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ABSTRACT: Catalyst discovery is increasingly relying on computational
chemistry, and many of the computational tools are currently being automated.
The state of this automation and the degree to which it may contribute to speeding
up development of catalysts are the subject of this Perspective. We also consider the
main challenges associated with automated catalyst design, in particular the
generation of promising and chemically realistic candidates, the tradeoff between
accuracy and cost in estimating the catalytic performance, the opportunities
associated with automated generation and use of large amounts of data, and even
how to define the objectives of catalyst design. Throughout the Perspective, we take
a cross-disciplinary approach and evaluate the potential of methods and experiences
from fields other than homogeneous catalysis. Finally, we provide an overview of software packages available for automated in silico
design of homogeneous catalysts.

KEYWORDS: automation, virtual screening, de novo design, high-throughput screening, inverse design, synthetic accessibility,
machine learning, multiobjective

1. INTRODUCTION

Catalysts make chemical transformations both faster and more
selective, advantages that are vital for the sustainable production
of energy, materials, and bioactive compounds.1 The numerous
important applications of catalysis have propelled rational
catalyst design to becoming a “Holy Grail” of computational
chemistry.2

Indeed, computational tools have taken on important roles in
homogeneous catalysis, thanks to ever-increasing computer
power and molecular modeling methods that balance cost and
accuracy.3−5 The computational tools complement the exper-
imental tools by helping to interpret experimental results, by
guiding experiments, and by predicting properties such as
catalytic activity and selectivity. As illustrated in Figure 1, the
predictive strategies for catalyst design may be divided into three
categories: (i) manual or interactive trial and error, (ii) the use of
prediction models, and (iii) automated design.
The first category pertains to the “everyday” interactive use of

computational tools to test ideas and chemical intuition.
Chemists of all sorts, not only the trained computational
chemists, are using molecular-level computational tools in this
straightforward fashion to nurture their creativity and thinking
to solve problems in catalysis. Even simple visualization of three-
dimensional (3D) molecular models, which now easily can be
rendered also by virtual reality or even coupled with real-time
simulations,6 can provide valuable insights for catalyst design.
An example is how 3D molecular models may be enhanced with
measurements such as the volume and shape of the catalytic
site.7 At the more computationally demanding end of the
spectrum, calculation of free energy profiles along the reaction

pathways has become common practice,8 even in light of the
challenging tradeoff between the computational cost, which may
be substantial for a multistep reaction catalyzed by a transition-
metal complex, and desirable accuracy.9−12 Outstanding
examples of interactive catalyst design have been reviewed
recently.4 Although too few predictions are followed up by
experimental verification (see refs 13 and 14 for excellent
examples), the results are promising.4

The second category of predictive computational catalyst
design, the use of prediction models, involves quantitative or
qualitative models derived from statistical data analysis.
Quantitative structure−activity/property relationships
(QSAR/QSPR) are prime examples of such models that
correlate a set of descriptors with desired properties such as
catalytic activity and selectivity. Once established, the
correlation can be used to quickly estimate the properties of
novel compounds that are not too different from those of the
data set used to build the model. In other words, the model is
associated with a region of chemical space, its applicability
domain, outside of which it is unreliable. Such predictive models
have helped interpret experimental trends and have also been
used in catalyst design.15−28
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The third category, automated design, pertains to the
automation of the many computational tasks associated with
the identification of candidate catalysts with desired properties.
This category includes the use of prediction models, albeit in an
automated fashion, and importantly, automated generation of
candidate molecules. We clarify right from the start that this
automation does not, and probably never will, imply “black-box”
use of computational techniques. Rather, it implies addressing
the challenges of in silico catalyst design systematically,
objectively, and automatically to maximize predictive power.
Some of the many challenges of catalyst design are intrinsic to

the very nature of catalysis: a catalyst flattens the potential
energy surface (PES), which thus becomes more susceptible to
perturbations by factors such as solvents or additives.29

However, these factors are often ignored by the necessarily
rather approximate prediction models. Additional challenges
result from the often large conformational, configurational, and
reactivity landscapes, as well as from the often complex
electronic structure of catalysts and their intermediates and
transition states.12,30

Given these challenges, designing a catalyst from scratch by
first principles is a formidable task that is seldomly approached.
In contrast, the prediction of relative reactivity or selectivity
within a relatively confined structural domain is more
manageable and fruitful.3 In addition, with confidence in the
predictive methodology follows the desire to apply it system-
atically. The motivation behind automation is to benefit from
such systematic applications without exhausting the available
human resources.
While the creative and intellectual tasks are left to humans,

automation may take care of the monotonous, tedious, and
error-prone tasks31 of a systematic study.32 Moreover, via
automation the available computational power and the ever-
growing chemical knowledge may be exploited to an extent that
is beyond human capabilities. Machines are faster, more precise,
objective, and memory-rich than humans. Perhaps the most
exciting of all the opportunities offered by automation is that the
bias introduced by the chemist’s preconceptions may be
removed. This detachment could allow molecular design to go
beyond our traditional and self-imposed limitations, which, in
mathematical terms, can be seen as local minima instead of the
global minimum representing the optimal catalyst.4,29

A broad range of automated techniques, with various degrees
of automation, are already among the tools routinely used in
catalyst design. Other techniques are blooming in closely related
fields, such as in the automated exploration and mapping of
reaction networks,6,33−40 the identification of possible geo-
metries for a given chemical composition,41−43 extraction,44,45

and the management of chemical information and computa-
tional or experimental data.46,47 Nevertheless, automated
molecular design rests on two main pillars: (i) workflows for
prediction of molecular properties and (ii) autonomous
generation of candidates: i.e., routines that build molecular
structures and navigate the chemical space to regions populated
by candidates displaying the desired properties.
This Perspective focuses on these pillars and on how they are

shaping the development of automated in silico design methods
for homogeneous catalysts. Less attention is here given to the
wider range of recently reviewed48 computational methods that
contribute to the design of small-molecule catalysts by providing
mechanistic insight,4 molecular descriptors,27 and predictive
models.26,49 Apart from inverse design,50,51 methods for
automated design have not been reviewed. Many of these
methods originate from fields other than catalysis, and they have
yet to be collected and compared in a single account.
For these reasons, throughout this Perspective, we take a

cross-disciplinary view and describe valuable methods and
approaches developed in closely related fields, such as the design
of drugs, proteins, materials, and heterogeneous catalysts, that
have yet to have an effect in homogeneous catalysis. We start by
presenting the general design strategies and describe recent
advances in methods and applications. Next, we focus on four
challenges in automated in silico design: (i) the generation of
realistic and novel candidates, (ii) the prediction of their
properties, (iii) the definition of the objectives in catalyst design,
and (iv) the management of the data generated by automated
workflows. Finally, we list currently available software packages
developed for automated in silico design of catalysts.

2. AUTOMATED MOLECULAR DESIGN STRATEGIES

Like anymolecular design problem, catalyst design is a nonlinear
optimization problem.52 This means that changes in the
properties, such as activity and selectivity, do not correlate
linearly with changes in the catalytic system. The latter is defined
in terms of parameters that specify the atomic composition (i.e.,

Figure 1.Three categories of computational catalyst design and how they navigate the performance landscape, here sketched as a surface resulting from
the combination of two chemical features X and Y: (a) manual, trial and error based design in the vicinity of known catalysts (black points), with red
arrows indicating the individual steps taken to new candidate catalysts (magenta points); (b) design based on prediction models (PMs) exploiting
statistical analysis of data from known catalysts and/or calculations to indicate which direction in chemical space to follow (arrow) and to guide
candidate selection; (c) automated design, which may also exploit predictive models, aiming for a more thorough exploration of the performance
landscape, including the possibility to discover distant optima.
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the number and identity of the nuclei and the number of
electrons) and the relative position of the nuclei (i.e., the
constitution and the stereochemistry). The catalytic system
(CS) is connected to the catalytic performance (P) via a
causality relation, as shown in Figure 2.

Numerous parameters, such as those that determine the
catalyst itself (e.g., the catalyst molecule in homogeneous
catalysis), the substrates, the solvents, and the potential
additives, are needed to completely define the catalytic system
CS. In combination with unconstrained degrees of freedom,
these parameters lead to combinatorial explosion. Thus, to
obtain a tractable optimization problem, the search space is
usually restricted so as to limit the degrees of freedom. In
practical catalyst design, the search space usually spans only the
molecular catalyst and the substrates and rarely includes
additional reaction conditions such as the solvent or additives.4

This pruning of the parameters is the first important decision in
any molecular design project. This decision affects not only the
complexity and the computational cost of the design problem
but also how correct and useful the outcome will be. Ideally, the
search space should be defined dynamically, as knowledge
acquired during the design process may turn out to be relevant
for determining the search space.
With the catalytic system CS and the search space defined, the

catalytic performance P is given as the causal relation
represented by the forward operator (F in Figure 2). This
operator is typically unknown, unless the property of interest is
derivable from the expectation values of quantum mechanical
operators,53 which is seldom the case in catalyst design
problems. However, since the goal of molecular design is to
identify the parameters (i.e., the catalytic system CS) that give
the best performance P, the direction of the causality relation in
Figure 2 can be used to define two molecular design strategies:
direct and inverse design.
The direct design strategies exploit the causality relation going

from the parameters to the resulting performance. These
strategies use an approximate operator F to estimate the
performance resulting from the parameters of the candidate
catalysts. The latter are modified iteratively in processes
mimicking the traditional “guess and check” approach to
experimental catalyst development. The iterative search for
the optimal catalysts usually follows heuristic techniques in direct
design.
The inverse design strategies start from the optimal perform-

ance and then aim to obtain (ideal) parameters for the chemical
system to reflect that performance,54 thus inverting the causality
relation defined by operator F. However, in general, F cannot be

inverted.55 Thus, the term “inverse design” is commonly applied
to design strategies which add constraints that make F locally
invertible or that include some performance-driven feedback
that informs the construction of candidate catalysts and their
parameters. Accordingly, performance-driven high-throughput
screening as well as evolutionary-driven global optimization are
often described as inverse design techniques,54 even though
these methods do not involve actual inversion of F and
candidates are evaluated in a direct fashion.
The design techniques covered in this Perspective are

organized and described below as falling into the direct or
indirect category depending on which of these two philosophies
the original developers intended to follow.

2.1. Direct Design. The starting point of any direct design is
to create an approximate expression for the operator F. Such an
approximation can be derived from experimentally observed
trends or from a hypothesis as to the reaction mechanism based
on studies of one, or a few, catalytic systems. For this reason,
direct strategies usually try to refine catalysts in the vicinity of
known and closely related chemical systems. Hence, structural
modifications are assumed to affect the catalytic properties,
which thus can be optimized, without violating the underlying
assumptions, such as that of a constant reaction mechanism.52

2.1.1. Virtual Screening. The iterative “guess and check”
nature of direct design is readily exploited in automation. In its
simplest implementation, virtual screening,56 a list of candidates
are subjected to the same computational protocol to estimate
their performance, often termed “scoring function”, “fitness
function”, or “figure of merit”.57 Thus, the automated prediction
workflow uses the chemical definition of the candidate and
performs the calculations, some of which may be launched and
managed on remote computers, needed to obtain the figure of
merit. The accuracy and computational cost of the figure of
merit largely determines the feasibility of the direct design.
Whereas an early example of virtual screening in molecular

inorganic chemistry involved the identification, using the
software package HostDesigner, of binding sites for targeted
metal ions,58 a prime illustration of the role of the figure of merit
in direct catalyst design is the recent report by Munday, Wiest,
Norrby, and co-workers59 of phosphine ligands for rhodium-
catalyzed asymmetric hydrogenation of enamines. Central to
this screening was the fast calculation of sufficiently accurate
figure of merit values via the Quantum-Guided Molecular
Mechanics method (Q2MM)60,61 for modeling the selectivity-
determining transition state (TS).62,63 Using this dedicated
force field, extensive conformational searches at the diaster-
eoisomeric TS structures could be performed, thus producing a
set of conformers for each diastereoisomeric pathway and for
each combination of ligand and substrate (Figure 3). The
stereoselectivity was then calculated from the Boltzmann-
averaged energy of the conformational ensemble. Validation of
the results for two different substrates showed that, despite a
suboptimal correlation between the predicted and experimental
enantiomeric excess, computationally predicted ligands were
experimentally verified to induce the desired selectivity, giving
enantiomeric excesses above 96%.
A similar coupling of virtual screening with automated TS

modeling has been reported by Wheeler and co-workers,64−66

who have developed an automation toolkit (AARON; see
section 7 for details on software packages for design) for
computational protocols involving TS modeling.67 In general,
these protocols involve the construction of a TS structure guess,
a conformational search, preoptimization, geometry optimiza-

Figure 2.Graphical representation of the relation between the catalytic
performance (P) and the catalytic system (CS). The forward operator F
represents the generally unknown mathematical relation between CS
and P.
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tion with density functional theory (DFT), and final parsing and
processing of the computational data. This strategy was first
applied to design bipyridine N,N′-dioxide organocatalysts for
asymmetric allylation and propargylation of benzaldehyde65,66

and, shortly afterward, also to transition-metal-mediated
reactions such as that of rhodium-catalyzed hydrogenation64

and palladium-catalyzed Heck allenylation.67

Despite these successes, virtual screening remains a trial and
error approach that is unable to navigate the search space on its
own. This means that the automation is limited to looping over
and evaluating a list of predefined candidates. In other words,
these methods do not suggest new candidates or prioritize
particularly promising regions of the search space. The latter
tasks are left to the user, the chemist, who via analysis of ranked
candidates from one screening may adjust the search space and
launch a new, modified screening.
2.1.2. De Novo Design.A higher degree of automation can be

achieved by coupling the ability to predict the performance of a
candidate (i.e., the evaluation) with the ability to traverse the
chemical space to optimize the candidates.68 In order to
overcome the limits of predefined libraries of candidates, new
candidates are generated from scratch, in so-called de novo
design,69,70 under the guidance of global optimization
algorithms. Thus, in comparison to the above virtual screening
methods, de novo methods must have additional capabilities, as
summarized by one of the leading developers of such methods
for drug design, Gisbert Schneider:71 “Basically, three questions
have to be addressed by a de novo design program: how to assemble
the candidate compounds; how to evaluate their potential quality;
and how to sample the search space ef fectively.” Given the
overwhelming size of the unrestricted search space,72

Schneider’s third question, the need for sampling the search
space, is not addressed by searching systematically for the
absolute optimum. Instead, heuristic algorithms are used to
identify good candidates at a reasonable computational cost. In

de novo drug design, the leading application area of automated
molecular design, a variety of such optimization algorithms have
been used, including evolutionary algorithms,73 particle swarm
optimization,74,75 ant colony optimization,76,77 and simulated
annealing.78,79

These experiences from de novo drug design were exploited in
the development of an evolutionary algorithm for the
optimization of homogeneous ruthenium-based catalysts for
olefinmetathesis.80 Candidate catalysts were built by connecting
molecular fragments to metal-coordinating building blocks that
were used to alter the properties of the metathesis-active species,
the ruthenium alkylidene. Each such combination of building
blocks represented the genetic material, the chromosome, of a
single candidate catalyst (see Figure 4), which allowed the
developers to simulate catalyst evolution following the principle
of survival of the fittest. Catalysts were created from scratch or
modified by mutation (modification of a single fragment) and
crossover (swapping of fragments between members of the
population to generate new candidates). The best-performing
candidates were given high mutation and crossover probabilities
so as to transmit their properties to the next generations. During
the simulated evolutions, the performance of the catalyst
population improved. Importantly for the validation of the
method, this improvement reflected the historical transition
from the so-called first-generation Grubbs catalysts (coordi-
nated by phosphine ligands)81,82 to the second-generation
catalysts (coordinated by N-heterocyclic carbene ligands).83,84

Although these de novo experiments suggested candidates with
improved catalytic performance in comparison to the best
existing catalysts at the time, the lists of optimized catalysts also
demonstrated a common problem in de novo design: the poor
synthetic accessibility of the automatically designed candidates,
which was later addressed by controlling the kinds of bonds that
are allowed to form in the automated building process.85

Whereas the above design of ruthenium-based olefin
metathesis catalysts is an example of artificial evolution, the
actual development of biocatalysts has been heavily inspired by
evolutionary principles and directed evolution is extensively
used in experimental catalyst design.86,87 The same inspiration
has, perhaps surprisingly, not to the same degree influenced the
corresponding automated in silico design of biocatalysts, which,
instead, is dominated by virtual screening.88 Automated
screening of peptide mutations was initially explored already
in the 1990s.89,90Meanwhile, virtual screening of the biocatalytic
activity of enzymes subjected to a few mutations has become
reality.91−94 Promising results have been obtained also using
combinatorial backbone assembly,95 a strategy that predom-
inantly alters the remote parts of the enzyme rather than the
active site itself, thus creating structural diversity while still
retaining fundamental catalytic activity. In contrast, more
conservative strategies have been followed when biocatalysts
have been designed from scratch (i.e., de novo). Specifically,
idealized active sites (i.e., “theozymes”, as in theoretical
enzymes)96 have been fitted into suitable protein back-
bones.97−100

In one pioneering example of this strategy, Baker and co-
workers99 developed a method combining (i) identification of
suitable protein sites capable of hosting a prebuilt TS model and
(ii) optimization of TS-stabilizing interactions. These are great
challenges,101 but their method could design de novo
biocatalysts for reactions not catalyzed by any natural
enzyme,102,103 an impressive achievement. However, the
activities observed experimentally were low and the enzymes

Figure 3. Flow chart for automated virtual screening of phosphine
ligands for rhodium-catalyzed asymmetric hydrogenation of enam-
ines.59 TSFF: transition state force field.
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required further refinement via directed evolution,104−106 which
can be seen as an in vitro optimization technique.86 If the
experimental directed evolution could instead be performed in
silico,107 the resulting overall method would be capable of
designing useful biocatalysts from scratch in a fully automated
fashion.

However, even without the additional in silico directed
evolution step, the examples of de novo design of biocatalysts are
remarkable given the complexity of these catalysts in comparison
to the small-molecule catalysts. Presumably, this success
partially originates from the modularity of the biocatalysts,
which consist of chains of a limited number of building blocks,
the amino acids. This modularity appears to have been chosen as
Nature’s preferred strategy in constructing a variety of complex
systems, such as biocatalysts, with tunable functionalities at the
same time as retaining practically identical synthetic pathways.
Ensuring synthetic feasibility is, in fact, a major challenge in
automated catalyst design, one that is addressed in section 3.

2.2. Inverse Design. Three main kinds of techniques are
used in inverse design:50,51 gradient-driven methods, alchemical
transformations, and generative models.

2.2.1. Gradient-Driven Methods. These methods exploit a
formulation of the design problem that expresses the figure of
merit as a gradient calculated over the parameters defining the
chemical composition.50 This gradient is then used to guide the
generation of new parameters to maximize the performance. An
intuitive example is given by the gradient-driven molecular
construction method (GdMC) proposed by Weymuth and
Reiher.108 In this method, catalytic performance is assumed to
originate from certain idealized structural features, such as those
of an optimal, local transition-state geometry for the catalyzed
reaction of interest. This local fragment is not stable on its own,
however, and is associated with internal forces (gradients).
These gradients can be removed by a surrounding environment,
a so-called “jacket” potential,108 which counterbalances the
forces and stabilizes the ideal, local fragment. After a proof of
concept application to the design of N2 fixation catalysts,

108 the
GdMC method was coupled with a fully automated shell-wise
construction algorithm and used to retrace the design of an
experimentally known ruthenium-based catalyst for CO2
activation (Figure 5).109

The above idea that a catalyst can be seen as a properly tuned
chemical environment is a popular concept in enzyme
catalysis.110,111 Thus, other inverse design methods have also
recently been developed to tune the environment or, more
precisely, to optimize a simplified representation of the catalytic
environment, such as a distribution of point charges that reduces
the barrier of a desired reaction.112 The question, however, is
how to convert such a simplified surrounding into a chemical
structure consisting of discrete atoms, a molecule that can be
synthesized and tested experimentally.
Achieving this conversion is the perhaps greatest challenge in

inverse design. Molecules and materials consist of discrete
objects, atoms. An atom is either present or not, and its nuclear
charge must be an integer. In contrast, optimization algorithms
are more effective for continuous quantities, for which they take
advantage of first and second derivatives. Thus, the discrete
nature of chemical objects must be “smoothed out” in order to
navigate the chemical space while following the property of
interest.113

2.2.2. Alchemical Transformations. One smoothing techni-
que is to use the coefficients of linear combinations of atomic
potentials (LCAP) as the continuous parameters. Once the
optimal coefficients are reached, they may be rounded to the
nearest integer (0 or 1) to obtain an actual molecular
representation.113,114 Prior to rounding, the noninteger
coefficients can be said to represent “alchemical” molecules:
i.e., unphysical and experimentally inaccessible blends of atoms
or groups. A discrete structural change from one such atom to

Figure 4. (a) Graph-based chromosome representing a catalyst as a
collection of fragments. In the first implementation of this de novo
method,80 three kinds of fragments with different variability were used
to constrain the search space: core (c, typically a fixed metal fragment),
trial (t, typically one of a few possible ligand frameworks), and
unconstrained ( f, typically freely varying substituents). (b) The overall
workflow of the de novo evolutionary algorithm deployed for the
automated design of ruthenium-based catalysts for olefin metathesis.
Reprinted with permission from ref 80. Copyright 2012 American
Chemical Society.
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another may, however, be depicted as a continuous path
amenable to optimization.115 For this purpose, the LCAP
method was coupled with a gradient-directed Monte Carlo
method that combines gradient-driven optimization with
random changes that allow overcoming local barriers to reach
the global optimum.115 Recently, LCAP-based methods were
used to screen synthetically viable modifications of a known
catalyst, NiII-iminothiolate, for oxidation of CO to CO2.

116

The above transformation of unphysical alchemical objects
into sensible molecules is a challenge that has been addressed
also in other inverse design methods. In particular, alchemical
potentials have been developed to gauge the tendency of a
system to transmutate a given atom: i.e., to change its number of
protons and electrons.117 Central to this concept is the
realization that molecular properties can be written as a
functional of the proton distribution Z(r) and a function of

the total number of electronsNe.
55 Considering, for example, the

total electronic energy (E) as the observable of interest, the
derivative of E with respect to the proton distribution Z(r) is
defined as the nuclear chemical potential.55 At the position of
the nuclei the nuclear chemical potential is referred to as the
“alchemical” potential because it measures the tendency for each
atom in the molecule to mutate its number of protons.
To make this problem amenable to optimization, a penalty

function, p, has been considered as the difference between the
target observable and the value of the observable obtained by a
given combination of Ne and Z(r): that is, a molecular system
defined in terms of the nuclear charge distribution and the total
number of electrons.118 The inverse design problem thus
consists of minimizing p while varying Ne and Z(r),55 the first-
and second-order derivatives of which greatly improve the
efficiency of the optimization. The price to pay for this efficiency
is, as described above, the occurrence noninteger, “alchemical”
nuclear charges. After the optimization, Ne and Z(r) are
therefore rounded to discrete values to give a valid chemical
system.
Alchemical potentials and their derivatives offer great promise

in rational and ab initio de novo design. However, the
applications of these methods are so far limited to a few specific
chemical systems. Proof of concept applications include the
design of nonpeptidic anticancer drugs,117 BN-doped benzene
derivatives with tuned highest occupied molecular orbital
(HOMO) eigenvalues,119 and the prediction of simple energy
barriers, such as that of the umbrella flipping of ammonia.120

The alchemical derivatives could also identify where protons
should be annihilated or created to enhance the interaction
energy of formic acid with small, 10-proton molecules,
predicting that CH4 should be mutated to HF (a process
going via H2O and NH3) to increase the interaction energy
(Figure 6).121

The most recent development in the field of alchemical
transformations in inverse design has been the introduction of
alchemical normal modes. For an initial reference system, these
modes are the eigenfunctions of a unified Hessian matrix
involving second-order derivatives of the electronic energy with
respect to nuclear positions, number of electrons, and number of

Figure 5. Exemplified gradient-driven molecule construction.109 (a)
Designs of local, idealized fragment for CO2 activation. Squares
represent open coordination sites. (b) Shellwisemolecular construction
and topology adaptation. Each of the illustrated structural changes
reduced the atomic gradients of the idealized starting fragment.

Figure 6. Potential energy of interaction (Eint) between a 10-proton
system and formic acid along alchemical paths (λn) that vary the 10-
proton system from CH4 (ZC = 6) to HF (ZC = 9) by gradually
increasing the atomic number of the central atom (ZC) while
successively decreasing (from 1.0 to 0.0) the atomic number of three
neighboring hydrogen atoms. The diamonds correspond to interaction
energies obtained with a frozen geometry, while the circles reflect values
obtained by continuously relaxing the 10-proton system. Reprinted
with permission from ref 121. Copyright 2007 American Chemical
Society.
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protons.122 Thus, these modes indicate the changes in energy
resulting from changes in geometry and atom identity. An
analysis of these modes has been used to estimate electronic
ground-state energy changes in nearly two million of B- and N-
doped coronenes with encouraging accuracy, considering the
negligible computational cost of these predictions in comparison
to the obvious alternative: virtual screening (using standard
DFT) of all the doped candidates.122

Although alchemical methodologies have not seen many
applications in homogeneous catalysis, promising results have
been achieved in heterogeneous catalysis and materials
design.123−125 In particular, linear extrapolations based on
alchemical derivatives have been used to estimate the catalytic
activity of palladium nanoparticles for oxygen reduction.120

Importantly, as also seen in the examples described above, the
computational cost of screening isoelectronic alchemical
changes, in this case consisting of complementary changes of
the identity of atoms in one or more atom pairs in the cluster, is
negligible. This computational efficiency originates from the
minimal cost of calculating the alchemical derivatives once an
initial binding energy of oxygen with a reference palladium
nanoparticle has been evaluated. The alchemical derivates can
then be used to obtain fast estimates of variations in oxygen
binding energy, and thus oxygen reduction, with reasonable
accuracy for modified nanoparticles. The method has also been
applied to other materials.123,124

Despite these promising results, the picture emerging from
the applications of alchemical methods in inverse design so far
also underlines the nonlinearity of most properties with respect
to the alchemical changes.126 The extent to which linear
extrapolations based on alchemical derivatives can be used is
thus limited:127 for example, to cases where interpolation
between reference compounds can be exploited.118 As a result of
these limitations, most of the applications reported so far have
started from pre-existing scaffolds and have involved heavily
restricted search spaces,108,114,116,128 sometimes formally

containing many compounds but having limited chemical
variability.122,129

2.2.3. Generative Models. While alchemical methodologies
start from first principles (ab initio), machine learning takes an
empirical approach to inverse design. More specifically, these
approaches use experimental and computed data to extract
empirical rules representing either the operator F (Figure 2) or
its inverted form via machine-learning models. The currently
very active field of machine learning is dominated by methods
for classification and correlation.50 Most of these methods
predict properties (see section 4.1.1). Instead, here we address
models that generate chemical entities rather than, or in addition
to, evaluate them. These so-called generative models are among
the latest developments absorbed in the design of small organic
drugs and aim to propose candidates without having to rely on
the complex, often hard-coded, rules that otherwise must be
used to restrict the generation to sensible molecules only.
Although many such applications have been reported,32,130−132

we restrict the description below to two particularly illustrative
examples.
The first example combines the conversion of discrete

molecular representations to and from a multidimensional
continuous representation with property prediction (Figure
7).133 The structural encoding, decoding, and property
prediction are handled by models trained by neural networks
(NN). The NN-trained encoding maps a string-based chemical
representation (simplified molecular-input line-entry system,
SMILES) into a continuous latent, vector space. As pointed out
above, the continuity of the space allows for gradient-based
optimization of the property of interest, which in this case is
predicted from the latent-space representation by a second NN-
trained model. The most promising points in the latent space are
then decoded to a discrete molecular representation by a third
NN model. For the optimization to work, all points in the latent
space must correspond to valid molecular candidates. However,
this still represents a substantial challenge, and although
promising developments have been reported recently,32,134,135

Figure 7. (a) The encoder, the latent space, the prediction model, and the decoder for automated molecular design.133 The encoder converts the
discrete SMILES-string representation into a continuous molecular representation (the latent space). The prediction model estimates the property of
interest from the latent-space representation. The decoder converts the latent-space representation into a discrete SMILES string. (b) Gradient-based
optimization in continuous latent space. Reprinted with permission from ref 133. Copyright 2018 American Chemical Society.
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including the use of semantically constrained graphs,136 filtering
of invalid candidates is often necessary.133 Still, this contribution
shows that, when enough data are available, encoders, decoders,
and predictors can indeed be trained to generate candidates
reflecting the property of interest, such as drug-likeness and, at
the same time, ease of synthesis.133

Another approach, termed Reinforcement Learning for
Structural Evolution (ReLeaSE) was recently developed to
bypass the gradient-driven optimization. Using deep neural
networks, both generative and predictive models were built.137

The generative model produces chemically feasible molecules as
SMILES, while the predictive model estimates the property of
interest directly from the SMILES representation. The predicted
property is used to assign a reward (or penalty) to the generated
molecule, and the generative model is biased to maximize the
expected reward.
Training of generative models based on machine learning

requires large data sets. The examples of such models have so far
been limited to design of organic, mostly druglike molecules.
This is not surprising, given the amount of curated data on
organic and pharmaceutically relevant compounds in compar-
ison to, for instance, data on transition-metal catalysts. Surely,
the machine-learning-based generative models should be able to
produce reasonable organocatalysts, but it remains to be seen
whether these tools can, for example, produce ligands for
transition-metal catalysts.

3. SYNTHETIC ACCESSIBILITY: NEW VERSUS OLD
DESIGNS

Anew and good catalyst does not necessarily have to be based on
a previously unknown compound. In fact, from an economical
and practical point of view, repurposing an existing, “old”, design
is a better strategy, that might even include benefiting from a
known and possibly cheap synthetic route to prepare the
catalyst. In comparison, “new” designs, that is, unknown and
not-yet-prepared compounds, may pose serious synthetic
challenges that preclude their practical use. Still, the chemical
space is vast and only a tiny fraction of the potentially accessible
compounds have so far been made,138 which means that
effective candidates are likely to be missed if the search space
contains only existing compounds. Whether or not to allow for
new designs is an important decision to take in any molecular
design project.
If new designs are welcome, evaluation of their synthetic

accessibility and complexity, such as the number of steps
required for their preparation,139 allows for exclusion of
candidates deemed to be inaccessible and for ranking the
remaining ones to help select molecules for experimental
followup. Therefore, measures of the synthetic accessibility
become an integral part of each candidate’s performance, which,
as discussed in section 5, may blur or complicate the design
objectives.
Computational evaluation of synthetic accessibility is a well-

known challenge in drug design140 and a key reason the
screening of existing compounds is often preferred over de novo
drug design.68 To overcome the challenge and to improve the de
novo methods, synthetic accessibility scores have been
developed for organic molecules. Such scores may be based on
measures of molecular complexity, such as the presence of rings
and stereochemical features,141−145 or on retrosynthetic
analysis.146 However, since these methods were trained on
organic, druglike chemistry, little is known about their

performance on, for example, organocatalysts and ligands for
transition-metal compounds.
As an alternative to calculating synthetic accessibility scores,

reaction-driven de novo design has been developed to only
generate candidates that can, in principle, be formed by
combinations of known synthetic reactions using commercially
available reactants.147−149 Thus, a synthesis route is proposed
along with each new candidate.150 However, these approaches
are also best suited for standard organic chemistry and have not
seen much adaptation to transition-metal and organometallic
chemistry. Moreover, in contrast to the case for pharmaceuticals,
where challenging synthetic pathways may be justified by the
value of the final product, simple yet specific synthetic pathways
are often preferred for homogeneous catalysts, for which profit
margins may require catalyst recycling.
Moreover, the synthetic accessibility of a catalyst can also be

interpreted as the ease with which the catalytically active species,
rather than the precursor, can be provided. The reactivity of the
active species requires compatibility with the functional groups
of the catalytic system. This is particularly true for transition-
metal catalysts, which are often incompatible with even
standard, frequently occurring functional groups. To reduce
the likelihood of such incompatibilities, ligands for transition-
metal catalysts typically contain few functional groups, and often
the only functional groups present are those, such as amines and
imines, that coordinate the central metal atom. In other words,
the ligand substituents are mostly carbon-based skeletons and
the few functional groups present are there for a reason, typically
to induce a specific electronic effect or to enhance solubility.
Accordingly, search spaces are often defined as combinations of
metal-coordinating groups, backbone/bridging fragments, and
inert substituents (Figure 8).151−153 The assumption behind this
strategy is that the synthesis is largely modular, so that the same
synthetic pathway can be applied to reactants with different
carbon-based side chains.
As pointed out in section 2.1.2, modularity is a prime feature

of biocatalysts, in which versatile side chains are held together by
a backbone built by reiterating the same synthetic step. Even if
enzymes are huge and much more complex molecules in
comparison to small-molecule catalysts, their modularity allows
reuse of the same biosynthetic machinery. Synthetic accessibility
is thus much less of an issue than for transition-metal catalysts
and ligands. While, as shown in Figure 8, modularity is a tailored
feature of transition-metal ligands, this modularity is usually
limited to a single class of ligand and relies on varying the
reactants while preserving the synthetic pathway.154−158 In
contrast, successful attempts to exploit the modular structure of
biopolymers, i.e., a constant backbone decorated by varying side
chains, have led to an in vitro synthesized library of DNA-based
organocatalysts for hydration of α,β-unsaturated ketones.159

This promising approach provides catalyst variability while
retaining synthetic accessibility in a modular framework.
Combinations of this kind of modular synthesis with automated
in silico design are still unexplored in homogeneous catalysis.

4. PREDICTION OF CATALYTIC PERFORMANCE
Predicting catalytic performance typically involves some kind of
molecular modeling, to obtain energies or other molecular
properties, followed by an actual prediction step, to estimate the
catalytic performance on the basis of the calculated properties.
In the following subsections we will briefly review the two
categories of method involved in assessing the catalytic
performance.
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4.1. Performance-Prediction Models. A prediction
model is a mathematical construct that, for a given chemical
representation of a candidate catalyst, estimates its performance
and thus is an approximated implementation of operator F in
Figure 2. Such prediction models come in many forms, but the
most popular ones are collectively referred to as machine-
learning models. In addition to giving an overview of the
applications of the latter in catalysis, we also briefly cover the
recent developments in exploiting linear free energy regression
models in the design of catalysts.
4.1.1. Machine Learning and Statistical Methods.Machine

learning (ML) is a family of data-driven statistical methods
implementing artificial intelligence and includes models varying
from single- and multivariate regression to so-called deep
learning.160,161 In order to benefit from ML methods, chemical
problemsmust be cast so as to exploit the primeML capabilities:
correlation and classification.50 Machine learning can, by
constructing powerful correlation and classification models,
greatly accelerate the discovery of catalysts and functional
compounds in general.162−164 However, correlation does not
imply causation.50 Thus, while parametrization can build
predictive models, the applicability domain and uncertainty of
these ML models must be evaluated carefully.165−170

Most ML techniques are based on the assumption that a
mathematical relation exists between quantities describing
intrinsic properties, such as molecular and atomic properties,
of a system and some global, observable property of interest,
such as the catalytic activity or selectivity.171 A linear
relationship is typically the easiest, yet often fruitful, assumption,
but more complex, nonlinear models can also be constructed.
The key ingredients of regression models are the quantities

that are correlated with the properties of interest. These are

called descriptors, parameters, or features in ML language and
should ideally encapsulate both steric and electronic properties
of a candidate.172 A plethora of such molecular descriptors have
been proposed. Most of these have been developed for drug
design, but descriptors are also being developed to tackle
challenges in catalysis: for instance, by addressing the metal−
ligand bonds.173 Fey and co-workers have developed and
surveyed a broad range of calculated descriptors for character-
ization of steric and electronic properties of phosphines and
carbenes in transition-metal catalysts.27 Many such descriptors
are scalar values pertaining to atomic or molecular properties,
such as the Tolman cone angle, geometrical features (e.g., bond
distances and angles), HOMO−LUMO gaps, atomic charges,
chemical shifts, and IR frequencies,172 but even pKa values have
been used to predict catalytic activity.174

Predictions are also performed using vectors of such scalar
descriptors and multidimensional descriptors. Three-dimen-
sional grids of interaction energies (molecular interaction fields,
MIFs)175 are particularly useful when steric properties are
dominant, such as inmolecular recognition and stereoselectivity.
For example, enantiomeric excesses in asymmetric catalysis
(Figure 9)17,176,177 have been predicted using such three-

dimensional maps17 as well as alignment-independent descrip-
tors derived from MIFs.178 Three-dimensional maps derived
from differences of MIFs have also been used to identify regions
of maximum stereochemical induction around a chiral
catalyst.179

Recently, new descriptors were developed to better account
for noncovalent interactions.180,181 Despite the weakness of
individual noncovalent interactions, they may, combined, affect
chemical reactivity,182 including catalyst efficiency and
selectivity,183 and such interactions are frequently considered
in catalyst design.184,185 For instance, noncovalent interactions
play a key role in the activity of molybdenum-based olefin
metathesis catalysts.186

Overall, the picture emerging from evaluations of the
applications of linear regression models to prediction of the
performance of chiral catalysts is the crucial role of the

Figure 8. Commonly used definition of transition metal ligands as
combinations of metal-coordinating groups, backbone/bridging frag-
ments, and inert substituents.

Figure 9. Procedure for constructing prediction models using
alignment-independent descriptors derived from molecular interaction
fields (MIFs): (a) geometry optimization; (b) MIF calculation; (c)
identification of grid nodes with high interaction energy; (d) energy
product vs node distance plot; (e) prediction model based on
descriptors from (d). Reprinted with permission from ref 176.
Copyright 2005 American Chemical Society.
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descriptors in determining the predictive power of the
models.26,172 The selection of descriptors may be guided by
mechanistic factors, such as the interactions occurring at the
rate-determining transition state.187 Yet, one of the major
advantages of ML models is that they do not necessarily rely on
the reaction mechanism and can therefore be used also when the
latter is unknown.188

Beyond linear regression, random forest models have recently
been used to predict the performance of palladium-catalyzed
amination.189 Notably, the random forest models were trained
using data collected from the results of high-throughput
experimental testing, with more than 4000 experiments overall
and with 120 molecular and atomic descriptors of metal-
coordinating ligands, substrates, and additives.
Finally, so far only a few examples exist where the

performance of homogeneous catalysts has been predicted by
neural networks (NN) and deep learningmodels. As pointed out
above, the training of such models requires large volumes of

data. The lack of consistent, curated data and themultimolecular
nature of catalytic processes have been suggested as the main
challenges that impede the application of the otherwise
ubiquitous deep learning models to homogeneous catalysis.160

Nonetheless, the recent work of Denmark and co-workers
demonstrates that a deep feed-forward neural network could be
trained to successfully predict the stereoselectivity of addition of
a thiol to imines as catalyzed by phosphoric acid.190 A virtual
library of such catalysts was created, and the authors used
sampling algorithms to identify a representative training set for
their prediction models. The models, despite being trained on
cases of low to medium selectivity (below 80% enantiomeric
excess) only, could still predict high selectivity resulting from
catalyst−substrate combinations well outside of the training set.
Notably, the NN-based ML models may be very useful when

linear models fail to provide accuracy. For instance, NNs were
recently trained to estimate the spin-state-dependent formation
energy of metal−oxo complexes,170 which are essential

Figure 10. Identification and use of linear free energy scaling relationships (LFESRs).208 (a) The catalysts of the training set. (b) Catalytic cycle for the
conversion of CO2 to formate. (c) Linear free energy scaling relationships of the catalytic cycle.ΔGRRS(X) is the free energy of species X relative to the
reference state 1, andΔGRRS(4) is the descriptor variable.

206 Black points represent the training set, while red and blue points represent the validation
set. Reprinted with permission from ref 208. Copyright 2019 American Chemical Society.
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intermediates in water splitting and oxidation of hydrocarbons.
These formation energies correlate poorly with conventionally
used electronic descriptors, thus hampering the use of
descriptor-based ML models. The NN-based prediction models
were used to uncover unexpected combinations of transition
metal, oxidation state, and ligand set and offered promising
candidate metal−oxo intermediates.170

Another family of flexible ML models used to model highly
nonlinear functions are Gaussian process (GP) models.191 GP
models are probabilistic models that, upon training, can be used
to generate predictions from unseen input. The predictions are
in the form of mean values that are associated with a variance
that indicates the confidence in the prediction (i.e., Bayesian
nature). This allows a decision of whether the prediction is
sufficiently reliable or should be discarded and possibly replaced
by an explicitly calculated value that can be used to retrain the
GP model. Thus, the quality of the predictions can be improved
systematically as more points are added to the training set, which
allows for an iterative refinement of the GP model.192−194

Moreover, GP models are easier to train than NN models and
are particularly well suited for small- to medium-sized training
sets and training sets containing data of different levels of
quality.195

So far, GP models have not, to our knowledge, been used in
homogeneous catalysis. However, the applications in heteroge-
neous catalysis and materials design are promising.196 For
instance, GP models have proved able to predict adsorption,
binding, and formation energies or enthalpies of reaction
intermediates,194,195,197 and such predicted energies have also
been used to guide the exploration of reaction networks.194,198

Importantly, even if automation in both computational and
experimental chemistry (i.e., high-throughput experimentation)
improves upon the situation, cases in which large, consistent,

and highly accurate data sets are available are also still rare in
homogeneous catalysis. Thus, the ability of GP-based prediction
models to build predictive models from sparse data and small- to
medium-sized data sets originating from multiple sources
(experiments and computations alike) and with multiple levels
of accuracy195 holds great promise for such models, in
homogeneous catalysis and beyond.

4.1.2. Linear Free Energy Scaling Relationships and the
Energy Span Model. Linear free energy relationships (LFERs)
have been around for nearly a century and have provided some
of the most used structure−activity relationships and “rules of
thumb” in chemistry, such as Brønsted’s correlation of acid or
base strength with catalytic activity,199 Hammett’s equation and
parameters for electronic substituent and reaction effects,200 and
Taft’s addition of steric effects.201 In general, these and other
LFERs provide fundamental chemical understanding by
establishing linear correlations between free energies (or the
logarithms of kinetic or equilibrium constants) obtained for two
different reactions, as exemplified by acid strength and catalytic
activity in acid catalysis.
Modern computational methods and hardware permit the

exploration of more direct linear correlations involving a single
reaction only. For example, calculated binding energies of
reaction intermediates in series of heterogeneous catalysts have
been found to correlate linearly.202−204 More generally, the
relative free energies of intermediates and transition states of
catalytic reactions can often be related to one another in a linear
way to achieve so-called linear free energy scaling relationships
(LFESRs).203,205 If such relationships exist and are valid over the
entire set of candidate catalysts, the energy profile of a new
catalyst can be estimated by computing only one relative free
energy, often termed the descriptor variable (Figure 10).206

Additional simplification and speedup has been achieved by

Figure 11. (a) Linear free energy scaling relationships (LFESRs) correlatingΔG along the catalytic cycle with the descriptor variableΔGRRS(4), which
is the relative free energy of an intermediate (labeled 4 in the original publication).208 For a givenΔGRRS(4), the lowest line corresponds to the kinetics-
determining step (kds), which thus generates the volcano plot in (b). (b) Volcano plot constructed from the lowest lines in (a). (c) TOF-based volcano
plot with the ordinate given in log scale. (d) Same as (c) but with the ordinate given in linear scale. Reprinted with permission from ref 208. Copyright
2019 American Chemical Society.
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estimating the descriptor variable using machine-learning
models.207

Indeed, Corminboeuf and co-workers have shown that such
LFESRs exist for different homogeneous transition-metal-
catalyzed reactions and hold true for a set of catalysts including
different metals and ligands (Figure 10).205−209 In contrast, the
accuracy of LFESR-based models has also been reported to be
limited when the changes in chemical features are substan-
tial.210,211 While the identification of these limitations may even
be exploited to develop new design strategies,212 improved
accuracy has been obtained by constructing ligand-specific
LFESR models: i.e., models specific to each type of ligand.
Combinations of such models with simple ligand-specific
descriptors, such as the Tolman angle, have facilitated
interpretation of the results as well as derivation of ligand
design criteria.9

LFESRs have also been proposed as a means to construct
volcano plots, which are widely used in heterogeneous
catalysis,213 for the evaluation of homogeneous catalysts (Figure
11).9,205−209,214 Volcano plots graphically represent the idea,
first formulated by Sabatier,215 that optimal catalysts should
bind intermediates neither too weakly nor too strongly. Initially,
volcano plots were used only for thermodynamic analysis: that
is, the relationships were limited to the free energy differences
between intermediates.205 Later, the use of LFESR models has
been extended to estimating activation barriers,9,206 thus
accounting for kinetics and improving the predictions of
selectivity.214

Various flavors of LFESR and volcano plots have been used in
the screening for active and selective rhodium catalysts for
hydroformylation of olefins,9,214 in the evaluation of pincer-
ligand-coordinated catalysts for hydrogenation of carbon
dioxide to formate,206,208 and in the evaluation of cross-coupling
catalysts.205,207

Although volcano plots are intuitive and ideal for visual
inspection, they can also be evaluated numerically to rank
candidates in an automated design framework. For example,
automated analysis of catalytic cycles was recently obtained by
coupling LFESRs with the energy span model.216−219 The latter
condenses the free energy profile of the catalytic cycle, including
off-cycle intermediates and resting states, into a single numerical
quantity representing the efficiency of the catalytic system, the
turnover frequency (TOF).220 Notably, the use of TOFs as
condensed descriptors of the catalyst efficiency does not
correspond to using the LFESR descriptor variable as a figure
of merit. In fact, both the volcano plot and the LFESR-derived
TOF define the range of values for the descriptor variable
leading to the highest efficiency and thus create a nonlinear
relation between the descriptor variable and the figure of merit
of a candidate catalyst.
Overall, these contributions suggest that, when linear scaling

relationships exist, the thermodynamic and kinetic features of a
catalytic cycle can be estimated with an accuracy sufficient for
high-throughput screening. Moreover, in combination with the
energetic span model, LFESRs allow for quantitative evaluations
of the catalytic cycle particularly suitable for automated in silico
design.
4.2. Fast Molecular Modeling Techniques. While

modern DFT methods still involve severe approximations and
should be validated and checked against experiment and higher-
level calculations in all application domains, it is nevertheless the
most accurate and computationally expensive class of method
that can usually be afforded for mechanistic studies and

intuition-driven manual design in catalysis.221,222 However, for
high-throughput virtual screening and de novo catalyst design
studies, DFT is too costly except for small chemical systems.
Fortunately, comparable levels of accuracymay, in well-prepared
cases, be obtained with computationally less demanding
methods. These methods can be divided into the following
categories: (i) specifically parametrized, empirical models, (ii)
approximate and fast electronic structure methods, and (iii)
machine-learned models of the potential energy surface (PES).

4.2.1. Empirical Methods: Customized Force Fields.
Developing force fields is easier than ever. Data on which to
train the molecular-mechanics methods are readily available, for
example via quantum chemical calculations,223 and the para-
metrization process may be automated.224,225 In a catalyst
design project, the challenge thus is to ensure that the
parameters are broadly applicable and accurate across the
corresponding search space. In addition, whereas bond rupture
and formation are intrinsic to catalysis, these are phenomena
traditional force fields cannot describe. In rare cases, reactive
force fields, such as ReaxFF,226 can estimate reaction barriers
involving rupture and formation of bonds.227 However, this
capability comes at a price: parametrization of such force fields is
still challenging,228 albeit new force field parametrization
methods might reduce this problem.229

When the activity- or selectivity-determining transition state
is known, an alternative to reactive force fields is Quantum-
Guided Molecular Mechanics (Q2MM).60,61,230 While other
methods231,232 and force fields such as multi-configuration
molecular mechanics (MCMM)233 and the empirical valence
bond model (EVB)234 parametrize the PES in the TS region by
mixing the reactant and product potential energies (Figure 12),

the Q2MM method creates a transition state force field
(TSFF).235 A TSFF is built on standard force fields, such as
MM3 and AMBER, by adding parameters for the TS, which is
treated as a minimum rather than a saddle point (Figure 12).
Q2MM was the engine behind the aforementioned virtual
screening recently published byMunday, Wiest, Norrby, and co-
workers.59 In addition to asymmetric rhodium-catalyzed
hydrogenation,62,63 TSFFs have been developed to model
asymmetric osmium-catalyzed dihydroxylation,236−238 stereo-
selective addition to aldehydes,239−241 and docking of transition-
state structures into the active site of cytochrome P450.242

Figure 12. Comparison of force fields (FF) for modeling transition
states (TS). Adapted with permission from ref 60. Copyright 2016
American Chemical Society.
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4.2.2. Hybrid Methods: Divide and Conquer. Hybrid
methods combine the accurate, yet costly quantum mechanics
(QM) methods with the empiricism and speed of classical
molecular mechanics (MM) methods by dividing a chemical
system into QM and MM portions.233,243−248 The resulting
QM/MM methods limit the computationally demanding QM
calculation to the portion, such as a region involving bond
formation or rupture or one for which a suitable empirical model
is not available, of the system where an accurate, electron-aware
model is needed (Figure 13).

A central challenge that is addressed at different levels of
sophistication by the various QM/MM methods is the
interaction between the QM and MM parts of the QM/MM
model.246,251 Ideally, the two parts should influence each other
continuously and completely (i.e., including all electronic and
steric effects), but practical approximations have been developed
to best recover most of these interactions, while still achieving
low computational cost as well as compatibility with existing
QM and MM software tools. In particular, the QM part is
typically embedded in an effective electrostatic field resulting
from the partial atomic charges in theMMpart (i.e., electrostatic
embedding). Moreover, the presence of covalent bonds crossing
the boundary between QM and MM regions requires the
saturation of the truncated systemwith special link atoms252 that
may require dedicated parameters in the MM model.
Despite the challenges associated with the design, setup, and

validation of QM/MM models,253 which, among other things,
involve monitoring the convergence of a target property on
extending the QM region,254 these hybrid methods have been
successfully applied to explore reaction mechanisms249,255,256

and to calculate catalytic activity and selectivity.257 QM/MM
methods have proved particularly useful in systems charac-
terized by confined catalytic “pockets” surrounded by large,
mostly chemically inert regions consisting of substituents,
molecules, residues, or polymeric structures, such as those
found in enzymes246 and metal−organic frameworks.258

4.2.3. Semiempirical Tight-Binding Methods. Most semi-
empirical methods are several orders of magnitude faster than ab
initio calculations,259 albeit at the price of accuracy and
reliability across application domains.260 A particularly difficult
domain in this respect has been that of transition-metal and
organometallic chemistry, for which the accuracy of semi-
empirical methods is highly dependent on the combination of
transition metal and ligands. Thus, examples of useful and even
surprisingly good accuracy261 are found alongside cases for
which even the geometries may be of too low a quality to be
useful.260,262 To address the accuracy problem, Grimme and co-
workers263 have recently developed a general semiempirical
tight-binding (TB) method termed Geometry, Frequency,
Noncovalent, eXtended TB (GFN-xTB). As the name suggests,
the method is predominantly intended to provide reasonable
geometries, frequencies, and noncovalent interactions. Other
goals are wide applicability and numerical robustness, which is
achieved264 by relying on a few global and element-specific
rather than pair-specific parameters and by including parameters
up to Z = 86: i.e., including the lanthanoids.265

An improved version of this method, termed GFN2-xTB, was
recently used in automated exploration of the chemical reaction
space of organic, organometallic, and transition-metal com-
pounds.266 The method could explore both the conformational
and chemical compound space (i.e., constitutional isomers) and
estimate reaction pathways with high computational efficiency
and sufficient accuracy. For highly accurate relative energies and
properties, refinement, for example in the form of subsequent
single-point energy calculations using higher-level methods, is
still needed, but GFN2-xTB promises to drastically reduce the
cost of identifying key geometries and reaction pathways of large
reaction systems and in high-throughput and automated
computational studies.

4.2.4. Neural Network Potentials. Among the ML methods
that have been used to predict energies,267,268 neural network
potentials (NNP) have recently shown fast and accurate
prediction of the total energy of organic molecules.269−271 For
example, in the potential termed ANI-1,269 element-specific
NNPs predict the atomic contributions to the total energy using
a transferable representation of the chemical environment of
each atom, in the form of a single-atom atomic environment
vector built from the geometry of the input molecule. Both radial
and angular features are accounted for in the representation of
the atomic environment used by the NNPs. The NNPs were
trained on a large quantity of data to ensure sampling of a wide
variety of molecules and molecular interactions spanning both
conformational and configurational degrees of freedom, and
ANI-1 performs well far beyond molecules of the training set.
This NNP-based method reproduces relative DFT energies, in
particular near-equilibrium geometries, better than popular
semiempirical methods such as AM1272 and PM6273 and is up to
6 orders of magnitude faster than DFT.
Although these results are very promising, ANI-1 is limited to

molecules of only four elements: H, C, N, and O. Further
developments, such as the recent distribution of a software
package for the training of NNPs,274 should with time enlarge
the list of supported elements to including those relevant for

Figure 13. Examples of QM/MM partitioning of catalytic systems. (a)
Partitioning used in ref 249. to model rhodium-catalyzed isomerization
of allylic amines (QM region rendered in red). (b) Partitioning used in
ref 250. to model rhodium-catalyzed asymmetric hydrogenation (QM
region rendered in red). (c) Three QM/MM models of a biocatalyst
involving successively larger QM regions, encompassing Mg2+ ion
(rendered in magenta) and parts of the surrounding protein (in stick
representation). Part c) of the figure is reprinted with permission from J.
Phys. Chem. B 2016, 120, 11381−11394. Copyright 2016 American
Chemical Society.
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catalysis. However, the number of first-principles reference
points required to achieve this goal is enormous, a challenge
likely to retard the spread of NNPs across the periodic table.275

5. CATALYST DESIGN OBJECTIVES
In the previous sections the catalyst design objective was taken
to be a generic performance sometimes exemplified in terms of
catalytic activity or selectivity. However, the actual, overall
performance of a catalyst must satisfy a multitude of objectives,
including those that are less frequently mentioned, such as
solubility, stability, robustness, initiation to catalytically active
species, synthetic accessibility, cost, and toxicity. Therefore, just
like the drug design problem,276 the optimization of a catalyst is
truly multiobjective and the individual objectives may represent
conflicting requirements that cannot be fully satisfied simulta-
neously. To illustrate, high activity often comes at the price of
selectivity, and a fast-initiating precatalyst might also decompose
more readily than a more slowly initiating one (Figure 14).277

Objectives that are known a priori and that can be estimated
within the available computational resources may be included in
the definition of the catalyst performance essentially in two
ways.278 One way is to specify the mathematical nature of the
compromise: for example, by a weighted sum or a more complex
expression combining a numerical satisfaction of each objective
into an overall scalar scoring function, or fitness function.279

This effectively converts the multiobjective problem into a
single-objective one. Alternatively, the objectives can be handled
independently and simultaneously by collecting the satisfaction
scores for each objective in a vector of unprioritized elements.
The aim of such a multiobjective approach is to discover the
front of best and equally good candidates. These are termed
nondominated solutions in the sense that no other known
candidate has higher scores for all objectives (Figure 14).278

Such multiobjective optimization techniques are used in drug
design,280 but, to the best of our knowledge, they have yet to be
applied in the design of homogeneous catalysts.
These multiobjective techniques handle objectives that are

known a priori, but there are also unknown objectives that may
come to attention only after several candidates have been
evaluated. For instance, the reactivity and stability of novel
compounds might pose unexpected challenges that are
impossible to foresee on starting the design experiment.29

Such a change in perspective cannot be handled by a static
definition of the performance in an automated design protocol.

Instead, the definition of the performance should rather be a
dynamic entity able to respond to new knowledge generated on
the fly, either by the automated design process itself or by the
user: i.e., the supervising chemist. In such a dynamic design
process, the ranking of the candidates may bemodified along the
way: for instance, by extension of the objectives or recalculation
of the desirability (figure of merit) with modified expressions. In
such a scenario, the automatically generated data need to remain
accessible, searchable, and automatically manipulated through-
out, thus posing intriguing data management challenges.

6. HIGH-THROUGHPUT CALCULATIONS AND DATA
MANAGEMENT

Perhaps the most obvious advantage of automated design is the
high-throughput fashion in which candidates are evaluated. This
evaluation is usually very specific to the design objective (see
section 5). Still, the chemical information generated in each such
catalyst evaluation, which might even include modeling of
several molecular structures, is typically much more general and
richer than that conveyed by a single scalar or vector alone: i.e.,
the desirability. This general and rich information may easily
become useful in unexpected contexts.
For example, in the above sections, we have frequently

pointed out the need for large amounts of consistent data for
training of parametrized methods such as force fields and
machine learning models. This is true also for experimental
results. Reid and Sigman recently suggested that the practice of
reporting only the best results must change to help develop the
systematic use of statistical and ML methods for predicting
catalyst performance.26 The lagging development of information
technology and community-wide approaches to contribute to
data collection and accessibility, even of failed experiments,281

has been identified as amajor obstacle also for the use of artificial
intelligence in materials design.160,282 This has led to the
creation of consortia that collect and share data to promote joint
efforts in the design of materials,283−286 a field where high-
throughput computational screening is a more mature and
frequently used tool287,288 in comparison to the field of
homogeneous catalysis.
A similar sharing and repurposing of data to boost catalyst

design must involve the development and use of databases of
computational and experimental data. This is true for
compounds and reaction discovery across chemistry, a fact
that has received attention in recent years and led to the creation
of new databases.289,290 Some of these databases and efforts
seem particularly promising with respect to computationally
guided catalyst design.291−293 However, to populate these
databases with enough data to train ML models on catalytically
relevant chemical systems, massive efforts to reuse and
repurpose computational data are needed. Such reuse and
repurposing may be realized by making sure that workflow
managers such as AiiDA,294 QMflows,295 AFlow,296 Signac,297

and FireWorks298,299 prepare job summaries in standardized
data formats used by the community repositories. The most
detailed management control is currently offered by AiiDA,294

which keeps track of the complete history, including information
on methods, input parameters, computer, postprocessing tools,
and dependencies, leading to a computational result, thereby
mapping the complete data provenance necessary to ensure
reproducibility and repurposing.

Figure 14. Different properties such as activity and stability are often
conflicting objectives in catalyst design. The optimal catalysts are those
that display the best possible compromises: i.e., nondominated
solutions (i.e., the Pareto front).
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7. SOFTWARE PACKAGES FOR CATALYST DESIGN

Some of the software packages that were used in the examples
reviewed above of automated catalyst design are described in the
following. The description is limited to packages that may offer
good starting points for readers interested in trying automated
catalyst design in practice.
CatVS (Catalyst Virtual Screening) was developed for virtual

screening using Q2MM force fields59 and is a combination of
Q2MM Python modules and interfaces depending on software
such as Maestro300 and MacroModel.301 The Q2MM
repository302 contains the building blocks necessary for
CatVS. The program has been used, successfully, in the
screening of Rh-based catalysts for asymmetric hydrogenation
of enamines.59

AARON (for which the most recent complete name is An
Automated Reaction Optimizer for New catalysts)65,67,185 is a
collection of Python modules for the construction and analysis
of molecular objects and the automation of quantum chemistry
workflows. Multiple chemical species determining the perform-
ance of a catalyst, such as intermediates and transition states,
may be systematically generated and subjected to calculations by
AARON. Recent applications of this package include screening
of both organocatalysts66 and transition-metal catalysts.64,67

AARON is distributed as open-source software.303

ACE (Asymmetric Catalyst Evaluation)304 has been dis-
tributed as part of the Forecaster user interface305 and can be
used for the virtual screening of organocatalysts for asymmetric
reactions. ACE derives the stereomeric excess of asymmetric
reactions by calculating the difference between the diastereo-
meric TS energies. ACE automates the conformational search,
geometry optimization, and energy evaluation of these transition
states using an empirical molecular mechanics method in which
structures in the transition region are described as linear
combinations of the reactants and products. Construction of a
TS-specific force field is thus avoided in ACE. The software has
been tested by reproducing the selectivity of proline-catalyzed
aldolizations304 and dioxirane-catalyzed asymmetric epoxida-
tions232 and by constructing libraries of synthetically accessible
molecules as candidate organocatalysts.150 ACE is available, free
of charge, for academic use.306

The Python toolkit molSimplify307 was initially built for
screening of inorganic molecules and intermolecular complexes
(via intermolecular docking) and has later been extended by a
genetic-algorithm optimizer162 and possibilities for fast, ML-
accelerated property prediction.308 Applications of molSimplify
range from the design of inorganic complexes with spin-
crossover properties162 or desired HOMO−LUMO gaps309 to
the virtual screening of indium carboxylate precursors for
quantum dots310 and tuning of the redox properties of the
ferrocene/ferrocenium system.311,312 The program is distrib-
uted as open-source software.313

DENOPTIM (DE Novo OPTimization of In/organic
Molecules) is a recently released Java package for virtual
screening and de novo design of functional organic, inorganic,
organometallic, and supramolecular compounds.314 This
flexibility stems from the customizable molecular builder85

that offers control of the synthetic accessibility of the candidates
at the same time as allowing for the automated construction even
of short-lived intermediates, transition states, ion pairs, and
supramolecules.315 These capabilities have been utilized in the
de novo design of a range of different compounds, including
ruthenium-based olefinmetathesis catalysts,80 azobenzenes with

tailored excitation energies,316 dyes for solar cells,317,318

monomers for high-refractive-index organic polymers,319

organic solvents for CO2 capture,320 and iron-based spin-
crossover compounds.321 One of the last iron complexes was
later confirmed, in experiments, to possess spin-crossover
properties and is thus, to our knowledge, the first automatically
de novo designed inorganic molecule experimentally verified to
reflect the intended properties.322 DENOPTM is distributed as
open-source software.323

Finally, a package for global optimization of catalytic
environments for inverse design is under development.112

These catalytic environments are electrostatic only, consisting of
discrete point charges or multipoles, and are optimized so as to
maximize the speed-up of target catalytic reactions. The
optimized catalytic fields, termed GOCAT (Globally Optimal
Catalysts), have so far not been transformed into well-defined
chemical structures. The software, which is dependent on the
OGOLEM package for global optimization,324 is available from
the authors upon request.

8. CONCLUSIONS AND OUTLOOK
The effect of computational studies on homogeneous catalysis
increases rapidly. The role of these computational studies has
already evolved from mainly being that of supporting
interpretations of experiments to, more recently, also guiding
the search for new and better catalysts. Automation of this
search, that is, the prediction and generation of promising
candidates, is the pillar of automated in silico design.
The perhaps most straightforward and intuitive automated

strategies mimic the experimental trial and error approach and
modify the catalysts in silico, step by step, toward better
performance. A more elegant solution to the design problem
takes the reverse approach and aims to derive candidate
structures from the desired property, thereby limiting, in
principle, the portions of the overwhelming chemical space
that must be explored. So far, most of the examples of inverse
design are not from homogeneous catalysis and still, to be
practically useful, often incorporate strategies from direct design,
such as screening of predefined candidates. Still, with further
developments, we anticipate that inverse design will mature into
a very useful tool in homogeneous catalysis.
In comparison, automated virtual screening already is a

mature technique that has demonstrated the usefulness of direct
design strategies. Central to these strategies is the intuitive
guess−check−guess cycle that is readily automated, a key factor
that has helped spread virtual screening across science, including
to homogeneous catalysis. Design methods such as virtual
screening depend on the performance of the underlying
workflow, typically including molecular modeling and/or
empirical prediction models, that estimate the catalytic proper-
ties. Thus, any development of molecular modeling and
empirical prediction models that lead to faster and more
accurate prediction of catalytic performance paves the way for
automated screening and de novo design of catalysts. The latter
method is increasingly favored as search spaces grow and the
prediction workflows become faster.
Of course, chemists desire large search spaces with high

chemical variability. The automated procedures may easily
populate any part of these search spaces with chemical species.
Still, even with these nearly unlimited possibilities, researchers
are frequently limiting their searches to specific classes of
compound with largely known catalytic properties, varying only
noncritical substituents and groups to optimize the perform-
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ance. This conservative strategy does not foster the discovery of
truly novel candidates, a problem largely originating from the
computational cost of exploring large portions of the chemical
space and from the fear of generating unrealistic or synthetically
challenging candidates that might not even be catalytically
active. In the future, realistic, synthetically accessible com-
pounds might still be generated even when large search spaces
are used by combining modular scaffolds inspired by the
modular structure of biopolymers, which consist of constant
backbones and variable side chains.159 Such modular
approaches offer great promise for automated in silico design
and, via automated synthesis, also for in vitro experiments in
catalysis.
In addition to the desire for large and modular chemical

spaces, automated design faces the tradeoff between accurate
predictions and computational costs. The costs are due mostly
to the molecular modeling component of the prediction models.
When molecular modeling cannot, e.g., via a ML-based
prediction model, be avoided, reliable and computationally
efficient empirical and semiempirical methods are, due to the
size of search spaces, almost always preferred over more accurate
methods such as DFT. In the future, machine-learned potentials
are likely to contribute to expanding the scope of empirical tools
in automated catalyst discovery. In particular, we expect the
development of methods that train, on the fly, empirical and
machine learningmodels within the automated design workflow.
Molecular data such as molecular geometries, energies, and
frequencies, calculated during the design workflow, will thus
serve two purposes: evaluation of candidates and training of an
empirical model. For example, an automated design workflow
could start by letting a molecular modeling method (i.e., DFT,
DFTB,325,326 or a recently developed semiempirical method
such as GFN-xTB)327 deliver the data needed both for
evaluating candidates and for training an empirical model on
the fly. Later, within the same automated workflow, that
empirical model may be used to speed up new scoring/fitness
evaluations. Such a workflow would be self-catalyzed and extract
more value from computationally generated molecular data in
comparison to regular approaches by producing at the same time
as deploying such data.
Even with this focus on the development of cost-efficient

molecular modeling methods for prediction of catalytic
performance, the fundamental role of experimental data should
not be forgotten.328 In fact, prediction models trained on
experimental data are frequently used in catalyst de-
sign,19,23,172,186,189,190 and automated in silico design should
build on this experience and may even benefit directly from
existing prediction models based on experimental data.
Integration of experiment and modeling may also boost catalyst
development via early verification of computational predictions
and thus feedback to the prediction routines. In addition to
representing an evaluation of the accuracy of the prediction, this
feedback also serves to highlight shortcomings, such as that of
overlooking catalyst stability as a critical factor, in the catalyst
design objectives. The prediction−experiment combination
thus allows for evolving the catalyst design criteria iteratively, in
cycles of computational prediction, experimental verification,
and feedback to the prediction machinery.19,329 This strategy
not only ensures that predictions and design objectives are
consistent with observations but also helps extract the maximum
amount of information and insight possible from the molecular
modeling techniques and prediction models.

In conclusion, automated catalyst design approaches used in
conjunction with experimental followup may enhance our
understanding of catalytic processes and speed up the discovery
of new catalysts. We have so far only seen glimpses of the power
of this combination, but it is, just as automation affects society at
large, going to transform the way new catalysts are discovered
and developed.
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(106) Khersonsky, O.; Kiss, G.; Röthlisberger, D.; Dym, O.; Albeck,
S.; Houk, K. N.; Baker, D.; Tawfik, D. S. Bridging the Gaps in Design
Methodologies by Evolutionary Optimization of the Stability and
Proficiency of Designed Kemp Eliminase KE59. Proc. Natl. Acad. Sci. U.
S. A. 2012, 109, 10358−10363.
(107) Amrein, B. A.; Steffen-Munsberg, F.; Szeler, I.; Purg, M.;
Kulkarni, Y.; Kamerlin, S. C. L. CADEE: Computer-Aided Directed
Evolution of Enzymes. IUCrJ 2017, 4, 50−64.
(108) Weymuth, T.; Reiher, M. Gradient-Driven Molecule Con-
struction: An Inverse Approach Applied to the Design of Small-
Molecule Fixating Catalysts. Int. J. Quantum Chem. 2014, 114, 838−
850.
(109) Krausbeck, F.; Sobez, J.-G.; Reiher, M. Stabilization of Activated
Fragments by Shell-Wise Construction of an Embedding Environment.
J. Comput. Chem. 2017, 38, 1023−1038.
(110)Warshel, A.; Sharma, P. K.; Kato, M.; Xiang, Y.; Liu, H.; Olsson,
M. H. M. Electrostatic Basis for Enzyme Catalysis. Chem. Rev. 2006,
106, 3210−3235.
(111) Sokalski, W. A. Theoretical Model for Exploration of Catalytic
Activity of Enzymes and Design of New Catalysts: CO2 Hydration
Reaction. Int. J. Quantum Chem. 1981, 20, 231−240.
(112) Dittner, M.; Hartke, B. Globally Optimal Catalytic Fields -
Inverse Design of Abstract Embeddings for Maximum Reaction Rate
Acceleration. J. Chem. Theory Comput. 2018, 14, 3547−3564.
(113) Wang, M.; Hu, X.; Beratan, D. N.; Yang, W. Designing
Molecules by Optimizing Potentials. J. Am. Chem. Soc. 2006, 128,
3228−3232.

(114) Xiao, D.; Yang,W.; Beratan, D. N. InverseMolecular Design in a
Tight-Binding Framework. J. Chem. Phys. 2008, 129, 044106.
(115) Hu, X.; Beratan, D. N.; Yang, W. A Gradient-Directed Monte
Carlo Approach toMolecular Design. J. Chem. Phys. 2008, 129, 064102.
(116) Chang, A. M.; Rudshteyn, B.; Warnke, I.; Batista, V. S. Inverse
Design of a Catalyst for Aqueous CO/CO2 Conversion Informed by
the NiII-Iminothiolate Complex. Inorg. Chem. 2018, 57, 15474−15480.
(117) von Lilienfeld, O. A.; Tuckerman, M. E. Molecular Grand-
Canonical Ensemble Density Functional Theory and Exploration of
Chemical Space. J. Chem. Phys. 2006, 125, 154104.
(118) von Lilienfeld, O. A. First Principles View on Chemical
Compound Space: Gaining Rigorous Atomistic Control of Molecular
Properties. Int. J. Quantum Chem. 2013, 113, 1676−1689.
(119) Marcon, V.; von Lilienfeld, O. A.; Andrienko, D. Tuning
Electronic Eigenvalues of Benzene Via Doping. J. Chem. Phys. 2007,
127, 064305.
(120) Sheppard, D.; Henkelman, G.; von Lilienfeld, O. A. Alchemical
Derivatives of Reaction Energetics. J. Chem. Phys. 2010, 133, 084104.
(121) von Lilienfeld, O. A.; Tuckerman, M. E. Alchemical Variations
of Intermolecular Energies According to Molecular Grand-Canonical
Ensemble Density Functional Theory. J. Chem. Theory Comput. 2007, 3,
1083−1090.
(122) Fias, S.; Chang, K. Y. S.; von Lilienfeld, O. A. Alchemical
Normal Modes Unify Chemical Space. J. Phys. Chem. Lett. 2019, 10,
30−39.
(123) Saravanan, K.; Kitchin, J. R.; von Lilienfeld, O. A.; Keith, J. A.
Alchemical Predictions for Computational Catalysis: Potential and
Limitations. J. Phys. Chem. Lett. 2017, 8, 5002−5007.
(124) Griego, C. D.; Saravanan, K.; Keith, J. A. Benchmarking
Computational Alchemy for Carbide, Nitride, and Oxide Catalysts.
Adv. Theor. Simul. 2019, 2, 1800142.
(125) Chang, K. Y. S.; von Lilienfeld, O. A. AlxGa1‑xAs Crystals with
Direct 2 eV Band Gaps from Computational Alchemy. Phys. Rev. Mater.
2018, 2, 073802.
(126) Anatole von Lilienfeld, O. Accurate Ab Initio Energy Gradients
in Chemical Compound Space. J. Chem. Phys. 2009, 131, 164102.
(127) Chang, K. Y. S.; Fias, S.; Ramakrishnan, R.; von Lilienfeld, O. A.
Fast and Accurate Predictions of Covalent Bonds in Chemical Space. J.
Chem. Phys. 2016, 144, 174110.
(128) Xiao, D.; Martini, L. A.; Snoeberger, R. C.; Crabtree, R. H.;
Batista, V. S. Inverse Design and Synthesis of acac-Coumarin Anchors
for Robust TiO2 Sensitization. J. Am. Chem. Soc. 2011, 133, 9014−
9022.
(129) Keinan, S.; Therien, M. J.; Beratan, D. N.; Yang, W. Molecular
Design of Porphyrin-Based Nonlinear Optical Materials. J. Phys. Chem.
A 2008, 112, 12203−12207.
(130) Sanchez-Lengeling, B.; Outeiral, C.; Guimaraes, G. L.; Aspuru-
Guzik, A. Optimizing Distributions over Molecular Space. An
Objective-Reinforced Generative Adversarial Network for Inverse-
Design Chemistry (ORGANIC). ChemRxiv. Preprint [Online], 2017.
DOI: 10.26434/chemrxiv.5309668.v3 (accessed November 12, 2019).
(131) Ståhl, N.; Falkman, G.; Karlsson, A.; Mathiason, G.; Boström, J.
Deep Reinforcement Learning for Multiparameter Optimization in De
Novo Drug Design. J. Chem. Inf. Model. 2019, 59, 3166−3176.
(132) Putin, E.; Asadulaev, A.; Ivanenkov, Y.; Aladinskiy, V.; Sanchez-
Lengeling, B.; Aspuru-Guzik, A.; Zhavoronkov, A. Reinforced
Adversarial Neural Computer for De Novo Molecular Design. J.
Chem. Inf. Model. 2018, 58, 1194−1204.
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(292) Álvarez-Moreno, M.; de Graaf, C.; Loṕez, N.; Maseras, F.;
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■ NOTE ADDED IN PROOF
Very recently, the Forecaster user interface305 has been
expanded to include a new platform, Virtual Chemist,330 of
which Asymmetric Catalyst Evaluation (ACE)304 is now part.
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