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Claudin-low-like mouse mammary tumors
show distinct transcriptomic patterns
uncoupled from genomic drivers
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Abstract

Background: Claudin-low breast cancer is a molecular subtype associated with poor prognosis and without
targeted treatment options. The claudin-low subtype is defined by certain biological characteristics, some of which
may be clinically actionable, such as high immunogenicity. In mice, the medroxyprogesterone acetate (MPA) and 7,
12-dimethylbenzanthracene (DMBA)-induced mammary tumor model yields a heterogeneous set of tumors, a
subset of which display claudin-low features. Neither the genomic characteristics of MPA/DMBA-induced claudin-
low tumors nor those of human claudin-low breast tumors have been thoroughly explored.

Methods: The transcriptomic characteristics and subtypes of MPA/DMBA-induced mouse mammary tumors were
determined using gene expression microarrays. Somatic mutations and copy number aberrations in MPA/DMBA-
induced tumors were identified from whole exome sequencing data. A publicly available dataset was queried to
explore the genomic characteristics of human claudin-low breast cancer and to validate findings in the murine
tumors.

Results: Half of MPA/DMBA-induced tumors showed a claudin-low-like subtype. All tumors carried mutations in
known driver genes. While the specific genes carrying mutations varied between tumors, there was a consistent
mutational signature with an overweight of T>A transversions in TG dinucleotides. Most tumors carried copy
number aberrations with a potential oncogenic driver effect. Overall, several genomic events were observed
recurrently; however, none accurately delineated claudin-low-like tumors. Human claudin-low breast cancers
carried a distinct set of genomic characteristics, in particular a relatively low burden of mutations and copy
number aberrations. The gene expression characteristics of claudin-low-like MPA/DMBA-induced tumors accurately
reflected those of human claudin-low tumors, including epithelial-mesenchymal transition phenotype, high level of
immune activation, and low degree of differentiation. There was an elevated expression of the immunosuppressive
genes PTGS2 (encoding COX-2) and CD274 (encoding PD-L1) in human and murine claudin-low tumors.

Conclusions: Our findings show that the claudin-low breast cancer subtype is not demarcated by specific genomic
aberrations, but carries potentially targetable characteristics warranting further research.
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Background

The claudin-low subtype of breast cancer (BC) is a distinct
disease entity associated with a relatively poor prognosis,
and with an inadequately understood clinical significance
[1-3]. It is characterized by low expression of tight junction
and cell-cell adhesion genes, low degree of differentiation,
epithelial-mesenchymal transition (EMT) phenotype, and
high level of immune cell infiltration [2]. The claudin-low
subtype represents 7—14% of all breast cancers, and despite
its unique biological features, there are no therapies specif-
ically targeting the subtype [2-5]. While claudin-low tu-
mors are found in several large-scale studies, there is a
paucity of information regarding their specific genomic
characteristics [6-9]. Thus, significant gaps remain in the
understanding of the biology of claudin-low tumors, and
there is a need for further research to explore how their
unique features may be therapeutically targeted.

Accurate preclinical models are vital for research into
novel treatment options. Mouse mammary tumors may
be induced through exposure to medroxyprogesterone
acetate (MPA) and 7,12-dimethylbenzanthracene (DMBA)
[10]. The tumors generated by this protocol are diverse,
and a subset of these show similarities to the human clau-
din-low subtype [11, 12]. A homogeneous primary in vivo
model of claudin-low breast cancer does not currently
exist [11]. While the mechanisms of MPA [10, 13] and
DMBA [14~17] have been described, there is still conten-
tion regarding the suitability of a chemically induced
model of cancer for a disease that is not primarily caused
by carcinogens in humans [18]. Evaluating the claudin-
low subset of MPA/DMBA-induced tumors as a model
for human disease is therefore an important step toward
advancing preclinical research of claudin-low breast
cancer.

In this study, we identified and comprehensively char-
acterized claudin-low-like mouse mammary tumors gen-
erated by MPA/DMBA-induced carcinogenesis. Through
genomic and transcriptomic analyses, we evaluated these
tumors as a model for human claudin-low breast cancer
and showed these tumors to be phenotypically accurate
representations of their human counterparts. In parallel,
we analyzed the previously unexplored genomic features
of human claudin-low breast cancer. Our findings
highlighted several features of claudin-low breast cancer
with potential therapeutic implications, including a low
tumor mutational burden, high expression of the im-
mune checkpoint gene CD274 (encoding PD-L1), and
high expression of PTGS2 (encoding cyclooxygenase-2).

Methods

Mouse strains and tumor induction

Double transgenic mice, Lgr5-EGFP-Ires-CreERT2;R26R-
Confetti [19], were generated by crossing heterozygous
Lgr5-EGFP-Ires-CreERT2 mice with heterozygous R26R-
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Confetti mice. These transgenes are considered biologic-
ally inert and all female offspring, including wild type,
single, or double transgenic mice, were used for MPA/
DMBA-treatment experiments. All mice were locally
bred and maintained within a specific pathogen-free
barrier facility according to local and national regula-
tions, with food and water ad libitum. Female mice were
treated with medroxyprogesterone acetate (MPA) and 7,
12-dimethylbenzanthracene (DMBA) in accordance with
the established protocol [10]. In brief, 90-day release
MPA pellets (50 mg/pellet, Innovative Research of
America cat.# NP-161) were implanted subcutaneously
at 6 and 19 weeks after birth. One microgram of DMBA
(Sigma Aldrich cat.# D3254) dissolved in corn oil (Sigma
Aldrich cat.# C8267) was administered by oral gavage at
9, 10, 12, and 13 weeks after birth. Tumor growth was
regularly monitored by manual palpation and measured
by a caliper. Tumor volume was estimated using the fol-
lowing formula: volume = (width? x length)/2. When the
tumors reached the maximum allowed size of 1000
mm?, or at the age of 32 weeks, tissue was collected at
necropsy and fixed in 4% paraformaldehyde (PFA) or
snap frozen and stored at — 80 °C. Eighteen tumors from
14 mice, of which four mice carried two mammary tu-
mors, were subject to genomic and transcriptomic ana-
lyses. Six normal mammary glands collected from mice
not undergoing MPA/DMBA treatment were included
as controls. Mouse features and histopathological tumor
features can be found in Additional file 1.

Histopathology and immunohistochemistry

Mouse tissue was fixed overnight in 4% PFA, routinely proc-
essed and paraffin embedded. Formalin-fixed paraffin-em-
bedded tissue was sectioned and stained with hematoxylin
and eosin (HE). HE-stained tissue was classified by a certi-
fied veterinary pathologist. Immunohistochemical staining
was performed as previously described [20] with primary
antibodies against K5 (Covance cat.# PRB-160P), K18 (Pro-
gen cat# 61028), Ki67 (Novocastra cat# NCL-Ki67p), ERa
(Millipore cat# 06-935), PR (Abcam cat# ab131486), and
Her2/Erbb2 (Millipore cat.# 06-562).

DNA and RNA isolation

DNA isolation for exome sequencing was carried out at
Theragen Etex Bio Institute (Seoul, South Korea). DNA
was isolated using QIAamp DNA Mini Kit (Qiagen cat#
51306) per the manufacturer’s protocol. DNA from two
samples (S159_14 11 and S176_14_11) was isolated using
CTAB Extraction Solution (Biosesang cat.# C2007) per
the manufacturer’s protocol. DNA integrity was assessed
by electrophoresis, and concentration was determined
using the Nanodrop ND-1000 spectrophotometer
(Thermo Scientific cat.# ND-1000) and Qubit fluorometer
(Thermo Scientific cat# Q33226). Total RNA and DNA
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isolation for gene expression microarrays was carried out
using the QIAcube system (Qiagen cat# 9001292) with
the AllPrep DNA/RNA Universal Kit (Qiagen cat.# 80224)
according to the protocol provided by the supplier, with
30-mg tissue as input. The tissue was manually minced
with a scalpel on ice followed by lysis and homogenization
using TissueLyzer LT (Qiagen cat.# 85600) and Qiashred-
der (Qiagen cat# 79654), respectively. Nucleic acid
concentrations were measured by NanoDrop ND-1000
spectrophotometer, and RNA integrity was analyzed using
Agilent 2100 Bioanalyzer (Agilent Technologies cat.#
G2939BA).

Gene expression microarrays

Gene expression profiling was performed using RNA iso-
lated from 18 snap-frozen MPA/DMBA-induced tumors
and six normal/untreated mouse mammary gland sam-
ples. Whole genome expression data was obtained using
Agilent Sureprint G3 Mouse Gene Expression 8x60K mi-
croarrays (Agilent Technologies cat.# G4852B) with Low
Input Quick Amp Labeling protocol (Agilent Technolo-
gies cat# 5190-2331) and the Cy3 fluorophore. Forty
nanogram RNA was used for input. Microarrays were
scanned using an Agilent SureScan Microarray Scanner
(Agilent Technologies cat# G4900DA), and data was ex-
tracted using Agilent Feature Extraction software. One
tumor sample (S422_15_2) failed quality control and was
excluded from further gene expression analyses.

Gene expression analyses

Gene expression data was analyzed using Qlucore Omics
Explorer 3.2 (Qlucore AB) and R version 3.3.2 [21]. Gene
expression values were quantile normalized, and probes
with a standard deviation of less than 2.8% of the largest
observed standard deviation were filtered out. For genes
represented by more than one probe, mean expression
values were calculated to obtain one gene expression value
per gene. Principal component analysis was performed to
assess data quality, and one normal mammary gland sam-
ple (S178_14_2) was identified as an outlier and removed
from further analysis. Murine subtypes were determined
by first calculating centroids for each subtype using the
original data from Pfefferle et al. [11], followed by calculat-
ing Spearman correlation for every sample to each of the
subtype centroids. The subtype with the highest correl-
ation coefficient was assigned as the sample’s subtype.
Two tumor clusters were identified by hierarchical cluster-
ing using the murine intrinsic gene list [11], and SigClust
[22] was used to test the significance of the difference be-
tween the clusters.

Unsupervised hierarchical clustering was performed
using average linkage and Spearman correlation as the dis-
tance metric. Immune cell infiltration was inferred using
ESTIMATE [23]. Scores for gene signatures relevant to
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the claudin-low subtype (adhesion, EMT, luminalness,
proliferation, vascular content, immunosuppression, and
interferons [2, 24-27]) were calculated using a standard
(Z) score approach: for every gene in each signature, a
standardized expression value was calculated by sub-
tracting the mean across all samples, then dividing by
the standard deviation. Calculation of the mean of the
standardized expression values across all genes in the
signature yielded the score. Gene lists included in the
different signatures are found in Additional file 2. The
degree of differentiation was calculated using a differ-
entiation predictor [2]. Two-tailed Wilcoxon rank-sum
tests were used for statistical testing of differences in
scores between two groups.

Whole exome sequencing

Whole exome sequencing was carried out at Theragen
Etex Bio Institute. Library preparation and target enrich-
ment was carried out using the SureSelect XT Mouse
All Exon Kit (Agilent cat.# 5190-4641) per the manufac-
turer’s instructions. Sequencing was performed on an
Mlumina HiSeq 2500 (Illumina cat# SY-401-2501).
DNA was sequenced to an average depth of 58. Quality
control was performed with FastQC [28].

Sequence alignment and processing

Adapter sequences were removed using CutAdapt, version
1.10 [29]. Low-quality reads were trimmed using Sickle
version 1.33 [30], in paired end mode with quality thresh-
old set to 20 and length threshold set to 50 base pairs.
Reads were aligned to the mm10 reference genome using
the Burrows-Wheeler MEM aligner (BWA-MEM), ver-
sion 0.7.12 [31]. Following alignment, duplicate reads were
marked using Picard (https://broadinstitute.github.io/pic-
ard/) version 2.0.1. Base quality scores were then recali-
brated using GATK version 3.6.0 [32—34]. Lists of known
single nucleotide polymorphisms and indels for the FVB/
N mouse strain were downloaded from the Mouse Ge-
nomes Project, dbSNP release 142, and used for base qual-
ity score recalibration and mutation filtering [35].

Mutation calling and analysis

Somatic mutations were called using the MuTect2 algo-
rithm in GATK [32-34] with a minimum allowed base
quality score of 20. Mutations were filtered against vari-
ants found in matched normal liver tissue and known
single nucleotide polymorphisms for the FVB/N mouse
strain. Candidate somatic mutations which did not pass
the standard MuTect?2 filters were removed from further
analysis. Mutations not meeting the following require-
ments were also removed from further analysis: mini-
mum allele depth of 10, minimum allele frequency of
0.05, and presence of the mutation in both forward and
reverse strands. Mutations were annotated using SnpEff
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[36] and filtered for downstream analysis using SnpSift
[37]. Candidate driver mutations were defined as
moderate or high impact mutations, as defined by
SnpEff, in driver genes as identified by the COSMIC
cancer gene census [38]. To identify hotspot muta-
tions, mouse amino acid positions were aligned to the
orthologous human amino acid position using Clustal
Omega [39] through UniProtKB [40] and used to
query mutations found in the COSMIC database [38].
Mutational spectrum and signature analysis was per-
formed using the deconstructSigs framework [41]
modified to allow the use of the mm10 mouse refer-
ence genome. The COSMIC mutational signatures
were used for reference [42].

Copy number aberration analyses

Copy number aberrations were identified from exome
sequence data using EXCAVATOR2 [43] using the
mm1l0 reference genome. CNA calling was performed
using standard settings and a window size of 20000 bp.
Potential driver CNAs were identified by filtering for
CNAs associated with cancer in the COSMIC cancer
gene census [38].

Analyses of human breast cancer data

Processed data from the METABRIC [6, 7] and TCGA
[44] cohorts were downloaded from or analyzed directly
on the cBioportal platform [45, 46].

Plot generation

Plots were created using R version 3.3.2 [21]. Heatmaps
were created using ComplexHeatmap [47]. Mutational
spectrum histograms were created using the decon-
structSigs package [41]. All other plots were generated
using the ggplot2 package [48].

Results

Gene expression subtyping reveals two distinct tumor
clusters

We determined the murine transcriptomic subtypes of 17
MPA/DMBA-induced mammary tumors from 13 mice
(Additional file 1) by calculating each tumor’s Spearman
correlation to the murine subtype centroids [11]. This re-
vealed nine murine subtypes in the cohort (Table 1, Add-
itional file 3), which separated into two distinct clusters
upon hierarchical clustering (Fig. 1, p =0.044, SigClust
[22]). One cluster consisted of claudin-low™ and squa-
mous-like™ tumors, both of which have been shown to
resemble the human claudin-low subtype [11]; this is
therefore referred to as the claudin-low-like cluster. The
other cluster contained tumors from seven different
subtypes and is referred to as the mixed cluster. In four in-
stances, two tumors from different mammary glands were
harvested from the same mouse. These were classified as
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Table 1 Subtype distribution of MPA/DMBA-induced tumors
and normal mouse mammary gland tissue

No. of samples Murine subtype Cluster

6 Claudin-low™ Claudin-low-like
2 Squamous-like™ Claudin-low-like
3 PyMTE Mixed

1 Class3®™ Mixed

1 Class8™ Mixed

1 Class14™ Mixed

1 Erbb2-like™ Mixed

1 Wnt1-Early™ Mixed

1 Wnt1-Late™ Mixed

5 (normal mammary) Normal® Normal

different subtypes in all cases and are presumed to be dis-
tinct primary tumors. All normal mammary gland samples
were classified as normal-like™ and clustered separately
from the tumors.

Histopathological analysis corroborated the intertu-
mor heterogeneity that was demonstrated by subtyp-
ing (Additional file 1). Five of the eight claudin-low-
like tumors, including both squamous-like™ tumors,
showed a squamous appearance, while no tumors in
the mixed cluster displayed this histological pheno-
type (p=0.009, Fisher’s exact test). There was also a
higher frequency of claudin-low-like tumors showing
marked neutrophil infiltration (p =0.002, Fisher’s exact
test) and displaying a marked or partial spindloid
appearance (p = 0.050, Fisher’s exact test) compared to
tumors in the mixed cluster.

Mutations in MPA/DMBA-induced mammary tumors are
independent of gene expression subtype

To determine the genetic characteristics of the tumors,
we performed exome sequencing to a mean depth of 58,
with 84% of bases being sequenced to a coverage of 20x
or higher. We identified a mean of 589 mutations per
tumor (range 288 to 1795), corresponding to a mean
mutation rate of 11.9 mutations per megabase (range 5.8
to 36.2) (Fig. 2a). This was substantially higher than the
average 1.3 mutations per megabase found in human
breast cancer [49]. The mutational rate in MPA/DMBA-
induced mammary tumors was also relatively high when
compared to other chemically induced murine tumors
(range 1.4 to 13.0 mutations per megabase) [50-52] and
when compared to tumors arising in genetically engi-
neered mouse models (range 0.1 to 0.7 mutations per
megabase) [52-57]. There was no significant difference
in mutational burden between the tumors in the clau-
din-low-like and the mixed cluster, and the only sub-
type-specific trend was a particularly high mutational
burden in the two squamous-like™ tumors (Fig. 2a).
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Fig. 1 Gene expression-based subtypes in the MPA/DMBA-induced tumor cohort. Using the murine intrinsic gene list [11], hierarchical clustering

of gene expression data revealed two distinct tumor clusters (p = 0.044, SigClust [22]), one containing claudin-low-like tumors and the other containing
a transcriptomically heterogeneous set of tumors. Normal mouse mammary gland samples formed a separate cluster. Genes are ordered according to
correlation to the claudin-low™ centroid

All tumors carried mutations in driver genes defined changes in all Ras genes, including Kras G12C, G13R,
by the COSMIC cancer gene census [38], with a mean Q61H, Hras Q61L, and Nras Q61L. In total, 8 of 18
of 13.8 driver genes carrying mutations per tumor (range tumors carried hotspot amino acid changes in Ras
4 to 29) (Fig. 2b). Several driver genes were recurrently  genes. There was one Pik3ca mutation in the cohort
mutated, including 7rp53, Kras, and Kmt2c¢ (Add- causing an H1047R amino acid change. This mutation
itional file 4), but no driver genes carried mutations at a  is frequently found in human breast cancer and has
significantly different rate between the two clusters. We  previously been reported in DMBA-induced mouse
did, however, identify two notable trends which did not ~mammary tumors [58].
reach statistical significance: an elevated rate of Trp53 There were marked disparities between the gene muta-
mutations in the claudin-low-like cluster (50% vs. 11%, tional profiles of human breast cancer [44] and MPA/
p =0.13, two-tailed Fisher’s exact test) and an elevated DMBA-induced tumors (Fig. 2c, Additional file 6). The
rate of Zfhx3 mutations also in the claudin-low-like two most frequently mutated genes in breast cancer are
cluster (37.5% vs. 0%, p =0.08, two-tailed Fisher’s exact =~ PIK3CA and TP53. While TP53 showed comparable mu-
test). No mutations were significantly associated with  tation rates between human breast cancer and MPA/

histological features. DMBA-induced tumors (34% and 28%, respectively),

PIK3CA mutation does not appear to be a common
MPA/DMBA-induced tumors and human breast cancers event in MPA/DMBA-induced tumors (35% in BC, 6%
display disparate gene mutational profiles in MPA/DMBA). Several frequently mutated genes in

To narrow down potential driver mutations in the MPA/  breast cancer, such as CDHI, GATA3, and MAP3KI,
DMBA-induced tumors, we compared amino acid were not mutated in any MPA/DMBA-induced tumors.
changes caused by mutations in driver genes to known Conversely, many genes frequently mutated in MPA/
amino acid changes in human cancers [38] (Table 2, DMBA-induced tumors, such as ATR, FAT1, and KRAS,
Additional file 5). There were hotspot amino acid are rarely mutated in breast cancer.
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similar rate in MPA/DMBA-induced tumors and human breast cancer

Fig. 2 Somatic mutations in MPA/DMBA-induced mouse mammary tumors. a The MPA/DMBA-induced tumors carried between 288 and 1795
exonic mutations. No significant differences in mutational burden were found between the clusters; however, a high mutational rate was
observed in the two squamous—likeEX tumors. b Nfi, Trp53, Atr, and Fatl were the most frequently mutated driver genes in the MPA/DMBA-
induced tumor cohort. No specific mutations accurately delineated the tumor clusters. ¢ MPA/DMBA-induced tumors generally showed divergent
mutational rates compared to human breast cancer in the genes most frequently mutated in human breast cancer. TP53 mutations occurred at a

DMBA induces a characteristic mutational spectrum with
a high frequency of T>A transversions in TG dinucleotides
To characterize the mutagenic profile of DMBA, we ana-
lyzed the mutational spectra of the MPA/DMBA-in-
duced tumors. Mutations showed a majority of T>A
transversions, which accounted for 63% of all mutations
(Additional file 7A). In their trinucleotide context, thy-
mine mutations (T>N) were overrepresented in posi-
tions with a 3’ guanine nucleotide (Additional file 7B
and C, Additional file 8). This was statistically significant
when compared to the proportion of thymine nucleo-
tides in an NTG context in the mouse reference genome
(p<0.001 in all cases, two-tailed Wilcoxon rank-sum
test). There was a similar overrepresentation of cytosine
mutations in positions with a 3" adenine. This was sta-
tistically significant for C>A and C>G mutations (p <
0.001), but not for C>T mutations (p=0.089), when
compared to the proportion of cytosine nucleotides in
an NCA context in the mouse reference genome.
Mutation signature analysis revealed evidence of sig-
natures 4, 6, 22, 24, and 25 [42] in the MPA/DMBA-in-
duced tumors (Additional file 7D). All tumors were
associated with signature 22, while signatures 4 and 25
were found in 17 and 11 of the 18 tumors, respectively.

Table 2 Selected hotspot mutations in MPA/DMBA-induced

tumors

Sample Gene Amino acid change
S176_14_2 Ctnnb1 Asp32Asn
S416_15_2 Ctnnb1 Thr41lle
S187_14_1 Hras GIn61Leu
S412_15_2 Hras GIn61Leu
S159_14_8 Kras Gly12Cys
S160_14_2 Kras Gly12Cys
S176_14_2 Kras Gly13Arg
S189_14_2 Kras GIn61His
S153_14_2 Nras GIn61Leu
S416_15_9 Nras GIn61Leu
S187_14_1 Pik3ca His1047Arg
S132_14_5 Trp53 His211Pro
S153_14.2 Trp53 Lys129Met
S400_15_2 Trp53 GIn141Pro
S400_15_2 Trp53 His211Pro

Signatures 24 and 6 were only found in four and one
tumor(s), respectively. Notably, none of the signatures
found in MPA/DMBA-induced tumors have been asso-
ciated with human breast cancer [42].

MPA/DMBA-induced tumors have diverse copy number
profiles

Breast cancer is largely driven by copy number aberra-
tions (CNAs) [59], yet the copy number profiles of
MPA/DMBA-induced mammary tumors have not previ-
ously been described. We found a mean of 1299 genes
with CNA per tumor (range 90-3057), of which a mean
of 65% were amplifications. There was a tendency for
claudin-low-like tumors to have a lower burden of
CNAs, with a mean of 919 genes carrying CNA, com-
pared to the mixed group of tumors, with a mean of
1637 genes carrying CNA (Fig. 3a). This trend did how-
ever not reach statistical significance (p=0.139, two-
tailed Wilcoxon rank-sum test).

To determine CNAs in the MPA/DMBA-induced
tumors with a potential oncogenic driver effect, we identi-
fied amplifications and deletions known to be associated
with cancer [38] (Fig. 3b). We found that 14 of the 18 tu-
mors carried potential driver CNAs (range 0 to 4, mean
2.6). Three of the four tumors not carrying potential
driver CNAs were claudin-low-like. There was however
no statistically significant difference in the number of po-
tential driver CNAs between the clusters. Several genes
had recurrent CNAs, but none occurred at a statistically
significant different rate in one cluster versus the other.

Only two of the CNA events identified in MPA/DMBA-
induced tumors occur at a notable rate in human breast
cancer; MDM4 is amplified in 25%, and PPMID is ampli-
fied in 10% of human BC [6, 7].

We observed two sets of tumors carrying remarkably
similar CNA profiles (Fig. 3b). None of the tumors in
these two sets displayed the same murine subtype as any
other tumor within the same set.

The human claudin-low breast cancer genome is
characterized by a low mutational burden, frequent TP53
mutations, and a low rate of CNA

Little has been published specifically describing the
genomic characteristics of human claudin-low breast
cancer. We therefore analyzed the 218 claudin-low tu-
mors found in the METABRIC dataset, for which DNA
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sequence data from 173 genes and whole genome copy
number data is available [6, 7].

Across the 173 sequenced genes, claudin-low tumors
carried a mean of 4.7 mutations per tumor, significantly
lower than the mean of 7.3 mutations per tumor for all
other tumors (p <0.001, two-tailed Wilcoxon rank-sum
test) (Fig. 4a). Claudin-low tumors share several charac-
teristics with basal-like tumors and are often classified as
such by the PAM50 assay [2, 6, 7]; however, basal-like tu-
mors showed a significantly higher mutational burden
than claudin-low tumors (mean 8.1 mutations per tumor,
p <0.001, two-tailed Wilcoxon rank-sum test).

There was a high degree of overlap between the genes
most frequently mutated in claudin-low breast cancers
and the genes most frequently mutated in all other
breast cancers (Fig. 4b). Most of these genes carried
mutations at similar rates between claudin-low and non-
claudin-low tumors, albeit with a tendency toward a
slightly lower rate in claudin-low tumors. There were
however two notable differences in mutational fre-
quency: a significantly higher rate of TP53 mutations
and a significantly lower rate of PIK3CA mutations in
claudin-low tumors compared to other tumors. Simi-
larly, basal-like tumors also carried a high frequency of
TP53 mutations and a low frequency of PIK3CA muta-
tions [7, 44].

Human claudin-low breast tumors carried significantly
fewer genes with copy number aberration (mean 4879)
compared to all other tumors (mean 6247; p<0.001,
two-tailed Wilcoxon rank-sum test) (Fig. 4c). This

difference was also marked when comparing claudin-low
tumors with basal-like tumors (mean 10,175 genes per
tumor; p < 0.001, two-tailed Wilcoxon rank-sum test).

By gene, the most frequent copy number event in clau-
din-low breast cancer was MYC amplification, found in
20% of cases (Fig. 4d). In comparison, this event was
found in 26% of all other breast tumors. The ten most fre-
quently amplified genes in claudin-low breast cancer were
all located at chromosomal position 8q24, a region also
frequently amplified in basal-like breast cancers [6, 7].

Claudin-low-like MPA/DMBA-induced mammary tumors
accurately reflect the gene expression characteristics of
their human counterpart

We explored several established gene expression features
of the claudin-low subtype and found that MPA/DMBA-
induced claudin-low-like tumors accurately mirrored their
human counterpart. Specifically, claudin-low-like tumors
had low expression of genes involved in cell-cell adhesion,
low expression of luminal genes, and high expression of
genes related to EMT (Fig. 5a, Additional file 9). Claudin-
low-like tumors also showed a markedly lower degree of
differentiation compared to tumors in the mixed cluster.
In particular, the claudin-low-like cluster expressed signifi-
cantly higher and lower levels of Cd44 and Cd24a, re-
spectively, indicating a stem cell-like phenotype in these
tumors [2, 60] (Additional file 10). There was no signifi-
cant difference in the expression of proliferation-related
genes between the two clusters. Vascular content-related
genes were expressed at a significantly higher level in
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claudin-low-like tumors compared to the tumors in the
mixed cluster (Additional file 9), indicating a higher de-
gree of neoangiogenesis in these tumors.

Immune cell admixture was significantly higher in the
claudin-low-like tumors compared to tumors in the
mixed cluster (p <0.001, two-tailed Wilcoxon rank-sum
test) and compared to normal mammary gland samples
(p =0.006). We also found higher expression of genes re-
lated to immunosuppression and interferons in the clau-
din-low-like cluster compared to both the mixed cluster
and normal mammary gland samples. In combination,
high immune cell infiltration and high expression of type
1 interferon-related and immunosuppressive genes are
characteristics of tumors that may respond to immuno-
therapeutics [61, 62].

We identified a significantly elevated expression of two
potentially actionable genes related to immunosuppres-
sion in the claudin-low-like tumors: the immune check-
point encoding gene Cd274 and the cyclooxygenase
encoding gene Ptgs2 (Fig. 5b). These features were also

characteristic of human claudin-low tumors in the
METABRIC cohort [6, 7], which showed significantly
higher expression levels of both PTGS2 and CD274 com-
pared to non-claudin-low breast tumors (p <0.001 for
both, two-tailed Wilcoxon rank-sum test) and compared
specifically to basal-like tumors (p =0.004 and p < 0.001,
respectively) (Fig. 5¢c). These characteristics may indicate a
susceptibility to immune checkpoint inhibitors and cyclo-
oxygenase inhibitors in human claudin-low breast cancer
[63, 64].

Discussion

In this study, we have performed a comprehensive analysis
of mutations, copy number aberrations, and gene expres-
sion characteristics of MPA/DMBA-induced mouse mam-
mary tumors. We found marked intertumor heterogeneity
and showed that half of the tumors displayed a claudin-
low-like phenotype, in line with a previous report [11].
Our findings demonstrate that these tumors provide a
transcriptomically accurate representation of human
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claudin-low breast tumors, reflecting key features such as
an EMT phenotype, high level of immune infiltration, and
a low degree of differentiation.

MPA/DMBA-induced tumors carried a mutational
burden multiple times that of human breast cancer, a
high frequency of activating Ras-mutations, and a char-
acteristic mutational spectrum. The specific genes carry-
ing mutations varied widely between tumors; however,
all tumors had a consistent mutational signature. This
indicates that the dominant mutational process in these
tumors is DMBA-induced mutagenesis, and not aberra-
tions occurring after tumor initiation, as a result of, e.g.,
disrupted DNA repair. Copy number aberrations in
MPA/DMBA-induced tumors have not previously been
explored, and we show here that most tumors carry po-
tential driver CNAs. However, while we noted several
genomic trends, such as a higher rate of Trp53 mutation
and a lower burden of CNA in MPA/DMBA-induced
claudin-low-like tumors, no individual genomic features
accurately delineated the two gene expression-based
tumor clusters. Further, several tumors carried similar
sets of mutations and/or CNAs but displayed different

subtypes. This suggests that no specific genomic event
determines tumor subtype and that other etiological
models may be more appropriate, such as different cells-
of-origin [65] or microenvironmental factors [66]. This
finding concurs with recent reports showing that trans-
genic mouse mammary tumors display histological and
transcriptomic phenotypes largely uncoupled from their
underlying driver mutations [67-69]. One possible
model for MPA/DMBA-induced tumorigenesis is there-
fore as follows: first, MPA induces a RANK-I-mediated
mammary gland proliferation [10, 13]. DMBA then in-
duces mutations in mammary cells in a pattern as eluci-
dated by our mutation signature analysis, predominantly
in TG and CA dinucleotides, stochastically distributed
throughout the genome. The tumor is initiated when
one or more driver mutations occur, for example, Trp53
or Ras-mutation, with the tumor phenotype, however,
determined by non-genomic factors. The biochemical
mechanism of DMBA-induced mutagenesis has been
described [14, 15], whereas no causal mechanism for
DMBA-induced copy number aberration is known; it is
therefore likely that CNAs arise after tumor initiation.
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Previous genomic analyses which included human
claudin-low breast tumors have either not included spe-
cific analyses of the subtype [6, 7], included few samples
[3], or have been restricted to the triple-negative [70, 71]
or metaplastic [72] subsets of claudin-low tumors. We
show here that human claudin-low tumors are charac-
terized by a low number of mutations and a low burden
of CNAs. This finding is surprising, given the apparent
inverse correlation between CNA and mutational burden
in cancer [59], and indicates that the claudin-low sub-
type is relatively genomically stable compared to other
breast cancers. We also find similarities in genomic
characteristics between claudin-low tumors and basal-
like tumors, in particular a high frequency of TP53 mu-
tations, a low frequency of PIK3CA mutations, and 8q24
amplifications as a common event. While the transcrip-
tomic similarity between these two subtypes is estab-
lished [2], these findings illustrate that there are also
marked genomic similarities between claudin-low and
basal breast cancer, albeit with a lower burden of gen-
omic aberrations in claudin-low tumors.

Claudin-low tumors show high expression of immune-
related genes and a high level of immune cell infiltration
[2, 3, 73]. However, claudin-low tumors also express high
levels of immunosuppressive genes. In MPA/DMBA-in-
duced claudin-low-like tumors, we observed an elevated
expression of two particularly notable genes involved in
immunosuppression: Ptgs2 (encoding COX-2) and Cd274
(encoding PD-L1). This observation was consistent in hu-
man claudin-low breast cancer. COX-2 may be implicated
in cancer development through several mechanisms: redu-
cing apoptosis, increasing epithelial cell proliferation, pro-
moting angiogenesis, and increasing invasiveness of tumor
cells and immunosuppression [74-76]. COX-2 may also
be involved in vasculogenic mimicry, a process in which
epithelial tumor cells form vascular channel-like struc-
tures without participation of endothelial cells, allowing
nutrients to reach tumor cells without the need for neoan-
giogenesis [77]. Vasculogenic mimicry has previously been
shown to occur in claudin-low tumors [24]. COX-2 and
PD-L1 are clinically actionable through the use of COX
inhibitors [63] and checkpoint inhibitors [78], respectively.
Further research into the potential use of checkpoint in-
hibitors and COX inhibitors in claudin-low breast cancer
is warranted, with promising future avenues including
combinatorial Treg depletion [73].

Conclusions

In summary, we have found that claudin-low-like MPA/
DMBA-induced mouse mammary tumors are a transcrip-
tomically accurate model for human claudin-low breast
cancer. We did not find strong evidence that claudin-low-
like MPA/DMBA-induced tumors are delineated by any
specific genomic features; however, the relatively small
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number of samples included in this study may have ob-
scured possible associations. By analyzing publicly avail-
able data, we showed that human claudin-low breast
cancer is a relatively genomically stable subtype. There is
a high expression of genes related to immunosuppression
in claudin-low breast cancers, a feature which is evident in
claudin-low-like MPA/DMBA-induced tumors. Our ob-
servations suggest immunosuppression as a potential
therapeutic target in claudin-low breast cancer and indi-
cate MPA/DMBA-induced claudin-low-like tumors as an
appropriate model for continued research.
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