
Characterization of the CEL-MODY mouse – 

A new disease model for chronic pancreatitis 
 

 

Ivan Abbedissen 

This thesis is submitted in partial fulfillment of the requirements for the degree of 

Master of Science 

 

 

 

 

 

 

 

Department of Biological Science and 

Department of Clinical Medicine 

University of Bergen 

Department of Medical Genetics 

Haukeland University Hospital 

June 2020 

 



1 
 

Table of contents 

Acknowledgments ................................................................................................................................. 3 

Abbreviations ........................................................................................................................................ 4 

Abstract ................................................................................................................................................. 5 

1 Introduction ................................................................................................................................... 6 

1.1 The pancreas ..................................................................................................................................... 6 

1.1.1 The exocrine pancreas ............................................................................................................... 7 

1.1.2 The endocrine pancreas ............................................................................................................ 8 

1.2 Pancreatic diseases ............................................................................................................................ 9 

1.2.1 Diabetes mellitus ....................................................................................................................... 9 

1.2.2 Pancreatitis .............................................................................................................................. 10 

1.2.3 Pancreatic cancer .................................................................................................................... 11 

1.3 Pathways of genetic risk in chronic pancreatitis ............................................................................. 11 

1.3.1 The trypsin-dependent pathway ............................................................................................. 12 

1.3.2 The misfolding-dependent pathway ....................................................................................... 12 

1.3.3 The ductal pathway ................................................................................................................. 12 

1.4 Carboxyl ester lipase ........................................................................................................................ 13 

1.4.1 The human CEL locus ............................................................................................................... 13 

1.4.2 The CEL protein ........................................................................................................................ 14 

1.4.3 From translation to secretion .................................................................................................. 15 

1.5 Pathological variants of CEL ............................................................................................................. 15 

1.5.1 CEL-MODY ................................................................................................................................ 15 

1.5.2 CEL-HYB.................................................................................................................................... 16 

1.6 Mouse models for human disease .................................................................................................. 17 

1.6.1 Genetically engineered mice ................................................................................................... 17 

1.6.2 Gene targeting by homologous recombination ...................................................................... 18 

1.6.3 Constructing CEL-MODY and CEL-16R transgenic mice ........................................................... 19 

2 Aims of the study .......................................................................................................................... 21 

3 Materials ...................................................................................................................................... 22 

4 Methods ....................................................................................................................................... 26 

4.1 Animals ............................................................................................................................................ 26 

4.2 Study approval ................................................................................................................................. 26 

4.3 Genotyping ...................................................................................................................................... 27 

4.3.1 DNA extraction ........................................................................................................................ 27 

4.3.2 Polymerase chain reaction (PCR) ............................................................................................. 27 

4.3.3 Agarose gel electrophoresis .................................................................................................... 28 

4.4 SDS-PAGE and Western blotting...................................................................................................... 29 

4.4.1 Preparation of mouse pancreas tissue lysates ........................................................................ 29 



2 
 

4.4.2 Protein concentration .............................................................................................................. 29 

4.4.3 SDS-PAGE ................................................................................................................................. 29 

4.4.4 Western blotting ...................................................................................................................... 29 

4.5 Mouse body weight development .................................................................................................. 30 

4.6 Mouse tissue and blood collection .................................................................................................. 30 

4.7 Histology of the mouse pancreas .................................................................................................... 30 

4.7.1 Tissue preparation and Hematoxylin and Eosin (HE)-staining ................................................ 30 

4.7.2 CEL-Immunostaining ................................................................................................................ 31 

4.7.3 Trichrome staining ................................................................................................................... 31 

4.8 Glucose homeostasis tests .............................................................................................................. 32 

4.8.1 Intraperitoneal glucose tolerance test (IPGTT) ....................................................................... 32 

4.8.2 Intraperitoneal insulin tolerance test (IPITT) .......................................................................... 32 

4.9 Statistics ........................................................................................................................................... 32 

5 Results ......................................................................................................................................... 33 

5.1 Identification and verification of transgenic CEL mice .................................................................... 33 

5.1.1 Genotyping of CEL-16R and CEL-MODY mice .......................................................................... 33 

5.1.2 Detection of humanized Cel proteins in CEL-16R and CEL-MODY mice .................................. 35 

5.2 Mouse body weight development .................................................................................................. 36 

5.3 Weight of mouse pancreas .............................................................................................................. 37 

5.4 Pancreas histology of the CEL-MODY mice ..................................................................................... 38 

5.5 Immunohistochemistry for Cel expression in the mouse pancreas ................................................ 41 

5.6 Staining for fibrotic tissue in CEL-MODY mice ................................................................................. 45 

5.7 Glucose homeostasis tests in mice .................................................................................................. 49 

6 Discussion .................................................................................................................................... 52 

6.1 The first mutant lipase mouse model for CP ................................................................................... 52 

6.2 The CEL-MODY mouse recapitulates many of the features of CEL-MODY patients ....................... 53 

6.3 Fat infiltration of the pancreas ........................................................................................................ 54 

6.4 Cel expression during CP development in mice .............................................................................. 55 

6.5 Disease progression in CEL-MODY mice .......................................................................................... 55 

6.6 The CEL-16R mouse ......................................................................................................................... 57 

6.7 The impact of Covid-19 on the master project ............................................................................... 57 

7 Conclusion .................................................................................................................................... 59 

8 Future perspectives ...................................................................................................................... 60 

References ........................................................................................................................................... 61 

Appendix ............................................................................................................................................. 68 

Body weight development for mice at 3 months of age ............................................................................. 68 

IPGTT for mice at 3 months of age .............................................................................................................. 69 

 



3 
 

Acknowledgments 

I would like to sincerely thank the greatest supervisors of all time; Karianne Fjeld, Anny Gravdal, 

and Anders Molven. With your experience and knowledge, this project has been orchestrated to 

fulfil all my expectations and more. Since the first day, I have felt welcome by your kind hearths 

and enthusiasm towards my success. You have shown faith in me by giving me responsibility and 

the possibility to thrive as a student.  

Karianne, you have been a wonderful supervisor and motivator for me during our year together. The 

care you have shown for me has been cherished. You have always been available, motivating and 

helping me when I have been stuck or stressed. Thank you for all you have done. 

Anny, I could not have wished for a better co-supervisor. You have always helped me when I 

needed it and been a great team-player. Thank you for teaching me how to run experiments and 

dissect mice, and of course, thank you for being patient with me and allowing me to take part in 

your precious mouse project.  

Anders, you have been a great inspiration for me. Your knowledge has helped me understand both 

smaller details and the bigger picture of this project. Thank you for your counselling and support. 

Furthermore, I would like to thank Khadija El Jellas for teaching me immunohistochemistry and 

helping me evaluate my results, our talks have been interesting and motivating. I wish to thank 

Marie Solheim and Bente Johansson for helping me with the mice, it has been a challenge to 

organize all the experiments and your help has been greatly appreciated. Solrun Steine, thank you 

for all the help with genotyping and our positive talks. I would like to thank my co-student Helene 

Pettersen for helping me with western blotting and always cheering me up by our fun conversations. 

Also, thanks to all the people at the Department of Medical Genetics and Department of Pathology, 

Haukeland Univeristy Hospital who have been helping me. 

At last, I would like to thank my family and friends for supporting me throughout this master 

project, I could not have done it without you. A special thanks to my dear Andrea for supporting me 

every day. You have pushed me in times I needed motivation and praised me for my 

accomplishments. 

 

Bergen, June 2020 

Ivan Abbedissen 

 



4 
 

Abbreviations 

ADM      Acinar-to-ductal metaplasia 

bp    base-pairs 

CEL/CEL    Carboxyl ester lipase/gene 

CELP      Carboxyl ester lipase pseudogene 

CEL-HYB/CEL-HYB    Carboxyl ester lipase hybrid/gene 

CO2      Carbon dioxide 

CP      Chronic pancreatitis 

CPA1/CPA1     Carboxypeptidase A1/gene  

DNA      Deoxyribonucleic acid 

ER      Endoplasmic reticulum 

kb      Kilo bases 

kDa      Kilo Daltons 

MODY     Maturity-Onset Diabetes of the Young 

PDAC      Pancreatic ductal adenocarcinoma 

PRSS1      Cationic trypsinogen gene 

RT      Room temperature 

TGF-beta     Transforming growth factor beta 

VNTR      Variable number of tandem repeats 

~      Approximately 

 

 

 

 

 

 

 

 



5 
 

Abstract 

Carboxyl ester lipase (CEL) is a digestive enzyme produced by the acinar cells of the pancreas. Two 

single-base deletion variants of the CEL gene cause a frameshift in the variable number of tandem 

repeats region located in the last exon. These CEL variants lead to a syndrome of pancreatic exocrine 

dysfunction and diabetes, known as Maturity-Onset Diabetes of the Young (CEL-MODY). 

To get new insight into the disease mechanisms of CEL-MODY, our research group has developed a 

novel CEL-MODY knock-in mouse model. The overall aim of this project was to characterize this 

model. More specifically, we wanted to study the effect of the CEL-MODY protein at an organ level, 

with regard to pancreatic exocrine and endocrine dysfunction.  

The CEL-MODY mice showed signs of pathological changes in the pancreas at 3 months of age, 

while severe, irreversible changes were observed at 6 months of age for both males and females. We 

observed exocrine atrophy, fibrosis and fatty infiltration, which are well known features of chronic 

pancreatitis (CP). Immunostaining indicated loss of Cel expression in atrophic exocrine tissue. We 

also detected signs of Cel protein aggregation, suggesting that CEL-MODY cause disease through 

the misfolding-dependent pathway of CP. No signs of diabetes were observed at 6 months of age, 

indicating that the islets of Langerhans remain functional in our mouse model, despite severe exocrine 

damage.  

In summary, we found that the CEL-MODY mice developed spontaneous CP, making this the first 

mutant lipase mouse model for CP. However, the mice did not present any signs of diabetes 

development at 6 months of age.  
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1 Introduction 

1.1 The pancreas 

The human pancreas is an organ located in the upper abdomen surrounded by other organs such as 

the stomach, small intestine, kidney and spleen. This gland consists of an exocrine and an endocrine 

part that have two major functions vital for food digestion and blood glucose regulation, respectively. 

The pancreas is divided into three main anatomical areas, the head, body and tail (Figure 1.1 A).  

 

 

Figure 1.1. Overview of the anatomical areas of the pancreas. A) The pancreas is divided into three anatomical areas, 

the head, body and tail, where the tail is more distal, and the head is proximal relative to the torso. The head lies next to 

the duodenum with a twisted structure. There is a duct throughout the whole pancreas that merges with the common bile 

duct in the head region of the pancreas, making the major duodenal papilla that leads into the duodenum. Within the 

pancreas, the main duct branches out into multiple smaller ducts. B) The acinar cells are arranged around smaller ducts 

in which they secrete digestive enzymes. Alpha and beta cells make up the major type of cells in the pancreatic islets that 

secrete hormones into the blood stream. Taken from: Copstead and Banasik, Pathophysiology, 5th ed, 2013, p 742. 
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1.1.1 The exocrine pancreas 

About 90 % of the pancreas is made of exocrine tissue, including acinar and ductal cells (Pandiri, 

2014). The parenchyma of the pancreas has lobe structures where acinar cells make up branched 

grape-like structures called acini (Figure 1.1 B). Each acinus has a similar orientation of dipole acinar 

cells laying around a lumen with their apical part towards this lumen. All acini are connected to 

intralobular ducts that leads to larger interlobular ducts, which further merges with the main 

pancreatic duct (Longnecker, 2014). In addition, the common bile duct from the gallbladder merges 

with the pancreatic duct, supplementing bile salts to the duodenum. The ductal secretion is called 

pancreatic juice and consists of water, bicarbonate and digestive enzymes (Longnecker, 2014).  

The pancreas can produce 1-2 litres of pancreatic juice every day (Jun et al., 2016). Production and 

secretion of bicarbonate is stimulated by the hormone secretin. Bicarbonate has an important role in 

neutralizing the pH in the duodenum which allows digestive enzymes to function in an optimal 

environment (Afroze et al., 2013).  

In the acinar cells, inactive and partially active digestive enzymes are budding off from the Golgi 

network in vesicles called zymogen granules, before being secreted via exocytosis from the apical 

part of the cell and into the ductal lumen (Motta et al., 1997). The zymogen granules carry multiple 

types of digestive enzymes as listed in Table 1.1. Secretion of digestive enzymes are stimulated by 

several signalling molecules. The most common are cholecystokinin, a gastrointestinal hormone, and 

acetylcholine, a neurotransmitter that stimulates calcium mobilization leading to exocytosis of 

zymogen granules (Matthews et al., 1973).  
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Table 1.1. The most common digestive enzymes secreted by the pancreas. 

Digestive enzyme Biological Function Reference 

Proteases Digest peptides  

Chymotrypsin (B, C) Endopeptidase, cleaves peptide 

bonds after aromatic amino acid 

residues. 

(Tomita et al., 1989, 

Batra et al., 2013) 

Carboxypeptidase (A, B) Exopeptidase, cleaves aromatic 

and basic amino acids from c-

terminus. 

(Laethem et al., 1996) 

Elastase Endopeptidase, cleaves peptide 

bonds after small uncharged amino 

acid residues. 

(Szabó et al., 2016) 

Trypsin Endopeptidase, cleaves peptide 

bonds after basic amino acid 

residues. 

(Scheele et al., 1981) 

Lipases Digest lipids  

Pancreatic triglyceride lipase Cleaves ester bonds at sn-1 and sn-

3 of triglycerides. 

(Lowe, 1997) 

Phospholipase A2 Cleaves sn-2 acyls ester bond of 

phospholipids. 

(Gudgeon et al., 1991) 

Pancreatic lipase related protein 2 Cleaves ester bonds of 

triglycerides, galacto- and 

phospholipids. 

(Eydoux et al., 2008) 

Carboxyl ester lipase (CEL) Cleaves ester bonds of 

triglycerides, phospholipids, 

vitamin ester, cholesterol ester and 

fatty acids of hydroxyl fatty acids. 

(Johansson et al., 2018) 

Amylase Digest carbohydrates  

Pancreatic alpha-amylase Hydrolyses starch and glycogen. (Brayer et al., 1995) 

Nucleases Digest nucleotides  

Deoxyribonuclease and ribonuclease Cleaves the nucleic acids of DNA 

and RNA 

(Chen, 2018) 

 

 

1.1.2 The endocrine pancreas 

Within the parenchymal lobes, distinct spherical groups of cells known as the islets of Langerhans 

are present (Figure 1.1 B). The islets comprise the endocrine pancreas, making up approximately 2 

% of the organ (Murakami and Fujita, 1992) and consists of alpha, beta, gamma, delta and epsilon 

cells. The insulin producing beta cells make up the largest portion of the islets (~60%), followed by 

glucagon producing alpha cells (~30%) and the remaining 10 % is divided between delta, gamma and 
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epsilon cells, producing somatostatin, pancreatic polypeptide and ghrelin, respectively (Ionescu-

Tirgoviste et al., 2015).  

Insulin and glucagon are the two hormones important for maintaining glucose homeostasis in the 

body. When blood glucose rises after a meal, the beta cells are stimulated to produce insulin. 

Intracellular calcium stimulates secretion of insulin granules out into the blood (Mann and Bellin, 

2016). Insulin migrates in the blood veins and binds to its responding receptors at different periphery 

tissues, such as the muscle, liver and fat, thereby stimulating glucose uptake. The secretion of insulin 

keeps the blood glucose from elevating too high (Mann and Bellin, 2016).  

In contrast to insulin, glucagon up-regulates the blood glucose levels. When blood glucose is too low, 

alpha cells are stimulated to secrete glucagon into the bloodstream. Glucagon initiates liver 

glycogenolysis and gluconeogenesis, raising blood glucose to avoid hypoglycemia (Jiang and Zhang, 

2003).  

 

1.2 Pancreatic diseases 

1.2.1 Diabetes mellitus 

Diabetes mellitus is a group of metabolic disorders characterized by chronic hyperglycemia 

(Kharroubi and Darwish, 2015). In 2014, 8.5 % of adults worldwide were diagnosed with diabetes 

(World Health Organization, 2016). The two most common types are Type 1 Diabetes (T1D), 

accounting for around 5-10 % of diabetes cases, and Type 2 Diabetes (T2D), accounting for about 90 

% of diabetes cases (Goyal and Jialal, 2020). Other forms of diabetes are gestational and monogenic 

diabetes. 

T1D is an autoimmune disease that leads to destruction of the insulin producing beta cells (Bluestone 

et al., 2010). This disease mostly develops before the age of 20 (Maahs et al., 2010). One of the 

predominant genetic risk factors involve beta cell genes encoding antigen presenting molecules, 

causing an immune response (Concannon et al., 2009). 

The hallmark for T2D is insulin resistance, i.e. that the insulin targeted cells do not respond efficiently 

to the hormone. Age of onset is typically after 40 years of age (American Diabetes Association, 2014). 

However, with lifestyle risk factors such as obesity, physical inactivity and energy-dense diet, an 

increasing number of younger people are diagnosed with T2D (Pulgaron and Delamater, 2014).  



10 
 

Gestational diabetes is defined as glucose intolerance with onset or first recognition during pregnancy 

(American Diabetes Association, 2014). Around 7 % of pregnant women get this form of diabetes, 

although for most of them, it disappears after giving birth.  

Monogenic diabetes is caused by mutations in a single gene. A prevalence study from Norway found 

that 1.1 % of all patients in the Norwegian Childhood Diabetes Registry had monogenic diabetes 

(Irgens et al., 2013). Monogenic diabetes can be further sub-categorized into Maturity-Onset Diabetes 

of the Young (MODY), neonatal diabetes, syndromic diabetes and mitochondrial diabetes (Molven 

and Njolstad, 2011). MODY is the most common type of monogenic diabetes, characterized by 

autosomal dominant inheritance with neither beta cell autoimmunity nor insulin resistance. It usually 

leads to diabetes before 25 years of age (Urakami, 2019). Due to a relatively early onset and no insulin 

resistance, in addition to no beta cell autoimmunity, MODY is often misdiagnosed as T1D and T2D, 

respectively (Kavvoura and Owen, 2019). Today, 14 subtypes of MODY have been discovered 

(Urakami, 2019). The most common forms are caused by mutations in the hepatocyte nuclear factor 

1, hepatocyte nuclear factor 4 and glucokinase. Mutations in the carboxyl ester lipase gene, causing 

MODY8 or CEL-MODY, are described in section 1.5.1. 

 

1.2.2 Pancreatitis  

Pancreatitis is defined as inflammation of the pancreas. It can either be acute, which has a sudden 

onset and short duration, or chronic, which develops gradually and results in irreversible organ 

damage (Banks et al., 2010). Pancreatitis is a complex disease with multiple risk factors where 

environment, anatomy and genetics play an important role (Hegyi et al., 2020). If not reversible, 

acute, recurrent acute and chronic pancreatitis form a disease continuum (Mayerle et al., 2019). 

Acute pancreatitis (AP) can be divided into three stages: mild, moderate and severe depending on the 

presence and recurrence over a period (>48 hours) of organ failure and local or systemic 

complications (Banks et al., 2013). The most common cause of AP is obstructive (e.g. gallstone) and 

alcohol related (Chatila et al., 2019). Obstructive AP leads to retention of pancreatic juice drainage, 

but can be cured with fasting and by removing the blockage (Banks et al., 2013). Alcohol abuse is 

believed to sensitise acinar cells for cholecystokinin, thereby increasing the secretion of digestive 

enzymes which can build up and cause premature activation (Wang et al., 2009). In addition, alcohol 

can disrupt calcium influx in the ducts, leading to calcification that partially obstructs drainage of 

pancreatic juice (Whitcomb, 2012). Retention of pancreatic juice can lead to inappropriate activation 

of digestive enzymes, causing autodigestion within the pancreas. If not reversed or if it recurs, AP 

can progress into chronic pancreatitis (CP). 
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CP is characterized by progressive parenchymal fibrosis, maldigestion, diabetes mellitus and pain 

(Etemad and Whitcomb, 2001). Progressive pancreatic inflammation and necrosis results in loss of 

both exocrine and endocrine tissue. Known risk factors for CP are classified into: toxic-metabolic; 

genetic; autoimmune; recurrent and severe acute pancreatitis; obstructive; and idiopathic (Pham and 

Forsmark, 2018). How genetics play a role in CP will be described further in section 1.3. 

 

1.2.3 Pancreatic cancer 

Pancreatic cancer has the seventh highest mortality rate of all cancer types worldwide and the fourth 

highest in the United States (Rawla et al., 2019, Siegel et al., 2019). It can arise from both the exocrine 

and endocrine part of the pancreas. However, over 90 % of pancreatic cancers are adenocarcinomas 

arising from the exocrine gland (Hidalgo et al., 2015). Pancreatic neuroendocrine cancer is less 

common (<5 %) (Rawla et al., 2019). Some risk factors for pancreatic cancer are smoking, diabetes, 

alcohol, genetics and pancreatitis (Dhar et al., 2015).  

Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumour with a duct-like phenotype (Orth 

et al., 2019). A progression model has been characterized by an initial transition from normal 

pancreatic acinar cells into duct-like cells, termed acinar-to-ductal metaplasia (ADM) (Chuvin et al., 

2017). ADM is induced by transforming growth factor beta (TGF-beta) signalling (Chuvin et al., 

2017), typically observed as a consequence of stress from pancreatic inflammation and organ injury 

in pancreatitis (Murtaugh and Keefe, 2015). Furthermore, pro-oncogenic mutations induces ADM to 

become pre-invasive precursor lesions termed pancreatic intraepithelial neoplasia (PanIN) (Orth et 

al., 2019). Eventually, a gradual accumulation of mutations in tumour suppressor genes causes the 

PanINs to become invasive PDAC (Orth et al., 2019, Rawla et al., 2019).  

 

1.3 Pathways of genetic risk in chronic pancreatitis  

Progression from recurrent AP into CP can be driven by genetic factors (Mayerle et al., 2019). CP 

patients can have a complex set of genetic alterations that interplay with each other as well as other 

risk factors such as alcohol (Whitcomb, 2012). Today, three pathological pathways are described in 

genetically driven CP (Mayerle et al., 2019). 
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1.3.1 The trypsin-dependent pathway 

Trypsin plays a major pathological role in pancreatitis, by premature activation and driving the 

progression of disease through its ability to activate other digestive enzymes inside the pancreas 

(Mayerle et al., 2019). Certain autosomal dominantly inherited mutations in the cationic trypsinogen 

gene (PRSS1) causes hereditary pancreatitis (Mayerle et al., 2019). Gain-of-function mutations can 

increase PRSS1s ability to autoactivate prematurely before entering the duodenum (Hegyi and Sahin-

Tóth, 2017). 

Other genetic risk factors are variants of serine protease inhibitor Kazal type 1 (SPINK1) and 

chymotrypsin C (CTRC) (Muniraj et al., 2014). In general terms, they manage trypsin inhibition and 

trypsinogen degradation, respectively. Pancreatic secretory trypsin inhibitor (encoded by SPINK1) 

inhibits trypsin and is up-regulated during inflammation (Muniraj et al., 2014). Loss-of-function 

mutations in SPINK1 impairs this inhibition of active trypsin. Too high calcium levels or loss-of-

function mutations inhibit CTRCs degradation capacity of inactive trypsinogen (Muniraj et al., 2014).  

 

1.3.2 The misfolding-dependent pathway 

More recently, an alternative pathway to premature trypsin activation has been identified. In common 

for the genes involved is that they encode misfolding proteins that lead to protein aggregation, 

impaired secretion, increased endoplasmic reticulum (ER)-stress, and eventually apoptosis (Sahin-

Toth, 2017). The pathway is named the misfolding-dependent pathway of genetic risk in CP and 

certain mutations in the digestive enzymes such as PRSS1, carboxypeptidase A1 (CPA1) and 

carboxyl ester lipase (CEL) have shown to belong to this pathway (Whitcomb et al., 1996, Fjeld et 

al., 2015, Sahin-Toth, 2017). The role of CEL in CP is further described below. 

 

1.3.3 The ductal pathway 

The cystic fibrosis transmembrane conductance regulator (CFTR) stimulates duct cells to produce 

bicarbonate-rich fluid which contributes to flushing trypsin out of the pancreas (Muniraj et al., 2014), 

and mutation variants of the CFTR has shown to increase the risk of CP 4-fold (Mayerle et al., 2019). 

Furthermore, the calcium sensing receptor (CASR) regulates calcium influx in the duct cells. Alcohol 

and certain mutation variants of CASR leads to impaired function, causing calcification that may 

progress into CP (Mayerle et al., 2019). 
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1.4 Carboxyl ester lipase 

Carboxyl ester lipase (CEL), also known as bile salt-stimulated lipase (Hernell and Olivecrona, 1974), 

or bile salt-dependent lipase (Abouakil and Lombardo, 1989), is a digestive enzyme (EC 3.1.1.13). 

CEL is mainly expressed by the pancreatic acinar cells and accounts for about 4 % of the protein 

content in the pancreatic juice (Lombardo et al., 1978). The enzyme is secreted as partially inactive 

before entering the duodenum. Here, CEL is stimulated by bile salts and can hydrolyse ester bonds 

in cholesterol esters, fat-soluble vitamins, tri-, di-, and monoacylglycerols and several fatty acid esters 

of hydroxyl fatty acids (Lombardo and Guy, 1980, Kolar et al., 2016). CEL is also expressed in 

lactating mammary glands and is secreted as a content of breast milk (Blackberg et al., 1985). During 

infancy, fat absorption is low, however, CEL from the breast milk helps infants compensate for the 

low endogenous fat absorption (Lindquist and Hernell, 2010). 

 

1.4.1 The human CEL locus 

The human CEL gene is located at chromosome 9q34.3 and is ~10 kb in size, consisting of 11 exons 

(Figure 1.2.) (Taylor et al., 1991). In the last exon, there is a variable number of tandem repeats 

(VNTR) region consisting of nearly identical segments of 33 bp (Higuchi et al., 2002). The number 

of repeats vary from 3-23 in humans, although several studies have shown that 16 repeats is the most 

common (Ræder et al., 2006, Torsvik et al., 2010, Dalva et al., 2017). About 11 kb downstream of 

the CEL gene, a CEL pseudogene (CELP) is located (Figure 1.2). Despite having a high sequence 

homology to CEL, CELP is missing exons 2-7 and it also includes a stop codon in the second exon 

(Lidberg et al., 1992, Madeyski et al., 1999). Due to the premature stop codon, CELP is not expected 

to be translated into a functional protein (Nilsson et al., 1993). 

 

 

Figure 1.2. The human CEL locus. In red, the 11 exons of CEL are shown spanning a sequence of about 10 kb. Further 

downstream, the CEL pseudogene is shown in blue. Marked in grey are the CEL exons 2-7 missing in CELP. The 

remaining 5 exons of CELP are named 1’, 8’, 9’, 10’ and 11’ due to the sequence similarity with the corresponding exons 

in CEL. Note the stop codon in exon 8’ in CELP. Figure taken from (Fjeld et al., 2015). 
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1.4.2 The CEL protein 

The most common human CEL variant with 16 VNTR repeats has a predicted theoretical protein size 

of ~79 kDa (Johansson et al., 2011). However, CEL is a glycoprotein that is heavily modified in the 

C-terminal tail. Therefore, the fully modified protein is detected with a molecular weight up to 120 

kDa (El Jellas et al., 2018). The enzyme can structurally be divided into two parts, an N-terminal 

globular domain and an intrinsically disordered C-terminal domain (Figure 1.3). In the globular 

domain, there is an N-terminal ER-signalling sequence, a catalytic triad, multiple bile salt binding 

sites and a single site for N-glycosylation (Johansson et al., 2018). The C-terminal VNTR region is 

rich in proline (P), glutamic acid (E), serine (S) and threonine (T) residues, known as PEST-

sequences, which are recognised for rapid protein degradation (Rogers et al., 1986). However, the 

same threonine and serine residues are serving as O-glycosylation sites, and it has been suggested 

that O-glycosylation of the CEL VNTR has a protective role by masking the PEST sequence, thereby 

prohibiting degradation of the enzyme (Wang et al., 1995, Bruneau et al., 1997). 

 

 

Figure 1.3. Overview of the CEL protein structure. A presentation of the protein with its functional parts indicated by 

arrows. The catalytic function is driven by three amino acids making a catalytic triad in the active site. Binding of bile-

salts stimulates enzyme activation. O-glycosylation in the tail is believed to help with stability and secretion of the protein. 

This is a presentation of the 16-repeat variant, giving a 745 aa long protein. Figure taken from (Johansson et al., 2018). 
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1.4.3 From translation to secretion 

CEL follows the classical secretory pathway for digestive enzymes (Lombardo, 2001). The N-

terminal ER-signalling peptide of CEL translocates the protein into the ER, where it is cleaved off 

and the protein is further modified. In the ER, the chaperone glucose regulated protein 94 aids in 

folding and glycosylation of CEL (Bruneau and Lombardo, 1995). Then, N-glycosylation of Asn210 

occurs before CEL is transported to the Golgi network (Abouakil et al., 1993). Here, O-glycosylation 

occurs on the many serine and threonine residues of the VNTR region (Bruneau et al., 1997). 

Phosphorylation by casein kinase 2 on Thr340 is the final trigger for CEL to bud off from the Golgi, 

leaving the cell via exocytosis in zymogen granules (Pasqualini et al., 2000). 

 

1.5 Pathological variants of CEL 

1.5.1 CEL-MODY 

In 2006, Ræder et al. reported that mutations in the CEL VNTR cause an autosomal dominantly 

inherited syndrome of endocrine and exocrine dysfunction (Ræder et al., 2006). The mutations were 

discovered in two families from the Western Norway. Their pedigrees revealed a family history of 

early onset diabetes, characterized as MODY, and the syndrome was named CEL-MODY or 

MODY8.  

The CEL-MODY syndrome is caused by a single-base deletion in the first (DEL1) or fourth (DEL4) 

repeat of the VNTR. Both mutations lead to frameshifts, and the CEL-MODY variants encode 

truncated proteins due to a premature stop codon in the VNTR domain (Figure 1.4).  

 

Figure 1.4. Presentation of the 

CEL protein tail in two 

deletion variants. The REP 16 

is illustrating a wild-type CEL 

VNTR with 16 repeats, each 

repeat indicated in blue boxes. 

Both DEL1 and DEL4 show a 

truncated tail, where the 

deletion causes an alternate tail 

indicated in red boxes. Note 

that DEL1 has a stop codon in 

repeat 11 while DEL4 has in 

repeat 13. Figure modified 

from (Johansson et al., 2018). 
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CEL-MODY is a progressive disease with early exocrine dysfunction and lipomatosis (Ræder et al., 

2006, 2007). Diabetes develops in the 40s and multiple pancreatic cysts have been observed in the 

diabetic patients (Ræder et al., 2014). In addition, one patient developed PDAC at a later stage in life 

(A. Molven, pers. Comm). The patients were first diagnosed due to their diabetes development. 

However, exocrine dysfunction is believed to be preliminary to diabetes, as exocrine dysfunction is 

also observed in nondiabetic CEL-MODY patients (Tjora et al., 2013). Based on these findings and 

the cellular studies discussed below, CEL-MODY seems to move more towards the area of CP, with 

diabetes development as a secondary consequence. 

It is believed that the CEL-MODY syndrome is a gain-of-function disease where the mutant protein 

causes proteotoxic damage to the pancreas (Johansson et al., 2011, Torsvik et al., 2014, Xiao et al., 

2016). Supporting this hypothesis, an earlier study of a CEL knock-out mouse model showed no 

significant signs of pancreatic disease development, demonstrating that loss of CEL can be tolerated 

(Vesterhus et al., 2010). Compared to the normal CEL protein, the CEL-MODY protein results in 

misfolding, impaired secretion and formation of both intra- and extracellular aggregates (Johansson 

et al., 2011, Torsvik et al., 2014). The aggregates cause ER-stress and induces apoptosis (Xiao et al., 

2016). In addition, CEL-MODY proteins that have been secreted can be taken up again by adjacent 

cells and induce cell death (Torsvik et al., 2014, Dalva et al., 2020). The mutated protein has, in 

addition to a truncated tail, a totally different amino acid sequence in the tail region. This results in 

loss of multiple O-glycosylation sites and an increase in the local isoelectric point (pI) from 3.3 to 

11.8 and overall pI from 5.2 to 9.5 (Johansson et al., 2011). Moreover, the presence of multiple 

cysteines caused by the frameshift may result in disulphide bridges that prevent proper folding of the 

protein, making it prone to aggregation (Xiao et al., 2016).  

 

1.5.2 CEL-HYB 

In 2015, Fjeld et al. reported that a hybrid variant of CEL (CEL-HYB) was a genetic risk factor for 

CP (Fjeld et al., 2015). This CEL-HYB variant was observed with a 5-fold frequency in idiopathic CP 

cases compared to controls in German and French cohorts.  

CEL-HYB is most likely a result of nonallelic homologous recombination between CEL and CELP 

(Fjeld et al., 2015). The CEL-HYB allele is composed of exon 1-10 from CEL while exon 11 originates 

from CELP. The VNTR from CELP has a stop codon in repeat 3, which causes the CEL-HYB protein 

to be expressed with a truncated tail. When expressed in cell culture, CEL-HYB showed impaired 

secretion, intracellular retention, reduced enzymatic activity and induced cellular autophagy (Fjeld et 

al., 2015). Furthermore, there are unpublished data showing that CEL-HYB induces ER-stress, both 
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at the RNA and protein level (Tjora et.al., submitted). Based on these recent results, it is suggested 

that the CEL-HYB allele follows the misfolding-dependent pathway of genetic risk in CP (see section 

1.3.2).  

 

1.6 Mouse models for human disease 

In medical research, the mouse has been a popular animal model for many years due to its genetic 

and physiological similarity to humans (Perlman, 2016). The most common laboratory mice today 

originates from the house mouse (Mus musculus), which has been used to develop inbred strains 

(Phifer-Rixey and Nachman, 2015). Inbred strains are generated by breeding siblings to create 

isogenic (genetically identical) mice. On average, 20 generations of inbreeding are sufficient to 

produce a population of mice that are about 99 % homozygous (Beck et al., 2000). Currently, over 

400 inbred mice strains are available with one of the most popular being the C57BL/6 (Black 6) 

mouse (Benavides et al., 2019).  

When the aim is to reproduce a human disease in mice, the strengths and weaknesses of a mouse 

strain needs to be thoroughly evaluated (Saloman et al., 2019). For instance, the Black-6 strain has 

substrains such as the C57BL/6J and C57BL/6N. In both substrains, multiple single nuclear 

polymorphisms have been identified that causes phenotypical differences (Simon et al., 2013). 

Knowing these differences are therefore very important when choosing a suitable strain for analysing 

human disease mechanisms and avoids the risk of interfering phenotypes. However, one of the 

advantages of using inbred strains is that the mice all have a uniform phenotype due to the isogenic 

background of the strain. 

 

1.6.1 Genetically engineered mice 

Developing genetically engineered mice based on human genetic diseases can serve as a good model 

to investigate the pathogenic mechanisms (Gurumurthy and Lloyd, 2019). Genome engineering 

allows for specific and sustainable alterations by either inserting, deleting or replacing DNA 

sequences that can cause a loss-of-function or a gain-of-function phenotype (Housden et al., 2017). 

Genetically engineered mice with foreign DNA is termed transgenic mice (Kumar et al., 2009). 

Typically, deleting or modifying a DNA sequence to remove a gene is termed knock-out (KO), and 

by inserting or replacing a DNA sequence to insert a gene is termed knock-in (KI).  
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1.6.2 Gene targeting by homologous recombination 

To generate a transgenic KI mouse, gene targeting by homologous recombination is a technique that 

involves introducing recombinant DNA into embryonic stem (ES) cells by stable transfection (Figure 

1.5 A) (Bouabe and Okkenhaug, 2013). A targeting vector is designed containing a selection marker 

for drug resistance and the recombinant DNA sequence of interest, flanked by sequences identical to 

the endogene sequence. These flanking sequences are termed homology arms (Ishii et al., 2014). In 

addition, the selection marker can be flanked by recombinase recognition sites for later deletion. The 

homology arms allow for homologous recombination, which is a natural process that can occur during 

meiosis or DNA repair where similar or identical DNA sequences are exchanged between two 

adjacent DNA strands (Gurumurthy and Lloyd, 2019). After homologous recombination, drug 

resistance allows for positive selection for the recombinant ES cells. A negative selection marker is 

included in the targeting vector, downstream of the homology arms, which can encode for toxic 

substance when homologous recombination has not occurred.  

Next, the recombinant ES cells are injected into a blastocyst and implanted into a pseudo pregnant 

female by in vitro fertilization (Figure 1.5 B) (Gurumurthy and Lloyd, 2019). As the recombinant ES 

cells and native ES cells in the blastocyst originates from different mouse strains, pups are born as 

chimeras with different coat colour. The chimeric pups can then be used for further breeding with Cre 

expressing mice (Figure 1.5 C). Cre is a recombinase that recognize the loxP sites and cuts out the 

positive selection marker (Gurumurthy and Lloyd, 2019). The next generation of pups will then be 

heterozygous for the recombinant DNA.  
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Figure 1.5. Overview of generating transgenic mice by gene targeting. A) A vector is transfected into ES cells 

by electroporation. The vector contains an exogenous sequence marked in red, flanked by homology arms 

indicated in blue boxes. Selection markers allow harvesting of targeted ES cells that have incorporated the 

exogene via homologous recombination. B) The targeted ES cells are then injected into a blastocyst also 

containing wild-type ES cells. Further, this blastocyst is implanted into a pseudo pregnant female that gives 

rise to chimeric pups. C) A chimera pup where the targeted ES cells have contributed to the germ layer is used 

to crossbreed with a cre-expressing mouse, performing excision of the positive selection marker in the 

exogenous sequence. The litters from this breeding are heterozygous for the exogene, indicated as 0/ki.  

 

1.6.3 Constructing CEL-MODY and CEL-16R transgenic mice 

Most research on CEL-MODY are based on cellular studies. To learn more about the disease 

mechanisms, our research group decided to develop a mouse model to be able to study CEL-MODY 

at the organ level. Previous mouse studies on CEL-MODY failed to show any pathological phenotype 

(Vesterhus et al., 2010, Ræder et al., 2013). However, neither of them used specific KI strategies for 

incorporating the human CEL-MODY VNTR into the endogenous mouse Cel locus. 

The principle behind generating the new CEL-MODY mouse model was to exchange the endogenous 

mouse Cel VNTR region with the human CEL-MODY VNTR. Thereby, expression is still regulated 

under the endogenous Cel promotor.  

Construction of the mouse model followed the techniques described above in section 1.6.2 and 

produced heterozygous CEL-MODY mice for human CEL-MODY VNTR (Figure 1.6). The CEL-

MODY VNTR sequence was based upon a DEL1 mutation in a 14 VNTR repeat allele (Ræder et al., 

2006).  
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In addition to the CEL-MODY mouse, we developed a CEL-16R mouse strain. Here the mouse Cel 

VNTR region was exchanged with the human CEL VNTR with 16 VNTR repeats. The purpose of 

this strain was to serve as a control for the normal human CEL protein. Since the mouse Cel gene 

harbours only 3 VNTR repeats (Holmes and Cox, 2011), the CEL-16R mouse will help us to separate 

any potential phenotypic effect that might originate from changing the mouse Cel VNTR per se from 

the specific effects induced by the CEL-MODY VNTR, thereby helping to better define the disease 

mechanisms. 

 

 

Figure 1.6. The CEL-MODY and CEL-16R humanized knock-in locus. After gene targeting, generation of 

chimera and crossbreeding, two transgenic models were produced harbouring the human CEL-MODY VNTR 

and CEL-16R VNTR in exon 11, indicated by the red lines. One loxP site is left after Cre excision, indicated 

in blue.  
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2 Aims of the study 

The overall objective of this study was to learn more about the disease mechanisms of CEL-MODY 

by characterizing the phenotype of a new CEL-MODY mouse model.  

The specific aims were: 

• To determine whether expression of CEL-MODY causes chronic pancreatitis in mice 

• If so, to determine whether CEL-MODY induced chronic pancreatitis causes subsequent 

development of diabetes 
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3 Materials 

 

Table 3.1. Genotyping 

Material Catalogue number Supplier 

E.Z.D.A DNA tissue DNA kit D3396-01 Omega Bio-Tek 

Multiplex PCR Kit 206143 Qiagen 

Tris-Borate-EDTA Buffer x10 A3945 PanReac, AppliChem 

SeaKem LE Agarose 50004 Lonza 

Ethidium Bromide (0.625 mg/ml) E406-15ml VWR 

Gel Loading Buffer G2526-5ML Sigma Aldrich 

100 bp DNA Ladder N3231 New England Biolabs 

 

 

Table 3.2. Pancreatic tissue lysis, SDS-PAGE and Western blot 

Material Catalogue number Supplier 

Trident RIPA lysis buffer GTX400005 Gene Tex 

cOmplete Protease Inhibitor Cocktail 11 697 498 001 Roche 

Pierce BCA Protein Assay Kit 23225 Thermo Scientific 

Phosphate-buffered saline 18912-014 Gibco 

Tween 20 P9416 Sigma-Aldrich 

NuPAGE LDS Sample Buffer (4x) NP0008 Invitrogen 

NuPAGE Sample Reducing Agent (10x) NP0009 Invitrogen 

NuPAGE 10% Bis-Tris Protein Gels, 1.0 mm, 10 well NP0301BOX Invitrogen 

MagicMark XP Western Protein Standard LC5602 Invitrogen 

Precision Plus Protein Dual Color Standard 1610374 Bio-Rad 

NuPAGE MOPS SDS Running Buffer (20X) NP0001 Invitrogen 

Blotting-Grade Blocker 1706404 Bio-Rad 

Amersham Hybond P Western blotting membranes, 

PVDF 

10600029 GE Healthcare 

Methanol 67-56-1 Merck Millipore 

Pierce ECL Plus Western Blotting Substrate 32132 Thermo Scientific 
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Table 3.3. CEL-immunostaining and trichrome staining 

Materials Catalogue number Supplier 

Dako Pen S2002 Agilent Dako 

SuperFrost Plus™ Adhesion slides 10149870 Thermo Scientific™ 

Target Retrieval Solution, pH 9.0, 10x S2367 Agilent Dako 

Protein block, Serum-free X0909 Agilent Dako 

Antibody Diluent, Background Reducing S3022 Agilent Dako 

Liquid DAB+ Substrate Chromogen System K3468 Agilent Dako 

Hematoxylin S2020 Agilent Dako 

Pertex Mounting Medium 00811-EX Histolab 

Ventana trichrome staining kit 860-031 Roche 

 

 

Table 3.4. Antibodies 

Antibody Catalogue 

number 

Supplier Classification 

Anti-CEL (rabbit polyclonal) Gift Gift from prof. Mark Lowe, 

Washington University School 

of Medicine, St. Louis, MO 

Primary (WB) 

Anti-β-actin (mouse monoclonal) sc-47778 Santa Cruz Biotechnology Primary (WB) 

Anti-CEL (rabbit polyclonal) HPA052701 Sigma Aldrich Primary (IHC) 

Goat anti-Rabbit IgG (H+L), HRP 656120 Invitrogen Secondary 

(WB) 

Donkey anti-mouse IgG-HRP sc-2306 Santa Cruz Biotechnology Secondary 

(WB) 

MACH3 rabbit HRP-polymer 

detection kit 

M3R531 Biocare medical Secondary 

(IHC) 

WB = Western blot, IHC = Immunohistochemistry 

 

 

Table 3.5. Glucose homeostasis test 

Materials Catalogue number Supplier 

D -(+)-glucose G8270 Sigma-Aldrich 

Humulin NPH Insulin ATC nr. A10A C01 Lilly 

Freestyle Freedom Lite glucose meter  Abbot 

Freestyle Lite test strips  Abbot 
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Table 3.6. Buffers and solutions 

Solutions Use Composition 

2 and 3 % agarose gel Gel electrophoresis 2 or 3 % w/v SeaKem® LE Agarose dissolved in 1x 

TBE buffer and 1 µg/ml EtBr 

Blotting buffer Western blotting 1x NuPAGE Transfer Buffer and 10 % v/v methanol 

PBS-T Western blotting and 

CEL-immunostaining 

Phosphate-buffered saline with 0,05 % v/v Tween 20  

Blocking buffer Western blotting 5% w/v Blotting-Grade Blocker in PBS-T 

Antibody diluent Western blotting 1% w/v Blotting-Grade Blocker in PBS-T 

Glucose, 20% IPGTT 20 % w/v D –(+)-glucose in physiological saline (3 

% w/v NaCl) water 

Insulin IPITT 0.05-0.1 U/ml in physiological saline (3 % w/v 

NaCl) water 

 

 

 

Table 3.7. Technical equipment 

Instruments Use Manufacturer 

Applied Biosystems Thermal Cycler 2720 Genotyping Thermo Fischer Scientific 

NanoDrop ND-1000 Genotyping Thermo Fischer Scientific 

Gel Doc EZ Imager Genotyping and Western 

blotting 

Bio-Rad 

Infinite® 200 PRO Western blotting Tecan 

Leica DM2000 LED Histology Leica Microsystems 

Eppendorf Centrifuge 5417C Genotyping and Western 

blotting 

Applied Biosystems 

Megafuge 1.0 R Blood sampling Heraeus Sepatech 

XCell SureLock Mini-Cell Electrophoresis System Western blotting Thermo Scientific 

XCell II Blot Module Western blotting Invitrogen 
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Table 3.8. Analytical software 

Software Use Supplier 

Microsoft Excel Mouse body weight development, tissue weight 

and glucose homeostasis 

Microsoft Corporation 

GraphPad Prism  Mouse body weight development, tissue weight 

and glucose homeostasis 

GraphPad Software, Inc 

Leica Application Suite v2.0 CEL-immunostaining and trichrome staining Leica Microsystems 

Aperio ImageScope HE-staining Aperio Technologies 

 

 

Table 3.8. Analytical software 

Software Use Supplier 

Microsoft Excel Mouse body weight development, tissue weight 

and glucose homeostasis 

Microsoft Corporation 

Microsoft Power Point Editing of figures Microsoft Corporation 

GraphPad Prism  Mouse body weight development, tissue weight 

and glucose homeostasis 

GraphPad Software, Inc 

Leica Application Suite v2.0 CEL-immunostaining and trichrome staining Leica Microsystems 

Aperio ImageScope HE-staining Aperio Technologies 
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4 Methods 

4.1 Animals 

The CEL-MODY and CEL-16R mouse strain were developed on a C57BL/6N background. For both 

strains, breeding was performed with CEL-MODY/CEL-16R heterozygote males and wild-type 

females at the Laboratory Animal Facility, Faculty of Medicine, University of Bergen. The mice 

followed a normal 12-hour day/night cycle and were fed normal chow diet. Both males and females 

were studied. The mice were divided into twelve cohorts determined by gender, age, strain and 

genotype (Table 4.1.). Each cohort had a minimum of 6 mice. 

 

Table 4.1. Overview of cohorts studied. 

Gender 3 months 6 months 

Male Control Control 

Male CEL-MODY CEL-MODY 

Male CEL-16R CEL-16R 

Female Control Control 

Female CEL-MODY CEL-MODY 

Female CEL-16R CEL-16R 

 

 

 

4.2 Study approval 

Both animal breeding and the plan for animal experiments were approved by Mattilsynet (Norwegian 

Animal Welfare Agency) in December 2017. FOTS ID numbers were 13902 and 13510. 

  



27 
 

4.3 Genotyping 

4.3.1 DNA extraction 

Tissue sampling by ear punches were done on two-week-old mice and used to identify the genotype. 

DNA was extracted from mouse tissue using the E.Z.N.A tissue DNA Kit according to the 

manufacturer’s protocol. One exception was for lysis buffer treatment which was efficient after one 

treatment instead of two. The DNA concentration was measured using NanoDrop ND-1000. 

 

4.3.2 Polymerase chain reaction (PCR) 

First, a general PCR was performed for both CEL-MODY and CEL-16R strains to detect 

heterozygosity of the mouse Cel locus. Next, specific PCRs were set up to validate the presence of 

exogene CEL-MODY or CEL-16R VNTRs. PCR primer sequences are listed in Table 4.2. The PCR 

reaction was performed in a total volume of 25 µl and included 30-50 ng DNA, 1x Qiagen multiplex 

mastermix, 5 µM forward primer and 5 µM reverse primer. PCR programs used are listed in Table 

4.3. and 4.4.  

 

Table 4.2. Primers used for PCR genotyping 

General PCR Primer sequence 

196271cre (fwd) 5’- GCA AAC TTC TTA TTT ATC CTC AAG CCT TGG -3’ 

196272cre (rev) 5’- GTT ATC GTC TTA GTG ATG TCC AGG TAG TTG C -3’ 

CEL-MODY specific PCR  

0017-TS/PNI (fwd) 5’- GCC AAA GAG ACA TGC AGT GAG AAG AGT ACC -3’ 

198280oth (rev) 5’- CGA ATG TCA CAG CCC AGA ACT TCA GG -3’ 

CEL-16R specific PCR  

0018-TS/PNI (fwd) 5’- CCA CCA TGA GTC CAA TGA TTG CAC C -3’ 

196274oth (rev) 5’- GGT GGC CTC CTG GTC GGT CAC T -3’ 
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Table 4.3. PCR program for general genotyping 

Step Temperature Time Cycles 

Pre-heat 95°C 15 min - 

Denaturing 94°C 60 sec 35 

Annealing 65°C 90 sec 35 

Extension 72°C 90 sec 35 

Final extension 72°C 10 min - 

Hold 4°C ∞ - 

 

 

Table 4.4. PCR program for CEL-MODY and CEL-16R specific genotyping 

Step Temperature Time Cycles 

Pre-heat 95°C 15 min - 

Denaturing 94°C 30 sec 30 

Annealing 65°C 30 sec 30 

Extension 72°C 5 min 30 

Final extension 72°C 8 min - 

Hold 4°C ∞ - 

 

 

4.3.3 Agarose gel electrophoresis  

For verification of the PCR products, 12.5 µl of PCR product was added 7.5 µl gel loading buffer and 

loaded on a 2 or 3 % agarose gel with TBE buffer and EtBr (1 µg/mL). Samples were loaded next to 

a 100 bp size marker and run at 90 V for one hour. Visualization of bands was done under UV-light 

using a Bio Rad Gel Doc EZ Gel Imager. The expected band sizes are listed in Table 4.5.  

 

Table 4.5. Expected PCR product size after agarose gel electrophoresis.  

General PCR Expected band size 

Wild-type 303 bp 

Heterozygote 303 + 394 bp 

Specific PCR  

Wild-type No band 

CEL-MODY 256 bp 

CEL-16R 286 bp 
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4.4 SDS-PAGE and Western blotting 

4.4.1 Preparation of mouse pancreas tissue lysates 

Mice were sacrificed at seven-weeks and their pancreas harvested. The organ was immediately snap-

frozen on liquid nitrogen. A small fraction of the pancreas was cut off and immediately put in 500 µl 

ice cold Trident RIPA buffer pre-supplemented with cOmplete Protease Inhibitor Cocktail (8.33 mM 

EDTA) and stored on ice. For homogenization, a pestle was used to stroke the tissue 10 times. The 

samples were then put on a rotary wheel for 20 min at 4°C. Further, the sample was centrifuged for 

15 min at 13000 rpm at 4°C before separating the supernatant from the insoluble pellet. The 

supernatant fraction was further analysed as the pancreas lysate. 

 

4.4.2 Protein concentration 

The protein concentration of pancreas lysates was measured using Pierce BCA Protein Assay Kit 

according to manufacturer’s protocol. The pancreas lysates were diluted 1:5 to fit within the protein 

standard concentration range. Protein concentration was then measured in Infinite 200 PRO at 562 

nm. 

 

4.4.3 SDS-PAGE 

For preparation of samples, 10 µg of protein from pancreas lysate was incubated with 1x LDS Sample 

Buffer and 2x Sample Reducing Agent at 56°C for 15 min. The samples were loaded next to 4 µl 

Precision Plus Protein Dual Color Standard and 2 µl MagicMark XP Western Protein Standard onto 

a 10% Bis-Tris protein gel and separated by electrophoresis in a XCell SureLock Mini-Cell system. 

The gel was run in 1x MOPS buffer first at 90 V for 15 min, then 180 V until the migration front had 

run out of the gel.  

 

4.4.4 Western blotting 

The proteins were transferred from the SDS gel onto a PVDF-membrane. Prior to blotting, the 

hydrophobic membrane was prewetted in 100% methanol (1 min) to be compatible in aqueous 

solution, followed by a short rinse in distilled water (1 min). The blotting sandwich was made in 

XCell Blot Module system according to Invitrogen. Blotting was performed at 30 V for one hour. 

Next, the membrane was incubated in Blocking buffer for one hour at room temperature (RT). After 

blocking, the membrane was washed 3x5 min in PBS-T before incubation with primary antibodies 
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overnight at 4°C. The primary antibodies used were rabbit anti-CEL (1:10 000) and mouse anti-β-

actin (1:2000 or 1:1000). Washing 3x5 min in PBS-T was done after incubation. The membrane was 

further treated with secondary HRP-conjugated anti-rabbit (1:5000) and anti-mouse (1:5000) 

respectively for one hour in RT. After incubation, the membrane was washed 3x5 min in PBS-T. ECL 

Plus Western Blotting Substrate was used for 5 min at RT before the chemiluminescent signal was 

detected using Bio Rad Gel Doc EZ Gel Imager. 

 

4.5 Mouse body weight development 

Weighing of the mice starting at eight weeks of age and continued every second week until the 

experimental end point at 14 or 28 weeks. It was performed consistently at the same time in the end 

of the week.  

 

4.6 Mouse tissue and blood collection 

At the experimental end point, tissues and blood samples were harvested. All mice were sacrificed 

by CO2 euthanasia. Blood was collected post-mortem by cardiac puncture and incubated at RT for 30 

min before centrifugation at 3000 rpm and 4°C for 10 min. The blood serum was separated from the 

plasma and stored at -80°C. Pancreas, liver, epididymal and subcutaneous white adipose tissue, 

muscle and brown adipose tissue were harvested. The tissues (except muscle) were weighed before 

being divided in two parts: one part stored in 4 % formaldehyde for histology/IHC analysis and the 

other part stored in liquid nitrogen for potential protein analysis. In this project, we only analysed the 

pancreas. Other tissues and blood samples were not investigated. 

 

4.7 Histology of the mouse pancreas  

4.7.1 Tissue preparation and Hematoxylin and Eosin (HE)-staining 

After fixation in 4 % formaldehyde at RT overnight, mice pancreas specimens were embedded in 

paraffin and cut into 4-µm sections onto SuperFrost Plus Adhesion Slides, followed by incubation at 

56 °C overnight. Embedding, sectioning and standard HE-staining were performed by the histology 

laboratory at the Department of Pathology, Haukeland University Hospital. After staining, the slides 

were scanned digitally and analysed using Asperio ImageScope. 
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4.7.2 CEL-Immunostaining 

The pancreas tissue slides were baked at 56°C for at least 5 min before deparaffinizing in 100% 

xylene (2x5 min), 100 % ethanol (2x2 min), 96 % ethanol (2x2 min), 80 % ethanol (2 min) and 

distilled water (1 min with shaking). Epitope retrieval was done at 120°C in Target Retrieval Solution 

(pH 9.0) for 1 min using a pressure cooker. After retrieval, the slides were cooled at RT for 5 min 

before further cooling in running tap water. Next, the tissue slides were washed 3x5 min in PBS-T, 

blocked using Protein block for 10 min at RT, and further washed 3x5 min in PBS-T. For primary 

antibody incubation, rabbit anti-CEL (1:200, Sigma) was used at 4°C overnight in a humidity 

chamber. After incubation with primary antibody, the slides were washed 3x5 min in PBS-T before 

blocking of the peroxidase activity with 3 % H2O2 for 10 min at RT. Further, the slides were rinsed 

in distilled water for 1 min before being washed in PBS-T 3x5 min.  

For detection with secondary antibody, tissues were incubated with MACH3 anti-rabbit probe for 20 

min at RT, washed 3x5 min in PBS-T, then incubated with MACH3 anti-rabbit polymer for 20 min 

at RT. After polymer incubation, the tissues were rinsed in water for 1 min and washed 3x5 min in 

PBS-T. Substrate development was done with Liquid DAB+ Substrate Chromogen System for 3 min 

at RT. The reaction was stopped by dipping the slides in water, first rinsing and then washing for 2 

min. Nucleus staining was done using Hematoxylin (Dako) for 10-20 min at RT before rinsing in 

running tap water for 2 min. The slides were then dehydrated 1 min in distilled water, 80 % ethanol, 

96 % ethanol, 100 % ethanol and 2x2 min xylene before mounting with cover slips using Peritex 

Mounting Medium. Tissue slides were analysed with Leica DM2000 LED and Leica Application 

Suite v2.0. All washing steps were performed with shaking. 

 

4.7.3 Trichrome staining 

Trichrome Staining Kit (Ventana) was used to detect fibrosis. All solutions in the kit were ready to 

use, however, incubation times were optimized as described below. Baking and re-hydration of the 

tissue slides were done as described under 4.7.2. Tissue slides were treated with Bouin’s solution at 

50°C for 32 min in a humidity chamber before washing 3x2 min in distilled water. Nucleus staining 

was done by mixing reagents Hematoxylin A and B (1:1). The solution was applied to the slides, 

incubated for 4 min at RT, followed by washing 3x2 min in distilled water. For cytoplasm staining, 

Trichrome Red was applied for 6 min at 37°C and washed 3x2 min in distilled water. Trichrome 

Mordant was applied to removed excess red staining from collagen for 16 min at 37°C and followed 

by immediate addition of Trichrome Blue for collagen staining for 16 min at same temperature with 

no washing between. After collagen staining, the slides were washed 3x2 min in distilled water. 
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Trichrome Clarifier was applied for 3 min in RT before immediate dehydration in 80 % ethanol, 96 

% ethanol and 100 % ethanol. The slides were then kept in xylene 2x2 min before mounting of cover 

slips using Pertex Mounting Medium. All slides were analysed as described in 4.7.2. Each washing 

step was performed with shaking. 

 

4.8 Glucose homeostasis tests 

4.8.1 Intraperitoneal glucose tolerance test (IPGTT) 

Mice were fasted overnight for 14 hours in new cages. The mice were weighted before measuring 

blood glucose at time 0. The blood glucose was measured from a small cut by a razor on the distal 

part of the tail. All mice were kept in separate cages during the test. The glucose (20 %) was injected 

intraperitoneally into the posterior-distal part of the abdomen. Injection volume correlated with body 

weight (10 µl per gram body weight). After injection, blood glucose was measured with FreeStyle 

Freedom Lite glucose meter from the cut in the tail at time intervals of 15, 30, 60, 90 and 120 minutes.  

 

4.8.2 Intraperitoneal insulin tolerance test (IPITT) 

Mice were fasted for three hours (07.00 to 10.00) in new cages. Experimental procedures such as 

glucose measurements and injections were performed as described in section 4.8.1. Insulin 

concentrations used were different for the respective cohorts and listed in Table 4.6.  

 

Table 4.6. Insulin concentration used for IPITT in each cohort. 

Gender Age Insulin concentration (U/kg) 

Male 6 months 1 

Male 3 months 0.75 

Female 6 months 0.75 

Female 3 months 0.5 

 

 

4.9 Statistics 

Results were plotted as individual data points using GraphPad Prism 8 with the mean and standard 

error of the mean indicated. Differences of mean between two cohorts were analysed by unpaired t-

test. P < 0.05 was considered statistically significant. 
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5 Results 

In this study, we have analysed CEL-MODY mice and compared them to two control mice strains. 

One of the controls is the CEL-16R mouse model that express the normal human VNTR with 16 

repeats. For both CEL-MODY and CEL-16R, we used heterozygous (0/ki) mice. In addition, we 

included control (0/0) mice from the breeding schemes of both CEL-MODY and CEL-16R mice. 

These are wild-type C57BL/6N mice and referred to as controls throughout this study.  

 

5.1 Identification and verification of transgenic CEL mice 

5.1.1 Genotyping of CEL-16R and CEL-MODY mice 

Before starting our animal experiment, all mice were genotyped by a PCR assay. DNA was extracted 

from mouse tissue and used as template. For each mouse strain, the assay included two PCR reactions. 

First, a general PCR was performed to distinguish between heterozygous (0/ki) and control (0/0) 

mice. Next, a specific PCR was set up to amplify the exogenous VNTR region of either CEL-16R or 

CEL-MODY.  The PCR products from each reaction were analysed by agarose gel electrophoresis 

and a typical genotyping result is presented in Figure 5.1. In the general PCR, a product with the size 

of 303 bp was expected for the wild-type allele, while an additional product of 394 bp was expected 

if the mouse carried one humanized Cel allele (see Methods, Table 4.5).  

Genotyping results of four mice from each of the CEL-16R and CEL-MODY strains are presented in 

Figure 5.1. The results of the general PCR showed two bands in the agarose gel at around 300- and 

400 bp for two CEL-16R mice and three CEL-MODY mice thus suggesting that these mice were 

heterozygous (Figure 5.1 A). In the remaining three mice, only one band at 300 bp was detected 

indicating control mice.  

These genotyping results were verified by the specific PCR products showing one band at about 300 

bp for the same five mice with two bands from the general PCR (Figure 5.1 B). The expected PCR 

product from amplifying an exogenous VNTR part from the CEL-16R mice was 286 bp, while 256 

bp for the CEL-MODY mice (Table 4.5). No bands were observed for the control mice, as expected.  
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Figure 5.1. Genotyping results of CEL-16R and CEL-MODY mice. PCR products were separated on a 2 % 

agarose gel stained with EtBr. Lane 1-4 represents genotyping of the CEL-16R strain and lane 6-9 represents 

genotyping of the CEL-MODY strain. The wells were loaded with 12.5 µl PCR product next to a DNA standard 

(std). Lane 5 was empty. A) Results from the general PCR. In lane 1, 2 and 6, one band was observed at 300 

bp which showed that these are control (0/0) mice. Two bands were present at 300 and 400 bp in lane 3, 4 and 

7-9, suggesting heterozygous (0/ki) mice. B) Results from the specific PCR. In lane 1, 2 and 6, no bands were 

detected, verifying the controls in A. Lane 3, 4 and 7-9 showed one band at about 300 bp, indicating CEL-16R 

(lane 3, 4) and CEL-MODY (lane 7-9) positive samples, respectively.  

  



35 
 

5.1.2 Detection of humanized Cel proteins in CEL-16R and CEL-MODY mice 

To verify that the humanized Cel alleles were transcribed and translated into mature proteins, the 

expression of CEL-16R and CEL-MODY proteins were analysed in seven-week old heterozygous 

mice. Twelve mice were selected, six from each gender and four from each genotype. After sacrificing 

the mice, pancreata were isolated for preparation of pancreatic lysates. The protein concentration was 

measured for the lysates and 20 µg protein was loaded and separated by SDS-PAGE and analysed by 

western blotting. 

The results are shown in Figure 5.2. In all samples, one band was detected just above 60 kDa, which 

is the expected size for wild-type mouse Cel protein (~66 kDa, Uniprot #Q64285). For CEL-16R 

mice, two additional bands were detected at 100 kDa and just below, suggesting humanized Cel with 

16 VNTR repeats in a modified and unmodified state (El Jellas et al., 2018). As for the CEL-MODY 

mice, a band was detected just below 80 kDa, indicating a smaller Cel protein relative to the 

humanized 16R Cel, suggesting the truncated CEL-MODY protein. In the pancreatic lysates from 

female mice, one additional weak band was detected below 60 kDa, most likely due to unspecific 

antibody binding as seen in all female mice samples. Anti-beta actin was used as a loading control. 

 

 

Figure 5.2. Expression of Cel protein variants in seven-week old mice. Pancreatic lysates from controls and 

heterozygous CEL-16R and CEL-MODY mice were analysed by SDS-PAGE and western blotting. Cel 

expression was detected in both male and female mice by using an antibody targeting the globular domain of 

the Cel protein. Anti-beta actin was used as loading control.  
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5.2 Mouse body weight development 

All mice were weighed every other week to evaluate body weight development until the experimental 

end point at 3 or 6 months of age. For the mice with experimental end point at 6 months, both males 

and females followed a similar growth pattern for all three cohorts (Figure 5.3). However, male mice 

seemed to plateau after 24 weeks of age at around 34 g (Figure 5.3 A), whereas the female mice grew 

until the experimental end point, reaching a weight around 27-28 g (Figure 5.3 B). We found no 

statistically significant difference in body weight between the CEL-MODY, CEL-16R and control 

mice at 6 months. Male mice sacrificed at 3 months of age displayed a similar pattern (Appendix, 

Figure 1 A). However, female CEL-MODY and CEL-16R mice sacrificed at 3 months of age weighed 

significantly more than controls at experimental end point (Appendix, Figure 1 B). Large individual 

increases in body weight could be observed at certain ages. These increases later evened out with 

other mice during growth up to 14 weeks, indicating sporadic growth in certain mice. Furthermore, 

for all mouse strains, individual body weight seemed to vary within the strains, resulting in large error 

bars (e.g. standard error of the mean = ±1.624 g for CEL-MODY females at 6 months). This indicated 

that there were larger inter-individual variations rather than variations in the mean weight between 

the strains.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Body weight during life span of 6 

months old CEL-MODY, CEL-16R and control 

mice. The body weight (g) is presented as the mean 

at each age point for (A) males and (B) females. 

Error bars represent standard error of the mean. 

N=6-9. 
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5.3 Weight of mouse pancreas 

The pancreas weight of all mice was measured at the experimental end points (3 and 6 months) and 

plotted as percentage of body weight (Figure 5.4). For males at 3 months, the pancreas of the CEL-

16R mice weighted significantly more compared to both controls (P < 0.05) and CEL-MODY (P < 

0.001) mice (Figure 5.4 A). The same trend appeared after 6 months, however, the difference between 

CEL-16R and CEL-MODY were less prominent although still significantly different (P < 0.05). 

There were no significant differences in relative pancreas weight between the CEL-MODY and 

control mice. 

For the females at 3 months of age, the relative pancreas weight of CEL-16R mice was also 

significantly higher compared to both controls (P < 0.05) and CEL MODY (P < 0.01) mice (Figure 

5.4 B). This difference was not observed for the female mice at 6 months of age.  

Taken together, the pancreas of the CEL-16R mice weighted significantly more compared to controls 

and CEL-MODY mice at 3 months, while less so or not significant at 6 months. Interestingly, the 

relative pancreas weight for female CEL-16R mice were higher at 3 months compared to the 

respective mice at 6 months.  

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Pancreas weight of 3 and 6 months 

old CEL-MODY, CEL-16R and control mice. The 

pancreas weight (expressed as percentage of body 

weight) of each mouse with mean (horizontal bar) 

are shown for each cohort at 3 and 6 months for 

(A) males and (B) females. Error bars represent 

standard error of the mean. Statistical significance 

is indicated as * (P < 0.05), ** (P < 0.01) and *** 

(P < 0.001). N=6-13. 
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5.4 Pancreas histology of the CEL-MODY mice 

To investigate if the CEL-MODY mice developed spontaneous chronic pancreatitis, we looked at the 

pancreas histology of 3 and 6 months old mice and compared them to CEL-16R and control mice. 

After sacrificing the animals, the pancreas was harvested and fixated for histological analysis. HE-

stained sections for all the cohorts were evaluated. We included both male and female mice with n=6-

9 in each cohort. For both control and CEL-16R mice, the pancreas showed normal lobular structures, 

and the morphology of both the exocrine and endocrine tissue appeared normal. However, several 

CEL-MODY mice showed signs of a pathological phenotype already at 3 months, which became 

more severe at 6 months for both genders. An overview of the number of CEL-MODY mice affected 

in each cohort is presented in Table 5.1.  

 

Table 5.1. Overview of observed histological changes in the pancreas of CEL-MODY mice. The pancreas 

phenotype was classified with no (normal), mild or severe pathological changes based upon the overall 

presence of pancreas atrophy and fat-infiltration, and their dominance over normal tissue in the pancreatic 

lobes. 

CEL-MODY cohort Phenotype n = 

3 months, male 1 severely pathological, 2 mildly pathological, 3 normal 6 

3 months, female 3 mildly pathological, 3 normal 6 

6 months, male 4 severely pathological, 2 mildly pathological 6 

6 months, female 6 severely pathological, 2 mildly pathological, 1 normal 9 

 

HE-stained pancreas sections of selected male mice are presented in Figure 5.5 and Figure 5.6. At 3 

months, one male CEL-MODY mouse showed signs of severe pathological phenotype in the pancreas 

(Figure 5.5). Here, we observed areas with major acinar tissue atrophy. Compared to control, we also 

found more intra- and interlobular fat.  
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Figure 5.5. Pancreas histology of 3 months old CEL-MODY, CEL-16R and control mice. HE-stained 

pancreatic sections of male mice. Note severe pancreas atrophy for the CEL-MODY mouse. Images with scale 

bars 1 mm (left panel) and 400 µm (right panel). 

 

At 6 months, all CEL-MODY mice, except one female mouse, showed a mild to strong pathological 

phenotype, driven by fat infiltration and acinar atrophy. In the pancreas of CEL-MODY mice, we 
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observed certain lobes that were heavily dominated by fat, whereas others appeared almost normal 

(Figure 5.6). Acinar atrophy was also observed, often surrounded by fat.  

 

 

Figure 5.6. Pancreas histology of 6 months old CEL-MODY, CEL-16R and control mice. HE-stained 

pancreatic sections of male mice. Note pancreas atrophy and fat infiltration for the CEL-MODY mouse. Images 

with scale bars 1 mm (left panel) and 400 µm (right panel). 
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Taken together, some atrophy of acinar tissue was observed for the CEL-MODY mice already at 3 

months of age, and was present in most mice at 6 months. There was fat-infiltration both between 

(inter) and within (intra) the lobes. At 6 months, this fat-infiltration seemed to dominate certain areas 

of the pancreas for most CEL-MODY mice, observed for both genders. The combination of fat 

infiltration and atrophy suggested that most CEL-MODY mice eventually would develop exocrine 

dysfunction. 

 

5.5 Immunohistochemistry for Cel expression in the mouse pancreas 

Pancreatic tissue sections from CEL-MODY, CEL-16R and control mice were analysed by 

immunohistochemistry for detection of both endogenous mouse Cel and CEL-MODY/CEL-16R 

proteins. For 3 months old CEL-16R and control mice, Cel staining was observed in the acinar cells 

of the exocrine pancreas (Figure 5.7). Upon closer inspection, Cel staining was observed in small 

grain-like structures in the apical part of acinar cells, indicating zymogen granules filled with Cel 

proteins. Positive Cel staining was also observed in some ducts confirming that Cel is secreted as part 

of the pancreatic juice. The endocrine islets were Cel negative. For the CEL-MODY mice, however, 

Cel was unevenly expressed in the exocrine tissue (Figure 5.7). More specifically, Cel expression 

seemed to be lost in several acinar cells. In addition, areas with a smeared pattern of Cel staining was 

observed, indicating the Cel proteins were no longer contained within the zymogen granules. The 

smeared pattern observed in CEL-MODY mice was found around acinar cells with no ducts present.  
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Figure 5.7. Immunohistochemistry for Cel expression in 3 months old CEL-MODY, CEL-16R and control 

mice. Pancreatic sections from male mice were stained using an antibody targeting the globular domain of 

Cel. Note the uneven expression in CEL-MODY. Scale bars are 200 µm (left panel) and 50 µm (right panel). 

 

For the same CEL-MODY mouse, several areas with intensive Cel signals were observed as dark 

spots within the lumen of acini (Figure 5.8). These spots were observed in atrophic exocrine areas 

with low Cel expression and could suggest Cel protein aggregation.  
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Figure 5.8. Potential Cel protein aggregates in CEL-MODY mice. A pancreas section from one 3-month-old 

male CEL-MODY mouse was immunostained for detection of Cel expression. Red stars indicate areas of 

potential Cel protein aggregates. Scale bars are 200 µm and 50 µm. 

 

Compared to 3 months old mice, a similar Cel expression pattern was observed for CEL-16R and 

control mice at 6 months of age (Figure 5.9). In contrast, for the CEL-MODY mice at 6 months of 

age, certain lobes appeared to have normal Cel expression, while other lobes showed decreased Cel 

expression, indicating sporadic loss of Cel expression in the exocrine pancreas. The loss of Cel 

expression may further reflect the large morphological changes that we observed for the CEL-MODY 

mice.  
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Figure 5.9. Immunohistochemistry for Cel expression in 6 months old CEL-MODY, CEL-16R and control 

mice. Pancreatic sections from male mice were stained using an antibody targeting the globular domain of 

Cel. Note the uneven expression in one lobe in the CEL-MODY mouse. Scale bars are 200 µm (left panel) and 

50 µm (right panel). 

 

As described in section 5.4, fat infiltration of the pancreas became prominent at 6 months of age for 

most CEL-MODY mice. When performing immunostaining, we observed Cel positive staining 

between fat cells that most likely had replaced the acinar tissue (Figure 5.10). Upon closer inspection 
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of these areas, low intensity Cel staining was observed close to the nucleus of some fat cells, 

suggesting a previous presence of Cel expressing acinar cells. 

 

 

Figure 5.10. Identification of Cel proteins between infiltrating fat cells. A pancreas section from one 6-

month-old male CEL-MODY mouse was immunostained for detection of Cel expression. Red stars indicate 

areas of Cel positive staining between fat cells. Scale bars are 200 µm and 50 µm. 

 

5.6 Staining for fibrotic tissue in CEL-MODY mice 

Pancreatic fibrosis is a characteristic feature of CP. To investigate if the CEL-MODY mice had signs 

of fibrosis development, we performed trichrome staining on pancreatic sections from 3 and 6 months 

old male mice. CEL-16R and control mice were included in the experiment and the results are 

presented in Figures 5.11 and 5.12. With the Ventana trichrome staining procedure, collagen (and 

consequently connective tissue) is stained in blue, cytoplasm in red while hematoxylin stains the 

nucleus violet. Collagen is a protein which is overrepresented in fibrotic tissue. In a normal pancreas, 

ducts and blood vessels are surrounded by connective tissue, as evident in the CEL-16R and control 

mice (Figure 5.11 and Figure 5.12). For the CEL-MODY mice, however, we observed large areas of 
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pancreatic tissue that had severe scarring, indicated by wide-spread fibrosis. In some areas, hardly 

any normal exocrine tissue was left (Figure 5.11 and Figure 5.12).  

 

 

Figure 5.11. Trichrome staining of pancreatic tissues in 3 months old CEL-MODY, CEL-16R and control 

mice. Pancreas sections from male mice were stained. Connective tissue is stained blue. Note the widespread 

fibrosis in CEL-MODY. Scale bars are 200 µm (left panel) and 50 µm (right panel).  
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Figure 5.12. Trichrome staining of pancreatic tissues in 6 months old CEL-MODY, CEL-16R and control 

mice. Pancreas sections from male mice were stained. Connective tissue is stained blue. Note the widespread 

fibrosis in CEL-MODY. Scale bars are 200 µm (left panel) and 50 µm (right panel).  

 

When further analysing the CEL-MODY mice, we observed several small duct-like structures in areas 

with wide-spread fibrosis (Figure 5.13). These could be distinguished from normal ducts by being 

small in size and the absence of pancreatic juice. They also appeared in a large quantity, in areas with 

almost no normal acinar tissue. Furthermore, some of these duct-like structures appeared to fuse with 
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each other, increasing their size. The presence of these duct-like structures may suggest acinar-to-

ductal metaplasia (ADM). 

 

 

Figure 5.13. Potential acinar-to-ductal metaplasia detected in CEL-MODY mice. Pancreas section from one 

3-month-old male CEL-MODY mouse was stained with trichrome for detection of fibrosis. Red stars indicate 

fusing duct-like structures. Scale bars are 100 µm and 50 µm. 

 

Interestingly, when analysing the CEL-MODY mice for pancreas histology, most endocrine tissue 

seemed unaffected despite the damage to the exocrine tissue surrounding it. Also, when analysing 

CEL-MODY mice by trichrome staining, we observed intact islets surrounded by fat. However, some 

of these islets were observed in closer proximity to each other compared to what was observed in 

normal pancreatic tissue (Figure 5.14). In addition, in some CEL-MODY mice, the endocrine islets 

were somewhat enlarged (Figure 5.7), which could suggest islet fusion. 
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Figure 5.14. Pancreatic islets surrounded by fat and fibrosis in CEL-MODY mice. Pancreas section from 

one 6-month-old male CEL-MODY mouse was stained with trichrome for detection of fibrosis. Note the two 

narrow islets being surrounded by fat and fibrotic tissue. Scale bar is 100 µm. 

 

5.7 Glucose homeostasis tests in mice 

To investigate if the CEL-MODY mice were diabetic, we measurred their abilty to regulate blood 

glucose by performing an IPGTT. At 6 month of age, no differences were observed between CEL-

MODY, CEL-16R and control mice, for either males or females, indicating normal glucose tolerance 

(Figure 5.15). Mice at 3 months of age showed the same pattern (Appendix, Figure 2). 
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Figure 5.15. Intraperitoneal glucose tolerance test for 6 months old mice. Time 0 represents blood glucose 

measurments before injection. CEL-MODY, CEL-16R and control mice are compared for (A) males and (B) 

females and represented by the mean for each strain. Error bars represent standard error of the mean. 

 

Furthermore, we also performed an IPITT for mice at 6 months of age (Figure 5.16). No statistical 

difference could be observed in insulin sensitivity between CEL-MODY and control mice, indicating 

normal insulin sensitivity. However, 60 minutes after insulin injection, the CEL-16R male mice 

showed a statistically significant increase (P < 0.05) in blood glucose compared to both CEL-MODY 

and control mice (Figure 5.16 A). Then, 90 and 120 minutes after injection, the CEL-16R mice were 

still significantly higher than the control mice (P < 0.01) but not higher than the CEL-MODY mice. 

For the CEL-16R female mice, similar pattern was observed (Figure 5.16 B).  



51 
 

When performing the IPITT on mice 3 months old mice, the blood glucose dropped too low, including 

some that went into a hypoglycemic shock. The mice were all saved by glucose injections, however, 

they were excluded from the study.  

 

 

Figure 5.16. Intraperitoneal insulin tolerance test for 6 months old mice. Time 0 represents blood glucose 

measurments before injection. CEL-MODY, CEL-16R and control mice are compared for (A) males and (B) 

females and represented by the mean for each strain. Error bar represents standard error of the mean. 
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6 Discussion 

In 2006, our research group was the first to describe the pathogenic mutations in CEL known as CEL-

MODY. Since then, both cellular and clinical studies have been performed to learn more about the 

underlying disease mechanisms. Currently, we believe that CEL-MODY is a protein misfolding 

disease. Cellular studies have shown that the human CEL-MODY protein forms both intra- and 

extracellular aggregates that causes proteotoxic damage, ER-stress and apoptosis (Johansson et al., 

2011, Torsvik et al., 2014, Xiao et al., 2016). Clinically, the CEL-MODY syndrome is characterized 

by early exocrine dysfunction, followed by diabetes (Ræder et al., 2006). However, patients with the 

CEL-MODY syndrome also fulfil the criteria for CP (M. Lowe, pers. comm). Actually, two new 

CEL-MODY families from the Czech Republic and Sweden developed signs of CP before the 

manifestation of endocrine insufficiency occurred (Unpublished; A. Molven, pers. comm). Thus, 

CEL-MODY might as well be regarded as a form of inherited CP rather than a monogenic form of 

diabetes. 

In this study, we aimed to take our CEL-MODY research to the next level: we wanted to investigate 

the effect of CEL-MODY protein aggregation at the organ level. This was done by characterizing the 

phenotype of a newly developed CEL-MODY mouse strain. We evaluated whether the mouse strain 

was able to recapitulate the human phenotype observed in persons carrying the CEL-MODY mutation 

by investigating both male and female mice at 3 and 6 months of age, using both the CEL-16R strain 

and wild-type mice as controls.  

 

6.1 The first mutant lipase mouse model for CP 

The search for genetic variants associated with CP has been extensive since the first PRSS1 mutation 

was discovered in 1996 (Whitcomb et al., 1996). For many years, most of the genetic variants 

characterized were linked to the trypsin-dependent pathway (Hegyi and Sahin-Tóth, 2017). 

Consequently, the trypsin-dependent pathway has dominated our way of thinking about the disease 

and mouse models have been constructed to understand the role of trypsin in CP (Geisz and Sahin-

Tóth, 2018, Troy and Maxim, 2018).  

In this master project, however, we describe the first mutant lipase mouse model for CP development. 

Interestingly, heterozygous CEL-MODY mice at both 3 and 6 months showed typical hallmarks for 

CP including pancreatic atrophy, fibrosis, potential ADMs and fatty-infiltration. Based on cellular 

studies by us and others (Johansson et al., 2011, Torsvik et al., 2014, Xiao et al., 2016) and the fact 

that we observed signs of Cel protein aggregates in the pancreas of CEL-MODY mice, we believe 
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that CEL-MODY is acting through the alternative misfolding-dependent pathway (Sahin-Toth, 2017). 

Similarly, Hegyi and Sahin-Tóth have shown that a human CPA1 mutation also results in protein 

misfolding and ER-stress in both cellular and mouse models (Hegyi and Sahin-Tóth, 2019). 

Furthermore, the CPA1 mutant mice developed progressive acinar cell atrophy, inflammation, 

fibrosis and ADM. These findings correlate well with what we observed for the CEL-MODY mouse. 

However, additional analyses are needed to confirm induced ER-stress as well as inflammation in our 

CEL-MODY model. 

 

6.2 The CEL-MODY mouse recapitulates many of the features of CEL-MODY 

patients 

When the two Norwegian CEL-MODY families were identified, they presented symptoms of low 

fecal elastase, steatorrhea and fatty infiltration, indicating exocrine dysfunction (Ræder et al., 2006, 

2007). In a follow-up study on these patients, reduced digestive enzyme levels and bicarbonate in the 

pancreatic juice was detected, confirming reduced exocrine function (Tjora et al., 2013). 

Unfortunately, we did not have the time to measure pancreatic exocrine function in our mice (see 

section 6.7). However, we observed reduced Cel expression in atrophic exocrine tissue of CEL-

MODY mice, suggesting that the degradation of the exocrine tissue reduces the overall expression of 

digestive enzymes during CP development. Interestingly, the relative pancreas weight of CEL-

MODY mice did not decrease significantly compared to control mice as one could expect with 

massive exocrine atrophy. However, the fatty infiltration may be compensating for the loss of acinar 

cells and thereby keeping the overall weight stable.  

Fatty infiltration of the pancreas was a prominent feature in the CEL-MODY mice. Even so, these 

mice were not obese (no statistical significance compared to controls), excluding that overweight was 

a contributing factor. This correlates with similar observations for CEL-MODY patients as they were 

not overweight and had fatty infiltration of the pancreas, also in young non-diabetic subjects (Ræder 

et al., 2007). For the patients, the fatty pancreas was speculated to play a role in diabetes development, 

which usually occurred in their 40s. We did not detect any signs of diabetes development in the CEL-

MODY mice. Even when there was hardly any exocrine tissue left, the islets were still present and 

somewhat enlarged in size. Similar observations were seen in a mouse model for CP driven by 

trypsinogen activation, where fatty infiltration became dominant in later stages of CP, but no 

endocrine dysfunction was detected (Geisz and Sahin-Tóth, 2018). For the CEL-MODY mice, 

prolonging the experimental end point to 9 or 12 months might be sufficient for diabetes to manifest. 

Alternatively, a high-fat diet (HFD) can be used for Black-6 mice to induce metabolic diseases 
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(Fisher-Wellman et al., 2016). Actually, symptoms of impaired glucose tolerance have been observed 

in these mice after only 1-3 days into HFD (Fisher-Wellman et al., 2016). Therefore, putting the CEL-

MODY mice on an HFD would be interesting - whether that would trigger diabetes development.  

 

6.3 Fat infiltration of the pancreas 

In human adults, fat infiltration of the pancreas is common and mostly considered a benign condition 

(Coulier, 2016). Age and visceral fat index correlate to the grade of fatty infiltration. In extreme cases, 

fat infiltration may lead to exocrine pancreatic dysfunction and is found associated with diseases such 

as diabetes, pancreatitis, cystic fibrosis and other metabolic syndromes (Coulier, 2016). The precise 

etiology is often indecisive although fatty infiltration is regularly observed as secondary phenotype 

in disease progression.  

As mentioned previously, fatty infiltration is part of the phenotype of pancreatitis patients, including 

CEL-MODY patients (Ræder et al., 2007, Majumder et al., 2017). Interestingly, we observed severe 

fatty infiltration of the pancreas in 6 months old male and female CEL-MODY mice. The fat content 

seemed to increase with age as the phenotype was less prominent in the 3 months old mice. However, 

the origin of these fat cells remains a mystery.  

One hypothesis is that the fat cells are recruited from the peripancreatic fat tissue. Another hypothesis 

could be transdifferentiation, that acinar cells have differentiated into adipose cells. Acinar cells are 

prone to differentiation by cellular reprogramming, as beta-cell regeneration from acinar cells are 

used in diabetes therapy research (Kim and Lee, 2016). Furthermore, inactivation of the transcription 

factor c-myc have shown to cause loss of acinar maturation, leading to decreased pancreas mass and 

transdifferentiation into adipocytes (Bonal et al., 2009). ADM is another differentiation process 

driven by growth factors (Liu et al., 2016) and is arguably seen in the CEL-MODY mouse (Figure 

5.13). Interestingly, we observed positive Cel staining between adipocytes in the CEL-MODY 

pancreas (Figure 5.10), which may suggest that transdifferentiation from acinar cells has occurred. 

However, it is not clear whether the staining is present within or outside these adipocytes. Further 

experiments (e.g. electron microscopy) should be done to differentiate whether the Cel proteins are 

within the adipocytes or Cel protein are diffusing between the adipocytes from acinar leakage of 

zymogen granules. Actually, our research group is planning to follow up on this and do cell lineage 

tracing in CEL-MODY mice, to identify the origin of these infiltrating adipocytes.  
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6.4 Cel expression during CP development in mice 

Together with other digestive enzymes, Cel is secreted from the apical part of acinar cells as part of 

the zymogen granules. In control mice, we observed normal Cel expression throughout the exocrine 

pancreas, and when inspected closely, small grain-like structures were observed indicating the 

zymogen granules (Figure 5.7 and 5.9). These zymogen granules were seen polarized from the 

nucleus of the acinar cells, indicating normal secreting acinar cells (El Jellas et al., 2018). In CEL-

MODY mice, certain pancreatic areas showed reduced Cel expression as the exocrine tissue became 

more atrophic. A similar pattern is seen in pancreatic cancer where CEL expression is lost during 

ADM (El Jellas et al., 2018). Although abnormal exocrine tissue and Cel expression were seen in the 

CEL-MODY mice, some areas were normal, similar to control mice, indicating sporadic origin of 

pathogenesis in the CEL-MODY pancreas.  

Furthermore, we observed some patchy staining in the CEL-MODY mouse that could potentially 

indicate protein aggregation (Figure 5.8). However, it is not possible to determine if these proteins 

are present within the acinar cells or secreted into the acinus lumen. Previous cell culture studies have 

shown that the CEL-MODY protein form insoluble oligomers in both lysate and pellet fractions when 

analysed by western blotting, and protein aggregates were observed both intra- and extracellularly 

when analysed by electron microscopy and immunofluorescence (Johansson et al., 2011, Torsvik et 

al., 2014). Thus, we believe that these CEL-MODY aggregates also are present in the CEL-MODY 

mice and that they are the origin of pathogenesis for CP development. However, further investigation 

(e.g. electron microscopy) of the CEL-MODY mouse pancreas will provide more insight into the 

presence and location of these protein aggregates. 

 

6.5 Disease progression in CEL-MODY mice 

In secretory cells, protein misfolding in the ER activates the unfolded protein response (UPR) in an 

attempt to maintain cell viability and function (Hetz, 2012). CEL-MODY protein misfolding has also 

shown to activate the UPR in cellular studies (Xiao et al., 2016). Consequentially, UPR induced ER-

stress with elevated expression of the binding immunoglobulin protein (BiP) and X-box binding 

protein 1 (XBP1) (Xiao et al., 2016). In addition, the human CPA1 mutation mouse model discussed 

in section 6.1 showed induced ER-stress detected by markers such as the C/EBP homologous protein 

(CHOP) and BiP (Hegyi and Sahin-Tóth, 2019). Induced ER-stress by protein misfolding is one of 

the hallmarks in genetic CP for digestive enzymes following the misfolding-dependent pathway 

(Sahin-Toth, 2017, Mayerle et al., 2019).  
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Irreversible ER-stress trigger cell death by apoptosis, which has shown to be activated by nuclear 

factor kappa-light-chain-enhancer of activated B-cells (NF-κB) in cellular studies on CEL-MODY 

(Xiao et al., 2016). There is a crosstalk between UPR induced ER-stress markers and NF-κB that 

links protein misfolding to apoptosis (Schmitz et al., 2018). Furthermore, the activation of NF-κB in 

acinar cells are thought to induce inflammation by production of inflammatory cytokines (Murtaugh 

and Keefe, 2015). These cytokines stimulate activation of macrophages, which we unfortunately did 

not have time to investigate in the CEL-MODY mouse pancreas (discussed in section 6.7). Notably, 

inflammation was observed for the human CPA1 mutated mouse model by immunohistochemistry 

for the membrane protein F4/80 on macrophages (Hegyi and Sahin-Tóth, 2019). 

Within the exocrine pancreas lies quiescent pancreatic stellate cells (PSCs), which are activated upon 

inflammation and starts producing extracellular matrix (ECM) proteins, promoting fibrosis (Hamada 

et al., 2015). One of these ECM proteins is type 1 collagen, which we stained for in the CEL-MODY 

mice. We observed long fibre-like structures indicating fibrosis development, which is one of the 

main hallmarks of CP (Etemad and Whitcomb, 2001, Hegyi and Sahin-Tóth, 2019). 

In addition to ECM proteins, PSCs secrete growth factors such as TGF-beta (Xue et al., 2018), known 

to initiate dedifferentiation in acinar cells to ductal-like cells (Liu et al., 2016). We observed tubular 

duct-like structures within fibrotic areas in the CEL-MODY mouse, suggesting that activated PSCs 

in these areas both induced fibrosis and ADM. However, immunostaining for specific ADM markers 

such as sox9 and cytokeratin 19 would give more compelling evidence (Hessmann et al., 2016, Hegyi 

and Sahin-Tóth, 2019). 

Human chronic pancreatitis often leads to extensive fibrosis. However, in a mouse model for trypsin 

associated CP, they observed early CP with dilated ducts and fibrosis before fatty infiltration 

dominated in late stage CP (Geisz and Sahin-Tóth, 2018). This disease progression might be similar 

to what happens in the CEL-MODY mouse, although CEL-MODY follows a trypsin-independent 

pathway.  

Based upon current literature and the results in this study, we suggest that the pathological progression 

in the CEL-MODY mouse starts by misfolding of the CEL-MODY protein. This leads to formation 

of protein aggregates that induce ER-stress, apoptosis and inflammation. Further, inflammation 

activates PSCs which induces fibrosis and ADM before fatty infiltration takes over in later stage of 

disease. Nevertheless, additional studies are needed to make a precise progression model. It is 

noteworthy to mention the sporadic pathological development observed when investigating the 

pancreas of the CEL-MODY mouse. The morphological changes do not happen uniformly throughout 
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the pancreas, as certain lobes seem to be more affected than others. Interestingly though, this is 

commonly seen in patients with CP as well (C. Verbeke, pers. comm). 

The presence of potential ADM in the CEL-MODY mouse is also interesting in terms of pancreatic 

cancer development. Invasive PDAC do mostly origin from ADM accumulating pre-invasive 

precursor lesions (Liu et al., 2016). As mentioned in the introduction part of this thesis (section 1.5.1), 

PDAC has been observed in one older member of a CEL-MODY family. Interestingly, over 90 % of 

all PDAC cases harbour a mutation in the oncogene KRAS (Orth et al., 2019). However, a KRAS 

mutation alone is not enough to trigger development of invasive PDAC (Liu et al., 2016). 

Crossbreeding the CEL-MODY mouse with a KRAS mouse strain would therefore be very interesting 

in order to investigate if the CEL-MODY protein aggregates could trigger invasive pancreatic cancer 

in KRAS mouse. 

 

6.6 The CEL-16R mouse 

Compared to human CEL, the mouse Cel gene harbour only three VNTR repeats and the amino acid 

composition differ from the human VNTR (Holmes and Cox, 2011). Therefore, a CEL-16R mouse 

model was designed as a control to exclude the possibility that the human CEL VNTR per se could 

cause any pathological phenotype in the mouse. Similar to the wild-type controls, no morphological 

changes were observed in the pancreas of the CEL-16R mice, suggesting that the mice were healthy. 

However, the relative pancreas weight of the CEL-16R mice were significantly higher than for both 

wild-type controls and CEL-MODY mice, with the exception of females at 6 months of age (Figure 

5.4). In addition, the CEL-16R mice showed decreased insulin sensitivity compared to both wild-type 

controls and CEL-MODY mice (Figure 5.16). Taken together, we observed some differences between 

the CEL-16R mice and the wild-type control mice. Thus, we need to characterize the CEL-16R mice 

in more detail to be more confident about their phenotype, and to decide if they can be used as true 

controls or not.  

 

6.7 The impact of Covid-19 on the master project 

Due to the Covid-19 global health crises, strict guidelines were provided by the Norwegian 

Government. This involved a temporary lockdown of all laboratory work at the University of Bergen 

and Haukeland University Hospital. The lockdown lasted 6 weeks and therefore, two experiments 

planned for this thesis, were discarded due to lack of time. One of these experiments was 

immunohistochemistry for F4/80, a marker for inflammation. The other experiment was to analyse 
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serum alpha amylase activity, which is a way of measuring pancreatic exocrine function (Madole et 

al., 2016). Upon pancreas damage and CP, there is leakage of digestive enzymes into the blood stream 

and elevated levels of amylase in serum indicate pancreatic exocrine dysfunction.  

  



59 
 

7 Conclusion 

The CEL-MODY syndrome is characterized by early exocrine dysfunction and diabetes. Although 

the syndrome was discovered as a monogenic form of diabetes, new insight might suggest that the 

diabetes develops secondary to exocrine dysfunction and CP. Here, the overall objective was to 

investigate the phenotype of a new transgenic CEL-MODY mouse strain – to see whether mice and 

human develop the same characteristic features and to learn more about the underlying mechanisms. 

We found that the CEL-MODY mouse developed acinar cell atrophy, fibrosis, potential ADM and 

fatty infiltration in the pancreas already at 3 months of age. These are well-known signs of CP - which 

became more severe at 6 months of age for both male and female CEL-MODY mice. We also 

observed potential Cel protein aggregates in the CEL-MODY pancreas, supporting that the mice 

develops disease through the misfolding-dependent pathway of CP. At 6 months of age, we did not 

observe any diabetes development in this model.  

 

  



60 
 

8 Future perspectives 

With the CEL-MODY mice, we have developed a new animal model for CP. This gives us a range 

of possibilities for follow-up studies. However, to finish the first characterization study of the mice, 

we will focus on the experiments listed below.  

Perform 

• immunohistochemistry for the F4/80 marker in the pancreas of CEL-MODY mice to analyse 

the presence of inflammation 

• measure pancreatic alpha-amylase activity from blood serum collected from CEL-MODY 

mice to analyse pancreatic exocrine dysfunction 

• investigate up-regulation of ER-stress markers in acinar cells of CEL-MODY mice by western 

blotting 

• investigate the presence and location of protein aggregates in CEL-MODY mice by electron 

microscopy 

• perform immunohistochemistry for specific ADM markers in the pancreas to confirm its 

presence in CEL-MODY mice. 

• extend the experimental end point for CEL-MODY mice to 9- and 12 months to investigate 

whether they develop diabetes by IPGTT and IPITT 

• feed the CEL-MODY mice with an HFD to push them into glucose intolerance and to 

investigate if they develop diabetes by IPGTT and IPITT 
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Appendix 

Body weight development for mice at 3 months of age 

 

 

Figure 1. Body weight during life span of 3 months old CEL-MODY, CEL-16R and control mice. The body 

weight (g) is presented as the mean at each age point for (A) males and (B) females. Error bars represent 

standard error of the mean. Statistical significance is indicated as * (P < 0.05). N=6-13. 
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IPGTT for mice at 3 months of age 

 

 

Figure 2. Intraperitoneal glucose tolerance test for 3 months old mice. Time 0 represent blood glucose 

measurment before injection. CEL-MODY, CEL-16R and control mice are compared for (A) males and (B) 

females and represented with the mean for each strain. Error bar represent standard error of the mean. 

Statistical significance is indicated as * (P < 0.05) and ** (P < 0.01). 


