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ABSTRACT 
 
Turbidity currents are a variety of subaqueous sediment-gravity flows, in which the suspension of 
sediment by water turbulence produces a water-sediment mixture that is denser than the ambient 
water and hence flows due to gravity along a topographic gradient. This type of sediment gravity flow 
is the most important mechanism for the dispersal and deposition of sand on deep-sea floors, as well 
as on the underwater slopes of many deltas and lakes. 

The hydrodynamics of turbidity currents are difficult to study in the natural environments, whereas 
laboratory experiments are limited to small-scale flows, time-consuming and not necessarily easier 
when it comes to the measuring of flow properties and establishing of the relationships between the 
turbulent flow structure and the transport and deposition of sediment. Mathematical models of turbidity 
current, integrated by computational fluid dynamics (CFD) and realized as numerical simulations, can 
be used to obviate these difficulties, and also to upscale laboratory datasets and to integrate the data 
from nature and experiments. The concept CFD refers to the numerical solution, by computational 
methods, of the governing equations describing fluid flow: the set of Navier-Stokes equations and the 
multi-phase fluid dynamics. CFD is widely used in the engineering branches of fluid mechanics, but is 
a relatively new numerical approach in the field of sedimentological research.  

In the present study, a three-dimensional model has been constructed by using the CFD software 
Flow-3D™ to simulate the flow of turbidity currents, including their internal hydraulic characteristics as 
well as sediment erosion and deposition. The Flow-3D™ model employs finite difference and finite 
volume methods and the turbidity current is being simulated by a range of physical models: 1) the 
turbulent flow structure is simulated by a turbulence model based on renormalization group theory that 
employs statistical methods to calculate turbulence quantities; 2) the water-sediment mixture is 
calculated by a drift-flux technique that describes the relative flow of two miscible fluids with different 
densities; 3) interactions between the continuous fluid and the dispersed mass particles are calculated 
by the particle model; and 4) the erosion and deposition of sediment are calculated by the sediment 
scour model. 

Simulations of small-scale turbidity currents imitating particular laboratory flows have shown that 
the results of Flow-3D™ are realistic and reliable. Similar series of flow simulations have been used 
further: 1) to display in a flow-parallel axial section the main hydraulic characteristics (bulk density, 
shear-strain rate, dynamic viscosity, velocity magnitude and its x-y-z components) of a channel-
confined current; 2) to display of the shear stress, sediment concentration and velocity magnitude for 
several ‘probing stations’ in a channel-confined current expanding abruptly on an open-space flat floor;  
3) to study the responses of the confined and unconfined parts of a current (in terms of its velocity 
magnitude, shear stress and sediment concentration) to changes in such principal controlling 
parameters as the channel slope angle, sediment grain size, floor roughness and initial sediment 
concentration; 4) to display sediment grain-size segregation in a current (using a flow run with poly-
sized sediment suspension); 5) to display the velocity time series for a surge-type and a sustained 
turbidity current; and 6) to show the responses of turbidity current to various obstacles and to a 
hydraulic jump at the channel outlet.  

Two large-scale simulations of ‘real-life’ turbidity currents have been performed, one imitating 
modern flow events in the Soquel and Monterey canyons, offshore California, and another pertaining 
to the deposition of the Egga reservoir unit in the Ormen Lange field, Mid-Norway Continental Shelf.  

The present study has evaluated Flow-3D™ as a possible means of simulating hydrodynamic 
behaviour of turbidity currents. The comparison of numerical and flume data indicates that the CFD-
based Flow-3D™ models can give realistic results and serve as an attractive alternative to laboratory 
flume experiments. The use of a CFD software, such as the Flow-3D™, has several great advantages: 
1) it allows a much wider range of flow parameters to be determined and continuously monitored with 
a relatively high accuracy; 2) it permits the response and relative importance of the individual flow 
parameters to be assessed with respect to changes in the initial conditions; 3) it allows turbidity 
currents to be up-scaled to natural conditions; and 4) it provides an unprecedented insight in the 
detailed hydrodynamic aspects of turbidity current. The study indicates that our understanding of 
turbidites and their variability can be significantly improved by this type of experimental research. 
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1. INTRODUCTION 

 

The general aim of the present study was to use the methods of computational fluid 

dynamics (CFD) offered by the commercial software Flow-3D™ to simulate the dynamics of 

turbidity currents, and to adjust further the software to account for the corresponding modes 

of transport and deposition of ‘natural’ (poly-sized) sediments. The study was meant to 

evaluate the usefulness of numerical simulations as a possible alternative to the costly and 

time-consuming laboratory tank experiments, with the highly attractive perspective of up-

scaling laboratory data and performing simulations at a scale of natural sedimentary basins.  

The original plan was thus to assess the reliability of the Flow-3D™ numerical models by 

simulating particular laboratory experiments and comparing the results. The preliminary 

simulations came out to be not only very promising, but opening some unprecedented 

insights in the turbidity current dynamics (Heimsund et al., 2002, 2003a, b, 2004, 2005a, b, 

2006). Encouraged by the positive response of peer sedimentologists, including the Best 

Poster Award from the 16th International Sedimentological Congress in 2002, the author has 

decided to extend the project’s scope. A wider range of specific aims have been selected, 

including some large-scale simulations of ‘real-life’ modern and ancient turbiditic systems. 

This broader and more ambitious plan obviously required more time to be realized, and also 

brought the author into a full-time cooperation with the Complex Flow Design AS in 

Trondheim.  

The specific aims of the study have been defined as follows: 1) to cross-check the Flow-

3D™’s numerical options against some reliable sets of laboratory data on turbidity currents in 

order to select an optimal version of the numerical model on a best-fit basis; 2) to use the 

Flow-3D™ for the up-scaling of laboratory currents (measured datasets) to natural 

conditions; 3) to evaluate the influence of particular controlling variables on the dynamics of a 

turbidity current; 4) to study the relationship between the turbidity current’s dynamics and its 

mode of sediment deposition; 5) to study the dynamics of surge-type vs. sustained (quasi-

steady) turbidity currents and their responses to a hydraulic jump, or slope-break conditions; 

and 6) to assess the reliability of large-scale simulations by designing numerical models 

imitating particular natural settings and by comparing the results with field observations.  

Two sets of such natural-scale simulations have been performed: one based on the 

modern seafloor topography and flow measurements reported from the Monterey Submarine 

Canyon, offshore California (Xu et al., 2004), and another based on the basal-surface 

palaeotopography and turbidite stratigraphy of the Egga Reservoir Unit in the Ormen Lange 

field, Mid-Norway Continental Shelf (Blystad et al., 1995). This latter set of pilot simulations 
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was done as a small consultancy project for the Hydro Research Centre and A/S Norske 

Shell, and the corresponding report (Heimsund, 2005b) is attached to the thesis as 

Appendix .  

The thesis begins with a short historical overview of the concept of subaqueous 

sediment-gravity flows, particularly turbidity currents, followed by a summary of the modern 

physical notions of mass-flow behaviour (Chapter 2 ). In this review, the author puts 

emphasis on the concept evolution and related controversies, and also takes the opportunity 

to point out and clarify some of the main misconceptions. The methodology of the present 

study is then outlined (Chapter 3 ), with a brief introduction of the Flow-3D™ software, its 

purposes and design. In the next and main part of the thesis, the results of the numerical 

study are presented and discussed (Chapter 4 ), and are followed by concluding remarks 

(Chapter 5 ). The thesis closes with a list of literature References .  
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2. SEDIMENT-GRAVITY FLOWS 

 

2.1. The physical concept of subaqueous sediment-gr avity flows 
 
As pointed out in the recent reviews by Friedman and Sanders (1997) and Shanmugam 

(2000), geologists prior to the 1950s were sceptical about the role of sediment-gravity flows 

in eroding submarine canyons and depositing graded sand beds in the deep sea. The 

general belief was that the deep sea was a tranquil realm free of current activity, where only 

pelagic (sea-born) or hemipelagic (land-derived) mud accumulated by slow settling from the 

water column, even though signs of deep-water currents had already been inferred from the 

local breaks of submarine telegraph cables so early as the late 19th century (Milne, 1897). 

Shallow coring of continental margin and abyssal-plain sediments at the beginning of the 

1940s confirmed the existence of currents and related gravity-controlled deposition in the 

deep sea, but the real turnaround came with the paper by Kuenen and Migliorini (1950) 

invoking ”turbidity currents as a cause of graded bedding”. From then onwards, many 

researchers focused on the deep-marine deposits and their origin.  

During the 1950s and 1960s, evidence of a gravity-driven sediment transport from shelf 

edge to base-of-slope and beyond came from the observations of currents in modern 

submarine canyons (e.g., the seafloor cable breaks caused by the Grand Banks event; 

Heezen and Ewing, 1952), from deep-sea sediment cores and outcrop studies (e.g., the 

classical study of the Annot Sandstone outcrops in southeastern France by Bouma, 1962) 

and – most importantly – from laboratory experiments (Kuenen, 1950, 1957; Bagnold, 1962; 

Middleton, 1966a, b, 1967). Kuenen (1957) coined the term turbidite to denote the deposit of 

a turbidity current. Bouma (1962) was the first to define a vertical facies model for turbidites 

on the basis of his pioneering study of the Annot Sandstone, although – as pointed out by 

Shanmugam (2000) – the vertical sequence of sedimentary structures that would later 

become known as the Bouma sequence was earlier recognized by Sheldon (1928).  

The characteristics of many deep-marine deposits appeared to not match the definition of 

turbidite as ‘a graded deposit originating through suspension fall-out from a turbid underflow’. 

Therefore, other gravity-driven mechanisms were proposed for the transport of sediment in 

deep water, such as sliding and slumping (Doreen, 1951), debris flow (Doreen, 1951; 

Crowell, 1957) and high-concentration cohesionless granular flow referred to as grain flow 

(Bagnold, 1954; Hsü, 1959). The importance of these other processes (cohesive debris 

flows, grain flows, liquefied flows, slumps and slides) for the origin of the Annot Sandstone 

was discussed by Stanley (1963). Other researchers noted that not all sediment transport on 

the continental slope and in the deep ocean was gravity-driven, and introduced the terms 
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”contour current” and ”contourite” for parallel-to-slope thermohaline bottom currents and their 

deposits. 

Gradually, the Earth-science community came to realize that a whole range of processes, 

not all of them gravity-driven, were responsible for the transport of large amounts of sediment 

to the deep sea over periods long enough to be potentially influenced by changes in the sea-

level, climate and tectonic activity. This notion initiated the development of submarine-fan 

models based on cores and outcrop studies, first for modern passive-margin fans (Normark, 

1970) and ancient active-margin turbiditic systems (Mutti and Ricchi Lucchi, 1972). Based on 

these studied, Walker (1978) proposed a generalized submarine-fan model (Fig. 1) with the 

classical division of a submarine fan into an upper, middle and lower segment, 

encompassing deposits from the slope break to the abyssal basin plain. The hydrocarbon 

reservoir potential of turbidites was first discussed by Sullwold (1961), whereas Walker 

(1978) focused on the stratigraphic traps for hydrocarbon exploration in ancient fan deposits.  

 

 
 
Fig. 1. Schematic illustration of a (passive) continental-margin setting, showing the transition path of sediment 
from a hinterland to a deep-marine basin beyond the continental shelf and slope cut by a feeder canyon/channel. 
The diagram portrays the classical model for a submarine turbiditic fan postulated by Mutti and Ricci-Lucchi 
(1972), modified by Walker (1978) to account for Normark’s (1970) observations from the modern Navy Fan. 
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In the 1970s, the wide availability of seismic sections added a new dimension to the 

development of fan models based on cores and outcrops. This new type of subsurface data 

initiated the development of seismo-stratigraphic fan models and deep-marine facies 

classifications (Payton, 1977).  

Experimental laboratory work on gravity-driven sediment transport in the 1960s, building 

upon Kuenen’s pioneering work, focused on the hydrodynamics of turbidity currents and their 

modes of sediment transport. Bagnold (1962) elaborated the concept of auto-suspension, 

originally proposed by Knapp (1938), which postulates that, depending on the ratio of particle 

settling velocity to the product of mean flow velocity and bed slope, the sediment suspends 

itself in a sense, such that no net expenditure of energy by the flow is needed to keep the 

grains suspended. In brief, the entrainment of any additional sediment into suspension adds 

to the flow’s mass and energy, which in turn increases turbulent shear stresses and helps to 

keep the sediment in suspension. Using flume experiments, Middleton (1966a, b) studied the 

anatomy of turbidity currents and recognized the existence of a head, a body and a tail, with 

the first and the second element linked by a relatively thin neck in some cases. He concluded 

that the velocity of the head depends on the flow mass, but is independent of the seafloor 

slope. Komar (1971) was probably the first to discuss the origin and significance of hydraulic 

jumps in turbidity currents. In a later pioneering publication, Komar (1977) applied a simple, 

one-dimensional hydrodynamic model to investigate the behaviour of turbidity current with 

the use of a computer. 

Dott (1963) was the first who introduced a classification of submarine sediment-gravity 

flows based on the flow rheology (i.e., based on the physical characteristics of the process, 

rather than the deposit). He recognized that the hydrodynamic behaviour of sediment-gravity 

flows is controlled largely by the volumetric concentration of sediment and its cohesiveness. 

A related classification of submarine sediment-gravity flows, based on the sediment-support 

mechanism, was proposed by Middleton and Hampton (1973), who invoked the following 

mechanisms of sediment-particle support: buoyancy (a universal factor in non-dry flows), 

matrix strength, grain interactions (hindered settling or collisions and dispersive pressure), 

escaping pore fluid (liquefaction or fluidization) and fluid turbulence (specific to turbidity 

currents).  Hampton (1972) was also the first to conduct experiments on subaqueous debris 

flows. A classification scheme combining flow rheology and sediment-support mechanism 

was proposed by Lowe (1979, 1982) (Fig. 2).  

Lowe (1982) defined debris flows as rheological Bingham-type plastic flows and 

distinguished their two categories: mudflows (or cohesive debris flows) and grain flows 

(Fig. 2). However, Nemec and Steel (1984) pointed out that not every debris flow must 

necessarily behave like a Bingham plastic (e.g., grain flows are characterized by a dilational, 

non-Bingham plastic behaviour; Bagnold, 1954) and, likewise, not every non-cohesive debris 
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flow must necessarily be a grain flow (i.e., characterized by a pervasive shear, high shear-

strain rate, intense particle collisions, dispersive pressure and pronounced dilation). The 

momentum transfer in a granular flow may occur by the particles persistently rubbing against 

one another without significant collisions (see the ‘frictional regime’ of Drake, 1990), or be 

limited to a thin basal layer of colliding particles (Campbell, 1989b). Therefore, Nemec and 

Steel (1984) have modified Lowe’s categories by classifying debris flows into cohesive and 

cohesionless, with mudflow and grainflow as the end-members of a possible flow spectrum. 

The former debris-flow type involves chiefly cohesive shear strength and the latter type is 

governed by frictional shear strength, which are the two yield-strength components specified 

by the classic Coulomb criterion for rheological plastics (Nemec and Steel, 1984) and widely 

used in the engineering classification of ‘soils’, or natural clastic materials, into cohesive and 

cohesionless (Keedwell, 1984; Craig, 1987). 

 

 

Fig. 2.  Classification of sediment-gravity flows by Lowe (1982). 

 

In his classification, Lowe (1979) made an important distinction between ‘liquefied flow’ 

and ‘fluidized flow’, the two terms that were earlier used mainly as synonymous. In either 

flow, it is the upward-escaping pore fluid that reduced grain friction and renders the sediment 

mobile, or ‘liquidized’. In the former case, however, it is the collapsing or settling grain 

framework that displaces the pore fluid upwards, as in a common quicksand, with the grains 
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subject to only partial support (fluid drag). In the latter case, in contrast, the pore fluid is 

escaping by itself, as does gas in a pyroclastic flow or external water injected from the 

bottom in a debris flow; and the grains are thus subject to full support by the fluid.  

Lowe (1979, 1982) also introduced the concept of “high-density turbidity currents 

(HDTCs)” – which has subsequently been subject to a considerable debate (Shanmugam et 

al., 1995, 1997; Shanmugam and Moiola, 1995, 1997; Shanmugam, 1996, 2000, 2002; 

Bouma et al., 1997; Coleman, 1997; D’Agostino and Jordan, 1997; Hiscott et al., 1997; 

Lowe, 1997; Slatt et al., 1997). Much of this controversy derives from two sources: a) a 

misunderstanding of Lowe’s very definition of a HDTC; and b) the common mistaken notion 

that turbidity current must necessarily behave like a Newtonian fluid, or otherwise be a debris 

flow. These two points are worth explaining here. 

In Lowe’s definition, if the concentration of sediment settling from suspension in turbidity 

current becomes sufficiently high, relative to the current’s competence (turbulence intensity 

level), the turbulence in the lower part of the current becomes suppressed and the deposition 

occurs en masse, rather than grain-by-grain from traction. A portion of massive, normally-

graded sediment, the Bouma division A (see later Fig. 6), will be dumped directly from 

suspension, possibly as an upward-freezing ‘moving bed’ (Vrolijk and Southard, 1997); or a 

massive, inversely-graded traction carpet may form and abruptly freezes beneath the 

turbulent, tractive current (Nemec, 1997). According to Lowe, such a turbidity current is a 

‘high-density’ current. The Lowe definition is such behaviouristic, so to speak: if the current 

behaves in such-and-such way (i.e., suffers temporary sediment overcharge), it is a HDTC; 

and its deposit is recognizable by such-and-such sedimentary features. Instead of 

appreciating this simple and practical notion, some researchers – such as Shanmugam (op. 

cit.) – discard this definition as ‘poor and confusing’, because it ‘fails to specify the exact 

threshold value (vol. %) of sediment concentration’. These critics fail to realize that the 

threshold concentration necessarily depends upon the flow energy and sediment grain size, 

and hence may vary from current to current. Furthermore, the exact threshold value for a 

particular current is virtually irrelevant, because sediment concentration is the last thing that 

can possibly be recognized in a deposit. Some other researcher, in turn, confuse Lowe’s 

notion of a HDTC with the terms ‘high-density’ or ‘high-concentration’ current adopted quite 

arbitrarily in various laboratory experiments for the sake of distinguishing between flow runs 

with higher and lower sediment concentrations. Some researchers, yet, draw a false, 

superficial notion from Lowe’s own selected examples of the deposits of HDTCs and assume 

that a HDTC is the one carrying gravel. Paradoxically, many silty or fine-sandy turbidites may 

be products of HDTCs, whereas a thick gravelly turbidite, if fully stratified (i.e., tractionally 

deposited) (e.g., see Winn and Dott, 1979; Janbu et al., 2007), will obviously represent a low-

density turbidity current (LDTC) in Lowe’s classification. 
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The second source of misunderstanding is the widespread mistaken notion that a turbidity 

current, just like any water current, has the rheological behaviour of a Newtonian liquid (i.e., 

has a constant viscosity, determined by the suspended sediment load and independent of 

the shear-strain rate). This misconception apparently derives from numerical hydrodynamic 

models and calculations, where a constant viscosity is often assumed of the convenience of 

simplicity. As pointed out by Nemec (1995), the apparent viscosity of a current depends 

greatly on the volumetric concentration of sediment suspension, which depends directly on 

the intensity of turbulence (shear-strain rate) and hence varies both vertically and laterally 

within the turbidity current and inevitably varies also with time. In short, the viscosity of 

turbidity current is by no means constant, since it is both non-uniform (space-varied) and 

unsteady (time-varied). As the current decelerates and its sediment concentration increases 

towards the base, so does its viscosity – possibly until the extreme phase when the basal 

part begins to behave like non-turbulent plastic flow and undergoes rheological freezing 

(Lowe, 1982; Nemec and Steel, 1984; Postma et al., 1988; Vrolijk and Southard, 1997). 

Much confusion and controversy would be avoided if it was widely understood that turbidity 

current does not necessarily behave like a simple Newtonian fluid. For example, it has been 

argued by Shanmugam (op. cit.) that because the notion of HDTC implies non-Newtonian 

behaviour and allows for plastic freezing – such currents should preferably be classified as 

debris flows. In Nemec’s (2002) words: “This is like saying that a snow scooter is not a 

scooter, because it has a pair of sleighs as runners, instead of the conventional two wheels. 

But that’s exactly why we call it a ‘snow’ scooter. And, by analogy, that’s why we distinguish 

the non-classical ‘high-density’ turbidity currents.” 

A mistake unwittingly made by Lowe (1982), on the other hand, was to narrow the 

definition of ‘traction carpet’ in a HDTC to a cohesionless, grainflow-like basal layer of 

colliding sediment particles, sheared and driven along by the overpassing turbulent phase of 

the turbidity current. The original definition of traction carpet, introduced by Dzułyński and 

Sanders (1962), was broader, referring to the turbidity current’s basal layer with suppressed 

turbulence and plastic behaviour. Lowe apparently came to realize his error through the more 

recent study of the turbiditic Britannia Formation (Lowe and Guy, 2000; Lowe et al., 2003), 

but instead of revising his definition – he introduced the bizarre term ‘slurry flow”, somewhat 

misleading and poorly understood by most sedimentologists, not least because the same 

term was earlier used in Carter’s (1975) classification as a synonym of cohesive debris flow. 

In Lowe’s concept of ‘slurry flow’, the settling of sand grains from turbulent suspension 

involves clay clots with a corresponding settling velocity, and as these particles become 

disseminated in the sheared, high-concentration basal layer – the latter rapidly gains 

cohesive strength and freezes; the process of freezing of semi-discrete layers may be 

repeated many times over, so long as the fallout of similar sediment mixture persists. 
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Similarly, the formation process of Lowe’s (1982) traction carpet can be repetitive within a 

single HDTC. The main difference would thus appear to be between the frictional plastic 

freezing in the latter case and the cohesive plastic freezing in former case. 

Finally, there has been the poorly substantiated notion that the transport mode of 

sediment is one thing and the mode of its deposition is quite another thing, and that two 

separate classifications should preferably be used – one (physical) based on ‘processes’ and 

another (descriptive) based on ‘deposits’ (Fisher, 1986; Postma, 1986; Shanmugam, 1996). 

According to this dual concept, the mode of sediment deposition may have little to do with 

the mode of the sediment transport. However, it has been pointed out by Nemec et al. (1998) 

that virtually all depositional features arguably derive from transport. For example: every 

stratification type reflects a particular mode of tractional sediment transport (active bedform 

configuration) (Allen, 1982); normal grading in a non-stratified deposit reflects direct fallout of 

sediment from turbulent suspension (Lowe, 1988; Allen, 1991); and also the concentrated 

bed-load carpet is a mode of transport (Einstein, 1950), since the traction carpet must move 

and intensely shear for the characteristic inverse grading to develop (Lowe, 1982). Instead of 

a dual classification, a better insight in the sedimentary signatures of processes and a more 

rigorous use of sedimentological criteria are needed (Nemec et al., 1998).          

Although some of the misconceptions reviewed above persist in the literature and have 

unwittingly been transmitted to more recent classifications (e.g., Mulder and Alexander, 

2001; Gani, 2004), the distinction of sediment-gravity flow types based on rheology and 

sediment-support mechanism is now widely accepted. This conceptual framework provides a 

convenient basis to discuss the physics of sediment-gravity flows, and turbidity currents in 

particular (e.g., Kneller, 1995). Most of the mechanical aspects of flow behaviour can readily 

be recognized from the deposits, and our understanding of the sedimentary signatures of 

mass-flow processes has been consistently improving by the development of new 

sedimentological criteria based on laboratory experiments and detailed field studies (Lowe, 

1982, 1988; Johnson and Rodine, 1984; Nemec and Steel, 1984; Postma et al., 1988; 

Savage and Lun, 1988; Campbell, 1989b, 1990; Savage and Hutter, 1989; Nemec, 1990; 

Nemec and Postma, 1991; Kneller et al., 1997; Kneller and Buckee, 2000; Lowe and Guy, 

2000; McCaffrey et al., 2001; Mulder and Alexander, 2001; Tucker, 2001; Lowe et al., 2003).  

 

2.2. The behaviour of sediment-gravity flows 
 

Sediment-gravity flows, commonly referred to also as mass flows or density flows, are 

mixtures of sediment and fluid flowing down a slope by the virtue of gravity force (i.e., the 

mixture’s mass, or own weight). In contrast to common water flows, such as rivers or sea 
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currents, the gravity in this case moves the sediment, which consequently drags the 

interparticle fluid along (while being also influenced by it). In subaqueous sediment-gravity 

flows, the fluid is water – either the saline seawater (as in flows triggered by common 

submarine slides) or freshwater (as in river-generated submarine hyperpycnal flows at their 

outset, or in sublacustrine settings). The physical behaviour of sediment-gravity flow, which 

ultimately determines much of the sedimentological character of the deposit, depends largely 

upon the following three factors (Lowe, 1979, 1982; Shanmugam, 1996): 1) flow rheology, 

itself dependent upon the composition (especially clay content) and volumetric concentration 

of sediment; 2) grain-support mechanism; and 3) flow state (turbulent vs. pseudolaminar). 

The last two factors, as well as the sediment concentration, depend directly on the flow’s 

shear-strain rate – which itself is an important variable, indirectly affecting also the apparent 

(bulk) viscosity of the flowing sediment-water mixture.  

Grain-support mechanisms (Middleton and Hampton, 1973; Pierson, 1981; Lowe, 1982) 

include: matrix strength (which may be predominantly frictional or cohesive), grain 

interactions (which may be limited to hindered settling or involve dispersive grain pressure 

arising from grain collisions), escaping pore fluid (which may be due to sediment liquefaction 

or fluidization), and fluid turbulence (which requires a sufficiently high volumetric percentage 

of fluid in the flow). In addition, buoyancy renders the grains lighter, according to the 

Archimedes principle, especially when the interparticle fluid is a relatively dense slurry, 

loaded with fines (clay, silt and very fine sand) (Hampton, 1975). Importantly, more than one 

grain-support mechanism may operate simultaneously in any particular sediment-gravity 

flow. Likewise, the flow state may change from laminar to turbulent and vice versa, 

depending on sediment concentration and substrate slope (or flow velocity). 

The rheological behaviour of sediment-gravity flows can be categorized according to the 

constitutive stress-strain relationship describing the sediment-water mixture’s response to 

applied shear stress (Fig. 3) (Tokaty, 1971; Barnes et al., 1989; Larson, 1999). Fluids lack 

yield strength and hence deform instantaneously when a stress is applied. If the rate of shear 

strain is linearly related to the applied shear stress, the fluid is said to have a constant (shear 

rate-independent) viscosity and is referred to as a Newtonian fluid (Fig. 3). Water is a 

classical example of such a fluid. Fluids which are changing their viscosity with the changes 

in shear-strain rate are called non-Newtonian fluids (Fig. 3). These fluids can be subdivided 

into dilational (if the fluid viscosity increases with an increasing shear-strain rate) or 

contractional, also referred to as pseudoplastic (if the fluid visciosity decreases with an 

increasing shear-strain rate). The adjectives ‘dilational’ (i.e., expanding, or shear-thickening) 

and ‘contractional’ (i.e., shrinking, or shear-thinning) pertain to the changes in fluid volume 

under an increasing shear strain. The alternative synonymous terms are ‘shear-hardening’ 

and ‘shear-softening’ fluids, which pertain to the changes in the fluid’s internal resistance to 
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shear strain (i.e., viscosity) under an increasing shear strain. A generalized constitutive 

equation for rheological fluids is: 

τ = η · ÷n 

where: τ = shear stress (i.e., the downslope component of normal stress, or material weight); 

η = apparent viscosity; ÷ = shear-strain rate (or vertical velocity gradient, du/dy); and n = 

dimensionless exponent specific to particular material (with n = 1 for Newtonian fluids; n < 1 

for pseudoplastic fluids; and n > 1 for dilational fluids).  

Plastics differ from fluids in that they have a finite yield strength, which must be overcome 

by the applied shear stress for deformation (shear strain) to occur. In other words, plastics 

begin to flow only when the applied stress is sufficient to overcome the yield strength of the 

material. The yield strength generally has a cohesive and a frictional component, and one of 

them normally predominates in particular sediment, depending upon its volumetric content of 

clay and water (Keedwell, 1984; Craig, 1987). Accordingly, plastic flows can be divided into 

cohesive and cohesionless (or frictional), as postulated by Nemec and Steel (1984) in their 

modification of Lowe’s (1982) original classification of debris flows.  

Irrespective of the nature of their yield strength, the rheological plastics – similarly as 

fluids (see above) – are divided on the basis of their viscosity response to an increasing 

shear stress. If the viscosity remains constant, independent of the rate of shear strain, the 

plastic material is referred to as a Bingham plastic (Fig. 3). A common mudflow or wet 

flowing concrete are considered to be typical examples of such a plastic flow. Plastics that 

are changing their viscosity with the changes in shear-strain rate are referred to non-

Bingham plastics. These plastics can be divided further into dilational (if the viscosity 

increases with an increasing shear-strain rate) or contractional (if the visciosity decreases 

with an increasing shear-strain rate) (Barnes et al., 1989). Synonymous labels for these two 

categories are shear-thickening and shear-thinning plastics; or shear-hardening and shear-

softening plastics, respectively. A generalized constitutive equation for rheological plastics 

can be written as follows (Johnson, 1970; Iverson, 1997): 

τ = k + η·÷n 

where: τ = shear stress (i.e., the downslope component of normal stress, with the latter 

defined as the material weight reduced by buoyancy); k = yield strength; η = apparent 

viscosity; ÷ = shear-strain rate (or vertical velocity gradient, du/dy); and n = dimensionless 

exponent specific to particular material (with n = 1 for Bingham plastics; n > 1 for dilatant 

fluids; and n < 1 for contractional fluids). Importantly, it is the presence of yield strength that 

defines rheological plastics and distinguishes them from rheological fluids (Fig. 3), and which 

thus also defines debris flows in Lowe’s (1982) classification (Fig. 2).  
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Because the yield strength – according to the Coulomb criterion (Keedwell, 1984; Craig, 

1987) – comprises cohesive and frictional components, the last equation can be written as: 

τ = (c + tanθ·σ’) + η·÷n 

where the additional symbols are: c = cohesion (electrostatic particle-binding force; 

significant and particularly strong in clay, though dependent on the volumetric percentage of 

water); θ = the sediment angle of internal friction (chiefly a function of grain size); and σ’ = 

normal stress (or sediment weight) corrected for buoyancy effect. The yield strength in a 

clay-rich mudflow will have c >> tanθ·σ’ (cohesive debris flow), whereas that in a clay-free 

sandflow will have c = 0 (cohesionless debris flow).  

 

 
Fig. 3. Generalized rheological definitions (stress-strain relationships) of Newtonian fluid, non-Newtonian fluids 
and Bingham plastic. The line gradient in each case is the flow viscosity.  Schematic, with no exact scale 
implied. Based on Shanmugam (2000). 

 

The defining property of plastic flow is that – when the flow reaches gentler slope and 

decelerates – the shear stress decreases and eventually reaches a critical value equal to the 

yield strength, whereby the flow ‘freezes’ en masse. The freezing process, in reality, occurs 

Dilatant fluid 

(non-Newtonian) 
No yield strength; viscosity 

increasing with shear-strain rate  

Pseudoplastic fluid 

(non-Newtonian) 
No yield strength; viscosity 

decreasing with shear-strain rate 

Bingham plastic 

Finite yield strength; constant 
(rate-independent) viscosity  

Newtonian fluid 

No yield strength; constant 
(rate-independent) viscosity 
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progressively from the flow top (where the strain rate is at a minimum, or virtually no strain 

occurs in the case of a non-shearing ‘rigid plug’) downwards, and the whole flow comes to a 

halt only when the zero-strain surface reaches the flow base. The rate of this downward 

freezing will determine the degree of the flow’s distal spreading and thinning. If the downward 

freezing is rapid, we are dealing with the case of a ‘simple-shear’ debris flow, but if it is more 

gradual – we are dealing with a ‘pure-shear’ debris flow, which may show considerable 

downflow thinning (smearing-out effect). 

Natural debris flows generally consist of poorly sorted sediment and contain a large 

proportion of sand and gravel. Most contain more than 5 vol.% of gravel, and may carry 

bedrock boulder blocks or large rafts of intraformational deposits in the non-shearing ‘rigid 

plug’ in the upper part of the flow (Johnson, 1970; Johnson and Rodine, 1984; Leigh and 

Hartley, 1992).  Notably, many debris flows with a ‘cohesive’ appearance contain as little as 

2-5 vol.% of mud (e.g., Sharp and Nobles, 1953), whereas some mud-richer but more watery 

debris flows may appear to be ‘cohesionless’, dominated by grain collisions (e.g., Lawson, 

1982; Takahashi, 1991). This evidence points to the importance of the volumetric content of 

water to a debris-flow behaviour. Increased water content in a debris flow can lower its 

cohesive strength to a level where the flow is no longer cohesive, but becomes frictional 

(Fisher, 1971; Mulder and Alexander, 2001). Accordingly, a debris flow can change its 

behaviour underway, when becoming more dilute or more concentrated with the travel 

distance (Fisher, 1983). 

Some debris flows are capable of travelling over the distances of tens to hundreds of 

kilometres (Gardner and Kidd, 1983; Campbell, 1989b; Simm et al., 1991; Gee et al., 1999), 

but – despite their reaching high speeds – are generally little erosive (e.g., Pickering et al, 

1989; Gee et al., 1999). The deposits of individual debris flows are typically 1 to 2 m thick, 

but – depending on the sourcing system and depositional setting – their amalgamated 

packages may be tens to hundreds of metres thick (Hiscott and James, 1985).  

In an attempt to subdivide the spectrum of subaqueous sediment-gravity flows on the 

basis of observed changes in flow behaviour at differing sediment concentrations (Hallworth 

and Huppert, 1998), Mulder and Alexander (2001) have distinguished three main classes of 

flow: 1) hyper-concentrated density flows; 2) concentrated density flows; and 3) turbidity 

currents. This simple classification (Fig. 4) seems to be conceptually useful as a guide, 

although it bears several weaknesses (see further below).  

According to Mulder and Alexander (2001), the character of hyper-concentrated frictional 

flows depends on the proportion of cohesive and non-cohesive particles, water content and 

flow velocity. Since natural subaqueous flows completely devoid of cohesive particles are 

rare, it is likely that even some very low proportion (< 2 vol.%) of cohesive particles can 

instigate cohesive forces, but these are easily overcome by a relatively high water content 
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and flow dilution. The weak cohesive forces will thus not prevent grain collisions and 

development of turbulence (Kneller and Buckee, 2000), but may transform the flow when it 

decelerates and its concentration increases (Fisher, 1983). 

 

 
Fig. 4. Composite diagram illustrating the relationship between flow variables, flow behaviour and deposit type 
for ‘frictional’ flows; that is, non-cohesive, sediment-laden density flows (sandy debris flows, grain flows). After 
Mulder and Alexander (2001) 

 

Turbulence is considered to be the dominant grain-support mechanism up to sediment 

concentrations of ca. 18 vol.% (McTigue, 1982; Campbell, 1989a), above which direct grain 

interactions become increasingly significant. At a concentration limit of 23 vol.%, fluids are 

considered to become fully non-Newtonian. Mulder and Alexander (2001) take this limit as an 

approximate boundary between ‘concentrated’ and ‘hyper-concentrated’ density flows 
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(Fig. 4), whereas Bagnold’s (1962) concentration limit for turbulent suspension (9 vol.%) is 

used as an approximate boundary between the ‘concentrated’ density flows and ‘turbidity 

currents’.  Below this limit, the turbulence of interparticle fluid (water) is supposed to be the 

sole grain-support mechanism, even though low-frequency grain collisions probably still 

occur. However, the Bagnold limit is disputed, because many researchers believe that grain 

interactions may still be significant below a concentration of 9 vol.%.  

The progressive entrainment of ambient water by a hyper-concentrated flow accelerating 

on a steep slope will lead to fewer grain collisions, whereby turbulence gradually replaces 

direct grain interaction as the main grain-support mechanism. When a density flow moves 

down on a very gentle slope, such as in a prodelta area or abyssal basin plain, the rate of 

water entrainment is low and the sediment concentration and grain interactions in the lower 

part of flow increase, which may lead to frictional freezing. Parker (1982) defined 

concentration and velocity optima, with respect to slope gradient, at which flows can move 

and entrain enough water to prevent freezing. 

Concentrated density flows can achieve high velocities on steep slopes by virtue of the 

large density contrast with the ambient water. These flows can thus be strongly erosive.  

Erosion and entrainment of bed sediment contributes to the driving force of the flow and 

causes it to accelerate and grow in volume. Mulder and Alexander (2001) put high-density 

turbidity currents into the class of concentrated flows.  

The grain-support mechanism in concentrated density flows involves both turbulence and 

direct grain interactions, operating simultaneously. Mulder and Alexander (2001) suggest that 

higher concentration prevents grain-size segregation, and hence normal grading, such as in 

the Bouma division A (see later Fig. 6), will not develop. This notion, however, is contradicted 

by laboratory experiments showing that a thick, non-stratified graded division can be 

deposited by a progressive upward freezing of sediment falling out directly from turbulent 

suspension (Kneller and Branney, 1995; Vrolijk and Southard, 1997). The duration of flow is 

an important factor. Sustained (long-duration) turbidity current may tend to be quasi-steady 

or involve waxing-waning pulses, and its behaviour will thus differ considerably from that of a 

simple surge-type (waning) turbidity current. Furthermore, concentrated density flows can be 

bipartite, or ‘layered’ – with the coarse-grained lower layer non-turbulent and dominated by 

grain collisions, and the fine-grained upper layer fully turbulent and moving at a considerably 

higher speed (Lowe, 1982; Postma, 1986; Postma et al., 1988) (Fig. 5). The lower part of the 

resulting deposit will lack stratification, but may show either normal or inverse grading 

(possibly with outsized clasts floating at the top), whereas the upper will be fine-grained, 

stratified and fining upwards. 
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Fig. 5. Schematic illustration of an experimental concentrated density flow (high-density turbidity current), after 
Postma et al. (1988). 
 

Mulder and Alexander’s (2001) conceptual categorization of flows, though instructive, 

bears several other major weaknesses: 

• The flow behaviour and deposit characteristics in reality depend on concentration in a 

continuous manner, so there is no discrete boundary between sediment-concentration 

ranges for the three classes (Fig. 4). Forcing such boundaries seems to be an artificial 

and possibly misleading exercise.  

• The whole classification is limited to ‘frictional (non-cohesive)’ flows, whereas 

subaqueous sediment-gravity flows in reality are more commonly mud-bearing than mud-

free.  

• The hyperconcentrated density flows are said to be ‘non-Newtonian’ (Fig. 4) and to have 

‘no yield strength’, whereas the authors’ reference to ‘sandy debris flows’ and ‘grain 

flows’ implies rheologically plastics, rather than fluids. The proverbial apples should 

preferably not be mixed with oranges.  

• The use of the term ‘hyperconcentrated flow’ is potentially misleading, because this term 

was originally introduced to denote a flow with ‘behaviour intermediate between that of a 

mudflow [debris flow] and that of a common streamflow [water flow]’ (Beverage and 

Culbertson, 1964; see also Wasson, 1979), whereas Mulder and Alexander (2001) 

apparently use it as a virtual synonym of debris flow. 

• The authors’ notion of ‘flow density’ is confusing, because on the one hand it refers to the 

flow’s absolute density (sediment concentration) when it comes to the flow behaviour, but 

on the other hand refers to the relative density of different flows (more concentrated or 

less concentrated, on a comparative basis) and also to the absolute density difference 

between the flow and the ambient water. A particular flow may thus have a ‘high density’ 

when its turbulence is suppressed by sediment concentration, but be of ‘low density’ 



 

17 

compared to a hyper-concentrated flow and yet be of ‘high density’ when spreading as an 

underflow along the seafloor. 

• The term ‘turbidity current’ in this classification has been limited to flows with a Newtonian 

behaviour, which means highly dilute, extremely low-density turbidity currents only.  

• When it comes to the actual deposits of turbidity currents, the sequences of sedimentary 

structures and vertical grain-size trends drawn by Mulder and Alexander (2001) are 

purely hypothetical and, much like the grain-size trends in Kneller’s (1995) model (see 

later Fig. 7), seem to be little-realistic, if not false and somewhat naïve. Simply, too little is 

known about the relationship between the changes in hydrodynamic behaviour of density 

flows – especially the sustained and the more concentrated ones – and the response 

mode of sediment deposition.     

 

In the Mulder and Alexander (2001) classification, bedforms and related stratifications are 

expected to develop from concentrated density flows and turbidity currents, but not from 

hyper-concentrated flows (which, again, implies debris flows, rather than currents, for this 

latter category). However, the depositional models for bedforms suggested in the literature 

(Fig. 6) are hypothetical, surrounded by precaution that they are merely ‘syntheses’ of some 

‘wide spectra of field cases’. For example, Bouma (1962) himself admitted that his complete 

‘sequence’ in the Annot Sandstone succession – where it was first defined – appeared to be 

relatively uncommon, if not rare. 

 
Fig. 6. Characteristic features of deposits of density flows in which turbulence is the primary grain-support 
mechanism. After Shanmugam (2000), based on Bouma (1962), Stow and Shanmugam (1980) and Lowe (1982).  
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The stability fields of hydraulic bedforms for high sedimentation rates are not well known 

(Allen, 1982; Lowe, 1988), and also the conditions for, and behaviour of, both traction carpet 

and ‘moving bed’ are debated (Hiscott, 1994a, b, 1995; Sohn, 1995, 1997, 1999).  Bedform 

development is usually studied for laboratory conditions of quasi-steady flow. In flows where 

the basal part has a sufficiently low particle concentration, specific bedforms (such as plane 

bed configuration, ripples or dunes) can develop if flow conditions are maintained for long 

enough to achieve hydrodynamic equilibrium (Southard, 1971; Southard and Boguchwal, 

1973). Climbing ripples, for example, are known to be associated with high sediment fallout 

rates from a quasi-steady turbulent flow, which implies that establishment of a hydrodynamic 

equilibrium is a requirement for the development of particular bedforms.  

Many density flows are expected to be short-lived, waning and highly unsteady surges. 

Other density flows may be sustained and have pronounced phases of quasi-steady 

conditions, but yet others may be characterized by waxing/waning pulses of variable 

frequency and magnitude, and may also involve phases of erosion and/or sediment bypass 

(which effectively means gaps in depositional record). Therefore, it is a very difficult task to 

decipher reliably the flow’s hydraulic history from its deposit, or to predict the depositional 

product for any particular flow. Accordingly, one has to concluded that turbidity currents are 

probably the most complicated and least understood flow phenomena, and hence the 

general importance of laboratory experiments and numerical simulations.  

 

2.3. Turbidity currents – varieties, origin and beh aviour 
 
The term turbidity current was introduced by Johnson (1938) to define a current generated 

due to turbid or muddy water.  Etymologically, ‘turbidity current’ means water flow driven by 

turbidity, or simply turbid flow (i.e., a water flow rendered opaque by suspended sediment) 

(Shanmugam, 2000). A widely accepted definition (Middleton and Hampton, 1973) says that 

‘turbidity currents are sediment-gravity flows in which the sediment is supported mainly by 

the upward component of fluid turbulence’.  

As discussed in the preceding sections of this chapter, turbidity currents constitute the 

most dilute (‘low-density’ according to Mulder and Alexander, 2001) end-member of the 

natural spectrum of subaqueous sediment-gravity flows (Fig. 4). However, Mulder and 

Alexander (2001) simultaneously consider the density difference between the flow and the 

ambient water, and hence regard sediment-gravity flows as the ‘high-density’ end-member in 

the spectrum of density flows. On the basis of this latter criterion of flow/ambient density 
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difference, the density flows are categorized as (Fig. 7): 1) hypopycnal flows; 2) homopycnal 

flows; 3) mesopycnal flows; and 4) hyperpycnal flows. 

 
Fig. 7. Four types of density flow and their occurrence in a continental-margin setting (after Mulder and 
Alexander, 2001). Arrows are used to indicate direction of transport, settling and resuspension of sediment. 
 

In accordance to the original terminology of Bates (1953), flows with a density lower than 

that of ambient water are called ‘hypopycnal’ flows (overflows). Hypopycnal flows occur 

primarily at river mouths, where sediment is dispersed as a buoyant plume (Nemec, 1995).  

The negative difference in density between the river effluent and the ambient water is usually 

caused by the differences in temperature and salinity between the river water and the 

seawater of the basin, which are in this case more significant than the positive difference in 

density caused by sediment suspension. 

At some point off the river mouth, the hypopycnal plume may undergo transition and 

plunge to the seafloor as the flow density becomes higher than that of the ambient water.  

The transition is attributed to the mixing of saline ambient water into the flow and a 

temperature decrease of the river-derived water. The effluent in some cases may plunge 

directly at the river mouth. Such density flows, with a positive density difference relative to 

the ambient water, are called ‘hyperpycnal’ flows (underflows).  The term hyperpycnal literally 

means ‘above a density threshold’. In its modern usage, the term refers to sustained turbidity 

currents (‘low-density’ sediment-gravity flows sensu Mulder and Alexander, 2001) generated 

directly by the plunging of river effluent. 

The other types of density flow are ‘homopycnal’ and ‘mesopycnal’ flows (Fig. 7).  

Homopycnal flow occurs where the flow density approximately equals the density of ambient 

water, which may mean a relatively low suspension load and an absence of temperature 

difference between the flow and the ambient fluid, such as where a river flows into a well-

mixed lake (Bates, 1953). Mesopycnal flow (intraflow or intrusive flow) occurs when the 

density of flow is between the densities of the lower and upper layer in a stratified water 

column, such that the flow effectively spreads along a pycnocline. Mesopycnal flows are 

particularly important in strongly stratified marine basins where density differences between 

water layers are considerable (Rimoldi et al., 1996). The hypopycnal and hyperpycnal flows 
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can thus be regarded as the end-members and predominant varieties of density-flow 

behaviour. Homopycnal and mesopycnal flows are less common in deep-water basins and 

require rather special conditions, although a homopycnal stream effluent characterizes 

virtually all ‘shoal-water’ deltas, especially if wave-dominated. 

As pointed out in the previous section, the duration of turbidity current is an important 

factor reflecting the intensity of sediment supply and affecting the current’s depositional 

record – the character of the resulting turbidite. From the point of view of their duration, 

turbidity currents are divided into surge-type flows and sustained (long-duration) flows 

(Kneller and Branney, 1995). A sustained turbulent current is defined as a density flow in 

which the mean velocity at a point remains unchanged over a significant period of time, 

which means that sustained currents tend to be quasi-steady over significant time periods. In 

reality, all natural turbidity currents are unsteady on the full time-scale of their duration, 

although their mean local velocity may remain nearly constant for a period of hours to days 

(Shepard et al., 1979) or possibly even several weeks to a few months (Nakajima, 2006).  

Kneller (1995) distinguished further five classes of depositional turbidity currents on the 

conceptual basis of flow-velocity steadiness and uniformity (Fig. 8). Depending on whether 

the flow velocity at a point decreases, remains constant or increases, the current is said – 

respectively – to be ‘waning’, ‘steady’ or ‘waxing’. Likewise, depending on whether the flow 

velocity decreases, remains constant or increases with downflow distance, the current is said 

to be ‘accumulative’, ‘uniform’ or ‘depletive’, respectively.  

 

 
Fig. 8. The flow steadiness/uniformity matrix of Kneller (1995) predicting the depositional and non-depositional 
behaviours of turbidity current and the expected grain-size trend of the deposit. 
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According to Kneller (1995), only the waning and the depletive currents are depositional, 

whereas the steady or waxing uniform and accumulative currents cause erosion and/or 

sediment bypass (Fig. 8). An important implication of this conceptual scheme is that a surge-

type (waning) flow will invariable be depositional, whereas the sustained currents may be 

subject to waning/waxing pulses and remain quasi-steady for considerable intervals of their 

duration, which allows for considerable episodes of non-deposition.  

The triggering mechanisms  — The triggering mechanisms for turbidity currents are 

closely related to the position of these currents in the continuum of sediment-transporting 

density flows (Mulder and Alexander, 2001). On the one hand, turbidity currents constitute 

the relatively dilute end-member of slope failure-generated sediment-gravity flows. As such, 

turbidity current may evolve by progressive dilution of a denser flow (Kelts and Hső, 1980; 

Siegenthaler et al., 1987). The initiation of failure-produced sediment-gravity flows is 

commonly attributed to slope instability (i.e., remobilization of unconsolidated sediment 

deposited at the shelf break or in the submarine canyon head). Instability may be induced by 

earthquakes, volcanic activity or intense internal-wave action at or near the shelf break 

during storms (Mulder and Alexander, 2001). Turbidity currents may also arise directly from 

suspension clouds generated by storm activity on a shelf (Prior et al., 1989). 

On the other hand, turbidity currents form at river mouths during periods of high 

discharge, when the sediment-laden effluent plunges directly to the seafloor or when a 

buoyant (hypopycnal) plume of river effluent transforms into hyperpycnal flow by increasing 

its density through temperature and salinity diffusion (Wright et al., 1986; Lambert and 

Giovanoli, 1988; Mulder and Syvitski, 1995, 1996; Nemec, 1995; Johnson et al., 2001). Many 

modern turbiditic fans show an obvious direct connection to river outlets (Bouma et al., 1985; 

Kneller and Buckee, 2000; Nakajima, 2006), and it is generally recognized that the growth of 

turbiditic systems occurs when fluvial systems can discharge their sediment load directly to 

the shelf break, notably during sea-level lowstands (Mutti, 1985; Shanmugam et al., 1985; 

Mutti and Normark, 1991; Posamentier et al., 1991; Normark et al., 1993), but possibly also 

during a highstand if the shelf is traversed by canyons (Nakajima, 2006) or the rate of delta 

progradation is sufficiently high to reach the shelf break (Burgess and Hovius, 1998). The 

river-generated turbidity currents are thought to be mainly of a ‘sustained’ (long-duration) 

type (Kneller and Branney, 1995; Kneller and Buckee, 2000; Nakajima, 2006). 

Long-duration turbidity currents can also be generated by multiple, retrogressive slumping 

of sand bars at river mouths, even when the sediment concentration at the river outlet during 

a flood run-off is too low to produce directly hyperpycnal turbidity current (Mastbergen and 

van den Berg, 2003). Retrogressive slumping may also occur on non-deltaic subaqueous 

slopes if over-steepened by sediment deposition. Some sustained turbidity currents may 
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form by the confluence of flow surges descending from various parts of the basin slope (e.g., 

due to an earthquake) and coalescing into a pulsating flow in a basin-floor channel. 

Surge-type turbidity currents  — Flow surges are phenomena of relatively short 

duration with no persisting sediment supply. The flow is strongly non-uniform (i.e., its velocity 

varies with distance) and the development of a flow body is negligible (Middleton, 1966a).  

Surges are mainly depositional, and usually fail to transport sediment coarser than sand.  

Sediment is maintained in suspension through the upward component of turbulence and 

settles gradually, with a significant tractional movement along the bed and the development 

of bedforms (sedimentary structures) corresponding to the Bouma divisions B and C (Fig. 6) 

and possibly also including dunes (Allen, 1982). If decelerating too rapidly and temporarily 

overcharged with suspended load, the flow will dump the excessive load and form the 

Bouma division A (Allen, 1991) (Fig. 6). The head of the current is erosive, but the degree of 

substrate erosion generally declines with the flow distance. Erosion may be enhanced when 

the current reaccelerates due to a steeper slope or flow constriction (Mulder and Alexander, 

2001). Surges generally have finite and relatively small volumes, and hence do not produce 

thick deposits. Most surges are probably triggered by subaqueous slope failures. 

The duration of flow surge at a point depends on the scale of the slope-failure event. 

Small surges (flow thickness of centimetres to metres) have duration of seconds to minutes. 

Bedforms (sedimentary structures) tend to be rare in the deposits from such surges, because 

stable bedforms take time to develop, whereas the duration of bedform-generating stable 

conditions may be too short. In contrast, large surges (flow thickness of tens to hundreds of 

metres) may last for hours (e.g., the Grand Banks current had duration of over 9 hours; 

Hughes-Clarke et al., 1990) and develop long bodies, although their flow will be non-uniform 

and unsteady. The head and frontal part of the body are usually waxing and may be erosive, 

whereas the rest of the flow body and its tail are waning. These large surges tend to deposit 

well-developed Bouma turbidites Tbcd (Fig. 6) 

Sustained turbidity currents  — A sustained turbidity current is characterized by flow 

that persists for a time period over its entire route (i.e., the flow at the source continues, while 

the current’s head has already reached the area of ultimate flow dissipation, which means 

behaviour comparable to that of an ephemeral river). Kneller and Branney (1995) defined 

sustained current of the basis of the flow velocity pattern, as a flow in which the mean 

velocity at a particular point remains unchanged over a significant period of time. 

Mulder and Alexander (2001) defined sustained current as ‘a steady motion of a particular 

body in which no boundary (head or tail) is observed’ and considered the main difference 

between surge-type and sustained currents to be ‘in the duration of the flow’s waxing phase 

(i.e., the phase of velocity increase at a point)’. None of these notions is strictly true and shall 

be part of a definition, because: 1) a sustained flow does not necessarily need to be steady; 
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2) the flow is not infinite and hence will invariable have a head at the beginning and a tail at 

the end, and may also have several successive heads (volume pulses) ploughing at a higher 

speed through the preceding flow body; and 3)  the waxing phase in sustained flow may not 

necessarily by longer than in a large surge-type current, depending on where the point of 

reference is located. As pointed out by Nakajima (2006), a sustained current may involve a 

series of successive flow pulses, which – if given sufficient distance – may outrun the current 

and form a powerful head, rendering the current similar in behaviour to a large surge.  

In a sustained current, the duration of the passage of the head (or flow front) is very short 

compared to the passage of the body, which means that the head in such a case is relatively 

insignificant in determining the nature of the deposit (Kneller and Buckee, 2000).  

Hyperpycnal density flows are considered to be sustained and quasi-steady, at least for 

some significant periods, as the flow is fed by river flood discharge with a duration of hours to 

months. The deposit in such a case is expected to reflect mainly the body flow conditions. 

Sustained turbidity currents develop frequently in lakes, where relatively little sediment 

suspension is needed to produce excess flow density and where the hyperpycnal flow can 

persist for days or several weeks, depending on the river-flood duration and seasonal 

weather conditions (Skene et al., 1997; Mulder et al., 1998; see also review by Nemec, 

1995). To an observer at a particular point, the phenomenon appears to be steady for a 

prolonged period, particularly if the discharge varies gradually, although the flow may be 

uniform or non-uniform over a long distance, depending on the slope and initial momentum. 

Sustained turbidity currents have attracted increased interest in the past decade (Nemec, 

1990, 1995; Mulder and Syvitski, 1995; Skene et al., 1997; Mulder et al., 2001, 2003; Mutti et 

al., 2003; Baas et al., 2004), because it has been realized that these flows may be the most 

plausible explanation for the formation of meandering submarine channels and that the 

deposits of these flows may constitute large parts of many petroleum reservoirs. Little is 

known as yet – in terms of diagnostic sedimentological criteria – as to how the deposits of 

sustained currents can be recognized; how the deposits of hyperpycnal flow (‘hyperpycnites’) 

can be distinguished from the products of sustained flows of other origin; and to what extent 

the sustained current’s deposit may reflect the generator’s sediment-flux pattern (e.g., river 

flood hydrograph) and to what extent the latter can be obliterated in the depositional record 

by the flow’s own evalution in the basin (e.g., see discussion by Nakajima, 2006).  

Mulder and Alexander (2001) have hypothetically suggested that the depositional 

signatures of sustained turbidity currents may vary from an inversely-graded unit overlain by 

normally-graded one to various sequences in which the inversely-graded unit is partly or 

completely eroded before the deposition of normally-graded unit (cf. Fig. 8). At locations 

where the flow is both steady and depletive, thick deposits with uniform grain size may form.   

Climbing ripples may develop when the flow velocity is low (i.e., ranging from a few 
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centimetres to about a metre per second, depending on the flow’s Froude number).  Climbing 

ripples may be a major sedimentary feature of sustained-flow turbidites, as they represent 

the steady migration of a typical hydraulic bedform with a relatively high rate of sediment 

fallout from suspension. However, all these are intuitive suggestions that need yet to be 

verified and possibly elaborated by field studies and by laboratory or numerical experiments.   

The anatomy of turbidity current  — Turbidity currents are described to have a well-

defined head, body and tail, and in some cases also a thinner neck linking the head with the 

body (Middleton, 1966a, b; Simpson, 1987). The dynamics of the head are particularly 

important, because they set the boundary condition for the current as a whole (Britter and 

Simpson, 1978). Allen (1971) and Middleton (1993) have pointed out that the head is a locus 

for erosion, and hence of primary sedimentological importance. The head has an 

overhanging snout as a result of the no-slip condition at the lower boundary and frictional 

resistance at the upper boundary (Fig. 9). The no-slip condition requires that the velocity 

must decrease to zero at the boundary between the fluid and the stationary substrate.  At the 

rear of the head, a series of transverse vortices (billows) develop, identified as a product of 

the Kelvin-Helmholtz instabilities (Britter and Simpson, 1978). 

 

 

Fig. 9. Laboratory flume photograph showing the frontal part of an experimental turbidity current, with sketches 
showing the Kelvin-Helmholtz billows (1) and frontal lobes and clefts (2). From Simpson (1987). 
 

Middleton (1966b) performed the first comprehensive set of laboratory experiments on 

the heads of brine currents and turbidity currents, investigating the effects of slope on the 

velocity and shape of the head. The downstream velocity in the body of the current, which 

depends on the slope, has been shown to be up to 30-40 % faster than the head velocity 

(Middleton, 1966b; Kneller et al., 1997, 1999).  Consequently, the head height increases with 

the slope angle, as the body velocity increases and material moves rapidly from the body into 

the head (Hopfinger and Tochon-Danguy, 1977; Britter and Linden, 1980; Simpson, 1987).  

The turbulence structure in the current head (Fig. 10) is dominated by backward shearing at 

the upper interface against the ambient water, as documented recently in considerable detail 
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by Kneller et al. (1997, 1999) and Parson (1998). Time series of instantaneous downstream 

velocity show a clear record of the arrival of the head and the passage of large, low-

frequency Kelvin-Helmholtz billows superimposed on a period of quasi-steady motion.  

Entrainment of ambient water into the head is a function of the densimetric Froude number 

(Ellison and Turner, 1959), and hence the initial reduced gravity Kneller et al. (1999). 

 
Fig. 10. Laboratory flume photograph and corresponding sketch showing the frontal part of an experimental 
turbidity current. From Allen (1982). 
 

Few physical descriptions of the body and tail of turbidity currents are available in the 

literature. Ellison and Turner (1959) describe the body as a region of steady downstream 

velocity which has a thin, dense layer of fluid near the base of the current. The flow in this 

region, with an increasing downstream velocity, mixes with the ambient fluid at the upper 

boundary as an irregular succession of large eddies. In general, the body of turbidity current 

can be divided into two distinct regions: the lower, dense layer and the region of less-dense 

fluid that has been mixed out of the head of the current (Britter and Simpson, 1978; Simpson 

and Britter, 1979). Time series of downstream velocity in the body of quasi-steady gravity 

currents reveal the presence of large coherent eddy structures which are associated with 

internal-wave action and advect with the current (Kneller et al., 1997; Best et al., 2001).  

Instantaneous velocities in the body may be up to 40 % higher than the time-averaged 

downstream velocity in the body (Buckee et al., 2001) and, therefore, be equivalent to or 

higher than the instantaneous velocities in the head. This suggests that the body of the 

current may play a significant role in sediment entrainment, not only its downflow transfer. 

The vertical profile of turbidity current is described to have an inner and an outer region, 

divided by the horizontal velocity maximum. The inner region is bounded at the base by the 

substrate-flow interface and has a positive velocity gradient, whereas the outer region has a 
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negative velocity gradient and is bounded at the top by the interface with the ambient water.  

The inner (lower) region is generally less than half the thickness of the outer (upper) region. 

The height of the velocity maximum is controlled by the ratio of the drag forces at the upper 

and lower boundaries. Gravity currents are density stratified; that is, they have a vertical 

concentration gradient, with a dense, poorly-mixed heterogeneous basal layer and a less 

dense, mixed homogeneous region above. 

Two main types of sediment concentration profiles have been observed in laboratory 

turbidity currents: 1) a smooth profile is commonly seen in low-concentration, weakly 

depositional currents (Altikanar et al., 1996; Garcia, 1990, 1994) and in saline gravity 

currents (Ellison and Turner, 1959); and 2) a steepened concentration profile is commonly 

observed in erosive currents (Garcia, 1993) or currents interpreted to have a high 

entrainment rate at the upper boundary (Peakall et al., 2000). Experiments in which the 

vertical grain-size distribution has been measured (Garcia, 1994) show that fine-grained 

sediment is more uniformly concentrated in the lower part of the current. From laboratory and 

field measurements, it is possible to define a standard velocity and concentration profile for 

equilibrium turbidity currents (e.g., Sloff, 1997; see Fig. 11). 

 

 
 

Fig. 11. Measurements of flow velocity in experimental supercritical (left) and subcritical (right) turbidity 
current, with fitted velocity profiles (Sloff, 1997). 
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3. METHODOLOGY 

 

3.1. Research methods 
 
Since Kuenen (1937) and Kuenen and Migliorini (1950) first demonstrated experimentally 

that turbidity currents were the single most important mechanism for the dispersal and 

deposition of clastic sediment into the deep sea, the corresponding world-wide research has 

followed three main lines of scientific approach: 1) outcrop-based studies; 2) laboratory 

experiments; and 3) numerical simulations based on mathematical models of physical 

processes (Fig. 12). 

 
Fig. 12. The main methodological approaches to improving our understanding of turbidity currents. 

 

The research on turbidity currents has been limited by the difficulties of studying them in 

nature. Turbidity currents may reach velocities of tens of metres per second and heights of 

hundreds of metres (Heezen and Ewing, 1952), and such giant phenomena are not easy to 

monitor. Even some modest currents have damaged equipment deployed for the purpose of 

studying them (Shepard et al, 1979; Zeng et al., 1991; Xu et al., 2004). Therefore, much of 

what is known about large natural turbidity currents (i.e., those that are really significant in 

terms of sediment transport to the deep sea) has been inferred from indirect sources, such 

as submarine cable breaks (Heezen and Ewing, 1952). 

The three methodological lines of research on turbidity currents (Fig. 12) are reviewed 

briefly below, as they form an interlinked feedback system of our growing knowledge on 

these processes and hence are inseparable from one another. The present study focuses on 

the mathematical modelling of physical processes and their numerical simulation, and this 

approach not only supplements the two other lines of research, but necessarily relies on 

them when it comes to the construction and verification of models.  

Outcrop-based studies  — Outcrop studies can provide valuable sedimentological data 

at various scales. After all, the discovery of ’turbidity current’ was based on the rock record 
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(Sheldon, 1928), and so was also the Bouma sequence defining typical turbidity-current 

behaviour (Bouma, 1962) (Fig. 6). On a large scale, the vertical successions of turbidites, the 

lateral changes in the sedimentological characteristics of turbidite beds and their depositional 

(bedding) architecture can be studied to recognize and understand such stratigraphic 

elements as depositional lobes, palaeochannels and associated levee/overbank deposits 

(e.g., Janbu et al., 2007). Similar research, focused on the palaeogeomorphology of turbiditic 

systems, is being increasingly done on the basis of 3D seismic sections. Hydrodynamic 

inferences are based on the small-scale observations of turbidite bed characteristics in 

outcrops and drilling cores. The results of outcrop studies are both revealing and important, 

providing the crucial link with stratigraphic reality. However, the outcrop-based process 

interpretations are often hypothetical, speculative and unverifiable. To be reliable, this 

methodological approach requires a solid theoretical and experimental basis (Fig. 12). 

Laboratory experiments  — Small-scale laboratory experiments are an alternative and 

widely used method to study turbidity-current dynamics. Laboratory research has a long 

tradition and a long list of important studies, beginning with Kuenen’s (1937) classic work and 

and Middleton’s (1966a, b, 1967) seminal flume experiments. Some of the most recent 

experimental studies are compiled by McCaffrey et al. (2001). 

Advances in experimental technology in the last decade have increased our insight from 

broad descriptions of turbidity-current behaviour to details of the turbulence structure in these 

flows (Kneller et al., 1997, 1999; Parsons, 1998; Best et al., 2001; Buckee et al., 2001). 

Furthermore, it is the physical laboratory data – along with outcrop evidence – that are 

needed for the calibration and verification of numerical models (Fig. 12). However, the 

advantages of laboratory experiments are offset by the scaling problems. The scaling of 

natural turbidity currents to laboratory level, or vice versa, is a major problem that has been 

extensively discussed and variously handled in fluid dynamics (e.g., Prandtl, 1952; Duncan, 

1953; Middleton and Southard, 1984; French, 1985). 

There are basically four different approaches to the scaling of physical models: 1) one-to-

one replicas of the field prototype; 2) distorted-scale modelling; 3) non-scaled experimental 

analogues; and 4) Froude number similarity. The large scale of turbidity currents in the 

world’s oceans renders them impossible to reproduce at a one-to-one basis. Consequently, 

scaled laboratory experiments are the preferred way to study turbidity currents. The results of 

non-scaled experimental analogue models of large turbidity currents (Alexander and Morris, 

1994), though qualitatively informative, are difficult to apply quantitatively. Distorted-scale 

experiments with unrealistically steep slopes, for example, have been used to obtain 

appropriate bed shear stresses (Postma et al., 1988) and may be the best way of 

reproducing specific aspects of natural currents, although the results necessarily require 

some caution when it comes to their application. 
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Froude-scale modelling is based on a similarity approach in which the gravity current is 

fully characterized by a range of dimensionless variables. As long as the values of these 

dimensionless variables in laboratory currents are known to be comparable to those in 

natural currents, the experiment is considered to be adequately scaled and allows the large-

scale natural currents to be modelled in the laboratory (Middleton, 1966a). Dimensional 

analysis depends upon identification of the controlling variables, which are then grouped into 

a smaller number of dimensionless parameters such as the Froude number. In the Froude-

scale modelling of turbidity currents, the densimetric Froude number is used, since the action 

of gravity depends upon the fractional density difference between the sediment-laden current 

and the ambient water. In addition, the laboratory turbidity currents must be scaled to the 

natural system. Under the assumption that the settling velocity adequately describes the 

particle hydrodynamics, a dimensionless settling velocity is used, which is defined as the 

ratio of the terminal settling velocity of sediment particles to some velocity scale that is 

considered characteristic of the current (Middleton, 1966a; Laval et al., 1988).  

Electrostatic forces may change the correctly-scaled settling velocity of very fine sediment 

in experimental studies, and this problem can be solved by using glass beads or silica flour 

(Parker et al., 1987; Garcia, 1993). Another potential problem is due to the fact that fine 

sediment is subject to capillary forces once settled. The capillary forces arise from the 

adhesive intermolecular forces between sediment particles and water, which – in the case of 

fine-grained sediment – are larger than the cohesive forces between the water molecules 

(Atkins, 1990). The impact of the capillary forces on substrate erodibility can only be reduced 

by using larger grain sizes. The settling velocity can also be scaled by using grains of 

reduced density, but the consequent reduction in the bulk density of the current necessitates 

an increase in the sediment concentration, which may no longer scale with the whole current 

behaviour (Middleton, 1966a; Peakall et al., 1996). Therefore, problems invariably arise in 

reproducing natural-scale flows in a laboratory. 

Mathematical modelling and numerical simulations  — Mathematical models, if 

skilfully designed, can provide considerable insights into turbidity-current dynamics. This 

approach is particularly valuable when it comes to an understanding of the complex system 

of the controlling variables and their feedback mechanisms operating in turbidity currents.  

Analytical solutions have been proposed for some aspects of turbidity-current behaviour 

(Chu et al., 1979), but numerical techniques are by far the most promising tool to understand 

and predict three-dimensional turbidity currents and their deposits.  

Turbidity currents are highly complex phenomena. In most cases, there are more 

variables than governing equations, and many models thus rely heavily on various 

simplifying assumptions to circumvent this problem. Observational data from experiments 

and outcrops provide a means of constraining some of the variables and also allow 
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calibration and verification for mathematical models (see the learning feedback in Fig. 12). 

Numerical modelling of turbidity currents spans the full range from simple hydraulic equations 

and box models to highly complex turbulence models.  Numerical models may be used for a 

wide range of purposes, from the prediction of turbidite geometries and grain-size distribution 

to the modelling of the vertical structure of turbulence in turbidity current. 

Mathematical models may be process-based (deterministic), rule-based (empirical), or a 

combination of both. A major drawback in the building of a fully dynamic, process-based 

model is the complexity involved in breaking down the interacting processes into elementary 

objects and continua to which the Newton laws can be applied exactly: the deductive or 

process-based approach (Paola, 2000). Yet another, related issue is the large amount of 

computer power required to run the complex physically-based algorithms that are needed to 

present the interaction of sediment transport processes with external forces. To limit the 

complexity, and thus the amount of computing power needed, many models either reduce 

the number of dimensions or use a rule-based design. The extent to which a 2-D or 2.5-D 

(depth-averaged or shallow-water) representation may be considered a valid simplification of 

natural conditions depends largely on the system that is to be modelled.  

In the case of turbidity currents, in which turbulent fluxes in the direction transverse to 

flow play a significant role in the hydrodynamics of the current, a fully three-dimensional 

representation is preferable. Characteristic of the rule-based and process-response models 

is a relatively simple description of the processes involved. Instead of a detailed physical 

description of the processes, their behaviour is translated into rules that capture merely the 

essence of the processes. The essence in this context refers to these properties of the 

process that are responsible for the expected response. The expected response is obtained 

from a combination of field/laboratory observations and detailed knowledge of the physics of 

the processes involved. Consequently, a quantitative verification (to small-scale experiments) 

is difficult in many such models, because the very basic translation of the elementary laws of 

physics includes an implicit up-scaling step, in which the influence of small-scale processes 

on sedimentation is assumed to be negligible. 

 

3.2. Computational fluid dynamics 
 
The foundations for experimental fluid dynamics were laid in the 17th century France and 

England (Tokaty, 1971). As a result, the study and practice of fluid dynamics throughout 

most of the 20th century involved the use of pure theory on the one hand and pure experiment 

on the other hand. However, this practice changed with the advent of the digital computer in 

the 1960s, combined with the development of accurate numerical algorithms for solving 
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physical problems with the use of these computers. This progress has led to a fundamentally 

new numerical approach in fluid dynamics – the computational fluid dynamics (CFD). 

The term ‘computational fluid dynamics’ refers to the broad topic encompassing the 

numerical solution – by computational methods – of the governing equations that describe 

fluid flow: 1) the conservation of momentum (known as the Navier-Stokes equations); 2) the 

conservation of fluid mass; and 3) any additional conservation equations that may be 

relevant (Wesseling, 2001). It nicely and synergistically complements the other approaches, 

but it will never replace any of them, because there will always be a need for theory, facts 

from nature and laboratory experiments. The future advancement of fluid dynamics rests 

upon a proper balance of all three methodological approaches (Fig. 12), with computational 

fluid dynamics helping to interpret and understand the results of theory and experiment, and 

vice versa. The acronym CFD is now universally accepted and will be used further below.  

 

3.3. Flow-3D™  
 
The CFD has grown over the years from a mathematical curiosity to become an essential 

tool in almost every branch of fluid dynamics. In its design and development, CFD is 

considered to be a standard numerical method, widely utilized today in the industrial and 

academic research. There are many CFD software programs available, and several of them 

have been evaluated for the present study.  

Flow-3D™ is a general purpose CFD software program that employs specially 

developed numerical techniques to solve the equations of motion for fluids to obtain 

transient, three-dimensional solutions to multi-scale, multi-physics flow problems. Fluid 

motion is described with non-linear, transient, second-order partial differential equations. The 

fluid equations of motion must be employed to solve these equations. A numerical solution of 

these equations involves approximating the various terms with algebraic expressions. The 

resulting equations are then solved to yield an approximate solution to the original problem, 

and this process is called a simulation. The Flow-3D™ approach is to subdivide the flow 

domain into a computational mesh, or grid of rectangular cells, sometimes called brick 

elements. The mesh is effectively the numerical space that replaces the original physical 

one. It provides the means for defining the flow parameters at discrete locations, setting 

boundary conditions and for developing numerical approximations of the fluid motion 

equations. Finite difference and finite volume methods form the core of the numerical 

approach used in Flow-3D™ and they are applied to obtain numerical solutions to differential 

equations on such meshes (Ames, 1992). The finite difference method is based on the 

properties of the Taylor expansion and on the straightforward application of the definition of 
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derivatives. The finite volume method derives directly from the integral form of the 

conservation laws for fluid motion and, therefore, naturally possesses the conservation 

properties.  In addition, Flow-3D™ is equipped with a range of physical models that expand 

its capabilities beyond those of many other CFD software programs. 

Flow-3D™ has been adopted, because the main physical models needed to simulate 

turbidity-current dynamics are available in this CFD software, namely: 1) the renormalization-

group (RNG) turbulence model; 2) the drift-flux model; 3) the particle model; and 4) the 

sediment scour model. 

RNG turbulence model  — Flow-3D™ has implemented a more recent turbulence model 

based on renormalization-group methods (Yakhot and Orszag, 1986; Yakhot and Smith, 

1992). This approach applies statistical methods for a derivation of the averaged equations 

for turbulence quantities, such as turbulent kinetic energy and its dissipation rate. The RNG-

based models rely less on empirical constants, while setting a framework for the derivation of 

a range of models at different scales. The RNG model uses equations similar to the 

equations for the k-ε turbulence model (Harlow and Nakayama, 1967), but the equation 

constants that are found empirically in the standard k-ε model are derived explicitly in the 

RNG model. Therefore, the RNG model has wider applicability than the standard k-ε model. 

In particular, the RNG model is known to describe more accurately low-intensity turbulence 

flows and flows having strong shear regions. 

Drift-flux model  — In the fluids consisting of multiple components (e.g., fluid/solid 

particles, fluid/bubbles, fluid/fluid mixtures), where the components have different densities, it 

is observed that the components can assume different flow velocities. Velocity differences 

arise because the density differences result in non-uniform body forces. The differences in 

velocities can often be very pronounced (e.g., large raindrops falling through air or gravel 

clasts sinking in water). Under many conditions, however, the relative velocities are small 

enough to be described as a ‘drift’ of one fluid component through the other. Examples are 

dust in air and sediment in water. The ‘drift’ distinction depends on whether or not the inertia 

of a dispersed component moving in a continuous component is significant. If the inertia of 

relative motion can be ignored, and the relative velocity reduced to a balance between a 

driving force (e.g., gravity force or a pressure gradient) and an opposing drag force between 

the components, then it is a ‘drift-flux’ approximation. Drift velocities are primarily responsible 

for the transport of mass and energy. Some momentum may be transported as well, but this 

is usually quite small and has been neglected in the Flow-3D™ drift model. The idea behind 

the drift model is that the relative motion between the fluid components can be approximated 

as a continuum, rather than by discrete elements (e.g., sediment particles). This enhances 

computational efficiency, as there is no need for a computational tracking of the motion and 

interaction of discrete elements. 
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Particle model  – The particle model implicitly couples the momentum of discrete-mass 

particles with a continuous fluid.  Particles may have individual masses, which are computed 

to move under the action of forces that include body forces (gravity), viscous and form drag, 

and buoyancy forces computed from the local pressure gradient. Particles may bounce or 

stick to rigid surfaces according to a coefficient of restitution and are transmitted or reflected 

from granular surfaces with a probability proportional to the fraction of open area. In addition, 

particles can move in both void and liquid regions and particles may have a variable 

distribution of density or size. The particle motion is influenced by fluid flow through the drag 

forces. A fully coupled particle/fluid interaction model is included in the Flow-3D™ to account 

for interactions between the continuous and dispersed materials that arise due to the drag 

experienced by the dispersed particles as they move through the continuous fluid. The 

displacement of fluid volume by particle volume is not taken into account in the particle 

model, because the particle-fluid momentum exchange is considered to be a more important 

factor, as it can be significant even when the volume of particles is small. The momentum 

change in the fluid resulting from the interaction with a particle is expressed as a drag 

coefficient multiplying the relative velocity between the fluid and the particle. An implicit 

numerical method is used in the Flow-3D™ to couple the momentum of the particles and 

fluid together. 

Sediment scour model  — The sediment scour model predicts the behaviour of packed 

and suspended sediment within the three-dimensional computational capabilities of Flow-

3D™. This model is based on the drift-flux model and presumes that most of the sediment 

transport is by suspension (Van Rijn, 1987) and advection due to the influence of the local 

pressure gradient. Suspended sediment originates from inflow boundaries or from erosion of 

packed sediment. Packed sediment can only move if it becomes eroded into suspended 

sediment at the packed sediment – fluid interface. Suspended sediment can become packed 

sediment if the fluid conditions are such that the sediment drifts towards the packed bed 

more quickly than it is eroded away. At the surface of the packed bed of sediment, the fluid 

shear stress acts to remove sediment; the empirical Shields number (e.g., Guo, 2002) is 

used to correlate the minimum shear stress required to lift a sediment particle away from the 

packed bed interface for various particle diameters and densities. A drag model is used to 

mimic the solid-like behaviour of sediment particles in regions where the particle 

concentration exceeds a cohesive solid fraction. The angle of repose controls how steep a 

slope can be supported by the packed sediment in a quiescent flow region. Where the angle 

is zero (i.e., a horizontal surface with respect to gravity), the effective critical shear stress is 

equal to the critical shear stress. 

In the present study, these four models have been used in various combinations to 

simulate turbidity currents on both small (laboratory) and large (natural) scale. 
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4. RESULTS OF THE PRESENT STUDY 

 

4.1. Small-scale simulations 
 

Most of the numerical simulations have been performed on a scale of laboratory currents, 

because such small-scale experiments require less computational capacity and — once 

properly designed — can be run on a laptop computer. 

Specific aims  — The small-scale numerical experiments performed by the author have 

had two basic aims: 1) to imitate some pre-selected laboratory experiments and compare the 

results in order to evaluate as to how realistic the numerical simulations with Flow-3D™ are; 

and 2) to demonstrate further the software’s capacity to simulate a wide range of 

hydrodynamic aspects of the behaviour of laboratory-type turbidity currents. The design 

involved a surge-type turbidity current passing through an inclined, channel-like confinement 

onto an open-space horizontal floor, thus imitating a canyon- or slope channel-confined 

current expanding upon entering a wide and flat basin floor. The following hydrodynamic 

aspects of turbidity current have been selected for simulation, using models with mono- or 

poly-sized sediment-water mixtures: 

• a 2D display — in flow-parallel axial section — of the main hydraulic characteristics (bulk 

density, shear-strain rate, dynamic viscosity, velocity magnitude and its x-y-z 

components) of a channel-confined current; 

• a display of the shear stress, sediment concentration and velocity magnitude for several 

‘probing stations’ in a channel-confined current expanding abruptly on an open-space flat 

floor;   

• the response of the confined and unconfined parts of a current (in terms of its velocity 

magnitude, turbulent shear stress and sediment concentration) to changes in such 

principal controlling parameters as the channel slope angle, sediment grain size, bed 

(floor) roughness and initial sediment concentration; 

• a display of sediment grain-size segregation of a current (using a flow run with poly-sized 

sediment suspension); 

• the velocity time series for a surge-type and a sustained turbidity current; and 

• the responses of turbidity current to obstacles and to a hydraulic jump at the channel 

outlet (using flow runs with sediment scour model).  

The experimental setup adopted for the small-scale simulations is as described below 

(Fig. 13), and the basic physical conditions assumed for the flow-simulation runs referred to 

further in the thesis are listed in Table 1. 
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Table 1. Initial conditions of the experimental flow-simulation runs discussed in the present thesis. 
 

Run 
Channel 
slope (o) 

Grain size 
(mm) 

Sedim. concentr. 
(vol.%) 

Bed roughness Flow-3D™ models employed 

2 1 0.15 25 clay Drift-flux, RNG and particle 

6 5 0.15 25 clay Drift-flux, RNG and particle 

9 10 0.15 25 clay Drift-flux, RNG and particle 

11 20 0.15 25 clay Drift-flux, RNG and particle 

12 5 0.6 25 clay Drift-flux, RNG and particle 

14 5 0.15 25 clay Drift-flux, RNG and particle 

16 5 0.0375 25 clay Drift-flux, RNG and particle 

28 5 0.15 5 clay Drift-flux, RNG and particle 

29 5 0.15 15 clay Drift-flux, RNG and particle 

35 5 0.15 25 smooth Drift-flux, RNG and particle 

37 5 0.15 25 medium silt Drift-flux, RNG and particle 

39 5 0.15 25 v. fine sand Drift-flux, RNG and particle 

47 5 0.15 25 clay Sediment scour and RNG 

 

The experimental setup — The experimental setup has been designed to imitate the 

laboratory flow experiments performed by Baas et al. (2004) in a flume facility of the Utrecht 

University’s Department of Earth Sciences. The laboratory setup consisted of a straight, 

inclined channel leading from the feeder tank to a horizontal expansion table, all submerged 

in freshwater (Fig. 13). The channel was 4 m long, 0.22 m wide and 0.50 m deep, and had a 

variable, adjustable inclination. The expansion table was 3.5 m long, 3 m wide and free of 

sidewalls to minimize flow reflections, and was located in a walled tank 1 m deep and 4x4 m2 

in area (Fig. 13). The laboratory setup had three flow-probing stations (see Ott locations in 

Fig. 13), but only a few of the flow runs provided data sufficiently ‘pure’ (non-averaged) and 

of a sufficient time span to be used for comparative purposes.  

 

Fig. 13. The laboratory experimental setup in plan view (top) and in longitudinal cross-section (bottom); Ott = 
position of current-meter. From Baas et al. (2004). 
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In the laboratory experiments, sediment was mixed with fresh water in a specially 

constructed mixing tank at the upstream end of the channel (Fig. 13). The water was 

supplied to the mixing tank by a slurry pump at a constant discharge of 5.2 or 7.8 dm3/s. The 

sediment was supplied to the mixing tank by means of a conveyor belt, which allowed for up 

to 15 seconds of constant slurry discharge. Three types of sediment were used in the 

laboratory experiments: 1) a moderately well-sorted, coarse silt composed of spherical glass 

beads (mean size 0.040 mm); 2) a well-sorted, very fine-grained sand composed of spherical 

glass beads (mean size 0.069 mm); and 3) a moderately sorted, fine-grained natural sand 

(mean size 0.235 mm). 

The downstream wall of the mixing tank had a basal gate with adjustable height. The gate 

in all experiments was opened to a height of 3.5 cm, which provided a cross-sectional 

outflow area of 63 cm3. The outflow was balancing the inflow of sediment and water to the 

mixing tank, with a steady hydraulic pressure head in the tank. The constant head assured 

practically a quasi-steady slurry yield for a period of 11-14 seconds, because about 1-4 

seconds were needed to fill up the mixing tank and stabilize the pressure head. The initial 

flow surge with up to 15 second duration was followed by a waning flow with approximately 

similar time span, when the slurry level and pressure head in the mixing tank were falling and 

the outflow was progressively slower and less dense. 

The channel had its walls and floor covered with Perspex™ plates, and a default 

inclination of the channel floor was 5o. In the experiments with fine-grained sand, the floor 

plate had a smooth surface and was hoisted on sockets to increase the slope angle to 8.6o. 

In this way, deposition in the channel was kept at a minimum. The plate was placed directly 

on the channel bottom in the experiments with very fine-grained sand and coarse silt, to 

decrease the slope angle to 3.7o and reduce the buoyancy flux. A further reduction of the 

latter factor was achieved by decreasing the water supply from 7.8 to 5.2 dm3 and by gluing 

fine-grained sand onto the Perspex™ plate to increase the flow drag. The expansion table 

(Fig. 13) was covered with a 3-cm layer of loose sediment to allow for possible erosion by the 

turbidity current. For a particular run, this layer consisted of the same sediment as used in 

the mixing tank. 

Flow velocities were measured at three probing stations along the path of the turbidity 

currents, using Ott-type current-meters. The Ott-meters consist of simple propellers 

(diameter 2.5 cm) connected to a counter registering the number of rotations in a predefined 

time interval. One current-meter was positioned in the channel, about 60 cm downflow from 

the mixing tank’s gate, and two others measured the flow velocity in the expansion tank at 46 

and 126 cm away from the channel outlet (Fig. 13). These last two locations corresponded 

roughly to the position of hydraulic jump and the area of maximum deposition, respectively. 
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The flows in the channel were fully confined (< 50 cm thick), and all the current-meters were 

recording the downflow velocity at a height of 3 cm above the floor. The counters were 

monitored by video recording, which allowed calculation of mean flow velocities for time 

periods down to 0.5 seconds to be made and velocity time series to be obtained. 

The suspensed sediment concentration in the mixing tank ranged from 14 to 35 vol.%. 

The sediment concentration in the turbidity currents was lower due to the vertical expansion 

of the flow upon its release from the mixing tank. A vertical array of four vacuum-operated 

siphon tubes was used to measure sediment concentration in the steadily-supplied first half 

of turbidity current. The siphon tubes were located at a distance of 144 cm from the mixing-

tank gate (Fig. 13), at equally-spaced heights within 6 cm above the floor. The tubes had a 

diameter of 1 cm, which was sufficient to measure sediment concentrations of up to 

15 vol.%. At higher concentrations, the sediment particles began to clog the tubes and the 

concentration measurements became unreliable. The grain-size distribution of sediment in 

every tube-derived sample was estimated by using a Malvern laser particle sizer. These data 

allowed the sediment grain-size distribution within the turbidity current to be estimated. 

Before and after a flow run, the topography of the sediment surface on the expansion 

table was measured using automated laser and acoustic bed profilers.  The horizontal relief 

resolution was chosen at 2 cm and the vertical resolution was at 0.4 mm. The topographic 

data provided information on the thickness of the turbidity-current deposit, and on the shape, 

size and orientation of the resulting morphological features. These data also allowed an 

estimation of the volume of eroded and deposited sediment.  

Standard lacquer peels were used to preserve vertical cross-sections of the fine-sand 

deposits of turbidity currents, and these samples allowed the vertical and horizontal changes 

in sedimentary structures to be recognized. Samples of deposit were collected for grain-size 

analysis with the use of Malvern laser particle sizer. The samples typically had a thickness of 

0.5-1.0 cm and a volume of 1-2 cm3. The grain-size data were used to construct 2D contour 

plots of the vertical and horizontal distribution of mean grain sizes in the deposit.  

Simulation of the Utrecht laboratory flows  — Only a few of the laboratory datasets 

were sufficient to simulate particular turbidity currents for comparative purposes, and the only 

non-averaged flow characteristic measured in the laboratory was the downflow (x-direction) 

velocity component. The first attempt was to simulate faithfully the whole laboratory setup, 

including the supply of water and sediment and their blending in the mixing tank. The drift-

flux, RNG and particle models (see earlier section 3.3) were employed in the simulations. 

The results of these simulations came out to be close to the laboratory data in terms of their 

pattern (see examples in Figs. 14 and 15), but appeared to be insufficiently ‘identical’ in 

terms of the magnitude (value range). The likely reason of this discrepancy is that laboratory 

setup is difficult to simulate in an exact manner (e.g., mixing tank pressure conditions).  
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Fig. 14. Plots of the downflow (x-direction) velocity component measured in the laboratory Run 11 (Baas et al., 
2004) and calculated in a numerical simulation of the same laboratory run, including the sediment-water mixing in 
the feeder tank. 
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Fig. 15. Plots of the downflow (x-direction) velocity component measured in the laboratory Run 13 (Baas et al., 
2004) and calculated in a numerical simulation of this laboratory run, with the sediment-water mixing process in the 
feeder tank disregarded and the outflow taken directly as the initial boundary condition. 

 

Simulations were then repeated without imitating the tank mixing and slurry-release phase 

and by taking the 15-second slurry discharge from the tank directly as the inflow boundary 

condition. The results came out to be nearly identical with the laboratory measurements in 

terms of both the pattern and the value range (see example in Fig. 15).  
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Taking into account the problem with the simulation of mixing-tank conditions, it is concluded 

that the numerical flow simulations imitate the laboratory flows quite satisfactorily and that the 

Flow-3D™ software can be used to perform realistic flow simulations. The following several 

series of simulations were then intended to demonstrate some of the insights in flow dynamics 

that the Flow-3D™ can provide.  

Display of flow characteristics  — There are several possible ways of displaying and 

monitoring the hydraulic characteristics of a turbidity current, and the one most commonly used 

is a vertical section parallel to the flow axis. Examples of such a display for a wide range of flow 

characteristics of channel-confined turbidity current (see setup in Fig. 13) are shown as time 

series in Figures 16-23. The data are from Run 47 (Table 1), which is basically identical to 

Run 6, but employing the sediment scour model (see section 3.3).  

The current’s characteristics displayed include: flow velocity components in the x, y and z 

directions (Figs. 16-18); velocity magnitude (Fig. 19) also known as speed, is defined as the 

quadratic mean of the three-dimensional x-y-z velocity components; macroscopic (bulk) density 

variation in the current (Fig. 20 and 21); and the current’s dynamic viscosity (Fig. 22) and shear-

strain rate (Fig. 23). The values of any particular variable can be displayed as a spectrum of 

colours or as discrete isolines, as shown for the flow bulk density in Figures 20 and 21, 

respectively. 

The Flow-3D™ allows similar displays to be made at any pre-selected time interval, and 

such cartoon strips can readily be converted into animations. The accuracy of the calculation of 

flow characteristics and hence also the quality of display obviously depend on the resolution of 

the computational grid employed. In the present examples (Figs. 16-23), a resolution of 5 cm in 

all three directions has been used to optimize the computer capacity required. If necessary, the 

colour spectrum of display can be altered; its values can be kept constant or – as in the present 

case – allowed to change with the range of values in each successive display; and also either 

the horizontal or the vertical dimension of the display can be exaggerated relative to the other. 

Velocity can alternatively be displayed in the form of vectors (arrows), and more than one 

flow characteristics can simultaneously be displayed as a combination of colour spectrum, 

coloured points (markers or tracer particles), isolines and vectors. 

Multi-location display of flow characteristics  — A Flow-3D™ simulation can be designed 

in such a way that any of the flow characteristics is monitored, as a time series, at a number of 

pre-selected locations. This kind of flow display – for a channel-to-plain experimental design 

(Fig. 24) and three selected variables (flow velocity magnitude, turbulent shear stress and 

sediment concentration) probed 7.5 cm above the floor – is shown in Figure 25.  
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Fig. 16. Time series of the flow velocity component in x-direction (downflow) in Run 47. The eight snapshots 
correspond to flow time of 1 to 8 sec. The channel has an inclination of 5o. The scales units on x and z axes are 
metres and the velocity is m/sec (note that the scale values change from snapshot to snapshot). 
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Fig. 16 (cont.) 
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Fig. 17. Time series of the flow velocity component in y-direction (transverse to flow) in Run 47. The eight 
snapshots correspond to flow time of 1 to 8 sec. The channel has an inclination of 5o. The scales units on x and z 
axes are metres and the velocity is m/sec (note that the scale values change from snapshot to snapshot). 
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Fig. 17 (cont.) 
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Fig. 18. Time series of the flow velocity component in z-direction (vertical) in Run 47. The eight snapshots 
correspond to flow time of 1 to 8 sec. The channel has an inclination of 5o. The scales units on x and z axes are 
metres and the velocity is m/sec (note that the scale values change from snapshot to snapshot). 
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Fig. 18 (cont.) 
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Fig. 19. Time series of the flow velocity magnitude in Run 47. The eight snapshots correspond to flow time of 1 to 8 
sec. The channel has an inclination of 5o. The scales units on x and z axes are metres and the velocity is m/sec (note 
that the scale values change from snapshot to snapshot). 
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Fig. 19 (cont.) 
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Fig. 20. Time series of the current’s macroscopic (bulk) density in Run 47. The eight snapshots correspond to flow 
time of 1 to 8 sec. The channel has an inclination of 5o. The scales units on x and z axes are metres. The density is in 
kg/m3 and its values are displayed as a colour spectrum (note that the scale values change from snapshot to 
snapshot). 
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Fig. 20 (cont.) 
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Fig. 21. Time series of the current’s macroscopic (bulk) density in Run 47. The eight snapshots correspond to flow 
time of 1 to 8 sec. The channel has an inclination of 5o. The scales units on x and z axes are metres. The density is in 
kg/m3 and its values are displayed here as discrete isolines (note that the scale values change from snapshot to 
snapshot). 
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Fig. 21 (cont.) 
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Fig. 22. Time series of the current’s dynamic viscosity in Run 47. The eight snapshots correspond to flow time of 1 
to 8 sec. The channel has an inclination of 5o. The scales units on x and z axes are metres. The viscosity is in kg/m/s 
(1 kg/m/s = Pa·s = 10 poise) and its values are displayed as a colour spectrum (note that the scale values change 
from snapshot to snapshot). 
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Fig. 22 (cont.) 
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Fig. 23. Time series of the current’s shear-strain rate in Run 47. The eight snapshots correspond to flow time of 1 to 
8 sec. The channel has an inclination of 5o. The scales units on x and z axes are metres. The strain rate is in s-1 units 
and its values are displayed as a colour spectrum (note that the scale values change from snapshot to snapshot). 
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Fig. 23 (cont.) 
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In this flow example (Run 6, Table 1), it is worth noting the velocity waves (Fig. 25, top) and 

the corresponding pulses in turbulent shear stress (Fig. 25, middle) in the tail part of the current 

at the probing stations 1 and 2 within the channel. These waves of flow acceleration and 

deceleration apparently occur at the flow upper surface, since they are recorded by probes at a 

height of 7.5 cm and the flow tail here is only about 8-9 cm thick. However, the velocity 

fluctuations are most pronounced near the base of the flow (Fig. 26). It is possible that these are 

internal shock waves generated by the bottom roughness effect on the highly dilute (Fig. 25, 

bottom) and thin tail of the turbidity current. Similar shock waves can be observed, for example, 

in the shallow flow of rainwater running off on an inclined, rough asphalt road. 

 
 
Fig. 24. The experimental setup used in Run 6 (Table 1) is based on the Utrecht laboratory flume (Fig. 13). The 
channel is 4 m long, 0.2 m wide and up to 1.5 m deep, inclined at 5o. The wall-less expansion table is 4x4 m2 and 
has an outflow boundary condition on its three outer sides. The green points indicate the location of probes (7.5 cm 
above the floor). The current is considered to be axisymmetrical, so that probes 5’ and 7’ in numerical terms are 
mirror-images (replicas) of probes 5 and 7, respectively. 

 

Turbidity current response to changes in controllin g parameters  — By changing the 

initial conditions, the Flow-3D™ can be used to simulate the responses of the channel confined 

and unconfined parts of a turbidity current to changes in such principal controlling parameters 

as the channel slope angle (Fig. 27), initial sediment concentration (Fig. 28), sediment grain 

size (Fig. 29) and bed roughness (Fig. 30). The simulations show that turbidity currents are 

highly sensitive to subtle variations in the initial conditions and that the results are quite realistic.  
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Run 6 (shear stress, all probes)
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Run 6 (sediment concentration, all probes)
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Fig. 25. The time series of flow velocity magnitude, turbulent shear stress and sediment concentration monitored 
simultaneously at seven probing stations for Run 6 (experimental setup as shown in Fig. 24). 
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Fig. 26. Velocity fluctuations at the bottom of turbidity-current tail between probing stations 1 and 2 in simulation Run 6, at the time flow of 25 s (comp. Fig. 25, top). The x and  
z scales are in metres and the velocity is in m/sec. The distance shown is from the backwall of the mixing tank and corresponds to the channel segment between the two probes. 
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Velocity response to slope-angle changes (Probe 2)
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Velocity response to slope-angle changes (Probe 4)
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Shear stress response to slope-angle changes (Probe  4)
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Fig. 27. The effects of slope-angle changes on the flow velocity, turbulent shear stress and sediment 
concentration in the channel-confined (probe 2) and unconfined (probe 4) parts of turbidity current. 
Simulation runs 2, 9 and 11 (Table 1); setup as shown in Fig. 24.  
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Velocity response to changes in the initial sedimen t concentration 
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Fig. 28. The effects of changes in initial sediment concentration on the flow velocity, turbulent shear 
stress and sediment concentration in the channel-confined (probe 2) and unconfined (probe 4) parts of 
turbidity current. Simulation runs 6, 28 and 29 (Table 1); setup as shown in Fig. 24.  
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Velocity response to grain-size changes (Probe 2)
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Concentration response to grain-size changes (Probe  2)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

0 5 10 15 20 25 30 35 40 45 50

Time (s)

C
on

ce
nt

ra
tio

n 
(v

ol
%

)

0.0375mm (Run 16) 0.15mm (Run 14) 0.6mm (Run 12)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Velocity response to grain-size changes (Probe 4)
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Fig. 29. The effects of grain-size changes on the flow velocity, turbulent shear stress and sediment 
concentration in the channel-confined (probe 2) and unconfined (probe 4) parts of turbidity current. 
Simulation runs 12, 14 and 16 (Table 1); setup as shown in Fig. 24. The three mono-sized sediment 
types used are coarse silt (Run 16), fine sand (Run 14) and coarse sand (Run 12). 



 

62 

 
 
 

 
 
 
 

Velocity response to bed roughness changes (Probe 2 )
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Shear stress response to bed roughness changes (Pro be 2)
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Velocity response to bed roughness changes (Probe 4 )
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Fig. 30. The effects of bed (floor) roughness changes on the flow velocity, turbulent shear stress and 
sediment concentration in the channel-confined (probe 2) and unconfined (probe 4) parts of turbidity 
current. Simulation runs 35, 37 and 39 (Table 1); setup as shown in Fig. 24. The three bed-roughness 
types used are smooth floor (Run 35), floor cover with medium silt (Run 37) and v. fine sand (Run 39). 
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Simulation of basic flow types  – By selecting different initial boundary conditions (inflow 

mode), the Flow-3D™ can be used to simulate both surge-type and sustained turbidity 

currents. An example for such simulations, displayed as flow velocity time series, is shown in 

Figure 31. The surge in this case shows a gradual waning directly after the passage of the 

flow front, whereas the sustained flow shows a constant velocity for a period of 15 seconds – 

when the inflow ended and the flow velocity rapidly declined. The difference in the rates of 

flow waning reflects the two different modes of inflow used: the surge was generated by the 

emptying of a tank containing finite slurry volume, which took 15 seconds, whereas the 

sustained flow was produced by a constant inflow for 15 seconds and its abrupt closure.  

The example demonstrates that the Flow-3D™ models are capable of revealing 

differences between turbidity currents generated with different inflow conditions. 
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Fig. 31. Simulated velocity time series of flows generated with different modes of inflow 

 

Flow runs with poly-sized sediment mixtures  – The Flow-3D™ with the use of particle 

model (see section 3.3) allows simulation of flows carrying poly-sized sediment mixtures. An 

example of such a simulation is shown in Figure 32. The setup in this case was the same as 

in Run 6 (Table 1 and Fig. 24), but with poly-sized particles. A mixture of 100,000 particles 

ranging from very fine to medium sand (0.075-0.275 mm in diameter) has been selected, 

with the corresponding grain-size spectrum divided into four classes with equal weight 

(mass) proportions. The simulation time series shows how the grain sizes become 

segregated in the turbidity current passing through the channel. A clear downflow and 

upward fining is recognizable within the flow body, whereas the flow head shows well-mixed 

particles with the finest ones stripped from the top of the head and thrown behind it (Fig. 32).  
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Fig. 32. Time series of a turbidity current transporting poly-sized sediment particles. The eight snapshots 
correspond to flow time of 1 to 8 sec. The channel has an inclination of 5o. The scales units on x and z axes are 
metres and the particle sizes are in metres. 
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Fig. 32 (cont.)  
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Turbidity current reaction to topographic obstacles  – A few simple simulations have 

been performed also to show flow reaction to obstacles such as a low-relief transverse ridge, 

with overflowing (Fig. 33), and a high-relief pillar (Fig. 34) without overflowing. The results 

are comparable to laboratory observations reported, for example, by Alexander and Morris 

(1994) and Morris and Alexander (2003). This evidence indicates that flow responses to pre-

defined topographic obstacles can readily be simulated with the Flow-3D™ software. 

Turbidity current response to hydraulic jump  – A response to turbidity current to 

hydraulic jump has been simulated with the same setup as shown in Figure 24, but with the 

expansion table covered with a 10-cm static layer of fine-grained sand, same as transported 

by the current (Run 47, Table 1). The distribution of flow velocity magnitude in the uppermost 

part of the current shows wave-like pulses of higher velocity descending along the channel 

and similar, but broader shock waves propagating outwards in the expanding current (Fig. 

35A-D). When the current’s tail eventually begins to descend through the channel, it meets 

waves of counter-flow reflected from the topographic erosional relief created by the hydraulic 

jump (Fig. 35E-J). An evidence of these reflected tail-flow waves is described below, 

whereas the 3D velocity field in the hydraulic-jump area is shown in Figure 36.  

The time series in Figure 37 shows the development of the topographic relief in the 

hydraulic-jump area, in the form of an elliptical scour, by means of substrate erosion and 

sediment redeposition – accompanied by a backfilling of the lowest part of the channel (see 

Fig. 37F-H). Erosional chutes transverse to the channel axis appear in the vicinity of the 

scour depression (see Fig. 37G-H), and their origin is attributed to the lateral drainage of the 

tail flow waves reflected backwards by the downstream relief of the depression (Fig. 38). The 

evidence of such reflections is shown in Figure 39, where two backflow waves (displayed in 

blue colour) can be seen entering the lower segment of the channel and colliding with a 

descending flow wave (displayed in red/orange).    
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Fig. 33. Time series of a turbidity current’s reaction to transverse topographic ridge (side view showing 
velocity magnitude as both colour spectrum and vectors). The eight snapshots correspond to flow time of 6 to 
13 sec. The scales units on x and z axes are metres and the velocity scale is in m/s (note that the scale values 
change from snapshot to snapshot). 
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Fig. 33 (cont.)  
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Fig. 34. Time series of a turbidity current’s reaction to vertical topographic pillar (plan view showing velocity 
magnitude as both colour spectrum and vectors). The eight snapshots correspond to flow time of 6 to 13 sec. 
The scales units on x and z axes are metres and the velocity scale is in m/s (note that the scale values change 
from snapshot to snapshot). 
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Fig. 34 (cont.)  
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Fig. 35. Time series of a turbidity current’s reaction to hydraulic jump in the slope-break conditions of channel 
outlet (front view showing velocity magnitude as colour spectrum; simulation Run 47 (Table 1) with the same 
setup as in Run 6 (Fig. 24), but using sediment scour model). The ten snapshots (A-J) correspond to flow time 
of 6 to 15 sec. The velocity scale is in m/s (note that the scale values change from snapshot to snapshot). 
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Velocity components in X-Y-Z directions (Probe 3, R un 47)
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Fig. 35 (cont.) 
 

Fig. 36. Time series of a turbidity current’s velocity components in the hydraulic-jump area at channel mouth 
(Simulation Run 47 (Table 1), probe 3 location as in Fig. 24). Note the x-velocity component of the turbidity 
current’s tail showing a backward-moving wave of flow, the negative vertical (z-direction) velocity reflecting 
the current’s plunge and the velocity in y-direction reflecting lateral flow expansion.  
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Fig. 37. Plan view of a turbidity current responding to hydraulic jump at channel outlet (simulation Run 47 
(Table 1) with setup as in Run 6 (Fig. 24), but using sediment scour model). The expansion table was covered 
with a 10-cm layer of mono-sized fine sand, same as transported by the current. The eight snapshots (A-H) show 
changes in bed level (erosion and deposition) at flow time of 10, 15, 20, 25, 30, 40, 50 and 60 sec. The colour 
scale pertains to floor relief. 
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Fig. 37 (cont.) 
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Fig. 37 (cont.) 
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Fig. 38.  The y-velocity component (after 60 sec. flow) of turbidity current’s tail in hydraulic-jump area, 
showing pronounced pulses of a lateral drainage of flow waves reflected backwards from the current-produced 
scour relief (cf. floor topography in Fig. 37). Run 47 (Table 1); setup as in Fig. 24. 

 
 
 
 

 
 

Fig. 39. The x-velocity component (after 35.5 sec. flow) of turbidity current’s tail in hydraulic-jump area (side 
view), showing a backward-moving wave of flow (displayed in blue) reflected from the current-produced scour 
relief (cf. floor topography in Fig. 37). Run 47 (Table 1); setup as in Fig. 24. The scales units on x and z axes are 
metres and the velocity scale is in m/s. 
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4.2. Large-scale simulations 
 

In this chapter, results are presented from a numerical experiment performed to assess the 

capability of the Flow-3D™ model to up-scale laboratory currents to natural conditions. In this 

numerical experiment, simulated velocity profiles have been qualitatively compared to in-situ 

velocity measurements of full-scale turbidity currents in a natural setting. The in-situ 

measurements were performed by Xu et al (2004) and focused on the velocity structure of 

turbidity currents. Two of the four recorded events have been simulated and their results 

compared with the measured data (Xu et al, 2004). 

Modern events in the Monterey canyon system  – From December 2002 to November 

2003, the U.S. Geological Survey (USGS) and Naval Postgraduate School (NPS) deployed 

three oceanographic moorings along the axis of the Monterey Submarine Canyon at water 

depths of 820, 1020 and 1450 m (Fig. 40).  Each mooring had a downward-looking acoustic 

Doppler current profiler (ADCP) at 69 m above the bed. Instrument packages with CTDs, 

transmissometers and sediment traps were located approximately 16 and 70 m above the 

bed, while similar packages with the addition of single point current-meters were located 

170 m above the bed and either at 300 m (R1 and R2) or 400 m above the bed (R3).  In-situ 

measurements of the velocity structure of four turbidity currents, with maximum along-canyon 

velocity of 190 cm/s, were recorded. Two turbidity currents coincided with storms that 

produced the highest swells and the biggest stream flows during the year-long deployment.  

The first turbidity current occurred 11.5 days after the moorings were deployed and was 

rather slow, with a maximum along-canyon velocity reaching 75 cm/s at R3. The second 

turbidity current, recorded just 3 days later, moved much faster. This event was observed by 

all three moorings (Fig. 41), with maximum along-canyon velocities of 190, 160 and 180 cm/s 

at R1, R2 and R3, respectively. 

Simulation of the Monterey large-scale flows  - Based on the topographic setting of the 

Monterey Canyon area and the measurements of the two turbidity-current events (Xu et al., 

2004), the initial conditions for a series of Flow-3D™ simulations have been estimated. The 

measurements of velocity were sufficient to assess flow thickness, duration and initial 

velocity at the canyon head, but had a time spacing of 1 hour and hence were not detailed 

when it comes to the flow-velocity time series. The sediment scour and RNG models (see 

earlier section 3.3) were employed in the simulations. Furthermore, the volumetric sediment 

concentration and exact grain-size distribution in the flows are unknown. An initial 

concentration of 9 vol.%, fine-grained sand load and uniform bed roughness have been 

assumed for the simulations. Additional simplifying assumptions included lack of oceanic 

water circulation and negligible Coriolis force. The bathymetry and hydrostatic pressure were 

fully accounted for, and the resolution of the 3D computational grid was selected at the 
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highest level. Because of the lack of signal of the first event in the upper Monterey Canyon 

(Fig. 41, top left), this flow is inferred to have originated from the Soquel Canyon, whereas 

there is little doubt that the second event originated from the uppermost Monterey Canyon 

(Fig. 40). Trial simulations were performed to estimate an initial velocity that would yield a 

flow matching the velocity measured at the nearest mooring point. On this basis, the initial 

velocities of 1.25 and 1.50 m/s have been selected for the first and second event, 

respectively.  

  

 
Fig. 40. A map of the Monterey and Soquel Canyons (from Xu et al, 2004). The three moorings (R1, R2, and 
R3) were deployed at 820, 1020 and 1450 m water depths. 
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Fig. 41. Hourly vertical velocity profiles of turbidity current event 1 (left) and 2 (right). From Xu et al. (2004). 

 

Results — The best-fit simulation runs for the first and the second event are shown as 

snapshot series in Figures 42 and 43, respectively. Examples of more detailed velocity time 

series for an estimated mid-height of each flow at the mooring locations are given in 

Figure 44.  

The range of simulated velocities for the first flow event corresponds rather well to the 

measurements from the mooring station R2, though less well to the measurements from R1 

(cf. Figs. 41 and 44). The flow appears to have lost capacity by dilution over a relatively short 

distance (Fig. 42) and displayed significant velocity fluctuations (Fig. 44), which can be 

attributed to the highly rugged floor topography of the Soquel Canyon. A major loss of 

momentum occurred when the flow plunged at high angle into the Monterey Canyon, 

crashing against the southern wall of its bend (Fig. 42).  

The second flow event, in contrast, developed a considerably longer body and strongly 

accelerated between stations R1 and R2, and further towards the second sharp bent of the 

Monterey Canyon – before plunging against the bend’s western wall (Fig. 43). The apparent 

decline of the flow velocity at station R3 (Fig. 44) may suggest waning, whereas the flow 

appears to have experienced a new waxing phase after passing this station. The range of 

simulated velocities corresponds rather well to the R1 measurements and nearly perfectly to 

the R2 measurement. 

The likely reason of the discrepancies is that the volumetric sediment concentration and 

exact grain-size distribution in the flows remains unknown. 
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Fig. 42. Simulation of event 1, with source in the Soquel Canyon. The twelve snapshots (A-L) correspond 
to the flow of 1 to 12 hours. The flow is displayed as in terms of its velocity magnitude. Scale: 34x34 km. 
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Fig. 42 (cont.) 
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Fig. 42 (cont.) 
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Fig. 42 (cont.) 
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Fig. 42 (cont.) 
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Fig. 42 (cont.) 
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Fig. 43. Simulation of event 2, with source in the uppermost Monterey Canyon. The twelve snapshots (A-J) 
correspond to the flow of 1 to 12 hours. The flow is displayed as in terms of its vel. magnitude. Scale: 34x34 km. 
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Fig. 43 (cont.) 
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Fig. 43 (cont.) 
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Fig. 43 (cont.) 
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Fig. 43 (cont.) 
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Fig. 43 (cont.) 
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Soquel Canyon Simulation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5000 10000 15000 20000 25000 30000 35000 40000

Time (s)

V
el

oc
ity

 m
ag

ni
tu

de
 (

m
/s

)

Mooring R2 Mooring R3

 

Monterey Canyon Simulation
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Fig. 44. Simulated multi-location velocity time series for the flow events sourced from the 
Soquel (top) and Monterey (bottom) canyons, in each case for a height of 30 m above the 
canyon floor (mooring locations as shown in Fig. 40). 
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5. CONCLUSIONS 

 
• The present study has evaluated the usefulness of Flow-3D™ as a possible means of 

simulating the hydrodynamic behaviour of turbidity currents and hence as an 

attractive alternative to laboratory experiments. 

• The comparison of numerical and laboratory data indicates that the CFD-based Flow-

3D™ models can give realistic results and are quite suitable for this kind of 

simulations. 

• The use of a CFD software, such as the Flow-3D™, has several great advantages: 

o It allows a much wider range of flow parameters to be determined and 

continuously monitored with a relatively high accuracy. 

o It permits the response and relative importance of the individual flow 

parameters to be assessed with respect to changes in the initial conditions. 

o It allows turbidity currents to be up-scaled to natural conditions and 

simulations to be performed on a ‘real-life’ basin scale. 

o It provides an unprecedented insight in the detailed hydrodynamic aspects of 

turbidity current. 

• The software can readily be adapted to any experimental setup and a wide range of 

initial conditions: 

o Both surge-type and sustained turbidity currents can be simulated, including 

confined and unconfined flows of high and low density. 

o A turbidity current’s erosional capacity and response to hydraulic jump, or 

slope-break conditions.  

o The sensitivity of turbidity current to seafloor topographic features can be 

evaluated for different conditions. 

o The spatial dispersal of sediment and its various grain-size fractions under 

different flow conditions can be predicted. 

• The study indicates that our understanding of turbidites and their variation can be 

significantly improved by this type of experimental research. 
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1 Executive Summary 
 

Complex Flow Design A/S was commissioned by A/S Norske Shell to provide numerical 

simulations of the influence of basin-floor topography on the spatial pattern of sediment 

dispersal in the Ormen Lange field, mid-Norway Shelf. This study is based on a pilot project 

carried out for Hydro, Norske Shell’s partner in the field, in 2003 and aimed to analyse with 

Flow-3D™ simulations the response of turbidity currents to a number of possible seafloor 

topographic configurations. The variants of palaeotopography to be used are based on 3D 

seismic models of the basal surface of the Egga reservoir unit derived from a restoration 

(overburden backstripping) and decompaction study performed by the Midland Valley 

Exploration Ltd (MVE 2004). 

 

The focus of the present study is thus on the sensitivity of turbidity currents to particular 

topographic configurations and on the resulting patterns of sediment dispersal on the seafloor.  

In addition, an assessment of the numerical modelling framework for similar future studies is 

to be made.  

 

The initial boundary conditions for the simulations (including seafloor topography, location of 

turbidity-current source and initial flow characteristics) have been selected on the basis of the 

afore-mentioned MVE’s (2004) study and other available literature. Since the actual flow 

conditions at the time of deposition are unknown, a range of assumptions for the initial flow 

conditions had to be made and assessed on a trial-and-error basis. On the basis of the available 

well-core samples, the turbidity currents are inferred to have been high-density, surge-type, 

homogenous flows with an average sediment grain size of fine sand grade. 

 

The results of the study show that turbidity currents are highly sensitive to subtle variation in 

basin-floor topography. The Egga reservoir unit was probably supplied with sediment from an 

entry point in the southeast. The sediment transport directions are thought to be mainly to the 

north, due to a subtle topographic confinement to the east and west. As the primary 

topographic relief was gradually smoothed out by sediment accumulation, the whole area of 

interest became increasingly as a bypass zone for sediment. 



 4 

2 Introduction 
 

The Complex Flow Design A/S was requested by A/S Norske Shell, on behalf of the Ormen 

Lange partnership, to undertake a numerical forward-modelling study of the Egga reservoir 

unit in order to improve the understanding of the pattern of sediment supply/transport and 

dispersal in the area of Ormen Lange field (Fig. 1). It is a continuation of a pilot project 

carried out for Hydro and the Ormen Lange partnership in 2003 and aimed at analysing the 

response of turbidity currents to a number of possible basin-floor topographic configurations.  

 

The basin-floor topography used is based on models of the basal surface of the Egga 

Reservoir Unit derived from a back-stripping and decompaction study carried out by the 

Midland Valley Exploration Ltd (MVE 2004). The topography above the Ormen Lange field 

is extremely rough (Fig. 2), affected by the Recent Storegga Slide, one of the largest mass 

movements known (Bugge et al. 1988). Multiple realizations of a 3-D model were 

sequentially decompacted and backstripped and the effects of folding and sliding were 

removed. The decompaction was carried out using lithology maps for two heterolithic 

intervals to control the impact on decompaction of spatially varying lithology. 

 

The Egga Reservoir Unit (Figure 3) comprises deep-marine turbidite deposits of Upper 

Cretaceous (Maastrichtian) to Lower Tertiary (Danian) age (Gjelberg et al. 2001). These 

rocks are ascribed to the Jorsalfare Formation and Egga Member of the Våle Formation 

respectively (Smith & Möller 2003). The turbidites are considered to have been sourced from 

the southeast and deposited within a north-south elongated, structurally controlled sub-basin 

conforming to the position of the present structural high (Walker 2001, Gjelberg et al. 2002, 

Möller et al. 2004). 

 

The computational fluid dynamics software FLOW-3D™ has been adopted for this study to 

simulate the influence of basin-floor topography on the spatial pattern of sediment dispersal 

by turbidity currents in the Ormen Lange field. Turbidity currents may respond to the 

topography in different ways, with an erosional or non-erosional sediment bypass in some 

areas, local spilling over basin-floor highs, ponding in local depressions, flow deflection 

and/or flow reversal on an opposing slope. Therefore, it is crucial to monitor the 3-D flow 

behavior in order to understand the resulting spatial patterns of sediment dispersal on the 

basin-floor. As the depositional system evolves, its topography will inevitably change and so 
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will also the spatial behavior of the successive flows. This feedback phenomenon can be 

studied and its effects on sediment dispersal can be recognized by an incremental, step-by-

step simulation of successive flows. In this way, the zones of erosion and sand-on-sand 

deposition, the non-erosional zones of sand sandwiching by mud and the sand-starved zones 

of turbidite pinch-out can be recognized and mapped. 

 

This report summarizes the determination of the modeling framework, and the results of the 

FLOW-3D™ simulations of the Ormen Lange field.  

 

 

Modified from Blystad et al. (1995)

NORWAY

 

Figure 1. Location of the Ormen Lange field (Blystad et al. 1995). 
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Gas fills only southern part of a huge combined 
structural/stratigraphic trap. Column height is > 150 m.

 
Figure 2. Structural map and seismic cross-section (Möller et al. 2004). 

 
 

 
Figure 3 Stratigraphy (Möller et al. 2004). 
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3 Methodology 
 

3.1 Computational Fluid Dynamics 
 

A relatively new deterministic numerical method in this field of sedimentological research, 

known as Computational Fluid Dynamics (CFD), has been adopted for this study. CFD is 

commonly accepted as referring to the broad topic encompassing the numerical solution, by 

computational methods, of the governing equations which describe fluid flow, the set of the 

Navier-Stokes equations, continuity and any additional conservation equations (Wesseling, P. 

2001). 

 

As a developing science, CFD has received extensive attention throughout the international 

community since the advent of the digital computer in the 1960s. The attraction of the subject 

is twofold. Firstly, the desire to be able to model physical fluid phenomena that cannot be 

easily simulated or measured with a physical experiment and secondly, the desire to be able to 

investigate physical fluid systems more cost effectively and more rapidly than with 

experimental procedures. There has been considerable growth in the development and 

application of CFD to all aspects of fluid dynamics. 

 

In design and development, CFD programs are now considered to be standard numerical 

tools, widely utilized within the industry (Figure 4). CFD has thus grown from a mathematical 

curiosity to become an essential tool in almost every branch of fluid dynamics and there are 

numerous CFD software packages available today.  

 

 
Figure 4 CFD simulation of wind shear on a rig. 
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3.2 FLOW-3D™ 
 

The commercial CFD package FLOW-3D™ was selected because the physical models 

required for this study were already incorporated in this software. 

 
In FLOW-3D™ there currently exists a sediment scour model to predict the erosion and 

deposition of sediment.  This model works by trying to emulate both the entrainment of 

sediment at the packed bed interface and the deposition of sediment from the fluid by gravity.  

When coupled with the fluid dynamics computed by the equations of mass and momentum 

conservation, the model is able to approximate the actual deposition and entrainment of sand, 

silt and other non-cohesive sediment. 

 

The enhancement done for this study builds upon this original model in a number of ways: 

• Addition of non-linear drifting of the suspended phase.  This allows more accurate 

simulation of the deposition of larger and/or faster drifting sediment 

• Addition of multiple species of sediment.  Instead of allowing only a single sediment 

size, multiple species are allowed.  Currently, the number is limited to 49, though it 

has not yet been tested with that many species sizes. 

• Addition of a bed load transport model.  This will approximate the rolling motion that 

larger sediment experiences as it rolls over the surface of the packed bed rather than 

becoming entrained in the bulk flow. 

 

Non-linear drifting: 

We calculate the driving force of drift first; this is the buoyancy and is in the same direction 

of the pressure gradient for sediment that is heavier than the suspending fluid (which must be 

lighter than the sediment for the model to work): 

 ( )ss
f

fs ffP −












 −
∇= 1

1

ρ
ρρ

ρ
0
ru . (1) 

Here ρf and ρs are the densities of the fluid and sediment, respectively, P is the local pressure, 

ρ  is the mean density of the fluid/sediment mixture, fs is the solid fraction and 0ru  is the 

relative velocity between the sediment and the fluid.  This is identical to what has always been 

done.   
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The drag coefficient K is computed as 
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where ds is the species sediment diameter, CD is the species coefficient of drag and µ is the 

fluid viscosity. Also, we know that the drift velocity is 

 
K

0
r

drift

u
u = . (3) 

Equations 2 and 3 are solved together with the quadratic formula for the coordinates of the 

drift velocity.  The Richardson-Zaki correlation (Richardson & Zaki 1954) is used to predict 

the effect of the interaction of the sediment in suspension.  The particle Reynolds number is 

computed as 

 
µ

ρ sf
p

ddriftu
2Re = . (4) 

The Richardson-Zaki exponent is computed based on the range of Reynolds number: 

For Re<1: 

 
03.0Re

35.4

p
ZR = . (5) 

For 1<Re<500: 

 
1.0Re

45.4

p
ZR = . (6) 

For Re>500: 

 39.2=ZR . (7) 

The drift velocity is then adjusted according to 

 ( ) z
p
z RR

sf−=′ 1driftdrift uu . (8) 

This drift velocity is used to affect the motion of the sediment separate from its advection 

with the fluid.  This is quite straightforward in regions away from walls or the packed bed 

interface and is exactly what is done in FLOW-3D™’s standard drift-flux model and basically 

applies an additional velocity to the advection part of the transport equation for the suspended 

sediment.  However, adjacent to blockages, care must be taken to convert suspended sediment 

into packed sediment.  This is done by first considering the additional advection of the 

suspended sediment into the cell by Equation 8.  Then the accumulated sediment, in addition 

to the suspended sediment already present in the cell, is “packed” at a rate based on the drift 
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velocity computed in Equation 8.  This procedure is followed in each of the Cartesian 

directions throughout the domain wherever drifting occurs. 

 

The entrainment model has remained unchanged; here we compute the lift velocity of the 

sediment adjacent to the packed bed interface as 

 
ρ
ττα crit

lift

−= Snu  (9) 

where α is the “lifting parameter” (scralp) parameter – which can be specified independently 

for each sediment species.  τcrit is the critical shear stress, computed from 

 ( )dg sfcritcrit ρρτ −Θ=0  (10) 

where Θcrit is the critical Shields parameter (scrcrt) – also specified independently for each 

sediment species, g is the magnitude of the gravity vector.  τcrit is then modified based on the 

following: 

 
ζ
ϕττ

2

2
0

sin

sin
1−= critcrit . (11) 

where ζ is the angle of repose (scrang), specified by the user, and φ is the computed interface 

angle (relative to the gravity vector). 

Once ulift is computed, the additional advection is computed as it was for the drifting, 

however, here it is the packed sediment that is both advected and simultaneously converted 

into suspended sediment. 

For bed-load transport, the model currently used (and easily customizable in the routine 

scrersn.F) is from Nielsen (Chanson 2004): 

 ( ) ( ) ( )gdgdgd

q

fsfsfs

s

ρρ
τ

ρρ
τ

ρρ −












−

−
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−
05.0

12
3

. (11) 

Here qs is the volumetric sediment discharge per unit width.  This value is then used to effect 

motion of the sediment: 

 
A

qs

u
u

u loadbed =− . (11) 

Here u  represents the mean velocity of the fluid adjacent to the packed interface, and the resulting 

motion is again considered an additional advection to the transport equation for the packed sediment. 
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3.3 Visualization 
 

In this study separate work was also devoted to the 3-D visualization of the FLOW-3D™ 

results. The sedimentation processes and the evolution of the whole depositional system were 

visualized using the commercial CFD post-processor software package FIELDVIEW (Figure 

5). 

 

FLOW-3D                                  FIELDVIEW
 

Figure 5. Fieldview visualization of FLOW-3D™ data. 
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4 Data Import 
 

The basin-floor topographic surfaces used in this study are based on the 3 models (Figure 6) 

of the base Egga Reservoir Unit surface from a decompaction and back-stripping study 

performed by Midland Valley Exploration Ltd. (Stanton & Thompson 2002) which include: 

 

• Medium (Base) Case 

• High (Maximum) Case 

• Low (Minimum) Case 

Scale: 24.5km x 59.5km x 100m

LOW MEDIUM HIGH

meter

N

 
Figure 6. Base Egga topographic configurations. 

 

These topographic surfaces were provided by Midland Valley Exploration Ltd. in the zmap 

file format, both in smoothed and in non-smoothed versions. A topographic surface based on 

the Egga Reservoir Unit isochore map and a new base Egga provided by Midland Valley 

Exploration Ltd. (MVE 2004) was also provided by A/S Norske Shell. 

 

The smoothed surfaces were loaded into IRAP RMS where they were extrapolated and a 

regularly spaced grid was created using the mask method and then exported to ASCII Internal 

point format. Since the ASCII Internal point data were in UTM coordinates form they had to 

be converted to relative Cartesian coordinates before they could be used further. In-house 
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code was used to apply a regional tilt of 0.05 degrees towards the east and to up-sample the 

point data from 6000 to 10000 points. The extrapolated parts of the surfaces were tilted 0.5 

degrees to towards the centre to avoid outflow at the boundaries. Multiple versions of these 

surfaces were used to capture the degree of uncertainty in the data. 

 

Finally, the surfaces were imported into FLOW-3D™ using the software’s built-in 

topographic data reader.  
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5 Simulation Setup 
 

Based on the resolution of the exported surfaces a 3-D computational grid is selected in 

FLOW-3D™ with 500 meter spacing between cells horizontally and 3 meter spacing between 

cells vertically. The surfaces were then roughened with 0.03 mm coarse silt based on the 

available well-core data (Gjelberg et al. 2002 and Walker & Möller 2002). 

 

The water depth at time of deposition is estimated to be 750 meter below sea level (Stanton & 

Thompson 2002), and above the topographic relief for each case. This water depth produces a 

hydrostatic pressure of 76 atm (7.70E+06 Pascal) at the highest point of the Base Egga 

surface. The acceleration of gravity is 9.81 m/s2 at 750 meter below sea level. The ocean 

current in the Ormen Lange area is on average 0.5 m/s in a northward direction at 750 meter 

water depth (Eliassen et al. 2000). 

 

To allow FLOW-3D™ to account for the Coriolis Effect the latitude (in degrees) in the 

middle of the area must be given. The UTM coordinates in the middle of the area was found 

to be 7039750.5 Northing and 617250.125 Easting.  Since there was no mention of either 

zone, datum or reference system (projection) in the Midland Valley Exploration report 

(Stanton & Thompson 2002), it is assumed that the zone is 31, datum is NAD83 and that the 

reference system is west. Based on this the latitude at the centre of the area is calculated to be 

63° 28' 0.34408" North or 63.46676224 in degrees. 

 

The temperature of the sea water is on average 2.5 degrees Celsius at 750 meter water depth 

(Eliassen et al. 2000). The density of sea water is 1043.0 kg/m3 at 2.5 degrees Celcius and the 

dynamic viscosity of sea water is 0.0012 N�s/m2 at 15.6 degrees Celcius (Unesco 1981). At 15 

degrees Celsius the density of quartz is 2648.0 kg/m3 (Lide 2000). 

 

Based on the available well-core data (Gjelberg et al. 2002 and Walker & Möller 2002) the 

following grain-size distribution was used for the turbidity current simulations: 

 

Minimum grain-size:  0.015 mm medium silt 

Maximum grain-size:  0.5 mm coarse sand 

Grain-size classes:  2 (equally spaced) 

Average grain-size:  0.2 mm fine sand 
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There is no actual knowledge about the initial flow conditions, but based on literature 

(Normark 1989, Zeng et al. 1991 and Zeng & Lowe 1997) the following initial flow 

properties were used for the turbidity current simulations: 

 

Sediment concentration:  10 volume % (0.5-35 volume % in the literature) 

Flow velocity:   15 m/s (0.5-28 m/s in the literature) 

Flow height:   20 m (5-270 m in the literature) 

Flow volume:   75000 m3/s (14000-123000 m3/s in the literature) 

Flow duration:  7200 seconds (240-7200 seconds in the literature) 

 

There is no actual knowledge about the sediment source area and flow direction either, but 

based on trial-and-error the following properties were selected for the turbidity current 

simulations: 

 

Sediment source:  One location to the SE for each case (in UTM coordinates): 

• Medium (Base) Case:  7019500.5 Northing, 622500.125 Easting 

• High (Maximum) Case:  7022000.0 Northing, 629500.125 Easting 

• Low (Minimum) Case: 7020000.5 Northing, 629500.0 Easting 

Flow direction:   315 degrees NW 
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6 Results 
 

We wish to emphasize that FLOW-3D™ simulations, while process-based and fully 

deterministic can be expected to yield results that are only as realistic as the "initial 

conditions" assumed for the topography and the turbidity currents themselves. The extent to 

which a modeling result matches the reality can be assessed simply by comparing selected 

"virtual" profiles with the actual well-core profiles of the turbiditic succession in facies terms. 

This would be an objective evaluation, although it might practically mean a time-consuming, 

trial-and-error way of assessment. But once the modeling result has been deemed to be a 

"good fit", it can readily be confronted with the existing reservoir model and production data; 

and the existing model can thus either be confirmed or modified and improved on this basis. 

 

6.1 Hydro pilot study 
 

The focus of the Norsk Hydro pilot project was on the influence of basin-floor topography on 

the spatial pattern of sand dispersal by turbidity currents.  

 

The results of this pilot study have shown that the turbidity currents are highly sensitive to 

subtle variation in basin-floor configurations, and have also indicated that the Ormen Lange 

sub-basins were probably supplied with sediment from a single main source in the southeast, 

via the southern sub-basin characterized by "plunge pool" topography (Figures 7-8). The 

sediment transport directions were thus mainly to the north, due to subtle topographic 

confinement to the west and east. The simulations indicate that an initial coeval sedimentation 

of turbiditic sand in the southern and middle sub-basins may have occurred in these 

conditions, with the "saddle" area between the sub-basins acting as a bypass zone dominated 

by erosion and sediment resuspension. As the primary topographic relief of the southern and 

middle sub-basin was gradually smoothed out by sediment accumulation, this area began to 

act increasingly as a bypass zone – with sand transfer by turbidity currents farther to the north, 

possibly all the way to the northern sub-basin. 
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Figure 7. Top view of the basin infill evolution.  
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Figure 8. Cross-sections of the basin infill evolution. 
 

Although the primary aims of that study were met and an improved understanding of turbidite 

sand sedimentation in the Ormen Lange field was achieved, the main limiting factor for the 

accuracy of the results was the lack of reliable data on the sediment source area.  
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6.2 Main study 
 

This project continued with further analysis of the sensitivity of turbidity currents to a wider 

range of basin-floor topographic configurations and with a more detailed study of the 

influence of substrate topography on the spatial pattern of sediment dispersal. FLOW-3D™ 

software was adopted to simulate transport, erosion and deposition of a wider range of 

sediments – including a model that incorporates transport, erosion, re-suspension and 

deposition of two classes of sediments. The main focus for this study was to try to replicate 

the basin-fill history at the Ormen Lange field within the boundary conditions and framework 

established in the pilot study. 

 

The initial part of the project focused on reviewing the simulation setup and re-evaluating the 

assumptions from the pilot study. All simulation input parameters were re-checked and new 

attempts to identify the entry point were made (Figure 9). 

 
Figure 9. Different entry point locations. 

 

Multiple simulation runs were then performed (Table 1). The simulations from the Hydro 

pilot were re-run with the new simulation setup. The new base Egga surface provided by 

Midland Valley Exploration Ltd. (MVE 2004) was then incorporated in the simulations and 

changed by re-enabling the regional tilt to varying extent (Runs 1-5). Even with heavy 

modifications to the new surface the quality could not be improved compared to the pilot 

study so it was abandoned in favor of the topographic surface based on the Egga Reservoir 

Unit isochore map provided by A/S Norske Shell (Runs 6-9). 
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Table 1 
 
Run Initial topography  Changes 

1 Top Våle Tight (MVE) Unmodified, entry point from Hydro pilot 

2 

Fig, 9C 

” East/North tilt, South/East entry point 

3 

Fig, 9B 

” ”, East entry point 

4 

Fig, 9A 

” ”, North/East entry point 

5 ” Heavily modified, no realistic visualization. 

6 Egga Reservoir Isochore (Shell) Unmodified, South/East entry point 

7 ” North tilt, single sediment size 

8 

Fig. 10 

” ”, South sub-basin initially filled-in 

9 

Fig. 11 

” ”, Two sediment grain-sizes 

 
 

For the simulations using the new surface from Shell, similar sensitivity analysis of variation 

in regional tilt and entry point locations were performed.  First a simulation with the old 

sediment model was attempted and then a two-step simulation using the new 2-size sediment 

model (Runs 8-9). The first step involved stopping the simulation after the southern depo-

centre was partially filled-in with sediments (Run 8), and then the simulation resumed with a 

slightly vertically shifted entry point (Run 9).   
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Figure 10. The filling of the southern sub-basin. 
 

The results from this study show slightly more reservoir fill to the west compared to the pilot 

study. The volume of sediment deposited in the northern depo-centres has also increased 

when using the new 2-size sediment model that causes less erosion and thus more sediment to 

bypass (Figure 11).  
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Figure 11. Cross-sections of the basin infill evolution. 
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7 Conclusions 
 

The main conclusions from this study are: 

 

� Turbidity currents are highly sensitive to subtle variation in basin-floor topography. 

� The Ormen Lange depo-centers were probably supplied with sediment mainly from 

sources in the southeast.  

� The sediment transport directions are still considered to be mainly to the north, due to 

subtle topographic confinement to the east and west. 

� Coeval sedimentation occurs in the depo-centres with the areas in between possibly acting 

as a bypass zone, dominated by erosion and sediment re-suspension. 

� As the primary topographic relief was gradually smoothed out by sediment accumulation, 

the whole area began to act increasingly as a bypass zone. 

� A working model has been established that can simulate the basin infill evolution for a 

field such as Ormen Lange within the constrains of the current uncertainty. 

� The main limiting factor for the accuracy of these simulations is the poor quality of the 

basin-floor topographic data especially in the assumed feeder-channel area. 
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8 Further Work 
 

Further work that would enhance the understanding of the Ormen Lange field could include: 

 

� Obtain reconstructed basin-floor topographic data covering a larger area, especially in the 

inferred southeastern source area, and possibly also better data on the study area's palaeo- 

latitudes, bathymetry, salinity, temperature and currents. 

� FLOW-3D™ could be adopted to simulate an even wider range of sediments, with various 

"real-life" grain-size distributions, to enable modeling of more complex heterogeneities. 

� 3-D visualization of the stacking patterns and the evolution of the whole depositional 

system, generating sets of deterministic stratigraphic surfaces to be used for correlation 

and verification of the Ormen Lange field (Guargena et al. 2006). 
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