.80 18.71 22.00 21.45  Static 1000 

LS5 7.59 3.80 19.54 22.70 24.79  Dynamic 144 
LS6 7.39 3.80 19.03 22.70 26.35  Dynamic 144 

LS7 7.40 3.80 18.67 22.24 28.56  Dynamic 144 

LS8 7.49 3.80 19.02 22.39 24.35  Dynamic 144 
LS9 7.40 3.80 17.67 21.05 19.70  Static 1000 

LS10 7.32 3.80 17.51 21.10 21.90  Static 1000 

LS11 6.80 3.80 21.16 27.44 45.88  Dynamic 144 

LS12 6.90 3.80 18.67 23.85 26.23  Dynamic 144 
LS13 6.90 3.80 20.42 26.09 35.06  Dynamic 144 

LS14 6.91 3.80 18.10 23.09 23.59  Dynamic 144 

LS15 6.95 3.80 21.69 27.51 46.51  N/A - 
LS16 6.71 3.80 19.72 25.92 33.74  Dynamic 144 

LS17 6.81 3.80 21.91 28.37 52.64  Dynamic 144 

LS18 6.69 3.80 17.41 22.95 21.49  Dynamic 144 

LS19 6.79 3.80 18.99 24.66 35.97  Dynamic 144 
LS20 6.81 3.80 17.03 22.05 20.00  Not aged - 

LS21 6.35 3.80 18.47 25.64 32.63  Not aged - 

LS22 7.50 3.82 18.73 21.79 18.70  Not aged - 
LS23 7.15 3.80 16.35 20.17 21.39  Not aged - 

LS24 6.99 3.80 17.12 21.60 26.43  Not aged - 

LS25 7.00 3.80 17.12 21.57 15.46  Not aged - 
LS26 7.10 3.80 18.52 23.00 23.13  Dynamic 144 

LS27 6.91 3.80 17.65 22.52 18.48  Dynamic 144 

LS28 6.87 3.80 21.83 28.02 21.07  Not aged - 

LS29 6.93 3.80 17.18 21.86 14.09  Not aged - 

Average 7.07 3.80 18.76 23.43 26.72 N/A - 
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4.2 Rock quantification with in-situ imaging   
 
In this section MRI T2 intensity curves and CT-imaging will be used for quantification of 

Edwards limestone properties. MRI T2 intensity curves were used to describe the distribution 

of different pore sizes in one Edwards limestone core (LS26). CT-images of two limestone core 

plugs (LS17 and LS27) with different core properties were used to visualize the structure of the 

pore network and to create pore size distributions. 

 
4.2.1 MRI T2 intensity curves 

The MRI-scanner at Equinor, Sandsli was used for T2 relaxation time measurements of one 

limestone core plug (LS26) as described in section 3.9.1, and the results are presented in this 

section. MRI T2 intensity curves of a fully water saturated Edward limestone core plug (LS26) 

were used to describe the distribution of different pore sizes. It was planned to compare 

measured T2 relaxation time before and after aging of the core plug, and after polymer injection, 

to investigate the spatial wettability distribution in the core plug. Tipura (2008) and Riskedal 

(2008) used MRI to investigate the wettability distribution in Edwards limestone core plugs, 

and found that the T2 relaxation time for the oil phase at irreducible water saturation decreased 

almost linearly for stronger oil-wet conditions. Only T2 measurements before aging, at 𝑆5 = 1 

and at 𝑆5& (after oil injection), were completed in this work. The analysis of the wettability 

distribution in the core after aging must therefore be performed in future work.  

 

The core plug was dynamically aged (as described in section 3.5.1), and one full Amott-Harvey 

cycle was performed. No water imbibed spontaneously into the core plug, but spontaneous 

imbibition of oil was recorded. The measured Amott-Harvey index was -0.12 (Table 4.2), which 

corresponds to weakly oil-wet conditions.  

 

Table 4.2: Overview of water saturations and measured water index, oil index and Amott-
Harvey index for one full Amott-Harvey cycle. 

Core 𝑆&5 𝑆5,; 𝑆&5,; 𝐼5 𝐼* 𝐼AB 

LS26 0.21 0.79 0.34 0 0.12 -0.12 



   
 

46 

 
Figure 4.2: Intensity as a function of T2 relaxation time in two different slices of the core 
before and after oil injection. 

 

 
 
Figure 4.3: Intensity as a function of T2 relaxation time in five slices of the core before oil 
injection (𝑆5 = 1) to the left, and after oil injection (𝑆5&) to the right. 

 

Figure 4.2 shows intensity as a function of T2 relaxation time in two different slices of the core 

plug, 100% water saturated and at 𝑆5& (after oil injection). Figure 4.3 shows intensity as a 

function of T2 relaxation time in five slices of the core plug before and after oil injection. Pore 

size distribution of a core plug can be obtained from MRI T2 distribution of a fully water 

saturated core plug, but it was not done in this experiment. Although, the T2-curve for the fully 

water saturated core plug (Figure 4.3) provides information about the distribution of pore sizes: 

short T2 relaxation times indicate smaller pore sizes, while longer T2 relaxation times indicate 

larger pore sizes (Kenyon et al., 1989, Howard and Kenyon, 1992). A trimodal T2 distribution 

was obtained for the fully water saturated core plug (LS26) in Figure 4.3. The fastest peak 

(shortest T2), with highest intensity, represents the smallest pores in the core, the intermediate 

peak represents the intermediate pores and the slowest peak (highest T2) represents the largest 

pores and vugs in the core. The intensity in the first peak is higher than the two other peaks, 

indicating a higher proportion of smaller pores in the core plug. The intensity peaks vary slightly 

for the different slices of the core. Heterogeneous pore network can explain this: some slices 
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may contain fewer small pores and more vugs, while other slices may contain more small pores.   

Tipura (2008) and Riskedal (2008) also performed MRI T2 measurements in fully water 

saturated Edwards limestone core plugs, with permeabilities in range 3.4-13.7 mD. Unlike the 

core plug used in this thesis, the lowest intensities were measured at shortest T2 relaxation times, 

while the highest intensities were measured at highest T2 relaxation times, indicating a higher 

proportion of larger pores in the core plugs.  

 

When the core was saturated by both oil and water (at 𝑆5&), a shift in T2 curves was observed. 

The first peak was shifted towards lower T2 relaxation times, while the other peaks were shifted 

towards higher. The T2 curves shifted due to different hydrogen content in water and oil. Water 

has a faster relaxation time than oil. Longer relaxation times were therefore obtained when the 

intermediate and large pores were filled with oil during oil injection. The fastest peak changed 

not much after oil was injected into the core because the smallest pores in the core were assumed 

to remain fully water saturated. 

 
4.2.2 CT-imaging 

The ProCon X-ray CT-ALPHA Computed Tomography (CT) scanner at the institute for 

geoscience was used for CT-imaging of two core plugs: LS17 with high permeability (52.6mD) 

and LS27 with low permeability (18.5mD). Spatial resolution of the CT-images was 25.3	𝜇m. 

Pores smaller than the spatial resolution are not visible in the CT-images. 

 

Figure 4.4 shows a CT-image of the whole length of core LS27, where the pores were 

segmented out. Vugs are marked in the image. Pores with a variety of sizes, included large 

vugs, can be seen in the image. The largest vug in the CT-image has a diameter of ~2mm. 

Tipura (2008) also observed pores as big as 2mm in a thin section of Edwards limestone 

presented in her work. Figure 4.5 shows CT-images of four different slices of core LS27 and 

Figure 4.6 shows CT-images of four different slices of core LS17. A diversity of pore sizes, 

included vugs, can also be seen in these CT-images. A greater proportion of small vugs were 

observed in the CT-images of core LS17 compared to LS27, which might explain the higher 

permeability in the core.  
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Figure 4.4: CT-image of LS27 with pores segmented out. The smallest pores are not represented 
in the image due to the spatial resolution of the CT-image. The scale in the lower corner is 1cm.  

 

  
Figure 4.5: CT-images from four different slices of core LS27, where vugs are marked. The 
smallest pores are not represented in the image due to the spatial resolution of the CT-images. 
The scale in the lower corner is 1 cm. 

 

 
Figure 4.6: CT-images from four different slices of core LS17, where vugs are marked. The 
smallest pores are not represented in the image due to the spatial resolution of the CT-images. 
The scale in the lower corner is 1 cm. 

 
Pore size distributions of cores LS17 and LS27 were obtained from the CT-images using 

ImageJ, which is an image processing software. Slices representing the whole cores were 

selected, approximately every hundred slices, and particle analysis was performed. The particle 

analysis involved thresholding the images using the default threshold in the software, which 
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converted the images into binary images. The area of each pore was calculated using the 

“analyse particles” function in the software. Figure 4.7 shows the pore size distributions of core 

LS17 and LS27, where the pore diameter is the diameter of the pore bodies. Each interval in 

the histograms is 10 𝜇m. In core LS27, the largest proportion of pores visible in the CT-images 

(~70%) had diameters of 27	𝜇m, while the largest proportion of pores in LS17 had diameters 

of 30	𝜇m. A smaller proportion of the pores had diameters in the range 38-100	𝜇m (LS27) and 

40-110	𝜇m (LS17). The large vugs in core LS27 had diameters in range 100-270	𝜇m, while the 

diameters of the vugs ranged from 110-315	𝜇m in LS17. Core LS17 had generally pores and 

vugs with larger pore body diameters than core LS27. In addition, a greater proportion of small 

vugs were observed in the CT-images of LS17, which explains the higher permeability in LS17. 

 

A trimodal T2 distribution was obtained for the core in the MRI-experiment presented in 

previous subsection, i.e. three different intervals of pore sizes. It is possible that the fastest peak 

in the T2 distribution from the MRI represents the highest peak in the pore size distributions, 

but the peak might as well represent the smallest pores that are not visible in the CT-images. 

Tipura (2008) obtained pore size distributions of Edwards limestone from MRI T2 distribution 

by scaling the T2 value to the pore throat size measured by mercury injection. Pore body 

diameters in the range 1-70 𝜇m were found. Larger pores and vugs in the Edwards limestone 

core material used in this work can explain the difference in permeability between the cores in 

this work and the Edwards limestone cores used by Tipura (2008). 

 

The CT-images confirm the expected heterogeneous nature of the Edwards limestone core 

material, with a large range in pore sizes (27-300	𝜇m) and presence of vugs. Pores smaller than 

the spatial resolution of the CT images (25.3	𝜇m) were not captured.  

 
Figure 4.7: Pore size distribution obtained from the CT-images of LS27 and LS17, where the 
pore diameter is the diameter of the pore bodies. Each interval in the x-axis of the histograms 
is 10	𝜇m. The smallest pores are not represented due to the spatial resolution of the CT-images.  
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4.3 Wettability alteration 
This section presents results from 10 aged limestone core plugs, where brine constituted the 

aqueous phase and mineral oil (Decane) constituted the oil phase. The core plugs were used to 

investigate the wetting alteration produced by the given oil/brine/rock system by two different 

aging methods, and the results served as the baseline for further work in this thesis. The aging 

procedures were performed in collaboration with Ph.D. candidate Jacqueline Cobos Mora from 

Aalborg University. Four core plugs were statically aged (LS1, LS4, LS9, and LS10) and six 

were dynamically aged (LS2, LS3, LS5, LS6, LS7, and LS8). The two different aging methods 

are further described in section 3.5. After aging, full Amott-Harvey cycles were performed to 

measure wettability: spontaneous water imbibition, forced water injection, spontaneous oil 

imbibition, and forced oil injection. The Amott-Harvey index was thereafter calculated. 

Wettability alteration efficiency and stability were evaluated in whole and split core plugs. The 

results are summarized in Table 4.3. “Aging method” describes whether the cores were aged 

statically or dynamically, “core status” describes whether the cores were whole or split during 

the given Amott-Harvey cycle. 𝐼5	is the water index, 𝐼* is the oil index and 𝐼AB is the measured 

Amott-Harvey index, where the subscript indicates the cycle: 1 is the first cycle (measured for 

all cores), while 2 and 3 describe subsequent cycles, if performed.  

 

Table 4.3: Overview of aging method used (static or dynamic), core status (whole or split) 
during the Amott-Harvey test, water indices, oil indices and Amott-Harvey indices for multiple 
cycles in baseline experiments. 

Core Aging 
method 

Core 
status 

𝑰𝒘,𝟏 𝑰𝒐,𝟏 𝑰𝑨𝑯,𝟏 Core 
status 

𝑰𝒘,𝟐 𝑰𝒐,𝟐 𝑰𝑨𝑯,𝟐 Core 
status 

𝑰𝒘,𝟑 𝑰𝒐,𝟑 𝑰𝑨𝑯,𝟑 

LS1 Static Split 0 0.48 -0.48  - - - - - - - - 

LS2 Dynamic Whole 0 0.06 -0.06 Whole 0 0.07 -0.07 Split 0 0.38 -0.38 

LS3 Dynamic Whole 0 0.01 -0.01 Whole 0 0.01 -0.01 - - - - 

LS4 Static Split 0 0.46 -0.46  - - - - - - - - 

LS5 Dynamic Whole 0 0.09 -0.09 Whole 0 0.07 -0.07 - - - - 

LS6 Dynamic Whole 0 0.25 -0.25 Whole 0 0.17 -0.17 Split 0 0.55 -0.55 

LS7 Dynamic Split 0 0.51 -0.51 - - - - - - - - 

LS8 Dynamic Split 0 0.58 -0.58 - - - - - - - - 

LS9 Static Whole 0 0 0 Split 0 0.09 -0.09 - - - - 

LS10 Static Whole 0 0 0 Split 0 0.07 -0.07 - - - - 
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4.3.1 Comparison of whole cores 

Wettability alteration by two different aging methods; static and dynamic, was compared. 

Wettability alteration efficiency and stability were first evaluated in six whole core plugs. Four 

of the core plugs were aged dynamically (LS2, LS3, LS5, and LS6) and two statically (LS9 and 

LS10). “Twin” core plugs with equal properties (approximately equal porosity and 

permeability) were aged under the same conditions to obtain optimum reproducibility. 

Examples of twin cores are LS2 and LS6, LS3 and LS5, and LS9 and LS10.  

 

A full Amott-Harvey cycle was performed on all whole cores, where the Amott-Harvey index 

measured (𝐼AB,;) ranged from -0.01 to -0.25 for dynamically aged cores, indicating that the 

cores spontaneously imbibed oil. No water imbibition was recorded. Statically aged cores 

imbibed neither oil nor water, thus the measured Amott-Harvey indices were zero, 

corresponding to neutral wet conditions. Water imbibition was not observed during the second 

Amott-Harvey cycles either (dynamically aged cores only), but between 0.1 and 1.5 ml of water 

were produced during spontaneous oil imbibition. Good reproducibility was achieved during 

two full cycles for cores LS2, LS3, LS5, and LS6, with measured Amott-Harvey indices of 

𝐼AB,;/𝐼AB,<: -0.06/-0.07, -0.01/-0.01, -0.09/-0.07, and -0.25/-0.17, respectively. The measured 

Amott-Harvey indices correspond to nearly neutral wetting conditions, although spontaneous 

imbibition of oil suggests tendencies towards weakly oil-wet conditions. Figure 4.8 shows 

increase in oil saturation as a function of time during two cycles of spontaneous oil imbibition 

in cores LS2, LS3, LS5, and LS6. 

 
Figure 4.8: Increase in oil saturation (∆𝑆*) as a function of time during two cycles of 
spontaneous oil imbibition in cores LS2, LS3, LS5, and LS6. 
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4.3.2 Comparison of split cores 

Some of the cores were split longitudinally to investigate the wettability distribution within the 

core plugs. Higher recovery and imbibition rate were expected due to larger surface area in 

contact with the imbibing fluid. Water-wet baseline experiments in three limestone core plugs 

(LS23, LS24, and LS25) were performed to emphasize this. Four dynamically aged core plugs 

(LS2, LS6, LS9, and LS10) and four statically aged core plugs (LS1, LS4, LS7, and LS8) were 

split and Amott-Harvey cycles performed. LS2 and LS6 were split after completion of two 

Amott-Harvey cycles, while LS7 and LS8 were split after one full cycle. Cores LS1, LS4, LS9 

and LS10 were split directly after aging. To obtain optimum reproducibility, “twin” core plugs 

with approximately equal porosity and permeability were aged under the same conditions. Sets 

of twin cores were LS2 and LS6, LS1 and LS4, LS7 and LS8 and, LS9 and LS10.  

 

4.3.2.1 Water-wet baseline 

Three water-wet limestone core plugs (LS23, LS24, and LS25) were used as baseline cores to 

assess the effect of core splitting on recovery and imbibition rate. The core properties were in 

range 15.5-26.4mD in permeability and 20.2-21.6% in porosity. Four subsequent Amott-

Harvey cycles were first performed on whole core plugs. The cores were thereafter split and 

again placed in Amott cells for spontaneous water imbibition. LS25 was split after only three 

cycles of spontaneous imbibition. Figure 4.9 shows the increase in water saturation (∆𝑆5) as a 

function of time.  Figure 4.10 shows the water saturation, and Figure 4.11 shows imbibition 

rate as a function of time during spontaneous water imbibition for the three cores. 

For all three cores the increase in water saturation (∆𝑆5) varies slightly between each cycle of 

spontaneous imbibition in whole core plugs. After splitting, a greater increase in water 

saturation was observed for all cores. By comparing final values of ∆𝑆5 after spontaneous water 

imbibition in the cycle before and after splitting, an increase of 2% for LS24 and 3% for LS23 

and LS25 was obtained. By comparing the cycle with split cores and the cycle with lowest ∆𝑆5, 

an increase of 8% for LS23, 5% for LS24 and 6% for LS25 was achieved. In cores LS23 and 

LS25 slight increase in imbibition rate was observed as well. Heterogeneous pore network and 

capillary trapping can explain the variations in ∆𝑆5 in the whole cores, but still there is a larger 

increase after splitting.   



   
 

53 

  
Figure 4.9: Increase in water saturation (∆𝑆! ) as a function of time during spontaneous water 
imbibition in LS23 to the left, LS24 in the middle and, LS25 to the right. 

 

  
Figure 4.10: Water saturation as a function of time during spontaneous water imbibition in 
LS23 to the left, LS24 in the middle and, LS25 to the right.  

 

     
Figure 4.11: Imbibition rate as a function of time during spontaneous water imbibition in 
LS23 to the left, LS24 in the middle, and LS25 to the right. 

 
4.3.2.2 Dynamically aged cores 

Two of the dynamically aged core plugs, LS2 and LS6, were split after completion of two 

Amott-Harvey cycles and thereafter placed in Amott cells for imbibition to confirm uniform 

distribution of the altered wettability. Cores LS7 and LS8 were split directly after aging and 

placed in Amott cells. 

 

Higher volumes of water, 3.0 ml (LS2) and 4.3 ml (LS6), were produced by spontaneous 

imbibition of oil when the inner part of the cores was exposed to oil compared to AFO boundary 

conditions (0.5 and 0.6 ml for LS2, 2.5 and 1.5 ml for LS6). Water imbibition was not recorded. 
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The measured 𝐼AB were −0.38 for LS2 (compared to −0.06/−0.07	for AFO) and −0.55 

(compared to −0.25/−0.17) for LS6, hence, the split cores exhibited stronger oil-wet 

conditions. The volume of water produced by spontaneous oil imbibition increased by 12% - 

15% when the cores were split. Figure 4.12 shows the increase in oil saturation as a function of 

time during spontaneous oil imbibition in whole and split cores LS2 and LS6. Figure 4.13 shows 

imbibition rate as a function of time. Increase in imbibition rate was observed after splitting of 

the core plugs. 

 

  
Figure 4.12: Increase in oil saturation (∆𝑆*) as a function of time for three cycles of 
spontaneous oil imbibition in LS2 to the left and LS6 to the right. 

 

 
Figure 4.13: Imbibition rate as a function of time for three cycles of spontaneous oil 
imbibition in LS2 to the left and LS6 to the right. 

 
Cores LS7 and LS8 were split directly after aging and subjected to spontaneous imbibition. 

Spontaneous water imbibition was not recorded in LS7 nor LS8, but oil imbibition occurred 

spontaneously. The measured Amott-Harvey indices were −0.51	and −0.58, respectively, 

corresponding to oil-wet conditions. Good reproducibility was obtained for the two cores both 

in Amott-Harvey indices and spontaneous imbibition curves. Figure 4.14 shows increase in oil 
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saturation and imbibition rate as a function of time during spontaneous oil imbibition for the 

two core plugs. 

 

   
Figure 4.14: Increase in oil saturation (∆𝑆*) as a function of time during spontaneous oil 
imbibition for split cores LS7 and LS8 to the left, and imbibition rate as a function of time to 
the right. 

 

4.3.2.3 Statically aged cores 

After completion of one full Amott-Harvey cycle, statically aged cores LS9 and LS10 were 

split and submitted to a second Amott-Harvey cycle. Statically aged LS1 and LS4 were split 

directly after aging and placed in Amott cells for spontaneous imbibition. None of the cores 

imbibed water after splitting, but oil imbibed spontaneously. An increase in water recovery and 

oil imbibition rate were observed by exposing the inner part of the core plugs to oil, as was also 

observed in dynamically aged core plugs.  

 

LS9 and LS10 did not imbibe water or oil spontaneously before splitting (Table 4.3). After 

splitting, LS9 obtained an Amott-Harvey index of -0.09 and LS10 an index of -0.07, 

corresponding to near neutral wet conditions. Spontaneously imbibed oil increased the average 

oil saturation in the core plugs ∆𝑆* by 3-4 % after splitting as shown in Figure 4.15. Figure 4.16 

shows imbibition rate as a function of time before and after splitting. An increase in imbibition 

rate was obtained after splitting. 
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Figure 4.15: Increase in oil saturation as a function of time during spontaneous oil imbibition 
before and after splitting in LS9 to the left and LS10 to the right. 

 

   
Figure 4.16: Imbibition rate as a function of time during spontaneous oil imbibition after 
splitting in LS9 to the left and LS10 to the right. 

 
LS1 and LS4 were split directly after aging, and measured Amott-Harvey indices were −0.48 

and −0.46, respectively, corresponding to oil-wet conditions. The imbibed volumes of oil in 

statically aged cores LS1 and LS4 were much higher than imbibed volumes in statically aged 

cores LS9 and LS10 after splitting. One possible explanation for this can be that the highly 

heterogenous pore geometry of the core plugs affected the aging and imbibition processes. The 

reproducibility in 𝐼AB and spontaneous oil imbibition was good between these cores, as shown 

in Figure 4.17 where increase in oil saturation and imbibition rate during spontaneous oil 

imbibition is plotted as a function of time for the two cores. 
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Figure 4.17: Increase in oil saturation (∆𝑆*) as a function of time during spontaneous oil 
imbibition in LS1 and LS4 to the left, and imbibition rate as a function of time to the right. 

 

4.3.2.4 Comparison of static and dynamic wettability alteration 

Several important observations were made when statically and dynamically aged core plugs 

were subjected to repeated Amott-Harvey cycles under both whole and split conditions: 

• Cores were aged by crude oil using a dynamic or static aging method. Amott-Harvey 

cycles were performed, that confirmed dynamically aged cores to be slightly oil-wet 

because oil was spontaneously imbibed while water was not during several Amott-

Harvey cycles. Statically aged core plugs did not imbibe oil nor water, and were 

therefore considered neutrally wet. 

• The aged core plugs were split longitudinally to expose the inner core volume to the 

imbibing fluid. An impact on oil spontaneous imbibition was recorded, where water was 

expelled from all open surfaces of the split, dynamically aged core plugs during 

spontaneous oil imbibition. In contrast, for statically aged split cores, water production 

was not observed from the core circumference, but water was expelled from the inner 

part of the core plugs. This suggests a more uniform wettability distribution in the 

dynamically aged core plugs than in the statically aged cores, which is in good 

agreement with previous publications, where a more pronounced wettability change and 

more uniform wettability was found by dynamic aging compared to static aging (Graue 

et al., 2002, Ferno et al., 2010, B Johannesen et al., 2019). Spontaneous imbibition with 

AFO boundary condition may be less reliable than previously expected to determine the 

wettability in statically aged cores, because oil only spontaneously imbibed when the 

inner part of the core volume was in direct contact with the imbibing fluid. AFO 

spontaneous imbibition in statically aged cores provided information about the 
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wettability, by not spontaneously imbibing either phase (neutral wettability), but the 

tendencies towards weakly oil-wet conditions in the core interior could not be captured.   

• The final recovery and imbibition rate during spontaneous imbibition increased when 

exposing the inner part to oil using split cores, for both statically and dynamically aged 

cores. Water production during spontaneous oil imbibition increased by 12-15% when 

the dynamically aged cores were split, compared with 2-3% increased oil production 

during water imbibition when the water-wet baseline cores were split. A possible 

explanation for the greater increase in production in dynamically aged cores is slightly 

stronger oil-wet conditions in the core plug interior compared with the outer part of the 

core. The dynamically aged core plugs were continuously supplied with crude oil 

components active in the wettability process inside the core during the aging process, 

while the statically aged cores had a limited access to surface-active components in the 

interior during aging (only crude oil injected before submerging).  
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4.4 Wetting stability produced by dynamic aging 

Dynamic aging was chosen for wettability alteration of the remaining core plugs in this thesis 

because of the more uniform wettability distribution obtained, as the results in section 4.3 

suggested. In addition, the method is less time consuming than static aging. Results from four 

limestone core plugs, where brine constituted the aqueous phase and mineral oil (Decane) 

constituted the oil phase, are presented in this section. It was necessary to assess the wetting 

stability in dynamically aged core plugs using brine before the efficiency of polymers in 

wettability reversal could be assessed. Four core plugs (LS12, LS13, LS16, and LS19) were 

aged dynamically as described in section 3.5.1. “Twin” core plugs with approximately equal 

properties were aged under the same conditions to obtain optimum reproducibility. LS12 and 

LS16 had comparable properties, as did LS13 and LS19. After aging, five full Amott-Harvey 

cycles were performed to investigate the stability of the wettability alteration, i.e. whether the 

cores remained neutrally wet or slightly oil-wet after repeatedly being exposed to brine during 

imbibition and injection. Amott-Harvey indices and end-point relative permeabilities for water 

and oil were calculated for each cycle. The results are summarized in Table 4.4, where 𝑘35,*3 

is the end point relative permeability of water and 𝑘3*,&5 is the end point relative permeability 

of oil.	𝐼5 is the water index, 𝐼* is the oil index, and 𝐼AB is the Amott-Harvey index of each core 

plug. The subscript describes which consecutive cycle the measurement describes. 
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Table 4.4: Water indices, oil indices, Amott-Harvey indices and end-point relative 
permeabilities during five Amott-Harvey cycles. 

 LS12 LS13 LS16 LS19 

𝒌𝒓𝒘,𝒐𝒓𝟏 0.27 0.29 0.30 0.40 
𝒌𝒓𝒐,𝒊𝒘𝟏 0.24 0.25 0.30 0.29 

𝑰𝒘,𝟏  0 0 0 0 

𝑰𝒐,𝟏  0.04 0.01 0.02 0.02 

𝑰𝑨𝑯,𝟏 -0.04 -0.01 -0.02 -0.02 

𝒌𝒓𝒘,𝒐𝒓𝟐 0.31 0.27 0.31 0.27 
𝒌𝒓𝒐,𝒊𝒘𝟐 0.27 0.32 0.34 0.38 

𝑰𝒘,𝟐  0 0 0 0 

𝑰𝒐,𝟐  0.01 0 0.01 0.01 

𝑰𝑨𝑯,𝟐 -0.01 0 -0.01 -0.01 

𝒌𝒓𝒘,𝒐𝒓𝟑 0.30 0.27 0.30 0.28 
𝒌𝒓𝒐,𝒊𝒘𝟑 0.25 0.33 0.32 0.39 

𝑰𝒘,𝟑  0 0 0 0 

𝑰𝒐,𝟑  0 0 0 0 

𝑰𝑨𝑯,𝟑 0 0 0 0 

𝒌𝒓𝒘,𝒐𝒓𝟒 0.30 0.27 0.31 0.28 
𝒌𝒓𝒐,𝒊𝒘𝟒 0.26 0.28 0.31 0.38 

𝑰𝒘,𝟒  0.01 0 0.03 0 

𝑰𝒐,𝟒  0 0 0 0 

𝑰𝑨𝑯,𝟒 0.01 0 0.03 0 

𝒌𝒓𝒘,𝒐𝒓𝟓 0.18 0.24 0.27 0.24 
𝒌𝒓𝒐,𝒊𝒘𝟓 0.35 0.37 0.41 0.37 

𝑰𝒘,𝟓  0.01 0.02 0.01 0.03 

𝑰𝒐,𝟓  0 0 0 0 

𝑰𝑨𝑯,𝟓 0.01 0.02 0.01 0.03 
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First Amott-Harvey cycle 

No water spontaneously imbibed in cores LS12, LS13, LS16 and LS19 in the first Amott-

Harvey cycle, but between 0.1 and 0.3 ml of water were produced during spontaneous oil 

imbibition. Measured Amott-Harvey indices were between −0.01	and −0.04, indicating near 

neutral wet, or slightly oil wet, conditions. It is important to keep in mind that the systems are 

not homogeneous. It is therefore conceivable that the cores had mixed wet large wettability: 

crude oil displaced the water in the largest and intermediate pores in the cores during the aging 

process, changing the wettability towards oil-wet, while the smallest pores remained water-wet 

and fully water-saturated. This can explain no spontaneous imbibition (SI) of water, because 

the smallest pores were already filled with water and the intermediate and large pores were oil-

wet. Figure 4.18 shows the increase in oil saturation as a function of time during spontaneous 

oil imbibition in cores LS12, LS13, LS16, and LS19 in the first two Amott-Harvey cycles. 

Figure 4.19 shows water saturation as a function of time. The measured Amott-Harvey indices 

and the SI curves for the first Amott-Harvey cycle are comparable to the results for dynamically 

aged cores LS2 and LS3 presented in section 4.3. 

 

Second Amott-Harvey cycle 

In the second Amott-Harvey cycle, the volumes of water produced during spontaneous oil 

imbibition decreased for all cores: 0.05 ml (LS12), 0 ml (LS13), 0.1 ml (LS16) and 0.1 ml 

(LS19) compared to the first cycle (0.3 ml for LS12, 0.1ml for LS13, 0.2 ml for LS16, and 0.2 

ml for LS19). No spontaneous water imbibition was observed. Good reproducibility of Amott-

Harvey indices were achieved after two full Amott-Harvey cycles for cores LS12, LS13, LS16, 

and LS19, with measured Amott-Harvey indices of 𝐼AB,;/𝐼AB,<: -0.04/-0.01, -0.01/0, -0.02/-

0.01, and -0.02/-0.01, respectively. Measured imbibition rates were low for both cycles, 

between 0.003 and 6 ml/h at the highest. It was also good reproducibility of Amott-Harvey 

indices in the two first Amott-Harvey cycles in the dynamically aged cores presented in section 

4.3. Measured average wettabilities were near neutral wet, or weakly oil-wet, both for cores 

LS12, LS13, LS16 and LS19, and for the dynamically aged cores in section 4.3. 
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Figure 4.18: Increase in oil saturation (∆𝑆*) as a function of time for cores LS12, LS13, LS16, 
and LS19 during spontaneous oil imbibition in the two first Amott-Harvey cycles. The cores are 
presented in two pairs, which were aged simultaneously.  

 

  
Figure 4.19: Water saturation as a function of time for cores LS12, LS13, LS16, and LS19 
during spontaneous oil imbibition in the two first cycles Amott-Harvey cycles. The cores are 
presented in two pairs, which were aged simultaneously.  

 
Third Amott-Harvey cycle 

No spontaneous oil imbibition was recorded during the third Amott-Harvey cycle, neither was 

spontaneous water imbibition. Measured Amott-Harvey indices were 0 for all cores, 

corresponding to neutral wet conditions. This indicates a small change in wetting preference, 

because none of the cores spontaneously imbibed oil anymore. 

 

Fourth Amott-Harvey cycle 

Spontaneous water imbibition was recorded for the first time in cores LS12 and LS16 in the 

fourth Amott-Harvey cycle. 0.1 ml (LS12) and 0.3 ml (LS16) of oil production was recorded 

during spontaneous water imbibition, while no oil imbibed spontaneously. Measured Amott-

Harvey indices were 0.01 in LS12 and 0.03 in LS16, corresponding to near neutral wet 
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conditions, although SI of water suggests weakly water-wet conditions. Cores LS13 and LS19 

imbibed neither oil nor water, thus the measured Amott-Harvey indices were 0 for both cores, 

equal to the previous cycle.   

 

Fifth Amott-Harvey cycle 

Water imbibed spontaneously in cores LS13 and LS19 for the first time in the fifth Amott-

Harvey cycle, with oil production of 0.2 ml in LS13 and 0.3 ml in LS19. Spontaneous oil 

imbibition was not recorded, and measured Amott-Harvey indices were 0.02 (LS13) and 0.03 

(LS19). In cores LS12 and LS16, oil production of 0.1 ml was recorded in both cores during 

spontaneous water imbibition, while no oil spontaneously imbibed. Both cores exhibited an 

Amott-Harvey index of 0.01. The measured Amott-Harvey indices in the fifth Amott-Harvey 

cycle correspond to nearly neutral, or weakly water-wet, wetting conditions for all four core 

plugs. The fact that the four cores spontaneously imbibed oil in the first Amott-Harvey cycle 

and spontaneously imbibed water in the fifth cycle, indicates a change in wettability towards 

weakly water-wet after completion of five Amott-Harvey cycles. Figure 4.20 shows increase in 

water saturation as a function of time during spontaneous water imbibition in the fourth and 

fifth Amott-Harvey cycle, and Figure 4.21 shows water saturation as a function of time. 

 

  
Figure 4.20: Increase in water saturation as a function of time in cores LS12, LS13, LS16, and 
LS19 during spontaneous water imbibition in fourth and fifth Amott-Harvey cycle. The cores 
are presented in two pairs, which were aged simultaneously.  
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Figure 4.21: Water saturation as a function of time in cores LS12, LS13, LS16, and LS19 
during spontaneous water imbibition in fourth and fifth Amott-Harvey cycle.  

 
Amott-Harvey indices for each Amott-Harvey cycle are plotted for all cores in Figure 4.22. The 

Amott-Harvey indices changed from slightly negative values between -0.02 and -0.04 towards 

slightly positive values between 0.01 and 0.03 for all cores after completion of five Amott-

Harvey cycles, corresponding to nearly neutral wet conditions. The change from SI of oil to SI 

of water in all cores indicates a change in wettability from weakly oil-wet towards weakly 

water-wet. The highest positive Amott-Harvey index measured during five Amott-Harvey 

cycles was 0.03 in cores LS16 and LS19. An overall increase of 0.05 in the Amott-Harvey index 

was obtained.  

 
 

Figure 4.22: Amott-Harvey indices for each Amott-Harvey cycle for cores LS12, LS13, LS16 
and LS19. 
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End-point relative permeability 

End point relative permeabilities for oil (𝑘3*,&5) and water (𝑘35,*3) were calculated after each 

forced injection of water and oil. Figure 4.23 shows end-point relative permeabilities of water 

and oil during five Amott-Harvey cycles. Figure 4.24 shows end-point relative permeabilities 

of water and oil as a function of water saturation for one core (LS12) during five Amott-Harvey 

cycles. The end-point relative permeabilities of water ranged between 0.27-0.31 during the four 

first Amott-Harvey cycles in cores LS12, LS13, and LS16, while 𝑘3*,&5 ranged between 0.24-

0.34. According to Craig´s rules of thumb (described in section 2.3.3) this indicates near neutral 

wet conditions because 𝑘35,*3 and 𝑘3*,&5 are approximately the same. 

The end-point relative permeability of water decreased to 0.18 (LS12), 0.24 (LS13), and 0.27 

(LS16) in the fifth Amott-Harvey cycle, while 𝑘3*,&5 increased to 0.35 (LS12), 0.37 (LS13), 

and 0.41 (LS16). Craig´s rules of thumb suggest a change in wettability towards water-wet 

conditions. In core LS19, 𝑘35,*3 was measured to be 0.40 in the first Amott-Harvey cycle, and 

between 0.24-0.27 in the next four Amott-Harvey cycles. 𝑘3*,&5 was measured to be 0.29 in the 

first cycle, and between 0.37 and 0.39 in the four next cycles. This indicates tendencies towards 

oil-wet conditions in the first cycle, because 𝑘35,*3 was higher than 𝑘3*,&5, and tendencies 

towards water-wet conditions in further cycles.  

 

 
Figure 4.23: End-point relative permeabilities of water for each Amott-Harvey cycle to the 
left, and end-point relative permeability of oil for each Amott-Harvey cycle to the right. 
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Figure 4.24: End-point relative permeabilities of water (krw,or) and oil (kro,iw) as a function 
of water saturation during five Amott-Harvey cycles for core LS12. The numbers (1-5) 
describes the consecutive cycle. Uncertainty bars for water saturations are included.  

 

Figure 4.25 shows end-point relative permeabilities as a function of water saturation for LS12, 

LS13, LS16, and LS19 during five Amott-Harvey cycles. krw is the end-point relative 

permeability of water, kro is the end-point relative permeability of oil, and the numbers 1-5 

describe the consecutive cycle. Spread in water saturations and decreasing end-point water 

saturations for each Amott-Harvey cycle can be seen in the figure. The uncertainties in 

saturations after completion of five Amott-Harvey cycles were calculated to be ±5% 

(uncertainties for each cycle are presented in Appendix E). By taking the uncertainty into 

account, a total decrease in water saturation was 0.08±0.05 (LS12), 0.16±0.05 (LS13), 

0.15±0.05 (LS16) and 0.14±0.05 (LS16) after completion of five full Amott-Harvey cycles. 

Because of the uncertainties in the saturations, the spread in water saturations might not be as 

large as it appears in Figure 4.25.  
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Figure 4.25: End-point relative permeability of water (krw) and oil (kro) as a function of water 
saturation for cores LS12, LS13, LS16 and LS19. The numbers (1-5) describe the consecutive 
cycle.  

 
Important observations 

Several important observations were made after completion of five Amott-Harvey cycles with 

brine/oil in four dynamically aged core plugs: 

• The reproducibility of Amott-Harvey indices for all cores were good during the two first 

Amott-Harvey cycles. All cores spontaneously imbibed oil in the first cycle, and all 

cores expect LS13 spontaneously imbibed oil in the second cycle. In the third cycle, 

neither water nor oil imbibed spontaneously into the core plugs. Ferno et al. (2007) 

tested the stability of dynamic aging on two different limestone core plugs that were 

aged for 6 and 10 days by performing three subsequent Amott-Harvey cycles. Like the 

aged cores in this work, no spontaneous imbibition of water was observed during three 

Amott-Harvey cycles. They observed that the Amott-Harvey index was reproducible. 

• In this work, minor spontaneous imbibition of water was recorded during the fourth and 

fifth Amott-Harvey cycles. The change from spontaneously imbibing oil to 

spontaneously imbibing water, and the change in Amott-Harvey indices from slightly 

negative values (between -0.01 and -0.04) to slightly positive values (between 0.01 and 

0.03), suggests a change in wettability from weakly oil-wet to weakly water-wet, 

although the wettability did not revert back to strongly water-wet conditions by brine.  
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4.5 Wettability alteration by polymers 

4.5.1 Fluid analysis 

Results from dynamic viscosity measurements of glycerol and polymer solutions are presented 

in this section. Dynamic viscosity of seven different 5000ppm polymer solutions and four 

different glycerol solutions were measured. In addition, viscosities of effluent samples from 

core injection were measured. Viscosity was measured from low to high spindle RPM, and back 

to low spindle RPM for all fluid samples. 

 

4.5.1.1 Polymer viscosity measurement 

To study the efficiency of polymers in wettability reversal, seven different 5000ppm polymer 

solutions were made, following the procedure described in section 3.1.1. The viscosity 

measurements were performed with RPM´s of 2, 4, 5, and 12 for all solutions. The spindle RPM 

was first increased, then decreased back to initial RPM. Viscosity of HPAM1 and HPAM2 were 

also measured with an RPM of 20. None of the fluid samples had been in contact with a core 

plug. Viscosity as a function of shear stress is shown in Figure 4.26 for the seven different 

polymer solutions. All polymer solutions showed non-Newtonian shear-thinning behavior. In 

addition, HPAM2, HPAM3, HPAM4, HPAM5, and HPAM6 showed some tendency of 

hysteresis at viscosities measured at low shear stress. HPAM1 and HPAM7 showed no 

tendency of hysteresis.  

 

 
Figure 4.26: Viscosity as a function of shear stress for seven different 5000ppm polymer 
solutions. 
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One viscosity value had to be chosen for use in scaling of spontaneous imbibition because the 

viscosity of the polymer solutions varies with shear stress. In Figure 4.27 the highest value (21.6 

cP), the lowest value (17.0 cP) and the average value (19.6 cP) of the measured viscosity for 

polymer solution HPAM6 are used in the scaling equation. The three different spontaneous 

imbibition curves are similar within a small range, which is an acceptable uncertainty for 

spontaneous imbibition at weakly oil-wet conditions. The average value of the viscosity was 

therefore used for scaling of spontaneous polymer imbibition and for end-point relative 

permeability calculations. 

 

 
Figure 4.27: Spontaneous imbibition curves for LS11 (during fifth Amott-Harvey cycle) using 
three different viscosity values in the scaling equation. 

 
4.5.1.2 Glycerol viscosity measurements 

Viscosity of four different glycerol solutions were measured. One solution contained 61wt% 

glycerol and three solutions contained 69wt% of glycerol mixed with Ekofisk brine. These 

concentrations were chosen to produce a variation of viscosities in the same range as the 

polymer solutions. Viscosity as a function of shear rate is shown in Figure 4.28. A shear-

thinning tendency was observed for some of the glycerol solutions initially but may be related 

to improper mixing of the solution and was not observed when the rate was reduced back 

towards initial RPM. For glycerol, the viscosity measured with the highest RPM (lowest 

uncertainty) was used for scaling of spontaneous imbibition and in end-point relative 

permeability calculations. 
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Figure 4.28: Viscosity as a function of shear stress for four different glycerol solutions. 
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4.5.2 Wettability alteration by polymer/oil and glycerol/oil 

This section presents subsequent Amott-Harvey cycles performed on four dynamically aged 

limestone core plugs (LS11polymer, LS14polymer, LS17glycerol, and LS18glycerol), to assess the 

efficiency of polymers in wettability reversal. Glycerol was used as the aqueous phase in two 

core plugs, because it had the same viscosity and brine content as polymer, but without the 

presence of surface-active components that could potentially impact wettability. Glycerol was 

used as the aqueous phase in cores LS17glycerol and LS18glycerol, and polymer was used in 

LS11polymer and LS14polymer. Cores LS11polymer and LS17glycerol had high permeabilities (45.9-

52.6mD), while LS14polymer and LS18glycerol had lower permeabilities (21.5-23.6mD). The core 

plugs with equal core properties were aged under the same conditions to obtain optimum 

reproducibility, and five subsequent Amott-Harvey cycles were performed. Water constituted 

the aqueous phase for all cores in the first cycle, while polymer and glycerol constituted the 

aqueous phase in four cycles. Mineral oil constituted the oil phase in all five cycles. Measured 

Amott-Harvey indices and spontaneous oil and water imbibition curves were used to determine 

wettability and wettability alterations. End-point relative permeabilities were measured after 

each injection. The results are summarized in Table 4.5. 𝐼5 is the water index, 𝐼* is the oil index, 

𝐼AB is the Amott-Harvey index, 𝑘35,*3 is the end-point relative permeability of the aqueous 

phase, and 𝑘3*,&5 is the end-point relative permeability of oil. The subscript describes which 

consecutive cycle the measurement describes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

72 

Table 4.5: Water indices, oil indices, Amott-Harvey indices and end-point relative 
permeabilities for water and oil for Amott-Harvey cycles with different aqueous fluids. 

Core LS11 LS14 LS17 LS18 LS12 
Aqueous 
phase 

Ekofisk 
brine 

Ekofisk 
brine 

Ekofisk 
brine 

Ekofisk 
brine 

Ekofisk 
brine 

𝒌𝒓𝒘,𝒐𝒓𝟏  0.35 0.38 0.32 0.40 0.27 
𝒌𝒓𝒐,𝒊𝒘𝟏   0.40 0.34 0.39 0.29 0.24 
𝑰𝒘,𝟏   0 0 0 0 0 
𝑰𝒐,𝟏  0.06 0.03 0.08 0.08 0.04 
𝑰𝑨𝑯,𝟏  -0.06 -0.03 -0.08 -0.08 -0.04 
Aqueous 
phase 

Polymer Polymer Glycerol Glycerol Ekofisk 
brine 

𝒌𝒓𝒘,𝒐𝒓𝟐  0.16 0.23 0.59 0.61 0.31 
𝒌𝒓𝒐,𝒊𝒘𝟐   0.13 0.12 0.16 0.12 0.27 
𝑰𝒘,𝟐   0 0 0 0 0 
𝑰𝒐,𝟐  0 0 0 0.05 0.01 
𝑰𝑨𝑯,𝟐  0 0 0 -0.05 -0.01 
Aqueous 
phase 

Polymer Polymer/ 
brine 

Glycerol Glycerol/ 
brine 

Ekofisk 
brine 

𝒌𝒓𝒘,𝒐𝒓𝟑  0.13 0.01 0.36 0.29 0.30 
𝒌𝒓𝒐,𝒊𝒘𝟑   0.10 0.10 0.11 0.22 0.25 
𝑰𝒘,𝟑   0.09 0.18 0.04 0 0 
𝑰𝒐,𝟑  0 0 0 0 0 
𝑰𝑨𝑯,𝟑  0.09 0.18 0.04 0 0 
Aqueous 
phase 

Polymer Polymer/ 
brine 

Glycerol Glycerol/ 
brine 

Ekofisk 
brine 

𝒌𝒓𝒘,𝒐𝒓𝟒  0.12 0.02 0.42 0.35 0.30 
𝒌𝒓𝒐,𝒊𝒘𝟒   0.09 0.11 0.10 0.27 0.26 
𝑰𝒘,𝟒   0.27 0.16 0.11 0.01 0.01 
𝑰𝒐,𝟒  0 0 0 0 0 
𝑰𝑨𝑯,𝟒  0.27 0.16 0.11 0.01 0.01 
Aqueous 
phase 

Polymer Polymer/ 
brine 

Glycerol Glycerol/ 
brine 

Ekofisk 
brine 

𝒌𝒓𝒘,𝒐𝒓𝟒  0.11 0.02 0.46 0.28 0.18 
𝒌𝒓𝒐,𝒊𝒘𝟒   0.12 0.12 0.18 0.37 0.35 
𝑰𝒘,𝟒   0.27 0.18 0.09 0 0.01 
𝑰𝒐,𝟒  0 0 0 0 0 
𝑰𝑨𝑯,𝟒  0.27 0.18 0.09 0 0.01 

 

 
 

 

 

 

 



   
 

73 

First Amott-Harvey cycle 

No water spontaneously imbibed into cores LS11polymer, LS14polymer, LS17glycerol and LS18glycerol 

in the first Amott-Harvey cycle where brine constituted the aqueous phase, while oil imbibition 

occurred spontaneously. Between 0.2-0.8 ml of water production was recorded during 

spontaneous oil imbibition, with measured Amott-Harvey indices between −0.03 and −0.08, 

corresponding to near neutral wet, or weakly oil-wet, conditions. The results are in accordance 

with the results for dynamically aged cores presented in section 4.3 and 4.4: no spontaneous 

water imbibition in the first Amott-Harvey cycle, and measured Amott-Harvey indices in the 

same range. Figure 4.29 shows saturation development as a function of dimensionless time 

during the first cycle of spontaneous oil imbibition in cores LS11polymer, LS14polymer, LS17glycerol, 

and LS18glycerol.  

 

  
Figure 4.29: Increase in oil saturation (∆𝑆*) as a function of dimensionless time during first 
cycle of spontaneous oil imbibition in LS11polymer, LS14polymer, LS17glycerol, and LS18glycerol to 
the left, and water saturation as a function of dimensionless time to the right. The curves are 
scaled for viscosity according to equation (2.4). 

 

Second Amott-Harvey cycle 

Two cores, LS11polymer and LS14polymer, were placed in Amott cells filled with polymer, and the 

remaining two cores, LS17glycerol and LS18glycerol, were placed in Amott cells filled with 

glycerol. No polymer spontaneously imbibed in cores LS11polymer and LS14polymer, and 

spontaneous imbibition of glycerol was not recorded in LS17glycerol nor LS18glycerol. This was 

expected based on the results in section 4.4, where no SI of aqueous phase was observed during 

the second Amott-Harvey cycle in oil/brine systems. Polymer/glycerol was therefore injected 

into the cores to displace the oil. At least 1.5 pore volumes were injected in each direction, at 

low flow rates between 5-20 ml/h, until residual oil saturation (𝑆*3) was reached. At 𝑆*3, the 

cores were placed in Amott cells filled with oil. Spontaneous oil imbibition was not recorded 
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in the cores saturated by polymer, thus the measured Amott-Harvey indices were 0 for both 

LS11polymer and LS14polymer. Spontaneous oil imbibition was recorded in LS18glycerol, while no 

spontaneous oil imbibition was recorded in LS17glycerol. The measured 𝐼AB,< were 0 (LS17glycerol) 

and -0.05 (LS18glycerol), compared to -0.08 for both cores in previous Amott-Harvey cycle. In 

brine/oil systems (section 4.4), three out of four aged core plugs spontaneously imbibed oil in 

the second Amott-Harvey cycle. None of the cores saturated with polymer imbibed oil, which 

can indicate a change in wetting preference in the cores. It is conceivable that the injected 

polymer displaced the oil from the large and intermediate oil-wet pores and a “water-wet” 

polymer layer adsorbed along the pore walls. Oil injection was performed to bring the saturation 

back towards the irreducible water saturation.  

 

Third Amott-Harvey cycle 

Figure 4.30 shows saturation development as a function of dimensionless time in cores 

LS11polymer, LS14polymer, LS17glycerol and LS18glycerol during the third cycle of SI of aqueous 

phase. SI of polymer was recorded in LS11polymer and LS14polymer in the third Amott-Harvey 

cycle, with oil production of 0.6ml in LS11polymer and 0.8ml in LS14polymer. In glycerol/oil 

systems, oil production of 0.3 ml was recorded during spontaneous glycerol imbibition in core 

LS17glycerol, while no spontaneous glycerol imbibition was recorded in LS18glycerol. 

Polymer/glycerol was injected into the cores to displace the oil, like in the second Amott-

Harvey cycle. In LS14polymer and LS18glycerol, brine was injected directly after polymer/glycerol 

injection to remove the polymer/glycerol from the pore network before spontaneous oil 

imbibition. It was expected that the glycerol in core LS18glycerol was diluted, or completely 

removed, during the brine injection. In core LS14polymer, some of the polymer was expected to 

remain in the pore network as an adsorbed polymer layer along the pore walls. Brine injections 

were performed to assess whether wettability changes were influenced by the adsorbed 

polymer, and to assess any changes in the end-point relative permeabilities. The influence of 

brine injection on wettability changes and end-point relative permeabilities will be further 

assessed in the fourth and fifth cycles. 

Spontaneous oil imbibition was not recorded in any of the cores, thus Amott-Harvey indices of 

0.09 (LS11polymer) and 0.18 (LS14polymer) were measured for the polymer/oil systems, compared 

to Amott-Harvey indices of 0.04 (LS17glycerol) and 0 (LS18glycerol) for glycerol/oil. The measured 

𝐼AB correspond to nearly neutral wetting conditions, although SI of aqueous phases (polymer 

and glycerol) in some cores suggests alterations towards weakly water-wet conditions. 



   
 

75 

In brine/oil systems (section 4.4), no spontaneous water imbibition was recorded before the 

fourth or fifth Amott-Harvey cycles. This means that SI of aqueous phase occurred earlier in 

LS11polymer, LS14polymer and LS17glycerol, i.e. wettability alteration was quicker with polymer in 

the aqueous phase. Between 0.1-0.3 ml of oil were produced during spontaneous water 

imbibition in the fourth and fifth Amott-Harvey cycles in the brine/oil systems in section 4.4. 

Larger volumes, between 0.6-0.8 ml, of oil were recorded during SI of aqueous phase (polymer) 

in cores LS11polymer and LS14polymer in the third Amott-Harvey cycle. In brine/oil systems, 

spontaneous oil imbibition was not recorded after completion of one full Amott-Harvey cycle 

in one core, and after two cycles in three cores. In glycerol/oil systems spontaneous oil 

imbibition also stopped after completion of one-two full Amott-Harvey cycles, while no 

spontaneous oil imbibition was recorded in the polymer/oil systems after polymer was 

introduced to the cores (after completion of one Amott-Harvey cycle). The SI of polymer in the 

polymer/oil systems in the third Amott-Harvey cycle supports the theory of an adsorbed “water-

wet” polymer layer along the pore walls. Oil was injected into the cores to bring the saturations 

back towards irreducible water saturation.   

 

  
Figure 4.30: Increase in water saturation (∆𝑆5) as a function of dimensionless time during 
third cycle of spontaneous imbibition of aqueous phase in cores LS11polymer, LS14polymer, 
LS17glycerol, and LS18glycerol to the left, and water saturation as a function of dimensionless time 
to the right. The curves are scaled for viscosity according to equation (2.4). 

 
Fourth Amott-Harvey cycle 

In the beginning of the fourth Amott-Harvey cycle, LS11polymer was saturated by oil/polymer, 

LS14polymer was saturated by oil/brine/adsorbed polymer, LS17glycerol was saturated by 

oil/glycerol, and LS18glycerol was saturated by oil/brine. Oil production during spontaneous 

polymer imbibition increased for LS11polymer in the fourth Amott-Harvey cycle: producing 1.2 

ml compared to 0.6 ml in previous cycle. LS14polymer produced 0.7 ml of oil during spontaneous 



   
 

76 

polymer imbibition, comparable to previous cycle. Oil production in LS17glycerol also increased 

during SI of aqueous phase (glycerol) in the fourth Amott-Harvey cycle: producing 0.8 ml 

compared to 0.3 ml in previous cycle. Glycerol imbibed spontaneously in LS18glycerol for the 

first time, with measured oil production of 0.1ml. 

The cores were flooded with polymer/glycerol until residual oil saturation, then LS14polymer and 

LS18glycerol were flooded with brine to remove polymer/glycerol from the cores. Spontaneous 

oil imbibition was not recorded in any of the four cores, thus measured Amott-Harvey indices 

were 0.27 (LS11polymer) and 0.16 (LS14polymer) for polymer/oil systems, which correspond to 

weakly water-wet conditions. The measured 𝐼AB did not increase between the third and fourth 

Amott-Harvey cycle in core LS14polymer where brine was injected after polymer injection, while 

𝐼AB increased for LS11polymer, where brine was not injected. This suggests that the injected brine 

removed parts of the polymer in the core and prevented adsorption of additional polymer along 

the pore walls. 

Amott-Harvey indices of 0.11 (LS17glycerol) and 0.01 (LS18glycerol) were measured for 

glycerol/oil systems, corresponding to near neutral wet, or weakly water-wet, conditions. Figure 

4.31 shows saturation development as a function of dimensionless time during the fourth cycle 

of spontaneous imbibition of aqueous phase in cores LS11polymer, LS14polymer, LS17glycerol, and 

LS18glycerol. In brine/oil systems (section 4.4), two out of four cores started to imbibe water 

during the fourth Amott-Harvey cycle, with Amott-Harvey indices of 0.01 and 0.03. Here, the 

cores with polymer in the aqueous phase obtained higher Amott-Harvey indices (0.16 and 0.27) 

in the fourth Amott-Harvey cycle, i.e. the wettability changed both quicker and towards stronger 

water-wet conditions with polymer in the aqueous phase. The cores were flooded with oil back 

towards irreducible water saturation. 
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Figure 4.31: Increase in water saturation (∆𝑆5) as a function of dimensionless time during the 
fourth cycle of spontaneous imbibition of aqueous phase in cores LS11polymer, LS14polymer, 
LS17glycerol, and LS18glycerol to the left, and water saturation as a function of dimensionless time 
to the right. Brine injection was performed after polymer/glycerol injection in previous cycle 
in cores marked with polymer/brine or glycerol/brine. The curves are scaled for viscosity 
according to equation (2.4). 

 
Fifth Amott-Harvey cycle 

The cores consisted of oil/polymer (LS11polymer), oil/brine/adsorbed polymer (LS14polymer), 

oil/glycerol (LS17glycerol), and oil/brine (LS18glycerol) in the beginning of the fifth Amott-Harvey 

cycle. Oil production during spontaneous polymer imbibition in both core LS11polymer and 

LS14polymer was comparable to previous cycle, which indicates no further change in wettability. 

Oil production during spontaneous glycerol imbibition in cores LS17glycerol and LS18glycerol were 

also comparable to previous cycle. 

Polymer/glycerol was injected into the cores until residual oil saturation. Brine was injected 

into cores LS14polymer and LS18glycerol to remove polymer/glycerol from the cores. The four cores 

were thereafter put in Amott cells filled with oil. Spontaneous oil imbibition was not recorded 

in any of the four cores, thus measured Amott-Harvey indices were 0.27 (LS11polymer) and 0.18 

(LS14polymer) in the polymer/oil systems, both comparable to previous cycle, i.e. no further 

change in wettability. The Amott-Harvey indices in the polymer/oil systems correspond to 

weakly water-wet conditions. Measured 𝐼AB for the glycerol/oil systems were also comparable 

to previous cycle: 0.09 in LS17glycerol and 0 in LS18glycerol, corresponding to near neutral wet, or 

weakly water-wet conditions. Figure 4.32 shows development in saturation as a function of 

dimensionless time during the fifth cycle of spontaneous imbibition of aqueous phase in cores 

LS11polymer, LS14polymer, LS17glycerol, and LS18glycerol.  
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Figure 4.32: Increase in water saturation (∆𝑆5) as a function of dimensionless time during the 
fifth cycle of spontaneous imbibition of aqueous phase in cores LS11polymer, LS14polymer, 
LS17glycerol, and LS18glycerol to the left, and water saturation as a function of dimensionless time 
to the right. Brine injection was performed after polymer/glycerol injection in previous cycle 
in cores marked with polymer/brine or glycerol/brine. The curves are scaled for viscosity 
according to equation (2.4). 

 

4.5.2.1 Comparison of polymer/oil systems, glycerol/oil systems and brine/oil systems 

Increase in water saturation as a function of dimensionless time, for all five Amott-Harvey 

cycles in cores LS11polymer, LS14polymer, LS17glycerol, and LS18glycerol, is shown in Figure 4.33, 

and water saturation as a function of dimensionless time for all five Amott-Harvey cycles is 

shown in Figure 4.34. As can be seen in Figure 4.34, the water saturation in core LS18glycerol, 

where brine was injected after glycerol injection, was ~20% lower than the water saturation in 

core LS17glycerol where brine was not injected. A decrease in water saturation in the same order 

as in LS18glycerol was not observed in LS14polymer, where brine was injected after polymer 

injection. This supports the theory of glycerol being diluted by injected brine, leading to higher 

volumes of water being displaced during oil injection (thereby lower water saturation). 

Presumably the polymer adsorbed along the pore walls and was therefore not completely 

removed from the core during brine injection in LS14polymer.  

In LS11polymer, the volume of polymer imbibed increased for each performed Amott-Harvey 

cycle, and the core wettability gradually changed from preferentially oil-wet (SI of oil) to 

weakly water-wet (SI of aqueous phase and no SI of oil). In LS14polymer, polymer was displaced 

by brine before oil imbibition in Amott-Harvey cycles three, four, and five. The volumes of 

polymer imbibed did not increase in LS14polymer after the third Amott-Harvey cycle. This 

suggests that the injected brine displaced parts of the polymer and prevented adsorption of 

additional polymer in the core. Adsorption of a “water-wet” polymer layer along the pore walls 

is a likely reason for the change in wettability in the polymer/oil systems. All cores, except 
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LS18glycerol, obtained higher Amott-Harvey indices after five Amott-Harvey cycles compared 

to the Amott-Harvey indices measured in brine/oil systems (section 4.4).   

 

  
Figure 4.33: Increase in water saturation (∆𝑆5) as a function of dimensionless time during five 
cycles of spontaneous imbibition of aqueous phase for LS11polymer and LS14polymer to the left, 
and increase in water saturation (∆𝑆5) as a function of dimensionless time during five cycles 
of spontaneous imbibition of aqueous phase for LS17glycerol and LS18glycerol to the right. The 
curves are scaled for viscosity according to equation (2.4). 

 

  
Figure 4.34: Water saturation as a function of dimensionless time during spontaneous 
imbibition of aqueous phase in LS11polymer and LS14polymer to the left, and water saturation as a 
function of dimensionless time for LS17glycerol and LS18glycerol to the right. The curves are scaled 
for viscosity according to equation (2.4). 

 

One core with polymer in the aqueous phase and one core with brine in the aqueous phase was 

selected to compare the SI curves during five Amott-Harvey cycles. The core with polymer in 

the aqueous phase (LS11polymer) is now called “Polymer” and the core with brine in the aqueous 

phase (LS12) is called “Brine”. Saturation development as a function of dimensionless time is 

shown in Figure 4.35. Spontaneous imbibition of water was first observed in the fourth Amott-

Harvey cycle in the brine core, while imbibition of aqueous phase (polymer) was observed for 

the first time already in the third cycle in the polymer core, i.e. the polymer changed the 
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wettability in the core quicker than brine. The volume of aqueous phase imbibed in the polymer 

core increased to the double from the third to the fourth Amott-Harvey cycle, and increased 

further in the fifth cycle. Increase in SI of brine was not observed between the fourth and fifth 

cycle. This means that not only did the polymer change the wettability in the core plug quicker 

than brine, polymer also changed the wettability towards stronger water-wet conditions.  

 

  
Figure 4.35: Increase in water saturation and water saturation as a function of dimensionless 
time during five Amott-Harvey cycles for one core with polymer in the aqueous phase and one 
core with brine in the aqueous phase. The curves are scaled for viscosity according to equation 
(2.4). 

 
Figure 4.36 shows Amott-Harvey indices during five Amott-Harvey cycles for cores 

LS11polymer, LS14polymer, LS17glycerol, and LS18glycerol. The blue shaded area in the figure 

represents the Amott-Harvey indices for brine/oil systems (results from section 4.4). The 

highest increase in Amott-Harvey index was in the two cores saturated with polymer. It is 

conceivable that the polymer displaced the oil along the pore walls in the oil-wet pores and that 

a “water-wet” polymer layer adsorbed along the pore walls changed the wettability towards 

stronger water-wet conditions. The Amott-Harvey index did not increase after the third Amott-

Harvey cycle in LS14polymer where brine was injected after polymer injection, while 𝐼AB 

increased for core LS11polymer where brine was not injected, i.e. the brine injection prevented 

additional polymer to adsorb to the mineral surface. 

 

Important observations:  

When polymer constituted the aqueous phase, spontaneous imbibition started 1-2 cycles earlier 

compared to cores saturated with brine (section 4.4). Polymer altered the measured wettability 

from oil-wet to water-wet conditions quicker than brine, and towards stronger water-wet 

conditions. After completion of five Amott-Harvey cycles, polymer/oil systems obtained 
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Amott-Harvey indices of 0.18-0.27, compared to glycerol/oil systems (0-0.09) and brine/oil 

systems (0.01-0.03). This high increase in 𝐼AB suggests that the presence of polymer in the pore 

space contribute to a wettability reversal from slightly oil-wet towards weakly water-wet 

conditions. This has also been reported in previous publications (Barreau et al., 1997, Elmkies 

et al., 2001, Juarez-Morejon et al., 2017), but without a baseline for comparison. The work in 

this thesis is the most thorough study on this topic so far.  

 

 
Figure 4.36: Amott-Harvey indices during five Amott-Harvey cycles for the polymer/oil systems 
(LS11polymer and LS14polymer) and the glycerol/oil systems (LS17glycerol and LS18glycerol). The blue 
shaded area represents the change in Amott-Harvey indices for the cores where brine 
constituted the aqueous phase during five cycles.  

 
4.5.2.2 End-point relative permeability and disproportionate permeability reduction 

End-point relative permeabilities were measured after each forced injection to investigate 

disproportionate permeability reduction (DPR) effects in the cores saturated with polymer. The 

end-point relative permeabilities for each Amott-Harvey cycle are listed in Table 4.5. End-point 

relative permeabilities of water and oil as function of water saturation for cores LS11polymer, 

LS14polymer, LS17glycerol, and LS18glycerol when the cores were saturated with brine/oil are shown 

in Figure 4.37. The end-point relative permeabilities of water (𝑘35,*3) ranged from 0.32-0.40 

when brine constituted the aqueous phase. The end-point relative permeabilities of oil (𝑘3*,&5) 

were in the same range, from 0.29-0.40, which indicates near neutral wet conditions according 
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to Craig´s rules of thumb (described in section 2.3.3). The end-point relative permeability 

values were in the same range as for the dynamically aged cores in section 4.4.  

 

 
Figure 4.37: End-point relative permeabilities of water (krw,or) and oil (kro,iw) as a function 
of water saturation for LS11polymer, LS14polymer, LS17glycerol, and LS18glycerol when the cores were 
saturated with brine/oil. Error bars for the water saturations are included. 

 
End-point relative permeabilities of aqueous phase and oil as a function of water saturation 

when the cores were saturated with polymer/oil and glycerol/oil are shown in Figure 4.38 and 

Figure 4.39 shows end-point relative permeabilities of water and oil as a function of water 

saturation when the cores were saturated with adsorbed polymer/brine/oil and 

glycerol/brine/oil. In polymer/oil saturated cores LS11polymer and LS14polymer, 𝑘35,*3 decreased 

to values between 0.06-0.23. When brine was injected to displace polymer in LS14polymer, 𝑘35,*3 

decreased further to values between 0.01-0.02, which is 38 times lower than 𝑘35,*3 with only 

brine/oil in the system. This suggests that the brine did not displace all the polymer inside the 

core. The polymer presumably adsorbed along the pore walls as a “water-wet” polymer layer, 

restricting the water flow. The end-point relative permeability of oil also decreased, to values 

between 0.09-0.13, when the cores were saturated with polymer/oil. 𝑘3*,&5 was not impacted 

by brine injection to displace polymer in core LS14polymer. This suggests the consistent decrease 

in 𝑘3*,&5 in both cores was caused by the adsorption of polymer inside the cores. Polymer 

clusters larger than 5𝜇m were removed from the polymer solutions, using a 5𝜇m filter, before 

use. It is conceivable that smaller polymer clusters accumulated in small and intermediate pores 

and narrow pore throats, blocking parts of the pore network. The blocking of pores may have 

forced the oil to flow through the smallest pores in the core that previously were assumed to be 

fully water saturated. The similar 𝑘3*,&5 achieved in polymer/oil and adsorbed 
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polymer/brine/oil systems indicates that viscosity contrast between polymer and oil did not 

cause the decrease in 𝑘3*,&5, but blocking of pores by polymer can be a viable explanation. 

Water flowing through a “water-wet” polymer layer adsorbed along the pore walls and in 

smaller  pores (now shared with oil), and oil flowing in the middle of the large and intermediate 

pores and in the smallest pores can explain the larger decrease in 𝑘35,&5 compared to 𝑘3*,&5. 

 

 
Figure 4.38: End-point relative permeabilities aqueous phase (krw,or) and oil (kro,iw) as a 
function of water saturation in cores saturated with polymer/oil and glycerol/oil. Error bars 
for the water saturations are included. 

 
 

 
Figure 4.39:End-point relative permeabilities aqueous phase (krw,or) and oil (kro,iw) in the 
cores saturated with adsorbed polymer/brine/oil and glycerol/brine/oil as a function of water 
saturation. Error bars for the water saturations are included. 

 
When glycerol/oil saturated cores LS17glycerol and LS18glycerol, 𝑘35,*3 was measured to values 

between 0.36-0.61, which was somewhat higher than previously measured values for brine/oil 

systems. The mobility ratio between aqueous phase and oil (𝑀5*) decreased from between 0.7-
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1.2 with brine/oil to between 0.05-0.08 with glycerol/oil, i.e. the aqueous phase displaced the 

oil more easily when the viscosity was increased. The end-point relative permeability of oil 

decreased when the cores were saturated with glycerol/oil. The injection of brine to displace 

glycerol in core LS18glycerol, however, increased 𝑘3*,&5 back towards values similar to brine/oil 

systems. The mobility ratio between oil and aqueous phase (𝑀*5) increased from between 0.9 

and 1.5 with brine/oil in the system to between 6.5-20 with glycerol/oil, and decreased back to 

initial values (brine/oil only) when brine was injected to remove the glycerol. Hence, the 

viscosity contrasts between glycerol and oil caused the decrease in 𝑘3*,&5. When the glycerol 

was diluted by brine before oil injection, the aqueous phase was more easily displaced by the 

injected oil, leading to an increase in relative permeability.  

   

Figure 4.40 shows the effects of brine injection after polymer and glycerol injection on end-

point relative permeabilities of aqueous phase (krw,or) and oil (kro,iw) in polymer/oil systems 

and glycerol/oil systems. The figure shows a clear decrease in 𝑘35,*3 both in polymer/oil 

systems and glycerol/oil systems when brine was injected after polymer and glycerol injection. 

Brine injection had no effect on 𝑘3*,&5 in the polymer/oil systems, while decreasing water 

saturations and increasing 𝑘3*,&5 can be seen for the glycerol/oil systems.  

 

 
Figure 4.40: Effect of brine injection after polymer and glycerol injection on end-point relative 
permeabilities of aqueous phase (krw,or) and oil (kro,iw) in polymer/oil systems and 
glycerol/oil systems. 

 
The uncertainties in saturations after completion of five Amott-Harvey cycles were calculated 

to be ±6% (ref. Appendix E). The irreducible water saturation in LS18glycerol decreased by 26-

33% (from 𝑆&5=0.42 to values between 0.09-0.16) when brine was injected after glycerol. This 

decrease in water saturation, which are 21-28% higher than the uncertainty, suggests that the 
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dilution of the glycerol inside the core made it easier to displace the aqueous phase by oil. This 

decrease in irreducible water saturation also explains the increase in 𝑘3*,&5. The irreducible 

water saturation in core LS14polymer decreased by 4-7%, which are within the calculated 

saturation uncertainty.  

 

Important observations 

Several important observations were made when end-point relative permeabilities of cores 

saturated with polymer/oil, adsorbed polymer/brine/oil, glycerol/oil, and glycerol/brine/oil 

were compared:  

• 𝑘35,*3 	decreased when polymer was introduced to the porous rock. Similarly, 

𝑘3*,&5 	also decreased after polymer was introduced to the system. It is convenient that 

the injected polymer displaced the oil along the pore walls in the large and intermediate 

oil-wet pores and adsorbed along the pore walls as a “water-wet” polymer layer. 

Adsorption of thick polymer layers during polymer injection was reported by Grattoni 

et al. (2004) who studied the role of adsorption of polymer in micro-scale glass flow 

models. In addition, polymer clusters may have accumulated in small and intermediate 

pores and narrow pore throats, blocking parts of the pore network. The blocking of pores 

may have forced the oil to flow through the smallest pores in the core that previously 

were assumed to be fully water saturated. This can explain both the decrease in 𝑘35,*3 

and 𝑘3*,&5. 

• Disproportionate permeability reduction, where 𝑘35,*3 is reduced more than 𝑘3*,&5, was 

only observed when brine was injected after polymer injection in core LS14polymer. 

Presumably, all the polymer was not displaced by the injected brine but adsorbed along 

the pore walls and restricted the water flow. In addition, it is likely that the polymer 

blocked parts of the pore network as described above. The water presumably flowed 

along the adsorbed, “water-wet”, polymer layer and in the smaller pores (now shared 

with oil), while the oil flowed in the middle of the large and intermediate pores and in 

the smaller pores, which can explain the larger decrease in 𝑘35,*3 than 𝑘3*,&5. 

• 𝑘35,*3 increased when the cores were saturated with glycerol/oil compared to when the 

cores were saturated with brine/oil. The mobility ratio between aqueous phase and oil 

decreased from 0.70 with brine/oil to between 0.05-0.08 with glycerol/oil, i.e. the 

aqueous phase displaced the oil more easily when the viscosity was increased.  
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• 𝑘3*,&5 decreased to similar values after injection of polymer and glycerol (𝑘3*,&5=0.12-

0.16). Brine was injected to displace the viscous polymer/glycerol saturation, but 𝑘3*,&5 

did not change for the core saturated with polymer/oil (LS14polymer). For the core 

saturated with glycerol/oil (LS18glycerol), 𝑘3*,&5 increased for each injection cycle, from 

0.12-0.37. Similarly, the irreducible water saturation in LS18glycerol decreased by 26-

33±5%. This large decrease in saturation was not expected. The increase in 𝑘3*,&5, and 

simultaneous decrease in 𝑆&5 suggests that the glycerol inside the core was diluted by 

the injected brine, which made it easier to displace the aqueous phase during oil 

injection. Increase in 𝑘3*,&5 and decrease in 𝑆&5 was not observed in LS14polymer when 

brine was injected, i.e. the decrease in 𝑘3*,&5 in the cores containing polymer was not 

cause by viscosity contrasts between aqueous phase and oil, but by adsorption of a 

polymer layer along the pore walls and blocking of narrow pores and pore throats.  

 

4.5.3 Water-wet baseline with polymer/oil and glycerol/oil 

Polymer and glycerol were injected into three water-wet core plugs (LS20polymer, LS21polymer, 

and LS22glycerol) to further investigate the separate effects on end-point relative permeabilities, 

without considering wettability alterations. The porosities were in range 21.8-25.6% and the 

permeabilities were in range 18.7-32.6mD. Brine constituted the aqueous phase in all three 

cores during two Amott-Harvey cycles. The aqueous phase was thereafter changed to polymer 

in LS20polymer and LS21polymer, and glycerol in LS22glycerol. In the fourth cycle, brine was injected 

directly after polymer injection in core LS21polymer to assess the effect on end-point relative 

permeabilities to water and oil. In LS21polymer and LS22glycerol only brine was injected to displace 

brine/adsorbed polymer and glycerol in the fifth cycle, and the effects on 𝑘35,*3 and 𝑘3*,&5 were 

assessed. An overview of aqueous fluid used and end-point relative permeabilities for each 

cycle are given in Table 4.6. 

 

 

 

 

 

 

 

 



   
 

87 

Table 4.6: Type of aqueous fluid, end-point water saturations and end-point relative 
permeabilities for water-wet baseline cores. 

Core LS20 LS21 LS22 

Aqueous phase Ekofisk brine Ekofisk brine Ekofisk brine 

𝑘35,*3;  0.12 0.15 0.13 

𝑘3*,&5;  0.51 0.55 0.46 

Aqueous phase Ekofisk brine Ekofisk brine Ekofisk brine 

𝑘35,*3<  - - - 

𝑘3*,&5<  - - - 

Aqueous phase Polymer Polymer Glycerol 

𝑘35,*3I  0.08 0.15 0.58 

𝑘3*,&5I  0.10 0.07 0.15 

Aqueous phase Polymer Polymer/brine Glycerol 

𝑘35,*3X  0.12 0.01 0.25 

𝑘3*,&5X  0.11 0.15 0.18 

Aqueous phase - Ekofisk brine Ekofisk brine 

𝑘35,*3Y  - 0.01 0.12 

𝑘3*,&5Y  - 0.17 0.49 

 

Figure 4.41 shows end-point relative permeabilities of water and oil as a function of water 

saturation when brine/oil saturated the cores. 𝑘3*,&5 ranged between 0.46-0.55 when the cores 

were saturated with brine/oil, and 𝑘35,*3 ranged between 0.12-0.15. These values comply with 

Craig´s rules of thumb (described in section 2.3.3) for water-wet conditions, because the end-

point relative permeabilities of water is less than 0.3 and the end-point relative permeabilities 

of oil is higher than for water. 
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Figure 4.41: End-point relative permeabilities of water (krw,or) and oil (kro,iw) as a function 
of water saturation when brine/oil saturated the cores. Uncertainty bars for the saturations 
are included. 

 

Figure 4.42 shows end-point relative permeabilities aqueous phase and oil as a function of water 

saturation when the cores were saturated with polymer/oil and glycerol/oil, and Figure 4.43 

shows end-point relative permeabilities of aqueous phase and oil as a function of water 

saturation when the cores were saturated with adsorbed polymer/brine/oil and 

brine/glycerol/oil. In LS20polymer and LS21polymer, saturated by polymer/oil, 𝑘3*,&5 decreased to 

values between 0.07-0.11 (4-8 times lower than brine/oil systems), while 𝑘35,*3 remained 

unchanged (values between 0.08-0.15). When brine was injected in core LS21polymer to displace 

the polymer from the pore network, 𝑘35,*3 decreased to 0.01: 15 times lower than with brine/oil 

and polymer/oil. Adsorption of polymer on the mineral surface restricted both the water and oil 

flow. It is conceivable that accumulation of polymer clusters blocked small and intermediate 

pores, and that a polymer layer adsorbed along the pore walls in the core as described for the 

oil-wet cores, leading to a decrease in both 𝑘35,*3 and 𝑘3*,&5. This larger decrease in 𝑘35,*3 

than 𝑘3*,&5, referred to as disproportionate permeability reduction (described in section 2.6.2), 

was also seen in the oil-wet core (LS14polymer) when the system was saturated by 

brine/polymer/oil, but to a higher extent (38 times lower value). The end-point relative 

permeability of aqueous phase and oil remained constant when only brine/oil was injected in 

the last cycle.  

 

 



   
 

89 

 

Figure 4.42: End-point relative permeabilities aqueous phase(krw,or) and oil (kro,iw) as a 
function of water saturation for cores saturated with polymer/oil and glycerol/oil. Uncertainty 
bars for the saturations are included. 

 

  
Figure 4.43: End-point relative permeabilities of oil (kro,iw) and water (krw,or) as a function 
of water saturation when adsorbed polymer/brine/oil saturated core LS21polymer to the left, and 
glycerol/brine/oil saturated core LS22glycerol to the right. Uncertainty bars for the saturations 
are included.   

 
As in the oil-wet cores, 𝑘35,*3 in core LS22glycerol increased (from 0.13 to 0.58) when 

glycerol/oil saturated the core compared to brine/oil. 𝑀5* was reduced from 0.69 to values 

between 0.02-0.1, i.e. the aqueous phase displaced the oil more easily when the viscosity was 

increased. End-point relative permeability of oil decreased by a factor of 3, from 0.46-0.15, 

when the core was saturated with glycerol/oil. 𝑀*5 increased from 1.5 to values between 9 and 

40, which explains the decrease in 𝑘3*,&5. The end-point relative permeability of oil increased 

to the initial value (brine/oil only) when brine was injected in core LS22glycerol, i.e. the viscosity 

contrasts between glycerol and oil caused the decrease in 𝑘3*,&5. 
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Figure 4.44 shows effects of brine injection on 𝑘35,*3 and 𝑘3*,&5 in polymer/oil systems and 

glycerol/oil systems. 𝑘35,*3 decreased for both the polymer/oil system and the glycerol/oil 

system when brine was injected to remove polymer/glycerol from the systems. Brine injection 

showed no effect on 𝑘3*,&5 in the polymer/oil system, while 𝑘3*,&5 increased to initial value 

(brine/oil only) when brine was injected into the glycerol/oil system. This indicates that the 

fluid flow, both aqueous phase and oil phase, behaved different when polymer adsorbed to the 

mineral surface of the rock. The decrease in 𝑘3*,&5 when polymer was present in the system 

was not only caused by the viscosity contrasts between aqueous phase and oil, but by the 

adsorption of polymer along the pore walls and blocking of pores by polymer. 

 

 
Figure 4.44: Effect of brine injection on end-point relative permeabilities of aqueous phase 
(krw,or) and oil (kro,iw) in polymer/oil systems and glycerol/oil systems. 

 
Important observations 

• 𝑘35,*3 decreased when the oil-wet cores were saturated with polymer/oil compared to 

brine/oil. In water-wet cores 𝑘35,*3 was not influenced by polymer injection. This 

suggests that a “water-wet” layer of polymer adsorbed along the pore walls, which 

altered the initial wettability in oil-wet cores towards water-wet. The aqueous phase was 

therefore transported along the water-wet polymer layer during injection instead of 

passing through the middle of the pores (oil-wet conditions), leading to a decrease in 

𝑘35,*3.  

• Brine injection performed after polymer injection in water-wet core LS21polymer and oil-

wet core LS14polymer prevented additional polymer adsorption in the core and additional 

changes in wettability. Disproportionate permeability reduction, where 𝑘35,*3 is more 

reduced than 𝑘3*,&5, was only observed when brine was injected after polymer. 
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Presumably, the decrease in 𝑘35,*3 was caused by blocking of narrow pores and pore 

throats by polymer, and adsorption of polymer layers on the pore walls.  

• Disproportionate permeability reduction was more pronounced in oil-wet cores, i.e. the 

decrease in 𝑘35,*3 was higher. This is in accordance with previous publications which 

reported strongest DPR effect in intermediate wet, or oil-wet, cores (Seright et al., 2004, 

Liang et al., 1995, Nilsson et al., 1998). 

• 𝑘35,*3 increased in cores saturated with glycerol/oil compared to brine/oil. 

𝑘35,*3 	decreased back towards the initial value (brine/oil only) when brine was injected 

to displace glycerol. In the oil-wet cores, 𝑀5* decreased from between 0.7-1.2 with 

brine/oil to between 0.05-0.08 with glycerol/oil. In water-wet cores, 𝑀5* decreased 

from 0.20 to 0.02 with glycerol/oil in the system, i.e. the aqueous phase displaced the 

oil more easily when the viscosity was increased.  

• 𝑘3*,&5 decreased for all cores after injection of polymer/glycerol, to values of 0.12-0.16 

for oil-wet cores and 0.07-0.15 for water-wet cores. When brine was injected to displace 

polymer/glycerol, 𝑘3*,&5 did not change for polymer/oil systems regardless of 

wettability (LS14polymer and LS21polymer). For glycerol/oil systems (LS18glycerol and 

LS22glycerol), 𝑘3*,&5 increased when brine was injected. 𝑀*5 increased from 5 to values 

between 10-30 in the water-wet core when glycerol/oil saturated the core, and from 

values between 0.9-1.5 to values in range 6.5-20 in the oil-wet cores. 𝑀*5 decreased 

back to initial value (brine/oil only) when brine was injected after glycerol injection. 

This suggests that the initial decrease in 𝑘3*,&5 when glycerol was introduced to the 

system was caused by viscosity contrasts between glycerol and oil. 

• In polymer/oil systems the decrease in 𝑘3*,&5 was not caused by viscosity contrasts 

between polymer and oil, because the brine injection showed no effect on 

𝑘3*,&5 .	Presumably the decrease in 𝑘3*,&5 was caused by adsorption of a “water-wet” 

polymer layer along the pore walls in the large and intermediate pores, and blocking of 

small and intermediate pores in the pore volume, forcing the oil to flow through the 

smallest, water saturated pores. 
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4.6 In-situ PET-imaging 

A quantitative analysis of the flooding experiments in core LS27, performed in the PET-scanner 

at Haukeland University hospital, will be presented in this section. The core plug was aged 

dynamically as described in section 3.5.1, and two subsequent Amott-Harvey cycles were 

performed before imaging. No spontaneous water imbibition was recorded during the two 

Amott-Harvey cycles, but oil imbibed spontaneously into the core. The measured Amott-

Harvey indices were 𝐼AB,; =-0.21 and 𝐼AB,< =-0.06 (Table 4.7), corresponding to weakly oil-

wet conditions. The core plug was brought to the Haukeland University hospital for flooding 

experiments in the PET-scanner as described in section 3.9.3. 3D-images from different time 

steps of the injections were used to qualitative describe the displacement fronts, and are 

presented together with production data and pressure graphs. Six consecutive injections were 

performed in following order: radioactive brine injection, oil injection, radioactive polymer 

injection, oil injection, radioactive brine injection and oil injection. Overview of injected fluids, 

injection rates, water saturations before and after each injection, change in water saturation after 

each injection, and end-point relative permeabilities after each injection in the PET-scanner are 

listed in Table 4.8. Pressure logs from all the injections are presented in Appendix F. 

 

Table 4.7: Overview of water saturations and Amott-Harvey indices in the two Amott-Harvey 
cycles performed before the experiment in the PET-scanner.	𝑆&5 is irreducible water saturation 
and 𝑆5 is residual oil saturation, where the subscript describes the consecutive cycle. 

Core 𝑆&5 𝑆5,; 𝑆&5,; 𝐼5,; 𝐼*,; 𝐼AB,; 𝑆5,< 𝑆&5,< 𝐼5,< 𝐼*,< 𝐼AB,< 

LS27 0.20 0.85 0.45 0 0.21 -0.21 0.81 0.37 0 0.06 -0.06 

 
 
Table 4.8: Overview of injected fluids, injection rates, water saturations before and after 
injection, change in water saturation (∆𝑆5) after each injection, and end-point relative 
permeabilities for the experiment in the PET-scanner. 

Injected fluid Injection rate [ml/h] 𝑆5 before injection 𝑆5 after injection ∆𝑆5 𝑘35,*3/𝑘3*,&5 

Brine1 15, 30 0.36 0.79 0.42 0.21 

Oil1 30 0.79 0.38 -0.41 0.10 

Polymer1 10, 15 0.38 0.82 0.45 0.10 

Oil2 15, 20, 30 0.82 0.36 -0.46 0.04 

Brine2 10, 15 0.36 0.71 0.35 0.04 

Oil3 10, 15, 30 0.71 0.36 -0.35 0.04 
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Brine injection to displace oil 

During the first brine injection a total increase in water saturation of 0.42 was reached. The 

saturation development is shown in Figure 4.45 as a function of time. Figure 4.46 shows 3D-

images of the core plug at different time steps during the first radioactive brine injection. There 

is a stronger signal in one side of the core plug, meaning that the displacement front moved 

faster in that part of the core. Water break through occurred after ~0.40 PV injected, and two-

phase production (transient period) was recorded for 30 minutes, until an additional 0.40 PV of 

brine was injected. The end-point relative permeability of water was calculated to be 0.21. 

 

  
Figure 4.45: Increase in water saturation as a function of PV injected during the brine injection 
without polymer present in the core to the left, and water saturation as a function of PV injected 
to the right. 

 

 
Figure 4.46: 3D-images at different time steps during the first radioactive brine injection in 
the PET-scanner. 
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Oil injection to displace brine 

Oil injection was performed after the brine injection. A total decrease in water saturation of 

0.41 was recorded. Figure 4.47 shows the saturation development as a function of time. Figure 

4.48 shows 3D-images at different time steps during the first oil injection, where oil displaced 

the radioactive brine from the core. The displacement front appeared more uniform during the 

oil injection than during the brine injection. Oil break through occurred after ~0.37 PV injected, 

and two-phase production was recorded for 80 minutes, until an additional 2.2 PV was injected. 

A longer transient period during oil injection, with same injection rate as during the water 

injection, suggests that water displacement by oil was not significantly aided by capillary 

forces. Figure 4.49 shows differential pressure as a function of time during the brine and oil 

injections performed without polymer present in the core. The measured differential pressure 

during brine injection, with a flow rate of 30 ml/h, was between 1.4-1.9 bar, while the 

differential pressure was between 2.6-3.8 bar during oil injection using the same flow rate. End-

point relative permeability of oil was calculated to be 0.10, 2.1 times lower than the end-point 

relative permeability of water. According to Craig´s rules of thumb this indicate neutral-wet 

wettability, because the end-point relative permeabilities of water and oil are in the same range, 

and the lower value for end-point relative permeability of oil suggests tendencies towards oil-

wet. It is important to keep in mind that the system is not homogeneous, and it is conceivable 

that the core has mixed wettability. Oil flowing along the pore walls in the larger, oil-wet pores, 

and water flowing in the middle of the large pores and through the small, 100% water saturated, 

pores can explain the differences in differential pressure.  

 

  
Figure 4.47: Increase in oil saturation as a function of PV injected during the oil injection 
without polymer present in the core to the left, and water saturation as a function of PV injected 
to the right. 
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Figure 4.48: 3D-images at different time steps during the first oil injection in the PET-
scanner, where oil displaces radioactive brine.  

 

 
Figure 4.49: Differential pressure as a function of PV injected during the brine and oil 
injections performed before polymer injection. Injection rates are marked above the curves.  

 
Polymer injection to displace oil 

After brine and oil injections, a polymer solution with a viscosity of 9.1cP was injected into the 

core. The polymer solution was labelled by radioactive FDG and could be tracked by PET 

during injection. Figure 4.50 shows oil recovery and saturation development as a function of 

time during the polymer injection and the brine injection without polymer in the core. Oil 

recovery of 72% was recorded during the polymer injection, which was a 5% increase in oil 

recovery compared to the brine injection. The increase in oil recovery was caused by the 

improved mobility ratio between water and oil (𝑀5*) when polymer was used in the aqueous 

phase. 𝑀5* was reduced from 1.7 during brine injection to 0.06 during polymer injection, which 

is a more favorable mobility ratio because the displacing fluid (polymer) is less mobile than the 
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displaced fluid (oil). Figure 4.51 shows differential pressure as a function of time during 

polymer injection. A differential pressure of 12.4 bar was measured with an injection rate of 15 

ml/h. This increase in differential pressure compared to brine and oil injection was caused by 

the viscosity increase.  

 

  
Figure 4.50: Oil recovery in percentage of oil in place (OIP) as a function of PV injected during 
the polymer injection and the brine injection before polymer injection to the left, and water 
saturation as a function of PV injected to the right. 

 

 
Figure 4.51: Differential pressure as a function of PV injected during the polymer injection. 
Injection rates are marked above the curve.  

 
Figure 4.52 shows 3D-images of the core plug at different time steps during the radioactive 

polymer injection. As expected, a more uniform displacement front was obtained by polymer 

injection compared to brine injection. The water break through occurred after ~0.60 PV 

injected (compared to 0.40 PV injected during the first brine injection), i.e. polymer injection 

provides a more uniform displacement front, later water break through, and increase in oil 
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recovery. The transient period lasted for 15 minutes, until an additional of 0.30 PV of polymer 

was injected (0.10 PV less than during the brine injection due to the later break through). End-

point relative permeability of polymer was calculated to be 0.10: 2.1 times lower than the end-

point relative permeability of water during the first brine injection.  

 

 
Figure 4.52: 3D-images at different time steps during the radioactive polymer injection in the 
PET-scanner. 

 
Oil injection to displace polymer 

A second oil injection was performed after the polymer injection. An overall decrease in water 

saturation of 0.46 was recorded, 5% more than during the first oil injection. This increase in 

volume of aqueous phase (polymer) displaced by injected oil can be explained by the higher 

water saturation reached during the polymer injection compared to the brine injection, which is 

the start saturation for the oil injection. Figure 4.53 shows the development in saturation as a 

function of time during the oil injections before and after polymer injection. Figure 4.54 shows 

3D-images of the core plug at different time steps during the second oil injection, where oil 

displaced radioactive polymer from the core. The displacement front propagated faster in one 

side of the core plug, like observed in the first brine injection. Oil break through occurred after 

~0.25 PV injected, 0.12 PV earlier than for the first oil injection. The transient period lasted 

for 66 minutes, until an additional 1.13 PV oil was injected. The increase in viscosity ratio 

between aqueous phase and oil increased from 1.2 to 10 when polymer was in the aqueous 

phase, which is a likely reason for the early break through.   
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Figure 4.53: Increase in oil saturation as a function of PV injected during the oil injections 
before and after polymer injection the left, and water saturation as a function of PV injected 
to the right. 

 
 

 
Figure 4.54: 3D-images of the core plug at different time steps during the second oil 
injection, where radioactive polymer was displaced by oil.  

 
Differential pressure as a function of time during the oil injections before and after polymer 

injection is shown in Figure 4.55. The differential pressure increased during the oil injection 

when polymer saturated the core plug, compared to when brine saturated the core, which is 

natural because an aqueous fluid with higher viscosity (polymer) was displaced. The pressure 

decreased as polymer was produced, indicating less polymer in the core. Fluctuations in inlet 

and outlet pressure were also observed, suggesting that the pore volume available for fluid flow 

was not static: effluents visible in the clear production tubing stopped for a few seconds while 

both the inlet and outlet pressures increased. Movement of effluents in the production tubing 

was observed simultaneous to peaks in the measured pressure. The pressure swiftly decreased 

when production continued. This phenomenon was observed several times. Additional 
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production of polymer was also observed when the pump was started again after cylinder refill, 

and when the injection rate was increased. The pressure fluctuations may indicate that polymer 

blocked small pores and narrow pore throats in the core. The differential pressure increased, 

and the production “stopped”, when the oil displaced trapped polymer from a narrow pore throat 

or a small pore. When the pressure peaked, the trapped polymer was presumably displaced out 

of the pore or pore throat, and the pressure swiftly decreased.  

At the end of the oil injection, the differential pressure was between 6.6-7.5 bar using an 

injection rate of 30 ml/h, corresponding to 4.0-4.9 bar increase compared to oil the injection 

without polymer present in the core. This difference can not be explained only by viscosity 

contrasts between polymer and oil. It is conceivable that the injected polymer displaced the oil 

along the pore walls in the large and intermediate oil-wet pores and adsorbed to the pore walls 

as a “water-wet” polymer layer. Before use, the polymer solution was filtered using a 5𝜇m 

filter. Thus, polymer clusters larger than 5𝜇m was removed from the solution. Smaller polymer 

clusters could potentially block small and intermediate pores and narrow pore throats in the 

pore network, as the fluctuations in pressure indicated. Blocking of small and intermediate 

pores could force the oil to flow through the smallest pores in the core, that originally were 

assumed to be fully water saturated, which can explain the increase in differential pressure 

during oil injection. The end-point relative permeability of oil was calculated to be 0.04, 2.5 

times lower than the end-point relative permeability of oil without polymer present in the core. 

The decrease in end-point relative permeability can also be explained by blocked pores in the 

pore network, which would decrease the absolute permeability of the core as well.  

 

 

Figure 4.55: Differential pressure as a function of PV injected during the oil injections before 
and after polymer injection. Injection rates are marked above the curves. 
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Brine injection to displace oil with potential adsorbed polymer in the core 

The oil recovery decreased from 72% (polymer injection) to 55% during the brine injection 

performed after polymer injection. The oil recovery also decreased compared to the brine 

injection without polymer in the core, i.e. there was an increase in trapped oil. Figure 4.56 

shows the oil recovery and the saturation development as a function of time during the polymer 

injection and the brine injections before and after polymer injection. Highest oil recovery was 

recorded during the polymer injection, and the lowest recovery was recorded during the brine 

injection performed after the polymer injection. Figure 4.57 shows 3D-images of the core plug 

at different time steps during the second radioactive brine injection, performed after polymer 

injection. The signal is stronger in one side of the core, i.e. the displacement front moved faster 

in that part of the core. Similar was also observed during the first brine injection (performed 

before polymer injection), but water break through was recorded after ~0.25 PV injected, 0.15 

PV earlier than during the brine injection without polymer present in the core. 

 

  
Figure 4.56: Oil recovery in percentage of oil in place (OIP) as a function of PV injected during 
the polymer injection and the brine injections performed before and after polymer injection to 
the left, and water saturation as a function of PV injected to the right. 
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Figure 4.57: 3D-images of the core plug at different time steps during the second radioactive 
brine injection, performed after polymer injection. 

 

Comparison of 3D-images at different time steps during the brine injections before and after 

polymer injection is shown in Figure 4.58. The displacement front propagated much faster 

during the brine injection after polymer injection than the brine injection before polymer 

injection, indicating that the pore volume available for water flooding decreased after polymer 

was injected into the core. This supports adsorption of polymer in the core plug, blocking pores 

and pore throats, leading to a decrease in available pore volume during flooding. 

 

 
Figure 4.58: Comparison of 3D-images at different time steps during the brine injections 
performed before and after polymer injection. 
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Differential pressure as a function of time during the brine injections performed before and after 

polymer injection is shown in Figure 4.59. The pressure was decreasing as oil was produced. 

The differential pressure was stable during the brine injection without polymer in the pore 

volume, while during the brine injection performed after polymer injection, fluctuations in 

differential pressure can be seen. The fluctuations in pressure suggests that the pore volume 

available for fluid flow was not static. As suggested for the oil injection performed directly after 

the polymer injection, a possible explanation can be that the injected water (or oil) displaced 

polymer that were trapped in pores or pore throats, leading to an increase in pressure. When the 

polymer was displaced from the pore or pore throat the pressure swiftly decreased, and polymer 

was visible in the production tubing. 

 

At the end of the brine injection performed after polymer injection, the measured differential 

pressure was 1.5-1.8 bar higher than the differential pressure at the end of the brine injection 

without polymer in the pore volume, even though the flow rate was three times lower. The end-

point relative permeability of water was calculated to be 0.04, which is 5.3 times lower than the 

end-point relative permeability of water in the first brine injection. The end-point relative 

permeability of oil was 2.5 times lower during the oil injection when polymer/oil saturated the 

core compared to when brine/oil saturated the core. The increase in differential pressure during 

oil and water injections, and the decrease in end-point relative permeabilities of water and oil, 

suggest that the adsorption of polymer in the core plug restricted both the water and oil flow in 

the core. This was also seen in the PET-images: the front propagated faster during water and 

oil injections performed after polymer injection, indicating a smaller pore volume available for 

fluid flow. It is conceivable that the injected polymer solution displaced the oil from the pore 

walls in the large and intermediate oil-wet pores in the core and adsorbed to the pore walls as a 

“water-wet” polymer layer. In addition, polymer clusters may have accumulated in some of the 

smaller pores and pore throats in the core, leading to completely blocking of the pores. Blocking 

of small and intermediate pores could potentially force the oil to flow through the smallest pores 

in the core, which previously was assumed to be fully water saturated. The larger decrease in 

end-point relative permeability of water, and the higher differential pressure during brine 

injection than during oil injection, show that the water flow was more restricted than the oil 

flow. One explanation for this can be a change in wettability from oil-wet towards water-wet 

caused by the adsorbed polymer layer along the pore walls. Injected water presumably flowed 

through the adsorbed polymer layer along the pore walls and in the smallest pores (now shared 

with oil), while the oil flowed through the middle of the pores and in the smallest pores. The 
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larger decrease in end-point relative permeability of water is in agreement with the results in 

section 4.5, where the end-point relative permeability of water decreased more than the end-

point relative permeability of oil after polymer was introduced to the core plug. 

 

 
Figure 4.59: Differential pressure as a function of time during the brine injections performed 
before and after polymer injection. Injection rates are marked above the curves. 

 
Oil injection to displace brine with potential adsorbed polymer in the core 

During the third oil injection, a total decrease in water saturation of 0.35 was recoded, 11% less 

than during the oil injection performed directly after the polymer injection. The lower water 

saturation at oil injection initiation can partly explain this. PET-images from the oil and water 

injections after polymer injection suggested a decrease in pore volume available for fluid flow, 

which can also explain the decrease in recovery. Figure 4.60 shows the saturation development 

as a function of time during all three oil injections. Water recovery was highest when oil 

injection was performed directly after the polymer injection (second oil injection). Oil break 

through occurred after ~0.24 PV injected, similar to previous oil injection, and the transient 

period lasted until an additional of 0.49 PV of oil was injected (0.64 PV less than the second 

oil injection performed directly after polymer injection). Figure 4.61 shows 3D-images of the 

core plug at different time steps during the third oil injection, where radioactive brine, and 

possibly adsorbed polymer, were displaced by oil. Stronger signal can be seen in one side of 

the core, i.e. the displacement front propagated faster in one side of the core, as observed during 

previous oil and water injections.  
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Figure 4.60: Increase in oil saturation as a function of PV injected during first, second and 
third oil injection to the left, and water saturation as a function of PV injected to the right. First 
oil injection was performed before polymer injection, while second and third oil injection were 
performed after polymer injection. 

 

 
Figure 4.61: 3D-images of the core plug at different time steps during the third oil injection, 
where oil displaced radioactive brine. 

 
Comparison of PET-images at different time steps when oil displaced brine (first oil injection), 

oil displaced polymer (second oil injection) and oil displaced brine and potential adsorbed 

polymer (third oil injection) is shown in Figure 4.62. The displacement front propagated much 

faster during the two oil injections performed after polymer injection. The viscosity ratios 

during the first and second oil injections were different due to the increased viscosity of aqueous 

phase, which can partly explain the faster propagation of the displacement front, but the 

viscosity ratios were equal in the first and third oil injections. This indicates that the pore 

volume available for fluid flow decreased as a result of the adsorption of polymer in the core.  
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Figure 4.62: Comparison of 3D-images of the core plug at different time steps during the oil 
injection before polymer injection and the two oil injections after polymer injection. 

 
Figure 4.63 shows differential pressure as a function of time when brine displaced oil and oil 

displaced brine with potential adsorbed polymer in the pore volume. The differential pressure 

was between 1.0-2.9 bar lower with the same flow rate when oil displaced brine compared to 

when brine displaced oil (both injections performed after polymer injection). This is opposite 

to the brine and oil injections without polymer present in pore volume, where the differential 

pressure was higher during oil injection than water injection for the same flow rate. The lower 

differential pressure during oil injection means that oil flowed more easily than water through 

the core plug after polymer injection. This may indicate that water flowed along the pore walls 

in the larger pores, due to a layer of “water-wet” adsorbed polymer, and through the smaller 

pores (now shared with oil), while oil flowed through the middle of the larger pores and in the 

smallest pores, due to blocking of small and intermediate pores by polymer, which would 

suggest a change in wettability towards water-wet conditions.  

As observed in the second oil injection, effluents in the clear production tubing stopped for a 

few seconds while the pressure was increasing, and when the pressure peaked, either water or 

polymer was produced, and the pressure swiftly decreased. As previously suggested, an 

explanation for this can be that the oil displaced trapped polymer through narrow pore throats 

or small pores. Figure 4.64 shows differential pressure as a function of time when oil displaced 
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brine before polymer injection, oil displaced polymer and oil displaced brine after polymer 

injection. The differential pressures were higher at the same flow rates during the second and 

third oil injections, performed after polymer injection, compared to the oil injection performed 

before polymer injection. The differential pressure increase was 4.0-5.1 bar for the second and 

3.2-3.6 bar for the third oil injection. This increase in differential pressure after polymer was 

injected into the core can be caused by blocking of pores by polymer, which forced the oil to 

flow through the smallest pores as previously suggested. The end-point relative permeability of 

oil was calculated to be 0.04, equal to the end-point relative permeability of water.   

 

 
Figure 4.63: Differential pressure as a function of PV injected during oil displacement by brine 
and brine displacement by oil after polymer injection. Injection rates are marked above the 
curves. 

 

 

Figure 4.64: Differential pressure as a function of PV injected when oil displaced brine before 
polymer injection, oil displaced polymer and oil displaced brine after polymer injection. 
Injection rates are marked above the curves. 
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Important observations 

Several observations were made during brine and oil injections before and after polymer 

injection, and during polymer injection: 

 
1. Before polymer was introduced to the core plug, the differential pressure during brine 

injection was lower than during oil injection, and the transient period lasted for a longer 

period of time during oil injection than during brine injection. During the Amott-Harvey 

cycles performed before the PET-experiment, only oil imbibed spontaneously into the 

core plug. It is conceivable that the crude oil displaced the water in the large and 

intermediate pores in the core plug during aging, which altered the wettability in the 

large and intermediate pores to oil-wet, while the smallest pores remained water-wet 

and fully water saturated. This means that the core had mixed wet large wettability, i.e. 

the largest pores were oil-wet, while the smaller pores were water-wet. 

2. Polymer injection provided a more uniform displacement front, with later break 

through, compared to oil and water injection, and an increase in oil recovey. This was 

expected because of the improvement of the mobility ratio (decrease from 1.7 to 0.06) 

by increasing the viscosity of the aqueous phase.  

3. After polymer injection, the measured differential pressure was higher during water 

injection than during oil injection, opposite of before polymer was present in the core. 

This could indicate that the polymer displaced the oil from the pore walls of the oil-wet 

pores and adsorbed along the pore walls as a “water-wet” polymer layer. In addition, 

core transport properties changed after polymer was introduced to the core. Decrease in 

recovery and faster propagation of the displacement fronts during oil/brine and brine/oil 

displacements after polymer injection indicated a decrease in pore volume available for 

flooding. Blocking of small and intermediate pores and narrow pore throats can explain 

this. Injected water presumably flowed through the polymer layer and in the smallest 

pores, leading to increased pressure.  

4. The end-point relative permeability of water decreased by a factor of 5.3 after polymer 

was introduced to the core, while the end-point relative permeability of oil decreased by 

a factor of 2.5. The adsorption of polymer restricted the water flow more than the oil 

flow. It is likely that polymer clusters accumulated in some of the pores and pore throats, 

leading to blocking of parts of the pore network. The blocking of small and intermediate 

pores may have forced the oil to flow through the smallest pores, which previously was 

assumed to be fully water-saturated. This can explain the decrease in 𝑘3*,&5. The water 
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flowed presumably along the adsorbed, water-wet, polymer layer along the pore walls 

and in the smallest pores (now shared with oil), which can explain the larger decrease 

in 𝑘35,*3. The larger decrease in 𝑘35,*3 than 𝑘3*,&5 is in good agreement with the results 

in section 4.5 where 𝑘35,*3 also decreased more than 𝑘3*,&5 after polymer injection. The 

results are also in agreement with previous publications (Nilsson et al., 1998, Liang et 

al., 1995, Zaitoun and Kohler, 1988, Al-Sharji et al., 1999, Willhite et al., 2002). 
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5 Conclusions and Future work 
This section presents conclusions of the experimental work and suggestions for future work 

on this research topic. 

 

5.1 Conclusions 

• The heterogeneous nature of Edwards limestone core plugs was confirmed with CT, 

demonstrating a large range in pore and vug size distribution (27 – 300	𝜇m). Pores smaller 

than the spatial resolution of the CT images were not captured.  

• Nearly neutral or slightly oil-wet wettability preferences were obtained with both static and 

dynamic aging of Edwards limestone cores. The obtained wetting preference was stable for 

more than two full Amott-Harvey cycles, with small amounts of water imbibition observed 

after four cycles for dynamically aged cores. The wettability preference was more uniformly 

distributed using dynamic aging compared with static aging. 

• Presence of polymer changed the wetting preference for oil-wet core plugs towards water-

wet conditions quicker compared with using only brine: aqueous phase imbibition was 

observed in the third Amott-Harvey cycle for polymer/oil systems, compared with fourth 

or fifth cycle in brine/oil systems.  

• For both water-wet and oil-wet cores the oil relative permeability was lower in polymer/oil 

systems compared with brine/oil systems. The oil relative permeability was not impacted 

by brine injection to remove polymer from the core in polymer/oil systems, while the oil 

relative permeability increased back to initial values (brine/oil only) in brine/oil systems 

with matched aqueous phase viscosity (glycerol added to brine). This was explained by an 

adsorbed polymer layer along the pore walls in large and intermediate pores, and blocking 

of small and intermediate pores in the pore volume. 

• The water relative permeability was more reduced than the oil relative permeability, for 

both water-wet and oil-wet core plugs. The DPR effect was more pronounced in oil-wet 

cores, i.e. the decrease in 𝑘35,*3 was higher. 

• Three-dimensional PET-images showed that the displacement front was more uniform 

during polymer injection than water injection. Polymer injection also increased the oil 

recovery by 5% compared with water injection.  

• The core transport properties changed after polymer was introduced to the core. The 

recovery decreased, and faster propagation of the displacement fronts during oil/brine and 



   
 

110 

brine/oil displacements could be seen in the PET-images. This indicates a decrease in pore 

volume available for flooding after polymer was injected into the core. Blocking of small 

and intermediate pores and narrow pore throats, and adsorption of polymer layers on the 

pore walls can explain this.  

 

5.2 Future work 
Some suggestions for future work within this subject are listed below: 

• Finish the planned MRI-experiment: image the dynamically aged core plug LS26 during 

consecutive water and polymer injections. Perform static MRI-imaging and T2 

relaxation time measurements before and after each injection, in addition to dynamic 

measurements during both injections. Investigate the spatial wettability distribution in 

the core plug. 

• Further analysis of the PET-images: investigate the flow pathways after polymer 

injection. Calculate relative permeability curves. 

• Investigate the effect of polymer on wettability reversal in more homogeneous rock 

material, e.g. sandstone or chalk. 

• Investigate the effect of polymer on fluid flow on pore scale in both water-wet and oil-

wet systems.  
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 APPENDIX 

A. Porosity and permeability 
Porosity is a key property in core analysis and is normally defined as the ratio of the void 

volume of the core plug to the total bulk volume of the core (Jenkins, 1966): 

 𝜙)*) =
𝑉@	
𝑉?	

=
𝑉? − 𝑉(
𝑉?

= 1 −
𝑉(
𝑉?

 (A.1) 

where 𝜙)*) is the total porosity of the core plug, 𝑉@ is the absolute pore volume of the core 

plug,	𝑉? is the bulk volume of the core plug, and  𝑉( is the matrix volume of the core plug. 

 

Permeability is a measure of the ability of the porous medium to conduct flow and is dictated 

by the geometry of the pore network (Honarpour and Mahmood, 1988). Permeability can be 

subdivided into absolute, effective and relative permeability. The absolute permeability is a 

property of the porous medium, and is defined by Darcy's law when the pore space is 100% 

saturated with one fluid: 

 𝑄 =
𝐾𝐴
𝜇
𝑑𝑝
𝑑𝑥 (A.2) 

 

where Q is the volumetric flow rate of a fluid with viscosity 𝜇 flowing through a porous medium 

with cross section area A. 𝑑𝑝/𝑑𝑥 is the differential pressure drop over a unit length of the 

porous medium. 

  

When two or more immiscible fluids are present in the porous medium the permeability of each 

fluid at a given saturation is called effective permeability. The effective permeability 𝑘&+ of a 

fluid 𝑖 is defined by a generalization of Darcy’s law: 

 

 𝑘&+ = 𝑄&
𝜇&
𝐴
∆𝑥
∆𝑝&

	 (A.3) 

 

Craig (1971) described relative permeability as a “direct measure of the ability of the porous 

system to conduct one fluid when one or more fluids are present”. These flow properties are the 

composite effect of pore geometry, wettability, fluid distribution, and saturation history. The 
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relative permeability (𝑘3&) is defined as the ratio of the effective permeability of a fluid to the 

absolute permeability of the rock (Honarpour and Mahmood, 1988): 

 𝑘3& =
𝑘&+
𝐾  (A.4) 

 

 

B. Saturation 
Core saturation describes the fraction of pore volume occupied by a certain fluid:  

 𝑆& =
𝑉&
𝑉@

 (B.1) 

where 𝑉& is the volume of a fluid i present in a core plug and 𝑉@ is the pore volume of the core 

plug. 

 

The saturation of each fluid is a value between 0 and 1, thus the sum of all fluid saturations in 

the pore volume is 1. Water based (aqueous) fluids and oil saturates all core plugs in this work, 

and dynamic changes in fluid saturations are monitored by material balance. Material balance 

is based on the fact that one volume of injected fluid displaces another, equal volume of fluid 

from the pore space. When one immiscible fluid displaces another, the average core saturation 

may be calculated versus time by monitoring the produced effluents. 

 

C. Capillary pressure 
Capillary pressure (𝑃E) is defined as the molecular pressure difference between two immiscible 

fluids, e.g. water and oil, often generalized as: 

 𝑃E = 𝑃* − 𝑃5 	 (C.1) 

 

where 𝑃* and 𝑃5 is the pressure in the oil and the water phase, respectively. 

 

Laplace complied a relation for capillary pressure of two immiscible fluids in a narrow 

cylindrical tube, with a curved interface in the form of meniscus between the two fluids as 

illustrated in Figure C.1. The pressure difference across the oil/water-interface is given by 

Laplace’s equation: 

 𝑃E = 𝜎*5 u
1
𝑅;
+
1
𝑅<
v	 (C.2) 
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where 𝑅; and  𝑅< are the principal radii of the interface curvature and 𝜎*5 is the interfacial 

tension between oil and water.  

 

Using standard trigonometric rules, if  𝑅; = 𝑅< = 𝑅, the expression for the capillary pressure 

in a tube becomes: 

 𝑃E =
2𝜎*5 ∙ 𝑐𝑜𝑠𝜃*5

𝑟 	 (C.3) 

 

where 𝜃*5 is the wetting angle and 𝑟 is the radius of the capillary. The radius r can be compared 

to the radius of a pore throat, and equation(C.3) used to describe the capillary pressure of a 

bundle of tubes with varying pore throat radii, i.e. a simplified porous medium.  

 

 
Figure C.1: Illustration of oil/water interface in capillary tube where water is the wetting phase 
and oil is the non-wetting phase. 

 

Figure C.2 shows a capillary pressure curve for a more complex porous medium, e.g. a core 

plug, as a function of saturation. The curve is an example of capillary pressure behaviour in a 

water-wet system, where water coats the pore walls and saturates the smaller pores. During 

primary drainage in a water-wet core plug, the oil will first enter the pores with the lowest 

capillary pressure (i.e. the largest pores). Oil will then enter successively smaller pores, and the 

capillary pressure increases, until the irreducible water saturation (𝑆5&) is reached. This is the 
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initial condition to an oil reservoir. When water is injected, the pressure increases, and oil is 

produced until residual oil saturation is reached (𝑆*3).  

 

During imbibition, water will imbibe spontaneously into the smallest pores and displace the oil 

until 𝑃D = 0. Additional displacement of oil is accomplished by water injection. The wettability 

of the core plug dictates the volume of water that will imbibe spontaneously into the core, by 

controlling the capillary pressure. For a strongly water-wet core (Figure C.2), water might 

imbibe spontaneously until the residual oil saturation (𝑆*3) is reached, and oil will not be 

displaced during forced water injection.  

 

Capillary pressure curves for imbibition and drainage differ due to a phenomenon called 

capillary hysteresis, i.e. capillary pressure is not only a function of saturation, but also the 

saturation history of the system. This is partly caused by the tortuosity of a porous system, e.g. 

caused by oil globules trapped in the centres of large pore bodies or stretching over several 

pores. Due to the heterogeneous nature of limestone core plugs used in this study, capillary 

trapping is expected.  

 

 

 
 Figure C.2: Oil/water capillary pressure curves for a water-wet core.
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D. Equations for calculation of shear stress and full-scale viscosity range 
The following equation was used to calculate the shear stress the fluid sample was subjected to 

during viscosity measurements: 

 𝜏	 = 	𝑇𝐾	 ∙ 	𝑆𝑀𝐶	 ∙ 	𝑆𝑅𝐶	 ∙ 	𝑇𝑜𝑟𝑞𝑢𝑒% (D.1) 

 

where Torque% is output from the viscometer, TK (Torque Constant), SMC (Spindle Multiplier 

Constant), and SRC (Shear Rate Constant) are constants relating to the viscometer and spindle 

size/type. Values can be found in the viscometer manual (Brookfield DV-Ⅱ+Pro Viscometer 

Operating Instructions, Manual No. M03-165-F0612, page 76-78), and are listed below: 

• TK = 0.09373 

• SMC = 0.64 

• SRC = 3.8 

 

Full scale viscosity range for a given RPM setting may be calculated using the equation: 

 𝐹𝑢𝑙𝑙	𝑠𝑐𝑎𝑙𝑒	𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦	𝑅𝑎𝑛𝑔𝑒	 = 	𝑇𝐾	 ∙ 	𝑆𝑀𝐶	 ∙ 	
10000
𝑅𝑃𝑀  (D.2) 

 

Viscosity measurement accuracy is 1% of the range. 

 

E. Uncertainty Estimation 
The variance formula (Ku, 1966) was used to estimate propagating error. The formula 

assumes that the variables (𝑠Z , 𝑠8 , 𝑠[ , … )	are independent.  

 𝑠, = Hu
𝜕𝑓
𝜕𝑥v

<

𝑠Z< + u
𝜕𝑓
𝜕𝑦v

<

𝑠8< + u
𝜕𝑓
𝜕𝑧v

<

𝑠[< +⋯ 
(E. 1) 

 

 

 
where 𝑠, represents the standard deviation of the function f, 𝑠Z represents the standard 
deviation of 𝑥, 𝑠8 represents the standard deviation of 𝑦, and so forth.   
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Figure E.1: Instrumental uncertainties. 

Instrument Parameter Uncertainty (±) 

Weight Mass 0.01 g 
Caliper Length 0.1 mm 

ESI Pressure Transducer 0-10 barg Pressure 0.10 % of scale 
ESI Pressure Transducer 0-16 barg Pressure 0.10 % of scale 
Quizix Pump Flow rate 0.10 % of rate 
Measuring cylinder (25ml) Volume 0.5 ml 
Measuring cylinder (10ml) Volume 0.2 ml 

Graded imbibition tube Volume 0.05 ml 

 
Cyclic imbibition as performed in this work leads to increased uncertainty in saturation for each 

cycle. To reduce this uncertainty accurate measuring methods should be used. The saturation 

in two of the core plugs ended up very low after multiple Amott-Harvey cycles; particularly, 

saturations in LS13 and LS22 had to be adjusted because negative water saturation was 

measured in fifth cycle. 25 ml measuring cylinders (0.5 ml uncertainty) were used to monitor 

saturations during the first Amott-Harvey cycles. The measuring cylinders were replaced with 

imbibition cells for production measurements during further cycles to reduce the uncertainties. 

This yields inaccurate measurements of effluents, especially during water injections. The 

measured production of the first Amott-Harvey cycles in LS13 and LS22 were therefore 

calibrated to accurate production measured in further cycles. Total uncertainties after each 

completed Amott-Harvey cycle were calculated using equation (E. 1) for a selection of cores 

and are presented in Figure E.2.  

 

Figure E.2: Calculated total uncertainties in saturation after drainage (drain.) and each 
completed Amott-Harvey cycle (1-5). 

 LS11 LS12 LS13 LS14 LS16 LS17 LS18 LS19 LS20 LS21 LS22 

Drain. ±0.02 ±0.03 ±0.03 ±0.03 ±0.03 ±0.02 ±0.03 ±0.03 ±0.03 ±0.03 ±0.03 

1 ±0.05 ±0.04 ±0.04 ±0.05 ±0.05 ±0.05 ±0.05 ±0.04 ±0.05 ±0.05 ±0.05 

2 ±0.05 ±0.05 ±0.05 ±0.06 ±0.05 ±0.06 ±0.06 ±0.05 ±0.07 ±0.07 ±0.06 

3 ±0.06 ±0.05 ±0.05 ±0.06 ±0.05 ±0.06 ±0.06 ±0.05 ±0.07 ±0.07 ±0.06 

4 ±0.06 ±0.05 ±0.05 ±0.06 ±0.05 ±0.06 ±0.06 ±0.05 ±0.07 ±0.07 ±0.07 

5 ±0.06 ±0.05 ±0.05 ±0.06 ±0.05 ±0.06 ±0.06 ±0.05 - ±0.07 ±0.07 
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F. Pressure logs from the PET-experiment 
Pressure logs from the PET-experiment performed at Haukeland University hospital are 

presented. Figure F.1 shows the pressure log from the first brine injection, first oil injection and 

polymer injection. Figure F.2 shows the pressure log from the second oil injection, and Figure 

F.3 shows the pressure log from the second brine injection and the third oil injection. Inlet and 

outlet pressure are presented in the logs, and comments explaining pressure changes are added.  

 

 
Figure F.1: Pressure log from first brine injection, first oil injection and polymer injection in 
the PET-scanner. Comments are added to explain pressure changes. 
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Figure F.2:Pressure log from second oil injection in the PET-scanner. Comments are added 
to explain pressure changes. 

 

 

 
Figure F.3: Pressure log from second brine injection and part of the third oil injection in the 
PET-scanner. Comments are added to explain pressure changes. 
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