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Abstract

Introduction

Understanding the spatiotemporal clustering of malaria transmission would help target inter-

ventions in settings of low malaria transmission. The aim of this study was to assess

whether malaria infections were clustered in areas with long-lasting insecticidal nets (LLINs)

alone, indoor residual spraying (IRS) alone, or a combination of LLINs and IRS interven-

tions, and to determine the risk factors for the observed malaria clustering in southern-cen-

tral Ethiopia.

Methods

A cohort of 34,548 individuals residing in 6,071 households was followed for 121 weeks,

from October 2014 to January 2017. Both active and passive case detection mechanisms

were used to identify clinical malaria episodes, and there were no geographic heterogeneity

in data collection methods. Using SaTScan software v 9.4.4, a discrete Poisson model was

used to identify high rates of spatial, temporal, and spatiotemporal malaria clustering. A mul-

tilevel logistic regression model was fitted to identify predictors of spatial malaria clustering.

Results

The overall incidence of malaria was 16.5 per 1,000 person-year observations. Spatial, tem-

poral, and spatiotemporal clustering of malaria was detected in all types of malaria infection

(P. falciparum, P. vivax, or mixed). Spatial clustering was identified in all study arms: for

LLIN + IRS arm, a most likely cluster size of 169 cases in 305 households [relative risk

(RR) = 4.54, P�0.001]; for LLIN alone arm a cluster size of 88 cases in 103 households

(RR = 5.58, P�0.001); for IRS alone arm a cluster size of 58 cases in 50 households (RR =

7.15, P�0.001), and for control arm a cluster size of 147 cases in 377 households (RR =

2.78, P�0.001). Living 1 km closer to potential vector breeding sites increased the odds of

being in spatial clusters by 41.32 fold (adjusted OR = 41.32, 95% CI = 3.79–138.89).
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Conclusions

The risk of malaria infection varied significantly between kebeles, within kebeles, and even

among households in areas targeted for different types of malaria control interventions in

low malaria transmission setting. The results of this study can be used in planning and

implementation of malaria control strategies at micro-geographic scale.

Trial registration

PACT R2014 11000 882128 (8 September 2014).

Introduction

Malaria is a major global public health problem. In 2017, there were about 219 million malaria
cases and 435,000 related deaths worldwide [1]. Among these, an estimated 92% of cases of
malaria and 93% of deaths occurred in Sub-Saharan Africa [1]. In Ethiopia, 60% of the popula-
tion is at risk, and 68% of the land is favorable for malaria transmission [2]. Anopheles arabien-
sis is the main malaria vector, and Plasmodium falciparum (60%) and Plasmodium vivax (40%)
are the main malaria parasites in Ethiopia [2, 3]. Malaria transmission is seasonal and unstable
in many parts of the country [2, 4, 5], occurring mostly between September and December, fol-
lowing the July and August rainfalls. Another smaller peak occurs in May and June, following
short rains [6].

Over the last 15 years, considerable efforts (e.g., increased vector control, improved diagno-
sis and treatment) have led to a decline in malaria morbidity and mortality. The overall reduc-
tion in the global incidence of malaria is estimated at 37%, and the reduction in malaria-
specific mortality is estimated at 60% [7]. Similar reductions have been observed in Ethiopia
[3, 8]. However, despite these gains, control efforts remain inadequate, and malaria continues
to be a major health problem [9].

Studies suggest that additional steps can be taken to further reduce malaria infection [10,
11], such as a more targeted intervention using available, though limited, resources in low to
moderate malaria transmission areas [10, 12]. Studies have shown that 20% of a source popula-
tion for infectious diseases could contribute to 80% of cases in the wider population, and such
transmission often occurs in aggregate (clusters) [10, 13]. Woolhouse and colleagues suggest
that this 20/80 rule may be useful for improving control of diseases such as malaria, which are
transmitted heterogeneously and occur in clusters [14]. In other words, targeting the 20%
source population could be more effective than targeting the whole population. Moreover,
programs that fail to reach this clustered source population are less effective in reducing infec-
tion in the wider population [11, 14].

To facilitate targeted malaria control in high-risk populations [10, 11], understanding the
epidemiological and spatiotemporal transmission of the disease is helpful. Malaria transmis-
sion is highly heterogeneous across geography and time due to complex interactions among
parasites, vectors, and hosts [12, 15, 16]. The physical and seasonal environments directly
influence spatial patterns of malaria transmission by creating nonrandom pathogen and vector
distributions. Several studies have shown that mosquito distribution, prevalence, and inci-
dence of malaria can vary over short distances between high-elevation and low-elevation areas,
between neighboring villages, and even within a single village, due to small variations in risk
factors [17–21]. For example, malaria is uncommon in high-elevation areas, because
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mosquitoes require high temperatures, high humidity, and suitable aquatic habitats to com-
plete their pre-adult life cycles [22]. Conversely, areas with dams, irrigation canals, wetlands,
man-made pools, rain pools, shoreline floods, and agricultural field puddles can influence the
spatiotemporal pattern of malaria transmission [23, 24]. Transmission also is affected by prox-
imity to mosquito breeding sites and the type of malaria control [19]. In the past decade, sev-
eral studies have examined the spatiotemporal distribution of malaria in Ethiopia [16, 19, 25,
26]. However, these studies did not investigate how malaria interventions affect the heteroge-
neity of malaria transmission and the underlying risk factors for malaria clustering. Only one
study tried to quantify the relationship between malaria transmission patterns and malaria
intervention by assessing the use of insecticide-treated nets and indoor residual spraying (IRS)
in a southern Ethiopian village with a high malaria infection rate [19]. Variation in malaria
transmission according to different types of malaria control interventions (long-lasting insecti-
cidal nets (LLINs) alone, IRS alone, a combination of LLINs and IRS) in areas of Ethiopia with
low transmission rates has not yet been fully explored.

To fill this gap in the literature, we assessed the spatiotemporal patterns of malaria trans-
mission in the presence of different malaria controls in a low-transmission area of southern-
central Ethiopia. This study was a part of the cluster- randomized controlled trial utilizing the
data collected for primary analysis published in elsewhere [27].We followed a large cohort of
34,548 people from October 2014 to January 2017 (121 weeks) in 13 kebeles (the lowest govern-
ment administrative unit) that were targeted for the trial [27, 28]. The objectives of this study
were to assess whether malaria infection were clustered in areas with LLINs alone, IRS alone, a
combination of LLINs and IRS interventions, and to determine the risk factors for the
observed clustering. The findings will help improve understanding of malaria distribution and
prevention methods on a local scale.

Materials and methods

Ethical statement

The National Ethics Committee of the Ethiopian Ministry of Science and Technology (Ref:
3.10/446/06) and Institutional Review Board of the College of Health Sciences of Addis Ababa
University approved the study protocol. We also obtained approval from the Regional Com-
mittee for Medical and Health Research Ethics, Western Norway (Ref: 2013/986/REK vest).
Permission letters from the Oromia Regional State Health Bureau, East Shewa Zonal Health
Department, and Adami Tullu District Health Office were written to the local administrators.
Before implementing the study, a consultative meeting was conducted with representatives
from each of these three organizations.

Sensitization meetings were conducted with the community elders and with kebele and vil-
lage leaders to discuss the objectives, randomization procedures, implementation, follow-up,
and expected outcomes of the study. Because most of the study population could not read and
write, we obtained verbal informed consent from the heads of households or other household
members older than 18 years. We used a standard information sheet to explain the purpose of
the study. The participants were informed that their participation was voluntary and that they
could refuse or withdraw from the study at any time. The participants were assured that refusal
to participate in the study would not affect their right to use health services in the health posts.
The information about the study was read to the study participants using an information sheet
written in their language (Afan Oromo). Consent was recorded using a checkmark. As previ-
ously described, all participants who tested positive for P. falciparum or P. vivax on a rapid
diagnostic test (RDT), a product of Premier Medical Corporation Limited, India, were treated
at the health post with anti-malaria drugs according to national malaria treatment guidelines
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[6]. Individuals with severe illness were referred to the nearest health center for further investi-
gation and treatment.

Study area

The study was conducted in the Adami Tullu district of the Oromia Regional State, located
approximately 160 km south of Addis Ababa, the capital city of Ethiopia (Fig 1). The district is
in the Great Rift Valley, with altitudes ranging from 1500 m to 2300 m. The climate is semi-
arid, with an average annual precipitation of 700 mm, which peaks during the rainy season in
July and August. The annual rainfall of the district was 813 mm in 2014, 471 mm in 2015, and
890 mm in 2016. The average maximum temperature was 27˚C in 2014, 29˚C in 2015, and
28˚C in 2016 [29]. The majority of the population lives in rural areas. Economic activity in the
district is limited to subsistence farming, livestock rearing, and to a lesser extent, fishing in
Lake Zeway. Houses consist of mud walls and thatched or corrugated iron roofs. The Oromo
is the largest ethnic group in the district. Based on the 2007 national census, approximately
173,000 people lived in the district in 2014 [30]. The district has 48 kebeles, each with an aver-
age population of 1,000 to 5,000 people [30]. In 2014, there were two hospitals (one public and
one non-governmental), nine public health centers, and 43 health posts in the district. Each
kebele has at least one health post staffed by two health extension workers who report to the
health center.

As a major health problem in the study area, malaria transmission is seasonal and unstable
[31]. Most transmission occurs between September and December, following the monsoon
rains in July and August [6]. A smaller peak of malaria transmission occurs between May and
June, following rains in March and April [6]. Moreover, the shores and irrigated areas around
Lake Zeway serve as potential mosquito breeding sites [23, 32]. The principal malaria vector in
this area is An. arabiensis, and the two main malaria parasites are P. falciparum and P. vivax
[33, 34]. During the study period, a severe drought occurred in the area following the El Nino
effect in 2015 [35].

Study design and participants

This study was part of a larger study, MalTrials, which aimed to evaluate whether the com-
bined use of LLINs and IRS with propoxur provides additional protection against P. falcipa-
rum and P. vivax among all age groups, compared with LLINs alone or IRS alone [27, 28].
MalTrials was conducted in 13 kebeles adjacent to Lake Zeway. It used a 2x2, factorial, cluster-
randomized, controlled design with four arms: LLIN + IRS; LLIN alone; IRS alone; and routine
(control), which received standard Ethiopian malaria prevention. The unit of randomization
was villages (clusters) that contained approximately 35 households and 196 people. The sample
included 176 clusters within 5 km of Lake Zeway. In October 2014, eligible study participants
received new PermaNet 2.0 LLINs free of charge. Based on national malaria guidelines [6],
7,740 LLINs were distributed to 3,006 households in the two eligible study arms (LLIN alone
and LLIN + IRS). Eligible households (IRS alone and LLIN + IRS) received IRS with propoxur
free of charge in September 2014, July 2015, and July 2016. See the MalTrials protocol and
results for a detailed description of the study [27, 28].

This cohort study included all age groups and was conducted for 121 weeks, from October
2014 to January 2017. We recruited 24 field data collectors with college diplomas from the
respective kebeles to conduct the baseline and update censuses and weekly follow-up data col-
lection. Three supervisors were recruited to monitor the overall data collection process and
data quality. All received five days of training on the use of questionnaires, interviewing tech-
niques, household visits, and supervision. All study participants were followed on a weekly
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basis for the duration of the study period unless they were lost to follow-up (e.g., moved to
another location, refused to participate, or died). Newcomers (individuals who joined a cohort
as new household members) and children born during the study period also were included.
The flow diagram illustrating the follow-up of study participants reported elsewhere [27]. Thir-
teen nurses (one nurse per health post per kebele) were recruited and trained on blood sample

Fig 1. Map of Ethiopia, including the study location in the Adami Tullu district in southern-central Ethiopia. Red dots indicate
households participating in the study.

https://doi.org/10.1371/journal.pone.0222986.g001
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collection for the RDT, malaria diagnosis and treatment, and documentation of data. To
ensure accurate data collection, refresher trainings were conducted in July 2015 and July 2016.

We assigned each household a metal plate with a unique identification number, and data
collectors affixed the plate to the main entrance of the house. We also gave a unique identifica-
tion card with a number corresponding to the unique number posted on the metal plate on the
main entrance of each house. We advised the residents to come to the health posts with the
unique identification card if they got febrile in the days between the weekly home visits. Study
households were geo-referenced using a hand-held global positioning system (GPS) device
(Garmin GPSMAP 60CSx, Garmin International Inc., Olathe, KS, USA).

Baseline and subsequent censuses of the target population

We conducted a baseline census survey in July 2014 to collect individual- and household-level
data. Individual-level data included age, sex, education status, religion, marital status, occupa-
tion, ethnicity, and morbidity. Household-level data included availability of household assets
(e.g., television, radio, telephone, bed, chair, table, bike, animal cart, motor bike, car), access
and types of latrine, source of drinking water, possession of land or animal, and type of con-
struction material of the house. In July 2015 and July 2016, subsequent censuses were con-
ducted to update for births, and in- and out-migration. To collect this information, the
interviewer used a pre-tested questionnaire that was adopted from a pilot study of the trial
[34]. The questionnaire was developed in English and then translated into the local language,
Afan Oromo.

Weekly follow-up data collection

Malaria episodes were identified using both active and passive case detection mechanisms. At
weekly home visits, study participants with history of fever in the last 48 hours were registered
and referred to a health post for malaria testing (active case detection). On days between
weekly visits, the study participants were advised to report to the health post if they became
febrile (passive case detection). At the weekly home visits, the names of the individuals who
used the LLIN the night before the date of the visit were recorded.

Heads of households were the preferred respondent to all questions during data collection.
In the absence of a head of household, family members�18 years old were asked to respond
to questions. If no such person was available, the data collectors visited the house at least three
more times within the same week.

Malaria diagnosis and patient management

A malaria diagnosis was carried out at the health posts using a RDT. For the RDT, a nurse per-
formed a single finger prick to collect a sample from the febrile patient and tested the sample.
An individual with more than one positive RDT within a 30-day period was considered a sin-
gle episode of malaria.

Based on the RDT results, patients with P. falciparum or mixed infection were treated with
artemether-lumefantrine (Coartem), and patients with P. vivax infection were treated with
chloroquine according to national malaria treatment guidelines [6]. Three health centers and
one hospital were quarterly visited by field supervisors to collect data about malaria cases
among study participants who visited the health facilities but did not report to our field work-
ers. A malaria case was defined as a study participant who presented to the health post with
symptoms of malaria (fever, chills, malaise, headache, or vomiting) and who had a positive
RDT for P. falciparum, P. vivax, or mixed infection.

Spatiotemporal clustering of malaria

PLOS ONE | https://doi.org/10.1371/journal.pone.0222986 September 30, 2019 6 / 23



Data analysis

Data were visualized using ESRI ArcMap 10.3.1 (ESRI, Redlands, CA, USA) software. The
World Geodetic system 1984 and Universal Transverse Mercator Zone 37˚N were used to
define the coordinates’ projection. Three Microsoft Excel files (case, population, and coordi-
nate) were prepared as input data for the Poisson probability model. Kulldorff’s spatial and
space-time scan statistics were used to identify statistically significant retrospective clusters
(purely spatial, purely temporal, and space-time) of high malaria rates using a Poisson proba-
bility model. SaTScan version 9.4.4 software was used to identify locations and periods of sta-
tistically significant clusters. The scan statistics computed data gradually across space and time
to identify the number of observed and expected observations within each scanning window at
each location and time. The scanning window shapes included a circle for space, an interval
for time, and a cylinder with a circular base for space-time. In the space-time analysis, a circu-
lar geographic base represented space and corresponding height represented the time in
months.

We used spatial scan statistics with circular windows of varying sizes from zero to a maxi-
mum radius of less than 50% of the total population at risk, allowing relocation across the
study area. An unlimited number of overlapping circles of different sizes were obtained, and
each circular window was a possible cluster. The corresponding log likelihood ratio (LLR) and
relative risk (RR) were calculated for each circular window. The window with the maximum
LLR was defined as the most likely cluster if the P-value <0.05. A criterion of “no geographic
overlap” was used to report secondary clusters [36].

We applied space-time scan statistics using cylindrical windows with circular bases and
heights corresponding to monthly timescale. The radius of each circular base allowed variation
from zero to a maximum size of 50% of the total population, and the height of the cylinder var-
ied in size from zero to 50% of the study period within one month. An infinite number of over-
lapping cylinders with different dimensions were obtained, and each cylinder was a candidate
cluster. For each possible space-time cluster, the LLR and RR were calculated, and the most
likely cluster was defined as the cylinder with the highest LLR having a P-value <0.05 [36].
The statistical significance of the clusters was tested using 999 Monte Carlo simulations. The
P-value was obtained using a combination of the Monte Carlo, sequential Monte Carlo, and
Gumbel approximations [36].

Spatial malaria clusters may appear due to underlying aggregation of one or more known
risk factors within cluster areas. A non-random distribution of unstudied risk factors and spa-
tial dependence could explain the lack of difference in known risk factors between a cluster
and non-cluster area [37]. Tobler’s first law of geography on spatial dependency states that
“everything is related to everything else, but nearby objects are more related than distant
objects” [37]. Thus, to identify the underlining contributing factors for spatial malaria cluster-
ing observed in the study area, we compared malaria cases within identified spatial clusters
(most likely and secondary) with malaria cases outside of the clusters. We applied a multilevel
logistic regression model to account for malaria clustering effect within a group at the individ-
ual and village levels. Individual malaria cases (first level) were nested within the village (sec-
ond level), assuming a difference in risk of spatial clustering of malaria between villages but a
similar risk within a village.

Based on this assumption, the presence of clustering was checked before fitting the model.
First, a null, single-level (standard), logistic regression model was fitted to the data. Then, a
null, multilevel, logistic regression with the random village effect was fitted. The calculated
likelihood ratio test statistics showed strong evidence of a village effect on the status of spatial
clustering of malaria (Chi-square = 1024.50, P<0.001). Thus, to account for the clustering
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effect, we used a multilevel, logistic, regression model to estimate unadjusted and adjusted
odds ratio (OR) with a 95% confidence interval (CI). The dependent variable is a binary vari-
able and shows whether a malaria case was present within the identified spatial clusters or not
(yes/no). We considered the following potential predictor variables based on their risk for
malaria infection [13, 19, 34, 38–40]: age (<5, 5–14, 15–24 or >24 years), sex (male or female),
family size (5 persons or >5 persons), educational status of head of household (illiterate, can
read and write, primary, or secondary and above), occupational status of head of household
(farmer or others), wealth index (poorest, poor, medium, rich or richest), intervention group
(LLIN + IRS, LLIN only, IRS only or routine (control) arm), and distance from a lake or river
(km) used as a continuous variable. Independent variables having P-values <0.25 in bivariate
analyses were included in the multivariate logistic regression model for identifying indepen-
dent risk factors of spatial malaria clustering, adjusting for other variables. Since the interven-
tion group was our main variable that we wanted to test its effect on the final model, we
included it in the multivariate logistic regression model irrespective of the P-value result in
bivariate analysis. All tests were two-tailed, and the level of statistical significance was set at
P<0.05.

We used principal component analysis (PCA) to construct a relative household wealth
index [41, 42]. Fourteen household asset variables were included in the PCA model: presence
of electricity and ownership of a television, radio, mobile telephone, chair, table, bed, bicycle,
land, separate kitchen, livestock, livestock cart, types of roof (corrugated iron sheet vs. thatch)
and wall (wood with mud/wood with mud and cement vs. no wall/only wood). The variables
were dichotomized and coded as “1” if the household owned the asset or “0” if not. The Kai-
ser-Meyer-Olkin measure of sample adequacy was 0.79. A factor score derived from the first
PCA was used to construct the wealth index. It represented 23.6% of the variance in the sam-
ple, with an Eigen value of 3.3. For descriptive purposes, the resulting index scores were used
to assign households into quintiles: poorest, poor, medium, rich, and richest (see S1 File for
the details).We used a proximity analysis tool in ESRI ArcMap 10.3.1 to calculate the distance
(in km) between a household and the nearest potential vector breeding site from the border of
Lake Zeway or the Bulbula River, and the nearest health facilities.

Results

Characteristics of the study population

The study comprised 34,548 people in 6,071 households. One-fifth, or 6,488 (18.8%), of the
study participants were children younger than five years. Half, or 17,227 (50.2%), were male.
More than half, or 3,345 (55.9%), of heads of households were illiterate, and 4,436 (74.5%)
were farmers. Approximately half, or 3,106 (51.2%), of study households had a family size
greater than five persons. One-third, or 2,051 (33.8), were located within 1 km of a potential
mosquito breeding site. Table 1 describes the baseline study characteristics.

Incidence of malaria

From October 1, 2014, to January 31, 2017, we documented 1,183 episodes of malaria in the
study area. Of these, 652 (55.1%) were due to P. falciparum infection, 299 (25.3%) due to P.
vivax infection, and 232 (19.6%) were mixed P. falciparum and P. vivax infections. Of the
34,548 people under follow-up during the 121 weeks, 1,059 (3.1%) developed at least one clini-
cal episode of malaria with a range of 1 to 5 episodes. Similarly, of the 6,071 households, 812
(13.4%) had at least one malaria episode. Within the study period, the overall incidence of
malaria was 16.5 episodes per 1,000 person-year observations (PYOs). These rates were 9.1
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episodes per 1,000 PYOs for P. falciparum, 4.2 per 1,000 PYOs for P. vivax, and 3.2 per 1,000
PYOs for mixed infection. Table 2 shows the results.

Spatial clustering of malaria

We found areas with higher risk of malaria infection than in the underlying at-risk populations
at the kebele, village, and household levels. The most likely and secondary significant spatial
clusters for all malaria types (P. falciparum, P. vivax, or mixed) were identified at each geo-
graphic scale. The most likely cluster for each type occurred in the northern part of the study
area, with the same geographic area at each geographic scale. The most likely clusters of P.

Table 1. Baseline characteristics of study participants and their households, southern-central Ethiopia, October
2014 to January 2017.

Variable n (%)

Age in years (n = 34548)

<5 6488 (18.8)

5–14 11136 (32.2)

15–24 6822 (19.8)

>24 10102 (29.2)

Sex (n = 34548)

Male 17327 (50.2)

Female 17221 (49.8)

Educational status of head of household (n = 5981)a

Illiterate 3345 (55.9)

Can read and write 560 (9.4)

Primary 1487 (24.9)

Secondary and above 589 (9.8)

Occupational status of head of household (n = 5956)a

Farmer 4436 (74.5)

Others 1520 (25.5)

Family sizea

5 persons 2965 (48.8)

>5 persons 3106 (51.2)

Wealth indexa

Poorest 1216 (20.0)

Poor 1199 (19.8)

Medium 1229 (20.2)

Rich 1206 (19.9)

Richest 1221 (20.1)

Intervention arma

LLIN + IRS 1618 (26.7)

LLIN only 1388 (22.9)

IRS only 1527 (25.2)

Routine (control) 1538 (25.3)

Distance from lake or rivera

1 km 2051 (33.8)

>1 km 4020 (66.8)

a Household-level characteristics (n = 6071 households, unless otherwise specified), LLIN = long-lasting insecticidal

nets, IRS = indoor residual spraying

https://doi.org/10.1371/journal.pone.0222986.t001
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falciparum and P. vivax did not overlapped geographically at household level. However, there
was complete overlap in the secondary significant clusters of P. falciparum and P. vivax (Fig 2).

Moreover, a spatial clustering of malaria was detected among children 1 to 15 years and
adults greater than 15 years in a separate analysis at household level. Despite variations in size
of the clusters, all the identified significant clusters were overlapped among children 1 to 15
years and adults greater than 15 years (S1 Table and S1 Fig).

Table 2. Malaria incidence rate per 1,000 person-year observations, southern-central Ethiopia, October 2014 to January 2017.

Variable Person
years

Plasmodium falciparum Plasmodium
vivax

Mixed Total

Episodes IR Episodes IR Episodes IR Episodes IR

Total population 71862 652 9.1 299 4.2 232 3.2 1183 16.5

Age in years

<5 12742 150 11.8 69 5.4 51 4.0 270 21.2

5–14 23727 192 8.1 99 4.2 84 3.5 375 15.8

15–24 14000 69 4.9 47 3.4 32 2.3 148 10.6

>24 21393 241 11.3 84 3.9 65 3.0 390 18.2

Sex

Male 36179 331 9.1 146 4.0 115 3.2 592 16.4

Female 35683 321 9.0 153 4.3 117 3.3 591 16.6

Educational status of
head of household

Illiterate 40028 333 8.3 165 4.1 112 2.8 610 15.2

Read and write 7396 80 10.8 44 5.9 47 6.4 171 23.1

Primary 17518 184 10.5 67 3.8 53 3.0 304 17.4

Secondary and above 5999 49 8.2 21 3.5 18 3.0 88 14.7

Occupational status of
head of household

Farmer 55156 499 9.0 256 4.6 199 3.6 954 17.3

Others 15434 146 9.5 39 2.5 31 2.0 216 14.0

Family size

5 persons 21672 195 9.0 84 3.9 65 3.0 344 15.9

>5 persons 50190 457 9.1 215 4.3 167 3.3 839 16.7

Wealth index

Poorest 14316 152 10.6 73 5.1 37 2.6 262 18.3

Poor 14406 153 10.6 61 4.2 42 2.9 256 17.8

Medium 14247 118 8.3 61 4.3 61 4.3 240 16.8

Rich 14390 115 8.0 52 3.6 55 3.8 222 15.4

Richest 14503 114 7.9 52 3.6 37 2.6 203 14.0

Intervention arm

LLIN + IRS 18713 180 9.6 86 4.6 57 3.0 323 17.3

LLIN only 17244 173 10.0 69 4.0 36 2.1 278 16.1

IRS only 17153 153 8.9 68 4.0 68 4.0 289 16.8

Routine (control) 18752 146 7.8 76 4.1 71 3.8 293 15.6

Distance from lake or river

1 km 22723 251 11.0 135 5.9 115 5.1 501 22.0

>1 km 49139 401 8.2 164 3.3 117 2.3 682 13.9

IR = Incidence rate, LLIN = long-lasting insecticidal nets, IRS = indoor residual spraying

https://doi.org/10.1371/journal.pone.0222986.t002
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We conducted purely spatial scan analysis to identify areas with low rate of LLIN use using
a discrete Poisson model. For this analysis, we used the average household level LLIN use both
in LLIN alone and LLIN+IRS arms. Low LLIN use clusters were defined as areas having signif-
icantly lower average LLIN use than the underlining study area during the study period.
Therefore, households or study participants in the study area were grouped into two catego-
ries: 1) households or study participants within low LLIN use clusters (clusters of significantly
lower than expected LLIN use); and, 2) households or study participants in non-cluster (all
other households or study participants outside the identified low LLIN use clusters). The anal-
ysis revealed the presence of significantly low LLIN use in the northern and southern parts of

Fig 2. Most likely cluster and secondary clusters of all malaria types in southern-central Ethiopia at different scales using purely spatial scan
statistics, October 2014 to January 2017. Panel A shows clustering at the kebele level, panel B at the village level, panel C at the household level,
and panel D shows clustering of Plasmodium falciparum and Plasmodium vivax species at the household level.

https://doi.org/10.1371/journal.pone.0222986.g002
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the study area. Meanwhile, the identified most likely high rate malaria cluster overlapped with
the cluster of low rate of LLIN use (S2 Fig). Moreover, the risk of malaria infection in the iden-
tified low LLIN use clusters was significantly higher than non-cluster area by adjusting for dis-
tance from potential breeding site. People living in low LLIN use clusters were 2.20 times at
increased risk of malaria infection than those living in non-cluster area (adjusted Hazard
Ratio = 2.20, 95% CI = 1.80–2.60). See the S2 Table for details.

For all types of malaria episodes, the most likely significant cluster was identified in two of
the 13 kebeles (Ilka Chalemo and Negalign), and a significant secondary cluster was detected in
one kebele (Dodicha). Compared with people living in the other kebeles, those living in Ilka
Chalemo and Negalign were 3.30 times more likely and those in Dodicha were 2.25 times
more likely to contract malaria. This risk was 6.80 for P. falciparum in Negalign and 2.83 for P.
vivax in Ilka Chalemo and Negalign. Table 3 shows the results.

People in villages within the most likely significant cluster area were 3.55 times more at risk
of contracting all types of malaria than those living outside the cluster area. This risk was 8.69
for P. falciparum and 3.25 for P. vivax malaria infections. At the village level, each malaria type
had two significant secondary clusters. Table 4 shows the results.

Households within the most likely significant cluster were 4.75 times more at risk of con-
tracting all types of malaria than households outside the cluster. This risk was 9.19 for P. falcip-
arum and 5.79 for P. vivax malaria infection. At the household level, all malaria types had five
secondary clusters, and the P. falciparum and P. vivax malaria species each had two secondary
clusters. Table 5 shows the results.

In a separate analysis for each study arm at the household level for all malaria types, all four
study arms (LLIN + IRS, LLIN alone, IRS alone, and routine) had most likely clusters. Except
for the LLIN + IRS arm, all other arms had two secondary clusters. Households within the
most likely cluster in the LLIN + IRS arm were 4.54 times more at risk of contracting all types
of malaria infections than households outside the cluster in the same intervention arm. This
risk was 5.58 within the LLIN alone arm, 7.15 within the IRS alone arm, and 2.78 within the
routine arm. See the S3 Table for details.

Spatiotemporal clustering of malaria

We analyzed space-time scan statistics at the household level. In the study district, both most
likely and secondary spatiotemporal clusters were identified for P. falciparum and P. vivax

Table 3. Purely spatial scan statistics of the most likely cluster and secondary clusters of malaria episodes at the kebele level, southern-central Ethiopia, October
2014 to January 2017.

Cluster Kebele Pop. #
episodes

Expected cases Annual episodes per 1000 RR LLR P-value

All malaria types⇤

Most likely Ilka Chalemo, Negalign 3654 332 125.1 38.9 3.30 138.8 <0.001

Secondary Dodicha 3360 231 115.1 29.4 2.25 51.6 <0.001

Plasmodium falciparum
Most likely Negalign 1132 122 21.4 46.1 6.80 120.4 <0.001

Secondary Dodicha 3360 143 63.4 18.2 2.61 42.3 <0.001

Secondary Qamo Garbi 1442 55 27.2 16.3 2.12 11.5 <0.001

Plasmodium vivax
Most likely Ilka Chalemo, Negalign 3654 75 31.6 8.8 2.83 25.1 <0.001

Secondary Dodicha 3360 62 29.1 7.9 2.43 16.1 <0.001

Secondary Garbi Widena 1617 26 14.0 6.9 1.94 4.4 0.047

⇤ Plasmodium falciparum, Plasmodium vivax, or mixed, RR = Relative risk, LLR = Log likelihood ratio

https://doi.org/10.1371/journal.pone.0222986.t003
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infections. Each type had two secondary spatiotemporal clusters. Fig 3. Shows the identified
most likely cluster and secondary clusters.

For all malaria types, the most likely spatiotemporal cluster lasted for 12 out of the
28-month study period, with varying start and end times, and clustering started on November
1, 2014. For P. falciparum, clustering began on December 1, 2014. For P. vivax, it began on
October 1, 2014. The coverage area for all types of malaria (2.53 km) was larger than that for P.
falciparum (1.49 km) and P. vivax (1.04 km). However, the relative risk of infection was highest

Table 4. Purely spatial scan statistics of the most likely cluster and secondary clusters of malaria episodes at the village level, southern-central Ethiopia, October
2014 to January 2017.

Cluster # villages Coordinates Radius
(km)

Pop. # episodes Expected cases Annual episodes per 1000 RR LLR P-value

All malaria types⇤

Most likely 17 8.012083 N, 38.716507 E 2.03 3605 346 123.44 41.05 3.55 159.3 <0.001

Secondary 19 7.858422 N, 38.741448 E 2.69 3055 246 104.60 34.30 2.69 77.7 <0.001

Secondary 4 7.902991 N, 38.697144 E 1.16 568 58 19.46 43.67 3.08 25.5 <0.001

Plasmodium falciparum
Most likely 5 8.022632 N, 38.716322 E 0.95 927 126 17.49 58.13 8.69 150.1 <0.001

Secondary 11 7.863378 N, 38.737913 E 0.73 1637 103 30.89 26.91 3.77 56.28 <0.001

Secondary 6 7.920306 N, 38.692410 E 1.83 971 49 18.32 21.58 2.81 18.28 <0.001

Secondary 2 8.027165 N, 38.691838 E 1.28 246 17 4.64 29.55 3.73 9.83 0.004

Plasmodium vivax
Most likely 18 8.006982 N, 38.724748 E 2.15 3602 82 31.17 9.74 3.25 33.63 <0.001

Secondary 1 7.893858 N, 38.692012 E 0.0 228 19 1.97 35.64 10.21 26.5 <0.001

Secondary 15 7.871003 N, 38.742309 E 1.83 2219 55 19.20 10.60 3.28 24.5 <0.001

⇤ Plasmodium falciparum, Plasmodium vivax, or mixed, RR = Relative risk, LLR = Log likelihood ratio

https://doi.org/10.1371/journal.pone.0222986.t004

Table 5. Purely spatial scan statistics of the most likely cluster and secondary clusters of malaria episodes at the household level, southern-central Ethiopia, October
2014 to January 2017.

Clusters # locations Coordinates Radius
(km)

Pop. # episodes Expected cases Annual episodes per 1000 RR LLR P-value

All malaria types⇤

Most likely 330 8.0175 N, 38.7262 E 1.5 1881 254 64.4 57.8 4.75 176.0 <0.001

Secondary 412 7.8606 N, 38.7213 E 2.2 2515 220 86.1 37.4 2.91 81.0 <0.001

Secondary 31 7.893 N, 38.6914 E 0.4 189 32 6.5 72.4 5.05 25.9 <0.001

Secondary 5 7.9122 N, 38.6949 E 0.2 26 10 0.9 164.5 11.32 15.1 <0.001

Secondary 123 7.9937 N, 38.7173 E 0.9 680 50 23.3 31.5 2.20 11.8 0.017

Secondary 28 7.954 N, 38.7132 E 0.2 225 24 7.7 45.6 3.16 11.1 0.027

Plasmodium falciparum
Most likely 146 8.0232 N, 38.7161 E 1.0 828 120 15.6 62.0 9.19 149.3 <0.001

Secondary 443 7.8629 N, 38.7339 E 1.9 2716 136 51.3 21.4 3.09 54.2 <0.001

Secondary 7 7.9118 N, 38.6952 E 0.2 42 12 0.8 122.2 15.40 21.5 <0.001

Plasmodium vivax
Most likely 156 8.0052 N, 38.7247 E 1.0 847 38 7.3 19.2 5.79 33.5 <0.001

Secondary 28 7.8927 N, 38.6914 E 0.4 174 19 1.5 46.7 13.41 31.2 <0.001

Secondary 187 7.8616 N, 38.7307 E 0.7 1174 40 10.2 14.6 4.39 26.6 <0.001

⇤ Plasmodium falciparum, Plasmodium vivax, or mixed, RR = Relative risk, LLR = Log likelihood ratio

https://doi.org/10.1371/journal.pone.0222986.t005
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for the P. vivax cluster, where people were 10.4 times more likely to contract P. vivax than
households outside the cluster. This risk was 4.3 for all types of malaria and 8.9 for P. falcipa-
rum. See the S4 Table for details.

Temporal clustering of malaria

In the study district, most likely purely temporal clusters were observed in all types of malaria,
in P. falciparum, and in P. vivax malaria infections. The most likely purely temporal clusters
were observed between September 1, 2015, and November 30, 2015, for all malaria types, when
the risk of contraction in the purely temporal cluster was 2.25 times higher than during the
rest of the study period. This risk was 2.36 for P. falciparum and 2.81 for P. vivax. Secondary
purely temporal clusters were not observed in all categories of malaria infection in the study
period. Table 6 and S3 Fig show the results.

Risk factors for spatial clustering of malaria

In this analysis, we compared the characteristics of malaria cases in the identified spatial clus-
ters (n = 499) with characteristics of cases outside of the clusters (n = 560). In the bivariate,
multilevel, logistic regression analysis, we found significant difference in cases within clusters
and outside of clusters with regards to distance from a potential vector breeding site. Similarly,
in the multivariate analysis, distance from a potential vector breeding site continued as signifi-
cant predictor of spatial malaria clustering. Living 1 km closer to a potential vector breeding

Fig 3. Most likely cluster and secondary clusters of malaria episodes identified using space-time scan statistics, southern-central
Ethiopia, October 2014 to January 2017. Panel A shows all malaria episodes. Panel B shows Plasmodium falciparum and Plasmodium vivax
episodes.

https://doi.org/10.1371/journal.pone.0222986.g003

Table 6. Purely temporal scan statistics of the most likely clusters of malaria, southern-central Ethiopia, October 2014 to January 2017.

Cluster # locations Timeframe # episodes Expected cases Annual episodes per 1000 RR LLR P-value

All malaria types⇤ All 2015/9/1 to 2015/11/30 250 126 29.0 2.25 54.8 <0.001

Plasmodium falciparum All 2015/9/1 to 2015/11/30 143 69.5 16.6 2.36 34.6 <0.001

Plasmodium vivax All 2015/9/1 to 2015/11/30 75 31.9 8.7 2.81 24.8 <0.001

⇤Plasmodium falciparum, Plasmodium vivax, or mixed, RR = Relative risk, LLR = Log likelihood ratio

https://doi.org/10.1371/journal.pone.0222986.t006
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site increased the odds of being in a spatial cluster by 41.32 fold (adjusted OR = 41.32, 95%
CI = 3.79–138.89). Meanwhile, we found no difference with regard to age, sex, family size, edu-
cational status of head of household, occupational status of head of household, wealth index,
or study arm between malaria cases found in an identified spatial malaria clusters and cases
outside of the clusters (Table 7).

To identify village level risk factor for spatial clustering of malaria, we used logistic regres-
sion model. The three independent variables included in the village level analysis were: The

Table 7. Multilevel, logistic regression for predictors of spatial clustering of all types of malaria at the household level, southern-central Ethiopia, October 2014 to
January 2017.

Variables Cases within identified spatial cluster Unadjusted
OR (95%CI)

P-value Adjusted
OR (95% CI)

P-value

Yes
n (%)

No
n (%)

Age in years

<5 118 (48.2) 127 (51.8) 1 NA

5–14 160 (47.9) 174 (52.1) 0.97 (0.40–2.34) 0.947

15–24 63 (46.0) 74 (54.0) 0.18 (0.25–2.57) 0.718

>24 158 (46.1) 185 (53.9) 1.62 (0.61–4.34) 0.332

Sex

Male 260 (49.4) 266 (50.6) 1 NA

Female 239 (44.8) 294 (55.2) 1.17 (0.60–2.27) 0.664

Family size

5 149 (47.9) 162 (52.1) 1 NA

>5 350 (46.8) 398 (53.2) 1.22 (0.59–2.51) 0.593

Educational status of head of household

No education 228 (41.5) 321 (58.5) 1 1

Read and write 78 (52.3) 71 (47.7) 0.96 (0.28–3.38) 0.951 0.88 (0.10–7.57) 0.909

Primary 144 (52.9) 128 (47.1) 1.72 (0.77–3.84) 0.188 1.85 (0.76–4.54) 0.176

Secondary and above 47 (58.8) 33 (41.2) 2.88 (0.68–12.22) 0.152 3.45 (0.61–19.59) 0.162

Occupational status of head of household

Farmer 397 (46.8) 452 (53.2) 1 NA

Others 95 (47.7) 104 (52.3) 1.02 (0.75–2.33) 0.652

Wealth index

Poorest 93 (44.0) 109 (54.0) 1 1

Poor 106 (46.3) 123 (53.7) 0.67 (0.24–1.85) 0.441 1.70 (0.47–6.15) 0.421

Medium 89 (42.4) 121 (57.6) 0.41 (0.09–1.85) 0.247 0.70 (0.18–2.71) 0.604

Rich 117 (52.9) 104 (47.1) 1.04 (0.19–5.79) 0.966 1.69 (0.14–20.33) 0.680

Richest 94 (47.7) 103 (52.3) 1.18 (0.24–5.86) 0.841 1.67 (0.16–17.59) 0.668

Intervention arm

LLIN + IRS 136 (47.2) 152 (52.8) 1 1

LLIN only 112 (44.3) 141 (55.7) 0.35 (0.01–9.22) 0.533 0.56 (0.23–1.38) 0.208

IRS only 123 (47.1) 138 (52.9) 0.33 (0.01–8.58) 0.508 0.45 (0.16–1.26) 0.130

Routine (control) 128 (49.8) 129 (50.2) 0.41 (0.02–8.58) 0.563 1.32 (0.48–3.62) 0.595

Distance from lake or river (km)⇤

Mean (SD) 1.30 (1.02) 1.88 (1.38) 33.67 (10.69–106.04)¥ <0.001 41.32 (3.79–138.89)¥ <0.001

n = number of malaria cases, OR = Odds ratio, NA = not applicable (P>0.25 in bivariate analysis), LLIN = long-lasting insecticidal nets, IRS = indoor residual spraying
⇤At village level: mean (SD) distance from potential breeding site for clusters = 1.40 (0.90), for non-clusters = 2.10 (1.51), unadjusted OR (95%CI) = 1.52 (1.11–2.04).
¥The reciprocal of the OR (95% CI) is presented to show the risk of proximity to a potential vector breeding site.

https://doi.org/10.1371/journal.pone.0222986.t007
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intervention arm, distance from the nearest health facilities and distance from the potential
vector breeding site. The only variable that was significantly associated with spatial clustering
of malaria was distance from the potential vector breeding site. Villages found in 1 km closer
to a potential vector breeding site at increased odds of being in a spatial cluster by 1.5 fold
(adjusted OR = 1.5, 95% CI = 1.15–1.93). See the S5 Table for details.

Discussion

We found purely spatial, purely temporal, and spatiotemporal clustering of malaria infection
in southern-central Ethiopia. This finding shows that malaria infection was not randomly dis-
tributed at the kebele, village, or household levels in areas with different malaria control
interventions.

As part of a large, cluster-randomized control trial, our study compared the incidence of
malaria transmission based on combined interventions (LLINs and IRS) and individual inter-
ventions (LLINs alone or IRS alone) [27, 28]. We followed a large cohort of people (n = 34548)
in the rural communities of the Adami Tullu district from October 2014 to January 2017 (28
months) to evaluate malaria risk in low-risk and high-risk malaria transmission seasons. The
study findings could improve understanding of the micro-geographic heterogeneity of malaria
transmission, which can be useful for planning targeted malaria control interventions in small
areas. Moreover, the findings can be generalized to many parts of Ethiopia with similar geo-
graphic, topographic, and socio-economic conditions.

In the current study, the overall malaria incidence was 16.5 episodes per 1,000 PYOs over
the 28 months of follow-up. The incidence was lower than that found in a pilot study that was
conducted in the same study area from August 2013 to December 2013, in which the average
incidence was 4.6 episodes per 10,000 person-week observations (approximately 24 episodes
per 1,000 PYOs) [34]. The difference may be due to the timing of the pilot study, which was
conducted during the high malaria transmission season. The incidence also was lower than
that of a previous longitudinal study from southern Ethiopia (45.1 per 1,000 PYOs) [19] and
the national average incidence between 2011 and 2016 (29.0 cases per 1,000 PYOs) [3]. This
lower incidence of malaria observed in the current study area could be related to climate irreg-
ularity caused by the 2015 El Nino effect [35] or to differences in coverage of malaria control
interventions.

Using spatial scan statistics, we identified locations with high risks of malaria infection.
Similar findings have been reported elsewhere in Ethiopia [19, 25, 26, 43]. In the present study,
three kebeles out of 13 accounted for nearly half (47.6%) of all malaria episodes, and 15.3% of
households in the identified clusters accounted for half (50%) of all malaria episodes. Thus,
malaria infection was localized and frequent in high-burden clusters in low malaria transmis-
sion settings. Targeted interventions in these high-burden clusters can optimize resources and
improve effectiveness of malaria elimination programs [10, 11].

Despite variations in size and location of spatial clustering of malaria between study groups,
all four study arms (LLINs + IRS, LLIN alone, IRS alone, and routine) showed malaria cluster-
ing in separate analyses, with no significant differences in the risk of clustering at individual
case or village level (Table 7, S5 Table). The results from the main trials also showed no signifi-
cant differences in the incidence of malaria across study arms [27]. These results indicate that
using LLINs and IRS in combination or alone may not prevent malaria clustering in areas with
low rates of malaria transmission. The reason for this lack of difference might be related to the
effect of residual transmission, which primarily occurs due to the outdoor and early evening
indoor biting behavior of An. arabiensis in the study area [27, 44, 45]. In contrast to our study,
another cohort study in southern Ethiopia shows that the use of IRS with deltamethrin affected
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the spatiotemporal clustering of malaria, but LLINs did not [19]. This difference in findings
might be due to the difference in malaria burdens between the study areas (16.5 episodes per
1,000 PYO in our study vs. 45.1 episodes per 1,000 PYO in the other study) [19].

The space-time scan statistics identified high-risk areas for all malaria types over space and
time. All the most likely clusters were in locations with identified spatial clusters. Although the
overall incidence of malaria was low in the study area and period, there were relatively high
malaria infections in 12 of 28 months from November 2014 to November 2015. These spikes
in infection rates may be related to warmer temperatures from the El Nino effect in 2015 [29].
As the warmest year on record, 2015 had an average maximum temperature of 29˚C, which
was 2˚C warmer than 2014 and 1˚C warmer than 2016 [29]. This warmer temperature may
facilitate quick sporogonic development of Plasmodium species [46]

The purely temporal cluster analysis aimed to identify high-risk periods for malaria trans-
mission. A significant temporal cluster was observed from September 1, 2015, to November
30, 2015, with peaks in October. This high-risk period is consistent with the high malaria
transmission season that occurs in most parts of Ethiopia, following heavy rains in June, July,
and August [6, 16]. Thus, malaria interventions before September might further reduce
malaria transmission in the study area.

The duration and peaks of infection varied in the study period. For example, in 2015, two
major peaks of malaria episodes were observed in January and October. In 2016, two major
peaks occurred in June and September. Smaller peaks occurred in between the major peaks
each year. In addition to the major risk factors for malaria infection, such as rainfall, tempera-
ture, and relative humidity [47–49], local irrigation activity in the study area also may have
influenced the observed smaller peaks of malaria infection in dry seasons [23, 32].

We compared cases identified within spatial clusters and those outside of the clusters to fur-
ther understand the risk factors for malaria clustering. In this analysis, the only factor indepen-
dently associated with malaria clustering was living close to a potential vector breeding site.
The proximity to Lake Zeway or the Bulbula River, which have the most confirmed breeding
sites [23, 50], increased the risk of malaria clustering at individual and village level analysis.
Previous studies also have reported that close proximity to these sites increases the risk of
malaria infection and clustering [19, 48, 51–54]. It is not a surprise to see higher risk of infec-
tion in a locality near breeding site of potentially infective Anopheles mosquitoes [13]. There-
fore, targeting the households or villages found closer to potential vector breeding site with
effective malaria control measures could further decrease the burden of malaria infection.
Moreover, there was an indication that clustering of malaria associated with low LLIN use,
because the most likely cluster of malaria was imbedded within the cluster of low rate of LLIN
use, and also there was increased risk of malaria infection in low LLIN use clusters. Thus, it
needs to ensure the utilization of LLINs after distribution by all households to maximize the
effect of LLINs on malaria infection.

The Ethiopian Ministry of Health plans to eliminate malaria in 2020 in selected districts
with low malaria transmission [55]. To achieve this plan, the Ministry may consider targeted
intervention at the kebele, village, or individual household level in areas with high-burden
malaria clusters. Ideally, such targeted intervention strategies will optimize resources and
increase program coverage and effectiveness [11]. To ensure effective implementation of these
intervention mechanisms, the Ministry might consider improving identification of malaria
clusters.

We believe that our study has some limitations. First, comparing malaria clustering by
intervention arm might have been affected by the context of our study period, during which
unexpectedly dry and warmer weather conditions occurred following the El Nino effect in
2015. Annual rainfall declined by 60%, and the average temperature increased by 2 oC above
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normal [29]. Severe drought and food shortage also occurred in the study area [35]. Due to the
unexpected weather conditions and other behaviors [56], ownership and use of LLINs in the
study period dramatically declined after six months of intervention [57, 58]. Our study results
may have been different if LLIN ownership and use were higher. Second, a spill-over effect
could have occurred between villages of each intervention arm, which may have diluted any
difference in the clustering of malaria. Third, we used RDT to confirm the diagnosis of
malaria. However, RDT is less sensitive in detecting submicroscopic infection than Polymerase
Chain Reaction (PCR) [59, 60]. Compared to all infection, the proportion low density malaria
parasite infection is common and have been estimated to be about 20–50% of all malaria epi-
sodes in low transmission setting [61, 62]. Therefore, a considerable proportion of submicro-
scopic infection might be missed in the current study. A study shows that malaria hotspots
identified by RDT were not predictive of PCR or microscopy, and long-term stability of hot-
spots was not observed by RDT in low malaria transmission setting [63]. Moreover, we cannot
rule-out the presence of other plasmodium species (such as Plasmodium ovale and Plasmo-
dium malariae). However, the prevalence of these infections is less than 1% of malaria cases
[64]. Fourth, we opted to use a circular window in the spatial scan statistics to identify the clus-
ters due to its ability to detect other cluster shapes and isotropy with respect to map rotation;
however, the true clusters may be elliptic or rectangular. Scan statistics using elliptic or rectan-
gular windows cannot detect these shapes, though, unless all possible angles are considered,
which is difficult to compute [36]. Fifth, we did not include all possible risk factors for malaria
clustering, such as irrigation-related vector breeding sites and climate (rainfall, temperature,
relative humidity). The non-random distribution of these excluded risk factors could be
responsible for the observed clustering of malaria.

Conclusion

In conclusion, the risk of malaria infection varied significantly in the study area. We observed
high rates of spatial, temporal, and spatiotemporal clustering of malaria episodes at the kebele,
village, and household levels. Spatial clustering occurred in all four study arms, and the risk of
clustering was similar across the arms. Therefore, the results of this study can be used in plan-
ning and implementation of malaria control strategies at micro-geographic scale.
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